Timezone: »
We propose a novel, computationally efficient mirror-descent based optimization framework for subgraph detection in graph-structured data. Our aim is to discover anomalous patterns present in a connected subgraph of a given graph. This problem arises in many applications such as detection of network intrusions, community detection, detection of anomalous events in surveillance videos or disease outbreaks. Since optimization over connected subgraphs is a combinatorial and computationally difficult problem, we propose a convex relaxation that offers a principled approach to incorporating connectivity and conductance constraints on candidate subgraphs. We develop a novel efficient algorithm to solve the relaxed problem, establish convergence guarantees and demonstrate its feasibility and performance with experiments on real and very large simulated networks.
Author Information
Cem Aksoylar
Orecchia Lorenzo (Boston)
Venkatesh Saligrama (Boston University)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Connected Subgraph Detection with Mirror Descent on SDPs »
Mon. Aug 7th 08:30 AM -- 12:00 PM Room Gallery #78
More from the Same Authors
-
2022 : Strategies for Safe Multi-Armed Bandits with Logarithmic Regret and Risk »
Tianrui Chen · Aditya Gangrade · Venkatesh Saligrama -
2022 : ActiveHedge: Hedge meets Active Learning »
Bhuvesh Kumar · Jacob Abernethy · Venkatesh Saligrama -
2022 : Acting Optimistically in Choosing Safe Actions »
Tianrui Chen · Aditya Gangrade · Venkatesh Saligrama -
2022 : ActiveHedge: Hedge meets Active Learning »
Bhuvesh Kumar · Jacob Abernethy · Venkatesh Saligrama -
2022 : Achieving High TinyML Accuracy through Selective Cloud Interactions »
Anil Kag · Igor Fedorov · Aditya Gangrade · Paul Whatmough · Venkatesh Saligrama -
2022 : FedHeN: Federated Learning in Heterogeneous Networks »
Durmus Alp Emre Acar · Venkatesh Saligrama -
2022 Poster: Strategies for Safe Multi-Armed Bandits with Logarithmic Regret and Risk »
Tianrui Chen · Aditya Gangrade · Venkatesh Saligrama -
2022 Spotlight: Strategies for Safe Multi-Armed Bandits with Logarithmic Regret and Risk »
Tianrui Chen · Aditya Gangrade · Venkatesh Saligrama -
2022 Poster: Faster Algorithms for Learning Convex Functions »
Ali Siahkamari · Durmus Alp Emre Acar · Christopher Liao · Kelly Geyer · Venkatesh Saligrama · Brian Kulis -
2022 Poster: ActiveHedge: Hedge meets Active Learning »
Bhuvesh Kumar · Jacob Abernethy · Venkatesh Saligrama -
2022 Spotlight: ActiveHedge: Hedge meets Active Learning »
Bhuvesh Kumar · Jacob Abernethy · Venkatesh Saligrama -
2022 Spotlight: Faster Algorithms for Learning Convex Functions »
Ali Siahkamari · Durmus Alp Emre Acar · Christopher Liao · Kelly Geyer · Venkatesh Saligrama · Brian Kulis -
2021 Poster: Debiasing Model Updates for Improving Personalized Federated Training »
Durmus Alp Emre Acar · Yue Zhao · Ruizhao Zhu · Ramon Matas · Matthew Mattina · Paul Whatmough · Venkatesh Saligrama -
2021 Spotlight: Debiasing Model Updates for Improving Personalized Federated Training »
Durmus Alp Emre Acar · Yue Zhao · Ruizhao Zhu · Ramon Matas · Matthew Mattina · Paul Whatmough · Venkatesh Saligrama -
2021 Poster: Memory Efficient Online Meta Learning »
Durmus Alp Emre Acar · Ruizhao Zhu · Venkatesh Saligrama -
2021 Spotlight: Memory Efficient Online Meta Learning »
Durmus Alp Emre Acar · Ruizhao Zhu · Venkatesh Saligrama -
2021 Poster: Training Recurrent Neural Networks via Forward Propagation Through Time »
Anil Kag · Venkatesh Saligrama -
2021 Spotlight: Training Recurrent Neural Networks via Forward Propagation Through Time »
Anil Kag · Venkatesh Saligrama -
2020 Poster: Piecewise Linear Regression via a Difference of Convex Functions »
Ali Siahkamari · Aditya Gangrade · Brian Kulis · Venkatesh Saligrama -
2020 Poster: Minimax Rate for Learning From Pairwise Comparisons in the BTL Model »
Julien Hendrickx · Alex Olshevsky · Venkatesh Saligrama -
2019 Poster: Graph Resistance and Learning from Pairwise Comparisons »
Julien Hendrickx · Alex Olshevsky · Venkatesh Saligrama -
2019 Oral: Graph Resistance and Learning from Pairwise Comparisons »
Julien Hendrickx · Alex Olshevsky · Venkatesh Saligrama -
2019 Poster: Learning Classifiers for Target Domain with Limited or No Labels »
Pengkai Zhu · Hanxiao Wang · Venkatesh Saligrama -
2019 Oral: Learning Classifiers for Target Domain with Limited or No Labels »
Pengkai Zhu · Hanxiao Wang · Venkatesh Saligrama -
2018 Poster: Gradient Descent for Sparse Rank-One Matrix Completion for Crowd-Sourced Aggregation of Sparsely Interacting Workers »
Yao Ma · Alex Olshevsky · Csaba Szepesvari · Venkatesh Saligrama -
2018 Oral: Gradient Descent for Sparse Rank-One Matrix Completion for Crowd-Sourced Aggregation of Sparsely Interacting Workers »
Yao Ma · Alex Olshevsky · Csaba Szepesvari · Venkatesh Saligrama -
2018 Poster: On Acceleration with Noise-Corrupted Gradients »
Michael Cohen · Jelena Diakonikolas · Orecchia Lorenzo -
2018 Poster: Alternating Randomized Block Coordinate Descent »
Jelena Diakonikolas · Orecchia Lorenzo -
2018 Oral: On Acceleration with Noise-Corrupted Gradients »
Michael Cohen · Jelena Diakonikolas · Orecchia Lorenzo -
2018 Oral: Alternating Randomized Block Coordinate Descent »
Jelena Diakonikolas · Orecchia Lorenzo -
2017 Workshop: ML on a budget: IoT, Mobile and other tiny-ML applications »
Manik Varma · Venkatesh Saligrama · Prateek Jain -
2017 Poster: Adaptive Neural Networks for Efficient Inference »
Tolga Bolukbasi · Joseph Wang · Ofer Dekel · Venkatesh Saligrama -
2017 Talk: Adaptive Neural Networks for Efficient Inference »
Tolga Bolukbasi · Joseph Wang · Ofer Dekel · Venkatesh Saligrama