Timezone: »
Undirected graphical models or Markov random fields (MRFs) are widely used for modeling multivariate probability distributions. Much of the work on MRFs has focused on continuous variables, and nominal variables (that is, unordered categorical variables). However, data from many real world applications involve ordered categorical variables also known as ordinal variables, e.g., movie ratings on Netflix which can be ordered from 1 to 5 stars. With respect to univariate ordinal distributions, as we detail in the paper, there are two main categories of distributions; while there have been efforts to extend these to multivariate ordinal distributions, the resulting distributions are typically very complex, with either a large number of parameters, or with non-convex likelihoods. While there have been some work on tractable approximations, these do not come with strong statistical guarantees, and moreover are relatively computationally expensive. In this paper, we theoretically investigate two classes of graphical models for ordinal data, corresponding to the two main categories of univariate ordinal distributions. In contrast to previous work, our theoretical developments allow us to provide correspondingly two classes of estimators that are not only computationally efficient but also have strong statistical guarantees.
Author Information
ARUN SAI SUGGALA (Carnegie Mellon University)
Eunho Yang (KAIST / AItrics)
Pradeep Ravikumar (Carnegie Mellon University)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Ordinal Graphical Models: A Tale of Two Approaches »
Mon. Aug 7th 08:30 AM -- 12:00 PM Room Gallery #44
More from the Same Authors
-
2021 : When Is Generalizable Reinforcement Learning Tractable? »
Dhruv Malik · Yuanzhi Li · Pradeep Ravikumar -
2023 : Identifying Causal Mechanism Shifts among Nonlinear Additive Noise Models »
Tianyu Chen · Kevin Bello · Bryon Aragam · Pradeep Ravikumar -
2023 : Learning Linear Causal Representations from Interventions under General Nonlinear Mixing »
Simon Buchholz · Goutham Rajendran · Elan Rosenfeld · Bryon Aragam · Bernhard Schölkopf · Pradeep Ravikumar -
2023 : Learning Linear Causal Representations from Interventions under General Nonlinear Mixing »
Simon Buchholz · Goutham Rajendran · Elan Rosenfeld · Bryon Aragam · Bernhard Schölkopf · Pradeep Ravikumar -
2023 : Learning with Explanation Constraints »
Rattana Pukdee · Dylan Sam · Nina Balcan · Pradeep Ravikumar -
2023 : Learning Linear Causal Representations from Interventions under General Nonlinear Mixing »
Simon Buchholz · Goutham Rajendran · Elan Rosenfeld · Bryon Aragam · Bernhard Schölkopf · Pradeep Ravikumar -
2023 : Global Optimality in Bivariate Gradient-based DAG Learning »
Chang Deng · Kevin Bello · Pradeep Ravikumar · Bryon Aragam -
2023 Poster: Fighting Fire with Fire: Contrastive Debiasing without Bias-free Data via Generative Bias-transformation »
Yeonsung Jung · Hajin Shim · June Yong Yang · Eunho Yang -
2023 Poster: RGE: A Repulsive Graph Rectification for Node Classification via Influence »
Jaeyun Song · Sungyub Kim · Eunho Yang -
2023 Poster: Optimizing NOTEARS Objectives via Topological Swaps »
Chang Deng · Kevin Bello · Bryon Aragam · Pradeep Ravikumar -
2023 Poster: Representer Point Selection for Explaining Regularized High-dimensional Models »
Che-Ping Tsai · Jiong Zhang · Hsiang-Fu Yu · Eli Chien · Cho-Jui Hsieh · Pradeep Ravikumar -
2023 Poster: Faith-Shap: The Faithful Shapley Interaction Index »
Che-Ping Tsai · Chih-Kuan Yeh · Pradeep Ravikumar -
2022 Poster: Building Robust Ensembles via Margin Boosting »
Dinghuai Zhang · Hongyang Zhang · Aaron Courville · Yoshua Bengio · Pradeep Ravikumar · Arun Sai Suggala -
2022 Spotlight: Building Robust Ensembles via Margin Boosting »
Dinghuai Zhang · Hongyang Zhang · Aaron Courville · Yoshua Bengio · Pradeep Ravikumar · Arun Sai Suggala -
2022 Poster: TAM: Topology-Aware Margin Loss for Class-Imbalanced Node Classification »
Jaeyun Song · Joonhyung Park · Eunho Yang -
2022 Spotlight: TAM: Topology-Aware Margin Loss for Class-Imbalanced Node Classification »
Jaeyun Song · Joonhyung Park · Eunho Yang -
2021 Poster: DORO: Distributional and Outlier Robust Optimization »
Runtian Zhai · Chen Dan · Zico Kolter · Pradeep Ravikumar -
2021 Spotlight: DORO: Distributional and Outlier Robust Optimization »
Runtian Zhai · Chen Dan · Zico Kolter · Pradeep Ravikumar -
2021 Poster: On Proximal Policy Optimization's Heavy-tailed Gradients »
Saurabh Garg · Joshua Zhanson · Emilio Parisotto · Adarsh Prasad · Zico Kolter · Zachary Lipton · Sivaraman Balakrishnan · Ruslan Salakhutdinov · Pradeep Ravikumar -
2021 Poster: Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation »
Dongchan Min · Dong Bok Lee · Eunho Yang · Sung Ju Hwang -
2021 Spotlight: On Proximal Policy Optimization's Heavy-tailed Gradients »
Saurabh Garg · Joshua Zhanson · Emilio Parisotto · Adarsh Prasad · Zico Kolter · Zachary Lipton · Sivaraman Balakrishnan · Ruslan Salakhutdinov · Pradeep Ravikumar -
2021 Spotlight: Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation »
Dongchan Min · Dong Bok Lee · Eunho Yang · Sung Ju Hwang -
2021 Poster: Federated Continual Learning with Weighted Inter-client Transfer »
Jaehong Yoon · Wonyong Jeong · GiWoong Lee · Eunho Yang · Sung Ju Hwang -
2021 Spotlight: Federated Continual Learning with Weighted Inter-client Transfer »
Jaehong Yoon · Wonyong Jeong · GiWoong Lee · Eunho Yang · Sung Ju Hwang -
2020 Poster: Cost-Effective Interactive Attention Learning with Neural Attention Processes »
Jay Heo · Junhyeon Park · Hyewon Jeong · Kwang Joon Kim · Juho Lee · Eunho Yang · Sung Ju Hwang -
2020 Poster: Uniform Convergence of Rank-weighted Learning »
Justin Khim · Liu Leqi · Adarsh Prasad · Pradeep Ravikumar -
2020 Poster: Sharp Statistical Guaratees for Adversarially Robust Gaussian Classification »
Chen Dan · Yuting Wei · Pradeep Ravikumar -
2020 Poster: Class-Weighted Classification: Trade-offs and Robust Approaches »
Ziyu Xu · Chen Dan · Justin Khim · Pradeep Ravikumar -
2020 Poster: Certified Robustness to Label-Flipping Attacks via Randomized Smoothing »
Elan Rosenfeld · Ezra Winston · Pradeep Ravikumar · Zico Kolter -
2019 Poster: Spectral Approximate Inference »
Sejun Park · Eunho Yang · Se-Young Yun · Jinwoo Shin -
2019 Oral: Spectral Approximate Inference »
Sejun Park · Eunho Yang · Se-Young Yun · Jinwoo Shin -
2019 Poster: Trimming the $\ell_1$ Regularizer: Statistical Analysis, Optimization, and Applications to Deep Learning »
Jihun Yun · Peng Zheng · Eunho Yang · Aurelie Lozano · Aleksandr Aravkin -
2019 Oral: Trimming the $\ell_1$ Regularizer: Statistical Analysis, Optimization, and Applications to Deep Learning »
Jihun Yun · Peng Zheng · Eunho Yang · Aurelie Lozano · Aleksandr Aravkin -
2018 Poster: Deep Asymmetric Multi-task Feature Learning »
Hae Beom Lee · Eunho Yang · Sung Ju Hwang -
2018 Poster: Binary Classification with Karmic, Threshold-Quasi-Concave Metrics »
Bowei Yan · Sanmi Koyejo · Kai Zhong · Pradeep Ravikumar -
2018 Poster: Loss Decomposition for Fast Learning in Large Output Spaces »
En-Hsu Yen · Satyen Kale · Felix Xinnan Yu · Daniel Holtmann-Rice · Sanjiv Kumar · Pradeep Ravikumar -
2018 Oral: Binary Classification with Karmic, Threshold-Quasi-Concave Metrics »
Bowei Yan · Sanmi Koyejo · Kai Zhong · Pradeep Ravikumar -
2018 Oral: Deep Asymmetric Multi-task Feature Learning »
Hae Beom Lee · Eunho Yang · Sung Ju Hwang -
2018 Oral: Loss Decomposition for Fast Learning in Large Output Spaces »
En-Hsu Yen · Satyen Kale · Felix Xinnan Yu · Daniel Holtmann-Rice · Sanjiv Kumar · Pradeep Ravikumar -
2018 Poster: Deep Density Destructors »
David Inouye · Pradeep Ravikumar -
2018 Oral: Deep Density Destructors »
David Inouye · Pradeep Ravikumar -
2017 Poster: ProtoNN: Compressed and Accurate kNN for Resource-scarce Devices »
Chirag Gupta · ARUN SUGGALA · Ankit Goyal · Saurabh Goyal · Ashish Kumar · Bhargavi Paranjape · Harsha Vardhan Simhadri · Raghavendra Udupa · Manik Varma · Prateek Jain -
2017 Poster: Sparse + Group-Sparse Dirty Models: Statistical Guarantees without Unreasonable Conditions and a Case for Non-Convexity »
Eunho Yang · Aurelie Lozano -
2017 Talk: ProtoNN: Compressed and Accurate kNN for Resource-scarce Devices »
Chirag Gupta · ARUN SUGGALA · Ankit Goyal · Saurabh Goyal · Ashish Kumar · Bhargavi Paranjape · Harsha Vardhan Simhadri · Raghavendra Udupa · Manik Varma · Prateek Jain -
2017 Talk: Sparse + Group-Sparse Dirty Models: Statistical Guarantees without Unreasonable Conditions and a Case for Non-Convexity »
Eunho Yang · Aurelie Lozano -
2017 Poster: Doubly Greedy Primal-Dual Coordinate Descent for Sparse Empirical Risk Minimization »
Qi Lei · En-Hsu Yen · Chao-Yuan Wu · Inderjit Dhillon · Pradeep Ravikumar -
2017 Poster: Latent Feature Lasso »
En-Hsu Yen · Wei-Cheng Lee · Sung-En Chang · Arun Suggala · Shou-De Lin · Pradeep Ravikumar -
2017 Talk: Doubly Greedy Primal-Dual Coordinate Descent for Sparse Empirical Risk Minimization »
Qi Lei · En-Hsu Yen · Chao-Yuan Wu · Inderjit Dhillon · Pradeep Ravikumar -
2017 Talk: Latent Feature Lasso »
En-Hsu Yen · Wei-Cheng Lee · Sung-En Chang · Arun Suggala · Shou-De Lin · Pradeep Ravikumar