Timezone: »
Talk
Equivariance Through Parameter-Sharing
Siamak Ravanbakhsh · Jeff Schneider · Barnabás Póczos
We propose to study equivariance in deep neural networks through parameter symmetries. In particular, given a group G that acts discretely on the input and output of a standard neural network layer, we show that its equivariance is linked to the symmetry group of network parameters. We then propose two parameter-sharing scheme to induce the desirable symmetry on the parameters of the neural network. Under some conditions on the action of G, our procedure for tying the parameters achieves G-equivariance and guarantees sensitivity to all other permutation groups outside of G.
Author Information
Siamak Ravanbakhsh (Carnegie Mellon University)
Jeff Schneider (CMU/Uber)
Barnabás Póczos (CMU)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Poster: Equivariance Through Parameter-Sharing »
Mon Aug 7th 08:30 AM -- 12:00 PM Room Gallery
More from the Same Authors
-
2020 Poster: Universal Equivariant Multilayer Perceptrons »
Siamak Ravanbakhsh -
2020 Poster: VideoOneNet: Bidirectional Convolutional Recurrent OneNet with Trainable Data Steps for Video Processing »
Zoltán Á. Milacski · Barnabás Póczos · Andras Lorincz -
2019 Poster: Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments »
Kirthevasan Kandasamy · Willie Neiswanger · Reed Zhang · Akshay Krishnamurthy · Jeff Schneider · Barnabás Póczos -
2019 Oral: Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments »
Kirthevasan Kandasamy · Willie Neiswanger · Reed Zhang · Akshay Krishnamurthy · Jeff Schneider · Barnabás Póczos -
2018 Poster: Transformation Autoregressive Networks »
Junier Oliva · Kumar Avinava Dubey · Manzil Zaheer · Barnabás Póczos · Ruslan Salakhutdinov · Eric Xing · Jeff Schneider -
2018 Oral: Transformation Autoregressive Networks »
Junier Oliva · Kumar Avinava Dubey · Manzil Zaheer · Barnabás Póczos · Ruslan Salakhutdinov · Eric Xing · Jeff Schneider -
2018 Poster: Gradient Descent Learns One-hidden-layer CNN: Don't be Afraid of Spurious Local Minima »
Simon Du · Jason Lee · Yuandong Tian · Aarti Singh · Barnabás Póczos -
2018 Oral: Gradient Descent Learns One-hidden-layer CNN: Don't be Afraid of Spurious Local Minima »
Simon Du · Jason Lee · Yuandong Tian · Aarti Singh · Barnabás Póczos -
2017 Poster: Multi-fidelity Bayesian Optimisation with Continuous Approximations »
kirthevasan kandasamy · Gautam Dasarathy · Barnabás Póczos · Jeff Schneider -
2017 Talk: Multi-fidelity Bayesian Optimisation with Continuous Approximations »
kirthevasan kandasamy · Gautam Dasarathy · Barnabás Póczos · Jeff Schneider -
2017 Poster: The Statistical Recurrent Unit »
Junier Oliva · Barnabás Póczos · Jeff Schneider -
2017 Poster: Nonparanormal Information Estimation »
Shashank Singh · Barnabás Póczos -
2017 Talk: Nonparanormal Information Estimation »
Shashank Singh · Barnabás Póczos -
2017 Talk: The Statistical Recurrent Unit »
Junier Oliva · Barnabás Póczos · Jeff Schneider