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Abstract

Prediction markets are used in real life to pre-
dict outcomes of interest such as presidential
elections. In this work we introduce a mathe-
matical theory for Artificial Prediction Mar-
kets for supervised classifier aggregation and
probability estimation. We introduce the ar-
tificial prediction market as a novel way to
aggregate classifiers. We derive the market
equations to enforce total budget conserva-
tion, show the market price uniqueness and
give efficient algorithms for computing it. We
show how to train the market participants by
updating their budgets using training exam-
ples. We introduce classifier specialization as
a new differentiating characteristic between
classifiers. Finally, we present experiments
using random decision rules as specialized
classifiers and show that the prediction mar-
ket consistently outperforms Random Forest
on real and synthetic data of varying degrees
of difficulty.

1. Introduction

Prediction markets, also known as information mar-
kets, are forums that trade contracts that yield pay-
ments dependent on the outcome of future events
of interest. They have been used in the US De-
partment of Defense (Polk et al., 2003), health care
(Polgreen et al., 2006), to predict presidential elec-
tions (Wolfers & Zitzewitz, 2004) and in large corpora-
tions to make informed decisions (Cowgill et al., 2008).
The prices of the contracts traded in these markets
are good approximations for the probability of the
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outcome of interest (Manski, 2006; Gjerstad & Hall,
2005). Prediction markets are capable of fusing
the information that the market participants possess
through the contract price. For more details, see
(Arrow et al., 2008).
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Figure 1. The Artificial Prediction Market. Given a fea-
ture vector x, the market equilibrium price vector c is com-
puted from the Price Equations (11), with ck an estimator
of P (Y = k|x). Online training on an example (x, y) is
achieved through Budget Update (x, y, c) shown with
upward gray arrows.

In this paper we develop a mathematical theory for
Artificial Prediction Markets for the purpose of super-
vised aggregation of classifier and or probability esti-
mators. Starting from the total budget conservation
condition we derive the market equations. We show
that under certain mild conditions, the market price
is unique and give efficient algorithms for computing
it. This market price will be the estimated probability
given the evidence presented to the market partici-
pants though a feature vector x. It is the result of
the fusion of the information possessed by the market
participants in their classifiers.

We show how the Artificial Prediction Market gen-
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eralizes linear aggregation, the basis of Boosting
(Friedman et al., 2000; Schapire, 2003) and Random
Forest (Breiman, 2001). It turns out that for linear ag-
gregation, each market participant will purchase con-
tract for the class it predicts, regardless of the mar-
ket price for that contract. We introduce other bet-

ting functions that make buying decisions not only
based on the classifier prediction but also on the mar-
ket price.

We introduce a new type of classifiers that are special-

ized in modeling certain regions of the feature space.
Such classifiers have good accuracy in their region of
specialization and are not used in predicting outcomes
for observations outside this region. This means that
for each observation, a different subset of classifiers
will be aggregated to obtain the estimated probabil-
ity, making the whole approach become a sort of ad-

hoc aggregation. This is contrast to the general trend
in Boosting where the same classifiers are aggregated
for all observations.

We give examples of generic specialized classifiers as
the leaves of Random Trees from a Random For-
est. Experimental validation on thousands of synthetic
datasets with Bayes errors ranging from 0 (very easy)
to 0.5 (very difficult) as well as on real UCI data show
that the Prediction Market using the specialized clas-
sifiers outperforms the Random Forest in prediction
and in estimating the true underlying probability.

2. Artificial Prediction Market for

Classifier Aggregation

This work simulates a real prediction market named
the Iowa Electronic Market (Wolfers & Zitzewitz,
2004), on the web at http://www.biz.uiowa.edu/iem/.
The Iowa Electronic Market works as follows: con-
tracts are sold for all possible outcomes at the market
price. A winning contract (that predicted the correct
outcome) pays $1 after the outcome is known.

2.1. Setup of the Artificial Prediction Market

If the possible classes (outcomes) are 1, ...,K, we as-
sume there exist contracts for each class, whose prices
form a K-dimensional vector c = (c1, ..., cK) ∈ [0, 1]K .
Let Ω ⊂ R

F be the instance or feature space contain-
ing all the available information that can be used in
making outcome predictions p(Y = k|x),x ∈ Ω.

We define a market participant as a pair (β, φ(x, c))
of a budget β and a betting function φ(x, c) : Ω ×
[0, 1]K → [0, 1]K . The budget β represents the weight
of the the participant in the aggregation. The bet-
ting function tells what percentage of its budget the

market participant will allocate to purchase contracts
for each class, based on the instance x ∈ Ω and
the market price c. In this paper, we will only fo-
cus on betting functions based on trained classifiers
h(x) : Ω → [0, 1]K ,

∑K

k=1 hk(x) = 1. In order to bet
at most the budget β, the betting functions must sat-
isfy

∑K

k=1 φk(x, c)) ≤ 1. We use one of the following
three betting functions, also shown in Figure 2:
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Figure 2. Betting functions. Left: Constant betting, Mid-
dle: Linear betting, Right: Aggressive betting. Shown are
φ0(x, 1−c) (red), φ1(x, c) (blue), and the total amount bet
φ0(x, 1− c) + φ1(x, c) (black dotted). In this example, the
classifier probability is h1(x) = 0.2.

• Constant betting functions

φk(x, c) = hk(x) (1)

• Linear betting functions

φk(x, c) = (1− ck)hk(x) (2)

• Aggressive betting functions

φk(x, c) =











1 if ck ≤ hk(x)− ǫ

0 if ck > hk(x)
hk(x)−ck

ǫ
otherwise

(3)

We suspect that the betting functions play a similar
role to the potential functions from MRF modeling
(Zhu et al., 1998).

The market consists of a number of market partici-
pants (βm, φm(x, c)).

2.2. Aggregation Using the Artificial

Prediction Market

The aggregation result of the prediction market is the
contract price vector c at equilibrium. In order for the
contract prices to approximate a probability over the
class labels and similar to (Gjerstad & Hall, 2005), we

enforce the condition
∑K

k=1 ck = 1. We use the price
ck as an estimator of p(Y = k|x).

Algorithm 1 Prediction with the Market

Input: Feature vector x ∈ Ω.
Compute equilibrium price c = (c1, ..., cK) using
Thm. 2.1
Output: Class conditional probability estimates
p̂(Y = k|x) = ck, k = 1, ...,K.

To simplify the behavior of the prediction market and
without loss of generality, the contract prices in the Ar-
tificial Prediction Market are started at an equilibrium
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price that is determined numerically and all transac-
tions are made instantaneously at the this price. Hence
in our setup, the market price does not fluctuate. This
is possible because, as opposed to a real prediction
market, we know the betting strategy of each market
participant and we can find the equilibrium price nu-
merically.

2.3. Training the Artificial Prediction Market

Training the market involves initializing all partici-
pants with the same budget β0 and running the budget
update on a set of training examples (xi, yi). For each
example (xi, yi) the budgets βm are updated based on
the contracts purchased and the outcome yi. After
all training examples have been presented, the partici-
pants will have budgets that depend on how well they
predicted the correct class y for each training example
x. This procedure is illustrated in Figure 1.

Algorithm 2 Prediction Market Training

Input: Training examples (xi, yi)
Initialize all budgets βm = β0.
for each training example (xi, yi) do

Compute equilibrium price ci using Thm. 2.1
Run Budget Update (xi, yi, ci)

end for

The budget update procedure subtracts from the bud-
get of each participant the amounts it bets for each
class, then rewards the participant based on how many
contracts it purchased for the correct class.

Participant m purchased βmφk
m(x, c) worth of con-

tracts for class k, at price ck. Thus the number of con-
tracts purchased for class k is βmφk

m(x, c)/ck. In to-
tal, participant m’s budget is decreased by the amount
∑K

k=1 βmφk
m(x, c) invested in contracts. Since partici-

pant m bought βmφy
m(x, c)/cy contracts for the correct

class y, he is rewarded the amount βmφy
m(x, c)/cy.

We will multiply all betting functions by a factor 0 <
η < 1 to control the percentage of their budget the
market participants are allowed to bet for each training
example. This does not change the equilibrium price
but it makes the training less sensitive. In this work
we fixed η = 0.1.

Algorithm 3 Budget Update (x, y, c)

Input: Training example (x, y), price vector c

for m = 1 to M do

Update participant m’s budget as

βm ← βm−η

K
∑

k=1

βmφk
m(x, c)+η

βm

cy

φy
m(x, c) (4)

end for

2.4. The Price Equations

The main principle the proposed artificial predic-
tion market follows is budget conservation, i.e. the
conservation of the sum of all participants budgets
∑M

m=1 βm. Since for each instance, any of the out-
comes are theoretically possible, we assume that the

total budget
∑M

m=1 βm must be conserved independent

of the outcome y.

This condition transforms into a set of equations that
constrain the market price, which we call the price
equations.

Theorem 2.1 Price Equations. The total bud-

get
∑M

m=1 βm is conserved after the Budget

Update(x, y, c), independent of the outcome y, if and

only if there exists n ∈ R+ such that
M
∑

m=1

βmφk
m(x, c) = nck, ∀k = 1, ...,K (5)

The proof is given in the Appendix.

2.5. Price Uniqueness

The price equations together with the equation
∑K

k=1 ck = 1 are enough to uniquely determine the
market price c, under mild assumptions on the bet-
ting functions φk(x, c).

Observe that if ck = 1 for some k, then the contract
costs 1 and pays 1, so there is nothing to win. Hence
in this case, it is reasonable to assume φk(x, c) = 0.
Also, if ck = 0 for some k, then the contract costs 0
and pays 1, so there is everything to win. In this case,
one should have φk(x, c) > 0. This suggests a class of
betting functions φk(x, ck) depending only on the price
ck that satisfy the conditions φk(x, 0) > 0, φk(x, 1) = 0
and are continuous and monotonically decreasing in ck.
For such betting functions we have

Remark 2.2 If all φk
m(x, ck),m = 1, ...,M are con-

tinuous and monotonically decreasing in ck with

φk
m(x, 0) > 0 and φk

m(x, 1) = 0 then

fk(ck) =
1

ck

M
∑

m=1

βmφk
m(x, ck) (6)

is continuous and strictly decreasing in ck and for ev-

ery n ≥ 0 there is a unique ck = ck(n) that satisfies

fk(ck) = n.

The proof is given in the Appendix. From here we
obtain the following, also proved in the Appendix.

Theorem 2.3 Monotonic Betting Functions. If

all betting functions φk
m(x, ck),m = 1, ...,M, k =

1, ...,K are continuous and monotonically decreasing,

then for each (x, y) there is a unique price c =

(c1, ..., cK) such that the total budget
∑M

m=1 βm is con-

served after Budget Update(x, y, c).
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In practice, each ck(n) can be found by the bisection
method, while n can also be found by the bisection
method. This gives Algorithm 4 below.

Algorithm 4 Equilibrium Price Computation

Initialize n0 = ǫ, n1 = η
∑M

m=1 βm.
for k = 0 to K do

Compute ck(n0), ck(n1) using bisection method
on eq (6).

end for

repeat

Let n = (n0 + n1)/2.
for k = 0 to K do

Compute ck(n) by bisection on eq (6).
end for

if
∑

k ck(n) > 1 then

n0 = n
else

n1 = n
end if

until |∑k ck(n)− 1| < ǫ or n1 − n0 < ǫ

The n1 initialization is due to the bound

n =

K
∑

k=1

nck =

K
∑

k=1

M
∑

m=1

βmφk
m(x, c) ≤ η

M
∑

m=1

βm (7)

because for each m,
∑K

k=1 φk
m(x, c) ≤ 1.

2.6. Constant Betting is Linear Aggregation

The simplest betting functions are constant, where the
same amount is invested in contracts for any contract
price, i.e. φk

m(x, c) = hk
m(x). A constant betting func-

tion with h1(x) = 0.2 is illustrated in Figure 2, left.

Theorem 2.4 Linear Aggregation. If all betting

function are constant φk
m(x, c) = hk

m(x), then the equi-

librium price is obtained by linear aggregation

c =

∑M

m=1 βmhm(x)
∑M

m=1 βm

=
∑

m

αmhm(x) (8)

This way the Artificial Prediction Market general-
izes the linear aggregation of classifiers existent in
Adaboost (Friedman et al., 2000; Schapire, 2003) and
Random Forest (Breiman, 2001).

In particular, the Random Forest (Breiman, 2001) is
a Prediction Market with Constant Betting (linear
aggregation) where all participants are random trees
with the same budget βm = 1,m = 1, ...,M .

For Constant Betting, the budget update has an ana-
lytic form:

βm ← βm(1− η) + ηβm

hy
m(x)

∑M

j=1 βj

∑M

j=1 βjh
y
j (x)

(9)

This is a novel online update rule for linear aggrega-
tion.

2.7. Two-class Formulation

For the two-class problem, i.e. K = 2, the budget
equation can be simplified by writing c = (1 − c, c)
and obtaining the two-class budget equation

(1−c)

M
∑

m=1

βmφ1
m(x, c)−c

M
∑

m=1

βmφ0
m(x, 1−c) = 0 (10)

This can be solved numerically directly in c using the
bisection method. Again, the solution is unique if
φk

m(x, ck),m = 1, ...,M, k = 1, ...,K are continuous
and monotonically decreasing. Moreover, the solution
is guaranteed to exist if there exist m,m′ such that
βm > 0, βm′ > 0 and φ1

m(x, 0) > 0, φ0
m′(x, 1) > 0.

3. Specialized Classifiers

Classifiers are usually suboptimal, due to not using the
entire feature vector x ∈ Ω, the way they are trained,
or other reasons. In Boosting, the same classifiers are
aggregated for each instance x ∈ Ω. In many situa-
tions however, there exist rules that hold on subsets
of Ω but not on the entire space Ω. Classifiers trained
on such subsets Di ⊂ Ω, would have small misclassi-
fication error on Di but unpredictable behavior out-
side of Di. The Artificial Prediction Market can ag-
gregate such classifiers, transformed into participants
that don’t bet anything outside of their domain of ex-
pertise Di ⊂ Ω. This way, for different observations
x ∈ Ω, different subsets of participants will contribute
to the resulting probability estimate. We call these
specialized classifiers since they only give their opin-
ion through betting on observations that fall in their
domain of specialization. This idea is illustrated on
the following simple 2D example of a triangular re-
gion, shown in Figure 3, with positive examples inside
the triangle and negatives outside. An accurate classi-
fier for that region can be constructed using six mar-
ket participants, one for each half-plane determined by
each side of the triangle.

Three of these classifiers correspond to the three half
planes that are outside the triangle. These partici-
pants have 100% accuracy in predicting the observa-
tions, all negatives, that fall in their half planes and
don’t bet anything outside of their half planes. The
other three classifiers are not very good, and will have
smaller budgets. On observations outside of the tri-
angle, one or two of the high-budget classifiers will
enforce the correct class through high bids. On ob-
servations inside the triangle, only the small-budget
classifiers will participate but will be in agreement on
the correct class. Running this market on 1000 posi-
tives and 1000 negatives showed that the market has
a prediction accuracy of 100%.
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Figure 3. The triangular region can be perfectly classified
by a market of six specialized classifiers that only bid on a
half-plane determined by one side of the triangle. Three of
these specialized classifiers have 100% accuracy while the
other three have low accuracy. Nevertheless, the market is
capable of obtaining 100% overall accuracy.

There are many ways to construct specialized classi-
fiers, depending on the problem setup. In natural lan-
guage processing for example, a specialized classifier
could be based on grammar rules, which work very
well in many cases, but not always.

We propose a generic set of specialized classifiers that
are the leaves of the Random Trees of a Random For-
est. Each leaf is a rule and will only work in a sub-
domain of the instance space Ω, but in that domain it
will achieve good accuracy. In (Friedman & Popescu,
2008) these rules were combined using a linear aggre-
gation method similar to Boosting. One could also
use nodes of the random tree, not necessarily leaves,
for the same purpose.

4. Related Work

Recent work in Economics (Manski, 2006;
Perols et al., 2009; Plott et al., 2003) investigates
the information fusion of the Prediction Markets.
However, none of these works aims at using the pre-
diction markets as a tool for learning class probability
estimators in a supervised manner.

Some works (Perols et al., 2009; Plott et al., 2003) fo-
cus on parimutuel betting for combining classifiers. In
parimutuel betting, contracts are sold for all possible
outcomes (classes) and the entire budget (minus fees)
is divided between the participants that purchased
contracts for the winning outcome. Parimutuel bet-
ting has a different way of fusing information than the
Iowa Prediction Market. The Information Based Deci-
sion Fusion (Perols et al., 2009) aggregates classifiers
through parimutuel betting, using a loop that updates
the odds for each outcome and takes updated bets un-
til convergence. This ensures a stronger information
fusion than without updating the odds. Our work is

different since it uses the Iowa Electronic Market in-
stead of parimutuel betting, it presents a multi-class
formulation instead of a two-class approach. Fore-
most, our work trains the market participants in a
supervised way, whereas (Perols et al., 2009) does not
train the market participants. We experimentally ob-
served statistically significant improvements in predic-
tion and probability estimation by using the trained
market participants. Finally, our work evaluates the
prediction market not only in terms of classification
accuracy but also in the accuracy of predicting the
exact class conditional probability given the evidence.

Specialization is a type of reject rule (Chow, 1970;
Tortorella, 2004), but not for the aggregated classifier.
Instead, each market participant has his own reject
rule to decide on what observations to contribute to
the aggregation. ROC-based reject rules (Tortorella,
2004) could be found for each market participant and
used for defining its domain of specialization.

An overall reject rule can also be obtained for instances
outside the specialization domain of all participants.
No participant will bet for such an instance and this
can be detected as an overall rejection. If the overall
reject option is not desired, one could include in the
market a set of participants that are all the leaves of
a number of Random Trees. This way, by design it
is guaranteed that each instance will fall into at least
one leaf, i.e. participant, hence the instance will not
be rejected.

A simplified specialization is present in delegated clas-
sifiers (Ferri et al., 2004). A first classifier would de-
cide on the relatively easy instances and would del-
egate more difficult examples to a second classifier.
This approach can be seen as a market with two non-
overlapping participants. The specialization domain of
the second participant is the complement of the first
participant’s domain.

The leaves of random trees (named rules) have also
been used in (Friedman & Popescu, 2008) for linear
aggregation. However, our work presents a more
generic aggregation method through the prediction
market, with linear aggregation as a particular case,
and we view the rules as one sort of specialized classi-
fiers that only bid in a subdomain of the feature space.

Linear aggregation of classifiers was also presented in
(Bunea & Nobel, 2008), with an exponential weighting
scheme. Our work goes beyond linear aggregation and
presents a novel linear aggregation update that differs
from the exponential weighting by being nonlinear and
recursive.
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Figure 4. Evaluation on 5000 100D problems. Left: Class probability estimation error vs problem difficulty. Mid-left:
Probability estimation errors relative to Random Forest. The Aggressive and Linear Betting are shown with box plots.
Mid-right: Misclassification error minus Bayes error vs problem difficulty. Right: Misclassification errors relative to
Random Forest. The Aggressive Betting is shown with box plots.

5. Experimental Results

We present results on real and synthetic datasets and
compare with Random Forest. For each dataset, ran-
dom trees are trained on bootstrap samples of the
training data. The binary split of each node is se-
lected using Information Gain from

√
F randomly se-

lected features. These trained random trees are used
to construct the Random Forest and the three mar-
kets described below. This way only the aggregation
capabilities of the different markets will be compared.

We evaluated four artificial prediction markets, having
the same classifiers, namely the leaves of the trained
random trees:

1. The RF market has constant betting and equal
budgets for all participants. We proved in Section
2.6 that this is a Random Forest (Breiman, 2001).

2. The CB market has constant betting and the bud-
gets are trained on the training set.

3. The LB market has linear betting and the budgets
are trained on the training set.

4. The AB market has aggressive betting and the
budgets are trained on the training set.

5.1. Evaluation of the Probability Estimation

and Classification Accuracy

A series of experiments on synthetic datasets are per-
formed to evaluate the market’s ability to predict class
conditional probabilities P (Y |x). The markets are
trained with 50 trees. The experiments are performed
on 5000 binary datasets with 50 levels of Bayes error

E =

∫

min{p(x, Y = 0), p(x, Y = 1)}dx,

ranging from 0.01 to 0.5 with equal increments. For
each dataset, the two classes have equal frequency.
Both p(x|Y = k), k = 0, 1 are normal distributions
N (µk, σ2I), with µ0 = 0, σ2 = 1 and µ1 chosen in
some random direction at such a distance to obtain
the desired Bayes error.

For each of the 50 Bayes error levels, 100 datasets of
size 200 were generated using the Bisection method to
find an appropriate µ1 in a random direction.

For each observation x, the class conditional probabil-
ity can be computed analytically using the Bayes rule

p∗(Y = 1|x) =
p(x|Y = 1)p(Y = 1)

p(x, Y = 0) + p(x, Y = 1)
Each market is an estimator p̂(y = 1|x) that is com-
pared to the truth p∗(Y = 1|x) using the L2 norm.
This error is approximated using a sample of size 1000.

The probability estimates errors and the misclassifica-
tion rates of the four markets are shown in Figure 4
for a 100D problem setup. Also shown on the right
are the errors relative to the Random Forest. The
relative probability estimation error is obtained by di-
viding each error to the corresponding Random For-
est error. The probability estimates are significantly
smaller (α < 0.01) than the Random Forest for Bayes
errors up to 0.28 for Aggressive and Constant betting
markets and for Bayes error from 0.34 to 0.5 for Lin-
ear betting. It is interesting to note that all markets
behave the same at Bayes error 0.3. The difference
between these misclassification errors and the Bayes
error are shown in Figure 4, mid-right. The difference
between these misclassification errors and the Random
Forest error are shown in Figure 4, right. All markets
with trained participants predict significantly better
(α < 0.01) than Random Forest for Bayes errors up
to 0.3, and behave similar to Random Forest for the
remaining errors.

5.2. Evaluation on Real Data

We present in Table 1 an evaluation on 21 datasets
from the UCI machine learning repository. Similar to
(Breiman, 2001), the training and test sets are ran-
domly subsampled from the available data, with 90%
for training and 10% for testing. The exceptions are
satimage and poker with test sets of size 2000 and
106. All results are averaged over 100 runs. The ADB
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Table 1. Misclassification errors in percent (%) for 21 UCI datasets from the UC Irvine Repository. The markets evaluated
are Random Forest (RF), and Constant (CB), Linear (LB) and Aggressive (AB) betting.

Data Train Size Test Size Feat. Cls ADB RFB RF CB LB AB
cancer 699 – 9 2 3.2 2.9 3.0 2.9 2.9 2.9
sonar 208 – 60 2 15.6 15.9 14.8 14.1 14.3 14.1
vowel 990 – 10 11 4.1 3.4 3.3 3.1 • 3.2 3.1 •

diabetes 768 – 8 2 26.6 24.2 23.4 23.4 23.4 23.5
ecoli 336 – 8 8 14.8 12.8 13.1 13.0 13.0 13.1

german 1000 – 20 2 23.5 24.4 23.7 23.7 23.6 23.7
glass 214 – 9 6 22.0 20.6 20.0 20.1 20.1 20.2

ionosphere 351 – 34 2 6.4 7.1 5.8 5.7 5.7 5.7
letter-recognition 20000 – 16 26 3.4 3.5 3.3 3.2 • 3.2 • 3.2 •

satimage 4435 2000 36 6 8.8 8.6 8.8 8.6 • 8.7 • 8.6 •
image 2310 – 19 7 1.6 2.1 1.8 1.6 • 1.6 • 1.6 •
vehicle 846 – 18 4 23.2 25.8 24.8 24.5 24.6 24.5

voting-records 435 – 16 2 4.8 4.1 3.0 3.0 3.0 3.0
car 1728 – 6 4 – – 2.4 1.2 • 1.4 • 1.2 •

poker 25010 1000000 10 10 – – 38.0 35.7 • 36.0 • 35.7 •
cylinder-bands 540 – 39 2 – – 20.3 20.2 20.1 20.0

yeast 1484 – 9 10 – – 35.9 35.8 35.7 35.8
magic 19020 – 10 2 – – 12.0 11.7 • 11.8 • 11.8 •

king-rook-vs-king 28056 – 6 18 – – 21.6 11.0 • 11.8 • 11.0 •
connect-4 67557 – 42 3 – – 19.9 16.7 • 16.9 • 16.7 •

splice-junction-gene 3190 – 59 3 – – 4.9 4.6 • 4.6 4.6 •

and RFB columns are Adaboost and RF results taken
from (Breiman, 2001). Significant mean differences
(α < 0.01) from RFB are bold for when RFB is worse
and italic for when RFB is better. Significant paired
t-tests (Demšar, 2006) (α < 0.01) that compare the
markets with our RF implementation are shown with
•, † for when RF is worse or better respectively. Both
AB and CB significantly outperform RF on 10 datasets
out of the 21 evaluated, while the LB outperforms RF
on 8 datasets. None of the three markets was signifi-
cantly outperformed by RF on any dataset.

6. Conclusion

In this paper we introduced a theory for Artificial Pre-
diction Markets for supervised aggregation of probabil-
ity estimators. We derived the equilibrium price equa-
tions, gave algorithms for computing it and showed
that the Prediction Market generalizes linear aggre-
gation. We also introduced specialized classifiers that
bet on subsets of the instance space Ω. Experimental
results real and synthetic data show that the Predic-
tion Market usually outperforms the Random Forest
in both prediction and probability estimation.

The Artificial Prediction Market is updated online,
naturally multi-class and can obtain probability esti-
mates when subsets of participants are involved for
any instance x ∈ Ω. This feature could be use-
ful for learning on manifolds (Agrafiotis & Xu, 2002;
Belkin, 2003; Belkin & Niyogi, 2004; Elgammal & Lee;

Rahimi et al., 2005; Saul & Roweis, 2003), where the
location on the manifold decides which participants
should be involved. For example, in face detection,
different face part classifiers (eyes, mouth, ears, nose,
hair, etc) can be involved in the market, depending on
the orientation of the head hypothesis.
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Appendix: Proofs

Proof of Theorem 2.1. From eq. (4), the total budget
∑M

m=1 βm is conserved if and only if
M
∑

m=1

K
∑

k=1

βmφk
m(x, c) =

M
∑

m=1

βmφy
m(x, c)/cy (11)

Denoting n =
∑M

m=1

∑K

k=1 βmφk
m(x, c), and since the

above equation must hold for all y, we obtain that eq.
(5) is a necessary condition.

Suppose now that there exists n ∈ R+ such that
∑M

m=1 βmφk
m(x, c) = nck holds for all k = 1, ...,K.

Summing over k we get
∑M

m=1

∑K

k=1 βmφk
m(x, c) =

∑K

k=1 nck = n since
∑K

k=1 ck = 1. Hence eq. (11)
holds and the total budget is conserved. �

Proof of Remark 2.2. Since
∑M

m=1 βmφk
m(x, ck)

is monotonically decreasing in ck, then
1
ck

∑M

m=1 βmφk
m(x, ck) is strictly decreasing in

ck. Since the total budget is conserved and
is positive, there exists a βm > 0, there-
fore

∑M

m=1 βmφk
m(x, 0) > 0, which implies

limck→0 fk(ck) = ∞. From the fact that fk(ck)
is continuous and strictly decreasing, with
limck→0 fk(ck) = ∞ and limck→1 fk(ck) = 0, it
implies that for every n ≥ 0 there exists a unique ck

that satisfies fk(ck) = n. �

Proof of Theorem 2.3. From the above remark we get
that for every n ≥ 0 there is a unique ck(n) such
that fk(ck(n)) = n. Moreover, following the proof
of the above remark we see that ck(n) is continu-
ous and monotonically strictly decreasing and ck(0) =
1, limn→∞ ck(n) = 0. Thus there is a unique n such

that
∑K

k=1 ck(n) = 1. For this n, from Theorem 2.1
follows that the total budget is conserved for the price
c = (c1(n), ..., cK(n)). Uniqueness follows from the
uniqueness of ck(n) and the uniqueness of n. �

Proof of Theorem 2.4. The price equations (5) become:
M
∑

m=1

βmhk
m(x) = nck, ∀k = 1, ...,K.

From the constraint
∑K

k=1 ck = 1 we obtain

n =

K
∑

k=1

nck =

K
∑

k=1

M
∑

m=1

βmhk
m(x) =

M
∑

m=1

βm

since
∑K

k=1 hk
m(x) = 1. Finally we get

ck =

∑M

m=1 βmhk
m(x)

∑M

m=1 βm

=
∑

m

αmhk
m(x), ∀k = 1, ...,K.�


