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Abstract  

When equipped with kernel functions, online 
learning algorithms are susceptible to the “curse 
of kernelization” that causes unbounded growth 
in the model size. To address this issue, we 
present a family of budgeted online learning 
algorithms for multi-class classification which 
have constant space and time complexity per 
update. Our approach is based on the multi-class 
version of the popular Pegasos algorithm. It 
keeps the number of support vectors bounded 
during learning through budget maintenance. By 
treating the budget maintenance as a source of 
the gradient error, we prove that the gap between 
the budgeted Pegasos and the optimal solution 
directly depends on the average model 
degradation due to budget maintenance. To 
minimize the model degradation, we study 
greedy multi-class budget maintenance methods 
based on removal, projection, and merging of 
support vectors. Empirical results show that the 
proposed budgeted online algorithms achieve 
accuracy comparable to non-budget multi-class 
kernelized Pegasos while being extremely 
computationally efficient. 

1.  Introduction  

Online learning is an important framework in which a 
potentially unlimited sequence of training examples is 
presented one example at a time and can only be seen in a 
single pass. This is opposed to offline learning where the 
whole collection of training examples is at hand. The 
objective is to learn an accurate prediction model from the 

training stream. Online algorithms often update the 
prediction model they maintain upon observing a new 
training example. Considering the potentially high stream 
rates, it becomes very important to update the model in a 
computationally efficient manner. 
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The invention of the Support Vector Machines (SVMs) 
(Cortes & Vapnik, 1995) inspired a lot of interest in 
applying the kernel methods for online learning. A large 
number of online algorithms (e.g. perceptron by 
Rosenblatt (1958)) can be easily kernelized and result in 
prediction models that require storage of a subset of 
observed examples, called the Support Vectors (SVs). 
While kernelization allows solving highly nonlinear 
problems, it also introduces heavy computational burden. 
The main reason is that on noisy data the number of 
support vectors tends to grow without limit as the 
algorithm progresses. In addition to the danger of 
exceeding the physical memory, this also implies an 
unlimited growth in update and prediction time. We call 
this phenomenon the curse of kernelization. To solve the 
problem, budgeted online algorithms have been proposed 
to bound the number of SVs through budget maintenance. 
In practice, the assigned budget depends on the specific 
application requirements (e.g., memory limitations, 
processing speed, or data throughput).   

In this paper, we address the problem of online multi-
class classification on a budget. The basis of our work is 
the popular SVM training algorithm Pegasos (Shalev-
Shwartz et al., 2007). Pegasos runs iteratively and 
alternates between a stochastic sub-gradient descent step 
and a projection step. If only a single example is used in 
the stochastic sub-gradient descent step, the algorithm can 
be naturally used for online learning. It was shown that 
Pegasos converges toward the optimal solution of SVM as 
the number of examples grows. Although in its original, 
non-kernelized, form it has constant update time and 
constant space, when combined with kernels Pegasos 
suffers from the same computational problems as other 
kernelized online algorithms.  
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The main contributions of this paper are as follows. First, 
we develop a multi-class version of Pegasos based on the 
multi-class SVM formulation by Crammer & Singer 
(2001). The resulting multi-class Pegasos has similar 
algorithmic structure as its binary version. The second 
contribution is a budgeted version of the kernelized multi-
class Pegasos that has constant update time and constant 
space. This is achieved by controlling the number of 
support vectors with one of the several budget 
maintenance strategies. We analyze the properties of the 
budgeted multi-class Pegasos in the framework of online 
convex learning with errors in the gradients proposed by 
Sutskever (2009). We show that, in the limit, the gap 
between loss of the budgeted algorithm and loss of the 
optimal solution is upper-bounded by the average model 
degradation induced by budget maintenance. In the 
absence of budget maintenance the multi-class Pegasos 
inherits convergence properties of its binary predecessor.  

Having shown that the quality of budgeted multi-class 
Pegasos directly depends on the quality of budget 
maintenance, our final contribution is exploring 
computationally efficient methods to maintain a classifier 
with a low budget. This problem has been subject of 
much recent work. The most popular strategy consists of 
removing a single support vector when the budget is 
exceeded. For example, (Crammer et al., 2004) proposed   
to learn budgeted perceptrons by removing the SV that 
will be predicted with the largest confidence after its own 
removal.  Other ideas include removal of the oldest SV 
(Dekel et al., 2008), a random SV (Cesa-Bianchi & 
Gentile, 2006; Vucetic et al., 2009), one with the smallest 
coefficient (Cheng et al., 2007), or using a validation data 
set (Weston et al., 2005; Wang & Vucetic, 2009). 
Recently studied alternatives to removal are projecting an 
SV prior to its removal (Orabona et al., 2009) and 
merging of two SVs into a new SV (Nguyen & Ho, 2005; 
Wang & Vucetic, 2009). Instead of considering budget 
maintenance and model update as separate steps, Wang & 
Vucetic (2010) proposed to define it as a joint 
optimization problem. It is worth mentioning that much 
work has been done on the related problem of reduction 
of trained kernel machines (Schӧlkopf et al., 1999).  

In this work we consider 3 major budget maintenance 
strategies: removal, projection, and merging. In case of 
removal, we show that it is optimal to remove the smallest 
support vector. Then, we show that optimal projection of 
one SV to the remaining ones is achieved by minimizing 
the accumulated loss of multiple sub-problems for each 
class, which extends the results of (Csató & Opper, 2001; 
Engel et al., 2002; Orabona et al., 2009) to the multi-class 
setting. In case of merging, when the Gaussian kernel is 
used, we show that the new SV is always on the line 
connecting two merged SVs, which generalizes the result 
of (Nguyen & Ho, 2005) to the multi-class setting. Both 
space and update time of the budgeted Pegasos scale 

quadratically with the budget size when projection is used 
and linearly when merging or removal are used.  

2.  Budgeted Multi-class Pegasos (BPegasosM) 

In this paper we focus on the problem of multi-class 
online learning on a budget. We are given a sequence of 
examples },,...,1),,{( NtyS tt == x  where instance xt ∈  

is a d-dimensional input vector and the label ty  
belongs to the multi-class set . In the online 
learning setting, examples arrive sequentially. The 
objective of online algorithms is to incrementally learn a 
function  that accurately maps instances from  
to one of the possible labels in Y.  

dR
},...,1{ cY =

)(xf dR

2.1 Multi-class Pegasos 

Our algorithm is an extension of the recently proposed 
SVM training algorithm called Pegasos (Shalev-Shwartz 
et al., 2007). Pegasos is an iterative algorithm which 
alternates between stochastic sub-gradient descent steps 
and projection steps. Pegasos can be naturally used as an 
online learning algorithm when only a single example is 
used in the calculation of the stochastic sub-gradient.  

To develop the multi-class Pegasos, we consider the 
multi-class SVM formulation by Crammer & Singer 
(2001). Let us define the multi-class model  as  )(xf

}){(maxarg)}({maxarg)( )()( xwxx Ti

Yi

i

Yi
ff

∈∈
== , 

where  is the prototype of the i-th class and w)(if (i) is its 
corresponding weight vector. By adding all class-specific 
weight vectors, we construct  as the ]...[ )()1( cwww =

cd ×  weight matrix of  The predicted label of x is 
the class of the weight vector that achieves the maximum 
value . Under this setup, Crammer and Singer 
(2001) defined the multi-class SVM objective function as 

).(xf
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where λ  is the slack parameter, the norm of the weight  
matrix w is calculated as 

∑ ∈= Yi
i 22 |||||||| )(ww , 

and the multi-class hinge-loss function is defined as 
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In multi-class Pegasos, instead of the objective function 
(1), we use the instantaneous objective function  
upon receiving the t-th example,   

)(wtP
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),(;(||||)( ttt ylP xwww += 2

2
λ . (3)

Similarly to its binary predecessor, the multi-class 
Pegasos works by iteratively executing the two-step 
updates. At t-th round, it first updates the current weight 
wt using the sub-gradient ∇t of (3) as  
where 

,tttt ∇−=+ ηww 1
)/(1 tt λη =  is the learning rate. The sub-gradient 

matrix ∇t  is defined as where  
 is a column vector. If loss (2) is equal to zero 

then  If loss (2) is above zero, then  
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This step is followed by projecting the weight wt+1 into 
the closed convex set  }./||||  :{ λ1≤= wwC  

The above two steps are summarized as  

),(  tttCt ∇−∏=+ ηww 1  

where  defines the closest point in C to u. We can 
rewrite the update rule of the multi-class Pegasos as  

)(uC∏

),)(()(  tttttttttt βxwww +−=∇−=+ ληφηφ 11  

where ||)}||/(,min{ tttt ∇−= ηλφ w11  and tβ  is a row 
vector,  If loss (2) is equal to zero, then 

otherwise,  
]....[ )()( c
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2.2 Kernelization  

Multi-class Pegasos can learn non-linear problems when 
the kernel trick is used. After introducing a nonlinear 
function Φ that maps x from the input to the feature space 
and replacing x with Φ(x),  can be described as )(i

tw

∑ =
Φ= t

j j
i
j

i
t 1

)()( )(α xw ,  

where  
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1
1 )(α )()( ληφ . (4) 

We denote the row vector  as the c class-
specific coefficients of j-th SV. From (4) it can be seen 
that the example whose loss (2) is zero has all zero α 
coefficients and can therefore be ignored. An input 
example with positive loss has one positive and one 

negative α coefficient, while the remaining α are zero. We 
call such examples Support Vectors (SVs). We can 
represent  as the kernel expansion 

]α...α[ )()( c
jjj

1=α

)()( xi
tf

∑ ∈=Φ=
tIj j

i
j

Ti
t

i
t kf ),(α)()()( )()()( xxxwx ,  

where k s the Mercer kernel induced by Φ and It  is the set 
of indexes of all the SVs of wt. From now on, we will 
represent a model using both the w and α notation 
interchangeably.  

2.3 Budgeted Multi-Class Pegasos 

To maintain the fixed number of SVs, the algorithm 
executes a budget maintenance step whenever the number 
of SVs exceeds a pre-defined budget B (i.e. ) by 
reducing the size of I

1| |tI + > B
t+1 by one such that wt+1 is only 

spanned by B SVs. We summarize the proposed Budgeted 
Multi-class Pegasos (BPegasosM) algorithm in Algorithm 
1. We denote the weight degradation caused by budget 
maintenance step at t-th round as Δwt, defined as the 
difference between model weights before and after Line 7 
of Algorithm 1. 

Budget maintenance step (Line 7) is a critical design issue. 
All budget maintenance strategies mentioned in the 
Introduction are compatible with Algorithm 1 and can be 
implemented. We will describe several budget 
maintenance strategies for BPegasosM in Section 4. In the 
next section we theoretically analyze how the budget 
maintenance step influences performance of BPegasosM.  

Algorithm 1: Budgeted multi-class Pegasos (BPegasosM)

Input: data S, kernel k, slack parameter λ , budget B; 
Initialize: b = 0, ;0w =1  
0. for t = 1,2,… 
1.      receive (xt, yt);  
2.     1 (1 ) ;t t tη λ+ ← −w w  
3.      if  0)),(;( >ttt yl xw
4.           ;)( tttt βxww Φ+← ++ 11 // add an SV 
5.            b = b+1; 
6.            if b > B      
7.                 ;ttt www Δ−← ++ 11 //budget maintenance
8.                  b = b−1; 
9.      ;11 ++ ← ttt ww φ  
Output: ft+1(x) 

3.  Analysis 

We now analyze the convergence properties of 
BPegasosM under the framework of online convex 
programming with errors in the gradients by Sutskever 
(2009), which is a variant of the classical online convex 
programming framework by Zinkevich (2003). We start 
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by showing that the averaged instantaneous objective of 
Algorithm 1 converges toward the optimal solution and 
that the gap between these two is upper-bounded by 
average gradient error (i.e. weighted averaged weight 
degradation)  induced by budget maintenance. We first 
introduce the following lemma, generalizing a result of 
(Shalev-Shwartz et al., 2007). Without loss of generality 
we assume that . 1||)(|| ≤Φ x

Lemma 1 The optimal solution of multi-class SVM, from 
problem (1),  is in a closed convex 
set with radius 

)(minarg* ww w P=
λ/1 . 

Proof: The dual objective of the multi-class SVM 
problem (1) (Crammer & Singer, 2001) is to maximize  

,/  and  ,},,...,{  s.t.
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 (5) 

where 
j

 if i = y1=)(i
yδ j and 

j
δ  otherwise, and  

are optimization variables. Let us denote the optimal 
solution for  as The optimal solution of (1) 
can be written as (Crammer & Singer, 2001) 
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Since the strong duality holds, the optimal primal and 
dual objectives coincide. Plugging (6) into (5) we get 
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Rearranging (7) and applying  and 
 we get 
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leading to the desired bound.      ■                                                

With Lemma 1, we are ready to prove the following 
theorem, which is a variant of Theorem 1 in (Shalev-
Shwartz et al., 2007) under the budgeted multi-class 
setting.   

Theorem 1 (Bounding average instantaneous objective of 
BPegasosM) Let BPegasosM (Algorithm 1) run on a 
sequence of examples S. Let t  be the weight 
degradation due to budget maintenance (Line 7 in 

Algorithm 1). Define the gradient error as tttE

wΔ

η/wΔ=  
and =E   Let be the optimal solution 
of (1). Then, we have 

./|||| NEN
t t∑ =1
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where 22 ++= λG . (8)

Proof: First, we write the update rule of BPegasosM by 
treating  as the error in the gradient,  tE

)( tttCt ∂−∏=+ ηww 1 , where   .ttt E+∇=∂

Let us define the relative progress toward the optimal 
solution  at t-th round as *w

2
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We also apply the property of strong convexity to bound 

2/||||)()()( 2*** wwwwww −+−≥−∇ ttttt
T
t PP λ , 

since Pt is λ-strongly convex function w.r.t.  
(according to Lemma 1 in (Shalev-Shwartz & Singer, 
2007)) and  We bound  

22 /|||| w

).(ww tt P∇=∇ ≤− |||| *ww t
2 / λ , since both tw  and  are in the closed convex 
set with radius 

*w
λ/1  (Lemma 1).  

Dividing both sides of inequality (9) by tη2  and 
rearranging we obtain 
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We bound the first and second terms in (11) as 
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In =3, the first and second components vanish after 
plugging )/(1 tt λη ≡ .   

Next, we bound the third term in inequality (11) 
according to the divergence rate of harmonic series 
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Combing inequality (12) and (13) with (11) and dividing 
two sides of inequality by N we get the stated bound.     ■ 

Observe that as N grows, the second term in the right side 
of bound (8) converges to zero. Therefore, the averaged 
instantaneous loss of Algorithm 1 converges toward the 
averaged instantaneous loss of optimal solution, and the 
gap between these two is upper bounded by the averaged 
gradient error .E  This result directly indicates that an 
optimal budget maintenance strategy is to minimizes E .      

Corollary 1 (Mistake bound) Assume that the conditions 
stated in Theorem 1 hold, then the number of mistakes 
made by BPegasosM on the sequence S is  

2
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+
≤ + +∑ w , 

where 22 ++= λG . 

Proof: Using the fact that  whenever the 
algorithm made the mistake, as well as the fact that the 
accumulated multi-class hinge loss is less than the 
accumulated instantaneous objective, we get 

1)),(;( ≥tt yl xw

∑∑ == ≤≤ N
t t

N
t ttt PylM 11 )()),(;( wxw . 

Combining with the conclusion in Theorem 1 leads to the 
stated mistake bound.     ■ 

It is easy to show that the other convergence properties of 
Pegasos (Theorem 2 and 3 in (Shalev-Shwartz et al., 
2007)) are inherited by BPegasosM under the constraint of 

.E  If  there is no budget maintenance step (i.e. 0=E ), 
we obtain the multi-class counterparts of Shalev-Shwartz 
et al.’s theorems. We omit this part due to the lack of 
space.  

4.  Budget Maintenance Strategies   

Theorem 1 indicates that budget maintenance should 
attempt to minimize the gradient error .E  To minimize 
E  in the setting of online learning on a budget, we 
propose to minimize the gradient error  at each 
round. From the definition of  in Theorem 1, 
minimizing  is equivalent to minimizing weight 
degradation 

|||| tE
|||| tE

|||| tE
||,|| twΔ   

 .||||min 2
twΔ  (14)

4.1 Budget maintenance through removal  

If budget maintenance removes j-th SV, =Δ tw  
 .)( jj αxΦ Then, the optimal solution of (14) is removal 

of SV with the smallest norm, =p  
1tj I j j j+∈  Let us consider the 

Gaussian kernel case where  Then, as seen 
from (4), the optimal removal always selects the oldest 
SV and this strategy becomes similar to Forgetron (Dekel 
et al., 2008).  

2arg min || || ( , ).kα x x
1

x

p

.),( =jjk xx

4.2 Budget maintenance through projection  

Let us consider budget maintenance through projecting 
the p-th SV to the remaining SVs. The objective is to 
update α coefficients of the remaining SVs to best 
represent α coefficients of the p-th SV.  

1

( ) ( ) 2min || α ( ) α ( ) || .
t

i i
p p j j

i Y j I p+
Δ

∈ ∈ −

Φ − Δ Φ∑ ∑α
x  (15)

After setting the gradient of (15) with respect to the class-
specific column vector of coefficients  to zero, one 
can obtain the optimal solution as 

)(iαΔ

p
i
p

iYi kKα 1)()( α, −=Δ∈∀ , (16)

where 1[ ], ,ij tk i j I += ∀ ∈ −K  is the kernel matrix, =ijk  
 and 1),,( jik xx [ ] ,T

p pj tk j I + p= ∀ ∈ −k  is the column 
vector. It is worth observing that inverting K can be done 
in O(B2) time using Woodbury formula (Cauwenberghs & 
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Poggio, 2000). Finally, upon removal of p-th SV, αΔ  are 
added to α of the remaining SVs. 

The remaining issue is finding the best among B+1 
candidate SVs for projection. After plugging (16) into (15) 
we can observe that the minimal weight degradation of 
projecting equals 

(
1

2 2min || || min || || ( )
t

T
t p pp pp I

k
+

−

∈
Δ = −w α k K k )1

p . (17) 

Considering there are B+1 SVs, evaluation of (17) 
requires O(B3) time for each budget maintenance step. As 
an efficient approximation, we propose a simplified 
solution that always projects the smallest SV, =p  

1tj I j j j+∈  Then, the computation is 
reduced to O(B

2arg min || || ( , ).kα x x
2). We should also note that the space 

requirement of projection is O(B2) needed to store the 
kernel matrix and its inverse. 

Unlike the recently proposed projection method for multi-
class perceptron (Orabona et al., 2009) that projects an 
SV only onto the SVs assigned to the same class, our 
method solves more general case by projecting an SV 
onto all the remaining SVs and thus results in smaller 
weight degradation.     

4.3 Budget maintenance through Merging 

Problem (14) can also be solved by merging two SVs to a 
newly created one. The justification is as follows. For the 
i-th class weight, if Φ(xm) and Φ(xn) are replaced by 
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m
)(iM  is set to 

, then the weight remains unchanged. The 
difficulty is that 

)()( αα i
n

i
m +

)(iM  cannot be used directly because the 
pre-image of )(iM  may not exist. Therefore we need to 
approximate )(iM  by image Φ(z) of some input space 
vector z. Considering the multi-class problem, z can be 
found as     

∑ ∈
Φ−Yi

iM 2)( ||)(||min zz . (18)

Let us assume the Gaussian kernel =)',( xxk  
 is used. Problem (18) can then be 

reduced to 
)||'||exp( 2xx−−σ
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ΦYi

TiM )()(max )( zz . (19)

Setting the gradient of (19) with respect to z to zero leads 
to solution  
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Eq. (20) indicates that z lies on the line connecting xm and 
xn. Plugging (20) into (19), merging problem is simplified 
to finding   
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We can use any efficient line search method (e.g. golden 
search) to find the optimal h. After that, the optimal z can 
be calculated using (20).  

After obtaining the optimal solution z, the optimal 
coefficients  of z for approximating 

 are obtained by solving the 
following optimization problem 
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The optimal solution of (22) is 
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The total cost of finding the optimal merging for the  n-th 
and m-th SV is O(1). The remaining question is what pair 
of SVs leads to the small weight degradation. The optimal 
solution can be found by performing merging of all 
B(B−1)/2 pairs of SVs that would require O(B2) time. To 
simplify the computation, we use the same approximation 
method as in projection (Section 4.2) by fixing m as the 
SV with the smallest value of  Thus the 
computation is reduced to O(B). We should observe that 
the space requirement is also O(B) because there is no 
need to store the kernel matrix. 

.|||| 2
mα

5.  Experiments 

In this section we evaluate the proposed algorithms on 
several large datasets whose properties are summarized in 
the first column of Table 1. Checkerboard is generated. 
Letter, USPS, Covertype and Waveform are standard UCI 
Repository benchmarks. Attributes in all data sets were 
scaled to mean 0 and standard deviation 1. In the 
experiment, we evaluated budget maintenance methods 
for BPegasosM explained in Section 4. We used budgets 
of B = 100 and 500 and set λ = 10-4. In particular, we 
compared the proposed projection and merging methods 
with the random removal method (Cesa-Bianchi & 
Gentile, 2006) and the method that removes the SV with 
the smallest coefficient (Cheng et al., 2007). The results 
of the non-budgeted PegasosM are also reported to 
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Table 1. Testing accuracy comparison. The lower script in the PegasosM column is #examples being trained before early stopped. 

DATA SET 
(N, DIM, |Y|) 

PEGASOSM

(#SV) B PRJTRN++ BPM+RAND BPM+SMAL BPM+PROJ BPM+MRG

USPS 
(7K, 256, 10) 

94.2±0.3 
(4.2K) 

100 
500 

81.1±3.2 
92.0±0.5 

78.3±1.5 
88.5±0.6 

78.6±4.0 
89.4±0.6 

90.5±0.4 
92.4±0.4 

92.0±0.2 
93.9±0.3 

LETTER 
(16K, 16, 26) 

95.7±0.1 
(10K) 

100 
500 

46.3±1.8 
76.6±1.1 

39.9±1.8 
68.1±0.8 

41.7±0.7 
68.5±1.1 

76.3±0.9 
87.3±0.6 

72.0±1.3 
89.5±0.3 

COVERTYPE 
(0.5M, 54, 7) 

81.1±0.1 
(41K72K) 

100 
500 

62.5±3.1 
67.3±2.9 

58.1±0.7 
61.6±0.7 

57.5±2.4 
62.3±1.1 

70.1±0.6 
74.9±0.2 

72.0±0.2 
76.8±0.2 

WAVEFORM 
(2M, 21, 3) 

86.1±0.6 
(53K140K) 

100 
500 

80.7±0.8 
83.5±0.5 

79.1±1.1 
82.7±0.6 

79.1±2.9 
82.9±1.0 

85.0±0.4 
86.1±0.2 

85.9±0.6 
86.9±0.1 

CHECKERB 
(10M, 2, 2) 

99.2± 0.1 
(63K540K) 

100 
500 

96.9±0.4 
98.2±0.3 

83.6±1.0 
90.3±0.4 

83.9±1.1 
90.9±0.5 

98.2±0.3 
99.0±0.2 

99.5±0.1 
99.8±0.0 

establish an upper-bound on accuracy. Besides our 
BPegasosM framework, we also evaluated the 
Projectron++ algorithm (Orabona et al., 2009) which is 
the state-of-the-art budgeted kernel perceptron algorithm. 
In Projectron++, an SV is projected only if model 
degradation is below the threshold; otherwise, budget is 
increased by one SV. In our experiments, we set the 
Projectron++ threshold such that the number of SVs is 
equal to B of BPegasosM at the end of training. All 
algorithms used Gaussian kernels whose width σ  was 
optimized for each combination of data set, algorithm and 
budget, choosing among {20/d, 22/d, 24/d, 26/d}, where d 
is data dimensionality. All the algorithms were 
implemented in MATLAB and the experiments were run 
on a 2.1GHz Dual-Core processor with 4G memory under 
Linux.  

The accuracy of different algorithms on test data are 
reported in Table 1. Each result is computed using an 
average of 5 repetitions on different permutations of each 
data set. PegasosM was stopped after 3,000 seconds. From 
Table 1 we can observe that BPegasosM with merging and 
projection significantly outperformed both their removal 
cousin and Projectron++. Merging resulted in somewhat 
better performance than projecting.  

On Waveform and Checkerboard data, BPegasosM with 
merging achieved even higher accuracy than the non-
budgeted PegasosM that had to be stopped after 140K and 

540K examples, respectively. On Covertype and Letter 
data, the accuracy gap between budget B = 500 and non-
budgeted algorithms remained large and it can be 
explained by the complexity of these problems; for 
example, 60% of Covertype examples became SVs in 
PegasosM and Letter has  26 class labels. In both data sets, 
the accuracy clearly improved form B = 100 to 500, 
which indicates that extra budget is needed for 
comparable accuracy.  

In Figure 1 and 2 the accuracy evolution curves are 
plotted to illustrate the anytime prediction quality. 
Accuracy curves of BPegasosM with merging and 
projection closely followed and eventually surpassed that 
of PegasosM. BPegasosM with removal did not perform 
particularly well.  

Figure 3 shows log-log plot of the running time vs. the 
data stream length. Excluding the initial stage, the non-
budgeted PegasosM had the fastest increase in training 
time, confirming the expected O(N2) runtime. On the 
budget side, the runtime time of BPegasosM with merging 
and projection increases linearly, with merging having 
better constant, as expected (merging has constant O(B) 
and projection O(B2)).  

Considering accuracy, runtime, and memory expenditure, 
BPegasosM with merging is the clear winner on all 5 
benchmark datasets.  
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Figure 1. Accuracy evolution curve on Checkerboard Figure 2. Accuracy evolution curve on Waveform 
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Figure 3. Training time curves 
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6.  Conclusion 

We proposed a family of kernel-based budgeted online 
algorithms for multi-class SVM training based on the 
Pegasos algorithm. We obtained theoretical guarantees for 
its performance that indicate that its success is clearly tied 
with the model degradation due to budget maintenance. 
Based on the analysis, three budget maintenance methods 
were studied. We experimentally evaluated the proposed 
methods in terms of accuracy and training time. The 
results indicate that highly accurate multi-class kernel 
classifiers can be trained on high throughput large data 
streams while having very modest memory signature.  
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