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Abstract

We are interested in learning programs for
multiple related tasks given only a few train-
ing examples per task. Since the program
for a single task is underdetermined by its
data, we introduce a nonparametric hierar-
chical Bayesian prior over programs which
shares statistical strength across multiple
tasks. The key challenge is to parametrize
this multi-task sharing. For this, we in-
troduce a new representation of programs
based on combinatory logic and provide an
MCMC algorithm that can perform safe pro-
gram transformations on this representation
to reveal shared inter-program substructures.

1. Introduction

A general focus in machine learning is the estimation
of functions from examples. Most of the literature fo-
cuses on real-valued functions, which have proven use-
ful in many classification and regression applications.
This paper explores the learning of a different but also
important class of functions—those specified most nat-
urally by computer programs.

To motivate this direction of exploration, consider pro-
gramming by demonstration (PBD) (Cypher, 1993).
In PBD, a human demonstrates a repetitive task in a
few contexts; the machine then learns to perform the
task in new contexts. An example we consider in this
paper is text editing (Lau et al., 2003). Suppose a user
wishes to italicize all occurrences of the word statistics.
If the user demonstrates italicizing two occurrences of
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statistics, can we generalize to the others? The solu-
tion to this italicization task can be represented com-
pactly by a program: (1) move the cursor to the next
occurrence of statistics, (2) insert <i>, (3) move to the
end of the word, and (4) insert </i>.

From a learning perspective, the main difficulty with
PBD is that it is only reasonable to expect one or two
training examples from the user. Thus the program
is underdetermined by the data: Although the user
moved to the beginning of the word statistics, an alter-
nate predicate might be after a space. Clearly, some
sort of prior or complexity penalty over programs is
necessary to provide an inductive bias. For real-valued
functions, many penalties based on smoothness, norm,
and dimension have been studied in detail for decades.
For programs, what is a good measure of complexity
(prior) that facilitates learning?

We often want to perform many related tasks (e.g.,
in text editing, another task might be to italicize the
word logic). In this multi-task setting, it is natural to
define a hierarchical prior (a joint measure of complex-
ity) over multiple programs, which allows the sharing
of statistical strength through the joint prior.

The key conceptual question is how to allow sharing
between programs. Here, we can take inspiration from
good software engineering principles: Programs should
be structured modularly so as to enable code reuse.
However, it is difficult to implement this intuition since
programs typically have many internal dependencies;
therefore, transforming programs safely into a modu-
lar form for statistical sharing without disrupting the
program semantics requires care. Our solution is to
build on combinatory logic (Schönfinkel, 1924), a sim-
ple and elegant formalism for building complex pro-
grams via composition of simpler subprograms. Its
simplicity makes it conducive to probabilistic model-
ing.
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Figure 1. Three equivalent representations of the function
x 7→ x2 + 1. (b) is variable-free; The routers at internal
nodes encode how argument x should be routed down (as
depicted by the arrows). (c) allows + to be refactored out;
higher-order routers keep track of its original placement.

Section 2 presents our representation of programs
based on combinatory logic. We then present our non-
parametric hierarchical Bayesian prior over multiple
programs (Section 3) and an MCMC inference algo-
rithm (Section 4). Finally, Section 5 shows the merits
of our approach on text editing.

2. Program Representation

The first order of business is to find a suitable language
for expressing programs. Recall that we want a repre-
sentation that highlights the modularity of the compu-
tation expressed. To do this, we develop a new version
of combinatory logic. We first introduce it intuitively
with lambda calculus as a reference point (Section 2.1)
and then define it formally (Section 2.2).

2.1. Intuitive Description

Lambda calculus is a language for expressing compu-
tation in a functional paradigm1 (see Hankin (2004)
for an introduction). As a running example, consider
the simple lambda calculus program that computes the
function x 7→ x2 + 1 (Figure 1(a)). It will be useful
to think of programs as binary trees where each node
denotes the result of applying the left subtree to the
right subtree. Functions are curried.

One issue with lambda calculus is long-range depen-
dencies between places where a variable is bound (λx)
and places where it is used (x). This non-locality ne-
cessitates the maintaining of an environment (mapping
from variable names to values), making program trans-
formations cumbersome.

To motivate combinatory logic, let us try to transform
the function in Figure 1(a) into a variable-free form
that preserves the information content: Replace the

1We prefer functional languages to procedural ones be-
cause side effects complicate reasoning about program be-
havior.

variable x with I and label internal nodes of the tree
with a router (for now, one of B,C,S) depending on
whether x appeared in the right subtree, left subtree,
or both, respectively. The result is Figure 1(b). To
apply this function on an argument, we start the ar-
gument at the root of the transformed tree. The router
at each node determines to which subtrees the argu-
ment should be sent. When the argument reaches I, it
replaces I.

One significance of the variable-free formalism is that
we have eliminated the distinction between program
and subprogram. Each subtree is now a valid stan-
dalone program, and thus a candidate for multi-task
sharing. For example, (S (B ∗ I) I) denotes the
square function, which could be useful elsewhere.

However, sometimes the desired unit of sharing does
not appear as a subtree. For example, functions x 7→
x2 + 1 and x 7→ x2 − 1 have identical trees except
for one leaf (which is + or −). To address this, we
can pull the + (−) leaf to the top, augmenting the
routers along the path. Figure 1(c) is the result of this
refactoring operation. The left subtree of the root now
denotes a higher-order function, which when applied
to +, produces the function x 7→ x2 + 1. Refactoring
creates new sharable modular subprograms, analogous
to how a good programmer might.

2.2. Formal definition

Having provided some intuition, we now define our
modified version of combinatory logic formally. Com-
binatory logic, invented by Schönfinkel in 1924 and fur-
ther developed by Curry, is a variable-free formalism
for expressing computation which actually predates its
popular rival, lambda calculus. It has been mainly
used in the study of computability and in the low-level
compilation of functional languages.

Let B be a set of symbols called primitive combina-
tors, known as the basis. A combinator is a binary
tree whose leaves are primitive combinators. We write
(x y) to denote the tree with left and right subtrees x
and y, and write (x y z) for ((x y) z) (currying). We
use an interpretation function J·K to map each combi-
nator (a syntactic expression) to its semantic denota-
tion. For example, J(+ 1 1)K = 2 and J(+ 1)K is the
function x 7→ x+ 1. Given the denotation of primitive
combinators (JxK for all x ∈ B), we can define the de-
notation of all other combinators recursively: J(x y)K
is the result of applying function JxK to argument JyK.

A main theoretical result in combinatory logic is that a
basis consisting of just two elements (called S and K)
suffices to build all computable functions. However, a
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Figure 2. Equivalences defined by the first-order routers
B,C,S, I, which hold for any combinators x, y, z. These
are also among the transformations used during inference
(Section 4.2.2).

major disadvantage with this basis is that the result-
ing combinators become quite large and cumbersome.
To strike a balance between minimality and practical
usability, we make two modifications to SK combina-
tory logic: (1) we introduce higher-order combinators
to capture the intuition of routing; and (2) we place
these combinators at internal nodes.

Define a router to be a primitive combinator repre-
sented by a finite sequence of elements from {B,C,S}.
Let Rk = {B,C,S}k (the set of k-th order routers),
R≤k = ∪k

j=0Rj (routers up to order k), and R =
∪∞j=0Rj (all routers). For a router r ∈ R, its behavior
is given by

(r x y z1 · · · z|r|) = ((x zi1 · · · zin) (y zj1 · · · zjm)), (1)

where i1 < · · · < in are indices i such that ri ∈ {C,S}
and j1 < · · · < jm are indices j such that rj ∈ {B,S}.
Routers generalize the idea of function application: r
first applies x and y to the appropriate subset of ar-
guments z1, . . . , z|r| to get x′ and y′, and then applies
x′ to y′.

While routers are just combinators, they play a vital
structural role in a program, so we will treat them
specially. Define a combinator with routing to be a
binary tree where each internal node is labeled with a
router. We write (r x y) for a combinator with router
r, left subtree x, and right subtree y; we simply write
(x y) if |r| = 0. Figure 2 illustrates combinators with
first-order routers and their behavior.

2.3. Types

The final piece of our representation is types, which
allows us to prohibit programs such as (3 I), invalid
because an integer cannot be applied to a function.
We will work with a monomorphic type system: Let
T0 denote the set of base types (e.g., T0 = {int,bool}).
Let T denote the (infinite) set of all types, defined to

be the smallest set such that T0 ⊂ T and if t1, t2 ∈ T ,
t1→ t2 ∈ T . The arrow operator is right associative,
meaning t1 → t2 → t3 ≡ t1 → (t2 → t3). For each
type t, let Bt be the set of primitive combinators of
that type. In the arithmetic domain, we have Bint =
{. . . ,−2,−1, 0, 1, 2, . . . }, Bint→int→int = {+,−, ∗, /},
Bint→int→bool = {<,>,=}, and Bbool→int→int→int = {if}.

Define Ct, the set all combinators of type t ∈ T , as
follows. Write t = a1 · · · → · · · ak(t)→ b, where b is a
base type and k(t) is the arity of type t. Define

TC(t, r, s) def= ai1 · · ·→· · · ain
→s→b, (2)

TB(t, r, s) def= aj1 · · ·→· · · ajm
→s, (3)

where i1 < · · · < in are the indices i corresponding to
ri ∈ {C,S}, and j1 < · · · < jm are the indices j corre-
sponding to rj ∈ {B,S}. The idea is that for any (r, s),
if x has type TC(t, r, s) and y has type TB(t, r, s), then
(r x y) has type t. We define {Ct} to be the smallest
sets that satisfy the following fixed point equations:

Ct = Bt ∪
[

r∈R≤k(t),s∈T

{r} × CTC(t,r,s) × CTB(t,r,s), ∀t ∈ T

(4)

Let C def= ∪t∈T Ct be all well-typed combinators. This
completes the description of our simply-typed routing-
based combinatory logic. Its variable-free nature gives
us a fully compositional representation of programs,
which will exploit in the sequel.

3. Probabilistic Model

Our goal is to define a distribution over combinators
Ct for each type t ∈ T . We start with a simple PCFG
model (Section 3.1), and then develop a model based
on adaptor grammars (Section 3.2). Section 3.3 shows
how we use this model for multi-task learning.

3.1. Probabilistic Context-Free Grammars

Given that Ct consists of binary trees, a starting
point is to model them using a probabilistic context-
free grammar (PCFG). The parameters of the PCFG
model are as follows: λ0, the probability of generat-
ing a terminal; pB0 (z | t), a distribution over primitive
combinators (including I if t = a→a for some a ∈ T );
pR0 (r | k), a distribution over routers of order k; and
pT0 (t) a distribution over types. Figure 3 describes the
generative process: a call to GenIndep(t) returns a
combinator of type t by either generating a primitive
combinator or recursively generating a non-primitive
combinator.
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GenIndep(t):
−With probability λ0: [primitive]
−−Return a primitive z ∈ Bt according to pB0 (z | t)
−Else: [non-primitive]
−−Generate a router r ∈ R≤k(t) from pR0 (r | k(t))

−−Generate an intermediate type s ∈ T from pT0 (s)
−−Recursively sample x from GenIndep(TC(t, r, s))
−−Recursively sample y from GenIndep(TB(t, r, s))
−−Return combinator (r x y)

Figure 3. A distribution over programs based on a proba-
bilistic context-free grammars.

for t ∈ T : Ct ← [ ] [initialize caches]
Definitions:
−Nt: number of distinct elements in Ct
−Mz: number of times z occurs in Ct(z)
−Return∗ z = add z to Ct(z) and return z

GenCache(t):

−With probability α0+Ntd
α0+|Ct| : [construct]

−−With probability λ0: [primitive]
−−−Return∗ a primitive z ∈ Bt according to pB0 (z | t)
−−Else: [non-primitive]
−−−Add a placeholder z† to Ct
−−−Generate a router r ∈ R≤k(t) from pR0 (r | k(t))

−−−Generate an intermediate type s ∈ T from pT0 (s)
−−−Recursively sample x from GenCache(TC(t, r, s))
−−−Recursively sample y from GenCache(TB(t, r, s))
−−−Remove z† from Ct
−−−Return∗ combinator (r x y)
−Else: [fetch]
−−Return∗ z ∈ Ct with probability Mz−d

|Ct|−Ntd

Figure 4. Specifies a distribution over programs based on
adaptor grammars. This model allows sharing of subpro-
grams via caches.

GenIndep fully exploits the compositional structure
of combinators, aligning it with conditional indepen-
dence in the statistical world. Though attractive com-
putationally, GenIndep’s assumption of conditional
independence—that the function and argument are in-
dependent conditioned on their types—is too strong,
and we will weaken this assumption in the next model.

3.2. Adaptor Grammars

We create a richer model by leveraging two statistical
ideas: (1) Bayesian nonparametric modeling, which al-
lows us to relax the rigid compositionality of GenIn-
dep and treat large subprograms atomically, and (2)
Bayesian hierarchies, which allow these subprograms
to be shared across tasks. In particular, we use adap-
tor grammars (Johnson et al., 2006), which are based
on the Pitman-Yor process (Pitman & Yor, 1997)
and ideas from the hierarchical Dirichlet process (Teh
et al., 2006).

To capture the desired notion of sharing, we introduce
a cache Ct for each type t, a list which stores all the
combinators of type t that have been generated. The
idea is that when asked to generate a combinator of
type t, we can either return an existing one from Ct

(achieving sharing) or a new combinator, which might
be constructed from existing combinators from other
caches (or even the same cache).

Figure 4 describes the generative process for the new
model, which we call GenCache. The new model
has two additional hyperparameters, a concentration
α0 > 0 and a discount 0 < d < 1, which determine the
amount of desired sharing. Much of GenCache is the
same as GenIndep. The major difference is the pos-
sibility of generating from the cache, which happens
with probability proportional to |Ct| −Ntd, where Nt

is the number of distinct combinators. A new com-
binator is generated with probability proportional to
α0 + Ntd. Thus, the smaller α0 and d are, the more
sharing we have.

Note that for generating non-primitive combinators,
we add a special placeholder z† to Ct before we re-
curse. This is needed for the correctness of a recur-
sively hierarchical Pitman-Yor process. A recursive
call could return this placeholder, thereby creating a
cyclic combinator. Cyclicity actually provides a very
natural (but non-standard) way to implement recur-
sion, which is commonly achieved by using variables.
Cyclicity allows for direct self-reference without names
and has been studied in programming language theory
(Ariola & Blom, 1997).

Suppose that for some type t, we generate programs
Zi = GenIndep(t) for i = 1, . . . ,K. GenCache in-
duces a joint distribution p(Z1, . . . , ZK). Although the
definition of GenCache is sequential, the induced dis-
tribution p(Z1, . . . , ZK) is actually exchangeable (the
exact form is given in (5)). Therefore by de Finetti’s
theorem, there exists a random collection of distribu-
tions over programs {Gt}t∈T such that Z1, . . . , ZK are
independent.

3.3. Multi-task Learning

Having defined a prior over combinators, let us apply
it to multi-task learning. Assume we have K tasks,
and for each task i = 1, . . . ,K, we are given n training
examples {(Xij , Yij)}nj=1. For each task i, we would
like to infer a latent combinator program Zi such that
the program is consistent with those examples; that is,
(JZiK Xij) = Yij for all j = 1, . . . , n.

We draw each program as follows: Zi =
GenCache(ti), where ti = t(Xi1)→ t(Yi1) is the type
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signature of task i. A nice feature of our setup is that
multi-task sharing can still occur across tasks with dif-
ferent type signatures, since the programs Zis can be
composed of common subprograms.

4. Bayesian Inference

The goal of inference is to find the posterior distribu-
tion over the latent programs Z = (Z1, . . . , ZK) given
training examples {(Xij , Yij)}. We first explicate our
distribution over p(Z) (Section 4.1) and then discuss
how to incorporate the training data and perform ap-
proximate inference via MCMC (Section 4.2.1).

4.1. Constraining the Prior

In Section 3, we used GenCache to define a joint
distribution p(Z). However, evaluating p(Z) involves
integrating out all the possible ways Z could have been
generated. To avoid this marginalization, we introduce
the following constraint: Let Q1 be the event that each
combinator which is constructed rather than fetched
did not already exist in the cache; consequently, a
combinator z which occurs Mz times in its cache Ct(z)

must have been constructed the first time and fetched
the next Mz − 1 times. Also, let Q2 be the event that
Z contains no cyclic combinators, as cyclicity compli-
cates inference. Let Q = Q1 ∧Q2.2

The significance of Q is that p(Z, Q = 1) has an an-
alytic expression. Let Mz and Nt be defined as in
Figure 4. Then we have:

p(Z, Q = 1) = (5)∏
t∈T

∏Nt

i=1(α0 + (i− 1)d)
∏

z∈Ct
ψ(z)

∏Mz−1
i=1 (i− d)∏Nt−1

i=0 (α0 + i)
,

where

ψ(z) =
{
λ0p
B
0 (z | t) z primitive

(1−λ0)pR0 (r(z) | k(t(z)))pT0 (s(z)) otherwise.

Note that as α0, d → 0, p(Z, Q = 1) concentrates all
probability mass on those Z which have the absolute
smallest number of distinct subprograms, thus encour-
aging maximum sharing. Larger α0 and d tend to be
less forceful.

One might be tempted to change GenCache to en-
force Q = 1 directly. This would correspond to defin-
ing a prior p(Z | Q = 1), which would be intractable to
work with. Remember that GenCache is only used
as a vehicle for defining the prior and is not used for
forward generation.

2 Johnson et al. (2006) implicitly assumed Q1 and did
not worry about Q2 since their hierarchies are not recur-
sive.

4.2. Incorporating Training Data

We now combine the likelihood p(Y | X,Z) with the
prior that we constructed in (5), yielding the posterior
p(Z | X,Y, Q = 1). The likelihood is an indicator
function

p(Y | X,Z) =
K∏

i=1

n∏
j=1

I[(JZiK Xij) = Yij ], (6)

which is 1 iff all programs are consistent with the
training examples. This sharply discontinuous like-
lihood creates a posterior whose support is discon-
nected, making it difficult to design an MCMC kernel
that can jump across zero probability states and ex-
plore all programs. Our strategy will therefore be to
rely on a restricted set of candidate correct programs
to be provided.

We use a candidate structure to compactly represent
an exponentially large set of programs, similar to the
version space algebra of Lau et al. (2003). Formally, a
candidate structure s is associated with the following:
(1) a partial function fs which specifies the desired
computation; and (2) a set Ss, where each element is
either a primitive combinator (element of B) or a triple
(r, s1, s2), where r is a router and s1, s2 are candidate
structures. We require that fs be compatible with (r,
fs1 , fs2), meaning that for any extension gs1 of fs1 and
gs2 of fs2 , (r gs1 gs2) is an extension of fs.

Let U(s) be the set of combinators defined by recur-
sively walking down the structure and choosing ele-
ments in Ss to follow; formally,

U(s) = (Ss ∩B)∪
⋃

(r,s1,s2)∈Ss

{r}×U(s1)×U(s2). (7)

It can be verified that any z ∈ U(s) is an extension of
fs. Also, let S∗(s) = {s}∪

⋃
(r,s1,s2)∈Ss

(S∗(s1)∪S∗(s2))
denote all candidate structures in s. Also, let R(z) be
the programs which can be obtained by refactoring z;
this set is defined more precisely in Section 4.2.2.

We assume a candidate structure si is given for each
task i. The target sampling distribution is then p(Z |
Z ∈ U, Q = 1), where U =

∏K
i=1 ∪z∈U(si)R(z), pro-

grams which can be refactored from some candidate.
Our sampler uses two types of moves to explore U:
candidate switching moves (Section 4.2.1) and refac-
toring moves (Section 4.2.2).

4.2.1. Candidate Switching

For purposes of switching candidates, it will be conve-
nient to operate on an expanded set of random vari-
ables which parametrize Z. Let S∗ = ∪K

i=1S∗(si) de-
note the candidate structures across all tasks. Define
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G = {Gs}s∈S∗ , where Gs ∈ Ss. Let Z(G) denote the
K programs formed by following G down the candi-
date structures. Note that G also contains variables
whose candidate structures specify subprograms not
part of Z(G). Let S∗(Z,G) be only the candidate
structures which are part of Z(G).

Given these structures the candidate switching
move is now straightforward. We use the fol-
lowing Metropolis-Hastings proposal: choose s ∈
S∗(Z,G) uniformly at random (with probability

1
|S∗(Z,G)| ), and propose changing Gs to an element
of Ss uniformly at random. This proposal is ac-
cepted with the usual Metropolis-Hastings probability,
min{1, p(Z′,Q=1)|S∗(Z′,G)|

p(Z,Q=1)|S∗(Z,G)| }, where Z′ is the new state.
The ratio of model probabilities can be computed ac-
cording to (5).

4.2.2. Refactoring

So far, we can switch candidates and let the prior drive
sampling to those programs in U with more sharing
across tasks. However, as mentioned in Section 2.1,
the potential for sharing is sometimes not immediate.
Consider the two programs in Z(2) (Figure 6) for com-
puting the min and the max. Although the programs
differ only in one leaf, this similarity is not reflected
by examining the subprograms they share. Refactor-
ing the programs to Z(4) exposes the modularity while
still preserving the same functionality, and indeed, Z(4)

has much higher likelihood than Z(2).

We define a set of refactoring transformations F ,
where each transformation [f1 ↔ f2] ∈ F is defined
on a pair of combinator patterns. One example is the
basic B-transformation [((B x y) z) ↔ (x (y z))], de-
picted at the top of Figure 2. This transformation
states that for all combinators x, y, z ∈ C, ((B x y) z)
has the same denotation as (x (y z)); we can therefore
freely replace one with the other. Figure 2 lists three
other basic transformations based on removing/adding
C, S, and I.

These four basic transformations work for programs
that take no arguments, which is clearly insufficient
for our needs. For example, none of the basic trans-
formations can account for the equivalence between
programs Z(1)

1 and Z(3)
1 for computing x − y + 1. At

the same time, modulo the presence of extra routers,
the difference between the two at the core is just
a C-transformation; therefore, we need a more gen-
eral version. We add to F higher-order transforma-
tions which allow one to work when other routers are
present (see Figure 5). We can apply a higher-order
C-transformation with r = ∅, r0 = BB, r1 = ∅,

x y
r1Br z

r0

⇔ x

y z
r′
1

r′
0r

∀(r0, r1) comptabile with (r′
0, r

′
1)

x y
r1Cr z

r0

⇔
x z
r′
1

y
r′
0r

∀(r0, r1) comptabile with (r′
0, r

′
1)

x y
r1Sr z

r0

⇔
x z
r′
1

y z
r′
2

r′
0r

∀(r0, r1) comptabile with (r′
0, r

′
1, r

′
2)

Figure 5. Templates specifying higher-order transforma-
tions, which allow refactoring in the presence of other
routers. Let r0 and r1 be any routers that send argu-
ments a1, . . . , ak each to some subset of {x, y, z}. After
they apply, z will be routed down by the core B,C, or S.
We require that r′0 and r′1 (and also r′2 in the case of S)
be compatible with r0 and r1, that is, they route a1, . . . , ak
to the same subset of {x, y, z} in the new tree structure
induced by the core router. There no constraints on r.

r′0 = CC, r′1 = BB to move between Z(1)
1 and Z(3)

1 .
Let R(z) be the set of combinators reachable by ap-
plying transformations in F to z.

We can turn the set of transformations F into a
Metropolis-Hastings proposal as follows: First choose
a transformation f uniformly from those in F that
involve routers of some bounded order (to keep the
set finite). Then, choose a task i and subtree z of
Zi uniformly at random. If f is applicable at z, pro-
pose replacing z with f(z). The proposal is accepted
or rejected according to the usual Metropolis-Hastings
acceptance ratio.

Note that refactoring disrupts candidate structures.
When f is applied, we remove any affected candidate
structures from S∗(Z,G) (all descendants of the trans-
formed tree) add them back when f is undone. Candi-
date switching moves will simply skip over those struc-
tures that do not contribute to Z.

5. Experiments

We first illustrate our model in a simple arithmetic
domain (Section 5.1) and then present experiments in
the text editing domain (Section 5.2).

5.1. An Arithmetic Example

Consider the two tasks shown at the top of Figure 6.
For the candidate structure si of each task i ∈ {1, 2},
we set Ssi

to (the degenerate candidate structures cor-
responding to) {Z(1)

i , Z
(2)
i } and initialize the sampler

to Z(1). There are two generalizations of the training
examples: one using arithmetic operations (Z(1)) and
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Task 1 examples: X11 = (3, 2), Y11 = 2, X12 = (7, 4), Y12 = 4
Task 2 examples: X21 = (3, 6), Y21 = 6, X22 = (2, 4), Y22 = 4

Z(1) [x− y + 1; y
2 + x]: ` = −46.76

+ −
BB 1

CC

+

/ 2
C

B I
BC

Z
(1)
1 Z

(1)
2

Z(2) [min(x, y); max(x, y)]: ` = −54.96

if <
BB I

SC I
CS

if >
BB I

SC I
CS

Z
(2)
1 Z

(2)
2

Z(3) [x− y + 1; y
2 + x]: ` = −42.89

+ 1
C −

BB

+

/ 2
C

B I
BC

Z
(3)
1 Z

(3)
2

Z(4) [min(x, y); max(x, y)]: ` = −35.96

if I
BC I

CBC <
SS

if I
BC I

CBC >
SS

Z
(4)
1 Z

(4)
2

Figure 6. An arithmetic example: Each of the four boxes
represent a state Z could be in; the dotted edges represent
paths that our sampler must follow. Z(1) and Z(2) are pro-
vided by the candidate structures, whereas Z(3) and Z(4)

are reachable only by refactoring. Although Z(1) is simpler
than Z(2), as confirmed by the log-likelihood (`), the true
simplicity of Z(2) can be revealed only by refactoring into
Z(4), which has the highest `.

one using comparison operations (Z(2)). As explained
in Figure 6, while the former yields smaller individual
programs, the latter, after refactoring, is simpler when
considered as a whole.

5.2. Text Editing

We now turn to text editing. We can represent the
editing process functionally by encapsulating the state
of the editor into a variable s of type state, which
contains the contents of the buffer, the cursor position,
the selection extent, and the contents of the clipboard.
Figure 7 describes the primitive combinators.

We took 24 editing scenarios obtained from Tessa
Lau, with substantial but not complete overlap with
those reported in Lau et al. (2003). Each exam-
ple consists of a sequence of user actions. Sup-
pose we have two examples [(move 10), (insert hello)]
and [(move 28), (insert hello)]. We construct can-
didate structures as follows: The root candidate
structure is a composition of the primitive combi-
nators corresponding to those actions; in our exam-
ple, (B (C insert s) (C move s′)), where s and s′ are
candidate structures such that fs : state → int re-
turns 10 and 28, respectively, on the initial states of
the two examples; and fs′ : state → string returns
hello on both. Next, for each candidate structure s
for which fs : state → int, we have a small set of
rules for constructing Ss by considering possible ways
of returning the desired integer: returning an abso-
lute offset x, returning a relative offset (+ (pos s) x),

Base types: state, int, string
Primitive combinators:
. . . ,−2,−1, 0, 1, 2, . . . ,+,−, string-append
(pos s): cursor position of state s
(caseNum s): index of the current example
(find s q w): position of k-th first/last occurrence of w
in s after/before (pos s); exact variant is specified by q
(coarse-find s w): same as find, but operates on a
coarsened version of w and s (e.g., “aa aaaa00x”
replaces “at ICML10!”)
(begin-word s): position of beginning of next word
(whitespace s): position of next whitespace character
(end-of-file s): position at end of file
(move s i): new state where the cursor position is i
(select s i j): new state where contents between i and
j are selected
(paste s): new state where clipboard contents are
inserted at the current position
(cut s): new state where the selected text is cut to the
clipboard
(copy s): new state where the selected text is copied to
the clipboard
(delete s i) new state where the text between (pos s)
and i is deleted
(insert s w) new state where w has been inserted at the
current position
(delete-selection s w) new state where the selected text
in s is deleted

Figure 7. Description of the text editing domain. Our
primitives are similar to the ones used in Lau et al. (2003),

matching a string (find s q w), etc., for various values
of x,w, q. For each candidate structure s for which
fs : state→string, we construct Ss in a similar vein.

Recall that refactoring allows us to expose new sub-
programs. Using the full set of transformations F is
too general for text editing, so we replace F as fol-
lows to target two types of desired sharing: We use B
transformations on the composition of user actions at
the top of the candidate structure; this corresponds to
forming a hierarchical grouping via tree rotations. Sec-
ond, we allow extraction/unextraction of string-typed
primitive combinators to the top of the program using
a single program transformation, as in Figure 1(b).

Having defined our candidate structures and allowable
set of refactorings, we now apply MCMC to infer the
programs. We set the hyperparameters of the model
to α0 = 1 and d = 0.2. We perform 1000 passes over
our training data, applying both candidate and refac-
toring transformations, and annealing from a temper-
ature of 10 down to 1 during the first 900 iterations.
During the final 100 iterations, we collected samples
of Z. On a test input X on task i, we perform ap-
proximate Bayesian averaging by predicting the most
common output (JZiK X) over samples Zi.

We compared our approach with two baselines: (1)



Learning Programs: A Hierarchical Bayesian Approach

Table 1. Average test error rates across all text editing
tasks (the mean is reported over 10 trials) with n train-
ing examples per task. Note that using an independent
prior actually works substantially worse than using a uni-
form prior due to an overly-aggressive penalization of the
program size. Using a joint prior over all tasks offers sub-
stantial improvements.

n 2 3 4 5
Uniform prior 19.6 17.0 7.0 2.7
Independent prior 25.4 21.8 20.9 12.1
Joint prior 13.9 9.5 5.9 3.4

using a uniform prior over programs (in U), (2) and
using our GenCache model but treating each task in-
dependently. Table 1 shows our results as the number
of training examples n varies. Independent learning
performs worse than no learning, but joint learning
works best.

6. Related Work

Combinatory logic (without routing) has been used
to learn programs in genetic programming (Briggs &
O’Neill, 2006) with the goal of facilitating program
transformations as in our work, but this approach does
not provide a declarative prior on programs. Lau et al.
(2003) used a hand-crafted prior. In contrast, we learn
a distribution over programs from multiple tasks.

An important special case of functional programs are
logical formulae, programs that return boolean values.
Bayesian inference has been used to induce logical for-
mulae using a PCFG in several contexts, e.g., in repre-
senting natural language semantics (Piantadosi et al.,
2008) and cognitive concepts (Goodman et al., 2008b).

A different point of convergence of programming lan-
guages and probabilistic modeling is in Church (Good-
man et al., 2008a). They infer the random trace of
a fixed (stochastic) program, whereas we infer the
(deterministic) program itself, although Mansinghka
(2009) did show that Church, being universal, can be
used in principle to infer programs by forward simula-
tion and rejection.

7. Conclusion

We have presented a hierarchical Bayesian model of
combinator programs which enables multi-task sharing
of subprograms. One of the main new ideas is refac-
toring to reveal shared subprograms via safe transfor-
mations. Programs are rich objects which have been
studied at length from a logical perspective. Treat-
ing them as objects of statistical inference raises many

new and exciting challenges.
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