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Abstract

Most learning algorithms assume that a
training dataset is given initially. We ad-
dress the common situation where data is not
available initially, but can be obtained, at a
cost. We focus on learning Bayesian belief
networks (BNs) over discrete variables. As
such BNs are models of probabilistic distri-
butions, we consider the “generative” chal-
lenge of learning the parameters for a fixed
structure, that best match the true distribu-
tion. We focus on the budgeted learning set-
ting, where there is a known fixed cost ci for
acquiring the value of the ith feature for any
specified instance, and a known total budget
to spend acquiring all information. After for-
mally defining this problem from a Bayesian
perspective, we first consider non-sequential
algorithms that must decide, before seeing
any results, which features of which instances
to probe. We show this is NP-hard, even if
all variables are independent, then prove that
the greedy allocation algorithm iga is opti-
mal here when the costs are uniform, but can
otherwise be sub-optimal. We then show that
general (sequential) policies perform better
than non-sequential, and explore the chal-
lenges of learning the parameters for gen-
eral belief networks in this sequential setting,
describing conditions for when the obvious
round-robin algorithm will, versus will not,
work optimally. We also explore the effec-
tiveness of this and various other heuristic
algorithms.
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ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

1. Introduction

Consider the challenge of producing a Bayesian be-
lief network (BN) (Verma & Pearl, 1991) for mod-
eling a particular medical situation — e.g., for en-
coding the various interactions between a given set
of symptoms and diseases. Here, experts have iden-
tified the relevant symptom and disease variables X =
(X1, . . . , Xd), and have structured them as nodes in
a graph, whose directed arcs represent their depen-
dencies. However, they have not specified the actual
parameters (here, conditional probability table (CPt-
able) values, as these variables are all discrete), but
have provided a prior distribution for each CPtable
row θXi|ui

, corresponding to the posterior distribution
of the variable Xi given a specific assignment ui to its
parents Ui (Tong & Koller, 2001b).

Fortunately, there are many known techniques for es-
timating these parameters, given a data sample (Heck-
erman, 1999). Unfortunately, we do not initially have
any data (perhaps this is just the start of a funded
study). We do, however, have access to a set of pa-
tients {X1,X2, . . . }, whose individual features we can
“probe”, at a cost. That is, we can acquire the value xji
of feature i for patient j, at known cost ci. The total
cost of the sequence of K probes 〈xj1i1 , . . . , x

jK
iK
〉 then is∑K

k=1 cik . Our funders have provided a total budget B
to spend on such probes; so we can consider any probe
sequence where

∑K
k=1 cik ≤ B. Our task, now, is to

use this budget effectively, to (sequentially) purchase
the probes that allow us to obtain good estimates of
the parameters — in particular, to find the parame-
ters that most closely match the true distribution; see
Section 2. We refer to this as Budgeted Distribution
Learning (bdl).

Section 2 provides the relevant framework. Section 3
then focuses on the simple case where the variables
are independent, dealing first with “non-sequential al-
gorithms” that must decide on all of the probes before
seeing any of their responses. We provide an efficient
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greedy algorithm, iga, that provably returns the op-
timal allocation in the unit-cost case, then we show
that this task is NP-hard when the costs are arbitrary.
We also show that this optimal allocation is not the
optimal policy, and provide empirical studies that il-
lustrate the behaviour of this iga algorithm, as well as
several obvious sequential approaches.

Section 4 then extends these results to general belief
networks. We describe conditions for when the sim-
ple round-robin algorithm (which acquires full data
instances) will produce optimal results. We also ex-
plore the effectiveness of this and various other heuris-
tic algorithms. The extended technical report (LPSzG,
2010) contains the proofs, and other material; in par-
ticular, showing that many of these results hold for
Gaussian distributions, as well as Dirichlet.

We close this section by summarizing related work —
in particular, placing our system within the context
of active learning, and contrasting our system with
discriminative budgeted learning.

1.1. Related Work

While most learning algorithms begin with a given
data set, there is today a large literature on ac-
tive learning (Muslea, 2002) and experimental de-
sign (Melas, 2006), which explore the challenges of
first acquiring this training data. The standard ex-
ample is “active discriminate label learning” (ADLL),
in which the system attempts to produce a classifier—
i.e., a function that maps attributes of each instance
xj = 〈xj1, . . . , xjn〉 to a label yj — and assumes the
active learner initially has access to the attributes of
a large number of instances {xj}j , and needs to pay
funds to purchase the labels.

Lizotte et al.’s (2003) “budgeted discriminative at-
tribute learning” model (BDAL) is also seeking a good
classifier; it differs from ADLL by initially providing
the learner with all of the labels {yj}j and allowing
the learner to purchase the attribute values {xji}i,j
(called “probes”) that it specifies. This task is poten-
tially more difficult, as the BDAL learner has to con-
sider dependencies among the attributes {xi} as well
as dependencies connecting each attribute with the la-
bel y. Another complexity is that different attributes
can have different costs. This work also differs from
ADLL by imposing a hard limit on the purchases —
i.e., allowing the learner only a fixed budget to spend
acquiring information.

Our bdl framework resembles BDAL as both are ac-
quiring data to find the best parameters for a given
belief net structure. Our goal, however, is a good gen-
erative model, rather than BDAL’s accurate discrim-

inator (that is, a good classifier). This eliminates the
distinction between attribute versus label (they are all
just “features”), and explains why our learner starts
with no data at all (recall that BDAL assumes the
learner initially has the labels {yj}j).

The simplest version of our bdl system deals with
the trivial belief net where all variables are indepen-
dent (i.e., the nodes are not connected); see Section 3.
This task relates directly to “bandit problems” (Berry
& Fristedt, 1985), which basically uses a set of tri-
als to identify the optimal “bandit” — i.e., the “slot
machine” that returns the maximal expected payout.
While standard bandit problems combine exploration
and exploitation (each “probe” or “trial” provides both
information about the quality of the bandit played,
and also a reward), our model differs as it uses its bud-
get purely for exploration — i.e., it does not acquire
any reward during this time. Madani et al. (2004) in-
vestigated this “budgeted variant” of the standard ban-
dit problem. As its loss function depends only on the
single bandit selected, this system was able to essen-
tially ignore apparently-inferior bandits. By contrast,
our bdl loss function depends on all of the bandits
(here, variables in the BN); hence, we need to learn
information about all variables, rather than just one.

Our bdl also relates to the interventional active
learning of generative BNs (IAL) framework (Tong
& Koller, 2001a;b; Murphy, 2001; Steck & Jaakkola,
2002). Here, the learner has the option of setting the
values of a fixed set of features (“interventions”), then
requesting the values of the remaining instances, which
it receives at “unit” cost (i.e., the sum of the costs of
the remaining features is a constant). The IAL objec-
tive is typically to quickly learn the parameters (or the
structure) of the belief network that is as close to the
correct distribution as possible; we use their criteria
(Expected KL divergence; Equation 1) to evaluate the
quality of our estimated parameters. Our bdl differs
as (1) we do not get to set any values, but can only ob-
serve the results of our probes; (2) we have an explicit
budget; and (3) we have the option of purchasing only
a subset of the features for an instance. We will see
that this makes computing the posterior distributions
more complicated.

2. Budgeted Distribution Learning

In our bdl setting, we start with a parametric model
pX(·|θ) that defines a distribution over the random
variables X = (X1, . . . , Xd)

T , Xi ∈ R, and a prior
pθ( · ) over the parameters θ ∈ Rm. In what fol-
lows, θ typically denotes a random variable drawn
from pθ( · ) and X denotes a random variable drawn
from pX( · | θ ). (In the context of Figure 1, X
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Figure 1. Budgeted learning of the parameters of the sprinkler network (Russell & Norvig, 2002).

is the set of four variables 〈C, S,R,W 〉, and θ =
〈θC , θS|c=T , θS|c=F , . . . , θW |r=F,s=F 〉 is the set of 9 pa-
rameters shown in Figure 1(b), corresponding to CPt-
able entries of this belief net structure.) Further, we
are given a fixed budget B ∈ R+ (here B = 20). We
start with no data (Figure 1(a)), and must employ
some “strategy” to collect the data. Moreover, we know
it costs ci = Cost(Xi) ∈ R≥0 to see the value of vari-
able Xi for any specified data instance.

It is helpful to view the data set D as a growing matrix,
where each row corresponds to a data instance and
each column corresponds to an attribute (Fig. 1(a),
1(c)). We start with an empty matrix, where the val-
ues of the cells can only be determined through probes.
A probe is defined as a purchase of the value of the ith
attribute and the jth instance, cell (i, j), at cost ci.
Letting Xj refer to the jth instance (i.e., jth row of
this data set), a probe can be applied to a previously
probed instance Xj (e.g., probe (5, 3) after probing
(2, 3)) or an un-probed instance, which will increase
the number of rows of D by one. The cost of a set
of probes A = 〈(ik, jk)〉|A|k=1 is just the simple sum
c(A) =

∑
k cik . When the budget is exhausted (i.e.,

when c(A) = B), bdl then passes the collected data
to a parameter learning system. The task of the bdl
learner is to make the probes wisely, so that the dis-
tribution of X, based on these learnt parameters, is
estimated as accurately as possible.

Let A ⊂ { (i, j) : 1 ≤ i ≤ d, j ≥ 1 } be the attribute
values probed by the learner, and XA = (Xj

i )(i,j)∈A
be the responses obtained to these probes. We as-
sume that the random variables X,X1,X2, . . . are
drawn from pX(·|θ), conditionally independently of
each other given θ. Let θXA denote a random vari-
able drawn from the posterior distribution pθ(·|XA),
and let θ̄XA = E

[
θ|XA

]
denote its expected value.

Here, we use the objective function proposed by Tong

& Koller (2001b):

J(A) = E
[
KL
{
pX( · | θXA ) ‖ pX( · | θ̄XA )

}]
. (1)

Hence, when the posterior θXA is well concentrated
around its mean θ̄XA , we expect the cost J(A) to be
small. (LPSzG, 2010) proves that this cost equals
J(A) = E

[
KL
{
pX( · | θ ) ‖ pX( · | θ̄XA )

}]
over the

prior θ.

We explore this task along two axes: One dimension
is whether the variables are independent (Section 3)
or not (Section 4); and the other, whether the learner
is sequential. In the sequential (on-line) framework
the set A can be selected in an incremental manner:
when deciding about the k+1st probe, the learner can
use the result of the previous k probes. In the non-
sequential (aka off-line, allocation) version, the set A
must be selected initially, and in particular, without
knowing the values of any of the probes. Most of our
theoretical results deal with non-sequential algorithms.

3. Independent Variable Model

In this section, we will assume that the features are
independent of one another:
Assumption A1 The joint distribution of the vari-
ables (X1, . . . , Xd) is the product of the marginal
distributions. Further, the parameter vector θ =
(θ1, . . . , θd)

T includes one parameter θi for each at-
tribute Xi, in that the distribution of Xi depends only
on θi. Formally, for any x = (x1, . . . , xd)

T , we have
pX(x | θ ) =

∏d
i=1 pXi

(xi | θi ). The prior also factor-
izes: pθ( θ ) =

∏d
i=1 pθi( θi ).

As a simple example to illustrate these conditions,
consider the case when θi ∈ [0, 1], pθi(·) is a Beta-
distribution, and pXi

(·|θi) is a Bernoulli distribution
with parameter θi. We can view this as having d inde-
pendent coins, each with a prior on its bias. Our task
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is to learn as much about the distributions of the coins
as is possible given a budget, assuming that each time
coin i is flipped, the learner incurs a cost of ci > 0.

3.1. Optimal Allocation Algorithm, iga

Given this independence, it makes sense to consider
just the subset of probes associated with the ith ran-
dom variable: Ai = { (i, j) : ∃j (i, j) ∈ A } . We also
let V = { (i, j) : 1 ≤ i ≤ d, j ≥ 1 } be the set of all
possible probes. Under these independence assump-
tions, the cost J decomposes into the sum of costs
defined for the individual variables:1

Proposition 1. For any A = {A1, . . . , Ad} ⊂
V , J(A) =

∑d
i=1 Ji(Ai), where Ji(Ai) =

E
[
KL
{
pXi

(·|θi) ‖ pXi
(·|E

[
θi|XAi

]
)
}]

is the objective
function (1) applied to Xi, where XAi is set of values
of the Xi feature in the datasample D = {X1,X2, . . .}.
Proposition 2. For any 1 ≤ i ≤ d, |Ai| = |A′i| im-
plies Ji(Ai) = Ji(A

′
i).

That is, the cost associated with the ith attribute de-
pends only on how many times that attribute was
probed. We therefore define Ji(k) to be the cost asso-
ciated with the ith attribute after it has been probed k
times, and note that the cost of any allocation A is the
same as the cost of the corresponding “compact allo-
cation” of the form A′ = ∪di=1 { (i, j) : 1 ≤ j ≤ |Ai| },
which depends only on the cardinalities ai = |Ai|,
i = 1, . . . , d.

Definition 1. Let J be a set function mapping subsets
of V to reals. We say that J is monotone (non-
increasing) if A ⊂ A′ ⊂ V implies J(A) ≥ J(A′),
and is supermodular if A ⊂ A′ ⊂ V and v ∈ V
implies J(A) − J(A ∪ {v}) ≥ J(A′) − J(A′ ∪ {v}).
(That is, adding {v} to a small set A reduces the cost
by more than adding {v} to the larger set A′.)

Let Betax(α, β) denote the density of a Beta dis-
tributed variable evaluated at x, and let Berx(θ) de-
note the probability mass function of a Bernoulli ran-
dom variable with parameter θ, evaluated at x.

Proposition 3. The objective function Ji for a vari-
able Xi with pθi(θi) = Betaθi(α, β), α, β ∈ Z+ prior
distribution, and BerXi(θi) model likelihood is strictly
monotonically decreasing in the number of probes, and
supermodular.

Let ∆i(k) = Ji(k) − Ji(k + 1) be the change of
cost associated with the ith attribute. The iga al-
gorithm, shown in Figure 2, initially computes these
∆j(0) values for each variable j, and selects the

1 Recall that the proofs of this claim, and the following
ones, can all be found in the website (LPSzG, 2010).

IGA( budget B; costs 〈ck〉; reductions 〈∆k(·)〉 )
s := 0 a1 := 0, . . ., ad := 0
while s < B do
j∗ := arg maxj{∆j(aj)/cj }
aj∗ := aj∗ + 1 s := s+ cj∗

end while
RETURN (a1, . . . , ad)

Figure 2. Incremental Greedy Allocation algorithm, iga

largest j∗ = arg maxj{∆j(0)/cj}, and assigns one
probe to that variable. It then computes the ex-
pected ∆j∗(1)/cj∗ value for that variable, and again
finds the largest value along this modified frontier (re-
placing ∆j∗(0)/cj∗ with ∆j∗(1)/cj∗). The expecta-
tion is based on the chance of reaching a node, given
the priors. To illustrate, consider the two unit-cost
binary variables shown in Figure 3, with a budget
B = 2. iga first computes ∆A(0) and ∆B(0). As
∆A(0) ≈ 1.51E-4 < ∆B(0) ≈ 1.54E-4, iga allo-
cates 1 probe to B. It then computes ∆B(1) as the
difference between the weighted sum of the 3 nodes at
level 2 with the weighted sum at level 1, which here
is ∆B(1) ≈ 1.49E-4. As this is less that ∆A(0), iga
allocates 1 probe to A. Having spent its entire budget,
iga terminates, returning the allocation: 1 probe to A
and 1 to B.

One challenge is computing ∆j(k+1) from ∆j(k). For-
tunately, this is efficient in general — e.g., when con-
sidering Beta priors, this takes only O(k) time, where
k ≤ B (assuming each ci ≥ 1). Here, the entire al-
gorithm, over n variables and a budget of B, requires
only O((n+ B)B lnn) time, and only O(n) space.

Now consider the following assumptions:

Assumption A2

(i) All costs are equal and, in particular (without the
loss of generality), ci ≡ 1.

(ii) The objective functions Ji for each attribute are
both monotone and supermodular.

Proposition 3 shows that Assumption A2(ii) is satis-
fied by the Beta prior distribution and Bernoulli model
likelihood.2

Proposition 4. Given Assumptions A1 and A2, iga
computes an optimal allocation.

While iga is the optimal allocation policy, it is not the
optimal policy. To illustrate, note that the optimal
policy for Figure 3 (for B = 2) would first probe A;
and if it is tails, probe A again, and otherwise probe B.

2 (LPSzG, 2010) shows it also holds for Gaussian dis-
tributions; we conjecture that it holds more generally.
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Figure 3. An example to illustrate iga. We display J for each variable, at each level, beside each DAG. Indented numbers
are the difference between each pair of Js. The notation “a − Beta(c, d)” means that the probability of arriving at this
node is a, and the posterior distribution of the parameter is Beta(c, d).

Everything above assumes that the variables have uni-
form cost. Otherwise:

Proposition 5. It is NP-hard to compute the optimal
budgeted allocation policy (for determining the param-
eters that minimize the J(·) objective function Equa-
tion 1), even if the variables are independent (Assump-
tion A1).

3.2. Other (Sequential) Algorithms

We can consider many other algorithms. Round-robin
attempts to probe each variable the same number of
times, until it terminates on the final iteration. Ran-
dom just selects each variable uniformly at random.
Finally, the adaptive greedy algorithm (aga) policy
picks arg maxj ∆j(1)/cj — i.e., the variable with the
largest expected one-step change of cost (per probe
cost) associated with each attribute, given its current
posterior distribution (i.e., based on the responses ob-
served to all previous probes). It then probes this vari-
able once, updates its posterior using the outcome (us-
ing standard Bayesian update), and iterates until the
learner runs out of budget.

We can use Figure 3 to help contrast these two algo-
rithms. Recall iga would probe A and B once here;
aga will do likewise. Now consider a slightly different
problem, where B’s prior is changed to Beta(28, 29).
The optimal policy here is the same as for the origi-
nal example. However, aga would find this optimal
policy here, but iga would still allocate one probe to
each of the two variables, which is suboptimal. This
illustrates the benefit of adaptivity.

Unfortunately, aga might not work well for the general
problem, with arbitrary costs. Assume one variable
has cost c1 = 1 and the largest one-step ∆1(1) = r,
while each the remaining d− 1 variables has cost cj =
ε � 1 and ∆j(1) = r − ε. If the budget B = 1, then
aga would probe the first coin and obtain a reduction
of r; a better strategy, however, could probe each of
the other coins 1/(d−1)ε times, obtaining a reduction
of at least (d−1)(r−ε), which is essentially O(d) better
than aga.

3.3. Experiments on Independent Variables

In this section, we report empirical results of a series
of experiments that compare the effectiveness of these
various algorithms for the independent variable model
in the case when the priors are informative.

The first two experiments used 5 independent binary
variables, with prior Beta(αi, βi). We generated non-
uniform costs from a uniform discrete distribution on
{1, 2, ..., 5}, where each integer cost has a probability of
1
5 . We generate non-uniform priors by first drawing an
effective sample size ei uniformly from {10, 11, . . . , 30},
then drawing αi uniformly from {1, 2, . . . , ei− 1}, and
setting βi = ei − αi. The true θs are then generated
from these Beta(αi, βi) priors.

We ran 4,000 experiments for each budget B ∈
{1, . . . , 50}; Fig. 4(a) – 4(b) plot the empirical means
over the cost values J achieved. We repeated these
experiments on a larger network using 10 independent
nodes, and the fixed budget B = 200. Fig. 4(c) –
4(d) show how the empirical means of the estimated
costs J (that we can achieve after spending our budget
B = 200) converge in the number of runs for the differ-
ent algorithms. As expected, we see that algorithms
that use the distributional information (iga and aga)
perform much better than ones that do not, round-
robin and random. We ran a Wilcoxon signed rank
test on this data, and found that in all of these subfig-
ures, aga and iga are significantly better than Ran-
dom and RoundRobin for essentially every number of
probes (at α = 0.05 significance level).

4. General Distributions

This section provides results when the joint probabil-
ity distribution of X is given by a general (discrete)
belief network, that can include dependencies among
the variables. In general, a belief network specifies
the joint probability distribution pX( · | θ ) over the
random variable X = (X1, . . . , Xd)

T in a parsimo-
nious manner. We assume we are given a labeled
directed acyclic graph, G = 〈V, E〉 (V = {1, . . . , d},
E ⊂ V × V), where node i is associated with the ran-
dom variable Xi. Let Ui be the set of parent nodes
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Figure 4. Empirical studies using Informative priors

of node i. The graph G encodes the conditional in-
dependencies of X: each node is independent of its
non-descendants, given its parents (Pearl, 1988). As
we assume that X is discrete valued, we need to spec-
ify, for each node Xi, the conditional distributions,
θXi|ui

= pXi|ui
(xi |ui; θ ), called the conditional prob-

ability tables. We can then write the probability of any
complete tuple x = (x1, . . . , xd)

T , as a simple product
pX(x | θ ) =

∏d
i=1 pXi

(xi |ui, θi ) =
∏
i θxi|ui

.

We assume that these parameters {θXi|ui
} are initially

independent, which mean the belief network corre-
sponds to a product of Dirichlet distributions. Given
a data set D, we can compute the posterior distri-
bution; if this D consists of complete instances (i.e.,
specifies a value for each variable), then the network
remains factored as a product of Dirichlet distribu-
tions, each of which is updated: if the parameter is
initially θXi|Ui=u ∼ Beta(α, β), and D includes a in-
stances matching Xi = + and Ui = u and b instances
matching Xi = − and Ui = u, then the posterior is
θXi|ui=u ∼ Beta(α+ a, β + b) (Heckerman, 1999).

Unfortunately, if there are omissions in the training
data (that is, there is a training instance that includes
the values for some, but not all of the features), then
the posterior distribution can become a mixture, which
in general does not have a simple analytic form. In-
deed, if the data instance specifies only d − k values
(i.e., there are k omissions), then the posterior dis-
tribution corresponds to a mixture of 2k products of
Dirichlet distributions (if each variable is binary). We
therefore need a way to estimate this objective func-
tion. (As computing J(·) requires estimating the dis-
tribution itself, and not just its mean values, we cannot
use EM (Dempster et al., 1977).) See Section 4.3.

4.1. Complete 2-Node Belief Networks with
BDe Priors and Uniform Costs

A network has BDe Dirichlet priors if the CPtables
entries are “matching” (Tong & Koller, 2001b). For
example, in the structure A→ B, the parameters θA ∼

Beta(3, 4), θB|+a ∼ Beta(1, 2), and θB|−a ∼ Beta(3, 1)
are BDe as the “effective” number of pseudo-instances
corresponding to +a here is 3 based both on the “3”
in θA’s first parameter and the fact that θB|+a has
an effective sample size of 1 + 2 = 3. Similarly the
“effective” number of pseudo-instances corresponding
to −a here is 4 based both on the “4” in θA’s second
parameter and θB|−a’s effective sample size of 3 + 1 =
4.

Proposition 6. For a complete 2-node belief network
with BDe Beta priors and uniform costs, when the bud-
get B is an even number, an allocation algorithm that
takes full data instances gives a posterior distribution
with the minimum expected risk J(·).

This claim shows that, for some situations, the best
allocation algorithm involves the obvious round-robin
approach: if our budget is B and there are d = 2
variables, probe each variable B/d times.

4.2. Non-BDe, Non-uniform Costs, Incomplete

The BDe and uniform cost constraints are crucial for
a round-robin like algorithm, which takes full data in-
stances, to perform well. As one counter-example, con-
sider the non-BDe distribution in Fig. 5(a). Here, X
and Y are basically independent from each other. As
we are very certain about the probability of Y but we
know little about X, and their costs are the same, it
makes sense to allocate more probes to X. (That is,
if the budget B = 2, we will do much better prob-
ing X twice, rather than the round-robin approach of
probing X once and Y once.)

Now consider the BDe distribution shown in Fig. 5(b),
where the costs are very different. As X and Y are
highly correlated, and the cost of probing X is signif-
icantly cheaper, we clearly get more “information per
unit cost” by probing X more. (So given the budget
B = 101, we would do much better proving X 101
times, rather than probing X once and Y once.)

Finally, this RoundRobin also requires that the struc-
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X Beta(1, 1)X Beta(1, 1) Y |X=F Beta(1, 99)

Y |X=T Beta(1, 99)
Y |X=F Beta(1, 99)

Y |X=T Beta(1, 99)

Cost(X) = 1Cost(X) = 1 Cost(Y) = 1Cost(Y) = 1

(a) Uniform costs, non-BDe priors

Y |X=F Beta(99, 1)

Y |X=T Beta(1, 99)
Y |X=F Beta(99, 1)

Y |X=T Beta(1, 99)
X Beta(100, 100)X Beta(100, 100)

Cost(Y) = 100Cost(Y) = 100Cost(X) = 1Cost(X) = 1

(b) Different costs, BDe priors

Figure 5. Situations where RoundRobin is suboptimal

ture be complete — i.e., that every node is connected
to every other. As a counter-example, imagine X
and Y are independent, where θX ∼ Beta(1, 999) and
θY ∼ Beta(500, 500). Given the budget B = 2, we
will do much better probing Y twice, rather than the
round-robin approach of probing X once and Y once.

4.3. Estimating J(·) from Partial Data

The above counter-examples show that the round-
robin algorithm is not always optimal, which means
the optimal algorithm will probably produce partial
instances. To evaluate such algorithms, we need to
compute the objective function J(·) on the resulting
distribution; as discussed above, this is trickly as the
resulting distribution is no longer simple. This sec-
tion provides a sampling algorithm for estimating this
expected KL value.

In general, we can write the final datasample as D =
{Do,Dm}, where Do and Dm are the observed and
missing elements, respectively. Our goal is to obtain
the observations Do that lead to a posterior over θ that
is well concentrated around its mean (in expectation)
— i.e., that minimize

J(Do) = Eθ1∼pθ( · | Do )KL
{
pX( · |θ1 ) ‖ pX( · | θ̄ )

}
, (2)

where θ̄
.
= Epθ( · | Do )[θ]. Observe that the posterior is

a mixture of Dirichlets:

p(θ | Do ) =
∑
Dm

p(θ | Do,Dm ) p(Dm | D0 ) (3)

Since the number of components of the posterior can
be exponential in the number of omissions in the
dataset, |Dm|, its analytical computation is not fea-
sible for a dataset with a large number of omissions.
We there define the Ĵ sampling algorithm (shown in
Figure 6) to estimate the objective function in (2),
and to serve as the basis for the obvious Greedy
algorithm: At each time, consider probing each un-
specified feature Xj

i . Each of the k ≥ 2 possible
outcomes of this probe will occur with probability
p(Xj

i |θ,Do). While we do not know the true θ, we
can use the estimate θ̂(Xj ∩ Do) based on the data,
where Xj ∩Do are the features specified in the partial
instance Xj . Then for each {Xj

i = v} outcome, we
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Figure 7. (a) Cancer belief network. (b) KL divergences
from the true parameters.

compute Ĵ(pX(·|θ̂); Do ∪ {Xj
i = v}; . . . ) as an esti-

mate of the resulting objective function. The average
J(i, j) =

∑
v

p(Xj
i = v|θ̂)Ĵ(pX(·|θ̂);Do ∪ {Xj

i = v}; . . . )

estimates the quality of probing thisXj
i ; we then probe

the optimal 〈̂i, ĵ〉 = arg maxi,j J(i, j).

4.4. Empirical Studies on General BNs

We performed many experiments using 3 algorithms:
the Greedy defined above, as well as the obvious Ran-
dom and Round-robin, over a number of belief net-
work structures. Here we report our findings on the
“Cancer” structure (Fig. 7(a)), a BN with 5 correlated
binary variables and 11 parameters (Pearl, 1988).

Fig. 7(b) compares these 3 algorithms (where Greedy
uses S = 5) with a budget B = 10. The plots show
how the running averages of the Ĵ(. . . ) functions con-
verge for each algorithm. We can see that Greedy
performs better than the other two algorithms, which
shows that considering the defined risk can help the
learner to obtain a better estimate of the parameters.
A Wilcoxon signed rank test confirmed that Greedy
significantly outperformed Random and Round-robin
at α = 0.05 significance level.

5. Conclusions

This paper theoretically and empirically explores the
budgeted distribution learning task, where the learner
is allowed to sequentially probe specified attributes of
data instances to obtain their values, with the goal
of learning the joint distribution over the attributes,
subject to the fixed total budget. We first studied the
simple case where all variables are independent, and
proved that the simple iga is the optimal allocation
algorithm when the costs are uniform, but that even
this simple allocation task is NP-hard for general costs.
We then showed that sequential algorithms can do bet-
ter than allocation algorithms, and presented empirical
studies to show that algorithms that use the distribu-
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Ĵ( pX(·|θ0); Do; S) % θ0= initial param, Do = observed data, S = number of imputed datasets
for i = 1..S do
Draw ith imputed datasample Dim from pX( · | Do, θ0 )

Draw θ̂(i) from pθ( · | Do,Dim ) % Each θ̂(i) is a product of Dirichlet distr’ns
end for
θ̄ := 1

S

∑S
i=1 θ̂(i) % ... = mean[θ̂] . . .≈ estimate of θ̄(pθ( · | Do )) = Epθ( · | Do )[θ]

for i = 1..S do
K(i) :=

∑d
n=1

∑
un

pX(un | θ̂(i) )
∑
xn
θ̂(i)xn|un ln

θ̂(i)xn|un
θ̄Xn|un

% % n indexes the variables; un ranges over instantiations of the parents of the nth variable Xn
% θ̂(i)xn|un = parameter of θ̂(i) associated with [Xn = xn,Un = un]; similarly for θ̄xn|un

end for
RETURN Ĵ := 1

S

∑S
i=1 K(i) % . . .= mean[K]

Figure 6. Sampling algorithm for estimating the EKL of a posterior distribution

tional information (iga and aga) perform much better
than ones that do not, round-robin and random.

We then considered more general belief networks with
dependencies, and showed restricted situations where
the obvious round-robin algorithm is guaranteed to be
the optimal allocation algorithm, followed by exam-
ples where round-robin is not optimal. This means
we will need to consider partially specified training in-
stances, which lead to complex posterior distributions
that do not have a simple closed form. We provided a
stochastic algorithm that approximates the evaluation
(Expected KL divergence), which we used to produce
a greedy algorithm. While round robin algorithm does
work well in practice for certain belief nets, our em-
pirical results show that our greedy algorithm can be
significantly superior. The results of these explorations
reveal a number of insights about the challenges of ac-
quiring the information needed to learn a distribution.
The webpage (LPSzG, 2010) shows that these results
hold for other relevant distributions as well.

This paper presents many initial steps in addressing
the challenges of the budgeted distribution learning
framework. However, much remains to be done. For
example, our results show that, except for a few spe-
cial cases, learning in the Bayesian framework can be
hard. In the future, we plan to study the challenge of
approximating this solution.
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