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Abstract

We develop an efficient learning framework to
construct signal dictionaries for sparse represen-
tation by selecting the dictionary columns from
multiple candidate bases. By sparse, we mean
that only a few dictionary elements, compared to
the ambient signal dimension, can exactly repre-
sent or well-approximate the signals of interest.
We formulate both the selection of the dictionary
columns and the sparse representation of signals
as a joint combinatorial optimization problem.
The proposed combinatorial objective maximizes
variance reduction over the set of training signals
by constraining the size of the dictionary as well
as the number of dictionary columns that can be
used to represent each signal. We show that if
the available dictionary column vectors are inco-
herent, our objective function satisfies approxi-
mate submodularity. We exploit this property to
develop SDSOMP and SDSMA, two greedy algo-
rithms with approximation guarantees. We also
describe how our learning framework enables dic-
tionary selection for structured sparse represen-
tations, e.g., where the sparse coefficients occur
in restricted patterns. We evaluate our approach
on synthetic signals and natural images for rep-
resentation and inpainting problems.

1. Introduction
An important problem in machine learning, signal pro-
cessing and computational neuroscience is to deter-
mine a dictionary of basis functions for sparse rep-
resentation of signals. A signal y ∈ Rd has a sparse
representation with y = Dα in a dictionary D ∈ Rd×n,
when k � d coefficients of α can exactly represent or
well-approximate y. Myriad applications in data anal-
ysis and processing–from deconvolution to data mining
and from compression to compressive sensing–involve
such representations. Surprisingly, there are only two
main approaches for determining data-sparsifying dic-
tionaries: dictionary design and dictionary learning.
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In dictionary design, researchers assume an abstract
functional space that can concisely capture the under-
lying characteristics of the signals. A classical example
is based on Besov spaces and the set of natural images,
for which the Besov norm measures spatial smoothness
between edges (c.f., Choi & Baraniuk (2003) and the
references therein). Along with the functional space,
a matching dictionary is naturally introduced, e.g.,
wavelets (W) for Besov spaces, to efficiently calculate
the induced norm. Then, the rate distortion of the par-
tial signal reconstructions yDk is quantified by keeping
the k largest dictionary elements via an `p norm, such

as σp(y, y
D
k ) = ‖y − yDk ‖p ≡

(∑d
i=1 ‖yi − yDk,i‖p

)1/p
;

the faster σp(y, y
D
k ) decays with k, the better the ob-

servations can be compressed. While the designed dic-
tionaries have well-characterized rate distortion and
approximation performance on signals in the assumed
functional space, they are data-independent and hence
their empirical performance on the actual observa-
tions can greatly vary: σ2(y, yWk ) = O(k−0.1) (prac-
tice) vs. O(k−0.5) (theory) for wavelets on natural im-
ages (Cevher, 2008).

In dictionary learning, researchers develop algorithms
to learn a dictionary for sparse representation di-
rectly from data using techniques such as regulariza-
tion, clustering, and nonparametric Bayesian infer-
ence. Regularization-based approaches define an ob-
jective function that minimize the data error, regular-
ized by the `1 or the total variation (TV) norms to
enforce sparsity under the dictionary representation.
The proposed objective function is then jointly opti-
mized in the dictionary entries and the sparse coeffi-
cients (Olshausen & Field, 1996; Zhang & Chan, 2009;
Mairal et al., 2008). Clustering approaches learn dic-
tionaries by sequentially determining clusters where
sparse coefficients overlap on the dictionary and then
updating the corresponding dictionary elements based
on singular value decomposition (Aharon et al., 2006).
Bayesian approaches use hierarchical probability mod-
els to nonparametrically infer the dictionary size and
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its composition (Zhou et al., 2009). Although dictio-
nary learning approaches have great empirical perfor-
mance on many data sets in denoising and inpainting
of natural images, they lack theoretical rate distortion
characterizations of the dictionary design approaches.

In this paper, we investigate a hybrid approach be-
tween dictionary design and learning. We propose a
learning framework based on dictionary selection: We
build a sparsifying dictionary for a set of observations
by selecting the dictionary columns from multiple can-
didate bases, typically designed for the observations of
interest. We constrain the size of the dictionary as well
as the number of dictionary columns that can be used
to represent each signal with user-defined parameters
n and k, respectively. We formulate both the selection
of basis functions and the sparse reconstruction as a
joint combinatorial optimization problem. Our objec-
tive function maximizes a variance reduction metric
over the set of observations.

We then propose SDSOMP and SDSMA, two com-
putationally efficient, greedy algorithms for dictionary
selection. We show that under certain incoherence as-
sumptions on the candidate vectors, the dictionary se-
lection problem is approximately submodular, and we
use this insight to derive theoretical performance guar-
antees for our algorithms. We also demonstrate that
our framework naturally extends to dictionary selec-
tion with restrictions on the allowed sparsity patterns
in signal representation. As a stylized example, we
study a dictionary selection problem where the sparse
signal coefficients exhibit block sparsity, e.g., sparse
coefficients appear in pre-specified blocks.

Lastly, we first evaluate the performance of our algo-
rithms in both on synthetic and real data. Our main
contributions can be summarized as follows:

1. We introduce the problem of dictionary selection
and cast the dictionary learning/design problems
in a new, discrete optimization framework.

2. We propose new algorithms and provide their the-
oretical performance characterizations by exploit-
ing a geometric connection between submodular-
ity and sparsity.

3. We extend our dictionary selection framework to
allow structured sparse representations.

4. We evaluate our approach on several real-world
sparse representation and image inpainting prob-
lems and show that it provides practical insights
to existing image coding standards.

2. The dictionary selection problem
In the dictionary selection problem (DiSP), we seek a
dictionary D to sparsely represent a given collection

of signals Y = {y1, . . . , ym} ∈ Rd×m. We compose
D using the variance reduction metric, defined below,
by selecting a subset of a candidate vector set V =
{φ1, . . . , φN} ∈ Rd×N . Without loss of generality, we
assume ‖yi‖2 ≤ 1 and ‖φi‖2 = 1, ∀i. In the sequel,
we define ΦA = [φi1 , . . . , φiQ ] as a matrix containing
the vectors in V as indexed by A = {i1, . . . , iQ} where
A ⊆ V and Q = |A| is the cardinality of the set A. We
do not assume any particular ordering of V.

DiSP objectives: For a fixed signal ys and a set of
vectors A, we define the reconstruction accuracy as

Ls(A) = σ2
2(ys, y

A) = min
w
||ys − ΦAw||22. (1)

The problem of optimal k-sparse representation with
respect to a fixed dictionary D then requires solving
the following discrete optimization problem:

As = argmin
A⊆D,|A|≤k

Ls(A), (2)

where k is the user-defined sparsity constraint on the
number of columns in the reconstruction.

In DiSP, we are interested in determining a dictionary
D ⊆ V that obtains the best possible reconstruction
accuracy for not only a single signal but all signals Y.
Each signal ys can potentially use different columns
As ⊆ D for representation; we thus define

Fs(D) = Ls(∅)− min
A⊆D,|A|≤k

Ls(A), (3)

where Fs(D) measures the improvement in reconstruc-
tion accuracy, also known as variance reduction, for the
signal ys and the dictionary D. Moreover, we define
the average improvement for all signals as

F (D) =
1

m

∑
s

Fs(D).

The optimal solution to the DiSP is then given by

D∗ = argmax
|D|≤n

F (D), (4)

where n is a user-defined constraint on the number of
dictionary columns. For instance, if we are interested
in selecting a basis, we have n = d.

DiSP challenges: The optimization problem in (4)
presents two combinatorial challenges. (C1) Evalu-
ating Fs(D) requires finding the set As of k basis
functions–out of exponentially many options–for the
best reconstruction accuracy of ys. (C2) Even if we
could evaluate Fs, we would have to search over an
exponential number of possible dictionaries to deter-
mine D∗ for all signals. Even the special case of k = n
is NP-hard (Davis et al., 1997). To circumvent these
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combinatorial challenges, the existing dictionary learn-
ing work relies on continuous relaxations, such as re-
placing the combinatorial sparsity constraint with the
`1-norm of the dictionary representation of the signal.
However, these approaches result in non-convex objec-
tives, and the performance of such relaxations is typi-
cally not well-characterized for dictionary learning.

3. Submodularity in sparse
representation

In this section, we first describe a key structure in the
DiSP objective function: approximate submodularity.
We then relate this structure to a geometric property
of the candidate vector set, called incoherence. We use
these two concepts to develop efficient algorithms with
provable guarantees in the next section.

Approximate submodularity in DiSP: To define
this concept, we first note that F (∅) = 0 and when-
ever D ⊆ D′ then F (D) ≤ F (D′), i.e., F increases
monotonically with D. In the sequel, we will show
that F is approximately submodular: A set function
F is called approximately submodular with constant ε,
if for D ⊆ D′ ⊆ V and v ∈ V \ D′ it holds that

F (D ∪ {v})− F (D) ≥ F (D′ ∪ {v})− F (D′)− ε. (5)

In the context of DiSP, the above definition implies
that adding a new column v to a larger dictionary D′
helps at most εmore than adding v to a subsetD ⊆ D′.
When ε = 0, the set function is called submodular.

A fundamental result by Nemhauser et al. (1978)
proves that for monotonic submodular functions G
with G(∅) = 0, a simple greedy algorithm that starts
with the empty set D0 = ∅, and at every iteration i
adds a new element via

vi = argmax
v∈V\D

G(Di−1 ∪ {v}), (6)

where Di = {v1, . . . , vi}, obtains a near-optimal so-
lution. That is, for the solution Dn returned by the
greedy algorithm, we have the following guarantee:

G(Dn) ≥ (1− 1/e) max
|D|≤n

G(D). (7)

The solution Dn hence obtains at least a constant frac-
tion of (1− 1/e) ≈ 63% of the optimal value.

Using similar arguments, Krause et al. (2008) show
that the same greedy algorithm, when applied to ap-
proximately submodular functions, instead inherits
the following–slightly weaker–guarantee

F (Dn) ≥ (1− 1/e) max
|D|≤n

F (D)− nε. (8)

In Section 4, we explain how this greedy algorithm can
be adapted to DiSP. But first, we elaborate on how ε
depends on the candidate vector set ΦV .
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Figure 1. Example geometry in DiSP. (Left) Minimum er-
ror decomposition. (Right) Modular decomposition.

Geometry in DiSP (incoherence): The approx-
imate submodularity of F explicitly depends on the
maximum incoherency µ of ΦV = [φ1, . . . , φN ]:

µ = max
∀(i,j),i6=j

|〈φi, φj〉| = max
∀(i,j),i6=j

|cosψi,j | ,

where ψi,j is the angle between the vectors φi and φj .

The following lemma establishes a key relationship be-
tween ε and µ for DiSP.

Theorem 1 If ΦV has incoherence µ, then the vari-
ance reduction objective F in DiSP is ε-approximately
submodular with ε ≤ 4kµ.

Proof Let ws,v = 〈φv, ys〉2. When ΦV is an orthonor-
mal basis, the reconstruction accuracy in (1) can be
written as follows

Ls(A) =
∣∣∣∣∣∣ys − Q∑

q=1

φiq 〈ys, φiq 〉
∣∣∣∣∣∣2
2

= ||ys||22 −
∑
v∈A

ws,v.

Hence the function Rs(A) ≡ Ls(∅) − Ls(A) =∑
v∈A ws,v is additive (modular). It can be seen that

then Fs(D) = maxA⊆D,|A|≤k Rs(A) is submodular.

Now suppose ΦV is incoherent with constant µ. Let
A ⊆ V and v ∈ V \ A. Then we claim that
|Rs(A ∪ {v}) − Rs(A) − ws,v| ≤ µ. Consider the spe-
cial case where ys is in the span of two subspaces A
and v, and w.l.o.g., ||ys||2 = 1; refer to Fig. 1 for an
illustration. The reconstruction accuracy as defined
in (1) has a well-known closed form solution: Ls(A) =

minw ||ys−ΦAw||22 = ||ys−ΦAΦ†Ays||22, where † denotes

the pseudoinverse; the matrix product P = ΦAΦ†A is
simply the projection of the signal ys onto the sub-
space of A. We therefore have Rs(A) = 1 − sin2(θ),
Rs(A∪{v}) = 1, and Rs({v}) = 1−sin2(ψ−θ), where
θ and ψ are defined in Fig. 1. We thus can bound
εs ≡ |Rs(A ∪ {v})−Rs(A)− wv,s| by

εs ≤ max
θ

∣∣sin2(ψ − θ) + sin2(θ)− 1
∣∣

= |cosψ|max
θ
|cos(ψ − 2θ)| = µ.

If ys is not in the span of A ∪ {v}, we apply above
reasoning to the projection of ys onto their span.
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Define R̂s(A) =
∑
v∈A ws,v. Then, by induction,

we have |R̂s(A) − Rs(A)| ≤ kµ. Note that the

function F̂s(D) = maxA⊆D,|A|≤k R̂s(A) is submodu-

lar. Let As = argmaxA⊆D,|A|≤k Rs(A) and Âs =

argmaxA⊆D,|A|≤k R̂s(A). Therefore, it holds that

Fs(D)=Rs(As)≤R̂(As)+kµ≤R̂(Âs)+kµ= F̂s(D)+kµ.

Similarly, F̂s(D) ≤ Fs(D) + kµ. Thus, |F̂s(D) −
Fs(D)| ≤ kµ, and hence |F̂ (D) − F (D)| ≤ kµ holds
for all candidate dictionaries D. Therefore, whenever
D ⊆ D′ and v /∈ D′, we can obtain the following

F (D ∪ {v})− F (D)− F (D′ ∪ {v}) + F (D′)

≥F̂ (D ∪ {v})− F̂ (D)− F̂ (D′ ∪ {v}) + F̂ (D′)− 4kµ

≥− 4kµ, which proves the claim.

When the incoherency µ is small, the approximation
guarantee in (8) is quite useful. There has been a sig-
nificant body of work establishing the existence and
construction of collections V of columns with low co-
herence µ. For example, it is possible to achieve inco-
herence µ ≤ d−1/2 with the union of d/2 orthonormal
bases (c.f. Theorem 2 of Gribonval & Nielsen (2002)).

Unfortunately, when n = Ω(d) and ε = 4kµ, the guar-
antee (8) is vacuous since the maximum value of F for
DiSP is 1. In Section 4, we will show that if, instead of
greedily optimizing F , we optimize a modular approx-
imation F̂s of Fs (as defined below), we can improve
the approximation error from O(nkµ) to O(kµ).

A modular approximation to DiSP: The key
idea behind the proof of Theorem 1 is that for in-
coherent dictionaries the variance reduction Rs(A) =
Ls(∅) − Ls(A) is approximately additive (modular).
We exploit this observation by optimizing a new objec-
tive F̂ that approximates F by disregarding the non-
orthogonality of ΦV in sparse representation. We do
this by replacing the weight calculation ws,A = Φ†Ays
in F with ws,A = ΦTAys:

F̂s(D) = max
A⊆D,|A|≤k

∑
v∈A

ws,v, and F̂ (D) =
1

m

∑
s

F̂s(D),

(9)
where ws,v = 〈φv, ys〉2 for each ys ∈ Rd and φv ∈ ΦV .

We call F̂ a modular approximation of F as it relies on
the approximate modularity of the variance reduction
Rs. Note that in contrast to (3), F̂s(D) in (9) can be
exactly evaluated by a greedy algorithm that simply
picks the k largest weights ws,v. Moreover, the weights
must be calculated only once during algorithm execu-
tion, thereby significantly increasing its efficiency.

The following immediate Corollary to Theorem 1 sum-
marizes the essential properties of F̂ :

Corollary 1 Suppose ΦV is incoherent with constant
µ. Then, for any D ⊆ V, we have |F̂ (D)−F (D)| ≤ kµ.
Furthermore, F̂ is monotonic and submodular.

Corollary 1 shows that F̂ is a close approximation of
the DiSP set function F . We exploit this modular ap-
proximation to motivate a new algorithm for DiSP and
provide better performance bounds in Section 4.

4. Sparsifying dictionary selection
In this section, we describe two sparsifying dictionary
selection (SDS) algorithms with theoretical perfor-
mance guarantees: SDSOMP and SDSMA. Both algo-
rithms make locally greedy choices to handle the com-
binatorial challenges C1 and C2, defined in Section 2.
The algorithms differ only in the way they address
C1, which we further describe below. Both algorithms
tackle C2 by the same greedy scheme in (6). That is,
both algorithms start with the empty set and greedily
add dictionary columns to solve DiSP. Interestingly,
while SDSMA has better theoretical guarantees and
is much faster than SDSOMP , Section 6 empirically
shows that SDSOMP often performs better.

SDSOMP : SDSOMP employs the orthogonal match-
ing pursuit (OMP) (Gilbert & Tropp, 2005) to approx-
imately solve the sparse representation problem in (2)
and has the following theoretical guarantee:

Theorem 2 SDSOMP uses the scheme in (6) to build
a dictionary DOMP one column at a time such that

F (DOMP) ≥ (1− 1/e) max
|D|≤n

F (D)− k(6n+ 2− 1/e)µ.

Before we prove Theorem 2, we state the following
result whose proof directly follows from Theorem 1.

Proposition 1 At each iteration, SDSOMP approxi-
mates F with a value FOMP such that |FOMP (D) −
F (D)| ≤ kµ over all dictionaries D.
Proof [Theorem 2] From Theorem 1 and Proposition 1
we can see that FOMP is 6knµ-approximately submod-
ular. Thus, according to Krause et al. (2008):

FOMP (DOMP) ≥ (1− 1/e) max
|D|≤n

FOMP (D)− 6knµ.

(10)
Using Proposition 1, we substitute F (DOMP) + kµ ≥
FOMP (DOMP) and max|D|≤n FOMP (D) ≥ max|D|≤n
F (D)− kµ into (10) to prove the claim.

SDSMA: SDSMA greedily (according to (6)) opti-

mizes the modular approximation (MA) F̂ of the DiSP
objective F and has the following guarantee:

Theorem 3 SDSMA builds a dictionary DMA s.t.

F (DMA) ≥ (1− 1/e) max
|D|≤n

F (D)− (2− 1/e)kµ. (11)

Corollary 1 and Theorem 2 directly imply Theorem 3.
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In most realistic settings with high-dimensional signals
and incoherent dictionaries, the term (2−1/e)kµ in the
approximation guarantee (11) of SDSMA is negligible.

5. Sparsifying dictionary selection
for block sparse representation
Structured sparsity: While many man-made and
natural signals can be described as sparse in simple
terms, their sparse coefficients often have an under-
lying, problem dependent order. For instance, mod-
ern image compression algorithms, such as JPEG, not
only exploit the fact that most of the DCT coefficients
of a natural image are small. Rather, they also ex-
ploit the fact that the large coefficients have a particu-
lar structure characteristic of images containing edges.
Coding this structure using an appropriate model en-
ables transform coding algorithms to compress images
close to the maximum amount possible and signifi-
cantly better than a naive coder that just assigns bits
to each large coefficient independently (Mallat, 1999).

We can enforce structured sparsity for sparse coef-
ficients over the learned dictionaries in DiSP, cor-
responding to a restricted union-of-subspaces (RUS)
sparse model by imposing the constraint that the fea-
sible sparsity patterns are a strict subset of all k-
dimensional subspaces (Baraniuk et al., 2008). To fa-
cilitate such RUS sparse models in DiSP, we must not
only determine the constituent dictionary columns,
but also their arrangement within the dictionary.
While analyzing the RUS model in general is challeng-
ing, we here describe below a special RUS model of
broad interest to explain the general ideas.

Block-sparsity: Block-sparsity is abundant in
many applications. In sensor networks, multiple
sensors simultaneously observe a sparse signal over
a noisy channel. While recovering the sparse signal
jointly from the sensors, we can use the fact that the
support of the significant coefficients of the signal are
common across all the sensors. In DNA microarray
applications, specific combinations of genes are
also known a priori to cluster over tree structures,
called dendrograms. In computational neuroscience
problems, decoding of natural images in the primary
visual cortex (V1) and statistical behavior of neurons
in the retina exhibit clustered sparse responses.

To address block-sparsity in DiSP, we replace (3) by

Fi(D) =
∑
s∈Bi

Ls(∅)− min
A⊆D,|A|≤k

∑
s∈Bi

Ls(A), (12)

where Bi is the i-th block of signals (e.g., simultane-
ous recordings by multiple sensors) that must share
the same sparsity pattern. Accordingly, we redefine
F (D) =

∑
i Fi(D) as the sum across blocks, rather

than individual signals, as Section 6 further elaborates.

This change preserves (approximate) submodularity.

6. Experiments
Finding a dictionary in a haystack: To under-
stand how the theoretical performance reflects on the
actual performance of the proposed algorithms, we
first perform experiments on synthetic data.

We generate a collection VU with 400 columns by form-
ing a union of six orthonormal bases with d = 64,
including the discrete cosine transform (DCT), dif-
ferent wavelet bases (Haar, Daub4, Coiflets), noise-
lets, and the Gabor frame. This collection VU is not
incoherent—in fact, the various bases contain perfectly
coherent columns. As alternatives, we first create a
separate collection VS from VU , where we greedily re-
moved columns based on their incoherence, until the
remaining collection had incoherence of µS = 0.5. The
resulting collection contains 245 columns. We also cre-
ate a collection VR with 150 random columns of VU ,
which results in µR = 0.23.

For VU,S,R, we repeatedly (50 trials) pick at random
a dictionary D∗ ⊆ V of size n = 64 and generate a
collection of m = 100 random 5-sparse signals with
respect to the dictionary D∗. Our goal is to recover
the true dictionary D∗ using our SDS algorithms. For
each random trial, we run SDSOMP and SDSMA to
select a dictionary D of size 64. We then look at the
overlap |D∩D∗| to measure the performance of select-
ing the “hidden” basis D∗. We also report the fraction
of remaining variance after sparse reconstruction.

Figures 2(a), 2(b), and 2(c) compare SDSOMP and
SDSMA in terms of their variance reduction as a func-
tion of the selected number of columns. Interestingly,
in all 50 trials, SDSOMP perfectly reconstructs the
hidden basis D∗ when selecting 64 columns for VS,R.
SDSMA performs slightly worse than SDSOMP .

Figures 2(e), 2(f), and 2(g) compare the performance
in terms of the fraction of incorrectly selected basis
functions. Note that, as can be expected, in case of
the perfectly coherent VU , even SDSOMP does not
achieve perfect recovery. However, even with high co-
herence, µ = 0.5 for VS , SDSOMP exactly identifies
D∗. SDSMA performs a slightly worse but neverthe-
less correctly identifies a high fraction of D∗.

In addition to exact sparse signals, we also gener-
ate compressible signals, where the coefficients have
power-law with decay rate of 2. These signals can
be well-approximated as sparse; however, the residual
error in sparse representation creates discrepancies in
measurements which can be modeled as noise in DiSP.
Figures 2(d) and 2(h) repeat the above experiments for
VS ; both SDSOMP and SDSMA perform quite well.
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Figure 2. Results of 50 trials: (a-c) Variance reduction achieved by SDSOMP and SDSMA on the collections VU,S,R for
5-sparse signals in 64 dimensions. (e-g) Percentage of incorrectly selected columns on the same collections. (d) Variance
reduction for compressible signals in 64 dimensions for VS . (h) Corresponding column selection performance. (i) SDSMA

is orders of magnitude faster than SDSOMP over a broad range of dimensions. (j) As incoherence decreases, the algorithm
effectiveness in variance reduction improve. (k) The variance reduction performance of SDSMA improves with the number
of training samples. (l) Exploiting block-sparse structure in signals leads to improved dictionary selection performance.

Figure 2(i) compares SDSOMP and SDSMA in run-
ning time. As we increase the dimensionality of the
problem, SDSMA is several orders of magnitude faster
than SDSOMP in our MATLAB implementation. Fig-
ure 2(j) illustrates the performance of the algorithms
as a function of the incoherence. As predicted by The-
orems 2 and 3, lower incoherence µ leads to improved
performance of the algorithms. Lastly, Figure 2(k)
compares the residual variance as a function of the
training set size (number of signals). Surprisingly,
as the number of signals increase, the performance of
SDSMA improves, and even exceeds that of SDSOMP .

We also test the extension of SDSMA to block-sparse
signals as discussed in Section 5. We generate 200
random signals each with fixed sparsity pattern, com-
prising 10 blocks, consisting of 20 signals each. We
then compare the standard SDSMA algorithm with
the block-sparse variant SDSMAB described in Sec-
tion 5 in terms of their basis identification perfor-
mance (see Figure 2(l)). SDSMAB drastically outper-
forms SDSMA, and even outperforms the SDSOMP

algorithm which is computationally far more expen-
sive. Hence, exploiting prior knowledge of the problem
structure can significantly aid dictionary selection.

A battle of bases on image patches: In this ex-
periment, we try to find the optimal dictionary among
an existing set of bases to represent natural images.
Since the conventional dictionary learning approaches
cannot be applied to this problem, we only present the
results of SDSOMP and SDSMA.

We sample image patches from natural images, and
apply our SDSOMP and SDSMA algorithms to select
dictionaries from the collection VU , as defined above.
Figures 3(a) (for SDSOMP ) and 3(b) (for SDSMA)
show the fractions of selected columns allocated to the
different bases constituting VU for 4000 image patches
of size 8 × 8. We restrict the maximum number of
dictionary coefficients k for sparse representation to
10% (6). We then observe the following surprising
results. While wavelets are considered to be an
improvement over the DCT basis for compressing
natural images (JPEG2000 vs. JPG), SDSOMP prefer
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Figure 3. Experiments on natural image patches. (a,b,c) Fractions of bases selected for SDSOMP and SDSMA with d = 64
(a,b), and the corresponding variance reduction on test patches. (d) Fractions of bases selected for SDSMA with d = 1024.

DCT over wavelets for sparse representation; the cross
validation results show that the learned combination
of DCT (global) and Gabor functions (local) are better
than the wavelets (multiscale) in variance reduction
(compression). In particular, Fig. 3(c) demonstrates
the performance of the learned dictionary against the
various bases that comprise VU on a held-out test
set of 500 additional image patches. The variance
reduction of the dictionary learned by SDSOMP is
8% lower than the variance reduction achieved by the
best basis, which, in this case, is DCT.

Moreover, SDSMA, which trades off representation
accuracy with efficient computation, overwhelmingly
prefers Gabor functions that are used to model neu-
ronal coding of natural images. The overall dictionary
constituency varies for SDSOMP and SDSMA; how-
ever, the variance reduction performances are compa-
rable. Finally, Figure 3(d) presents the fraction of se-
lected bases for 32 × 32 sized patches with k = 102,
which matches well with the 8×8 DiSP problem above.

Dictionary selection from dimensionality re-
duced data: In this experiment, we focus on a spe-
cific image processing problem, inpainting, to moti-
vate a dictionary selection problem from dimension-
ality reduced data. Suppose that instead of observ-
ing Y as assumed in Section 2, we observe Y ′ =
P1y1, . . . ,Pmym ∈ Rb, where Pi ∈ Rb×d ∀i are known
linear projection matrices. In the inpainting setting,
Pi’s are binary matrices which pass or delete pixels.
From a theoretical perspective, dictionary selection
from dimensionality reduced data is ill-posed. For the
purposes of this demonstration, we will assume that
Pi’s are information preserving.

As opposed to observing a series of signal vectors,
we start with a single image in Fig. 4, albeit missing
50% of its pixels. We break the noisy image into
non-overlapping 8× 8 patches, and train a dictionary
for sparse reconstruction of those patches to minimize
the average approximation error on the observed
pixels. As candidate bases, we use DCT, wavelets
(Haar and Daub4), Coiflets (1 and 3), and Gabor.
We test our SDSOMP and SDSMA algorithms,

approaches based on total-variation (TV), linear
interpolation, nonlocal TV and the nonparametric
Bayesian dictionary learning (based on Indian buffet
processes) algorithms (Zhang & Chan, 2009; Mairal
et al., 2008; Zhou et al., 2009). The TV and nonlocal
TV algorithms use the linear interpolation result as
their initial estimates. We set k = 6 (10%). Figure 4
illustrates the inpainting results for each algorithm
sorted in increasing peak signal to noise ratio (PSNR).
We do not report the reconstruction results using
individual candidate bases since they are significantly
worse than the baseline linear interpolation.

The test image exhibits significant self similarities, re-
stricting the degrees-of-freedom of the sparse coeffi-
cients. Hence, for our modular and OMP-based greedy
algorithms, we ask the algorithms to select 64× 32 di-
mensional dictionaries. While the modular algorithm
SDSMA selects the desired dimensions, the OMP-
based greedy algorithm SDSOMP terminates when the
dictionary dimensions reach 64×19. Given the selected
dictionaries, we determine the sparse coefficients that
best explain the observed pixels in a given patch and
reconstruct the full patch using the same coefficients.
We repeat this process for all the patches in the im-
age that differ by a single pixel. In our final recon-
struction, we take the pixel median of all the recon-
structed patches. SDSOMP performs on par with non-
local TV while taking a fraction of its computational
time. While the Bayesian approach takes significantly
more time (a few order of magnitudes slower), it best
exploits the self similarities in the observed image to
result in the best reconstruction.

7. Conclusions
Over the last decade, a great deal of research revolved
around recovering, processing, and coding sparse
signals. To leverage this experience in new problems,
many researchers are now interested in automati-
cally determining data sparsifying dictionaries for
their applications. We discussed two alternatives
that focus on this problem: dictionary design and
dictionary learning. In this paper, we developed a
combinatorial theory for dictionary selection that
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Figure 4. Comparison of inpainting algorithms.

bridges the gap between the two approaches. We
explored new connections between the combinatorial
structure of submodularity and the geometric concept
of incoherence. We presented two computationally
efficient algorithms, SDSOMP based on the OMP
algorithm, and SDSMA using a modular approxima-
tion. By exploiting the approximate submodularity
property of the DiSP objective, we derived theoretical
approximation guarantees for the performance of our
algorithms. We also demonstrated the ability of our
learning framework to incorporate structured sparsity
representations in dictionary learning. Compared to
the dictionary design approaches, our approach is
data adaptive and has better empirical performance
on data sets. Compared to the continuous nature
of the dictionary learning approaches, our approach
is discrete and provides new theoretical insights to
the dictionary learning problem. We believe that
our results pave a promising direction for further
research, exploiting combinatorial optimization for
sparse representations, in particular submodularity.
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