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DSI, Università di Milano, Italy

Giovanni Zappella giovanni.zappella@studenti.unimi.it
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Abstract

We show that the mistake bound for predict-
ing the nodes of an arbitrary weighted graph
is characterized (up to logarithmic factors)
by the cutsize of a random spanning tree of
the graph. The cutsize is induced by the
unknown adversarial labeling of the graph
nodes. In deriving our characterization,
we obtain a simple randomized algorithm
achieving the optimal mistake bound on any
weighted graph. Our algorithm draws a ran-
dom spanning tree of the original graph and
then predicts the nodes of this tree in con-
stant amortized time and linear space. Ex-
periments on real-world datasets show that
our method compares well to both global
(Perceptron) and local (label-propagation)
methods, while being much faster.

1. Introduction

A widespread approach to the solution of classification
problems is representing the data through a weighted
graph in which edge weights quantify the similarity
between data points. This technique for coding input
data has been applied to several domains, including
Web spam detection (Herbster et al., 2009b), classi-
fication of genomic data (Tsuda & Schölkopf, 2009),
face recognition (Chang & Yeung, 2006), and text cat-
egorization (Goldberg & Zhu, 2004). In most applica-
tions, edge weights are computed through a complex
data-modelling process and convey crucially important
information for classifying nodes.
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This paper focuses on the online version of the graph
classification problem: The entire graph is known in
advance and, at each step, the algorithm is required
to predict the label of a new arbitrarily chosen node.
In the special case of unweighted graphs (where all
edges have unit weight) a key parameter for control-
ling the number of prediction mistakes is the size of
the cut induced by the unknown adversarial labeling of
the nodes. Although in the unweighted case previous
studies use the cutsize to prove several interesting up-
per bounds (Herbster et al., 2009a; Herbster & Pontil,
2007; Herbster et al., 2009b), no general lower bounds
on the number of prediction mistakes are known, leav-
ing fully open the question of characterizing the com-
plexity of learning a labeled graph. In a recent paper,
Cesa-Bianchi et al. (2009) bound the expected num-
ber of mistakes by the cutsize of a random spanning
tree of the graph, a quantity typically much smaller
than the cutsize of the whole graph. In this paper we
show that this quantity captures the hardness of the
graph learning problem. Given any weighted graph,
we prove that any prediction algorithm must err on a
number of nodes which is at least as big as the cutsize
of the graph’s random spanning tree (which is defined
in terms on the graph’s weights). Moreover, we ex-
hibit a simple algorithm achieving the optimal mistake
bound to within logarithmic factors on any sufficiently
connected weighted graph whose weighted cutsize is
not an overwhelming fraction of the total weight.

Following Cesa-Bianchi et al. (2009), our algorithm
first extracts a random spanning tree of the original
graph. Then, it predicts all nodes of this tree using
a generalization of the method proposed by Herbster
et al. (2009a). Our tree prediction procedure is ex-
tremely efficient: it only requires constant amortized
time per prediction and space linear in the number of
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nodes. Note that computational efficiency is a cen-
tral issue in practical applications where the involved
datasets can be very large. In such contexts, learning
algorithms whose time complexity scales, say, more
than quadratically with the number of data points
should be considered impractical.

A further significant contribution of this work is the ex-
perimental evaluation of our method, as compared to
methods recently proposed in the literature on graph
prediction. In particular, we compare our algorithm
to the Perceptron algorithm with Laplacian kernel
by Herbster & Pontil (2007); Herbster et al. (2009b),
and to the label propagation algorithm by Zhu et al.
(2003), including its online version. The experiments
have been carried out on four medium-sized real-world
datasets. The two tree-based algorithms (ours and the
Perceptron algorithm) have been tested using span-
ning trees generated in various ways. Though not yet
conclusive, our experimental comparison, shows that
our online algorithm compares well to all competitors
while using, in most cases, the least amount of time
and memory resources.1

2. Preliminaries and basic notation

Let G = (V,E,W ) be an undirected, connected, and
weighted graph with n nodes and positive edge weights
wi,j > 0 for (i, j) ∈ E. A labeling of G is any assign-
ment y = (y1, . . . , yn) ∈ {−1,+1}n of binary labels
to its nodes. We use (G,y) to denote the resulting
labeled weighted graph. The online learning protocol
for predicting (G,y) is defined as follows. The learner
is given G while y is kept hidden. The nodes of G
are presented to the learner one by one, according to
an unknown and arbitrary permutation i1, . . . , in of
V . At each time step t = 1, . . . , n node it is presented
and the learner must predict its label yit

. Then yit

is revealed and the learner knows whether a mistake
occurred. The learner’s goal is to minimize the total
number of prediction mistakes.

It is reasonable to expect that prediction performance
should degrade with the increase of “randomness” in
the labeling. For this reason, our analysis of graph
prediction algorithms bounds from above the number
of prediction mistakes in terms of appropriate notions
of graph label regularity. A standard notion of label
regularity is the cutsize of a labeled graph, defined as
follows. A φ-edge of a labeled graph (G,y) is any edge
(i, j) such that yi 6= yj . Similarly, an edge (i, j) is φ-
free if yi = yj . Let Eφ ⊆ E be the set of φ-edges in

1Due to space limitations, all proofs are omitted from
this extended abstract. The omitted material can be found
in the longer version (Cesa-Bianchi et al., 2010).

(G,y). The cutsize ΦG(y) of (G,y) is the number of
φ-edges in Eφ, i.e., ΦG(y) =

∣∣Eφ
∣∣ (independent of the

edge weights). The weighted cutsize ΦW
G (y) of (G,y)

is ΦW
G (y) =

∑
(i,j)∈Eφ wi,j .

Fix (G,y). Let rW
i,j be the effective resistance between

nodes i and j of G. In the interpretation of the graph
as an electric network where the weights wi,j are the
edge conductances, the effective resistance rW

i,j is the
voltage between i and j when a unit current flow is
maintained through them. For (i, j) ∈ E, let also
pi,j = wi,jr

W
i,j be the probability that (i, j) belongs to

a random spanning tree T —see, e.g., (Lyons & Peres,
2009). Then we have

E ΦT (y) =
∑

(i,j)∈Eφ

pi,j =
∑

(i,j)∈Eφ

wi,jr
W
i,j (1)

where the expectation E is over the random choice
of spanning tree T . Since

∑
(i,j)∈E pi,j is equal to

n − 1, irrespective of the edge weighting, we have 0 ≤
E ΦT (y) ≤ n− 1. Hence the ratio 1

n−1E ΦT (y) ∈ [0, 1]
provides a density-independent measure of the cutsize
in G, and even allows to compare labelings on different
graphs. It is also important to note that E ΦT (y) can
be much smaller than ΦW

G (y) when there are strongly
connected regions in G contributing prominently to
the weighted cutsize. To see this, consider the fol-
lowing scenario: If (i, j) ∈ Eφ and wi,j is large, then
(i, j) gives a big contribution to2 ΦW

G (y). However,
this might not happen in E ΦT (y). In fact, if i and j
are strongly connected (i.e., if there are many disjoint
paths connecting them), then rW

i,j is very small and the

terms wi,jr
W
i,j in (1) are small too. Therefore, the effect

of the large weight wi,j may often be compensated by
the small probability of including (i, j) in the random
spanning tree.

3. A general lower bound

We start by stating a general lower bound, show-
ing that any prediction algorithm must err at least
1
2E ΦT (y) times on any weighted graph.

Theorem 1 Let G = (V,E,W ) be a weighted undi-
rected graph with n nodes and weights wi,j > 0 for
(i, j) ∈ E. Then for all K ≤ n there exists a random-
ized labeling y of G such that for all (deterministic
or randomized) algorithms A, the expected number of
prediction mistakes made by A is at least K/2, while
E ΦT (y) < K.

2It is easy to see that in such cases ΦW

G (y) can be much
larger than n.
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4. The Weighted Tree Algorithm

We now describe the Weighted Tree Algorithm (wta)
for predicting the labels of a weighted tree. In Sec-
tion 5 we show how to apply wta to the more general
weighted graph prediction problem. wta first turns
the tree into a line graph (i.e., a list), then runs a fast
nearest neighbor method to predict the labels of each
node in the line. Though this technique is similar to
that one used in (Herbster et al., 2009a), the fact that
the tree is weighted makes the analysis significantly
more difficult, and the practical scope of our algorithm
significantly wider. Our experimental comparison in
Section 7 confirms that exploiting the weight informa-
tion is often beneficial in graph prediction.

Given a labeled weighted tree (T,y), the algorithm
initially creates a weighted line graph L′ containing
some duplicates of the nodes in T . Then, each dupli-
cate node (together with its incident edges) is replaced
by a single edge with a suitably chosen weight. This
results in the final weighted line graph L which is then
used for prediction. In order to create L from T , wta

performs the following tree linearization steps:

1. An arbitrary node r of T is chosen, and a line L′

containing only r is created.

2. Starting from r, a depth-first visit of T is per-
formed. Each time an edge (i, j) is traversed (even
in a backtracking step), the edge is appended to
L′ with its weight wi,j , and j becomes the current
terminal node of L′. Note that backtracking steps
can create in L′ at most one duplicate of each edge
in T , while nodes in T may be duplicated several
times in L′.

3. L′ is traversed once, starting from terminal r.
During this traversal, duplicate nodes are elimi-
nated as soon as they are encountered. This works
as follows. Let j be a duplicate node, and (j′, j)
and (j, j′′) be the two incident edges. The two
edges are replaced by a new edge (j′, j′′) having
weight3 wj′,j′′ = min

{
wj′,j , wj,j′′

}
. Let L be the

resulting line.

The analysis of Section 4.1 shows that this choice of
wj′,j′′ guarantees that the weighted cutsize of L is
smaller than twice the weighted cutsize of T . Once
L is created from T , the algorithm predicts the la-
bel of each node it using a nearest-neighbor rule oper-
ating on L with a resistance distance metric. That
is, the prediction on it is the label of is∗ , being
s∗ = argmins<t d(is, it) the previously revealed node

3By iterating this elimination procedure, it might hap-
pen that more than two adjacent nodes get eliminated. In
this case, the two surviving terminal nodes are connected
in L by the lightest edge among the eliminated ones in L′.

closest to it, and d(i, j) =
∑k

s=1 1/wvs,vs+1
is the sum

of the resistors (i.e., reciprocals of edge weights) along
the unique path i = v1 → v2 → · · · → vk+1 = j
connecting node i to node j.

4.1. Analysis of WTA

The following lemma gives a mistake bound on
wta run on any weighted line graph. Let RW

G =∑
(i,j)∈E\Eφ 1/wi,j the sum of resistors of φ-free edges

in a labeled graph (G,y). Let also f
O
= g denote

f = O(g).

Lemma 2 If wta is run on a weighted line graph
(L,y), then the total number mL of mistakes satisfies

mL
O
= ΦL(y)

(
1 + log

(
1 +

R̃W
L ΦW

L (y)

ΦL(y)

))
+ K

where R̃W
L is the sum of the resistors of any arbitrary

set including all but K φ-free edges of L.

Note that the bound of Lemma 2 implies that, for any
K ≥ 0, one can drop from the bound the contribution
of any set of K resistors in RL

T at the cost of adding K
extra mistakes. We now provide an upper bound on
the number of mistakes made by wta on any weighted
tree T = (V,E,W ) in terms of the number of φ-edges,
the weighted cutsize, and RW

T .

Theorem 3 If wta is run on a weighted and labeled
tree (T,y), then the total number mT of mistakes sat-
isfies

mT
O
= ΦT (y)

(
1 + log

(
1 +

RW
T ΦW

T (y)

ΦT (y)

))
.

The logarithmic factor in the above bound shows that
the algorithm takes advantage of labelings such that
the weights of φ-edges are small (thus making ΦW

T (y)
small) and the weights of φ-free edges are high (thus
making RW

T small). This somehow matches the intu-
ition behind wta’s nearest-neighbor rule according to
which nodes that are close to each other are expected
to have the same label. In particular, observe that
the way the above quantities are combined makes the
bound independent of rescaling of the edge weights.
Again, this has to be expected, since wta’s prediction
is scale insensitive. On the other hand, it may appear
less natural that the mistake bound also depends lin-
early on the cutsize ΦT (y), independent of the edge
weights. As a matter of fact, this linear dependence
on the unweighted cutsize cannot be eliminated (this
is a simple consequence of Theorem 1 in Section 3).

5. Predicting a weighted graph

In order to solve the more general problem of predict-
ing the labels of a weighted graph G, one can first
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generate a spanning tree T of G and then run wta

directly on T . In this case it is possible to rephrase
Theorem 3 in terms of properties of G. Note that
for each spanning tree T of G, ΦW

T (y) ≤ ΦW
G (y) and

ΦT (y) ≤ ΦG(y). Specific choices of the spanning tree
T control in different ways the quantities in the mis-
take bound of Theorem 3. For example, a minimum
spanning tree tends to reduce the value of RW

T , betting
on the fact that φ-edges are light. The next theorem
relies on random spanning trees.

Theorem 4 If wta is run on a random spanning tree
T of a labeled weighted graph (G,y), then the total
number mG of mistakes satisfies

E mG
O
= E

[
ΦT (y)

](
1 + log

(
1 + wφ

maxE
[
RW

T

]))
(2)

where wφ
max = max(i,j)∈Eφ wi,j.

Note that the mistake bound in (2) is scale-invariant,
since E

[
ΦT (y)

]
=
∑

(i,j)∈Eφ wi,jr
W
i,j cannot be affected

by a uniform rescaling of the edge weights, and so is
the product wφ

maxE
[
RW

T

]
= wφ

max

∑
(i,j)∈E\Eφ rW

i,j .

We now compare the mistake bound (2) to the lower
bound stated in Theorem 1. In particular, we prove
that wta is optimal (up to O(log n) factors) on every
weighted connected graph in which the φ-edges weights
are not “superpolynomially overloaded” w.r.t. the φ-
free edge weights. In order to rule out pathological
cases, when the weighted graph is nearly disconnected,
we impose the following mild assumption on the graphs
being considered.

We say that a graph is polynomially connected if
the ratio of any pair of effective resistances (even those
between nonadjacent nodes) in the graph is polyno-
mial in the total number of nodes n. This definition
essentially states that a weighted graph can be consid-
ered connected if no pair of nodes can be found which
is substantially less connected than any other pair of
nodes. Again, as one would naturally expect, this defi-
nition is independent of uniform weight rescaling. The
following corollary shows that if wta is not optimal
on a polynomially connected graph, then the labeling
must be so irregular that the total weight of φ-edges
is an overwhelming fraction of the overall weight.

Corollary 5 Pick any polynomially connected
weighted graph G with n nodes. If the ratio of the
total weight of φ-edges to the total weight of φ-free
edges is bounded by a polynomial in n, then the
total number of mistakes mG made by wta when
run on a random spanning tree T of G satisfies

E mG
O
= E

[
ΦT (y)

]
log n.

Note that when the hypothesis of this corollary is not
satisfied the bound of wta is not necessarly vacuous.

For example, E
[
RW

T

]
wφ

max = npolylog(n) implies an up-
per bound which is optimal up to polylog(n) factors.
In particular, having a constant number of φ-free edges
with exponentially large resistance contradicts the as-
sumption of polynomial connectivity, but it need not
lead to a vacuous bound in Theorem 4. In fact, one can
use Lemma 2 to drop from the mistake bound of The-
orem 4 the contribution of any set of O(1) resistances
in E

[
RW

T

]
=
∑

(i,j)∈E\Eφ rW
i,j at the cost of adding just

O(1) extra mistakes. This could be interpreted as a ro-
bustness property of wta’s bound against graphs that
do not fully satisfy the connectedness assumption.

Corollary 5 can be compared to the expected mis-
take bound of the graph Perceptron algorithm gpa

on the same random spanning tree —see Section 7
for more details on gpa. This bound depends on the
expectation of the product ΦW

T (y)DW
T , where DW

T is
the diameter of T in the resistance distance metric.
Note that these two factors are negatively correlated
because ΦW (y) dipends linearly on the edge weights
whereas DW

T dipends linearly on the reciprocal of these
weights —see the definition of resistance distance in
Section 2. Moreover, for any given scale of the edge
weights, DW

T can be linear in the number n of nodes.

6. Implementation

A direct implementation of wta operating on a tree T
with n nodes runs in time O(n log n) and requires lin-
ear memory space. We now describe how to implement
wta to run in time O(n), i.e., in constant amortized
time per step.

Once the given tree T is linearized into an n-node line
L, we initially traverse L from left to right. Call j0 the
left-most terminal node of L. During this traversal, the
resistance distance d(j0, i) is incrementally computed
for each node i in L. This makes it possible to cal-
culate d(i, j) in constant time for any pair of nodes,
since d(i, j) = |d(j0, i) − d(j0, j)| ∀i, j ∈ L. On top of
line L a complete binary tree T ′ with 2⌈log2 n⌉ leaves is
constructed.4 The k-th leftmost leaf (in the usual tree
representation) of T ′ is the k-th node in L (numbering
the nodes of L from left to right). The algorithm main-
tains this data-structure in such a way that at time t:
(i) the subsequence of leaves whose labels are revealed
at time t are connected through a (bidirectional) list
B, and (ii) all the ancestors in T ′ of the leaves of B
are marked. See Figure 1.

When wta is required to predict the label yit
, the

algorithm looks for the two closest leaves i′ and i′′

4For simplicity, this description assumes n is a power of
2. If this is not the case, we could add dummy nodes to L
before building T ′.
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Figure 1. Constant amortized time implementation of
wta. The line L has n = 16 nodes (the adjacent squares
at the bottom). Shaded squares are the revealed nodes,
connected through a dark grey doubly-linked list B. The
depicted tree T ′ has both unmarked (white) and marked
(shaded) nodes. The arrows indicate the traversal opera-
tions performed by wta when predicting the label of node
it: The upward traversal stops as soon as a marked ances-
tor anc(it) is found, and then a downward traversal begins.
Note that wta first descends to the left, and then keeps
going right all the way down. Once i′ is determined, a
single step within B suffices to determine i′′.

oppositely located in L with respect to it. The above
data structure supports this operation as follows. wta

starts from it and goes upwards in T ′ until the first
marked ancestor anc(it) of it is reached. During this
upward traversal, the algorithm marks each internal
node of T ′ on the path connecting it to anc(it). Then,
wta starts from anc(it) and goes downwards in order
to find the leaf i′ ∈ B closest to it. Note how the
algorithm uses node marks for finding its way down:
For instance, in Figure 1 the algorithm goes left since
anc(it) was reached from below through the right child
node, and then keeps right all the way down to i′.
Node i′′ (if present) is then identified via the links in B.
The two distances d(it, i

′) and d(it, i
′′) are compared,

and the closest node to it within B is then determined.
Finally, wta updates the links of B by inserting it
between i′ and i′′.

In order to quantify the amortized time per trial, the
key observation is that each internal node k of T ′ gets
visited only twice during upward traversals over the n
trials: The first visit takes place when k gets marked
for the first time, the second visit of k occurs when
a subsequent upward visit also marks the other (un-
marked) child of k. Once both of k’s children are
marked, we are guaranteed that no further upward vis-
its to k will be performed. Since the preprocessing op-
erations take O(n), this shows that the total running
time over the n trials is linear in n, as anticipated.5

5Note, however, that the worst-case time per trial is
O(log n). For instance, on the very first trial T ′ has to be
traversed all the way up and down.

7. Experiments

We now present the results of an experimental compar-
ison on a number of real-world weighted graphs from
different domains: text categorization, optical charac-
ter recognition, and bioinformatics.

Our goal is to compare the prediction accuracy of wta

to the one achieved by known baseline algorithms for
weighted (and unweighted) graph prediction. We com-
pare our algorithm to the following two other online
prediction methods, intended as representatives of two
different ways of facing the graph prediction problem:
global vs. local prediction.

Perceptron with graph Laplacian kernel by
Herbster & Pontil (2007), abbreviated as gpa (graph
Perceptron algorithm). This predicts the nodes of a
weighted graph G = (V,E) after mapping V via the
linear kernel based on L+

G+11⊤, where LG is the lapla-
cian matrix of G. Following Herbster et al. (2009b), we
run gpa on a spanning tree T of the original graph.
We do so because computing the pseudoinverse L+

G

when G is a tree takes time and space quadratic in
the number of nodes n (this in contrast to wta that
runs in linear time and linear space). gpa is a global
approach in the sense that the graph topology affects,
via the inverse Laplacian, the prediction on all nodes.

Online Majority Vote (abbreviated as omv). Since
the common underlying assumption to graph predic-
tion algorithms is that nearby nodes are labeled sim-
ilarly, a very intuitive and fast algorithm for sequen-
tially predicting the label of a node it is via a weighted
majority vote on all labels of the adjacent nodes seen
so far, i.e., sgn

(∑
s<t : (is,it)∈E yis

wis,it

)
. The overall

time and space requirements are both of order Θ(|E|),
since we need to read (at least once) the weights of all
edges. omv-like algorithms are local approaches, in
the sense that prediction at one node is affected only
by adjacent nodes. omv, as presented above, is the
most natural online version of the label propagation

(or energy minimization) algorithm (Zhu et al., 2003),
abbreviated as labprop, which we keep as an accu-
racy baseline throughout our experiments.6 labprop

is a batch transductive learning method and is com-
puted by solving a (possibly sparse) linear system of
equations which requires O(kn2) time on an n-node
graph with k neighbors per node. This bad scalabil-
ity, which prevented us from carrying out comparative

6Many other algorithms have been proposed in the lit-
erature for graph prediction problems, including the label-
consistent mincut approach of Blum & Chawla (2001) and
a number of other “energy minimization” methods —e.g.,
the one in Belkin et al. (2004). See (Bengio et al., 2006)
for a relatively recent survey on this subject.
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experiments on larger graphs of 105 nodes, should be
taken into account when comparing labprop to fast
online (i.e., one-sweep) algorithms.

In our experiments, we combined wta and gpa with
spanning trees generated in different ways (note that
omv and labprop do not operate on spanning trees).

Random Spanning Tree (rst). Each spanning tree
is taken with probability proportional to the product
of its edge weights —see, e.g., Ch. 4 of (Lyons & Peres,
2009). In addition, we also tested wta combined with
rst generated ignoring the edge weights (which were
restored before running wta). As shown in (Wilson,
1996; Alon et al., 2008), it is possible to generate un-
weighted random spanning trees in time linear in the
number n of nodes for many and important classes of
graphs. This gives a prediction algorithm whose total
running time (including the generation of the span-
ning tree) is O(n) for many graphs. We abbreviate
this spanning tree as nwrst (non-weighted rst).

Depth-first spanning tree (dfst). The spanning
tree is created via the following randomized depth-first
visit: A root is selected at random, then each newly
visited node is chosen with probability proportional to
the weights of the edges connecting the current vertex
with the adjacent nodes that have not been visited yet.
This spanning tree is faster to generate than rst, and
can be viewed as an approximate version of rst.

Minimum Spanning Tree (mst). The spanning
tree minimizing the sum of the resistors of all edges.
This is the tree whose Laplacian best approximates the
Laplacian of G according to the trace norm criterion
—see, e.g., (Herbster et al., 2009b).

Shortest Path Spanning Tree (spst). Herbster
et al. (2009b) use the shortest path tree for its small di-
ameter (at most twice the diameter of G), which allows
them to better control the theoretical performance of
gpa. We generated n shortest path spanning trees by
varying the choice of the root node, and then took the
one having minimal diameter among them.

Finally, in order to check whether the information car-
ried by the edge weight has predictive value for a near-
est neighbor rule like wta, we also performed a test by
ignoring the edge weights during both the generation
of the spanning tree and the running of wta’s near-
est neighbor rule. This is essentially the algorithm
analyzed in (Herbster et al., 2009a), and we denote
it with nwwta (non-weighted wta). We combined
nwwta with (weighted) mst, that is the spanning tree
on which wta performs best.

We ran our experiments on four medium size real-
world datasets: (1) The first 10,000 documents (in
chronological order) of RCV1, with tf-idf prepro-

cessing and vector normalization; (2) the USPS

dataset with features normalized into [0, 2]; (3) the
dataset of Krogan et al. (2006); Pandey et al.
(2007) abbreviated as KROGAN; (4) a second
dataset (Pandey et al., 2007), abbreviated as COM-

BINED, resulting from a combination of three
datasets from (Gavin et al., 2002; Ito et al., 2001; Uetz
et al., 2000);

On the RCV1 and USPS datasets we generated graphs
with as many nodes as the total number of examples
(xi, yi), that is, 10,000 nodes for RCV1 and 7291+2007
= 9298 for USPS. Following previous experimental
settings (Zhu et al., 2003; Belkin et al., 2004), we
used k-NN based on the standard Euclidean distance
‖xi − xj‖ between node i and node j. The weight

wi,j was set as wi,j = e−‖xi−xj‖/σ2

, if j is one of
the k nearest neighbors of i, and 0 otherwise. To set
σ2, we first computed the average square distance be-
tween i and its k nearest neighbors, and then took a
further average over i. On USPS we generated two
graphs, USPS-10 and USPS-100, by running k-NN
with k = 10 and k = 100. On RCV1 we generated a
single graph, RCV1-100, by setting k = 100. We se-
lected the four most frequent categories in RCV1 and
all 10 categories in USPS.

KROGAN and COMBINED are high-throughput
protein-protein interaction networks of budding yeast
taken from (Pandey et al., 2007). We only consider
the biggest connected components of both datasets,
obtaining 2,169 nodes and 6,102 edges for KROGAN,
and 2,871 nodes and 6,407 edges for COMBINED. In
these graphs, each node belongs to one or more classes,
each class representing a protein function. We selected
the set of functional labels at depth one in the FunCat

classification scheme of the MIPS database (Ruepp,
2004), resulting in 17 classes per dataset.

In order to associate binary classification tasks with
the five datasets/graphs (RCV1-100, USPS-10, USPS-
100, KROGAN, and COMBINED) we binarized the
corresponding multiclass problems via a standard one-
vs-rest scheme. We thus obtained: 4 binary classifica-
tion tasks for RCV1-100, 10 binary tasks for USPS-10
and USPS-100, 17 binary tasks for both KROGAN and
COMBINED. For a given a binary task and dataset,
we tried different proportions of training and test set
sizes. On all datasets we used both the two-fold 50%
train – 50% test and the four-fold 75% train – 25%
test. The error rate results we report in Table 1 are
obtained by (either two or four)-fold cross validation
over the entire datasets after macro-averaging over the
corresponding binary tasks.

In our experimental setup we tried to control the
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Table 1. Macro-averaged and cross-validated classification error rates (percentages) achieved by the various algorithms
on the five datasets/graphs mentioned in the main text. We compare wta, gpa, and the algorithm by Herbster et al.
(2009a) combined with different spanning trees, to labprop and omv. Train:Test denotes the training and test set size
ratio (for instance, 3:1 means 75% train and 25% test). In boldface are the lowest errors on each dataset/graph among the
online algorithms (thus excluding labprop). Standard deviations (averaged over the binary problems) are quite small.
For instance, in Krogan and Comb, the average standard deviations are below 1.0%.

Dataset RCV1-100 USPS-10 USPS-100 Krogan Combined

Train:Test 1:1 3:1 1:1 3:1 1:1 3:1 1:1 3:1 1:1 3:1

Algorithm

wta+rst 23.2 21.5 2.1 1.8 5.2 4.5 19.0 18.4 19.7 19.2

wta+df 20.4 18.7 2.0 1.6 4.2 3.5 18.7 18.1 19.7 19.1

wta+mst 11.8 10.2 1.0 0.8 1.0 0.9 18.3 17.6 19.6 19.1

wta+spst 21.4 20.1 2.3 1.9 4.2 3.6 19.5 18.9 19.9 19.5

wta+nwrst 23.8 22.0 2.4 2.0 5.8 5.0 19.4 18.7 19.9 19.5

gpa+rst 32.5 31.2 4.7 4.4 9.6 8.6 21.7 22.0 21.4 21.5

gpa+df 41.2 40.1 24.0 18.7 28.8 23.6 24.1 22.6 23.8 22.7

gpa+mst 20.4 18.2 2.0 1.7 2.0 1.8 20.7 20.9 21.1 20.7

gpa+spst 24.5 24.4 2.9 2.7 5.2 4.5 20.8 20.6 21.1 20.2

gpa+nwrst 32.1 31.4 6.0 5.4 10.1 9.9 21.8 21.5 22.0 22.0

nwwta+nwdfst 21.4 20.3 2.5 2.3 5.2 4.8 19.3 19.0 19.9 19.7

nwwta+mst 12.8 11.9 1.2 1.2 1.2 1.2 18.8 18.4 19.8 19.6

omv 25.4 20.9 1.1 0.7 1.9 1.6 16.3 16.0 17.5 17.3

labprop 10.9 9.5 0.8 0.7 2.0 1.7 15.1 15.3 16.0 16.2

sources of variance as follows: (i) We first generated 10
random permutations of the node indices for each of
the five graphs/datasets; (ii) on each permutation we
generated the training/test splits, (iii) we computed
mst and spst for each graph and made (for wta, gpa,
omv, and labprop) one run per permutation on each
of the 4+10+10+17+17 = 58 binary problems, averag-
ing results over permutations and splits; (iv) we gen-
erated 10 rst’s and 10 dfst’s for each graph (possibly
disregarding edge weights at either generation time or
prediction time), and operated as in (ii), with a further
averaging over the randomness in the tree generation.

Table 1 gives the average fraction of prediction mis-
takes achieved by the various algorithms on the five
datasets/graphs. Though the experiments are not con-
clusive, several interesting observations can be made.

1. wta outperforms gpa on all datasets and with all
spanning tree combinations. In particular, though
we only reported aggregated results, the same rel-
ative performance pattern among the two algo-
rithms repeats systematically over all binary clas-
sification problems. In addition, wta runs sig-
nificantly faster than gpa, requires less memory
storage (linear in n, rather than quadratic), and
is also fairly easy to implement.

2. The best performing combination for both wta

and gpa is mst. This might be explained by the
fact that mst tends to select light φ-edges of the
original graph.

3. By comparing nwwta to wta, we see that the
edge weight information in the nearest neighbor
rule is beneficial.

4. On RCV1 and USPS the prediction perfor-
mance of wta+mst is comparable to that of
labprop, whereas on KROGAN and COM-
BINED wta+mst is slightly inferior. However,
recall that labprop takes time O(kn2), where
k is the node degree, whereas a single sweep
of wta+mst over the graph just takes7 time
O(kn log n).

Moreover, a simple way of making wta outper-
form labprop on the two biological datasets is
to let wta predict through a committee of rst’s
aggregated via a majority vote. For instance, us-
ing wta with a committee of 11 rst’s generated
independently (either considering or disregarding
the edge weights) gets the following figures.

Dataset Krogan Combined

Train:Test 1:1 3:1 1:1 3:1

Algorithm

wta+11rst 14.9 14.4 14.9 14.6

wta+11nwrst 15.0 14.6 14.9 14.7

omv 16.3 16.0 17.5 17.3

labprop 15.1 15.3 16.0 16.2

Similar improvements are likely to occur on the
other datasets. On USPS, wta+mst, labprop,
and omv tend to perform comparably.

5. nwrst and dfst are fast approximations to rst.
Though the use of nwrst and dfst does not pro-
vide the same theoretical performance guarantees
as rst, in our experiments the three do actually

7The mst of a graph G = (V, E) can be computed in
time O(|E| log |V |).
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perform comparably. Hence, in practice, nwrst

and dfst might be viewed as fast and practical
ways to generate spanning trees for wta.

8. Conclusions and ongoing research

We introduced and analyzed wta, an online predic-
tion algorithm for weighted graph prediction. The al-
gorithm uses random spanning trees and has nearly
optimal (expected) performance guarantees in terms
of both prediction accuracy and running time. Our
initial experimental evaluation shows that wta out-
performs other previously proposed online predictors.
Moreover, when combined with an aggregation of ran-
dom spanning trees, wta also tends to beat standard
batch predictors, such as label propagation. These
features make wta (and combinations thereof) suit-
able to large scale applications. We are currently per-
forming a more thorough experimental investigation
to confirm the above findings.
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Studi di Milano & Università dell’Insubria, 2010.
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