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Abstract
We present a probabilistic model for clustering
of objects represented via pairwise dissimilari-
ties. We propose that even if an underlying vec-
torial representation exists, it is better to work di-
rectly with the dissimilarity matrix hence avoid-
ing unnecessary bias and variance caused by em-
beddings. By using a Dirichlet process prior
we are not obliged to fix the number of clusters
in advance. Furthermore, our clustering model
is permutation-, scale- and translation-invariant,
and it is called the Translation-invariant Wishart
Dirichlet (TIWD) process. A highly efficient
MCMC sampling algorithm is presented. Exper-
iments show that the TIWD process exhibits sev-
eral advantages over competing approaches.

1. Introduction
The Bayesian clustering approach presented in this work
aims at identifying subsets (or “clusters”) of objects rep-
resented as columns/rows in a dissimilarity matrix. The
underlying idea is that objects grouped together in such a
cluster can be reasonably well described as a homogeneous
sub-population. Our focus on dissimilarity matrices im-
plies that we do not have access to a vectorial representa-
tion of the objects. Such underlying vectorial representa-
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tion may or may not exist, depending on whether the dis-
similarity matrix can be embedded (without distortion) in
a vector space. One way of dealing with such problems
would be to explicitly construct an Euclidean embedding
(or possibly a distorted embedding), and to apply a tradi-
tional clustering method in the Euclidean space. We ar-
gue, however, that even under the assumption that there ex-
ists an Euclidean embedding it is better not to embed the
data, since any such choice might induce an unnecessary
bias and variance in the clustering process. Technically
speaking, such embeddings break the symmetry induced
by the translation- and rotation-invariance which reflects
the information loss incurred when moving from vectors
to pairwise dissimilarities. We propose a clustering model
which works directly on dissimilarity matrices. It is invari-
ant against label- and object permutations and against scale
transformations. The model is fully probabilistic in nature,
which means that on output we are given samples from a
distribution over partitions. Further, the use of a Dirich-
let process prior unburdens the user from explicitly fixing
the number of clusters. We present a highly efficient sam-
pling algorithm which avoids costly matrix operations by
carefully exploiting the structure of the clustering problem.
Invariance against label permutations is a common cause of
the so-called “label switching” problem in mixture models,
(Jasr et al., 2005). By formulating the model as a partition
process this switching problem is circumvented.

This paper is structured as follows: we start with a re-
view of the Dirichlet cluster process for Gaussian mix-
tures in (McCullagh & Yang, 2008). This model is general-
ized to relational data by enforcing translation invariance.
We call this new model the Translation-invariant Wishart-
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Dirichlet (WD) cluster process. We then develop an effi-
cient sampling algorithm which makes it possible to apply
the method to large-scale datasets.

2. Gauss-Dirichlet Cluster Process
Let [n] := {1, . . . , n} denote an index set, and Bn the set
of partitions of [n]. A partition B ∈ Bn is an equivalence
relation B : [n]× [n] → {0, 1} that may be represented in
matrix form as B(i, j) = 1 if y(i) = y(j) and B(i, j) = 0
otherwise, with y being a function that maps [n] to some
label set L. Alternatively, B may be represented as a set
of disjoint non-empty subsets called “blocks” b. A parti-
tion process is a series of distributions Pn on the set Bn
in which Pn is the marginal distribution of Pn+1. Such a
process is called exchangeable if each Pn is invariant under
permutations of object indices, see (Pitman, 2006).

A Gauss-Dirichlet cluster process consists of an infinite se-
quence of points in Rd, together with a random partition of
integers into k blocks. A sequence of length n can be sam-
pled as follows (MacEachern, 1994; Dahl, 2005; McCul-
lagh & Yang, 2008): fix the number of mixture modes k,
generate mixing proportions π = (π1, . . . , πk) from an ex-
changeable Dirichlet distribution Dir(ξ/k, . . . , ξ/k), gen-
erate a label sequence {y(1), . . . , y(n)} from a multino-
mial distribution and forget the labels introducing the ran-
dom partition B of [n] induced by y. Integrating out π, one
arrives at a Dirichlet-Multinomial prior over partitions

Pn(B|ξ, k) =
k!

(k − kB)!
Γ(ξ)

∏
b∈B Γ(nb + ξ/k)

Γ(n+ ξ)[Γ(ξ/k)]kB
, (1)

where kB ≤ k denotes the number of blocks present in
the partition B and nb is the size of block b. The limit
as k → ∞ is well defined and known as the Ewens pro-
cess (a.k.a. Chinese Restaurant process), see for instance
(Ewens, 1972; Neal, 2000; Blei & Jordan, 2006). Given
such a partition B, a sequence of n-dimensional observa-
tions xi ∈ Rn, i = 1, . . . , d is arranged as columns of the
(n×d) matrixX , and thisX is generated from a zero-mean
Gaussian distribution with covariance matrix

Σ̃B = In ⊗ Σ0 +B ⊗ Σ1,

with cov(Xir, Xjs|B) = δijΣ0rs +BijΣ1rs,
(2)

where Σ0 is the usual (d × d) “pooled” within-class co-
variance matrix and Σ1 the (d × d) between-class matrix,
respectively, and δij denotes the Kronecker symbol. Since
the partition process is invariant under permutations, we
can always think of B being block-diagonal. For spherical
covariance matrices (i.e. scaled identity matrices), Σ0 =
αId,Σ1 = βId, the covariance structure reduces to

Σ̃B = In ⊗ αId +B ⊗ βId
= (αIn + βB)⊗ Id =: ΣB ⊗ Id,

with cov(Xir, Xjs|B) = (αδij + βBij)δrs.

(3)

Thus, the columns of X are independent n-dimensional
vectors xi ∈ Rn distributed according to a normal distribu-
tion with covariance matrix ΣB = αIn + βB. Further, the
distribution factorizes over the blocks b ∈ B. Introducing
the symbol ib := {i : i ∈ b} defining an index-vector of all
objects assigned to block b, the joint distribution reads

p(X,B|α, β, ξ, k) = Pn(B|ξ, k)

·
[∏

b∈B
∏d
j=1N(Xibj |αInb

+ β1nb
1tnb

)
]
,

(4)

where nb is the size of block b and 1nb
a nb-vector of ones.

In the following we will use the abbreviations 1b := 1nb

and Ib := Inb
to avoid double subscripts. Note that this

distribution is expressed in terms of the partition without
resorting to labels, so label switching cannot occur.

3. Wishart-Dirichlet Cluster Process
We now extend the Gauss-Dirichlet cluster process to a se-
quence of inner-product and distance matrices. Assume
that the random matrix Xn×d follows the zero-mean Gaus-
sian distribution specified in (2), with Σ0 = αId,Σ1 =
βId. Then, conditioned on the partition B, the inner
product matrix S = XXt/d follows a (possibly singu-
lar) Wishart distribution in d degrees of freedom, S ∼
Wd(ΣB), (Srivastava, 2003). If we directly observe the dot
products S, it suffices to consider the conditional probabil-
ity of partitions, Pn(B|S), which has the same functional
form for ordinary and singular Wishart distributions:

Pn(B|S, α, β, ξ, k) ∝ Wd(S|ΣB) · Pn(B|ξ, k)

∝ |ΣB |−
d
2 exp

(
−d2 tr(Σ−1

B S)
)
· Pn(B|ξ, k),

(5)

For the following derivation it is suitable to re-parametrize
the model in terms of (α, θ) instead of (α, β), where θ :=
β/α, and in terms ofW := Σ−1

B . Due to the block structure
in B, Pn(B|S, •) factorizes over the blocks b ∈ B:

Pn(B|S, α, θ, ξ, k) ∝ Pn(B|ξ, k)

·
[∏

b∈B |Wb|
d
2

]
exp

(
−
∑
b∈B

d
2 tr(WbSbb)

)
,

(6)

whereWb, Sbb denote the submatrices corresponding to the
b-th diagonal block in B or W , see Figure 1.
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Figure 1. Example of the block structure of B and W (left) and
the definition of sub-matrices in S and D (right) for kB = 3.

The above factorization property can be exploited to derive
an efficient inference algorithm for this model. The key
observation is that the inverse matrix Wb = Σ−1

b can be
analytically computed as

Wb = (αIb + β1b1tb)
−1 = 1

α

[
Ib − θ

1+nbθ
1b1tb

]
. (7)
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Thus, the contribution of block b to the trace is

tr(WbSbb) = 1
α

[
tr(Sbb)− θ

1+nbθ
S̄bb

]
, (8)

where S̄bb = 1tbSbb1b denotes the sum of the b-th diagonal
block of S. A similar trick can be used for the determinant
which is the product of the eigenvalues: the kB smallest
eigenvalues of W are given by λb = α−1(1 + θnb)−1. The
remaining n− kB eigenvalues are equal to α−1. Thus, the
determinant reads

|W | =
∏
b∈B λb = α−n

∏
b∈B(1 + θnb)−1. (9)

3.1. Scale Invariance

Note that the re-parametrization using (α, θ) leads to a new
semantics of (1/α) as a scale parameter: we excluded α
from the partition-dependent terms in the product over the
blocks in (9), which implies that the conditional for the par-
tition becomes

Pn(B|•) ∝ Pn(B|ξ, k) ·
[∏

b∈B(1 + θnb)−1
]−d/2

· exp
(
− 1
α
d
2

∑
b∈B tr(WbSbb)

)
.

(10)

Note that (1/α) simply rescales the observed matrix S, and
we can make the model scale invariant by introducing a
prior distribution and integrating out α. The conditional
posterior for α follows an inverse Gamma distribution

p(α|r, s) = sr

Γ(r)

(
1
α

)r+1 exp
(
− s
α

)
, (11)

with shape parameter r = n · d/2 − 1 and scale s =
d
2 (tr(S) −

∑
b∈B

θ
1+nbθ

S̄bb), cf. eqs. (8) and (10). Using
an inverse Gamma prior with parameters r0, s0, the poste-
rior is of the same functional form with rp = r + r0 + 1
and sp = s + s0, and we can integrate out α analytically.
Dropping all terms independent of the partition structure
we arrive at

Pn(B|•) ∝ Pn(B|ξ, k)|W |d/2(α=1)(s+ s0)r+r0+1, (12)

where |W |(α=1) =
∏
b∈B(1 + θnb)−1 follows from (9).

3.2. The Centering Problem

In practice, however, there are two problems with the
model described above: (i) we often do not directly ob-
serve S, but only a matrix of distances D. In the follow-
ing we will assume that the (suitably pre-processed) matrix
D contains squared Euclidean distances with components
Dij = Sii + Sjj − 2Sij ; (ii) even if we observe a dot-
product matrix, we usually have no information about the
mean vector µ. Note that we assumed that there exists a
matrix X with XXt = S such that the columns of X are
independent copies drawn from a zero-mean Gaussian in

Rn: x ∼ N(µ = 0n,Σ = ΣB). This assumption is cru-
cial, since general mean vectors correspond to a noncen-
tral Wishart model (Anderson, 1946), which imposes se-
vere computational problems due to the appearance of the
hypergeometric function. Both of the above problems are
related in that they have to do with the lack of information
about geometric transformations: assume we only observe
S without access to the vectorial representations Xn×d.
Then we have lost the information about orthogonal trans-
formations X ← XO with OOt = Id, i.e. about rotations
and reflections of the rows in X . If we only observe D, we
have additionally lost the information about translations of
the rows. Our sampling model implies that the means in
each row are expected to converge to zero as the number
of replications d goes to infinity. Thus, if we had access to
X and if we are not sure that the above zero-mean assump-
tion holds, it might be a plausible strategy to subtract the
empirical row means, Xn×d ← Xn×d − (1/d)Xn×d1d1td,
and then to construct a candidate matrix S by computing
the pairwise dot products. This procedure should be statis-
tically robust if d � n, since then the empirical means are
probably close to their expected values. Such a matrix S
fulfills two requirements for selecting candidate dot prod-
uct matrices: first, S should be “typical” with respect to the
assumed Wishart model with µ = 0, thereby avoiding any
bias introduced by a particular choice. Second, the choice
should be robust in a statistical sense: if we are given a
second observation from the same data source, the two se-
lected prototypical matrices S1 and S2 should be similar.
For small d, this procedure is dangerous since it can intro-
duce a strong bias even if the model is correct.

Consider now case (ii) where we observe S without access
to X . Case (i) needs no special treatment, since it can be
reduced to case (ii) by first constructing a positive semi-
definite matrix S which fulfills Dij = Sii + Sjj − 2Sij .
For “correcting” the matrix S just as described above we
would need a procedure which effectively subtracts the em-
pirical row means from the rows ofX . Unfortunately, there
exists no such matrix transformation that operates directly
on S without explicit construction of X . It is important to
note that the “usual” centering transformation S ← QSQ
with Qij = δij − 1

n as used in kernel PCA and related
algorithms does not work here: in kernel PCA the rows
of X are assumed to be i.i.d. replications in Rd. Conse-
quently, the centered matrix Sc is built by subtracting the
column means: Xn×d ← Xn×d − (1/n)1n1tnXn×d and
Sc = XXt = QSQ. Here, we need to subtract the row
means, and therefore it is inevitable to explicitly construct
X , which implies that we have to choose a certain orthog-
onal transformation O. It might be reasonable to consider
only rotations and to use the principle components as coor-
dinate axes. This is essentially the kernel PCA embedding
procedure: compute Sc = QSQ and its eigenvalue decom-
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position Sc = V ΛV t, and then project on the principle
axes: X = V Λ1/2. The problem with this vector-space
embedding is that it is statistically robust in the above sense
only if d is small, because otherwise the directions of the
principle axes might be difficult to estimate, and the esti-
mates for two replicated observations might highly fluctu-
ate, leading to different row-mean normalizations. Note
that this condition for fixing the rotation contradicts the
above condition d � n that justifies the subtraction of the
means. Further, row-mean normalization will change the
pairwise dissimilarities Dij (even if the model is correct!),
and this change can be drastic if d is small.

The cleanest solution might be to consider the dissimilar-
ities D (which are observed in case (i) and computed as
Dij = Sii + Sjj − 2Sij in case (ii)) as the “reference”
quantity, and to avoid an explicit choice of S and X al-
together. Therefore, we propose to encode the translation
invariance directly into the likelihood, which means that
the latter becomes constant on all matrices S that fulfill
Dij = Sii + Sjj − 2Sij .

3.3. The Translation-invariant WD-Process

A squared Euclidean distance matrix D is characterized by
the property of being of negative type, which means that
xtDx = −2xtSx ≤ 0 for any x : xt1 = 0. This
condition is equivalent to the absence of negative eigen-
values in Sc = QSQ = −(1/2)QDQ. The distribu-
tion of D has been formally studied in (McCullagh, 2009),
where it was shown that if S follows a standard Wishart
generated from an underlying zero-mean Gaussian pro-
cess, S ∼ Wd(ΣB), −D follows a generalized Wishart
distribution, −D ∼ W(1, 2ΣB) = W(1,−∆) defined
with respect to the transformation kernel K = 1, where
∆ij = ΣBii + ΣBjj − 2ΣBij . To understand the role of
the transformation kernel it is useful to introduce the notion
of a generalized Gaussian distribution with kernel K = 1:
X ∼ N(1,µ,Σ). For any transformation L with L1 = 0,
the meaning of the general Gaussian notation is:

LX ∼ N(Lµ, LΣLt). (13)

It follows that under the kernel K = 1, two parameter set-
tings (µ1,Σ1) and (µ2,Σ2) are equivalent ifL(µ1−µ2) =
0 and L(Σ1 − Σ2)Lt = 0, i.e. if µ1 − µ2 ∈ 1, and
(Σ1 − Σ2) ∈ {1nvt + v1tn : v ∈ Rn}, a space which
is usually denoted by sym2(1 ⊗ Rn). It is also useful
to introduce the distributional symbol S ∼ W(K,Σ) for
the generalized Wishart distribution of the random matrix
S = XXt when X ∼ N(K,0,Σ). The key observation in
(McCullagh, 2009) is that Dij = Sii + Sjj − 2Sij defines
a linear transformation on symmetric matrices with ker-
nel sym2(1⊗Rn) which implies that the distances follow
a generalized Wishart distribution with kernel 1: −D ∼
W(1, 2ΣB) = W(1,−∆). In the multi-dimensional case

with spherical within- and between covariances we gener-
alize the above model to Gaussian random matrices X ∼
N(µ,ΣB ⊗ Id). Note that the d columns of this ma-
trix are i.i.d. copies. The distribution of the matrix of
squared Euclidean distances D then follows a generalized
Wishart with d degrees of freedom −D ∼ Wd(1,−∆).
This distribution differs from a standard Wishart in that
the inverse matrix W = Σ−1

B is substituted by the matrix
W̃ = W − (1tW1)−1W11tW and the determinant | · | is
substituted by a generalized det(·)-symbol which denotes
the product of the nonzero eigenvalues of its matrix-valued
argument (note that W̃ is rank-deficient). The conditional
probability of a partition then reads

P (B|D, •) ∝ Wd(−D|1,−∆) · Pn(B|ξ, k)

∝ det(W̃ )
d
2 exp

(
d
4 tr(W̃D)

)
· Pn(B|ξ, k).

(14)

Note that in spite of the fact that this probability is written
as a function ofW = Σ−1

B , it is constant over all choices of
ΣB which lead to the same ∆, i.e. independent under trans-
lations of the row vectors inX . For the purpose of inferring
the partition B, this invariance property means that we can
simply use our block-partition covariance model ΣB and
assume that the (unobserved) matrix S follows a standard
Wishart distribution parametrized by ΣB . We do not need
to care about the exact form of S, since the conditional pos-
terior for B depends only on D.

Scale invariance can be built into the model with the same
procedure as described above for the simple (i.e. not trans-
lation invariant) WD-process. The posterior of α again fol-
lows an inverse Gamma distribution, and after introducing
a prior with parameters (s0, r0) and integrating out αwe ar-
rive at an expression analogous to (12) with s = d

4 tr(W̃D):

P (B|•)∝Pn(B|ξ, k) det(W̃(α=1))
d
2 (s+s0)n

d
2 +r0 . (15)

3.4. Efficient Inference via Gibbs Sampling

In Gibbs sampling one iteratively samples parameter values
from the full conditionals. Our model includes the follow-
ing parameters: the partition B, the scale α, the covariance
parameter θ, the number k of clusters in the population,
the Dirichlet rate ξ and the degrees of freedom d. We pro-
pose to fix d, ξ and k: the degrees of freedom d might be
estimated by the rank of S, which is often known from a
pre-processing procedure. Note that d is not a very crit-
ical parameter, since all likelihood contributions are basi-
cally raised to the power of d. Thus, d might be used as
an annealing-type parameter for “freezing” a representative
partition in the limit d → ∞. Concerning the number k
of clusters in the population, there are two possibilities.
Either one assumes k = ∞, which results in the Ewens-
process model, or one expects a finite k. Our framework is
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applicable to both scenarios. Estimation of k, however is
nontrivial if no precise knowledge about ξ is available. Un-
fortunately, this is usually the case, and k =∞ might be a
plausible assumption in many applications. Alternatively,
one might fix k to a large constant which serves as an up-
per bound of the expected number, which can be viewed as
truncating the Ewens process. The Dirichlet rate ξ is dif-
ficult to estimate, since it only weakly influences the like-
lihood. Consistent ML-estimators only exist for k = ∞:
ξ̂ = kB/ log n, and even in this case the variance only
decays like 1/ log(n), cf. (Ewens, 1972). In practice, we
should not expect to be able to reliably estimate ξ. Rather,
we should have some intuition about ξ, maybe guided by
the observation that under the Ewens process model the
probability of two objects belonging to the same cluster is
1/(1 + ξ). We can then either define an appropriate prior
distribution, or we can fix ξ. Due to the weak effect of ξ on
conditionals, these approaches are usually very similar.

The scale α can be integrated out analytically. The like-
lihood in θ is not of recognized form, and we propose to
use a discretized prior set {p(θj)}Jj=1 for which we com-
pute the posteriors {p(θj |•)}Jj=1. A new value of θ is
then sampled from the categorical distribution defined by
{p(θj |•)}Jj=1. We define a sweep of the Gibbs sampler as
one complete update of (B, θ). The most time consuming
part in a sweep is the update of B by re-estimating the as-
signments to blocks for a single object (characterized by
a row/column in D), given the partition of the remaining
objects. Therefore we have to compute the membership
probabilities in all existing blocks (and in a new block) by
evaluating equation (15), which looks formally similar to
(12), but a factorization over blocks is no longer obvious.
Every time a new partition is analyzed, a naive implementa-
tion requires O(n3) costs for computing the determinant of
W̃ and the product W̃D. In one sweep we need to compute
kB such probabilities for n objects, summing up to costs of
O(n4kB). However, a more efficient algorithm exists:

Theorem 1. Assuming kB blocks in the actual partition
and a fixed maximum iteration number in numerical root-
finding, a sweep of the Gibbs sampler for the translation-
invariant WD model can be computed inO(n2+nk2

B) time.

Proof. Assume we want to compute the membership prob-
abilities of the l-th object, given the partition of the remain-
ing objects and all other parameter values. We first have to
downdate all quantities which depend on object l and its
current block and compute the assignment probabilities for
all blocks (and a new one). From the resulting categori-
cal distribution we sample a new assignment (say block c)
and update all quantities depending on object l and block
c. We repeat this procedure for all objects l = 1, . . . , n.
Since up- and down-dating are reverse to each other but
otherwise identical operations, it suffices to consider the

updating situation. To compute the membership proba-
bilities we have to assign the new object to a block and
evaluate (15) for the augmented matrix D∗, which has one
additional column and row. For notational simplicity we
will drop the subscript ∗. Eq. (15) has two components:
the prior P (B|ξ, k) and the likelihood term which requires
us to compute det(W̃(α=1)) and tr(W̃D). With identity
Γ(x + 1) = xΓ(x) in (1), the contribution of the prior is
nc + ξ/k for existing clusters and ξ(1 − kB/k) for a new
cluster (one simply sets k =∞ for the Ewens-process).

For the likelihood term, consider first the generalized
determinant det(W̃ ) in (15). Since W̃ = W −
(1tW1)−1W11tW , we have to compute ρ := (1tW1)−1

for the augmented matrix W after assigning the new object
l to block c. Analyzing (7) one derives ρ−1 =

∑
b∈B nbλb,

where λb = (1 + θnb)−1 are the kB smallest eigenvalues
of W(α=1), see eq. (9). Thus, we increase nc, recompute
λc and update ρ. Given ρ, we need to compute the eigen-
values of W − ρW11tW =: W − ρvvt, where the lat-
ter term defines a rank-one update of W . Analyzing the
characteristic polynomial, it is easily seen that the (size-
ordered) eigenvalues λ̃i of W̃ fulfill three conditions, see
(Golub & Van Loan, 1989): (i) the smallest eigenvalue is
zero: λ̃1 = 0; (ii) the largest n−kB eigenvalues are identi-
cal to their counterparts in W : λ̃i = λi, i = kB+1, . . . , n;
(iii) for the remaining eigenvalues with indices i =
2, . . . , kB it holds that if λi is a repeated eigenvalue of
W , λ̃i = λi. Otherwise, they are the simple roots of the

secular equation f(y) = ρ +
∑kB

j=1

njλ
2
j

y−λj
fulfilling the re-

lations λi < λ̃i+1 < λi+1. Note that f can be evaluated
in O(kB) time, and with a fixed maximum number of iter-
ations in the root-finding procedure, det(W̃ ) can be com-
puted inO(kB). A sweep involves n “new” objects and kB
blocks. Thus, the costs sum up to O(nk2

B):

for i = 1 to n do
for c = 1 to kB do
nc ← nc + 1, recompute λc and update ρ O(1)
Find roots of secular equation O(kB)

end for
end for

For the trace tr(W̃D) we have to compute

tr(W̃D) = tr(WD)− ρ · tr(W11tWD)
= tr(WD)− ρ · 1tWDW1.

(16)

We first precompute ∀a ∈ B: D̄ia =
∑
j∈aDij , which

induces O(n) costs since there are n summations in to-
tal. The first term in (16) is tr(WD) =

∑
b∈B tr(Dbb) −

θ
1+nbθ

D̄bb, so we first update D̄ by recomputing its c-th
row/column: update γc = ncλc and ∀a ∈ B : D̄ac ←
D̄ac + D̄ia + Diiδa,c  O(kB) time, and update the c-



The Translation-invariant Wishart-Dirichlet Process

th term in tr(WD) in constant time. Defining D̄ab :=
1taDab1b and γa := naθ

1+naθ
, the second term in (16) reads

ρ
∑
ab∈B 1taWaDabWb1b =: ρ

∑
ab∈B Φab,

Φab = D̄ab − γaD̄ab − γbD̄ab + γaγbD̄ab.
(17)

Since we have already updated γ and D̄, it requires O(kB)
time to update the c-th row. In a sweep, the costs for the
trace sum up to O(n2+nk2

B):

for i = 1 to n do
∀a ∈ B: D̄ia =

∑
j∈aDij  O(n)

for c = 1 to kB do
Update D̄ O(kB)
Recompute c-th term in tr(WD) O(1)
Compute ∀a ∈ B : Φac = Φca O(kB)

end for
end for

The sweep is completed by resampling θ from a discrete
set with J levels which induces costs of O(k2

B).

From the above theorem it follows that the worst case
complexity in one sweep is O(n3) in the infinite mixture
(i.e. Ewens process-) model, since kB ≤ n, and O(n2) for
the truncated Dirichlet process with kB ≤ k < ∞. If the
“true” k is finite, but one still uses the infinite model, it is
very unlikely to observe the worst-case O(n3) behaviour
in practice: if the sampler is initialized with a one-block
partition (i.e. kB = 1), the trace of kB typically shows an
“almost monotone” increase during burn-in, see Figure 3.

3.5. Model Extensions

One possible extension of the TIWD cluster process is to
include some preprocessing step. From the model as-
sumptions S ∼ W(ΣB) it follows that if ΣB contains kB
blocks and if the separation between the clusters (i.e. θ)
is not too small, there will be only kB dominating eigen-
values in S. Thus, one might safely apply kernel PCA
to the centered matrix Sc = −(1/2)QDQ, i.e. compute
Sc = V ΛV t, consider only the first k̃ “large” eigenvalues
in Λ for computing a low-rank approximation S̃c = V Λ̃V t,
and switch back to dissimilarities via D̃ij = (S̃c)ii +
(S̃c)jj − 2(S̃c)ij . Such preprocessing might be particu-
larly helpful in cases where Sc = −(1/2)QDQ contains
some negative eigenvalues which are of relatively small
magnitude. Then, the low-rank approximation might be
positive semi-definite so that D̃ contains squared Euclidean
distances. Such situations occur frequently if the dissimi-
larities stem from pairwise comparison procedures which
can be interpreted as approximations to models which are
guaranteed to produce Mercer kernels. A popular example
are classical string alignments which might be viewed as
approximations of probabilistic alignments using pairwise

hidden Markov models. We present such an example in
section 4. The downside of kernel PCA are the added costs
of O(n3), but randomized approximation methods have
been introduced which significantly reduce these costs. In
our TIWD software we have implemented a “symmetrized”
version of the random projection algorithm for low-rank
matrix approximation proposed in (Vempala, 2004) which
uses the idea proposed in (Belabbas & Wolfe, 2007).

Another extension of the model concerns semi-supervised
situations where for a subset of nm observations class la-
bels, i.e. assignments to km groups, are known. We denote
this subset by the set of row indices A = {1, . . . , nm}.
Traditional semi-supervised learning methods assume that
at least one labeled object per class is observed, i.e. that
the number of classes is known. This assumption, how-
ever, is questionable in many real world examples. We
overcome this limitation by simply fixing the assignment
to blocks for objects in A during the sampling procedure,
and re-estimating only the assignments for the unlabeled
objects in B = {nm + 1, . . . , n}. Using an Ewens pro-
cess model with k = ∞ (or a truncated version thereof
with k > km), the model has the freedom to introduce
new classes if some objects do not resemble any labeled
observation. We present such an example below, where we
consider protein sequences with experimentally confirmed
labels (the “true” labels) and others with only machine pre-
dicted labels (which we treat as unlabeled objects).

4. Experiments
In a first experiment we compare the proposed TIWD clus-
ter process with several hierarchical clustering methods on
synthetic data, generated as follows: (i) a random block-
partition matrix B of size n = 500 is sampled with kB =
10; (ii) d = 100 samples from N(0n,Σ) are drawn, with
Σ = αIn+αθB, α = 2 and different θ-values; (iii) squared
Euclidean distances are stored in the matrix D(n×n).

A two-dimensional kernel PCA projection of an example
distance matrix is shown in the left panels of Fig. 2 (large
θ ↔ clear cluster separation in the upper panel, and small
θ ↔ highly overlapping clusters in the lower panel). 5000
Gibbs sweeps are computed for the TIWD cluster process
(after a burn-in phase of 2000 sweeps), followed by an an-
nealing procedure to “freeze” a certain partition, cf. sec-
tion 3.4. For comparing the performance, several hierar-
chical clustering methods are applied: “Wards”, “complete
linkage”, “single linkage”, “average linkage”, see (Jain &
Dubes, 1988), and the resulting trees are cut at the same
number of clusters as found by TIWD. The right panels
show the agreement of the inferred partitions with the true
labels, measured in terms of the adjusted rand index. If the
clusters are well-separated, all methods perform very well,
but for highly overlapping clusters, TIWD shows signifi-
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cant advantages over the hierarchical methods.
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Figure 2. TIWD vs. hierarchical clustering (“Wards”, “complete
linkage”, “single linkage”, “average linkage”) on synthetic data
(k = 10, n = 500, d = 100, repeated 20 times).

In a second experiment we investigate the scalability of the
algorithm. The “small θ”-experiment above (lower panels
in Fig. 2) is repeated for n = 8000. Figure 3 depicts the
trace of the number of blocks kB during sampling. The
sampler stabilizes after roughly 500 sweeps. Note the re-
markable stability of the sampler (compared to the usual
situations in “traditional” mixture models), which follows
from the fact that no label-switching can appear. On a stan-
dard computer, this experiment took roughly two hours,
which leads us to the conclusion that the proposed sampling
algorithm is so efficient (at least for moderate k) that mem-
ory constraints are probably more severe than time con-
straints on standard hardware.

Bk

Gibbs sweep

 14

 12

 8

 6

 4

 2

 0  2000  3000  4000 1000  5000

 10

Figure 3. Traceplot of the number of blocks kB during the Gibbs
sweeps for a large synthetic dataset. (10 clusters, n = 8000).

In a next experiment we analyze the influence of encod-
ing the translation invariance into the likelihood (our TIWD
model) versus the standard WD process and row-mean sub-
traction as described in section 3.2. A similar random pro-
cedure for generating distance matrices is used, but this
time we vary the number of replications d and the mean
vector µ. If µ = 0n, both the standard WD process and
the TIWD process are expected to perform well, which
is confirmed in the 1st and 3rd panel (left and right box-

plots). Row-mean subtraction, however, introduces signif-
icant bias and variance. For nonzero mean vectors (2nd
and 4th panel), standard WD completely fails to detect the
cluster structure, and row-mean subtraction can only par-
tially overcome this problem. The TIWD process clearly
outperforms the other models for nonzero mean vectors.
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Figure 4. Comparison of WD and TIWD cluster process on syn-
thetic data. ”WD”: standard WD, ”WD R”: WD with row-mean
subtraction. Left to right: (i) d = 3,µ = 0; (ii) d = 3, µi ∼
N(40, 0.1); (iii) and (iv): same for d = 100.

In a last experiment we consider a semi-supervised ap-
plication example in which we study all globin-like pro-
tein sequences from the UniProtKB database (with experi-
mentally confirmed annotations) and the TrEMBL database
(with unconfirmed annotations). The former set consists
of 1168 sequences which fall into 114 classes. These se-
quences form the “supervised” subset, and their assign-
ments to blocks in the partition matrix are “clamped” in
the Gibbs sampler. The latter set contains 2603 sequences
which are treated as the “unlabeled” observations. Pairwise
local string alignment scores sij are computed between all
sequences and transformed into dissimilarities using an ex-
ponential transform. The resulting dissimilarity matrixD is
not guaranteed to be of negative type (and indeed, −QDQ
has some small negative eigenvalues). We overcome this
problem by using the randomized low-rank approximation
technique according to (Vempala, 2004; Belabbas & Wolfe,
2007), cf. section 3.5, which effectively translates D into a
matrix D̃ which is of negative type. The Ewens process
model makes it possible to assign the unlabeled objects to
existing classes or to new ones. Finally, almost all unla-
beled objects are assigned to existing classes, with the ex-
ception of three new classes which have an interesting bio-
logical interpretation. Two of these classes contain globin-
like bacterial sequences from Actinomycetales, a very spe-
cial group of obligate aerobic bacteria which have to cope
with oxidative stress. The latter might explain the existence
of redox domains in the globin sequences, like the Ferre-
doxin reductase-type (FAD)-binding domain observed in
all sequences in one of the clusters and the additional
Nicotinamide adenine dinucleotide (NAD)-binding domain
present in all sequences in the second new cluster, see Fig-
ure 5. Some of the latter sequences appear to be similar
to another class that also contains Actinomycetales (see the
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large “off diagonal” probabilities surrounded by the blue
circle) which, however, share a different pattern around
some heme binding sites. The third new class contains
short sequence fragments which show a certain variant of
the hemoglobin beta subunit. With the exception of the
above mentioned similarity of one of the Actino-bacterial
classes to another one, the three new classes show no simi-
larity to any of the other classes, which nicely demonstrates
the advantage of a semi-supervised learning model that is
flexible enough to allow the creation of new groups.

Actinomycetales (FAD/NAD−binding)

 Hemoglobin beta subunit variant

different globin domain sub−structure)

Actinomycetales (FAD)

Actinomycetales (FAD/NAD−binding domain,

Figure 5. Co-membership probabilities of globin proteins.

5. Conclusion
We introduced a flexible probabilistic model for cluster-
ing dissimilarity data. It contains an exchangeable partition
process prior which avoids label-switching problems. The
likelihood component follows a generalized Wishart model
for squared Euclidean distance matrices which is invari-
ant under translations and rotations, under permutations,
and under scaling transformations. We call this clustering
model the Translation Invariant Wishart-Dirichlet (TIWD)
cluster process. The main contributions of this work are
threefold: (i) On the modelling side, we propose that it is
better to work directly on the distances, without comput-
ing an explicit dot-product- or vector-space- representation,
since such embeddings add unnecessary bias and variance
to the inference process. Experiments on simulated data
corroborate this proposition by showing that the TIWD
model significantly outperforms alternative approaches. In
particular if the clusters are only poorly separated, the full
probabilistic nature of the TIWD model has clear advan-
tages over hierarchical approaches. (ii) On the algorithmic
side we show that costly matrix operations can be avoided
by carefully exploiting the inner structure of the likelihood
term. We prove that a sweep of a Gibbs sampler can be
computed inO(n2+nk2

B) time, as opposed toO(n4kB) for
a naive implementation. Experiments show that these algo-
rithmic improvements make it possible to apply the model
to large-scale datasets. (iii) A semi-supervised experiment
with globin proteins revealed the strength of our partition
process model which is flexible enough to introduce new

classes for objects which are dissimilar to any labeled ob-
servation. We could identify an interesting class of bacte-
rial sequences, and a subsequent analysis of their domain
structure showed that these sequences indeed share some
unusual structural elements.

We have implemented a software package for the TIWD
model which links efficient C++ MCMC code to a user-
friendly R-interface. We will make this package (including
the datasets used in this paper) available on mloss.org.
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