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Abstract

We propose a novel approach that reduces
cost-sensitive classification to one-sided re-
gression. The approach stores the cost infor-
mation in the regression labels and encodes
the minimum-cost prediction with the one-
sided loss. The simple approach is accompa-
nied by a solid theoretical guarantee of er-
ror transformation, and can be used to cast
any one-sided regression method as a cost-
sensitive classification algorithm. To validate
the proposed reduction approach, we design a
new cost-sensitive classification algorithm by
coupling the approach with a variant of the
support vector machine (SVM) for one-sided
regression. The proposed algorithm can be
viewed as a theoretically justified extension of
the popular one-versus-all SVM. Experimen-
tal results demonstrate that the algorithm is
not only superior to traditional one-versus-all
SVM for cost-sensitive classification, but also
better than many existing SVM-based cost-
sensitive classification algorithms.

1. Introduction

Regular classification, which is a traditional and pri-
mary problem in machine learning, comes with a goal
of minimizing the rate of misclassification errors dur-
ing prediction. Many real-world applications, how-
ever, need different costs for different types of mis-
classification errors. For instance, let us look at a
three-class classification problem of predicting a pa-
tient as {healthy, cold-infected, H1N1-infected}. Con-
sider three different types of misclassification errors
out of the six possibilities: (A) predicting a healthy pa-
tient as cold-infected; (B) predicting a healthy patient
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as H1N1-infected; (C) predicting an H1N1-infected pa-
tient as healthy. We see that (C) >> (B) > (A) in
terms of the cost that the society pays. Many other ap-
plications in medical decision making and target mar-
keting share similar needs, which can be formalized
as the cost-sensitive classification problem. The prob-
lem is able to express any finite-choice and bounded-
loss supervised learning problems (Beygelzimer et al.,
2005), and thus has been attracting much research at-
tention (Abe et al., 2004; Langford & Beygelzimer,
2005; Zhou & Liu, 2006; Beygelzimer et al., 2007).

While cost-sensitive classification is well-understood
for the binary case (Zadrozny et al., 2003), the coun-
terpart for the multiclass case is more difficult to an-
alyze (Abe et al., 2004; Zhou & Liu, 2006) and will
be the main focus of this paper. Many existing ap-
proaches for multiclass cost-sensitive classification are
designed by reducing (heuristically or theoretically)
the problem into other well-known problems in ma-
chine learning. For instance, the early MetaCost ap-
proach (Domingos, 1999) solved cost-sensitive classifi-
cation by reducing it to a conditional probability es-
timation problem. Abe et al. (2004) proposed sev-
eral approaches that reduce cost-sensitive classifica-
tion to regular multiclass classification. There are
also many approaches that reduce cost-sensitive clas-
sification to regular binary classification (Beygelzimer
et al., 2005; Langford & Beygelzimer, 2005; Beygelz-
imer et al., 2007). Reduction-based approaches not
only allow us to easily extend existing methods into
solving cost-sensitive classification problems, but also
broaden our understanding on the connections be-
tween cost-sensitive classification and other learning
problems (Beygelzimer et al., 2005).

In this paper, we propose a novel reduction-based ap-
proach for cost-sensitive classification. Unlike existing
approaches, however, we reduce cost-sensitive classi-
fication to a less-encountered problem: one-sided re-
gression. Such a reduction is very simple but comes
with solid theoretical properties. In particular, the re-
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duction allows the total one-sided loss of a regressor
to upper-bound the cost of the associated classifier. In
other words, if a regressor achieves small one-sided loss
on the reduced problem, the associated classifier would
not suffer from much cost on the original cost-sensitive
classification problem.

Although one-sided regression is not often seen in ma-
chine learning, we find that its regularized (and hyper-
linear) form can be easily cast as a variant of the
popular support vector machine (SVM, Vapnik, 1998).
The variant will be named one-sided support vector re-
gression (OSSVR). Similar to the usual SVM, OSSVR
could solve both linear and non-linear one-sided regres-
sion via the kernel trick. By coupling OSSVR with
our proposed reduction approach, we obtain a novel
algorithm for cost-sensitive classification. Interest-
ingly, the algorithm takes the common one-versus-all
SVM (OVA-SVM, Hsu & Lin, 2002) as a special case,
and is only a few lines different from OVA-SVM. That
is, our proposed algorithm can be viewed as a sim-
ple and direct extension of OVA-SVM towards cost-
sensitive classification. Experimental results demon-
strate that the proposed algorithm is indeed useful for
general cost-sensitive settings, and outperforms OVA-
SVM on many data sets. In addition, when compared
with other SVM-based algorithms, the proposed algo-
rithm can often achieve the smallest average test cost,
which makes it the leading SVM-based cost-sensitive
classification algorithm.

The paper is organized as follows. In Section 2, we
give a formal setup of the cost-sensitive classification
problem. Then, in Section 3, we reduce cost-sensitive
classification to one-sided regression and demonstrate
its theoretical guarantees. OSSVR and its use for cost-
sensitive classification is introduced in Section 4. Fi-
nally, we present the experimental results in Section 5
and conclude in Section 6.

2. Problem Statement

We start by introducing the regular classification prob-
lem before we move to the cost-sensitive classification
one. In the regular classification problem, we seek for a
classifier that maps the input vector x to some discrete
label y, where x is within an input space X ⊆ RD,
and y is within a label space Y = {1, 2, . . . ,K}.
We assume that there is an unknown distribution D
that generates examples (x, y) ∈ X × Y. Consider
a training set S = {(xn, yn)}Nn=1, where each train-
ing example (xn, yn) is drawn i.i.d from D. Reg-
ular classification aims at using S to find a classi-
fier g : X → Y that comes with a small E(g), where

E(h) ≡ E
(x,y)∼D

Jy 6= h(x)K is the (expected) test error

of a classifier h with respect to the distribution D.1

The cost-sensitive classification problem extends reg-
ular classification by coupling a cost vector c ∈ RK
with every example (x, y). The k-th component c[k]
of the cost vector denotes the price to be paid when
predicting x as class k. With the additional cost infor-
mation, we now assume an unknown distribution Dc
that generates cost-sensitive examples (x, y, c) ∈ X ×
Y × RK . Consider a cost-sensitive training set Sc =
{(xn, yn, cn)}Nn=1, where each cost-sensitive training
example (xn, yn, cn) is drawn i.i.d from Dc. Cost-
sensitive classification aims at using Sc to find a clas-
sifier g : X → Y that comes with a small Ec(g), where
Ec(h) ≡ E

(x,y,c)∼Dc

c[h(x)] is the (expected) test cost

of h with respect to Dc.

Note that the label y is actually not needed for cal-
culating Ec(h). We keep the label in our setup to
help illustrate the connection between cost-sensitive
classification and regular classification. Naturally, we
assume that c[y] = cmin = min1≤`≤K c[`].

We will often consider the calibrated cost vector c̄
where c̄[k] ≡ c[k] − cmin for every k ∈ Y. Thus,
c̄[y] = 0. Define the calibrated test cost of h as

Ēc(h) ≡ E
(x,y,c)∼Dc

c̄[h(x)] = Ec(h)− E
(x,y,c)∼Dc

cmin.

Because the second term at the right-hand-side is a
constant that does not depend on h, finding a classi-
fier g that comes with a small Ec(g) is equivalent to
finding a classifier that comes with a small Ēc(g).

We put two remarks on our setup above. First,
the setup is based on example-dependent cost vec-
tors c : Y → R rather than a class-dependent cost ma-
trix C : Y ×Y → R, where each entry C(y, k) denotes
the price to be paid when predicting a class-y example
as class k. The class-dependent setup allows one to use
a complete picture of the cost information in algorithm
design (Domingos, 1999; Zhou & Liu, 2006), but is not
applicable when the cost varies in a stochastic envi-
ronment. On the other hand, the example-dependent
setup is more general (Abe et al., 2004), and includes
the class-dependent setup as a special case by defin-
ing the cost vector in (x, y, c) as c[k] ≡ C(y, k) for
every k ∈ Y. In view of generality, we focus on the
example-dependent setup in this paper.

Secondly, regular classification can be viewed as a spe-
cial case of cost-sensitive classification by replacing the

1The boolean operation J·K is 1 when the inner condition
is true, and 0 otherwise.
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cost information in c with a näıve (insensitive) cost
matrix of Ce(y, k) ≡ Jy 6= kK. Thus, when applying
a regular classification algorithm directly to general
cost-sensitive classification problems, it is as if we are
feeding the algorithm with inaccurate cost informa-
tion, which intuitively may lead to unsatisfactory per-
formance. We will see such results in Section 5.

3. One-sided Regression for
Cost-sensitive Classification

From the setup above, the value of each cost compo-
nent c[k] carries an important piece of information.
Recent approaches that reduce cost-sensitive classifi-
cation to regular classification encode the cost infor-
mation in the weights (importance) of the transformed
classification examples. Some of the approaches leads
to more promising theoretical results, such as Sensitive
Error Correcting Output Codes (SECOC, Langford
& Beygelzimer, 2005), Filter Tree (FT, Beygelzimer
et al., 2007) and Weighted All-Pairs (WAP, Beygelz-
imer et al., 2005). Nevertheless, it has been shown
that a large number of weighted classification exam-
ples are often required to store the cost information
accurately (Abe et al., 2004; Langford & Beygelzimer,
2005), or the encoding structure and procedure can
be quite complicated (Langford & Beygelzimer, 2005;
Beygelzimer et al., 2005; 2007). Because of those
caveats, the practical use of those algorithms has not
been fully investigated.

To avoid the caveats of encoding the cost information
in the weights, we place the cost information in the la-
bels of regression examples instead. Such an approach
emerged in the derivation steps of SECOC (Langford
& Beygelzimer, 2005), but its direct use has not been
thoroughly studied. Regression, like regular classifica-
tion, is a widely-studied problem in machine learning.
Rather than predicting the discrete label y ∈ Y with
a classifier g, regression aims at using a regressor r to
estimate the real-valued labels Y ∈ R. We propose to
train a joint regressor r(x, k) that estimates the cost
values c[k] directly. Intuitively, if we can obtain a re-
gressor r(x, k) that estimates each c[k] perfectly for
any cost-sensitive example (x, y, c), we can use the es-
timate to choose the best prediction

gr(x) ≡ argmin
1≤k≤K

r(x, k). (1)

What if the estimate r(x, k) cannot match the desired
value c[k] perfectly? In the real world, it is indeed
the common case that r(x, k) would be somewhat dif-
ferent from c[k], and the inexact r(x, k) may lead to
misclassification (i.e. more costly prediction) in (1).

-
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Figure 1. intuition behind one-sided regression

We illustrate such misclassification cases by Figure 1.
Without loss of generality, assume that c is ordered
such that c[1] ≤ c[2] ≤ · · · ≤ c[K]. We shall fur-
ther assume that c[1] < c[2] and thus the correct pre-
diction y = 1 is unique. Now, if gr(x) = 2, which
means r(x, 2) ≤ r(x, k) for every k ∈ Y. More specif-
ically, r(x, 2) ≤ r(x, 1). Define ∆1 ≡ r(x, 1) − c[1]
and ∆2 ≡ c[2] − r(x, 2). Because c[1] < c[2] and
r(x, 2) ≤ r(x, 1), the terms ∆1 and ∆2 cannot both be
negative. Then, there are three possible cases.

1. At the top of Figure 1, ∆1 ≥ 0 and ∆2 ≥ 0.
Then, c̄[2] = c[2]− c[1] ≤ ∆1 + ∆2.

2. At the middle of Figure 1, ∆1 ≤ 0 and ∆2 ≥ 0.
Then, c̄[2] ≤ ∆2.

3. At the bottom of Figure 1, ∆1 ≥ 0 and ∆2 ≤ 0.
Then, c̄[2] ≤ ∆1.

In all the above cases in which a misclassification
gr(x) = 2 happens, the calibrated cost c̄[2] is no larger
than max(∆1, 0)+max(∆2, 0). This finding holds true
even when we replace the number 2 with any k be-
tween 2 and K, and will be proved in Theorem 1.

A conceptual explanation is as follows. There are two
different kinds of cost components c[k]. If the compo-
nent c[k] is the smallest within c (i.e., c[k] = cmin), it
is acceptable and demanded to have an r(x, k) that is
no more than c[k] because a smaller r(x, k) can only
lead to a better prediction gr(x). On the other hand,
if c[k] > cmin, it is acceptable and demanded to have
an r(x, k) that is no less than c[k]. If all the demands
are satisfied, no cost would incur in gr; otherwise the
calibrated cost would be upper-bounded by the total
deviations on the wrong “side.” Thus, for any cost-
sensitive example (x, y, c), we can define a special re-
gression loss

ξk(r) ≡ max(∆k(r), 0), where (2)

∆k(r) ≡
(

2
r
c[k] = cmin

z
− 1
)(

r(x, k)− c[k]
)
.
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When r(x, k) is on the correct side, ξk(r) = 0. Oth-
erwise ξk(r) represents the deviation between the es-
timate r(x, k) and the desired c[k]. We shall use the
definitions to prove a formal statement that connects
the cost paid by gr with the loss of r.

Theorem 1 (per-example loss bound). For any cost-
sensitive example (x, y, c),

c̄[gr(x)] ≤
K∑
k=1

ξk(r). (3)

Proof. Let ` = gr(x). When c[`] = cmin, the left-
hand-side is 0 while the right-hand-side is non-negative
because all ξk(r) ≥ 0 by definition.

On the other hand, when c[`] > cmin = c[y], by the
definition in (2),

ξ`(r) ≥ c[`]− r(x, `), (4)

ξy(r) ≥ r(x, y)− c[y] . (5)

Because ` = gr(x),

r(x, y)− r(x, `) ≥ 0. (6)

Combining (4), (5), and (6), we get

c̄[`] ≤ ξ`(r) + ξy(r) ≤
K∑
k=1

ξk(r),

where the last inequality holds because ξk(r) ≥ 0.

Theorem 1 says that for any given cost-sensitive ex-
ample (x, y, c), if a regressor r(x, k) closely esti-
mates c[k] under the specially designed linear one-
sided loss ξk(r), the associated classifier gr(x) only
pays a small calibrated cost c̄[gr(x)]. We can prove a
similar theorem for the quadratic one-sided loss ξ2k(r),
but the details are omitted because of page limits.

Based on Theorem 1, we could achieve the goal of find-
ing a low-cost classifier by learning a low-one-sided-
loss regressor first. We formalize the learning prob-
lem as one-sided regression, which seeks for a regres-
sor that maps the input vector X ∈ X̂ to some real
label Y ∈ R with the loss evaluated by some direc-
tion Z ∈ {−1,+1}. We use Z = −1 to indicate that
there is no loss at the left-hand-side r(X) ≤ Y , and
Z = +1 to indicate that there is no loss at the right-
hand-side r(X) ≥ Y . Assume that there is an un-
known distribution Do that generates one-sided exam-
ples (X, Y, Z) ∈ X̂×R×{−1,+1}. We consider a train-
ing set So = {(Xn, Yn, Zn)}Nn=1, where each training
example (Xn, Yn, Zn) is drawn i.i.d from Do. Linear

one-sided regression aims at using So to find a regres-
sor r : X̂ → R that comes with a small Eo(r), where

Eo(q) ≡ E
(X,Y,Z)∼Do

max
(
Z
(
q(X)− Y

)
, 0
)
.

is the expected linear one-sided loss of the regressor q
with respect to Do.

With the definition above, we are ready to solve the
cost-sensitive classification problem by reducing it to
one-sided regression, as shown in Algorithm 1.

Algorithm 1 reduction to one-sided regression

1. Construct S̃o =
{

(Xn,k, Yn,k, Zn,k

)}
from Sc,

where Xn,k = (xn, k); Yn,k = cn[k] ;

Zn,k = 2
r
cn[k] = cn[yn]

z
− 1.

2. Train a regressor r(x, k) : X × Y → R from S̃o
with a one-sided regression algorithm.

3. Return the classifier gr in (1).

Note that we can define a distribution Do that draws
an example (x, y, c) from Dc, chooses k uniformly at
random, and then generates (X, Y, Z) by

X = (x, k), Y = c[k] , Z = 2
r
c[k] = cmin

z
− 1.

We see that S̃o consists of (dependent) examples
from Do and contains (many) subsets So ∼ DNo . Thus,
a reasonable one-sided regression algorithm should be
able to use S̃o to find a regressor r that comes with
a small Eo(r). By integrating both sides of (3) with
respect to Dc, we get the following theorem.

Theorem 2 (error guarantee of Algorithm 1). Con-
sider any Dc and its associated Do. For any regres-
sor r, Ēc(gr) ≤ K · Eo(r)

Thus, if we can design a good one-sided regression al-
gorithm that learns from S̃o and returns a regressor r
with a small Eo(r), the algorithm can be cast as a
cost-sensitive classification algorithm that returns a
classifier gr with a small Ēc(gr). That is, we have
reduced the cost-sensitive classification problem to a
one-sided regression problem with a solid theoretical
guarantee. The remaining question is, how can we
design a good one-sided regression algorithm? Next,
we propose a novel, simple and useful one-sided re-
gression algorithm that roots from the support vector
machine (SVM, Vapnik, 1998).



One-sided Support Vector Regression for Multiclass Cost-sensitive Classification

4. One-sided Support Vector
Regression

From Theorem 2, we intend to find a decent regres-
sor r with respect to Do. Nevertheless, Do is de-
fined from an unknown distribution Dc and hence is
also unknown. We thus can only rely on the train-
ing set S̃o on hand. Consider an empirical risk min-
imization paradigm (Vapnik, 1998) that finds r by
minimizing an in-sample version of Eo(g). That is,

r = argmin
q

∑K
k=1

∑N
n=1 ξn,k, where ξn,k denotes ξk(q)

on the training example (xn, yn, cn). We can decom-
pose the problem of finding a joint regressor r(x, k)
to K sub-problems of finding individual regressors
rk(x) ≡ r(x, k). In other words, for every given k,
we can separately solve

rk = argmin
qk

N∑
n=1

ξn,k . (7)

Let us look at linear regressors qk(x) = 〈wk, φ(x)〉+bk
in a Hilbert space H, where the transform φ : X → H,
the weight wk ∈ H, and the bias bk ∈ R. Adding a reg-
ularization term λ

2 〈wk,wk〉 to the objective function,
each sub-problem (7) becomes

min
wk,bk,ξn,k

λ

2
〈wk,wk〉+

N∑
n=1

ξn,k (8)

s.t. ξn,k ≥ Zn,k
(
〈wk, φ(xn)〉+ bk − c[k]

)
,

ξn,k ≥ 0, for all n.

where Zn,k is defined in Algorithm 1. Note that (8)
is a simplified variant of the common support vector
regression (SVR) algorithm. Thus, we will call the
variant one-sided support vector regression (OSSVR).

Similar to the original SVR, we can solve (8) easily
in the dual domain with the kernel trick K(xn,xm) ≡
〈φ(xn), φ(xm)〉. The dual problem of (8) is

min
α

1

2

N∑
n=1

N∑
m=1

αnαmZn,kZm,kK(xn,xm)

+

N∑
n=1

Zn,kcn[k]αn (9)

s.t.

n∑
m=1

Zm,kαm = 0; 0≤αn≤
1

λ
, for all n.

Coupling Algorithm 1 with OSSVR, we obtain
the following novel algorithm for cost-sensitive
classification: RED-OSSVR, as shown in Algorithm 2.

Note that the common OVA-SVM (Hsu & Lin, 2002)
algorithm has exactly the same steps, except that

Algorithm 2 reduction to OSSVR

1. Training: For k = 1,2, . . . , K, solve the primal
problem in (8) or the dual problem in (9). Then,
obtain a regressor rk(x) = 〈wk, φ(x)〉+ bk.

2. Prediction: Return gr(x) = argmin
1≤k≤K

rk(x).

the (Zn,kcn[k]) terms in (8) and (9) are all replaced
by −1. In other words, OVA-SVM can be viewed as
a special case of RED-OSSVR by considering the cost
vectors cn[k] = 2 Jyn 6= kK − 1. Using those cost vec-
tors is the same as considering the insensitive cost ma-
trix Ce (see Section 2) by scaling and shifting. That is,
OVA-SVM equivalently “wipes out” the original cost
information and replaces it by the insensitive costs.

5. Experiments

In this section, we conduct experiments to validate
our proposed RED-OSSVR algorithm. In all the ex-
periments, we use LIBSVM (Chang & Lin, 2001) as
our SVM solver, adopt the perceptron kernel (Lin &
Li, 2008), and choose the regularization parameter λ
within {217, 215, . . . , 2−3} by a 5-fold cross-validation
procedure on only the training set (Hsu et al., 2003).
Then, we report the results using a separate test
set (see below). Following a common practice in re-
gression, the labels Yn,k (that is, cn[k]) are linearly
scaled to [0, 1] using the training set.

5.1. Comparison with Artificial Data Set

We first demonstrate the usefulness of RED-OSSVR
using an artificial data set in R2 with K = 3. Each
class is generated from a Gaussian distribution of vari-

ance 1
4 with centers at (−1, 0), ( 1

2 ,
√
3
2 ), ( 1

2 ,−
√
3
2 ), re-

spectively. The training set consists of 500 points
of each class, as shown in Figure 2. We make the
data set cost-sensitive by considering a fixed cost ma-

trix Crot =

 0 1 100
100 0 1
1 100 0

. Figure 2(a) shows

the Bayes optimal boundary with respect to Crot.
Because there is a big cost in Crot(1, 2), Crot(2, 3),
and Crot(3, 1), the optimal boundary rotates in the
counter-clockwise direction to avoid the huge costs.
Figure 2(b) depicts the decision boundary obtained
from OVA-SVM. The boundary separates the adja-
cent two Gaussian almost evenly. Although such a
boundary achieves a small misclassification error rate,
it pays for a big overall cost. On the other hand, the
boundary obtained from RED-OSSVR in Figure 2(c)
is more similar to the Bayes optimal one. Thus, for
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cost-sensitive classification problems, it is important
to respect the cost information (like RED-OSSVR) in-
stead of dropping it (like OVA-SVM), and decent per-
formance can be obtained by using the cost informa-
tion appropriately.

5.2. Comparison with Benchmark Data Sets

Next, we compare RED-OSSVR with four existing al-
gorithms, namely, FT-SVM (Beygelzimer et al., 2007),
SECOC-SVM (Langford & Beygelzimer, 2005) WAP-
SVM (Beygelzimer et al., 2005) and (cost-insensitive)
OVA-SVM (Hsu & Lin, 2002). As discussed in
Section 3, the first three algorithms reduce cost-
sensitive classification to binary classification while
carrying a strong theoretical guarantee. The algo-
rithms not only represent the state-of-the-art cost-
sensitive classification algorithms, but also cover four
major multiclass-to-binary decompositions (Beygelz-
imer et al., 2005) that are commonly used in SVM: one-
versus-all (RED-OSSVR, OVA), tournament (FT), er-
ror correcting (SECOC) and one-versus-one (WAP).

Ten benchmark data sets (iris, wine, glass, vehicle,
vowel, segment, dna, satimage, usps, letter) are used
for comparison. All data sets come from the UCI Ma-
chine Learning Repository (Hettich et al., 1998) except
usps (Hull, 1994). We randomly separate each data set
with 75% of the examples for training and the rest 25%
for testing. All the input vectors in the training set are
linearly scaled to [0, 1] and then the input vectors in
the test set are scaled accordingly.

The ten benchmark data sets were originally gath-
ered for regular classification and do not contain any
cost information. To make the data sets cost-sensitive,
we adopt the randomized proportional setup that was
used by Beygelzimer et al. (2005). In particular, we
consider a cost matrix C(y, k), where the diagonal en-
tries C(y, y) are 0, and the other entries C(y, k) are

uniformly sampled from
[
0, 2000 |{n:yn=k}||{n:yn=y}|

]
. Then, for

each example (x, y), the cost vector c comes from the
y-th row of C (see Section 2). Although such a setup
has a long history, we acknowledge that it does not
fully reflect the realistic needs. The setup is taken here
solely for a general comparison on the algorithms.

To test the validity of our proposed algorithm on
more realistic cost-sensitive classification tasks, we
take a random 40% of the huge 10%-training set of
KDDCup 1999 (Hettich et al., 1998) as another data
set (kdd99). We do not use the test set accompanied
because of the known mismatch in training and test
distributions, but we do take its original cost matrix
for evaluation. The 40% then goes through similar

75%-25% splits and scaling, as done with other data
sets.

We compare the test costs between RED-OSSVR and
each individual algorithms over 20 runs using a pair-
wise one-tailed t-test of 0.1 significance level, as shown
in Table 1. kdd99 takes longer to train and hence we
only show the results over 5 runs. We then show the
average test costs and their standard errors for all al-
gorithms in Table 2. Furthermore, we list the average
test error rate in Table 3.

OVA-SVM versus RED-OSSVR. We see that
RED-OSSVR can often achieve lower test costs than
OVA-SVM (Table 2), at the expense of higher error
rates (Table 3). In particular, Tabel 1 shows that
RED-OSSVR is significantly better on 5 data sets and
significantly worse on only 2: vowel and letter. We can
take a closer look at vowel. Table 3 suggests that OVA-
SVM does not misclassify much on vowel. Hence, the
resulting test cost is readily small. Then, it is hard for
RED-OSSVR to make improvements using arbitrary
cost information. On the other hand, for data sets
like glass or vehicle, on which OVA-SVM suffers from
large error and cost, RED-OSSVR can use the cost
information appropriately to perform much better.

SECOC-SVM versus RED-OSSVR. SECOC-
SVM is usually the worst among the five algorithms.
Note that SECOC can be viewed as a reduction
from cost-sensitive classification to regression coupled
with a reduction from regression to binary classifica-
tion (Langford & Beygelzimer, 2005). Nevertheless,
the latter part of the reduction requires a thresholding
step (for which we used the grid-based thresholding
in the original paper). Theoretically, an infinite num-
ber of thresholds is needed, and hence any finite-sized
threshold choices inevitably lead to loss of information.
From the results, SECOC-SVM can suffer much from
the loss of information. RED-OSSVR, on the other
hand, only goes through the first part of the reduc-
tion, and hence could preserve the cost information ac-
curately and achieves significantly better performance
on 9 out of the 11 data sets, as shown in Table 1.

WAP-SVM versus RED-OSSVR. Both WAP-
SVM and RED-OSSVR performs similarly well on 6
out of the 11 data sets. Nevertheless, note that WAP-
SVM does pairwise comparisons, and hence needs

needs K(K−1)
2 underlying binary SVMs. Thus, it takes

much longer to train and does not scale well with the
number of classes. For instance, on letter, training
WAP-SVM would take about 13 times longer than
training RED-OSSVR. With the similar performance,
RED-OSSVR can be a preferred choice.
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(a) Bayes optimal (b) OVA-SVM (c) RED-OSSVR

Figure 2. boundaries learned from a 2D artificial data set

FT-SVM versus RED-OSSVR. FT-SVM and
RED-OSSVR both need only O(K) underlying SVM
classifier/regressors and hence scale well with K. Nev-
ertheless, from Table 1, we see that RED-OSSVR per-
forms significantly better than FT-SVM on 7 out of
the 11 data sets. Note that FT-SVM is based on let-
ting the labels compete in a tournament, and thus the
design of the tournament can affect the resulting per-
formance. From the results we see that the simple ran-
dom tournament design, as Beygelzimer et al. (2007)
originally used, is not as good as RED-OSSVR. The
difference makes RED-OSSVR a better choice unless
there is a strong demand on the O(log2K) prediction
complexity of FT-SVM.

In summary, RED-OSSVR enjoys three advantages:
using the cost-information accurately and appropri-
ately, O(K) training time, and strong empirical per-
formance. The advantages suggest that it shall be the
leading SVM-based algorithm for cost-sensitive classi-
fication nowadays.

Note that with the kernel trick in RED-OSSVR, we
can readily obtain a wide range of classifiers of dif-
ferent complexity and thus achieve lower test costs
than existing methods that focused mainly on decision
trees (Abe et al., 2004; Beygelzimer et al., 2005; Zhou
& Liu, 2006). The results from those comparisons are
not included here because of page limits.

6. Conclusion

We proposed a novel reduction approach from cost-
sensitive classification to one-sided regression. The ap-
proach is based on estimating the components of the
cost vectors directly via regression, and uses a specifi-
cally designed regression loss that is tightly connected
to the cost of interest. The approach is simple, yet
enjoys strong theoretical guarantees in terms of error
transformation. In particular, our approach allows any
decent one-sided regression method to be cast as a de-
cent cost-sensitive classification algorithm.

We modified the popular SVR algorithm to derive a
new OSSVR method that solves one-sided regression
problems. Then, we coupled the reduction approach
with OSSVR for cost-sensitive classification. Our

Table 1. comparing the test costs of RED-OSSVR and each
algorithm using a pairwise one-tailed t-test of 0.1 signifi-
cance level

data set FT SECOC WAP OVA
iris ≈ ≈ ≈ ©
wine ≈ ≈ ≈ ©
glass © © © ©
vehicle © © © ©
vowel ≈ © × ×

segment © © ≈ ≈
dna © © © ≈

satimage © © © ©
usps © © ≈ ≈
letter © © ≈ ×
kdd99 ≈ © ≈ ≈

© : RED-OSSVR significantly better
× : RED-OSSVR significantly worse
≈ : otherwise

novel RED-OSSVR algorithm is a theoretically justi-
fied extension of the commonly used OVA-SVM algo-
rithm. Experimental results demonstrated that RED-
OSSVR is superior to OVA-SVM for cost-sensitive
classification. Furthermore, RED-OSSVR can enjoy
some advantages over three major SVM-based cost-
sensitive classification algorithms. The findings sug-
gest that RED-OSSVR is the best SVM-based algo-
rithm for cost-sensitive classification nowadays.
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