
Robust Graph Mode Seeking by Graph Shift

Hairong Liu lhrbss@gmail.com
Shuicheng Yan eleyans@nus.edu.sg

Department of Electrical and Computer Engineering, National University of Singapore, Singapore

Abstract

In this paper, we study how to robustly com-
pute the modes of a graph, namely the dense
subgraphs, which characterize the underly-
ing compact patterns and are thus useful for
many applications. We first define the modes
based on graph density function, then pro-
pose the graph shift algorithm, which starts
from each vertex and iteratively shifts to-
wards the nearest mode of the graph along
a certain trajectory. Both theoretic analysis
and experiments show that graph shift algo-
rithm is very efficient and robust, especially
when there exist large amount of noises and
outliers.

1. Introduction

Graph is an important representation approach, espe-
cially for data which cannot be represented in vecto-
rial form. Even for data with vectorial form, many
algorithms are essentially founded on graph represen-
tation, such as graph based image segmentation (Shi
& Malik, 2000) and graph based data clustering (Ng
et al., 2002).

A dense subgraph refers to a coherent subset of ver-
tices in a graph and such cohesiveness is not easy to
be disturbed by noises and outliers, thus the dense
subgraphs can robustly indicate key patterns. For ex-
ample, in World Wide Web, dense subgraphs might
be communities or link spam; in telephone call graph,
dense subgraphs might be groups of friends or families.
In these situations, the graphs are usually very sparse
in global, but have many dense subgraphs of differ-
ent sizes, these dense subgraphs are the natural focal
points for studying graph structure and extracting the
underlying meaningful patterns.

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

In computer science, the pursue of maximal cliques
(cliques that cannot be enlarged) (Ouyang et al., 1997)
is a fundamental problem and has been widely studied
for decades. The Motzkin-Straus theorem (Motzkin &
Straus, 1983) has proven that solving maximal clique
problem is equivalent to finding the maxima of a
quadratic function, namely the graph density func-
tion used in this work. Thus, the maximal cliques
correspond to the modes of the graph and the maxi-
mal clique problem is actually the mode seeking prob-
lem on graph. The weighted counterpart of maximal
clique, dominant set, also corresponds to the mode of
the graph, and has ever been used for pairwise clus-
tering (Pavan & Pelillo, 2007).

In machine learning literature, the one-class clus-
tering/classification problem (Gupta & Ghosh, 2005;
Crammer et al., 2008), which finds a small and co-
herent subset of points within a given data set, rises
naturally in a wide range of applications, from finding
gene-modules to extracting documents’ topics, where
many data points are irrelevant to the task at hand, or
in applications where only positive examples are avail-
able. Such coherent subset of points forms dense sub-
graphs, thus, one-class clustering/classification prob-
lem is closely related to the mode seeking problem on
graph.

Owing to the commonality of the dense subgraphs in
many applications, many algorithms have been pro-
posed (Pavan & Pelillo, 2007; Ouyang et al., 1997) for
computing such subgraphs. These algorithms are how-
ever usually heuristic and can only find partial dense
subgraphs, and at the same time, these algorithms are
usually very demanding in both computational cost
and memory requirement.

In this paper, we propose the graph shift algorithm,
which can find all significant dense subgraphs, with
low time and memory complexity. The graph shift al-
gorithm is very similar with mean shift algorithm (Co-
maniciu & Meer, 2002), a well-known non-parametric
feature space analysis technique. Both algorithms can
start from any start point, shift along a certain tra-

Robust Graph Mode Seeking by Graph Shift

jectory, finally reach the nearest mode. Thus they
can be considered as evolutionary strategies that per-
form multi-start global optimization; however, mean
shift operates directly on the feature space, while our
graph shift operates on the affinity graph. In many sit-
uations, we can only obtain the affinity graphs, some
even with no corresponding vectorial representation,
thus, our method can be considered to be a comple-
ment method of mean shift. The same as mean shift,
graph shift can be used for robust model seeking and
clustering analysis.

The main contributions of this work are two-fold. 1)
We define the modes of a graph and analyze its prop-
erty. Although the mode of a graph is widely used
in many areas, it has not been well defined and sys-
tematically analyzed. 2) We propose the graph shift
algorithm, which can efficiently approach the nearest
mode of a graph from any start point. This algorithm
provides a robust tool for mode seeking and cluster
analysis on graph.

The rest of the paper is organized as follows. We de-
fine the modes of a graph and analyze its properties
in Section 2, then we present the graph shift algo-
rithm in Section 3. The experimental evaluation of
our algorithm for robust mode seeking and clustering
is performed in Section 4, and we conclude this work
in Section 5.

2. Modes of Graph

In this section, we first define graph density, then de-
fine the modes of a graph. Finally we analyze the
properties of graph mode, which shall guide the in-
ference of graph shift algorithm presented in the next
section.

2.1. Notations of Graph

A graph G is represented as G = (V,E,w), where
V = {v1, · · · , vn} is the vertex set, n is the number of
vertices, E ⊆ V × V is the edge set, and w : E → IR∗+
is the (nonnegative) weight function. Vertices in G
correspond to data points, edges represent neighbor-
hood relationships, and edge-weight reflects similar-
ity between a pair of linked vertices. As is custom-
ary, we represent the graph G with the corresponding
weighted adjacency (or similarity) matrix, more specif-
ically, an n × n symmetric matrix A = (aij), where
aij = w(vi, vj) if (vi, vj) ∈ E, and aij = 0 otherwise.
Clearly, if there are no self-loops, all the diagonal ele-
ments of A are zeros. In this paper, we only consider
graphs with no self-loops.

Let S = {1, · · · , n} be the index set of the vertex set

V , for any subset T ⊆ S, a subgraph GT of G with
vertex set VT = {vi|i ∈ T} is introduced and the cor-
responding edge set is ET = {(vi, vj)|(vi, vj) ∈ E, i ∈
T, j ∈ T}.

2.2. Probabilistic Coordinate On Graph

The probabilistic coordinate on graph G is defined as
a mapping X : V → ∆n, where ∆n = {x ∈ Rn :
x ≥ 0 and |x|1 = 1}, that is, the mapping from the
vertex set V to the standard simplex of Rn. Each
point x ∈ ∆n represents a probabilistic combination
of vertices, called probabilistic cluster, and xi, the i-
th component of x, represents the probability of this
probabilistic cluster contains vertex vi. Since under
the probabilistic coordinate, a point x uniquely corre-
sponds to a probabilistic cluster and vice versa, we will
refer to them interchangeably. For a point x, xi = 0
means that this probabilistic cluster does not contain
vertex vi. The indices of all nonzero components of x
constitute its support, denoted as σ(x) = {i|xi 6= 0},
and it corresponds to a subgraph Gσ(x). Particularly,
the coordinate of the probabilistic cluster containing
only vertex vi is Ii, whose i-th component is 1, and
other components are 0.

Since aij represents the affinity value between vertex
vi and vertex vj , the affinity value between point x
and point y can be defined as follows:

a(x, y) =
∑
i,j

aijxiyj = xTAy (1)

Note that a(Ii, Ij) = aij , which is consistent with the
definition for the weights of edges.

2.3. Graph Density and Modes

The affinity value between a point x and itself is
a(x, x) = xTAx, abbreviated by g(x). As a good
cluster should be the one in which strongly associated
vertices should have edges with large affinity values
connecting each other in the graph, g(x) is a natural
measure of the cohesiveness (dense) of the probabilis-
tic cluster x, which is referred to as graph density in
this work.

We may reveal the meaning of the graph density from
the graph constructed from a data set D = {di|i =
1, · · · , n} in feature space, where vertex vi corresponds
to data di, w(vi, vj) = K(di, dj), i 6= j and w(vi, vi) =
0. K is a kernel function defined on feature space.
The probabilistic coordinate x can be considered to
be a distribution, namely the probability of choosing
vertex vi (thus, data di) is xi. Suppose we sample this
distribution N (N → ∞) times, then the number of
data di is Nxi. At point di, the density is f(di) =

Robust Graph Mode Seeking by Graph Shift∑
j
NxjK(di,dj)

N , then the average density of these N
points are:

fav =

∑
iNxif(di)

N
=
∑
i,j

xiK(di, dj)xj (2)

Since K(x, x) ≥ K(x, y), the average density will reach
maxima when these points are identical to one point
di, that is, when x = Ii, i ∈ S. However, if we only
consider the contribution of a point to other points,
not considering the contribution of the point to itself,
that is, we set K(x, x) = 0, then the average density
of these N points are:

fav =
∑
i 6=j

xiK(di, dj)xj = xTAx = g(x) (3)

where A is the adjacency matrix of graph G. It means
that the graph density is the limit of average density
when N →∞ and not considering self contribution.

Note the differences between graph density and den-
sity in feature space: graph density considers all mu-
tual contribution within a probabilistic cluster, not
considering self contribution and the contribution of
points outside this probabilistic cluster; while the den-
sity in feature space consider the contribution of all
other points to one point. Owing to not considering
the contribution of the points outside the probabilistic
cluster, graph density is not sensitive to outlier; also
because the graph density considers all mutual con-
tribution within the probabilistic cluster, it is more
robust to noises.

Definition 1. The modes of a graph G are local max-
imizers of graph density g(x) = xTAx.

For a point x, the subgraph corresponds to x is Gσ(x),
composed by all vertices whose indices are in σ(x). If
x∗ is a local maximizer (mode) of g(x), then Gσ(x∗)

is a dense subgraph. Such dense subgraphs are very
important in many applications. For example, 1) they
are maximal cliques in graph analysis; 2) they repre-
sent the core of a cluster in cluster analysis; and 3)
they represent common patterns in common pattern
detection problem.

2.4. Properties of Modes

Since the modes are local maximizers of g(x), to find
these modes, we need to solve the standard quadratic
optimization problem (StQPs) (Bomze, 2002):{

maximize g(x) = xTAx
subject to x ∈ ∆n (4)

It is a constrained optimization problem, and a local
maximizer x∗ ∈ ∆n must satisfy the Karush-Kuhn-

Figure 1. (a) Geometric explanation of graph mode. x∗ is
the mode of graph G, all the vertices (red points) belonging
to Gσ(x∗) are on the sphere {y|a(x∗, y) = g(x∗)} and all
other vertices are within the space {y|a(x∗, y) ≤ g(x∗)}.
(b) The relation between the mode of graph and the mode
of its subgraph. x∗ is the mode of a subgraph, whether
it is the mode of graph G depends on whether there is no
vertex (blue point) within the space {y|a(x∗, y) > g(x∗)}.
For better viewing, please see color pdf.

Tucker (KKT) condition for problem (4), i.e., the first-
order necessary conditions for local optimality. That
is, there exist n+ 1 real constants (Lagrange multipli-
ers) µ1, · · · , µn and λ, with µi ≥ 0 for all i = 1, · · · , n,
such that:

(Ax∗)i − λ+ µi = 0 (5)

for all i = 1, · · · , n, and
∑n
i=1 x

∗
iµi = 0.

Since both x∗i and µi are nonnegative for all i =
1, · · · , n, the latter condition is equivalent to saying
that i ∈ σ(x∗) implies µi = 0. Hence, the KKT condi-
tions can be rewritten as:

(Ax∗)i

{
= λ, i ∈ σ(x∗);
≤ λ, i /∈ σ(x∗).

(6)

Note that (Ax∗)i = a(x∗, Ii), the affinity value be-
tween cluster x∗ and vertex i, thus (6) has an obvious
geometric meaning, which is summarized in the follow-
ing theorem.

Theorem 1. If x∗ is the mode of graph G, then 1) the
affinity values between x∗ and all the vertices in the
subgraph Gσ(x) are identical to g(x∗); 2)the affinity
values between x∗ and other vertices of graph G are
not larger than g(x∗). At the same time, if x∗ satisfies
1) and 2), then it is the mode of graph G.

Proof : According to (6), x∗TAx∗ =
∑
i x
∗
i (Ax

∗)i =∑
i x
∗
i λ = λ. Since KKT is a necessary condition, then

if x∗ is the mode, it must satisfies 1) and 2). At the
same time, when equality constraints are affine func-
tions, inequality constraints and the objective function
are continuously differentiable invex functions, KKT

Robust Graph Mode Seeking by Graph Shift

condition is also sufficient, thus if x∗ satisfy 1) and 2),
it is the mode of graph G.

Theorem 1 tells that if x∗ is a mode of graph G,
then all the vertices belonging to subgraph Gσ(x) are
on the sphere {y|a(x∗, y) = g(x∗)}, and all the ver-
tices not belonging to subgraph Gσ(x) are in the space
{y|a(x∗, y) ≤ g(x∗)}. Figure 1(a) illustrate such sce-
nario, x∗ is a mode, σ(x∗) = {v1, v2, v3, v4}, they all
lie on the sphere {y|a(x∗, y) = g(x∗)}.

2.5. Modes of Subgraph

In many situations, graphG is very large, that is, it has
many vertices and edges, it is very inefficient to deal
with them as a whole. Note that σ(x∗), the support
of the mode x∗, usually contains very limited number
of vertices and x̃∗ = {x∗i |x∗i > 0}, which retains all
nonzero components of x∗, is also the mode of the
subgraph Gσ(x∗). Subgraph Gσ(x∗) contains only m =
|σ(x∗)| vertices, thus much easier to deal with. This
phenomenon inspires us to search for the modes of G
through the modes of its subgraphs.

For a subgraph GT , suppose one of its mode is x∗T ,
according to Theorem 1.

(Ax∗T)i

{
= λ, i ∈ σ(x∗T);
≤ λ, i /∈ σ(x∗T).

(7)

where σ(x∗T) ⊆ T ⊆ S.

By adding zeros to the components whose index are
in the set S − T , we can expand the m dimensional
vector x∗T to n dimensional vector x∗. The problem is
whether x∗ is also the mode of graph G. The following
theorem answers this question.

Theorem 2. A mode x∗T of the subgraph GT is also
the mode of graph G if and only if for all vertex vi,
a(x∗, Ii) ≤ g(x∗) = gT (x∗T), i ∈ S − T , where x∗ is
obtained from x∗T by adding zeros to the components
whose indices are in the set S − T .

Proof : Since x∗ is obtained from x∗T by adding zeros
to the components whose indices are in the set S − T ,
then σ(x∗) = σ(x∗T), g(x∗) = gT (x∗T), and

(Ax∗)i

 = λ, i ∈ σ(x∗);
≤ λ, i ∈ T, i /∈ σ(x∗);

= a(x∗, Ii), i ∈ S − T.
(8)

where λ = g(x∗) = g(x∗T).

If a(x∗, Ii) ≤ g(x∗) = λ for all i ∈ S − T , according
to Theorem 1, x∗ is also the mode of graph G. If
a(x∗, Ii) > g(x∗) = λ for some i ∈ S−T , then x∗ does
not satisfy the KKT condition, according to Theorem
1, thus it is not the mode of graph G.

Theorem 2 has an intuitional geometric meaning:
Since the affinity values between a mode x∗ of graph
G and the vertices in subgraph Gσ(x∗) are identi-
cal to a constant value λ, we can regard the sphere
{y|a(x∗, y) = λ} to be a separating surface, if no newly
added points fall into the space {y|a(x∗, y) > λ}, then
x∗ is still the mode of the expanded graph; otherwise,
x∗ is not a mode of the expanded graph. Figure 1(b)
illustrates this point, if the newly added point is vi,
then x∗ is still the mode of the expanded graph; how-
ever, if the newly added point is vj , x

∗ is not the mode
of the expanded graph.

3. Graph Shift Algorithm

There are many algorithms to obtain a local maxima of
StQP (4), from any initialization x(0). In this section,
we first review the most popular method, replicator
dynamics (Weibull, 1997). Then we will present the
neighborhood expansion procedure, which can expand
the support of the mode of a subgraph to its neighbor-
hood. The combination of these two steps forms our
graph shift algorithm.

3.1. Mode Seeking by Replicator Dynamics

Replicator dynamics, which arises in evolutionary
game theory, is the most popular method to find the
local maxima of StQP (4). Given an initialization
x(0), corresponding local solution x∗ of StQP (4) can
be efficiently computed by the discrete-time version of
first-order replicator equation, which has the following
form:

xi(t+ 1) = xi(t)
(Ax(t))i
x(t)TAx(t)

, i = 1, · · · , n. (9)

It can be observed that the simplex ∆n is invariant
under these dynamics, which means that every tra-
jectory starting in ∆n will remain in ∆n. Moreover,
it has been proven in (Weibull, 1997) that, when A
is symmetric and with nonnegative entries, the objec-
tive function g(x) = xTAx strictly increases along any
nonconstant trajectory of (9), and its asymptotically
stable points are in one-to-one correspondence with
strict local solutions of StQP (4).

Note that Equation (9) has a property: if xi(t) = 0,
then xi(t + 1) = 0 and xi(t) does not affect the com-
putation of xj(t), j 6= i, which means that during the
evolution procedure, replicator equation (9) can drop
vertices, but it cannot automatically expand the ver-
tices. Thus, from a subgraph GT , it can find the mode
of GT , but this mode may not be the mode of graph G.
In the following subsection, we will present the method
of expanding vertices from the modes of subgraphs.

Robust Graph Mode Seeking by Graph Shift

3.2. Neighborhood Expansion from Modes of
Subgraphs

From a mode x∗T of the subgraph GT , according to
Theorem 2, we can judge whether it is also the mode
of graph G. If yes, then no further step is required; if
not, we need to find an update vector ∆x, g(x∗+∆x) >
g(x∗), where x∗ is obtained from x∗T by adding zeros
to the components whose indices are in the set S − T .

Since x∗ is not a mode of g(x), according to Theorem 2,
there are some vertices vi, a(x∗, Ii) > g(x∗), i ∈ S−T .
We define a vector v with

vi =

{
0, i ∈ σ(x∗)

max(a(x∗, Ii)− g(x∗), 0), i /∈ σ(x∗)
. (10)

Suppose s =
∑
i vi, ζ =

∑
i v

2
i and ω =

∑
i,j viaijvj ,

then s > 0 and ζ > 0. We update x∗ in direction

b =

{
−x∗i s, i ∈ σ(x∗)
vi, i /∈ σ(x∗)

. That is, decreases the pos-

sibility of vertices belonging to current mode and in-
creases the possibility of vertices with large rewards.

Suppose g(x∗) = λ̃, then (Ax∗)i = λ̃, i ∈ σ(x∗),

g(x∗ + tb)− g(x∗)

= 2t(1− ts)(ζ + λ̃s)− ts(2− ts)λ̃+ ωt2

= −(λ̃s2 + 2sζ − ω)t2 + 2ζt (11)

According to x∗i ≥ 0, i ∈ σ(x∗), x∗i − tx∗i s ≥ 0, then
t ≤ 1

s . When λ̃s2+2sζ−ω ≤ 0, the increase from g(x∗)
to g(x∗ + tb) will reach maximum at t∗ = 1

s ; When

λ̃s2+2sζ−ω > 0, the increase from g(x∗) to g(x∗+tb)
will reach maximum at t∗ = min{ 1s ,

ζ

λ̃s2+2sζ−ω}, and

the update vector is:

∆x = t∗b, (12)

which is called neighborhood expansion vector.

The update from x∗ to x∗ + tb not only increases the
value of g(x), but also expands the support σ(x∗) to
its neighborhood, which is the desirable property.

3.3. Graph Shift Procedure

The replicator dynamics and the neighborhood ex-
pansion procedure have complementary properties: 1)
replicator dynamics can efficiently drop vertices, but
neighborhood expansion cannot; 2) neighborhood ex-
pansion can expand the support, but replicator dy-
namics cannot. Their combination leads to the graph
shift algorithm, which is summarized in Algorithm 1.

Algorithm 1 is an EM-style procedure, the neighbor-
hood expansion procedure expands current subgraph

Algorithm 1 Graph Shift Algorithm

Input: The affinity matrix A of graph G, the start
point x (a vertex, or a cluster of vertices)
repeat

Evolve x towards the mode of subgraph Gσ(x) by
replicator dynamics (9)
if x is not the mode of graph G then

Update x by neighborhood expansion vector
end if

until x is the mode of graph G

to its neighborhood, thus provides a much larger lower
bound of g(x), which corresponds to the mode of cur-
rent subgraph; while replicator dynamics procedure
evolves towards this lower bound, and guarantees to
reach this lower bound. These two steps iterate un-
til a local maxima is reached. In the neighborhood
expansion procedure, only nearest vertices are added
into current subgraph, and in the replicator dynamics
procedure, most of vertices are dropped, and only a
very compact cluster of vertices are retained. Thus,
our graph shift algorithm always operates on small
subgraphs, which is very efficient, both in time and
memory.

The main computation load is the replicator dynamics
procedure, which evolves toward the mode of current
subgraph. Suppose the average number of edges in the
subgraph is h, and the average number of iterations for
the replicator equation is t, then the time complexity
of the replicator dynamics procedure is O(th), and the
space complexity is O(h). The total time complex-
ity of graph shift procedure is then O(lth), where l is
the number of iterations for the shrink and expansion
phases.

4. Experiments

We evaluate the proposed graph shift algorithm on
two tasks: mode seeking and cluster analysis. Since
under real-world scenarios, the graph usually contains
considerable noises and outliers, in our experiments,
we mainly focus on these scenarios.

4.1. Detecting Common Pattern as Mode
Seeking on Graph

A pattern is a set of feature points with fixed relative
spatial relation. Two instances of a common pattern
not only need to be similar in corresponding feature
points, but also need to have similar spatial layout.
The common pattern problem is: given two sets of fea-
ture points, are there any common patterns between
them and where they are? We will show that this

Robust Graph Mode Seeking by Graph Shift

problem is identical to mode seeking on a graph with
large amount of noises and outliers. Thus, the com-
mon pattern problem is a good test-bed to evaluate
the effectiveness and robustness of our graph shift al-
gorithm.

Suppose two sets of feature points are P and Q, with
nP and nQ feature points, respectively. Each fea-
ture point contains local features and coordinates. For
each point p in P , according to the local features, we
may find some similar points q in Q. Each such pair
(p, q) is a possible correspondence and all such pairs
form the correspondence set C = {(p, q)|p ∈ P, q ∈
Q, p and q have similar local features}.

We construct a graph G based on C with each ver-
tex of G representing a correspondence in C. Edge
e = (vi, vj) connects vertex vi and vj , and reflects the
relation between correspondences ci and cj . For two
correspondences ci = (pi, qi) and cj = (pj , qj), suppose
the distance between pi and pj in the first image, and
the distance between qi and qj in the second image, are
lpipj and lqiqj , respectively. Obviously, to align these
two correspondences, we need to scale the second im-
age by a factor of lpipj/lqiqj .

Suppose the correct scale factor of a common pattern
is s, we can define wij , the weight of edge e = (vi, vj),
as follows:

wij = exp(−
|lpipj − slqiqj |2

ς2
) (13)

Obviously, under such definition, common patterns
correspond to dense subgraphs in G, which is illus-
trated in Figure 2. The common pattern correspond-
ing to the mode x∗ can be recovered from the vertices
of subgraph Gσ(x∗), with every vertex corresponding
to a correct correspondence.

Graph G has two characteristics: 1) There are large
amount of vertices and most of them represents incor-
rect correspondences. The number of vertices is nearly
nPnQ, but only m correct correspondence, where m
is the number of points in common pattern. 2) Many
edges have large weights. Since the weight only reflects
scale relation of two correspondences, many edges,
such as the edges between incorrect correspondences,
may accidently have large weights. The number of
such edges is usually several order of magnitude than
the number of edges between correct correspondences.
These two characteristics pose a great challenge on
mode seeking.

We first conduct an experiment on point sets and com-
pare our method with spectral method in (Leordeanu
& Hebert, 2005), which is the state-of-art method to

Figure 2. Common pattern detection corresponds to mode
seeking on graph G. Find all candidate correspondences
shown in (a) by local features (for clarity, only a small
subset of the candidate correspondences are shown), and
then construct the graph G in (b). The common pattern
corresponds to the dense subgraph (mode) T of G.

Figure 3. Performance curves for our method vs. the spec-
tral method in (Leordeanu & Hebert, 2005). The mean
performance (number of correct matches) is shown as a
solid red line (our method) and a solid blue line (spectral
method), One std below the mean is shown as red dotted
lines for our method and blue dotted lines for the spectral
method. Left figure: no Gaussian noise (η = 0). Right
figure: added Gaussian noise (η = 4).

find correct correspondences. We generate a point set
T with nT points, add Gaussian noise N(0, η) and ro-
tate it to obtain two version of T . We then add outliers
to them by randomly selecting points in the same re-
gion and obtain the two point set P and Q. Since the
points themselves are not distinctive, the number of
vertices is nPnQ. We fix the number of points in the
common pattern, nT = 15, and vary the number of
outliers. Both algorithms ran on the same data sets
over 30 trials and both the mean performance curves
and the curves of one standard deviation below the
mean are plotted. We score the performances of these
two methods by counting how many correspondences
agree with the ground truths.

The result is shown in Figure 3. Obviously, the spec-
tral method is sensitive to outliers and its performance
curve drops fast; however, our proposed graph shift
method works remarkably well. This is because the

Robust Graph Mode Seeking by Graph Shift

Figure 4. Comparison of cumulative accuracy of near-
duplicate image retrieval on Columbia database.

eigenvectors are affected by all weights, especially all
the large weights, no matter they are correct or not;
however, our graph shift method just try to find a
subgraph with all edges have high weights and such
weights are usually correct.

We also conduct an experiment on near-duplicate
image retrieval, which plays an important role in
many multimedia applications. Near-duplicate images
usually have a large common pattern, thus judging
whether two images are near-duplicate or not is also
a mode seeking problem on graph. The experiment
is conducted on the Columbia database, which con-
tains 150 near-duplicate pairs and 300 non-duplicate
images (600 images in total). For fair comparison, we
first rank all images using global features as done in
(Zhu et al., 2008), then re-rank the images in top 50
based on the size of detected common patterns. We
use SIFT features to find all possible point correspon-
dences and the weight wij is computed by (13). Since
just at correct scale, common patterns correspond to
the mode of graph, we search for 11 scales. In Fig-
ure 4, the retrieval performance is plotted and com-
pared with the state-of-art method, called NIM (Zhu
et al., 2008), which finds common patterns by non-
rigid mapping. Obviously, our method gets better cu-
mulative accuracies (ratio between correctly retrieved
images in top N images and total number of query
images), which verifies that our method can correctly
find the modes of the graph.

4.2. Cluster Analysis

Graph shift procedure is a natural clustering tool, and
all the vertices shift toward the same mode should be-
long to a cluster. According to the need, there are two
variants of clustering methods based on graph shift:
1) The number of clusters is unknown. In this case,
we regard each mode with large density as the core of
a cluster, and all the vertices shift towards this mode

Figure 5. Clustering on data with uniform distributed
background points. (a) the data set, (b) clustering result
of k-means, (c) clustering result of spectral clustering, (d)
clustering result of our method. For better viewing, please
see original color pdf.

belong to this cluster, other vertices can be assigned
to one cluster according to affinity value or left un-
grouped. 2) The number of clusters K is specified.
In this case, we just select K modes with the largest
densities, and then assign other vertices to these K
clusters.

We first consider the problem of extracting dense clus-
ters from cluttered background. Many real world prob-
lems belong to this kind, such as image segmentation
and perceptual grouping. Because many points should
not belong to any clusters, such as the background of
an image, the partition methods, such as k-means and
spectral clustering method, are not expected to work
well, due to their insisting on partitioning all the in-
put data into coherent groups. Our method, on the
contrary, appears to be particularly suited for such
applications, since it allows one to extract as many
clusters as desired, while leaving the remaining points
(namely, the clutter) un-grouped.

To illustrate this point, consider the toy data set shown
in Figure 5(a), which contains two dense clusters of
Gaussian random points surrounded by uniformly dis-
tributed clutter points. For comparison, we choose k-
means and spectral clustering, two representative par-
tition methods, based on vectorial representation and
affinity data, respectively. The clustering results of
k-means, spectral clustering and our method are illus-
trated in (b),(c),(d), respectively. As expected, both k-
means and spectral clustering cannot work well; while
our method can automatically uncover the two dense
clusters and separate them from the background.

Robust Graph Mode Seeking by Graph Shift

Table 1. Clustering results and computational cost for
spectral clustering (SC), affinity propagation (AP) and our
method on the shape matching affinity data.

SC AP Our Method
Clusters 70 64 70
Precision 73% 76.5% 85.36%
NMI 88.63% 88.27% 91.41%
Time(seconds) 11.6904 514.9922 1.2320

We also conduct an experiment on the affinity data
from shape matching. The database is MPEG-7 shape
database, there are 70 categories and each category
contains 20 shapes. For each two shapes, we calcu-
late their matching score (affinity value) using certain
shape matching method, thus obtain a 1400 × 1400
affinity matrix. Such affinity data has no correspond-
ing vectorial representation; at the same time, it usu-
ally contains a large amount of noises, since for dif-
ferent pairs of shapes, their matching scores are com-
puted independently, and the matching method may
produce wrong results on some pairs of shapes. We
compare our method with the spectral clustering and
affinity propagation (Frey & Dueck, 2007), both of
which are classical methods based on affinity matrix.
The result is shown in Table 1. The performance
of clustering is measured by both the precision and
normalized mutual information (NMI). Both spectral
clustering and our method can specify the number of
clusters, but affinity propagation can only approxi-
mate the specified number. Obviously, our method
outperforms spectral clustering and affinity propaga-
tion, and a possible explanation is that the affinity ma-
trix contains many noises and our method is inherently
noise-resistent. At the same time, our method spends
much less time. Note that AP needs to search an ap-
propriate preference value, thus it runs the clustering
algorithm many times and spends very long time.

5. Conclusions and Future Work

In this paper, we define the mode of a graph, which
corresponds to a coherent subset of vertices, thus is in-
herently robust to noises and outliers. We propose the
graph shift algorithm to robustly compute all modes.
The experimental results show that our algorithm is
surprisingly robust to noise and outliers. Future works
include more efficient methods on large scale data and
applications in one-class clustering/classification prob-
lems.

6. Acknowledgement

This work is supported by National Research Foun-
dation/Interactive Digital Media Program, under re-

search Grant NRF2008IDMIDM004-029, Singapore.

References

Bomze, M. Branch-and-bound approaches to standard
quadratic optimization problems. Journal of Global
Optimization, 22:17–37, 2002.

Comaniciu, D. and Meer, P. Mean shift: A robust ap-
proach toward feature space analysis. IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence, pp. 603–619, 2002.

Crammer, K., Talukdar, P., and Pereira, F. A rate-
distortion one-class model and its applications to
clustering. In Proceedings of the 25th Interna-
tional Conference on Machine Learning, pp. 112–
119, 2008.

Frey, J. and Dueck, D. Clustering by passing messages
between data points. Science, 315:972–974, 2007.

Gupta, G. and Ghosh, J. Robust one-class clustering
using hybrid global and local search. In Proceedings
of the 22nd International Conference on Machine
Learning, pp. 273–280, 2005.

Leordeanu, M. and Hebert, M. A spectral technique
for correspondence problems using pairwise con-
straints. In Proceedings of the International Con-
ference on Computer Vision, pp. 1482–1489, 2005.

Motzkin, T. and Straus, G. Maxima for graphs and
a new proof of a theorem of Turan. Theodore S.
Motzkin: selected papers, pp. 311–314, 1983.

Ng, Y., Jordan, I., and Weiss, Y. On spectral clus-
tering: analysis and an algorithm. In Advances in
Neural Information Processing Systems, volume 2,
pp. 849–856, 2002.

Ouyang, Q., Kaplan, D., Liu, S., and Libchaber, A.
DNA solution of the maximal clique problem. Sci-
ence, 278:446–448, 1997.

Pavan, M. and Pelillo, M. Dominant sets and pairwise
clustering. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 29:167–172, 2007.

Shi, J. and Malik, J. Normalized cuts and image seg-
mentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22:888–905, 2000.

Weibull, W. Evolutionary game theory. The MIT
press, 1997.

Zhu, J., Hoi, H., Lyu, R., and Yan, S. Near-duplicate
keyframe retrieval by nonrigid image matching.
ACM Multimedia, pp. 41–50, 2008.

