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Preface

This volume contains the papers accepted to the 25th International Conference on Machine
Learning (ICML 2008). ICML is the annual conference of the International Machine Learning
Society (IMLS), and provides a venue for the presentation and discussion of current re-
search in the field of machine learning. These proceedings can also be found online at
http://www.machinelearning.org.

This year, ICML was held July 5−9 at the University of Helsinki, in Helsinki, Finland, and
was co-located with COLT-2008, the 21st Annual Conference on Computational Learning
Theory, and UAI-2008, the 24th Conference on Uncertainty in Artificial Intelligence.

No less than 583 papers were submitted to ICML 2008. There was a very thorough review
process, in which each paper was reviewed double-blind by three program committee (PC)
members. Authors were able to respond to the initial reviews, and the PC members could
then modify their reviews based on online discussions and the content of this author response.
There were two discussion periods led by the senior program committee (SPC), one just be-
fore and one after the submission of author responses. At the end of the second discussion
period, the SPC members gave their recommendations and provided a summary review for
each of their papers. Some papers were checked by the SPCs to ensure that reviewer com-
ments had been addressed. Apart from the length restrictions on papers and the compressed
time frame, the review process for ICML resembles that of many journal publications. In
total, 158 papers were accepted to ICML this year, including a small number of papers which
were initially conditionally accepted, yielding an overall acceptance rate of 27%.

ICML authors presented their papers both orally and in a poster session, allowing time for
detailed discussions with any interested attendees of the conference. Each day of the main
conference included one or two invited talks by a prominent researcher. We were very fortu-
nate to be able to host Michael Collins, of the Massachusetts Institute of Technology; Andrew
Ng, of Stanford University; and Luc De Raedt, of the Katholieke Universiteit Leuven, and
John Winn of Microsoft Research Cambridge. In addition to the technical talks, ICML-
2008 also included nine tutorials held before the main conference, presented by Alex Smola,
Arthur Gretton, and Kenji Fukumizu; Bert Kappen and Marc Toussaint; Neil Lawrence; Mar-
tin Wainwright; Ralf Herbrich and Thore Graepel; Andreas Krause and Carlos Guestrin; Shai
Shalev-Shwartz and Yoram Singer; Rob Fergus; and Matthias Seeger. This year our work-
shops were organized jointly with COLT and UAI as part of a special “overlap day,” consist-
ing of eleven workshops selected and arranged collaboratively by the respective workshop
chairs of the three conferences. This day provided a rich opportunity for interaction among
the attendees of the conferences.

This year, ICML enlarged its award offerings to match several other well-established confer-
ences. We hope these will help build our community, celebrate our advances, and encourage
applications and long-term thinking. In addition to our previously traditional “Best Paper”
and “Best Student Paper” awards, we also gave awards for “Best Application Paper” and
“10-year Best Paper” (for the best paper of ICML 1998, optionally given in conjunction with
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a co-located conference). We thank the Machine Learning Journal for sponsoring some of
our paper awards.

The organization of ICML-2008 involved efforts from many people, to whom we are ex-
tremely grateful. As program chairs, we worked closely with the general chair, William
Cohen, and the local arrangements chair, Hannu Toivonen. The tutorials chair, Chris Williams,
and the workshop co-chairs, Sanjoy Dasgupta and Michael Littman, also made valuable con-
tributions to the program, and the publication chair, Ricardo Silva, performed a substan-
tial and invaluable service in arranging for publication of the proceedings and ensuring the
quality and uniformity of the papers it contained. We wish to thank Lise Getoor and Rich
Caruana, the funding co-chairs for IMLS, who secured numerous sponsors for ICML; Noah
Smith, the student funding chair, who dispersed student travel awards; and Matti Kääriäinen,
the volunteer chair, who arranged for student volunteers, and made sure the conference ran
smoothly, and Carlos Guestrin, who chaired our awards sub-committee. We also wish to
thank Steven Scott, the treasurer of IMLS, for his support and advice on financial issues,
and Greger Lindén for his work as webmaster for ICML-2008. We also wish to thank Rich
Gerber and Paolo Gai, of SoftConf.com, who administered the START V2 software used for
the conference.

For more general support, we are grateful to the members of IMLS for their advice. We are
also very grateful to the many financial sponsors of ICML (who are listed elsewhere in these
proceedings) for their support of this conference.

No technical conference is possible without the efforts of reviewers, so we wish to thank the
Senior Program Committee, the Program Committee, and the additional reviewers for ICML-
2008 for their careful and conscientious reviewing, which ensured the technical quality of
the papers in these proceedings. Finally, and perhaps most importantly, we wish to thank
the authors who elected to submit their work to ICML-2008, and the people who attended
the conference. We hope that this volume will be a useful resource to them, and the other
members of the machine learning community.

Sincerely,

Andrew McCallum and Sam Roweis
ICML 2008 Program Co-chairs
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José Hernández-Orallo Tom Heskes Thomas Hofmann Derek Hoiem

xvi



Vasant Honavar Pengyu Hong Peter Hooper Tamas Horvath
Chun-Nan Hsu Eyke Huellermeier Dirk Husmeier Alex Ihler
Charles Isbell Tommi Jaakkola Tony Jebara David Jensen
Robert Jenssen Rong Jin Thorsten Joachims Mark Johnson
Rie Johnson Rosie Jones Matti Kääriäinen Ata Kaban
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Alexander Rakhlin Alain Rakotomamonjy Ganesh Ramakrishnan Deva Ramanan
Carl Rasmussen Nathan Ratliff Magnus Rattray Pradeep Ravikumar
Balaraman Ravindran Soumya Ray Matthew Richardson Martin Riedmiller
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Structured Prediction Problems in Natural Language
Processing

Michael Collins
Massachussets Institute of Technology, U.S.A.

Abstract:
Modeling language at the syntactic or semantic level is a key problem in natural language
processing, and involves a challenging set of structured prediction problems. In this talk
I’ll describe work on machine learning approaches for syntax and semantics, with a particu-
lar focus on lexicalized grammar formalisms such as dependency grammars, tree adjoining
grammars, and categorial grammars. I’ll address key issues in the following areas: 1) the de-
sign of learning algorithms for structured linguistic data; 2) the design of representations that
are used within these learning algorithms; 3) the design of efficient approximate inference
algorithms for lexicalized grammars, in cases where exact inference can be very expensive.
In addition, I’ll describe applications to machine translation, and natural language interfaces.
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STAIR: The STanford Artificial Intelligence Robot Project

Andrew Ng
Stanford University, U.S.A.

Abstract:
This talk will describe the STAIR home assistant robot project, and several satellite projects
that led to key STAIR components such as (i) robotic grasping of previously unknown ob-
jects, (ii) depth perception from a single still image, and (iii) apprenticeship learning for
control.

Since its birth in 1956, the AI dream has been to build systems that exhibit broad-spectrum
competence and intelligence. STAIR revisits this dream, and seeks to integrate onto a single
robot platform tools drawn from all areas of AI including learning, vision, navigation, ma-
nipulation, planning, and speech/NLP. This is in distinct contrast to, and also represents an
attempt to reverse, the 30 year old trend of working on fragmented AI sub-fields. STAIR’s
goal is a useful home assistant robot, and over the long term, we envision a single robot that
can perform tasks such as tidying up a room, using a dishwasher, fetching and delivering
items, and preparing meals.

STAIR is still a young project, and in this talk I’ll report on our progress so far on having
STAIR fetch items from around the office. Specifically, I’ll describe: (i) learning to grasp
previously unseen objects (including its application to unloading items from a dishwasher);
(ii) probabilistic multi-resolution maps, which enable the robot to open/use doors; (iii) a
robotic foveal+peripheral vision system for object recognition and tracking. I’ll also outline
some of the main technical ideas − such as learning 3-d reconstructions from a single still
image, and reinforcement learning algorithms for robotic control − that played key roles in
enabling these STAIR components.
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Logical and Relational Learning Revisited

Luc De Raedt
Katholieke Universiteit Leuven, Belgium

Abstract:
I use the term logical and relational learning (LRL) to refer to the subfield of machine
learning and data mining that is concerned with learning in expressive logical or relational
representations. It is the union of inductive logic programming, (statistical) relational learning
and multi-relational data mining and constitutes a general class of techniques and method-
ology for learning from structured data (such as graphs, networks, relational databases) and
background knowledge.

During the course of its existence, logical and relational learning has changed dramatically.
Whereas early work was mainly concerned with logical issues (and even program synthesis
from examples), in the 90s its focus was on the discovery of new and interpretable knowledge
from structured data, often in the form of rules or patterns. Since then the range of tasks
to which logical and relational learning has been applied has significantly broadened and
now covers almost all machine learning problems and settings. Today, there exist logical
and relational learning methods for reinforcement learning, statistical learning, distance- and
kernel-based learning in addition to traditional symbolic machine learning approaches.

At the same time, logical and relational learning problems are appearing everywhere. Ad-
vances in intelligent systems are enabling the generation of high-level symbolic and struc-
tured data in a wide variety of domains, including the semantic web, robotics, vision, social
networks, and the life sciences, which in turn raises new challenges and opportunities for
logical and relational learning,

These developments have led to a new view on logical and relational learning and its role
in machine learning and artificial intelligence. In this talk, I shall reflect on this view by
identifying some of the lessons learned in logical and relational learning and formulating
some challenges for future developments.
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Probabilistic Models for Understanding Images

John Winn
Microsoft Research Cambridge, United Kingdom

Abstract:
Getting a computer to understand an image is challenging due to the numerous sources of
variability that influence the imaging process. The pixels of a typical photograph will depend
on the scene type and geometry, the number, shape and appearance of objects present in the
scene, their 3D positions and orientations, as well as effects such as occlusion, shading and
shadows. The good news is that research into physics and computer graphics has given us a
detailed understanding of how these variables affect the resulting image. This understanding
can help us to build the right prior knowledge into our probabilistic models of images. In
theory, building a model containing all of this knowledge would solve the image understand-
ing problem. In practice, such a model would be intractable for current inference methods.
The open challenge for machine learning and machine vision researchers is to create a model
which captures the imaging process as accurately as possible, whilst remaining tractable for
accurate inference. To illustrate this challenge, I will show how different aspects of the
imaging process can be incorporated into models for object detection and segmentation, and
discuss techniques for making inference tractable in such models.
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Overview of Workshops and Tutorials

Once again, ICML solicited and hosted world-class workshops on topics related to machine
learning. This year, we were delighted to collaborate with the workshop chairs of the UAI
(Nando de Freitas) and COLT (John Langford) conferences to put together an exciting joint
program. We constructed a slate of 13 workshops that represent a wide range of perspectives
and fields, as seen in the summaries below. All workshops were held on July 9th, immediately
after the main conference days. We would like to thank all of the workshop organizers for
their service to the community in putting together these high-quality meetings. We also thank
the outstanding local arrangement chairs and the general and program chairs for ICML and
the other conferences for creating another exciting and successful conference.

Sanjoy Dasgupta and Michael L. Littman
ICML 2008 Workshop Chairs

As in previous years we were pleased to have a strong programme of tutorials for ICML
2008. These were held on 5 July, immediately preceding the main conference. The pro-
gramme featured nine tutorials covering a wide range of methods in and applications of
machine learning. There were tutorials on: embedding distributions in reproducing ker-
nel Hilbert spaces (Smola, Gretton, Fukumizu); stochastic optimal control theory (Kappen,
Toussaint); probabilistic dimensionality reduction (Lawrence); message-passing and relax-
ations in graphical models (Wainwright); machine learning applications in computer games
(Herbrich, Graepel); submodularity in machine learning (Krause, Guestrin); theory and ap-
plications of online learning (Shalev-Shwartz, Singer); visual object recognition and retrieval
(Fergus); and sparse linear models (Seeger). We would like to thank the community for the
high-quality tutorial proposals that were received, the presenters for their extensive efforts in
preparing and delivering the selected tutorials, and the local arrangements, programme and
general chairs of ICML for their hard work in organizing such a stimulating conference.

Chris Williams
ICML 2008 Tutorial Chair

Workshops

W1: Bayesian Modelling Applications

Suzanne M. Mahoney, Innovative Decisions, Inc, U.S.A.
Silja Renooij, Utrecht University, the Netherlands

Hermi J.M. Tabachneck-Schijf, Utrecht University, the Netherlands

The Bayesian Modelling Applications Workshop provides a focused but informal forum for
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fruitful exchanges among theorists, practitioners and tool developers, covering research ques-
tions and insights, methodologies, techniques, and experiences with applications of Bayesian
models to any particular problem domain. Apart from an overall focus on Bayesian mod-
elling, this years 6th edition has as special theme “HOW BIASED ARE OUR NUMBERS?”.
This theme focusses on issues relating to (probability) biases in applications of Bayesian net-
works. We seek insight in and examples of and solutions to encountered biases in sources of
probabilistic information, or introduced by the methods, new or existing, for obtaining and
communicating the numbers. In addition, we are interested in methods for identifying biases
in the numbers, and for establishing their effect on model behaviour.

W2: The 3rd Workshop on Evaluation Methods for Machine Learning

Chris Drummond, NRC Institute for Information Technology, Canada
Nathalie Japkowicz, University of Ottawa, Canada

William Klement, University of Ottawa, Canada
Sofus A. Macskassy, Fetch Technologies, U.S.A.

This workshop is the third in a series, the previous ones having taken place at AAAI over
the past two years. Our continuing goal is to encourage debate within the machine learning
community into how we experimentally evaluate new algorithms. The earlier workshops
were successful in that they began the process of presentation, and discussion, of new ideas
for evaluation. However, they did not raise all the high-level questions we believe must be
addressed by the community. For this reason, we have changed the format of the workshop.
First, we will hold it at ICML. Here, with access to a much larger group of ML researchers
we expect to hear from many more voices that have an interesting take on the issue. Second,
we solicited position papers rather than research papers. This way instead of getting lost into
the nitty-gritty details of particular new evaluation methods, we can address the important,
high-level, issues surrounding machine learning evaluation.

W3: International Workshop on Machine Learning and Music (MML 2008)

Rafael Ramirez, Universitat Pompeu Fabra, Spain
Christina Anagnostopoulou, University of Athens, Greece

Darrell Conklin, City University, United Kingdom
José Manuel Iñesta, Alicante University, Spain

Xavier Serra, Universitat Pompeu Fabra, Spain

With the current explosion and quick expansion of music in digital formats, research on ma-
chine learning and music is gaining increasing popularity. As complexity of the problems
investigated by researchers on this area increases, there is a need to develop new algorithms
and methods to solve these problems. Machine learning has proved to provide efficient so-
lutions to many music-related problems. The application of related techniques to the devel-
opment of music processing systems is an active, exciting and significant area of research
which has become an established field of research. The goal of the workshop is to bring
together researchers who are using machine learning in musical applications, providing the
opportunity to promote, present and discuss ongoing work in the area.
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W4: Machine Learning for Health Care Applications

Milos Hauskrecht, University of Pittsburgh, U.S.A.
Dale Schuurmans, University of Alberta, Canada
Csaba Szepesvári, University of Alberta, Canada

Health-care applications have been and continue to be the source of inspiration for many ar-
eas of artificial intelligence research. Many advances in various sub-specialties of AI have
been inspired by challenges posed by medical problems. A new challenge for AI in general,
but machine learning in particular, arises from the wealth and variety of data generated in
modern medical and health-care settings. Extensive electronic health and medical records −
with thousands of fields recording patient conditions, diagnostic tests, treatments, outcomes,
and so on − provide an unprecedented source of information that can provide clues leading
to potential improvements in disease detection, chronic disease management, design of clini-
cal trials, and other aspects of health-care. The purpose of this workshop is to bring together
machine learning researchers interested in problems and applications in health-care, with
the goal of exchanging ideas and perspectives, identifying important and challenging appli-
cations, and raising awareness of potential health-care applications in the machine learning
community. The workshop program will consists of presentations by invited speakers and
authors of the papers submitted and accepted to the workshop. A panel session focusing on
the main challenges and open problems in the field will be held at the end of the workshop.

W5: Nonparametric Bayes

Yee Whye Teh, University College London, United Kingdom
Romain Thibaux, University of California, Berkeley, U.S.A.

Athanasios Kottas, University of California, Santa Cruz, U.S.A.
Zoubin Ghahramani, University of Cambridge, United Kingdom

Michael Jordan, University of California, Berkeley, U.S.A.

One of the major problems driving current research in statistical machine learning is the
search for ways to exploit highly-structured models that are both expressive and tractable.
Nonparametric Bayesian methodology provides significant leverage on this problem. In the
nonparametric Bayesian framework, the prior distribution is not a fixed parametric form, but
is rather a general stochastic process − a distribution over a possibly uncountably infinite
number of random variables. This generality makes it possible to work with prior and poste-
rior distributions on objects such as trees of unbounded depth and breadth, graphs, partitions,
sets of monotone functions, sets of smooth functions and sets of general measures. Applica-
tions of nonparametric Bayesian methods have begun to appear in disciplines such as infor-
mation retrieval, natural language processing, machine vision, computational biology, cogni-
tive science and signal processing. This workshop is intended to bring together the growing
community of nonparametric Bayesian researchers. The issues we wish to address include:
development of general-purpose software packages for nonparametric Bayesian models, ef-
ficient inference, and new models, methodologies, theoretical frameworks and applications.
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W6: PASCAL Large Scale Learning Challenge

Soeren Sonnenburg, Fraunhofer Institute FIRST, Germany
Vojtech Franc, Fraunhofer Institute FIRST, Germany

Elad Yom-Tov, IBM Haifa Research Lab, Israel
Michele Sebag, LRI, France

With the exceptional increase in computing power, storage capacity and network bandwidth
of the past decades, ever growing datasets are collected. While the data size growth leaves
computational methods as the only viable way of dealing with data, it poses new challenges
to ML methods. The PASCAL Large Scale Learning challenge is concerned with the scal-
ability and efficiency of existing ML approaches with respect to computational, memory or
communication resources.

Indeed many comparisons are presented in the literature; however, these usually focus on
assessing few algorithms and aspects. As a result it is difficult to determine how a method
compares to others in terms of test error, training time and memory requirements, which are
the practically relevant criteria.

The workshop will serve to disseminate the challenge results and announce the winners of
the competition. Authors of the best and most original contributions will present their work.
Furthermore a panel discussion will be devoted to establishing a principled framework for
the validation of large scale learning methods.

W7: Second Planning to Learn Workshop (PlanLearn)

Pavel Brazdil, University of Porto, Portugal
Avi Bernstein, University of Zurich, Switzerland

Larry Hunter, University of Colorado at Denver and Health Sciences Center, USA

The task of constructing composite systems, that is systems composed of more than one part,
can be seen as interdisciplinary area which builds on expertise in different domains. The
aim of this workshop is to explore the possibilities of constructing such systems with the aid
of Machine Learning and exploiting the know-how of Data Mining. One way of producing
composite systems is by inducing the constituents and then by putting the individual parts
together. This problem can be seen as a problem of planning to resolve multiple (possibly
interacting) tasks. So, one important issue that needs to be addressed is how these multiple
learning processes can be coordinated. Each task is resolved using certain ordering of oper-
ations. Meta-learning and knowledge transfer can be useful in this process. It can help us to
retrieve previous solutions conceived in the past and re-use them in new settings. The aim
of the workshop is to explore the possibilities of this new area, offer a forum for exchanging
ideas and experience concerning the state-of-the art, permit to bring in knowledge gathered
in different but related and relevant areas and outline new directions for research.
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W8: Prior Knowledge for Text and Language Processing

Marc Dymetman, Xerox Research Centre Europe, France
Guillaume Bouchard, Xerox Research Centre Europe, France

Hal Daumé III, University of Utah, U.S.A.
Yee Whye Teh, University College London, United Kingdom

The aim of the workshop is to present and discuss recent advances in machine learning ap-
proaches to text and natural language processing that capitalize on rich prior knowledge
models in these domains.

Traditionally, in Machine Learning, a strong focus has been put on data-driven methods that
assume little a priori knowledge on the part of the learning mechanism. Such techniques
have proven quite effective not only for simple pattern recognition tasks, but also, more
surprisingly, for such tasks as language modeling in speech recognition using basic n-gram
models. However, when the structures to be learned become more complex, even large train-
ing sets become sparse relative to the task, and this sparsity can only be mitigated if some
prior knowledge comes into play to constrain the space of fitted models. We currently see
a strong emerging trend in the field of machine learning for text and language processing
to incorporate such prior knowledge for instance in language modeling (e.g. through non-
parametric Bayesian priors) or in document modeling (e.g. through hierarchical graphical
models). There are complementary attempts in the field of statistical computational linguis-
tics (e.g in statistical machine translation) to build hybrid systems that do not rely uniquely on
corpus data, but also exploit some form of a priori grammatical knowledge, bridging the gap
between purely data-oriented approaches and the traditional purely rule-based approaches,
that do not rely on automatic corpus training, but only indirectly on human observations
about linguistic data. The domain of text and language processing thus appears as a very
promising field for studying the interactions between prior knowledge and raw training data,
and this workshop aims at providing a forum for discussing recent theoretical and practical
advances in this area.

W9: Recent Breakthroughs in Minimum Description Length Learning

Tim van Erven, CWI, the Netherlands
Peter Grünwald, CWI, the Netherlands

Petri Myllymäki, University of Helsinki, Finland
Teemu Roos, Helsinki Institute for Information Technology, Finland

Ioan Tabus, Tampere University of Technology, Finland

During the last few years (2004-2007), there have been several breakthroughs in the area
of Minimum Description Length (MDL) modeling, learning and prediction. These break-
throughs concern the efficient computation and proper formulation of MDL in parametric
problems based on the ”normalized maximum likelihood”, as well as altogether new, and
better, coding schemes for nonparametric problems. This essentially solves the so-called
AIC-BIC dilemma, which has been a central problem in statistical model selection for more
than 20 years now. The goal of this workshop is to introduce these exciting new develop-
ments to the ML and UAI communities, and to foster new collaborations between interested
researchers.
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W10: Second Annual Reinforcement Learning Competition (RL 2008)

Shimon Whiteson, Universiteit van Amsterdam, the Netherlands
Adam White, University of Alberta, Canada
Rich Sutton, University of Alberta, Canada
Doina Precup, McGill University, Canada

Peter Stone, University of Texas at Austin, U.S.A.
Michael Littman, Rutgers University, U.S.A.

Nikos Vlassis, Technical University of Crete, Greece
Martin Riedmiller, Universität Osnabrück, Germany

The Second Annual Reinforcement Learning Competition is an opportunity for reinforce-
ment learning researchers to rigorously compare the performance of their methods on a suite
of challenging domains, including: the game of Tetris; robot soccer keepaway, based on
the RoboCup simulator; a real-time strategy (RTS) game; and a helicopter control problem,
based on the work of Andrew Ng and collaborators. This year’s competition will utilize new
evaluation paradigms designed to encourage algorithms that generalize well to previously
unseen tasks. In particular, each domain will be parameterized and test parameters will differ
from those used for training. As a result, only learning algorithms that are robust across a
range of parameters can expect to perform well. The competition concludes with a work-
shop at which the winners will be announced. Top competitors will give short presentations
about their methods and several moderated discussions will be held on topics including the
challenges of empirical RL and the future of the competition.

W11: Sparse Optimization and Variable Selection

Irina Rish, IBM T. J. Watson Research Center, U.S.A.
Guillermo Cecchi, IBM T. J. Watson Research Center, U.S.A.

Rajarshi Das, IBM T. J. Watson Research Center, U.S.A.
Tony Jebara, University of Columbia, U.S.A.

Gerry Tesauro, IBM T. J. Watson Research Center, U.S.A.
Martin Wainwright, University of California, Berkeley, U.S.A.

Variable selection is an important issue in many applications of machine learning and statis-
tics where the main objective is discovering predictive patterns in data that would enhance
our understanding of underlying physical, biological and other natural processes, beyond just
building accurate ’black-box’ predictors. Examples include biomarker selection in biological
applications, identifying brain areas related to various ’mental states’ based on brain imaging
data, identifying a small number of bottlenecks in a large-scale computer network that best
explain the network performance, and so on. Recent years have witnessed a flurry of research
on algorithms and theory for variable selection and estimation involving sparsity constraints.
Various types of convex relaxation, particularly L1-regularization, have proven very effec-
tive: examples include the LASSO, Elastic Net, L1-regularized GLMs, sparse classifiers such
as sparse (1-norm) SVM, as well as sparse dimensionality reduction methods (e.g. sparse
component analysis such as sparse PCA and sparse NMF). Applications of these methods
are wide-ranging, including computational biology, neuroscience, graphical model selection,
and the rapidly growing area of compressed sensing. Theoretical work has provided some
conditions when various relaxation methods are capable of recovering an underlying sparse
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signal, provided bounds on sample complexity, and investigated trade-offs between differ-
ent choices of design matrix properties that guarantee good performance. The goal of this
workshop is to bring together researchers working on the methodology, theory and appli-
cations of sparse models and selection methods to share their experiences and insights into
both the basic properties of the methods, and the properties of the application domains that
make particular methods more (or less) suitable. We hope to further explore connections
between variable selection and related areas such as dimensionality reduction, optimization
and compressed sensing.

Tutorials

T1: Painless Embeddings of Distributions: the Function Space View

Alex Smola, NICTA, Australia
Arthur Gretton, Max Planck Institute for Biological Cybernetics, Germany

Kenji Fukumizu, Institute of Statistical Mathematics, Japan

In the early days of kernel machines research, the “kernel trick” was considered a useful
way of constructing nonlinear algorithms from linear ones. More recently, however, it has
become clear that a potentially more far reaching use of kernels is as a linear way of dealing
with higher order statistics. For instance, in kernel independent component analysis, general
nonlinear dependencies show up as linear correlations once they are computed in a suitable
reproducing kernel Hilbert space. This tutorial provides an introduction to embeddings of
probability distributions into reproducing kernel Hilbert spaces, as a way of painlessly deal-
ing with high order statistics. We will cover both theoretical issues, such as conditions under
which different probability distributions have unique mappings; as well as practical applica-
tions ranging from tests of distribution properties (homogeneity, independence, conditional
independence) to density estimation to causal inference.

T2: Stochastic Optimal Control Theory

Bert Kappen, Radboud University, the Netherlands
Marc Toussaint, Technical University, Germany

Stochastic optimal control theory concerns the problem of how to act optimally when reward
is only obtained at a later time. The stochastic optimal control problem is central to model-
ing of intelligent behavior in animals or machines. Examples are the control of multi-joint
robot arms, navigation of vehicles, coordination of multi-agent systems, and decision mak-
ing in financial applications. Classical optimal control theory is based on principles like the
Hamilton-Jacobi-Bellman equation, the Pontryagin maximum principle, and special cases
like the LQ-case and the Ricatti equations. More familiar to the Machine Learner are Re-
inforcement Learning or (Partially Observable) Markov Decision Processes which can be
viewed as special cases of stochastic control theory. This tutorial aims to introduce to the
classical principles as well as the more modern frameworks and thereby to provide an in-
tegrative view on the different notions. Special emphasis is given on newer approaches of
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using inference techniques to solving stochastic optimal control problems. The tutorial is
introductory and aimed at the ’average’ machine learning researcher. No background in con-
trol theory and/or reinforcement learning is assumed. A basic understanding of Bayesian
networks and statistical inference is assumed.

T3: Dimensionality Reduction, the Probabilistic Way

Neil Lawrence, University of Manchester, United Kingdom

The main focus of this tutorial will be probabilistic interpretations of dimensional reduc-
tion. It is aimed to complement the tutorial given by Lawrence Saul at NIPS 2005 on
“Spectral Methods for Dimensional Reduction”. Its particular focus will be probabilistic
approaches to dimensional reduction based on generative models. These approaches have
become increasingly popular in graphics and vision through the Gaussian Process Latent
Variable Model. However, there also is a history to these methods which is perhaps less
widely known amoungst the newer generation of researchers. In particular the Generative
Topographic Mapping and Latent Density Networks. This tutorial will give grounding to
these methods through unifying them in the context of probabilistic latent variable models.
This will involve a introduction to these approaches through the mechanism of probabilistic
PCA, then a discussion of density networks leading into the generative topographic mapping.
Finally the dual interpretation of probabilistic PCA and its extension to the GP-LVM will be
given. Throughout the tutorial we will develop intuition about the methods with an ongoing
set of example data sets. A particular focus of these example data sets will be motion capture
data. Motion capture data is a nice example to use because it is easy for the human eye to tell
when samples from the model are realistic. One aspect of the tutorial will be the difference
between the probabilistic approaches and the more commonly applied spectral approaches.
In particular we will emphasise the distance preservation character of the probabilistic ap-
proaches: namely that local distances in the data are not necessarily preserved in the latent
space. This contrasts with spectral algorithms which typically aim to preserve such local
distances. These different characteristics mean that probabilistic approaches complement the
spectral approaches, but the bring their own range of associated problems, in particular local
minima in the optimisation space. Heuristics for avoiding these local minima will also be
discussed.

T4: Graphical Models and Variational Methods: Message-passing and Relaxations

Martin Wainwright, University of California, Berkeley, U.S.A.

Graphical models provide a flexible framework for capturing dependencies among large col-
lections of random variables, and are by now an essential component of the statistical ma-
chine learning toolbox. Any application of graphical models involves a core set of computa-
tional challenges, centered around the problems of marginalization, mode-finding, parameter
estimation, and structure estimation. Although efficiently solvable for graphs without cycles
(trees) and graphs of low treewidth more generally, exact solutions to these core problems
are computationally challenging for general graphical models with large numbers of nodes
and/or state space sizes. Consequently, many applications of graphical models require effi-
cient methods for computing approximate solutions to these core problems. The past decade
and a half has witnessed an explosion of activity on approximate algorithms for graphical
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models. This tutorial will show how a wide class of methods − including mean field theory,
sum-product or belief propagation algorithms, expectation-propagation, and max-product al-
gorithms− are all variational methods, meaning that they can be understood as algorithms for
solving particular optimization problems on graphs. The perspective also forges connections
to convex optimization, including linear programming and other type of conic relaxations.

T5: Playing Machines: Machine Learning Applications in Computer Games

Ralf Herbrich, Microsoft Research Cambridge, United Kingdom
Thore Graepel, Microsoft Research Cambridge, United Kingdom

The tutorial will give an introduction to the emerging area of applying machine learning to
computer games and of using computer games as test beds for machine learning. One of
the key problems in computer games is the creation of AI driven agents that interact with
the player so as to create a great interactive gaming experience. As a consequence a sub-
stantial part of the tutorial will consider adaptive and learning game AI based on supervised
and reinforcement learning. However, computer games also offer a great variety of other
challenges including problems in graphics, sound, networking, player rating and matchmak-
ing, interface design, narrative generation etc. Selected problems from some of these areas
will be discussed together with machine learning approaches to solve them. Since this is an
application area, the tutorial will focus on past and recent applications, open problems and
promising avenues for future research. It will also provide resources available to people who
would like to work in this fascinating and fun research space.

T6: Beyond Convexity: Submodularity in Machine Learning

Andreas Krause, Carnegie Mellon University, U.S.A.
Carlos Guestrin, Carnegie Mellon University, U.S.A.

Convex optimization has become a main workhorse for many machine learning algorithms
during the past ten years. When minimizing a convex loss function for, e.g., training a Sup-
port Vector Machine, we can rest assured to efficiently find an optimal solution, even for large
problems. In recent years, another fundamental problem structure, which has similar bene-
ficial properties, has emerged as very useful in a variety of machine learning applications:
Submodularity is an intuitive diminishing returns property, stating that adding an element to
a smaller set helps more than adding it to a larger set. Similarly to convexity, submodularity
allows one to efficiently find provably (near-)optimal solutions. In this tutorial, we will give
an introduction to the concept of submodularity, discuss algorithms for optimizing submodu-
lar functions and− as the main focus− illustrate their usefulness in solving difficult machine
learning problems, such as active learning and sparse experimental design, informative path
planning, structure learning, clustering, influence maximization and ranking.

T7: Tutorial on Theory and Applications of Online Learning

Shai Shalev-Shwartz, Toyota Technological Institute, U.S.A.
Yoram Singer, Google, U.S.A.

Online learning is a well established learning paradigm which has both theoretical and prac-
tical appeals. The goal of online learning is to make a sequence of accurate predictions
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given knowledge of the correct answer to previous prediction tasks and possibly additional
available information. The roots of online learning goes back to Hannan’s work in the 50s.
Online learning became of great interest to practitioners due the recent emergence of large
scale web applications. Notable examples of web-based applications are online advertise-
ment placement and online web ranking. The tutorial is targeted at people from all areas
of machine learning and covers the formal foundations along with algorithmic and practical
aspects of online learning. The goal is to provide a high-level, broad, and rigorous overview
of the formal framework. By the end of tutorial the attendees should have acquired enough
knowledge to be able to pin-point an online algorithm that best matches an application.

The tutorial starts with a simple example of predicting the next element of a binary sequence.
We then formally introduce the basic definitions of online learning and the notion of regret
analysis. Next we describe the problem of predicting with experts advice by analyzing a few
algorithms and contrasting them with an impossibility result. This basic setting is then re-
examined in the context of online learning of general linear predictors. We give a recent anal-
ysis which reveals an underlying primal-dual apparatus for the analysis of online algorithms.
We conclude the formal part of the tutorial with a description of extensions and generaliza-
tions of online learning tasks while underscoring connections to game theory, information
theory, and reinforcement learning. We recap the tutorial with two complete examples that
demonstrate the usage of online learning for portfolio selection and for text filtering.

T8: Visual Object Recognition and Retrieval

Rob Fergus, New York University, U.S.A.

The tutorial will address the problem of recognizing visual object classes in images, cur-
rently the focus of much interest in Computer Vision. As recent innovations in the area draw
heavily on machine learning concepts, the tutorial will attempt to highlight the growing in-
tersection between the two areas. The material will be divided five sections, covering (i) bag
of words models; (ii) parts and structure models; (iii) discriminative methods; (iv) combined
recognition and segmentation and (v) retrieval schemes for large datasets. The emphasis will
be on the important general concepts rather than in depth coverage of contemporary papers.
The tutorial is a revised version of the prize-winning short course given at ICCV 2005 and
CVPR 2007 in conjunction with Fei-Fei Li (Princeton) and Antonio Torralba (MIT).

T9: Sparse Linear Models: Bayesian Inference and Experimental Design

Matthias Seeger, Max Planck Institute for Biological Cybernetics, Germany

Sparse linear models are cornerstones of applied statistics, embodying fundamental ideas
such as feature selection, shrinkage, and automatic relevance determination. While much
progress has been made recently in understanding point estimation of sparse signals, Bayesian
inference is needed to drive higher-level tasks such as experimental design, where valid un-
certainties and covariances are more important than point estimates. In this tutorial, the ma-
jor determnistic inference approximations to date (expectation propagation, sparse Bayesian
learning, variational mean field Bayes) will be introduced for the sparse linear model, and
their mathematics (scale mixtures, convex duality, moment matching) will be clarified. Se-
quential Bayesian design, with the application to optimizing an image measurement archi-
tecture, serves as motivation for this effort.
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Gaussian Process Product Models for Nonparametric

Nonstationarity

Ryan Prescott Adams rpa23@cam.ac.uk

Oliver Stegle os252@cam.ac.uk

Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK

Abstract

Stationarity is often an unrealistic prior as-
sumption for Gaussian process regression.
One solution is to predefine an explicit non-
stationary covariance function, but such co-
variance functions can be difficult to spec-
ify and require detailed prior knowledge of
the nonstationarity. We propose the Gaus-
sian process product model (GPPM) which
models data as the pointwise product of two
latent Gaussian processes to nonparametri-
cally infer nonstationary variations of ampli-
tude. This approach differs from other non-
parametric approaches to covariance function
inference in that it operates on the outputs
rather than the inputs, resulting in a signifi-
cant reduction in computational cost and re-
quired data for inference. We present an ap-
proximate inference scheme using Expecta-
tion Propagation. This variational approx-
imation yields convenient GP hyperparame-
ter selection and compact approximate pre-
dictive distributions.

1. Introduction

The Gaussian process (Rasmussen & Williams, 2006)
is a useful and popular prior for nonlinear regression.
It can be used to construct a distribution over scalar
functions via a prior on smoothness. This prior is spec-
ified through a positive-definite kernel, which deter-
mines the covariance between two outputs as a func-
tion of their corresponding inputs. Often, this covari-
ance function is taken to be stationary, i.e., a function
only of the distance between the input points. Sta-
tionary covariance functions are appealing due to their
intuitive interpretation and their relative ease of con-
struction via Bochner’s Theorem (Gibbs, 1997).

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

Unfortunately, stationarity is often an unrealistic
assumption. We expect many problems of interest
to have nontrivial nonstationarity in the form of
input-dependent noise, length scale or amplitude.
While input-dependent noise and length-scale have
been well-studied in the literature, nonstationarity in
the form of varying amplitude has received relatively
little attention.

One approach to modeling such data is to directly
specify a covariance function with nonstationary prop-
erties (Gibbs, 1997; Higdon et al., 1999). In machine
learning, however, we find it undesirable to need to
specify the covariance nonstationarity a priori ; rather
we wish to infer it. Moreover, as the objective with
Gaussian process regression is to perform nonparamet-
ric inference, we would prefer a representation of the
nonstationarity which is also nonparametric.

Several approaches have been proposed to solve the
problem of learning a length scale that varies across
the input space. One of the first techniques was
that of Sampson and Guttorp (1992), who model a
spline-based mapping to a latent input space in which
the data are stationary. This approach was given a
nonparametric Bayesian treatment by Schmidt and
O’Hagan (2003). Recently, Paciorek and Schervish
(2004) extended the work of Higdon et al. (1999) to
learn nonparametric variation of the covariance ker-
nel. Other approaches involve Gaussian process mix-
tures (Rasmussen, 2000), augmentation of the input
space (Pfingsten et al., 2006), and weighted sums of
locally-stationary processes (Nott & Dunsmuir, 2002).

A related problem is input-dependent observation
noise in the Gaussian process, addressed by Goldberg
et al. (1998), who model a log-noise term in the co-
variance function with another Gaussian process, and
by Le et al. (2005) who model nonstationary noise by
performing regression in the natural parameter space
of the exponential family. Snelson and Ghahramani
(2006) achieve nonstationary noise as a side effect of
the combination of input dimensionality reduction and
a sparse approximation using pseudo-data.
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In this paper, we propose the Gaussian process
product model (GPPM) to address smooth input-
dependent changes in amplitude. The GPPM models
the data as the pointwise product of two latent sta-
tionary Gaussian processes. This approach has the
notable computational advantage over remappings of
the input space in that high dimensional problems pose
no intrinsic scalability problems. Remapping the input
nonparametrically while maintaining the input dimen-
sion requires at least as many latent processes as input
dimensions. In contrast, the GPPM uses only a sin-
gle additional GP regardless of input dimension. We
develop a quadrature-based Expectation Propagation
(EP) algorithm for efficient approximate inference in
the GPPM model. The EP approach allows us to use
the estimated marginal likelihood of the model to learn
empirical settings of the Gaussian process hyperpa-
rameters. The approximate inference procedure we de-
scribe yields uncertainty in the nonstationarity, while
avoiding expensive MCMC methods that are typically
required. We additionally develop useful approxima-
tions for the predictive distribution arising from the
EP approximation, and discuss rapid learning of a
MAP estimate of the nonstationarity when observa-
tions can be considered noise free. This model is simi-
lar to that presented by Turner and Sahani (2008), who
modulate sounds with Gaussian processes, however the
GPPM is intended for the general regression problem
and our inference approach differs significantly.

2. Gaussian Process Regression

In Gaussian process regression, we find a distribution
over functions of the form f : X → R, X = R

m.
For a comprehensive introduction see Rasmussen and
Williams (2006). The data consist of N input/output
pairs D = {xn, yn}N , xn ∈ X , yn ∈ R. A vector of
output points has a Gaussian prior distribution with a
mean function µ(x), which we take to be zero, and a
positive-definite covariance function C(x,x′;θ). This
construction gives an analytic Gaussian predictive dis-
tribution for an unseen output y⋆ ∼ N (µ⋆, v⋆):

µ⋆ = kT

NC−1
N yN , v⋆ = C(x⋆,x⋆) − kT

NC−1
N kN ,

where kN = [C(x⋆,x1;θ), . . . , C(x⋆,xN ;θ)]
T
, and

CN is the covariance matrix formed from the observed
data. The log evidence, or log marginal likelihood af-
ter integrating out all possible functions is

L = −1

2
ln |CN | − 1

2
yT

NC−1
N yN − N

2
ln 2π. (1)

Stationary covariance functions only depend on a dis-
tance measure d between x and x′, for example the

σ2

θg

x1 x2 x3 xN

θf

y1 y2 y3 yN

g1 g2 g3 gN

fNf3f2f1

Figure 1. A graphical model describing the GPPM. The
thick lines connecting the values of f and g represent undi-
rected connections associated with the Gaussian process.
The double-lined circles around the y values represent ob-
servables. Both f(x) and g(x) have the same input space.

Mahalanobis distance d(x,x′) = (x−x′)TW (x−x′)
with positive definite W . Covariance functions that
depend only on distance are appealing due to the intu-
ition that the outputs of the function should covary in
inverse proportion to how far the inputs are from each
other. The model proposed in this paper attempts to
retain this intuition while providing a mechanism for
the relationship between distance and covariance to
vary across the input space.

3. The Gaussian Process Product Model

In the Gaussian process product model (GPPM), the
observed outputs {yn}N are modeled by a pointwise
product of two latent functions, plus independent zero-
mean Gaussian noise with variance σ2. One latent
function f : X → R, is modulated by the other func-
tion g : X → R that has been exponentiated, so that

yn ∼ N (f(xn)eg(xn), σ2). (2)

We place independent zero-mean Gaussian process
priors on f(x) and g(x), with covariance functions
Cf (x,x′;θf ) and Cg(x,x′;θg), respectively. Figure 1
shows a graphical interpretation of this model. Our
convention is that f(x) captures local near-stationary
variations in the observed function and g(x) captures
slowly-varying amplitude nonstationarity. The length-
scale hyperparameters of these covariance functions
(and their hyperpriors) should be chosen to reflect
prior beliefs about such variations. To give the fla-
vor of this model, Figure 2 shows several samples from
the GPPM.
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−5 −4 −3 −2 −1 0 1 2 3 4 5
y = f * exp(g) g f

Figure 2. Three samples from the GPPM with different pa-
rameters. In the top plot, the length scales are lf = 0.5 and
lg = 4.0. In the middle plot, both are shorter: lf = 0.25
and lg = 2.0. In the bottom plot, lf = 0.5 and lg = 2.0,
but f(x) also has additive noise.

Note that the pointwise product of a Gaussian process
prior with any known function a(x) results in a covari-
ance function given by C ′(x,x′) = a(x)C(x,x′)a(x′)
and that this function is guaranteed to be positive def-
inite. In the GPPM we use an exponentiated form
a(x) = exp{g(x)} in order to reduce the multimodal-
ity of the posterior on the latent functions, but this
is not critical for the validity of the covariance func-
tion. Without restricting the sign of one of the func-
tions, there would be at least 2N posterior modes, as
each observation could be explained by the same latent
function values with flipped signs.

4. Factor Inference in the GPPM

The basic GPPM inference task is to determine
the posterior distribution over the values of the la-
tent functions f(x) and g(x) at the input loca-
tions {xn}N . These latent function values will be de-
noted fn = f(xn) and gn = g(xn) for brevity.
Additionally we will write the vectors of these la-
tent values in bold type: f = [f1, . . . , fN ]

T
and

g = [g1, . . . , gN ]
T
. With this notation and with Cf

and Cg representing the GP-derived covariance matri-
ces on f(x) and g(x) respectively, the posterior distri-
bution of the latent functions is

p(f , g | D,θ) ∝ N (f ; 0,Cf )N (g; 0,Cg)

×
N∏

n=1

N (yn; fnegn , σ2). (3)

4.1. Approximate Inference

Approximate inference via variational methods is ap-
pealing due to its determinism and potential computa-
tional savings. In the GPPM, several properties affect
our choice of approximation. First, we expect that the
posterior will be approximately Gaussian, as we have
strong Gaussian process priors and a near-Gaussian
likelihood. Second, the likelihood factorizes to N inde-
pendent terms, each involving one point from the two
latent functions. Third, these likelihood factors intro-
duce nontrivial dependencies between f and g so that
a factorized approximation is inappropriate. We ad-
dress these properties using Expectation Propagation.

4.1.1. Expectation Propagation

Expectation Propagation (Minka, 2001) makes succes-
sive local approximations of factors in a joint den-
sity, typically using exponential-family distributions,
to yield a global approximation that is optimal under
a divergence measure. EP is particularly well-suited
for approximation of Bayesian posterior distributions
with i.i.d. data as in Equation 3, as each factor only
involves a few of the unknown parameters.

Our construction of the EP approximation is similar
to that used by Rasmussen and Williams (2006) for
binary Gaussian process classification. The prior on
f and g is Gaussian with zero mean and a block co-
variance matrix arising from the independent Gaus-
sian process priors. For notational convenience, we
will write φ to be the concatenation of f and g so
that φ = [f1, . . . , fN , g1, . . . , gN ]T, and φn to be the
nth pair [fn gn]T. The prior can now be written

p(φ) = N (0,ΣGP), ΣGP =

[
Cf 0
0 Cg

]

.

The aim of EP is to approximate the exact posterior
distribution of Equation 3 with a tractable alternative

q(f , g | D,θ) ∝ N (0,ΣGP)
N∏

n=1

t̃n(fn, gn). (4)

Each of the exact likelihood terms

Ln(fn, gn) =
1

σ
√

2π
exp

{

− 1

2σ2
(fnegn − yn)

2

}

is approximated with an unnormalized bivariate Gaus-
sian on fn and gn:

t̃n(fn, gn) = Z̃n exp

{

−1

2
(φn − µ̃n)TΣ̃

−1

n (φn − µ̃n)

}

.

The product of these likelihood approximations is an
unnormalized Gaussian with a block-diagonal covari-
ance matrix.

N∏

n=1

t̃n(φn) = exp

{

−1

2
(φ − µ̃)TΣ̃

−1
(φ − µ̃)

} N∏

n=1

Z̃n

3



Gaussian Process Product Models

The overall approximation is Gaussian as well, as it is
the product of these Gaussian likelihood approxima-
tions and the Gaussian process prior.

q(f , g | D,θ) = N
(

φ =

[
f

g

]

;µ,Σ

)

(5)

Σ =
(

Σ−1
GP

+ Σ̃
−1

)−1

µ = ΣΣ̃
−1

µ̃

The Expectation Propagation algorithm proceeds by
iteratively updating the parameters of the local ap-
proximations tn, leaving all other approximate factors
fixed. In this iterative procedure the update of the nth
site can be understood as the minimization of the KL
divergence between two approximating distributions:
the product of the cavity distribution times the exact
local likelihood, and the product of the cavity distri-
bution times the approximate local likelihood. The
insight of EP is that the cavity distribution “focuses”
the approximation on the most relevant area.

µ̂n, Σ̂n = argmin
µ′,Σ′

KL

[

N (µ/n,Σ/n) ×
exact factor
︷ ︸︸ ︷

Ln(fn, gn)
∣
∣
∣
∣

N (µ/n,Σ/n) × t̃n(fn, gn|µ′,Σ′)
︸ ︷︷ ︸

approximation

]

The cavity distribution for site n is the product of the
prior and all approximate sites excluding the nth. This
is Gaussian with parameters

Σ/n =
(

Σ−1
n − Σ̃

−1

n

)−1

(6)

µ/n = Σ/n

(

Σ−1
n µn − Σ̃

−1

n µ̃n

)

. (7)

As shown by Minka (2001), the minimum of an in-
clusive KL divergence is achieved when the moments
are equal. Thus to find the best-fitting Gaussian, it is
sufficient to find the first and second moments of the
product of the cavity distribution and the exact likeli-
hood. We also find the “zeroth moment,” which is the
normalization constant Ẑn. Calculation of these mo-
ments is done numerically via Gaussian quadrature,
addressed in Section 4.1.2.

Once the moments of the product have been found,
we use them to recover the optimal parameters of the
local approximation:

Σ̃n =
(

Σ̂
−1

n − Σ−1
/n

)−1

µ̃n =Σ̃n

(

Σ̂
−1

n µ̂n − Σ−1
/n µ/n

)

ln Z̃n = ln Ẑn − 1

2
ln |Σ̃n| +

1

2
ln |Σ/n| +

1

2
µ̃T

nΣ̃
−1

n µ̃n

+
1

2
µT

/nΣ−1
/n µ/n − 1

2
µ̂T

nΣ̂
−1

n µ̂n.

Taken together these equations define a fixed-point
iteration scheme for approximating the posterior in
Equation 3. We initialize the approximations so that
the initial estimate of the mean of f is y and the mean
of g is zero. We then iterate over each of the N lo-
cal approximations, and update the overall posterior
approximation using Equation 5. To facilitate conver-
gence of EP it is helpful to use damping to update
local sites, which we implement in natural parameter
space. Convergence of EP is not guaranteed, but given
sufficient damping it is found to convergence for the
problems we considered so far. Local approximations
may not necessarily be positive definite, but as long as
the overall approximation remains a valid Gaussian,
this does not present a problem. Following from the
treatment by Minka (2001) of negative variances, we
skip the update of local approximations that would
result in invalid global covariance matrices. This has
not appeared to affect the accuracy of the global ap-
proximation in practice. Figure 3(b) shows the result
of applying the EP procedure to a synthetic data set.
Marginal error bars are shown for each function and
site location.

4.1.2. Gaussian Quadrature for EP

Unfortunately, the moments that minimize the KL
divergence of Section 4.1.1 are not available analyti-
cally. To resolve this, we use the approach proposed
by Zoeter and Heskes (2005) of approximating the
moment integrals using Gaussian quadrature. When
a definite integral is the product of a nonnegative
“weighting function” w(v) and another function z(v),
it can be approximated by a sum of weighted evalua-
tions of z(v)

∫ a

b

dv w(v)z(v) ≈
K∑

k=1

wkz(vk)

where the weights {wk} and abscissae {vk} are deter-
mined by the integration interval, the weighting func-
tion w(v), and the number of evaluation points K.
This sum is exact where z(v) is a polynomial of degree
2K−1. In the case of interest here, the weighting func-
tion is the Gaussian cavity distribution, which implies
Gauss-Hermite quadrature.

One difficulty is that Gaussian quadrature is gener-
ally oriented towards univariate definite integrals and
we must solve a two-dimensional integral. When the
weighting function is factorizable, this is done straight-
forwardly by defining a lattice of abscissae and using
the Cartesian product of the weights. In the GPPM,
however, the cavity distribution has nonzero mean and
is not generally factorizable, so we must transform
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the integrand prior to to performing Gauss-Hermite
quadrature. The factorizable form can be recovered by
transforming the abscissae with the inverse Cholesky
decomposition of the cavity covariance matrix and
the cavity mean. The Gaussian parameters resulting
from these moment calculations are denoted Ẑn, µ̂n,
and Σ̂n in Section 4.1.1.

4.2. Noise-free MAP Learning

In some applications of the GPPM, it may be that the
observations can be considered noise-free. For exam-
ple, one may model the noise as coming exclusively
from the locally-varying function f(x). The appeal
of this restricted model is that proposals of the non-
stationarity can now be evaluated as O(N2) rather
than O(N3). This is particularly valuable for finding
rapid maximum a posteriori (MAP) estimates of the
latent modulating function g(x). The computational
advantage in the noise-free case comes from the deter-
ministic coupling of the latent functions, given y; we
can now consider the posterior of g alone:

p(g |θf ,θg) ∝ p(D | g,θf )p(g |θg). (8)

In this form, conditioning on g corresponds to a simple
linear transformation of the GP prior on f . Using the
notational shortcut G = diag([eg1 , eg2 , . . . , egN ]), the
log likelihood is

ln p(D | g,θf ) = −1

2
ln |GCfG|

− 1

2
yT[GCfG]−1y − N

2
ln 2π.

The log posterior over g, eliminating irrelevant terms
and using 1 to indicate a column vector of ones, is

ln p(g | D,θf ,θg) = −gT1 − 1

2
yT[GCfG]−1y

− 1

2
gTC−1

g g + const

and the gradient in terms of g is

∂

∂g
ln p(g | D,θf ,θg) = −1 + Y [GCfG]−1y − C−1

g g

where Y = diag(y). As the difficult O(N3) opera-
tions of decomposition or inversion of Cf and Cg can
be done in advance, the computational complexity of
taking a step in g space is O(N2). In practice, we
have found the MAP estimate to be best when f(x)
has additive noise and g(x) is smooth.

5. Making Predictions

As with the standard regression model, the primary
task of interest is prediction at locations where data
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Figure 3. Figure 3(a) shows synthetic data generated from
the GPPM with known settings and σ = 0.05. We applied
the Expectation Propagation algorithm to the data and
the Gaussian marginal posterior distributions over f and
g are shown in Figure 3(b), along with the true f(x) and
g(x) indicated as circles. Figure 3(c) shows the result of
applying the MAP approximation to the data, despite the
known observation noise. The true values are shown for
comparison.

have not been observed. For the GPPM we must make
predictions for both latent functions, and find the re-
sulting distribution, integrating out the posterior dis-
tribution over the latent functions, as in

p(y⋆ |x⋆,D,θf ,θg)

=

∫

f ,g

p(y⋆ |x⋆,f , g)p(f , g | D,θf ,θg).

5
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The EP scheme of Section 4.1 finds an approximate
Gaussian distribution over f and g, and this results in
a convenient joint Gaussian distribution on f⋆ and g⋆,
the values of the latent functions at x⋆, with parame-
ters

µ⋆=KT

(

ΣGP + Σ̃
)−1

µ̃, Σ⋆= κ−KT

(

ΣGP + Σ̃
)−1

K,

where

K =















C(x⋆,x1;θf ) 0
C(x⋆,x2;θf ) 0

...
...

C(x⋆,xN ;θf ) 0
0 C(x⋆,x1;θg)
...

...
0 C(x⋆,xN ;θg)















κ =

[
C(x⋆,x⋆;θf ) 0

0 C(x⋆,x⋆;θg)

]

.

We expect that the resulting predictive distribution on
y⋆ will be heavy-tailed and have similar properties to
the noncentral Student’s t distribution. To approxi-
mate the true distribution’s heavy tails analytically,
one approach is to generate several samples from g⋆

and use the conditional distribution on f⋆ to create a
mixture of Gaussians:

p(y⋆ |x⋆,D,θf ,θg) ≈
∑

i

N (y⋆;µ⋆
f |gi

eg⋆
i , v⋆

f |gi
e2g⋆

i ).

We have used µ⋆
f |gi

and v⋆
f |gi

to indicate the con-
ditional Gaussian parameters on f⋆ given the ith
marginal sample from g⋆.

If the heavy-tailed properties are not significant for
the application, and a single Gaussian distribution is
preferred, then a more tractable alternative is to lin-
earize the model around the mean µ⋆. This is a sim-
ilar approach to the Extended Kalman Filter (EKF)
(Haykin, 2001), which uses the first terms of the Tay-
lor series of a nonlinear function to maintain Gaussian
uncertainty in latent state estimation. The resulting
approximation is

f⋆eg⋆ ≈
µ⋆

µ⋆
feµ⋆

g +

[
eµ⋆

g

µ⋆
feµ⋆

g

]T [
f⋆ − µ⋆

f

g⋆ − µ⋆
g

]

which transforms the Gaussian on f⋆ and g⋆ into one
on y⋆ with parameters

µ⋆
y = µ⋆

feµ⋆
g v⋆

y =

[
eµ⋆

g

µ⋆
feµ⋆

g

]T

Σ⋆

[
eµ⋆

g

µ⋆
feµ⋆

g

]

+ σ2.

6. Hyperparameter Learning

When performing Gaussian process regression, we are
commonly interested in appropriate settings of the

hyperparameters controlling the covariance function.
These hyperparameters generally determine the length
scale of correlations, the output variation (or ampli-
tude) of the function, and the noise level. In the
GPPM, we wish to find appropriate hyperparame-
ter settings for both latent functions, given the data.
While the vanilla Gaussian process offers the marginal
likelihood analytically, it is not available directly in the
GPPM. Fortunately, the EP algorithm of Section 4.1
provides a convenient estimate of the marginal likeli-
hood, using the zeroth moments mentioned previously.

lnZEP =
1

2
ln |Σ| − 1

2
ln |ΣGP| −

1

2
µ̃TΣ̃

−1
µ̃

+
1

2
µTΣ−1µ +

N∑

n=1

ln Z̃n

In principle it is also possible to evaluate the gradients
of lnZEP with respect to hyperparameters following
for instance (Seeger, 2005). In practice however, the
quadrature-based moment calculation is numerically
not stable enough to provide precise gradients. We
hence reverted to gradient-free optimization methods
to determine hyper parameter settings. We suggest
setting hyperpriors to reflect the intuition described
in Section 3 of f(x) capturing local near-stationary
variations and g(x) capturing slowly varying nonsta-
tionarity on a larger lengthscale.

7. Results

We evaluated the GPPM model on three data sets.
First, we examined the motorcycle data set (Parker &
Rice, 1985), a well-studied example of a nonstationary
regression task. The data are acceleration force in g’s
on a helmet during impact, as a function of time in mil-
liseconds. Figure 4(a) in the upper plot shows the EP
approximation found for the latent g(x) function, and
in the lower plot shows the Gaussian approximation
to the predictive distribution, overlaid with the true
data. The GPPM finds a good fit in most regions ex-
cept where the g(x) function becomes quite small. In
these regions the uncertainty in the modulating func-
tion creates unrealistically large prediction error bars.
We evaluated the accuracy of predictions using a fill-in
test, where a fraction of the data are removed from the
training set and compared to the model’s predictions.
Figure 4(d) depicts the mean log probability and the
mean squared error for missing data as a function of
the fraction of missing data. The GPPM outperforms
both a vanilla GP and the sparse pseudo-input pro-
cess (SPGP) (Snelson & Ghahramani, 2006) using ei-
ther of the performance measures. We chose the SPGP
for comparison to the GPPM, as it is one of the few
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Figure 4. Top panel: Predictive distribution of GPPM for three different data sets. The upper plot shows the EP
approximation to the posterior of the log-modulating function g(x) with 2σ error bars. The lower plot shows the raw data,
along with the 2σ approximate predictive distribution. Lower panel: Fill-in test for corresponding data sets comparing
three models. The upper plot shows the mean log probability of the missing data as a function of the fill-in rate. The
lower plot shows the root mean squared error for these data. Both plots show mean values and 2σ error bars, calculated
from four training/test splits.

methods capable of representing nonstationarity with-
out requiring MCMC. Hyperparameters for the SPGP
and the vanilla GP were set via ML-II optimization
(Rasmussen & Williams, 2006). To set hyperparame-
ters in the GPPM, a grid search was used, centered on
the settings for the vanilla GP.

We also examined the performance of the GPPM for
daily log returns of the S&P 500 stock index during
2007. We expect that these data will be well-modeled
by a latent f(x) comprised primarily of noise. The log
modulating function g(x) can be interpreted roughly
as the log “volatility” of the stochastic process and
is shown in the upper plot of Figure 4(b). The cor-
responding expected envelope is shown against the
true data in the lower plot. Performance measures
against the standard Gaussian process and the SPGP
are shown in Figure 4(e). In this example mean predic-
tions are equally good for three all models, but GPPM
yields nonstationary uncertainty which results in an
improved mean log probability.

As a last application we applied the GPPM to 23
hours of heart rate data, sampled at 5 minute intervals.
Based on the physiological properties of heart rates,

we expect correlations on a short time scale to be cap-
tured by f(x). These local correlations will be mod-
ulated by an activity profile over a daily time scale.
Figure 4(c) illustrates that these amplitude modula-
tions are picked up by the latent g(x) leading to im-
proved predictive performance compared to the vanilla
GP and SPGP, as shown in Figure 4(f).

8. Discussion

We have introduced the Gaussian process product
model for modeling nonstationary amplitude in re-
gression. We have presented an approximate infer-
ence algorithm using Expectation Propagation to infer
the latent functions in this model and have exploited
this approximation to make tractable predictions and
enable hyperparameter learning. When examined on
real-world data, the GPPM has yielded promising re-
sults, outperforming the vanilla Gaussian process. It
has also outperformed an alternative approach to non-
stationary regression in the SPGP, although it should
be noted that the SPGP’s focus is purely on efficient
regression and not on modeling nonstationarity per se.
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Computationally, the model we have presented, com-
bined with the EP implementation has two appealing
properties. First, as we expect the number of EP itera-
tions to be independent of the number of data (Minka,
2001), and each local calculation is a O(N2) rank-one
update of the inverse, the overall algorithm is O(N3).
The GPPM is therefore only a constant multiple more
expensive than performing standard Gaussian process
regression. Second, in contrast to methods of model-
ing nonstationarity on the input side, the GPPM does
not introduce additional latent spaces if the input di-
mensionality increases. The additional computational
complexity of using the GPPM is essentially indepen-
dent of input dimension.

In future work, a more comprehensive examination of
inference of hyperparameters is warranted. We also
expect that the basic idea of this model can be used to
perform vector regression with correlation that varies
across the input space.
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Abstract

The problem of identifying the minimal gene
set required to sustain life is of crucial im-
portance in understanding cellular mecha-
nisms and designing therapeutic drugs. This
work describes several kernel-based solutions
for predicting essential genes that outper-
form existing models while using less train-
ing data. Our first solution is based on a
semi-manually designed kernel derived from
the Pfam database, which includes several
Pfam domains. We then present novel and
general domain-based sequence kernels that
capture sequence similarity with respect to
several domains made of large sets of protein
sequences. We show how to deal with the
large size of the problem – several thousands
of domains with individual domains some-
times containing thousands of sequences – by
representing and efficiently computing these
kernels using automata. We report results
of extensive experiments demonstrating that
they compare favorably with the Pfam ker-
nel in predicting protein essentiality, while
requiring no manual tuning.

1. Motivation

Identifying the minimal gene set required to sustain
life is of crucial importance for understanding the fun-
damental requirements for cellular life and for select-
ing therapeutic drug targets. Gene knockout stud-
ies and RNA interference are experimental techniques

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

for identifying an organism’s “essential” genes, or the
set of genes whose removal is lethal to the organism.
However, these techniques are expensive and time-
consuming. Recent work has attempted to extract
from experimental knockout studies relevant features
of essentiality, which aid in identifying essential genes
in organisms lacking experimental results.

Several features have been proposed as indicators
for essentiality, including evolutionary conservation,
protein size, and number of paralogs (Chen & Xu,
2005). Using these basic features, Chen and Xu (2005)
constructed a model of essentiality for S. cerevisiae
(baker’s yeast). Using Naive Bayes Classifiers (NBC),
Gustafson et al. (2006) subsequently created a model
of essentiality for S. cerevisiae and E. coli using an ex-
tended set of features generated from sequence data.

This work presents kernel methods to improve upon
existing models. We first use several sequence ker-
nels recently introduced by the computational biology
community and show that the Pfam kernel (Ben-Hur
& Noble, 2005) is most effective in selecting essential
genes for S. cerevisiae. The Pfam kernel has recently
been applied successfully in several biologically moti-
vated learning tasks, and is generated from the Pfam
database, the leading resource for storing protein fam-
ily classification and protein domain data. However,
the Pfam database is an ad-hoc solution relying on
semi-manually tuned information.

In the second part of this work, we design general se-
quence kernels that produce effective similarity mea-
sures while bypassing the manual tuning of the Pfam
database. We present two sequence kernels that are in-
stances of rational kernels, a class of sequence kernels
defined by weighted automata that are effective for an-
alyzing variable-length sequences (Cortes et al., 2004).
Using automata to represent and compute these ker-
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nels is crucial in order to handle the large number of
Pfam domains and the size of each of domain – we work
with 6190 domains with the largest domain contain-
ing over 3000 protein sequences. These novel kernels
are designed from the same domain-specific data used
by the Pfam library, and we show how they compare
favorably to the Pfam kernel at predicting protein es-
sentiality. They are general domain-based kernels that
can be used in many problems in bioinformatics or
other applications where similarity needs to be defined
in terms of proximity to several large sets of sequences.

The remainder of the paper is organized as follows.
Section 2 describes the various sequence kernels and
outlines the model used to improve prediction accu-
racy of protein essentiality in S. cerevisiae. Section 3
describes and analyzes the novel rational kernels we
present as alternatives to the Pfam kernel. Section 4
presents the results of extensive experiments compar-
ing these domain-based kernels to the Pfam kernel.

2. Pfam-Based Solution

Our first model uses Support Vector Machines (SVMs)
(Cortes & Vapnik, 1995) to predict protein essential-
ity with choices of kernels including the RBF kernel as
well as three sequence kernels. In the following sub-
sections, we define the sequence kernels, outline the
experimental design, and present our first results.

2.1. Sequence Kernels

Pfam Kernel

The Pfam database is a collection of multiple sequence
alignments and Hidden Markov Models (HMMs) rep-
resenting many common protein domains and fami-
lies. Pfam version 10.0 contains 6190 domains, and
for each domain an HMM is constructed from a set of
proteins experimentally determined to be part of the
domain (‘seed’ proteins). Each HMM is trained using
a manually-tuned multiple alignment of the seed pro-
teins with gaps inserted to normalize sequence length.
Once constructed, the HMM is evaluated in an ad-hoc
fashion and the entire process is repeated if the align-
ment is deemed ‘unsatisfactory.’ See (Sonnhammer
et al., 1997) for further details.

When applied to a test sequence, a Pfam domain
HMM generates an E-value statistic that measures the
likelihood of the test sequence containing the domain.
Given a dataset of protein sequences, the Pfam se-
quence kernel matrix is constructed by representing
each protein in the dataset as a vector of 6190 log
E-values and computing explicit dot products from
these feature vectors (Ben-Hur & Noble, 2005). The
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Figure 1. SVM’s performance for RBF and Sequence Ker-
nels using a reduced training set. Note that accuracy for
NBC corresponds to a model trained on 50% of training
data.

Pfam kernel has recently been applied successfully in
learning tasks ranging from protein function (Lanck-
riet et al., 2004) to protein-protein interaction (Ben-
Hur & Noble, 2005).

Spectrum and Motif Kernels

The Spectrum and Motif kernels are two recently pro-
posed sequence kernels used in learning tasks to esti-
mate protein similarity (Leslie & Kuang, 2004; Ben-
Hur & Brutlag, 2003). Both kernels model a protein
in a feature space of subsequences, with each feature
measuring the extent to which the protein contains
a specific subsequence. The Spectrum kernel models
proteins in a feature space of all possible n-grams, rep-
resenting each protein as a vector of n-gram counts (in
our studies we set n = 3). Alternatively, the Motif ker-
nel uses a feature space consisting of a set of discrete
sequence motifs (we use a set of motifs extracted from
the eMotif database (Ben-Hur & Noble, 2005)). For
both kernels, the resulting kernel matrices are com-
puted as an explicit dot product using these features.

2.2. Data

We used the dataset of S. cerevisiae proteins from
Gustafson et al. (2006), consisting of 4728 yeast pro-
teins of which 20.4% were essential. We constructed
the RBF kernel matrix from a set of 16 features gen-
erated directly from protein sequences, corresponding
to the ‘easily attainable’ features from Gustafson et al.
(2006). We used data from Ben-Hur and Noble (2005)
to construct the Pfam, Spectrum and Motif kernel ma-
trices, each of which was constructed following the
steps outlined in Section 2.1 and subsequently centered
and normalized. In addition to the RBF and the three
sequence kernels, we also used a combined Pfam/RBF
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kernel, which we computed by additively combining
the RBF kernel matrix with the normalized Pfam ker-
nel matrix (RBF kernels are by definition normalized).

2.3. Experimental Design

We ran experiments with 100 trials. For each trial,
we randomly chose 8.3% of the data as a training set
and used the remaining points as a test set, subject
to the constraint that an equal number of essential
proteins were in each set.1 We used the training set to
train an SVM, and used the resulting model to make
predictions on the test set in the form of probabilities
of essentiality. We used libsvm’s functionality (Chang
& Lin, 2001) to estimate the outputs of an SVM as
probabilities by fitting its results to a sigmoid function
(Platt, 2000). To calculate the predicted probability of
essentiality for each protein, we took the average over
the predictions from each trial in which the protein
appeared in the test set.

We measured the accuracy of the model for the pro-
teins with the highest predicted probability of essen-
tiality, using positive predictive value (PPV) as a per-
formance indicator. Grid search was used to determine
the optimal values for parameters C and gamma. Stan-
dard deviations were calculated from 10 ‘super-trials,’
each corresponded to a 100-trial experiment described
above. The Naive Bayes classifier (NBC) results were
taken from Gustafson et al. (2006) and standard devi-
ations were not reported.

2.4. First Results

Figure 1 shows SVM’s performance using the set of
kernels outlined above. The results show that the
Pfam kernel is the most effective of the three sequence
kernels at predicting essentiality. They also clearly
show that the combined Pfam/RBF kernel outper-
forms all other models. The importance of the phyletic
retention feature is a possible reason for the superior
performance of the combined kernel compared with
Pfam alone. As shown by Gustafson et al. (2006) and
verified in our work, phyletic retention (a measure of
gene conservation across species) is a powerful predic-
tor of essentiality. This feature is used by RBF but
not by Pfam (or by the domain-based kernels defined
in Section 3) because it requires comparing sequences
across organisms.

These results improve upon the leading model for pre-
diction of protein essentiality while reducing the size
of the training set more than five fold. Further, this is

1Gustafson et al. (2006) used 50% of the data for train-
ing, but otherwise, our experimental designs are identical.

0                          a:b/1

1

a:b/2

2/1
a:b/4

3/8

b:a/6

b:a/3

b:a/5

0                        b/1

1

b/2

2/1
b/4

3/8

a/6

a/3

a/5

(a) (b)

Figure 2. (a) Example of weighted transducer T . (b) Ex-
ample of weighted automaton A. A can be obtained from
T by projection on the output and T (aab, bba) = A(bba) =
1 × 2 × 6 × 8 + 2 × 4 × 5 × 8.

the first result showing the effectiveness of the Pfam
kernel for this task, a fact that motivates the following
sections of this paper, in which we seek a more general
alternative to the Pfam kernel.

3. Domain-Based Sequence Kernels

In the previous section, we tested various sequence ker-
nels, all introduced precisely to compute the similarity
between protein sequences. Our results showed that
the Pfam kernel was the most effective of these ker-
nels, and we now aim to find a more general solution
free of the manual tuning associated with the Pfam
database.

Specifically, we wish to determine a method to extract
similarities between protein sequences based on their
similarities to several domains, each represented by a
set of sequences, i.e., Pfam domains. Although sev-
eral sequence kernels have been recently introduced
in the machine learning community, e.g., mismatch,
gappy, substitution and homology kernels (Leslie &
Kuang, 2004; Eskin & Snir, 2005), none of these ker-
nels provides a solution to our domain-based learning
problem. Indeed, these kernels are not designed to ef-
ficiently compute the similarity between a string and a
large set of strings, which in our case consists of 6190
Pfam domains each containing tens to thousands of
sequences.

Alternatively, large sets of strings, such as the Pfam
domains, can be efficiently represented by minimal de-
terministic automata. Hence, an efficient way to de-
fine a similarity measure between such sets is to use
automata-based kernels. This leads us to consider
the framework for automata-based kernels proposed
by Cortes et al. (2004). An additional benefit of this
framework is that most commonly used string kernels
are special instances of this scheme.

11
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3.1. Representation and Algorithms

We will follow the definitions and terminology given
by Cortes et al. (2004). The representation and com-
putation of the Domain-based kernels are based on
finite-state transducers, which are finite automata in
which each transition is augmented with an output la-
bel in addition to the familiar input label (Salomaa
& Soittola, 1978). Input (output) labels are concate-
nated along a path to form an input (output) sequence.
Weighted transducers are finite-state transducers in
which each transition carries some weight in addition
to the input and output labels. The weights of the
transducers considered in this paper are real values.

Figure 2(a) shows an example of a weighted finite-state
transducer. In this figure, the input and output labels
of a transition are separated by a colon delimiter, and
the weight is indicated after the slash separator. A
weighted transducer has a set of initial states repre-
sented in the figure by a bold circle, and a set of final
states, represented by double circles. A path from an
initial state to a final state is an accepting path.

The weight of an accepting path is obtained by first
multiplying the weights of its constituent transitions
and multiplying this product by the weight of the ini-
tial state of the path (which equals one in our work)
and the weight of the final state of the path (dis-
played after the slash in the figure). The weight asso-
ciated by a weighted transducer T to a pair of strings
(x, y) ∈ Σ∗ ×Σ∗ is denoted by T (x, y) and is obtained
by summing the weights of all accepting paths with in-
put label x and output label y. For example, the trans-
ducer of Figure 2(a) associates the weight 416 to the
pair (aab, bba) since there are two accepting paths la-
beled with input aab and output bba: one with weight
96 and another one with weight 320.

The standard operations of sum +, product or con-
catenation ·, and Kleene-closure ∗ can be defined for
weighted transducers (Salomaa & Soittola, 1978). For
any pair of strings (x, y),

(T1 + T2)(x, y) = T1(x, y) + T2(x, y)

(T1 · T2)(x, y) =
∑

x1x2=x
y1y2=y

T1(x1, y1) · T2(x2, y2). (1)

For any transducer T , T−1 denotes its inverse, that is
the transducer obtained from T by swapping the input
and output labels of each transition. For all x, y ∈ Σ∗,
we have T−1(x, y) = T (y, x).

The composition of two weighted transducers T1 and
T2 with matching input and output alphabets Σ, is a

weighted transducer denoted by T1 ◦T2 when the sum:

(T1 ◦ T2)(x, y) =
∑

z∈Σ∗

T1(x, z) · T2(z, y) (2)

is well-defined and in R for all x, y (Salomaa & Soit-
tola, 1978).

Weighted automata can be defined as weighted trans-
ducers A with identical input and output labels, for
any transition. Since only pairs of the form (x, x) can
have a non-zero weight associated to them by A, we
denote the weight associated by A to (x, x) by A(x)
and call it the weight associated by A to x. Similarly,
in the graph representation of weighted automata, the
output (or input) label is omitted. Figure 2(b) shows
an example of a weighted automaton. When A and B

are weighted automata, A◦B is called the intersection
of A and B. Omitting the input labels of a weighted
transducer T results in a weighted automaton which
is said to be the output projection of T .

3.2. Automata-Based Kernels

A string kernel K : Σ∗ × Σ∗ → R is rational if it co-
incides with the function defined by a weighted trans-
ducer U , that is for all x, y ∈ Σ∗, K(x, y) = U(x, y).
Not all rational kernels are positive definite and sym-
metric (PDS), or equivalently verify the Mercer condi-
tion, which is crucial for the convergence of training for
discriminant classification algorithms such as SVMs.
But, for any weighted transducer T , U = T ◦ T−1 is
guaranteed to define a PDS kernel (Cortes et al., 2004).

Furthermore, most rational kernels used in computa-
tional biology and natural language processing are of
this form (Haussler, 1999; Leslie & Kuang, 2004; Lodhi
et al., 2002; Zien et al., 2000; Collins & Duffy, 2001;
Cortes & Mohri, 2005). For instance, the n-gram ker-
nel is a rational kernel. The n-gram kernel Kn is de-
fined as

Kn(x, y) =
∑

|z|=n

cx(z)cy(z), (3)

where cx(z) is the number of occurrences of z in x.
Kn is a PDS rational kernel since it corresponds to the
weighted transducer Tn ◦T−1

n where the transducer Tn

is defined such that Tn(x, z) = cx(z) for all x, z ∈ Σ∗

with |z| = n. The transducer T2 for Σ = {a, b} is
shown in Figure 3.

We will now extend this formalism to measure the sim-
ilarity between domains, or sets of strings represented
by an automaton. Let us define the count of a string
z in a weighted automaton A as:

cA(z) =
∑

u∈Σ∗

cu(z)A(u). (4)
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0

a:ε
b:ε

1a:a
b:b

2a:a
b:b

a:ε
b:ε

Figure 3. Counting transducer T2 for Σ = {a, b}.

The similarity between two sets of strings represented
by the weighted automata A and B according to n-
gram kernel Kn can then be defined by:

Kn(A, B) =
∑

x,y∈Σ∗

(A ◦ Tn ◦ T−1
n ◦ B)(x, y)

=
∑

|z|=n

cA(z)cB(z).
(5)

Other rational kernels can be extended into a similar-
ity measure between sets of strings in the same way.
We will now define two families of kernels that can be
used in a variety of applications where similarity with
respect to domains is needed.

3.3. Independent Domain Kernel

The Independent Domain kernel (IDK) measures the
similarity between two sequences in our dataset D
by comparing their similarities to each domain, e.g.,
Pfam domains.2 For the i-th Pfam domain (with
1 ≤ i ≤ P = 6190), let Pi be the set of all seed pro-
tein sequences for that domain. Each sequence in Pi

is represented as a string in an alphabet, Σ, consist-
ing of |Σ| = 21 characters, 20 for different amino acids
plus an optional gap character used to represent gaps
in the seed alignment. We denote by Di the mini-
mal deterministic automaton representing the set of
strings Pi. For a given sequence x in our dataset,
we can use the n-gram kernel Kn to compute the
similarity between x and the i-th Pfam domain Pi:
Kn(x, Di). This leads to an overall similarity measure
vector s(x) ∈ R

P between x and the set of domains:
s(x) = (Kn(x, D1), . . . , Kn(x, DP )). We now define
the IDK KI as, for all x, y in Σ∗:

KI(x, y) =

P
X

i=1

Kn(x, Di)Kn(y,Di)

=

P
X

i=1

(
X

|z|=n

cx(z)cDi
(z))(

X

|z|=n

cy(z)cDi
(z)).

(6)

KI is PDS since it is constructed via an explicit dot-
product. Any PDS kernel K with positive eigenvalues

2Both the IDK and spectrum kernels represent se-
quences as vectors of n-gram counts but only the IDK ac-
counts for the n-gram spectrums of the domains of interest.

can be normalized to take values between 0 and 1 by
defining K ′ as

K ′(x, y) =
K(x, y)

√

K(x, x)K(y, y)
. (7)

We apply this normalization to KI to account for the
varying lengths of proteins in our dataset, since longer
proteins will contain more n-grams and will thus tend
to have more n-gram similarity with every domain.

The kernel KI can be efficiently computed by comput-
ing Kn(x, Di) for all 1 ≤ i ≤ P as follows:

1. Compute Di for each Pi by representing each se-
quence in Pi by an automaton and determinizing
and minimizing the union of these automata.

2. For all 1 ≤ i ≤ P compute Tn◦Di, and for each se-
quence x in the dataset compute Tn ◦X , where X

is the automaton representing x. Optimize the re-
sults by projecting onto outputs, applying epsilon-
removal, determinizing and minimizing to obtain
weighted automata Ai and Yx.

3. Compute Kn(x, Di) by intersecting Ai and Yx and
using a generic single-source shortest-distance al-
gorithm (Cortes et al., 2004) to compute the sum
of all the paths in the resulting automaton.

The complexity of computing Kn(x, Di) for a fixed set
of domains grows linearly in the length of x, hence
the complexity of computing KI(x, y) grows linearly
in the sum of the length of x and y, i.e. in O(|x|+ |y|).
Thus, this kernel is efficient to compute. However, it
does not capture the similarity of two sequences in as
fine a way as the next kernel we present.

3.4. Joint Domain Kernel

Let us consider two sequences x and y and a given
domain Pi. Let X be the set of n-grams in common
between x and Pi, and Y the set of n-grams in common
between y and Pi. When computing the similarity
between x and y according to Pi, the IDK KI takes
into account all n-grams in common between x and Pi

and between y and Pi, i.e., all the n-grams in X ∪ Y,
regardless of whether these n-grams appear in both x

and y. Thus, KI may indicate that x and y are similar
according to Pi even if X and Y differ significantly, or
in other words, even if x and y are similar to Pi for
different reasons. In contrast, the Joint Domain kernel
(JDK) only takes into consideration the n-grams in
common to x, y and Pi, that is the n-grams in X ∩Y,
when determining the similarity between x and y. It
will thus declare x and y similar according to Pi iff x

and y are similar to Pi for the same reason.
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Figure 4. Counting transducer T 2 with Σ = {a, b}, ‘?’ rep-
resenting the gap symbol and an expansion penalty weight
of 0.5.

For each domain Pi, the JDK defines a kernel Ki that
measures the similarity between two sequences x and
y according to Pi, using as a similarity measure the
count of the n-grams in common among x, y and Pi.
More precisely, we define Ki : Σ∗×Σ∗ → R as follows:

Ki(x, y) =
∑

|z|=n

cx(z)c2
Di

(z)cy(z). (8)

Each Ki is normalized as shown in Equation 7. We
then combine these P kernels to obtain the kernel KJ :
Σ∗ × Σ∗ → R defined as follows:

KJ(x, y) =

P∑

i=1

Ki(x, y)

=
∑

i=1

∑

|z|=n

cx(z)c2
Di

(z)cy(z).

(9)

We will now show that each Ki and thus KJ is a PDS
rational kernel. Let Ai be the weighted automata ob-
tained by composing Di with Tn and projecting the
result onto its output: Ai = π2(Di ◦ Tn). From the
definition of Tn, it follows that Ai(z) = cDi

(z) and
cx(z) = Tn(x, z) for all |z| = n. Thus, for all (x, y),
Ki(x, y) can be rewritten as:

Ki(x, y) =
∑

|z|=n

Tn(x, z)Ai(z)Ai(z)Tn(y, z)

=(Tn ◦ Ai ◦ Ai ◦ (Tn)−1)(x, y).

(10)

Observe that (Tn◦Ai)
−1 = A−1

i ◦T−1
n = Ai◦T−1

n since
for an automaton the inverse A−1

i coincides with Ai.
Thus, Ki(x, y) =

(
(Tn ◦Ai) ◦ (Tn ◦Ai)

−1
)
(x, y), which

is of the form T ◦T−1 and thus Ki is PDS. Since PDS
kernels are closed under sum, KJ is also PDS.

The computation of the kernel KJ is more costly than
that of KI since a full D × D kernel matrix needs to
be computed for each Pfam domain. This leads to
D2 × P rational kernel computations to compute KJ ,
compared to only D×P rational kernel computations
for KI . This is significant when P = 6190. Thus, it
is important to determine an efficient way to compute
the kernels Ki. The following is an efficient method
for computing KJ that we adopt in our experiments,

in which the complexity of computing KJ(x, y) for a
fixed set of domains linearly depends on the product
of the length of x and y, i.e. in O(|x||y|):

1. Compute each Ai and optimize using epsilon-
removal, determinization and minimization.

2. For each sequence x in the dataset, compute
Yx = π2(Tn ◦X) where X is the automaton repre-
senting x and optimize Yx using epsilon-removal,
determinization and minimization.

3. Ki(x, y) is obtained by computing Ai ◦ Yx and
Ai ◦ Yy, computing the intersection of the result-
ing automata and using a generic single-source
shortest-distance algorithm (Cortes et al., 2004)
to compute the sum of all paths in the resulting
automaton.

Gap Symbol Handling

The sequence alignments in the Pfam domain (Pi) con-
tain a gap symbol used to pad the alignments. In the
previous two sections, we either ignored the gap sym-
bol (when dealing with raw sequence data) or treated
it as a regular symbol (when dealing with aligned se-
quences). In the latter case, since this symbol does
not appear in the sequences in the dataset, the result
is that all n-grams containing the gap symbol are ig-
nored during the computation of KI and KJ .

Alternatively, we can treat the gap symbol as a wild-
card, allowing it to match any regular symbol. This
can be achieved by modifying the transducer Tn to
match any gap symbol on its input to any regular sym-
bol on its output (these transitions can also be assigned
a weight to penalize gap expansion). We denote by Tn

the resulting transducer and replace Tn by Tn when
composing with Di. Figure 4 shows T 2 for |Σ| = {a, b}
with the symbol ‘?’ representing the gap symbol and
an expansion penalty weight of 0.5.

3.5. Domain Kernels Based on Moments of

Counts

Although counting common n-grams leads to informa-
tive kernels, this technique affords a further general-
ization that is particularly suitable when defining ker-
nels for domains. We can view the sum of the counts
of an n-gram in a domain as its average count after
normalization. One could extend this idea to consider
higher moments of the counts of an n-gram, as this
could capture useful information about how similarity
varies across the sequences within a single domain.

Remarkably, it is possible to design efficiently com-
putable domain kernels based on these quantities by
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Figure 5. SVM’s performance with various kernels aver-
aged over all datasets.

generalizing the domain kernels from Sections 3.3 and
3.4 in a way similar to what is described by Cortes and
Mohri (2005). Let m be a positive integer. We can de-
fine the m-th moment of the count of the sequence z

in a weighted automata A, denoted by cA,m(z), as:

cA,m(z) =
∑

u∈Σ∗

cm
u (z)A(u). (11)

Both of our kernel families can then be generalized to
a similarity measure based on the m-th moment of the
n-gram counts as follows:

K
I
m(x, y) =

P
X

i=1

(
X

|z|=n

cx,m(z)cDi,m(z))(
X

|z|=n

cy,m(z)cDi,m(z))

K
J
m(x, y) =

X

i=1

X

|z|=n

cx,m(z)c2

Di,m(z)cy,m(z).

These kernels can be efficiently computed by using, in
place of Tn, a transducer T n

m that can be defined such
that T n

m(x, z) = (cx(z))m = cx,m(z) for all x, z ∈ Σ∗

with |z| = n.

4. Experimental Results

We evaluated the domain-based kernels described in
Section 3 (with n = 3) using an experimental de-
sign similar to Section 2.3. In order to test these ker-
nels under various conditions, we chose to work with
datasets sampled from the yeast dataset used in Sec-
tion 2. We constructed 10 datasets, each containing
500 sampled data points randomly chosen from the
4728 initial points, subject to the constraint that we
maintained the same ratio of positively and negatively
labeled points. We worked on a large cluster machines
and used the OpenFst and OpenKernel libraries to
construct similarity matrices for each sample dataset
for varying kernels (Allauzen et al., 2007; Allauzen
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Figure 6. SVM’s performance with various kernels com-
bined with RBF kernel averaged over all datasets.

& Mohri, 2007). Generating similarity matrices took
less than 30 minutes for IDK, 1 hour for JDK, and 2.5
hours for JDK with gaps treated as wildcards. We do
not show results for the top 1% since it is an unre-
liable statistic when working with 500 points. In all
reported results we exclude results from one sampled
dataset that generated pathological results for all se-
quence kernels.

Figure 5 shows the average prediction performance
over the sampled datasets for various kernels. The fig-
ure shows that the average performance of the JDK
with gaps treated as wildcards (JDK-GAPS-W) is
slightly better than the Pfam kernel, as it outperforms
the Pfam kernel for the top 10% and 20% predictions.
The figure also presents results for variants of the JDK
that either ignore gaps in the seed alignment (JDK)
or treat them as a distinct symbol (JDK-GAPS). The
results show that, regardless of the treatment of gaps,
the JDK drastically outperforms the IDK.

Based on these results, we next tested the effectiveness
of the JDK combined with the RBF kernel. Similar to
the results in Figure 1, average prediction performance
over the sampled datasets was better using combina-
tion kernels in contrast to any kernel alone.3 Figure
6 shows that the combined JDK is comparable to the
combined Pfam kernel. Further, in contrast to the re-
sults in Figure 5, the treatment of gaps by the JDK
does not significantly alter prediction efficiency. In
other words, the JDK is able to match the best results
of the Pfam kernel using only raw Pfam sequence data
(JDK), while completely ignoring the hand-curated
multiple sequence alignments that are vital to param-
eterizing the HMMs of the Pfam Library. We did
not perform experiments using higher moments of the
count, as described in Section 3.5, though we suspect

3As in Figure 1, RBF alone outperforms all sequence
kernels alone, possibly due to the phyletic retention feature.
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that these more refined kernels would lead to further
improvements over the Pfam kernel.

5. Conclusion

We presented novel domain-based sequence kernels
that require no hand-crafted information, in contrast
to the Pfam kernel. The joint domain kernels we de-
fined were shown to match or outperform the best pre-
vious results for predicting protein essentiality. These
kernels and their generalization based on moments of
counts can be used for any application requiring sim-
ilarity between sequences that may be extracted from
proximity to several large sequence domains. In bioin-
formatics, such applications may include remote ho-
mology prediction, subcellular localization, and pre-
diction of protein-protein interaction.
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Zien, A., Rätsch, G., Mika, S., Schölkopf, B.,
Lengauer, T., & Müller, K.-R. (2000). Engineer-
ing Support Vector Machine Kernels That Recog-
nize Translation Initiation Sites. Bioinformatics, 16,
799–807.

16



Hierarchical Kernel Stick-Breaking Process for Multi-Task Image Analysis

Qi An QA@EE.DUKE.EDU
Chunping Wang CW36@EE.DUKE.EDU
Ivo Shterev IS33@EE.DUKE.EDU
Eric Wang EW28@EE.DUKE.EDU
Lawrence Carin LCARIN@EE.DUKE.EDU

Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708

David B. Dunson DUNSON@STAT.DUKE.EDU

Department of Statistical Science, Duke University, Durham, NC 27708

Abstract
The kernel stick-breaking process (KSBP) is em-
ployed to segment general imagery, imposing the
condition that patches (small blocks of pixels)
that are spatially proximate are more likely to
be associated with the same cluster (segment).
The number of clusters is not set a priori and
is inferred from the hierarchical Bayesian model.
Further, KSBP is integrated with a shared Dirich-
let process prior to simultaneously model mul-
tiple images, inferring their inter-relationships.
This latter application may be useful for sorting
and learning relationships between multiple im-
ages. The Bayesian inference algorithm is based
on a hybrid of variational Bayesian analysis and
local sampling. In addition to providing details
on the model and associated inference frame-
work, example results are presented for several
image-analysis problems.

1. Introduction
The segmentation of general imagery is a problem of long-
standing interest. There have been numerous techniques
developed for this purpose, including K-means and associ-
ated vector quantization methods (Ding & He, 2004), sta-
tistical mixture models (McLachlan & Basford, 1988), as
well as spectral clustering (Ng et al., 2001). This list of
existing methods is not exhaustive, although these methods
share attributes associated with most existing algorithms.
First, the clustering is based on the features of the image,
and when clustering these features one typically does not

Appearing in Proceedings of the 25 th International Conference
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account for their physical location within the image (al-
though the location may be appended as a feature compo-
nent). Secondly, the segmentation or clustering of images
is typically performed one image at a time, and therefore
there is no attempt to relate the segments of one image to
segments in other images (i.e., to learn inter-relationships
between multiple images). Finally, in many of the tech-
niques cited above one must a priori set the number of an-
ticipated segments or clusters. The techniques developed
in this paper seek to perform clustering or segmentation in
a manner that explicitly accounts for the physical locations
of the features within the image, and multiple images are
segmented simultaneously (termed “multi-task learning”)
to infer their inter-relationships. Moreover, the analysis is
performed in a semi-parametric manner, in the sense that
the number of segments or clusters is not set a priori, and
is inferred from the data. There has been recent research
wherein spatial information has been exploited when clus-
tering (Figueiredo et al., 2007), but that segmentation has
been performed one image at a time, and therefore not in a
multi-task setting.

To address the goals elucidated above within a statistical
setting, we employ a class of hierarchical models related to
the Dirichlet process (DP) (Ferguson, 1973). The Dirichlet
process is a statistical prior that may be summarized suc-
cinctly as follows. Assume that the n-th patch is repre-
sented by feature vector xn, and the total image is com-
posed of N such feature vectors {xn}n=1,N . The feature
vector associated with each patch is assumed drawn from a
parametric distribution f(φn), where φn represents the pa-
rameters associated with the n-th feature vector. A DP prior
can be placed on φn, which is characterized by the non-
negative parameter α and the “base” distribution Go. We
adopt the stick-breaking construction developed by Sethu-
raman (Sethuraman, 1994), and the hierarchical model may
be expressed as
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xn|φn
ind∼ f(φn)

φn|G iid∼ G

G =
∞∑

h=1

πhδθh
(1)

πh = Vh

h−1∏

l=1

(1− Vl)

Vh
iid∼ Beta(1, α)

θh
iid∼ Go.

This is termed a “stick-breaking” representation of DP be-
cause one sequentially breaks off “sticks” of length πh

from an original stick of unit length (
∑∞

h=1 πh = 1).
As a consequence of the properties of the distribution
Beta(1, α), for relatively small α it is likely that only
a relatively small set of sticks πh will have appreciable
weight/size, and therefore when drawing parameters φn

from the associated G it is probable multiple φn will share
the same “atoms” θh (those associated with the large-
amplitude sticks). The parameter α therefore plays an im-
portant role in defining the number of clusters that are con-
stituted, and therefore in practice one typically places a
non-informative Gamma prior on α (Xue et al., 2007).

The form of the model in (1) imposes the prior belief that
the feature vectors {xn}n=1,N associated with an image
should cluster, and the data are used to infer the most prob-
able clustering distribution, via the posterior distribution on
the parameters {φn}n=1,N . Such semi-parametric cluster-
ing has been studied successfully in many settings (Xue
et al., 2007; Rasmussen, 2000). However, there are two
limitations of such a model, with these defining the focus
of this paper. First, while the model in (1) captures our
belief that the feature vectors should cluster, it does not im-
pose our additional belief that the probability that two fea-
ture vectors are in the same cluster should increase as their
physical locations within the image become more proxi-
mate; this is an important factor when one is interested in
segmenting an image into contiguous regions. Secondly,
typical semi-parametric clustering has been performed one
image or dataset at a time, and here we wish to cluster mul-
tiple images simultaneously, to infer the inter-relationships
between clusters in different images, thereby inferring the
inter-relationships between the associated multiple images
themselves.

As an extension of the DP-based mixture model, we here
consider the recently developed kernel stick-breaking pro-
cess (KSBP) (Dunson & Park, 2008), introduced by Dun-
son and Park. As detailed below, this model is similar to
that in (1), but now the stick-breaking process is augmented

to employ a kernel function to quantify the prior belief as-
sociated with spatially proximate patches. In (Dunson &
Park, 2008) a Markov chain Monte Carlo (MCMC) sampler
was used to estimate the posterior on the model parameters.
In the work considered here we are interested in relatively
large data sets, and therefore we develop an inference en-
gine that exploits ideas from variational Bayesian analysis
(Beal, 2003).

There are problems for which one may wish to perform
segmentation on multiple images simultaneously, with the
goal of inferring the inter-relationships between the differ-
ent images. This is referred to as multi-task learning (MTL)
(Thrun & O’Sullivan, 1996; Xue et al., 2007), where here
each “task” corresponds to clustering feature vectors from
a particular image. As presented below, it is convenient to
simultaneously cluster/segment multiple images by linking
the multiple associated KSBP models with an overarching
DP. There are at least three applications of MTL in the con-
text of image analysis: (i) one may have a set of images,
some of which are labeled, and others of which are unla-
beled, and by performing an MTL analysis on all of the
images one may infer labels for the unlabeled image seg-
mentation, by drawing upon the relationships to the labeled
imagery; (ii) by inferring the inter-relationships between
the different images, one may sort the images as well as
sort components within the images; (iii) one may identify
abnormal images and locations within an image in an un-
supervised manner, by flagging those locations that are al-
located to a segmentation component that is locally rare. A
similar scenario has been studied in (Sudderth et al., 2006),
where the spatial translations are handled with transformed
Dirichlet processes.

2. Kernel Stick-Breaking Process
2.1. KSBP prior for image processing

The stick-breaking representation of the Dirichlet process
(DP) was summarized in (1), and this has served as the
basis of a number of generalizations of the DP. The de-
pendent DP (DDP) proposed by MacEachern (MacEach-
ern, 1999) assumes a fixed set of weights, π, while allow-
ing the atoms θ = {θ1, · · · , θN} to vary with the predic-
tor x according to a stochastic process. Dunson and Park
(Dunson & Park, 2008) have proposed the kernel stick-
breaking process (KSBP), which is particularly attractive
for image-processing applications. Rather than simply con-
sidering the feature vector {xn}n=1,N , we now consider
{xn, rn}n=1,N , where rn is tied to the location of the pixel
or block of pixels used to constitute feature vector xn. We
let K(r, r′, ψ) → [0, 1] define a bounded kernel function
with parameter ψ, where r and r′ represent general loca-
tions in the image of interest. One may choose to place a
prior on the kernel parameter ψ; this issue is revisited be-
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low. A draw Gr from a KSBP prior is a function of position
r, and is represented as

Gr =
∞∑

h=1

πh(r; Vh, Γh, ψ)δθh

πh(r; Vh, Γh, ψ) = VhK(r, Γh, ψ)
∏h−1

l=1 [1− VlK(r, Γl, ψ)]

Vh
iid∼ Beta(a, b) (2)

Γl
iid∼ H

θh
iid∼ Go.

Dunson and Park (Dunson & Park, 2008) prove the valid-
ity of Gr as a probability measure. Comparing (1) and
(2), both priors take the general form of a stick-breaking
representation, while the KSBP prior possesses several
interesting properties. For example, the stick weights
πh(r; Vh,Γh, ψ) are a function of r. Therefore, although
the atoms {θh}h=1,∞ are the same for all r, the weights
effectively shift the probabilities of different θh based on
r. The basis functions Γh serve to localize in the space of
r regions (clusters) in which the weights πh(r;Vh, Γh, ψ)
are relatively constant, with the size of these regions tied to
the kernel parameter ψ.

If f(φn) is the parametric model (with parameter φn) re-
sponsible for the generation of xn, we now assume that the
augmented data {xn, rn}n=1,N are generated as

xn
ind∼ f(φn)

φn
ind∼ Grn (3)

Gr ∼ KSBP (a, b, ψ, Go,H).

The notation Gr ∼ KSBP (a, b, ψ, Go,H) is meant to
convey that Gr is drawn one time from the KSBP, and is
a parametric function of location r, and it is evaluated at
specific locations {rn}n=1,N .

The generative model in (3) states that two feature vectors
that come from the same region in the image (defined via
r) will have similar πh(r; Vh, Γh, ψ), and therefore they
are likely to share the same atoms θh. The settings of a
and b control how much similarity there will be in drawn
atoms for a given spatial cluster centered about a particular
Γh. If we set a = 1 and b = α, analogous to the DP, small
concentration parameter α and/or small kernel parameter ψ
will impose that πh is likely to be near one, and therefore
only a relatively small number of atoms θh are likely to be
dominant for a given cluster spatial center Γh. On the other
hand, if two features are generated from distant parts of a
given image, the associated atoms θh that may be promi-
nent for each feature vector are likely to be different, and

therefore it is of relatively low probability that these feature
vectors would have been generated via the same parameters
φ. It is possible that the model may infer two distinct and
widely separated clusters/segments with similar parameters
(atoms); if the Go within the KSBP is itself drawn from a
DP, as it will be below when analyzing multiple images,
widely separated clusters may share the exact same atoms.

For the case a = 1 and b = α, which we consider below, we
employ the notation Gr ∼ KSBP (α,ψ, Go,H). Below
we will also assume that f(φ) corresponds to a multivariate
Gaussian distribution.

2.2. Spatial correlation properties

As indicated above, the functional form of the kernel
function is important and needs to be chosen carefully.
A commonly used kernel is given as K(r, Γ, ψ) =
exp (−ψ‖r − Γ‖2) for ψ > 0, which allows the associated
stick weight to change continuously from Vh

∏h−1
l=1 (1−Vl)

to 0 conditional on the distance between r and Γ. By
choosing a kernel we are also implicitly imposing the de-
pendency between the priors of two samples, Gr and Gr′ .
Specifically, both priors are encouraged to share the same
atoms θh if r and r′ are close, with this discouraged other-
wise. Dunson and Park (Dunson & Park, 2008) derive the
correlation coefficient between two probability measures
Gr and Gr′ to be

corr{Gr, Gr′}

=

∑∞
h=1 πh(r; Vh, Γh, ψ)πh(r′; Vh, Γh, ψ)√∑∞

h=1 πh(r; Vh, Γh, ψ)2
√∑∞

h=1 πh(r′; Vh, Γh, ψ)2
.

The coefficient approaches unity in the limit as r → r′.
Since the correlation is a strong function of the kernel pa-
rameter ψ, below we will consider a distinct ψh for each
stick. This implies that the spatial extent within the image
over which a given stick is important will vary as a function
of the stick (to accommodate textural regions of different
sizes).

3. Multi-Task Image Segmentation with a
Hierarchical KSBP

We now consider the problem for which we wish to
jointly segment M images, where each image has an
associated set of feature vectors with location informa-
tion, in the sense discussed above. Aggregating the data
across the M images, we have the set of feature vectors
{xnm, rnm}n=1,Nm; m=1,M . The image sizes may be dif-
ferent, and therefore the number of feature vectors Nm may
vary between images. The premise of the model discussed
below is that the cluster or segment characteristics may be
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similar between multiple images, and the inference of these
inter-relationships may be of value. Note that the assump-
tion is that sharing of clusters may be of relevance for the
feature vectors, but not for the associated locations.

3.1. Model

A relatively simple means of sharing feature-vector clus-
ters between the different images is to let each image be
processed with a separate KSBP (αm, ψm, Gm,Hm). To
achieve the desired sharing of feature-vector clusters be-
tween the different images, we impose that Gm ≡ G
and G is drawn G ∼ DP (γ,Go). Recalling the stick-
breaking form of a draw from DP (γ, Go), we have G =∑∞

h=1 πhδθh
, in the sense summarized in (1). The discrete

form of G is very important, for it implies that the different
Gr will share the same set of discrete atoms {θh}h=1,∞. It
is interesting to note that for the case in which the kernel
parameter ψ is set such that K(r, Γh, ψ) → 1, the hierar-
chical KSBP (H-KSBP) model reduces to the hierarchical
Dirichlet process (HDP) (Teh et al., 2005).

Therefore, the H-KSBP model is represented as

xnm
ind∼ N (φnm)

φnm
ind∼ Grnm (4)

Gr ∼ KSBP (αm, ψm, G, Hm)
G ∼ DP (γ,Go),

where N (·) is a Gaussian distribution. Assume that G is
composed of the atoms {θh}h=1,∞, from the perspective of
the stick-breaking representation in (1). These same atoms
are shared across all {Grnm}n=1,Nm;m=1,M drawn from
the associated KSBPs, but with respective stick weights
unique to the different images, and a function of position
within a given image. The posterior inference allows one
to infer which clusters of features are unique to a particu-
lar image, and which clusters are shared between multiple
images. The density functions Hm are tied to the support
of the m-th image, and in practice this is set as uniform
across the image extent. The distinct αm, for each of which
a Gamma hyper-prior may be imposed, encourages that the
number of clusters (segments) may vary between the differ-
ent images, although one may simply wish to set αm = α
for all M tasks.

For notational convenience, in (4) it was assumed that the
kernel parameter ψm varied between tasks, but was fixed
for all sticks within a given task; this is overly restrictive.
In the implementation that follows the parameter ψhm may
vary across tasks and across the task-specific KSBP sticks.

3.2. Posterior inference

For inference purposes, we truncate the number of sticks
in the KSBP to T , and the number of sticks in the trun-
cated DP to K (the truncation properties of the stick-
breaking representation of DP are discussed in (Ishwaran
& James, 2001), although we emphasize that when trun-
cating KSBP one must take into account the draws from
the Beta distribution and the properties of the kernel,
to assure that the truncated set of sticks sum to one).
Due to the discreteness of G =

∑K
k=1 βkδθk

, each
draw of the KSBP, Grnm =

∑T
h=1 πhmδφhm

, can only
take atoms {φhm}h=1,T ; m=1,M from K unique possi-
ble values {θk}k=1,K ; when drawing atoms φhm from
G, the respective probabilities for {θk}k=1,K are given
by {βk}k=1,K , and for a given rnm the respective prob-
abilities for different {φhm}h=1,T ; m=1,M are defined by
{πhm}h=1,T ; m=1,M . In order to reflect the correspon-
dences between the data and atoms explicitly, we further
introduce two auxiliary indicator variables. One is znm,
this indicating which stick of the KSBP the feature vec-
tor xnm is associated, and the other is thm, this indicating
which mixing component θk the atom φhm is associated
with.

With this specification we can represent our H-KSBP mix-
ture model via a stick-breaking characterization. A graph-
ical representation of the proposed H-KSBP model is pro-
vided in Figure 1.
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Figure 1. A graphical representation of the H-KSBP mixture
model.

For the large-scale problems of interest here we employ
variational Bayesian (VB) inference, which has proven to
be a relatively fast (compared to MCMC) and accurate in-
ference tool for many models and applications (Beal, 2003;
Blei & Jordan, 2004). To employ VB, a conjugate prior is
required for all variables in the model. In the proposed
model, we however cannot obtain a closed form for the
variational posterior distribution of the node Vhm, because
of the the kernel function. Alternatively, motivated by
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the Monte Carlo Expectation Maximization (MCEM) al-
gorithm (Wei & Tanner, 1990), we develop a Monte Carlo
Variational Bayesian (MCVB) inference algorithm, where
the intractable nodes are approximated with Monte Carlo
samples from their conditional posterior distributions. The
resulting algorithm combines the benefits of both MCMC
and VB, and has proven to be effective for the examples we
have considered (some of which are presented here).

Given the H-KSBP mixture model detailed in Section
3.1, we can follow standard variational Bayesian infer-
ence (Beal, 2003) to infer the variables of interests. All
the updates are analytical except for Vhm, which is es-
timated with the samples from its conditional posterior
distributions. Due to the limited space, we only con-
sider the update for Vhm. To obtain the conditional pos-
terior distribution of Vhm, we rewrite znm = min{h :
Anm,h = Bnm,h = 1}, with two auxiliary variables
defined as: Anm,h ∼ Bernoulli(Vhm) and Bnm,h ∼
Bernoulli(K(rnm, Γhm, ψm)).

The conditional posterior distributions of Vhm are

Beta(1 +
∑

n:znm≥h

Anm,h, α +
∑

n:znm≥h

(1−Anm,h)),

where

p(Anm,h = Bnm,h = 0) =
(1−Vhm)(1−K(rnm,Γhm,ψm))

1−VhmK(rnm,Γhm,ψm)

p(Anm,h = 0, Bnm,h = 1) =
(1−Vhm)K(rnm,Γhm,ψm)
1−VhmK(rnm,Γhm,ψm)

p(Anm,h = 1, Bnm,h = 0) =
Vhm(1−K(rnm,Γhm,ψm))
1−VhmK(rnm,Γhm,ψm)

,

for h = 1, 2, · · · , znm − 1, and Anm,h = Bnm,h = 1 for
h = znm.

The hyper-parameters α, γ, and ψ are assumed to be con-
stant for inference of the other parameters. However, since
the model performance may be sensitive to the settings of
those hyper-parameters, we can relax this assumption by
placing non-informative priors. The updates are straight-
forward (Beal, 2003) and therefore omitted here.

3.3. Convergence

To monitor the convergence of our MCVB algorithm, we
compute the lower bound of the log model evidence at each
iteration. Because of the sampling of some variables, the
lower bound does not in general increase monotonically,
but we observed in all experiments that the lower bound
increases sequentially for the first several iterations, with
generally small fluctuations after it has converged to the
local optimal solution.

4. Experimental Results
We have applied the H-KSBP multi-task image-
segmentation algorithm to both synthetic and real images.
We first present results on synthesized imagery, wherein
we compare KSBP-based clustering of a single image
with associated DP-based clustering. We then consider
H-KSBP as applied to actual imagery, taken from a widely
utilized database. The hyper-priors in the model for the
examples are set as follows: Gamma priors, G(τ10, τ20)
and G(τ30, τ40), for α and γ with parameter τ10 = 1e−2,
τ20 = 1e−2, τ30 = 3e−2, τ40 = 3e−2, respectively; a
normal-Wishart prior, N(µk|µ0, η0Σk)W (Σk|w∗,Σ∗),
conjugate to the Gaussian distribution with µ0 = 0,
η0 = 1, w∗ = d + 2, Σ∗ = 5 × I; the discrete priors for
Γ and ψ with uniform weights over all candidates. The
stick-breaking truncations are K = 40, T = 40.

4.1. Single image segmentation

In this simple illustrative example, each feature vector is
associated with a particular pixel, and the feature is simply
a real number, corresponding to its intensity; the pixel lo-
cation is the auxiliary information within the KSBP, while
this information is not employed by the DP-based segmen-
tation algorithm. Figure 2 shows the original image and
the segmentation results of both algorithms. In Figure 2(a)
we note that there are five contiguous regions for which
the intensities are similar. There is a background region
with a relatively fixed intensity, and within this are four
distinct contiguous sub-regions, and of these there are pairs
for which the intensities are comparable. The data in Fig-
ure 2(a) were generated as follows. Each pixel in each re-
gion is generated independently as a draw from a Gaussian
distribution; the standard deviation of each of the Gaus-
sians is 10, and the background has mean intensity 5, and
the two pairs are generated with mean intensities of 40 and
60. The color bar in Figure 2(a) denotes the pixel ampli-
tudes. The DP and KSBP segmentation results are shown
in Figures 2(b) and 2(c), respectively. A distinct color is as-
sociated with distinct cluster parameters. In the DP results
we note that the four subregions are generally properly seg-
mented, but there is significant speckle in the background
region. The KSBP segmentation algorithm is beset by far
less speckle. Further, in the KSBP results there are five
distinct clusters (dominant KSBP sticks), where in the DP
results there are principally three distinct sticks (in the DP,
the spatially separated segments with the same features are
treated as one cluster, while in the KSBP each contiguous
region is represented by its own stick).

In the next set of results, on real imagery, we employ the
H-KSBP algorithm, and therefore at the task level segmen-
tation is performed as in Figure 2(c). Alternatively, using
the HDP model (Teh et al., 2005), at the task level one em-
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ploys clustering of the form in Figure 2(b). The relative
performance of H-KSBP and HDP is analyzed.
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Figure 2. A synthetic image example. (a) Original synthetic im-
age, (b) image-segmentation results of DP-based model, and (c)
image-segmentation results of KSBP-based model.

4.2. H-KSBP applied to a set of real images

Within the subsequent image analysis we employ features
constituted by the independent feature subspace analy-
sis (ISA) technique, developed by Hyvärinen and Hoyer
(Hyvärinen & Hoyer, 2000). These features have proven
to be relatively shift or translation invariant, which enables
them to be widely applicable to many type of images.

We test the H-KSBP model on a subset of images
from Microsoft Research Cambridge, available at
http://research.microsoft.com/vision/cambridge/recognition/.
There are seven types of images used in this database:
buildings, clouds, countryside, faces, fireworks, offices
and urban. Twenty images are randomly selected from
the database for each type, yielding a total of 140 images.
To capture textural information within the features, we
first divided each image into a contiguous 24 × 24-pixel
non-overlapping patches (more than 70,000 patches in
total) and then extract ISA features from each patch; color
images are considered, and the RGB colors are handled
within ISA feature extraction as in (Hoyer & Hyvärinen,
2000). Concerning learning the ISA independent feature
subspaces, we randomly select 150 patches out of each
of the 140 images from the seven classes, and these 150
image patches are used for basis training. The posterior
on the H-KSBP (and HDP) model parameters is inferred
based on the proposed MCVB algorithm, processing all
140 images simultaneously; as discussed in Section 2,
the HDP analysis is performed by a special setting of the
H-KSBP parameters. To mitigate the influence of random
samples and VB initialization, we perform the experiment
ten times and report the average results.

Borrowing the successful “bag of words” assumption in
text analysis (Blei & Lafferty, 2005), we assume each im-
age is a bag of atoms, which results in a measurable quan-
tity of inter-relationship between images, specifically simi-
lar images should share similar distribution over those mix-
ture components. An important aspect of the H-KSBP al-

gorithm is that while in text analysis the “bag of words”
may be set a priori, here the “bag of atoms” is inferred
from the data itself, within the clustering process. Related
concepts have been employed previously in image analysis
(Quelhas et al., 2007), but in that work one had to set the
canonical set of image atoms (shapes) a priori, which is
somewhat ad hoc.

As an example, for the data considered, we show one real-
ization of H-KSBP in Figure 3. In the figure, we display
canonical atom usage across all 140 images. Figure 3 is
a count matrix, where each square represents the relative
number of counts in a given image for a particular atom
(atoms indexed along the vertical axis in Figure 3).
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Figure 3. Matrix on the usage of atoms across the different im-
ages. The size of each box represents the relative frequency with
which a particular atom is manifested in a given image. These
results are computed via H-KSBP.
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Figure 4. Demonstration of different atoms as inferred by an ex-
ample run of the H-KSBP algorithm. Each row of the figure cor-
responds to one atom. Every two images form a set, with the orig-
inal images at left and areas assigns to a particular atom shown at
right.

Figure 4 gives a representation of most of the atoms. For
example the 4-th, 31-st and 39-th atoms are associated with
clouds and sky; the 38-th atom is principally modeling
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buildings; and the 11-th atom is associated with trees and
grasses. While performing the experiment, we also noticed
it was relatively easy to segment clouds, fireworks, coun-
tryside, and urban images while harder to obtain contigu-
ous segments within office images (these typically have far
more details, and less large regions of smooth texture; this
latter issue may be less an issue of the H-KSBP, but rather
of the features employed). An example of this difficulty
is observable in Figure 5, as office images are composed
of many different atoms. Fortunately, the office images
still tend to share similar usage of atoms so that they can
be grouped together (sorted) when quantifying similarities
between images based on the histogram over atoms (dis-
cussed next).

The results in Figure 5, in which both H-KSBP and HDP
segmentation results are presented, demonstrate general
properties observed when analyzing the images considered
here: (i) the segmentation characteristics of HDP were gen-
erally good, but on some occasions they were markedly
worse (less detailed) than those of H-KSBP; and (ii) the
H-KSBP was generally more sensitive to detailed textu-
ral differences in the images, thereby generally inferring
a larger number of principal atoms (increased number of
large sticks).
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Figure 5. Representative set of segmentation results, comparing
H-KSBP and HDP. While these two algorithms tend to generally
yield comparable segmentations for the images considered, the H-
KSBP is generally more sensitive to details, with this sometimes
yielding better segmentations (e.g., the top-level and bottom-right
results).

To demonstrate the image-sorting potential of the H-KSBP,
we compute the Kullback-Leibler (KL) divergence on the
histogram over atoms between any two images, by aver-
aging histograms of the form in Figure 3 over ten random
MCVB initializations. For each image, we rank its simi-
larity to all other images based on the associated KL diver-
gence. Performance is addressed quantitatively as follows.
For each of the 140 images, we quantify via KL divergence
its similarity to all other 139 images, wherein we achieve

in ordered list. In Figure 6 we present a confusion ma-
trix, which represents the fraction of the top-ten members
of this ordered list that are within the same class (among
seven classes) as the image under test.
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Figure 6. The confusion matrix over image types, generated using
H-KSBP.

As demonstrated in Figure 6, the H-KSBP performs well
in distinguishing clouds, faces and fireworks images. The
buildings and urban images often share some similar atoms,
mainly representing buildings, and therefore these are
somewhat confused (reasonably, it is felt). The offices im-
ages are often related to other relatively complex scenes.
Some typical image ranking results are given in Figure 7. It
was found that the HDP produced similar sorting results as
produced by H-KSBP (e.g., the associated confusion ma-
trix for HDP is similar to that in Figure 6), and therefore
the HDP sorting results are omitted here for brevity. This
indicates that while in some cases the HDP segmentation
results are inferior to those of H-KSBP, in general the abil-
ity of HDP and H-KSBP to sort images is comparable (at
least for the set of images considered).

The H-KSBP results on the 140-image database were per-
formed in non-optimized MatlabTM software, on a PC
with 3 GHz CPU and 2 GB memory. It required about 3
hours to compute one run of the MCVB code for 80 iter-
ations, with typically 40-50 iterations required to achieve
convergence. The H-KSBP and HDP algorithms were run
with comparable computation times.

5. Conclusions
The kernel stick-breaking process has been extended for
use in image segmentation. The algorithm explicitly im-
poses the belief that feature vectors that are generated from
proximate locations in an image are more likely to be as-
sociated with the same image segment. We have also ex-
tended the KSBP algorithm to the MTL setting, exploring
the inter-relationship of images by sharing the same mix-
ing components. Generally superior segmentation perfor-
mance of H-KSBP was observed relative to HDP, when
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Figure 7. Sample image sorting results, as generated by H-KSBP.
The top left image is the original image followed by the five most
similar images and then the five most dissimilar images.

segmenting multiple images simultaneously. In addition to
segmenting multiple images, the H-KSBP and HDP algo-
rithms also yield information about the inter-relationships
between the images, based on the underlying sharing mech-
anisms inferred among the associated clusters. For the im-
ages considered, it was found that the H-KSBP and HDP
yielded very similar sorting results.
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Abstract

Point clouds are sets of points in two or three di-
mensions. Most kernel methods for learning on
sets of points have not yet dealt with the specific
geometrical invariances and practical constraints
associated with point clouds in computer vision
and graphics. In this paper, we present exten-
sions of graph kernels for point clouds, which al-
low one to use kernel methods for such objects as
shapes, line drawings, or any three-dimensional
point clouds. In order to design rich and numer-
ically efficient kernels with as few free parame-
ters as possible, we use kernels between covari-
ance matrices and their factorizations on prob-
abilistic graphical models. We derive polyno-
mial time dynamic programming recursions and
present applications to recognition of handwrit-
ten digits and Chinese characters from few train-
ing examples.

1. Introduction

In recent years, kernels for structured data have been de-
signed in many domains, such as bioinformatics (Vert et al.,
2004), text processing (Lodhi et al., 2002) and computer vi-
sion (Harchaoui & Bach, 2007; Parsana et al., 2008). They
provide an elegant way of including knowna priori infor-
mation, by using directly the natural topological structure
of objects. Usinga priori knowledge through kernels on
structured data have proved beneficial because it allows
(a) to reduce the number of training examples, (b) to re-
use existing data representations that are already well de-
veloped by experts of those domains and (c) to bring to
bear the rapidly developing kernel machinery, and in par-
ticular semi-supervised learning—see, e.g., Chapelle et al.
(2006)—and hyperparameter learning for supervised ker-
nel methods—see, e.g., Bach et al. (2004).

In this paper, we propose a positive definite kernel between

Appearing inProceedings of the25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

point clouds, with applications to classification of line
drawings—such as handwritten digits (LeCun et al., 1998)
or Chinese characters (Srihari et al., 2007)—or shapes (Be-
longie et al., 2002). The natural geometrical structure of
point clouds is hard to represent in a few real-valued fea-
tures (see, e.g., Forsyth and Ponce (2003)), in particular
because of (a) the required local or global invariances by
rotation, scaling, and/or translation, (b) the lack of pre-
established registrations of the point clouds (i.e., points
from one cloud are not given matched to points from an-
other cloud), and (c) the noise and occlusion that impose
that only portions of two point clouds ought to be com-
pared.

One of the leading principles for designing kernels between
structured objects is to decompose each object into parts
and to compare all parts of one object to all parts of another
object (Shawe-Taylor & Cristianini, 2004). Even if there
is an exponential number of such decompositions, which
is a common case, this is numerically possible under two
conditions: (a) the object must lead itself to an efficient
enumeration of subparts, and (b) the similarity function be-
tween subparts (i.e., thelocal kernel), beyond being a posi-
tive definite kernel, must be simple enough so that the sum
over a potentially exponential number of terms can be re-
cursively performed in polynomial time through factoriza-
tion.

One of the most striking instantiations of this design princi-
ple are thestring kernels(see, e.g., Shawe-Taylor and Cris-
tianini (2004)), which consider all substrings of a given
string but still allow efficient computation in polynomial
time. The same principle can also be applied to graphs:
intuitively, the graph kernels(Ramon & G̈artner, 2003;
Kashima et al., 2004; Borgwardt et al., 2005) consider all
possible subgraphs and compare and count matching sub-
graphs. However, the set of subgraphs (or even the set of
paths) has exponential size and cannot be efficiently de-
scribed recursively. By choosing appropriate substructures,
such aswalksor tree-walks, and fully factorized local ker-
nels, matrix inversion formulations (Kashima et al., 2004)
and efficient dynamic programming recursions (Harchaoui
& Bach, 2007) allow one to sum over an exponential num-
ber of substructures in polynomial time (for more details
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on graph kernels, see Section 2.1).

In this paper, we consider the application of graph kernels
to point clouds. Indeed, we assume that each point cloud
has a graph structure (most often a neighborhood graph);
then, our graph kernels consider all partial matches be-
tween two neighborhood graphs and sum over those. How-
ever, the straightforward application of graph kernels poses
a major problem: in the context of computer vision, sub-
structures correspond to matched sets of points, and deal-
ing with local invariances by rotation and/or translation im-
poses to use a local kernel that cannot be readily expressed
as a product of separate terms for each pair of points, and
the usual dynamic programming and matrix inversion ap-
proaches cannot then be directly applied. One of the main
contributions of this paper is to design a local kernel that is
not fully factorized but can be instead factorized according
to the graph underlying the substructure. This is naturally
done through probabilistic graphical models and the design
of positive definite kernels for covariance matrices that fac-
torize on graphical models (see Section 3). With this novel
local kernel, we derive new polynomial time dynamic pro-
gramming recursions in Section 4. In Section 5, we present
simulations on handwritten character recognition.

2. Graph Kernels

In this section, we consider two labelled undirected graphs
G = (V,E, a, x) andH = (W,F, b, y), whereV,W are
vertex sets,E,F are edge sets anda, b, x, y are vertex la-
belling functions (Diestel, 2005). Two types of labels are
considered:attributes, which are denoteda(v) ∈ A for
vertexv ∈ V andb(w) ∈ A for vertexw ∈ W andpo-
sitions, which are denotedx(v) ∈ X andy(w) ∈ X . We
assume that the graphs have no self-loops. Our motivating
examples are line drawings, whereX = A = R

2 (i.e., the
position is itself also an attribute). In this case, the graph
is naturally obtained from the drawings by considering 4-
connectivity or 8-connectivity (Forsyth & Ponce, 2003). In
other cases, graphs can be easily obtained from nearest-
neighbor graphs.

2.1. Related work

Graph data occur in many application domains, and kernels
for attributed graphs have received increased interest in the
applied machine learning literature, in particular in bioin-
formatics (Kashima et al., 2004; Borgwardt et al., 2005)
and computer vision (Harchaoui & Bach, 2007). Note that
in this paper, we only consider kernels between graphs
(each data point is a graph), as opposed to kernels for a sin-
gle dataset with associated graph information between data
points (see, e.g., Shawe-Taylor and Cristianini (2004)).

Current graph kernels can roughly be divided in two
classes: the first class is composed of non positive definite

Figure 1.(top left) path, (top right)1-walk which is not a2-walk,
(bottom left)2-walk which is not a3-walk, (bottom right) 4-walk.

similarity measures based on existing techniques from the
graph matching literature, that can be made positive def-
inite by ad hocmatrix transformations; this includes the
edit-distance kernel (Neuhaus & Bunke, 2006) and the op-
timal assignment kernel (Fröhlich et al., 2005; Vert, 2008).

Another class of graph kernels relies on a set of substruc-
tures of the graphs. The most natural ones are paths, sub-
trees and more generally subgraphs; however, they do not
lead to positive definite kernels with polynomial time com-
putation algorithms—see, in particular, NP-hardness re-
sults by Ramon and G̈artner (2003)—and recent work has
focused on larger sets of substructures. In particular,ran-
dom walkkernels consider all possible walks and sum a
local kernel over all possible walks of the graphs (with
all possible lengths). With a proper length-dependent fac-
tor, the computation can be achieved by solving a large
sparse linear system (Kashima et al., 2004; Borgwardt
et al., 2005), whose running time complexity has been re-
cently reduced (Vishwanathan et al., 2007). When consid-
ering fixed-length walks, efficient dynamic programming
recursions can de derived (Harchaoui & Bach, 2007) that
drive down the computation time, at the cost of consider-
ing a smaller feature space. These however have the ad-
vantage of allowing extensions to other types of substruc-
tures, namely “tree-walks” (Ramon & G̈artner, 2003), that
we now present.

2.2. Paths, Walks, Subtrees and Tree-walks

Given an undirected graphG with vertex setV , a path is
a sequence of distinct connected vertices, while awalk is
a sequence of possibly non distinct connected vertices. In
order to prevent the walks from going back and forth too
quickly (a phenomenon referred to astottering by Mah́e
and Vert (2006)), we further restrain the set of walks; that
is, for any positive integerβ, we defineβ-walks as walks
such that anyβ+1 successive vertices are distinct (1-walks
are regular walks); see examples in Figure 1. Note that
when the graphG is a tree (no cycles), then the set of2-
walks is equal to the set of paths. More generally, for any
graph,β-walks of lengthβ + 1 are exactly paths of length
β+1. Note that the integerβ corresponds to the “memory”
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Figure 2.(left) binary2-tree-walk, which in fact a subtree, (right)
binary1-tree-walk which is not a2-tree-walk.

of the walk, i.e., the number of past vertices it needs to
remember before going on.

A subtree ofG is a subgraph ofG with no cycles. A sub-
tree ofG can thus be seen as a connected subset of distinct
nodes ofG with an underlying tree structure. The notion
of walk is extending the notion of path by allowing nodes
to be equal; similarly, we can extend the notion of subtrees
to tree-walks, which can have nodes that are equal. More
precisely, we define anα-ary tree-walk of depthγ of G as a
rooted labelledα-ary tree of depthγ with nodes labelled by
vertices inG, and such that the labels of neighbors in the
tree-walk must be neighbors inG (we refer to all allowed
such set of labels asconsistentlabels). We assume that
the tree-walks are not necessarily complete trees, i.e., each
node may have less thanα children. Tree-walks can be
plotted on top of the original graph, as shown in Figure 2,
and may be represented by a tree structureT over the ver-
tex set{1, . . . , |T |} and a tuple of consistent but possibly
non distinct labelsI ∈ V |T | (i.e., the labels of neighboring
vertices inT must be neighboring vertices inG). Finally, in
this paper, we consider only rooted subtrees, i.e., subtrees
where a specific node is identified as the root; moreover, all
the trees that we consider are unordered trees (i.e., no order
is considered among siblings).

We can also defineβ-tree-walks, as tree-walks such that
for each node inT , its label (which is an element of the
original vertex setV ) and the ones of all its descendants up
to theβ-th generation are all distinct. With that definition,
1-tree-walks are regular tree-walks (see Figure 2), and if
α = 1, we get backβ-walks. From now on, we refer to the
descendants up to theβ-th generation as theβ-descendants.

We let denoteTα,γ the set of rooted tree structures of depth
less thanγ and with at mostα children per node; for exam-
ple, T1,γ is exactly the set of chain graphs of length less
than γ. For T ∈ Tα,γ , we denoteJβ(T,G) the set of
consistent labellings ofT by vertices inV leading toβ-
tree-walks. With these definitions, aβ-tree-walk ofG is
characterized by (a) a tree structureT ∈ Tα,γ and (b) a
labellingI ∈ Jβ(T,G).

2.3. Graph Kernels

We assume that we are given a positive definite kernel be-
tween tree-walks that share the same tree structure, which
we refer to as thelocal kernel. This kernel depends on the
tree structureT and the set of attributes and positions as-

HG

Figure 3.Graph kernels between two graphs (each color repre-
sents a different label). We display all binary 1-tree walks with
a specific tree structure, extracted from two simple graphs; the
graph kernels is computing and summing the local kernels be-
tween all those extracted tree-walks. In the case of the Dirac ker-
nel (hard matching), only one pair of tree-walks is matched (for
both labels and structures).

sociated with the nodes in the tree-walks (remember that
each node ofG and H has two labels, a position and
an attribute). Given a tree structureT and consistent la-
bellingsI ∈ Jβ(T,G) andJ ∈ Jβ(T,H), we let denote
qT,I,J (G,H) the value of the local kernel between two
tree-walks defined by the same structureT and labellingsI
andJ .

Following Ramon and G̈artner (2003), we can define the
tree-kernelas the sum over all matching tree-walks ofG

andH of the local kernel, i.e.:

kT
α,β,γ(G,H) =

∑

T∈Tα,γ

fλ,ν(T )×
∑

I∈Jβ(T,G)

∑

J∈Jβ(T,H)

qT,I,J (G,H). (1)

When considering 1-walks (i.e.,α = β = 1), and letting
the maximal walk lengthγ tend to+∞, we get back the
random walk kernel (Ramon & G̈artner, 2003; Kashima
et al., 2004). If the kernelqT,I,J (G,H) has nonnegative
values and is equal to 1 if the two tree-walks are equal, it
can be seen as a soft matching indicator, and then the kernel
in Eq. (1) simply counts the softly matched tree-walks in
the two graphs (see Figure 3 for an illustration with hard
matching).

We add a nonnegative penalizationfλ,ν(T ) depending only
on the tree-structure. Besides the usual penalization of the
number of nodes|T |, we also add a penalization of the
number of leaf nodesℓ(T ) (i.e., nodes with no children).
More precisely, we use the penalizationfλ,ν = λ|T |νℓ(T ).
This penalization, suggested by Mahé and Vert (2006), is
essential in our situation to avoid that trees with nodes of
higher degrees dominate the sum.

If qT,I,J (G,H) is obtained from a positive definite kernel
between (labelled) tree-walks, thenkT

α,β,γ(G,H) also de-
fines a positive definite kernel. The kernelkT

α,β,γ(G,H)
sums thelocal kernelqT,I,J (G,H) over all tree-walks of
G and H that share the same tree structure; the number
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of such matching tree-walks is exponential in the depthγ,
thus, in order to deal with potentially deep trees, a recursive
definition is needed. As we now detail, it requires a specific
type of local kernels, which can be decomposed according
to tree structures.

2.4. Local Kernels

The local kernel is used between tree-walks which can have
large depths (note that everything we propose will turn out
to have linear time complexity in the depthγ). We use
the product of a kernel for attributes and a kernel for posi-
tions. For attributes, we use the following usual factorized
form qA(a(I), b(J)) =

∏|I|
p=1 kA(a(Ip), b(Jp)), wherekA

is a positive definite kernel onA × A. This allows the
separate comparison of each matched pair of points and
efficient dynamic programming recursions (Harchaoui &
Bach, 2007). However, for our local kernel on positions,
we need a kernel thatjointly depends on the whole vectors
x(I) ∈ X |I| andy(J) ∈ X |J|, and not only on thep pairs
(x(Ip), y(Jp)) ∈ X × X . Indeed, we do not assume that
the pairs areregistered, i.e., we do not know the matching
between points indexed byI in the first graph and the ones
indexed byJ in the second graph.

In this paper, we focus onX = R
d andtranslation invari-

ant local kernels, which implies that the local kernel for
positions may only depend on differencesx(i) − x(i′) and
y(j) − y(j′) for (i, i′) ∈ I × I and(j, j′) ∈ J × J . We
further reduce these to kernel matrices corresponding to a
translation invariant positive definite kernelkX (x1 − x2).
Depending on the application,kX may or may not be rota-
tion invariant. In simulations, we use the rotation invariant
Gaussian kernel of the formkX (x1, x2) = e−υ‖x1−x2‖

2

.

Thus, we reduce the set of all positions inX |V | andX |W |

to full kernel matricesK ∈ R
|V |×|V | andL ∈ R

|W |×|W |

for each graph, defined asK(v, v′) = kX (x(v) − x(v′))
(and similarly forL). These matrices are by construction
symmetric positive semi-definite and, for simplicity, we as-
sume that these matrices are positive definite (i.e., invert-
ible), which can be enforced by adding a multiple of the
identity matrix. The local kernel will thus only depend on
the submatricesKI = KI,I andLJ = LJ,J , which are
positive definite matrices. Note that we use kernel matrices
K andL to represent the geometry of each graph, and that
we use a positive definite kernel on such kernel matrices.

We consider the following positive definite kernel on
positive matricesK and L, the (squared) Bhattacharyya
kernelkB, defined as (Kondor & Jebara, 2003):

kB(K,L) = |K|1/2|L|1/2
∣
∣K+L

2

∣
∣
−1

, (2)

where|K| denotes the determinant ofK.

By taking the product of the attribute-based local kernel
and the position-based local kernel, we get the following

local kernelq0
T,I,J (G,H) = kB(KI , LJ )qA(a(I), b(J)).

However, this local kernelq0
T,I,J (G,H) does not yet de-

pend on the tree structureT and the recursion may be ef-
ficient only if q0

T,I,J (G,H) can be computed recursively.
The factorized termqA(a(I), b(J)) does not cause any
problems; however, for the termkB(KI , LJ ), we need an
approximation based onT . As we show in Section 3, this
can be obtained by a factorization according to the appro-
priate graphical model, i.e., we will replace each kernel ma-
trix of the formKI by a projection onto a subset of kernel
matrices which allow efficient recursions.

3. Positive Matrices and Graphical Models

The main idea underlying the factorization of the kernel is
to consider symmetric positive definite matrices as covari-
ance matrices and to look at probabilistic graphical models
defined for Gaussian random vectors with those covariance
matrices. The goal of this section is to show that by ap-
propriate graphical model techniques, we can design prop-
erly factorized approximations of Eq. (2), namely through
Eq. (6) and Eq. (7).

More precisely, we assume that we haven random vari-
ables Z1, . . . , Zn with probability distribution p(z) =
p(z1, . . . , zn). Given a kernel matrixK (in our case de-
fined asKij = e−υ‖xi−xj‖

2

, for positionsx1, . . . , xn),
we consider jointly Gaussian distributed random variables
Z1, . . . , Zn such thatcov(Zi, Zj) = Kij . In this section,
with this identification, we consider covariance matrices as
kernel matrices, and vice-versa.

3.1. Graphical Models and Junction Trees

Graphical models provide a flexible and intuitive way of
defining factorized probability distributions. Given any
undirected graphQ with vertices in{1, . . . , n}, the distri-
butionp(z) is said to factorize inQ if it can be written as
a product of potentials over all cliques (completely con-
nected subgraphs) of the graphQ. When the distribution is
Gaussian with covariance matrixK ∈ R

n×n, the distribu-
tion factorizes if and only if(K−1)ij = 0 for each(i, j)
which is not an edge inQ (Lauritzen, 1996).

In this paper, we only considerdecomposablegraphical
models, for which the graphQ is triangulated(i.e., there
exists no chordless cycle of length strictly larger than 3).
In this case, the joint distribution is uniquely defined from
its marginalspC(zC) on the cliquesC of the graphQ.
Namely, ifC(Q) is the set of maximal cliques ofQ, we can
build a tree of cliques, ajunction tree, such thatp(z) =
∏

C∈C(Q) pC(zC)/
∏

C,C′∈C(Q),C∼C′ pC∩C′(zC∩C′) (see
Figure 4 for an example of a graphical model and a junction
tree). The setsC ∩C ′ are usually referred to asseparators
and we let denoteS(Q) the set of such separators. Note that
for a zero mean normally distributed vector, the marginals
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Figure 4.(left) original graph, (middle) a single ex-
tracted tre-walk, (right) decomposable graphical model
Q1(T ) with added edges in red, defined in Section 3.4.
The junction tree is a chain composed of the cliques
{1, 2}, {2, 3, 6}, {5, 6, 9}, {4, 5, 8}, {4, 7}.

pC(zC) are characterized by the marginal covariance ma-
trix KC = KC,C . Projecting onto a graphical model will
preserve the marginal over all maximal cliques, and thus
preserve the local kernel matrices, while imposing zeros in
the inverse ofK.

3.2. Graphical Models and Projections

We let denoteΠQ(K) the covariance matrix that factor-
izes inQ which is closest toK for the Kullback-Leibler
divergence between normal distributions. In this paper, we
essentially replaceK byΠQ(K); i.e., we project all our co-
variance matrices onto a graphical model, which is a clas-
sical tool in probabilistic modelling (Lauritzen, 1996). We
leave the study of the approximation properties of such a
projection (i.e., for a givenK, how dense the graph should
be to approximate the full local kernel correctly?) to future
work—see, e.g., Caetano et al. (2006) for related results.

Practically, since our kernel on kernel matrices involves
determinants, we simply need to compute|ΠQ(K)| effi-
ciently. For decomposable graphical models,ΠQ(K) can
be obtained in closed form (Lauritzen, 1996) and its deter-
minant has the following simple expression:

log |ΠQ(K)| =
∑

C∈C(Q)

log |KC | −
∑

S∈S(Q)

log |KS |. (3)

The determinant|ΠQ(K)| is thus a ratio of terms (determi-
nants over cliques and separators), which will restrict the
applicability of the projected kernels (see Proposition 1).
In order to keep only products, we consider the following
equivalent form: if the junction tree is rooted (by choosing
any clique as the root), then for each clique but the root, a
unique parent clique is defined, and we have:

log |ΠQ(K)| =
∑

C∈C(Q) log |KC |
|KpQ(C)|

=
∑

C∈C(Q) log |KC|pQ(C)|, (4)

where pQ(C) is the parent clique ofQ (and ∅ for
the root clique) and the conditional covariance ma-
trix is defined, as usual, asKC|pQ(C) = KC,C −
KC,pQ(C)K

−1
pQ(C),pQ(C)KpQ(C),C (Lauritzen, 1996).

3.3. Graphical Models and Kernels

We now propose several ways of defining a kernel adapted
to graphical models. All of them are based on replacing
determinants|M | by |ΠQ(M)|, and their different decom-
positions in Eq. (3) and Eq. (4). Simply using Eq. (3), we
obtain the similarity measure:

k
Q
B,0(K,L)=

∏

C∈C(Q)

kB(KC , LC)
∏

S∈S(Q)

kB(KS , LS)−1. (5)

which turns out not to be a positive definite kernel for gen-
eral covariance matrices:

Proposition 1 For any decomposable modelQ, the kernel
k

Q
B,0 defined in Eq. (5) is a positive definite kernel on the

set of covariance matricesK such that for all separators
S ∈ S(Q), KS,S = I. In particular, when all separators
have cardinal one, this is a kernel on correlation matrices.

In order to remove the condition on separators (i.e.,
we want more sharing between cliques than through a
single variable), we consider the rooted junction tree
representation in Eq. (4). A straightforward kernel is
to compute the product of the Bhattacharyya kernels
kB(KC|pQ(C), LC|pQ(C)) for each conditional covariance
matrix. However, this does not lead to a true distance on
covariance matrices that factorize onQ because the set of
conditional covariance matrices do not characterize entirely
those distributions. Rather, we consider the following ker-
nel:

k
Q
B (K,L) =

∏

C∈C(Q) k
C|pQ(C)
B (K,L); (6)

for the root clique, we definekR|∅
B (K,L) = kB(KR, LR)

and the kernelskC|pQ(C)
B (K,L) are defined as kernels

between conditional Gaussian distributions ofZC given
ZpQ(C). We use

k
C|pQ(C)
B (K,L)=

|KC|pQ(C)|1/2|LC|pQ(C)|1/2

∣
∣ 1
2KC|pQ(C)+

1
2LC|pQ(C)+MM⊤

∣
∣
, (7)

where the additional term M is equal to
1
2 (KC,pQ(C)K

−1
pQ(C)−LC,pQ(C)L

−1
pQ(C)). This exactly cor-

responds to putting a prior with identity covariance matrix
on variablesZpQ(C) and considering the kernel between
the resulting joint covariance matrices on variables indexed
by (C, pQ(C)). We now have a positive definite kernel on
all covariance matrices:

Proposition 2 For any decomposable modelQ, the kernel
k

Q
B (K,L) defined in Eq. (6) and Eq. (7) is a positive defi-

nite kernel on the set of covariance matrices.

Note that the kernel is not invariant by the choice of the
particular root of the junction tree. However, in our setting,
this is not an issue because we have a natural way of rooting
the junction trees (i.e, following the rooted tree-walk, see
Section 3.4). Note that these kernels could be useful in
other domains than point clouds and computer vision.
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In Section 4, we will use the notationkI1|I2,J1|J2

B (K,L)
for |I1| = |I2| and |J1| = |J2| to denote the kernel
between covariance matricesKI1∪I2

andLI1∪I2
adapted

to the conditional distributionsI1|I2 and J1|J2, defined
through Eq. (7).

3.4. Choice of Graphical Models

Given the rooted tree structureT of aβ-tree-walk, we now
need to define the graphical modelQβ(T ) that we use to
project our kernel matrices. A natural candidate isT it-
self; however, as shown in Section 4, in order to compute
efficiently the kernel we simply need that the local ker-
nel is a product of terms that only involve a node and its
β-descendants. The densest graph (remember that denser
graphs lead to better approximations when projecting onto
the graphical model) we may use is exactly the following:
we defineQβ(T ) such that for all nodes inT , the node to-
gether with all itsβ-descendants form a clique, i.e., a node
is connected to itsβ-descendants and allβ-descendants
are also mutually connected (see Figure 4 for example for
β = 1): the set of cliques are thus the set offamiliesof
depthβ + 1 (i.e., withβ + 1 generations). Thus, our final
kernel is:

kT
α,β,γ(G,H) =

∑

T∈Tα,γ

fλ,ν(T )×

∑

I∈Jβ(T,G)

∑

J∈Jβ(T,H)

k
Qβ(T )
B (KI , LJ )qA(a(I), b(J)). (8)

The main intuition behind this definition is to sum local
similarities over all matching subgraphs. In order to obtain
a tractable formulation, we simply needed (a) to extend the
set of subgraphs (to tree-walks of depthγ) and (b) to fac-
torize the local similarities along the graphs. We now show
how these elements can be combined to derive efficient re-
cursions.

4. Dynamic Programming Recursions

In order to derive dynamic programming recursions, we
follow Mahé and Vert (2006) and rely on the fact thatα-
ary β-tree-walks ofG can essentially be defined through
1-tree-walks on the augmented graph of all rooted subtrees
of G of depth at mostβ and arity less thanα. We thus
consider the setVα,β of non complete rooted (unordered)
subtrees ofG = (V,E), of depths less thanβ and arity
less thanα. Given two different rooted unordered labelled
trees, they are saidequivalent(or isomorphic) if they share
the same tree structure, and this is denoted∼t.

On this setVα,β , we define adirectedgraph with edge set
Eα,β as follows:R0 ∈ Vα,β is connected toR1 ∈ Vα,β if
“the treeR1 extends the treeR0 one generation further”,
i.e., if and only if (a) the firstβ − 1 generations ofR1 are
exactly equal to one of the complete subtree ofR0 rooted
at a child of the root ofR0, and (b) the nodes of depth

Figure 5.(left) undirected graphG, (right) graphG1,2.

β of R1 are distinct from the nodes inR0. This defines a
graphGα,β = (Vα,β , Eα,β) and a neighborhoodNGα,β

(R)
for R ∈ Vα,β (see Figure 5 for an example). Similarly we
define a graphHα,β = (Wα,β , Fα,β) for the graphH. Note
that whenα = 1, V1,β is the set of paths of length less than
or equal toβ.

For a β-tree-walk, the root with itsβ-descendants must
have distinct vertices and thus corresponds exactly to an el-
ement ofVα,β . We denotekT

α,β,γ(G,H,R0, S0) the same
kernel as defined in Eq. (8), but restricted to tree-walks that
start respectively withR0 andS0. Note that ifR0 andS0

are not equivalent, thenkT
α,β,γ(G,H,R0, S0) = 0.

We obtain the following recursion between depthsγ and
depthγ−1, for all R0∈Vα,β and andS0∈Wα,β such that
R0∼t S0:

kT
α,β,γ(G,H,R0, S0) = kT

α,β,γ−1(G,H,R0, S0)

+

α
X

p=1

X

R1, . . . , Rp ∈ NGα,β
(R0)

R1, . . . , Rp disjoint

X

S1, . . . , Sp ∈ NHα,β
(S0)

S1, . . . , Sp disjoint
"

λ

p
Y

i=1

kA(a(root(Ri)), b(root(Si)))×

k
∪

p
i=1

Ri|R0,∪
p
i=1

Si|S0

B (K, L)
Qp

i=1
k

Ri,Si
B (K, L)

 

p
Y

i=1

k
T
α,β,γ−1(G, H, Ri, Si)

!#

.

Note that if any of the treesRi is not equivalent
to Si, it does not contribute to the sum. The
recursion is initialized with kT

α,β,γ(G,H,R0, S0) =

λ|R0|νℓ(R0)qA(a(R0), b(S0))kB(KR0
, LS0

) while the final
kernel is obtained by summing over allR0 and S0, i.e,
kT

α,β,γ(G,H) =
∑

R0∼tS0
kT

α,β,γ(G,H,R0, S0).

Computational Complexity The complexity of comput-
ing one kernel between two graphs is linear inγ (the depth
of the tree-walks), and quadratic in the size ofVα,β and
Wα,β . However, those sets may have exponential size inβ

andα in general (in particular if graphs are densely con-
nected). And thus, we are limited to small values (typically
α 6 3 andβ 6 6) which are sufficient for good classifica-
tion performance (in particular, higherβ or α do not nec-
essarily mean better performance, see Section 5). Overall,
one can deal with any graph size, as long as the “sufficient
statistics” (i.e., the unique local neighorhoods inVα,β) are
not too numerous.
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Figure 6.For digits and Chinese characters: (left) original charac-
ters, (right) thinned and subsampled characters.

For example, for the handwritten digits we use in sim-
ulations, the average number of nodes in the graphs is
18 ± 4, while the average cardinal ofVα,β and running
times1 for one kernel evaluation are, for walk kernels of
depth 24: |Vα,β | = 36, T = 2 ms (α = 1, β = 2),
|Vα,β | = 37, T = 3 ms (α = 1, β = 4); and for tree-
kernels: |Vα,β | = 56, T = 25 ms (α = 2, β = 2),
|Vα,β | = 70, T = 32 ms (α = 2, β = 4).

Finally, we may reduce the computational load by consider-
ing a set of trees of smaller arity in the previous recursions;
i.e., we can considerV1,β instead ofVα,β with tree-kernels
of arity α > 1.

5. Application to Character Recognition

We have tested our new kernels on the task of isolated
handwritten character recognition, handwritten arabic nu-
merals (MNIST dataset) and Chinese characters (ETL9B
dataset). We selected the first 100 examples for the
ten classes in the MNIST dataset, while for the ETL9B
dataset, we selected the five hardest classes to discrimi-
nate among 3,000 classes (by computing distances between
class means) and then selected the first 50 examples per
class. Our learning task it to classify those characters; we
use a one-vs-rest multiclass scheme with 1-norm support
vector machines (see, e.g., Shawe-Taylor and Cristianini
(2004)).

We consider characters as drawings inR
2, which are sets

of possibly intersecting contours. Those are naturally rep-
resented as undirected planar graphs. We have thinned and
subsampled uniformly each character to reduce the sizes of
the graphs (see two examples in Figure 6).

The kernel on positions iskX (x, y) = exp(−τ‖x−y‖2)+
κδ(x, y), but could take into account different weights on
horizontal and vertical directions. We add the positions
from the center of the bounding box as features, to take
into account the global positions, i.e., we usekA(x, y) =
exp(−υ‖x − y‖2). This is necessary because the problem
of handwritten character recognition is not globally trans-
lation invariant.

1Those do not take into account preprocessing and were eval-
uated on an Intel Xeon 2.33 GHz processor from MATLAB/C
code, and are to be compared to the simplest recursions which
correspond to the usual random walk kernel (α = 1, β = 1),
whereT = 1 ms.

In this paper, we have defined a family of kernels, corre-
sponding to different values of the following free parame-
ters (shown with their possible values): arity of tree-walks
(α = 1, 2), order of tree-walks (β = 1, 2, 4, 6), depth of
tree-walks (γ = 1, 2, 4, 8, 16, 24), penalization on number
of nodes (λ=1), penalization on number of leaf nodes (ν =
.1, .01), bandwidth for kernel on positions (τ = .05, .01, .1),
ridge parameter (κ = .001), bandwidth for kernel on at-
tributes (υ= .05, .01, .1).

The first two sets of parameters (α, β, γ, λ, ν) are param-
eters of the graph kernel, independent of the application,
while the last set (τ, κ, ν) are parameters of the kernels for
attributes and positions. Note that with only a few impor-
tant scale parameters (τ andν), we are able to characterize
complex interactions between the vertices and edges of the
graphs. In practice, this is important to avoid considering
many more distinct parameters for all sizes and topologies
of subtrees.

In simulations, we performed two loops of 5-fold cross-
validation: in the outer loop, we consider 5 different train-
ing folds with their corresponding testing folds. On each
training fold, we consider all possible values ofα andβ.
For all of those values, we select all other parameters (in-
cluding the regularization parameters of the SVM) by 5-
fold cross-validation (the inner folds). Once the best pa-
rameters are found only by looking only at the training
fold, we train on the whole training fold, and test on the
testing fold. We output the means and standard deviations
of the testing errors for each testing fold. We show in Fig-
ure 7 the performance for various values ofα andβ. We
compare those favorably to three baseline kernels with hy-
perparameters learned by cross-validation in the same way:
(a) theGaussian-RBF kernelon the vectorized original im-
ages, which leads to testing errors of11.6±5.4% (MNIST)
and50.4 ± 6.2% (ETL9B); (b) the regularrandom walk
kernel which sums over all walk lengths, which leads to
testing errors of8.6 ± 1.3% (MNIST) and 34.8 ± 8.4%
(ETL9B); and (c) thepyramid match kernel(Grauman &
Darrell, 2007), which is commonly used for image clas-
sification and leads here to testing errors of10.8 ± 3.6%
(MNIST) and45.2 ± 3.4% (ETL9B).

These results show that our new family of kernels that
use the natural structure of line drawings are outperform-
ing other kernels on structured data (regular random walk
kernel and pyramid match kernel) as well as the “blind”
Gaussian-RBF kernel which does not take into account ex-
plicitly the structure of images but still leads to very good
performance with more training data (LeCun et al., 1998).
Note that for arabic numerals, higher arity does not help,
which is not surprising since most digits have a linear struc-
ture (i.e, graphs are chains). On the contrary, for Chinese
characters, which exhibit higher connectivity, best perfor-
mance is achieved for binary tree-walks.

31



Graph Kernels between Point Clouds

MNIST MNIST ETL9B ETL9B
α = 1 α = 2 α = 1 α = 2

β = 1 11.6 ± 4.6 9.2 ± 3.9 36.8 ± 4.6 32 ± 8.4
β = 2 5.6 ± 3.1 5.6 ± 3.0 29.2 ± 8.8 25.2 ± 2.7
β = 4 5.4 ± 3.6 5.4 ± 3.1 32.4 ± 3.9 29.6 ± 4.3
β = 6 5.6 ± 3.3 6 ± 3.5 29.6 ± 4.6 28.4 ± 4.3

Figure 7.Error rates (multiplied by 100) on handwritten character
classification tasks.

6. Conclusion

We have presented a new kernel for point clouds which is
based on comparisons of local subsets of the point clouds.
Those comparisons are made tractable by (a) considering
subsets based on tree-walks and walks, and (b) using a
specific factorized form for the local kernels between tree-
walks, namely a factorization on a properly defined proba-
bilistic graphical model.

Moreover, we have reported applications to handwritten
character recognition where we showed that the kernels
were able to capture the relevant information to allow
good predictions from few training examples. We are cur-
rently investigating other domains of applications of points
clouds, such as shape mining in computer vision (Belongie
et al., 2002), and prediction of protein functions from their
three-dimensional structures (Qiu et al., 2007).
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We would like to thank Zäıd Harchaoui and Jean-Philippe
Vert for fruitful discussions related to this work.

References
Bach, F. R., Lanckriet, G. R. G., & Jordan, M. I. (2004).

Multiple kernel learning, conic duality, and the SMO al-
gorithm. Proc. ICML.

Belongie, S., Malik, J., & Puzicha, J. (2002). Shape match-
ing and object recognition using shape contexts.IEEE
Trans. PAMI, 24, 509–522.

Borgwardt, K. M., Ong, C. S., Schönauer, S., Vish-
wanathan, S. V. N., Smola, A. J., & Kriegel, H.-P.
(2005). Protein function prediction via graph kernels.
Bioinformatics,21.

Caetano, T., Caelli, T., Schuurmans, D., & Barone, D.
(2006). Graphical models and point pattern matching.
IEEE Trans. PAMI, 28, 1646–1663.
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Abstract
We consider the least-square linear regression
problem with regularization by theℓ1-norm, a
problem usually referred to as the Lasso. In this
paper, we present a detailed asymptotic analy-
sis of model consistency of the Lasso. For var-
ious decays of the regularization parameter, we
compute asymptotic equivalents of the probabil-
ity of correct model selection (i.e., variable selec-
tion). For a specific rate decay, we show that the
Lasso selects all the variables that should enter
the model with probability tending to one expo-
nentially fast, while it selects all other variables
with strictly positive probability. We show that
this property implies that if we run the Lasso for
several bootstrapped replications of a given sam-
ple, then intersecting the supports of the Lasso
bootstrap estimates leads to consistent model se-
lection. This novel variable selection algorithm,
referred to as the Bolasso, is compared favorably
to other linear regression methods on synthetic
data and datasets from the UCI machine learning
repository.

1. Introduction

Regularization by theℓ1-norm has attracted a lot of inter-
est in recent years in machine learning, statistics and signal
processing. In the context of least-square linear regression,
the problem is usually referred to as theLasso(Tibshirani,
1994). Much of the early effort has been dedicated to al-
gorithms to solve the optimization problem efficiently. In
particular, theLars algorithm of Efron et al. (2004) allows
to find the entire regularization path (i.e., the set of solu-
tions for all values of the regularization parameters) at the
cost of a single matrix inversion.

Moreover, a well-known justification of the regularization
by theℓ1-norm is that it leads tosparsesolutions, i.e., load-

Appearing inProceedings of the25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

ing vectors with many zeros, and thus performs model se-
lection. Recent works (Zhao & Yu, 2006; Yuan & Lin,
2007; Zou, 2006; Wainwright, 2006) have looked precisely
at the model consistency of the Lasso, i.e., if we know
that the data were generated from a sparse loading vector,
does the Lasso actually recover the sparsity pattern when
the number of observed data points grows? In the case of
a fixed number of covariates, the Lasso does recover the
sparsity pattern if and only if a certain simple condition on
the generating covariance matrices is verified (Yuan & Lin,
2007). In particular, in low correlation settings, the Lasso
is indeed consistent. However, in presence of strong corre-
lations between relevant variables and irrelevant variables,
the Lasso cannot be consistent, shedding light on potential
problems of such procedures for variable selection. Adap-
tive versions where data-dependent weights are added to
theℓ1-norm then allow to keep the consistency in all situa-
tions (Zou, 2006).

In this paper, we first derive a detailed asymptotic analysis
of sparsity pattern selection of the Lasso estimation pro-
cedure, that extends previous analysis (Zhao & Yu, 2006;
Yuan & Lin, 2007; Zou, 2006), by focusing on a spe-
cific decay of the regularization parameter. Namely, we
show that when the decay is proportional ton−1/2, where
n is the number of observations, then the Lasso will se-
lect all the variables that should enter the model (therel-
evantvariables) with probability tending to one exponen-
tially fast with n, while it selects all other variables (the
irrelevant variables) with strictly positive probability. If
several datasets generated from the same distribution were
available, then the latter property would suggest to con-
sider the intersection of the supports of the Lasso estimates
for each dataset: all relevant variables would always be se-
lected for all datasets, while irrelevant variables would en-
ter the models randomly, and intersecting the supports from
sufficiently many different datasets would simply eliminate
them. However, in practice, only one dataset is given; but
resampling methods such as thebootstrapare exactly dedi-
cated to mimic the availability of several datasets by resam-
pling from the same unique dataset (Efron & Tibshirani,
1998). In this paper, we show that when using the bootstrap
and intersecting the supports, we actually get a consistent

33



Bolasso: Model Consistent Lasso Estimation through the Bootstrap

model estimate,without the consistency condition required
by the regular Lasso. We refer to this new procedure as
the Bolasso(bootstrap-enhancedleastabsolute shrinkage
operator). Finally, our Bolasso framework could be seen
as a voting scheme applied to the supports of the boot-
strap Lasso estimates; however, our procedure may rather
be considered as a consensus combination scheme, as we
keep the (largest) subset of variables on whichall regres-
sors agree in terms of variable selection, which is in our
case provably consistent and also allows to get rid of a po-
tential additional hyperparameter.

The paper is organized as follows: in Section 2, we present
the asymptotic analysis of model selection for the Lasso;
in Section 3, we describe the Bolasso framework, while in
Section 4, we illustrate our results on synthetic data, where
the true sparse generating model is known, and data from
the UCI machine learning repository. Sketches of proofs
can be found in Appendix A.

Notations For a vectorv ∈ R
p, we denote‖v‖2 =

(v⊤v)1/2 its ℓ2-norm, ‖v‖∞ = maxi∈{1,...,p} |vi| its ℓ∞-
norm and‖v‖1 =

∑p
i=1 |vi| its ℓ1-norm. Fora ∈ R,

sign(a) denotes the sign ofa, defined assign(a) = 1 if
a > 0, −1 if a < 0, and0 if a = 0. For a vectorv ∈ R

p,
sign(v) ∈ R

p denotes the the vector of signs of elements
of v.

Moreover, given a vectorv ∈ R
p and a subsetI of

{1, . . . , p}, vI denotes the vector inRCard(I) of elements of
v indexed byI. Similarly, for a matrixA ∈ R

p×p, AI,J de-
notes the submatrix ofA composed of elements ofA whose
rows are inI and columns are inJ .

2. Asymptotic Analysis of Model Selection for
the Lasso

In this section, we describe existing and new asymptotic
results regarding the model selection capabilities of the
Lasso.

2.1. Assumptions

We consider the problem of predicting a responseY ∈ R

from covariatesX = (X1, . . . , Xp)
⊤ ∈ R

p. The only
assumptions that we make on the joint distributionPXY of
(X,Y ) are the following:

(A1) The cumulant generating functionsE exp(s‖X‖2
2)

andE exp(sY 2) are finite for somes > 0.

(A2) The joint matrix of second order momentsQ =
EXX⊤ ∈ R

p×p is invertible.

(A3) E(Y |X) = X⊤w andvar(Y |X) = σ2 a.s. for some
w ∈ R

p andσ ∈ R
∗
+.

We let denoteJ = {j,wj 6= 0} the sparsity pattern ofw,
s = sign(w) the sign pattern ofw, andε = Y − X⊤w

the additive noise.1 Note that our assumption regarding cu-
mulant generating functions is satisfied whenX andε have
compact supports, and also when the densities ofX andε

have light tails.

We considerindependent and identically distributed(i.i.d.)
data(xi, yi) ∈ R

p × R, i = 1, . . . , n, sampled fromPXY ;
the data are given in the form of matricesY ∈ R

n and
X ∈ R

n×p.

Note that the i.i.d. assumption, together with (A1-3), are
the simplest assumptions for studying the asymptotic be-
havior of the Lasso; and it is of course of interest to allow
more general assumptions, in particular growing number of
variablesp, more general random variables, etc., which are
outside the scope of this paper—see, e.g., Meinshausen and
Yu (2008); Zhao and Yu (2006); Lounici (2008).

2.2. Lasso Estimation

We consider the square loss function12n

∑n
i=1(yi −

w⊤xi)
2 = 1

2n‖Y − Xw‖2
2 and the regularization by the

ℓ1-norm defined as‖w‖1 =
∑p

i=1 |wi|. That is, we look
at the following Lasso optimization problem (Tibshirani,
1994):

min
w∈Rp

1
2n‖Y − Xw‖2

2 + µn‖w‖1, (1)

whereµn > 0 is the regularization parameter. We denote
ŵ any global minimum of Eq. (1)—it may not be unique in
general, but will with probability tending to one exponen-
tially fast under assumption (A2).

2.3. Model Consistency - General Results

In this section, we detail the asymptotic behavior of the
Lasso estimatêw, both in terms of the difference in norm
with the population valuew (i.e., regular consistency) and
of the sign patternsign(ŵ), for all asymptotic behaviors
of the regularization parameterµn. Note that information
about the sign pattern includes information about thesup-
port, i.e., the indicesi for which ŵi is different from zero;
moreover, whenŵ is consistent, consistency of the sign
pattern is in fact equivalent to the consistency of the sup-
port.

We now consider five mutually exclusive possible situa-
tions which explain various portions of the regularization
path (we assume (A1-3)); many of these results appear else-
where (Yuan & Lin, 2007; Zhao & Yu, 2006; Fu & Knight,
2000; Zou, 2006; Bach, 2008; Lounici, 2008) but some of
the finer results presented below are new (see Section 2.4).

1Throughout this paper, we use boldface fonts for population
quantities.
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1. If µn tends to infinity, thenŵ = 0 with probability
tending to one.

2. If µn tends to a finite strictly positive constantµ0, then
ŵ converges in probability to the unique global mini-
mum of 1

2 (w − w)⊤Q(w − w) + µ0‖w‖1. Thus, the
estimateŵ never converges in probability tow, while
the sign pattern tends to the one of the previous global
minimum, which may or may not be the same as the
one ofw.2

3. If µn tends to zero slower thann−1/2, then ŵ con-
verges in probability tow (regular consistency) and
the sign pattern converges to the sign pattern of the
global minimum of12v⊤Qv +v⊤

J
sign(wJ)+‖vJc‖1.

This sign pattern is equal to the population sign vector
s = sign(w) if and only if the following consistency
condition is satisfied:

‖QJcJQ
−1
JJ

sign(wJ)‖∞ 6 1. (2)

Thus, if Eq. (2) is satisfied, the probability of correct
sign estimation is tending to one, and to zero other-
wise (Yuan & Lin, 2007).

4. If µn = µ0n
−1/2 for µ0 ∈ (0,∞), then the sign pat-

tern ofŵ agrees onJ with the one ofw with probabil-
ity tending to one, while for all sign patterns consistent
on J with the one ofw, the probability of obtaining
this pattern is tending to a limit in(0, 1) (in particular
strictly positive); that is, all patterns consistent onJ

are possible with positive probability. See Section 2.4
for more details.

5. If µn tends to zero faster thann−1/2, thenŵ is consis-
tent (i.e., converges in probability tow) but the sup-
port of ŵ is equal to{1, . . . , p} with probability tend-
ing to one (the signs of variables inJc may be negative
or positive). That is, theℓ1-norm has no sparsifying
effect.

Among the five previous regimes, the only ones with con-
sistent estimates (in norm) and a sparsity-inducing effect
are µn tending to zero andµnn1/2 tending to a limit
µ0 ∈ (0,∞] (i.e., potentially infinite). Whenµ0 = +∞,
then we can only hope for model consistent estimates if the
consistency condition in Eq. (2) is satisfied. This some-
what disappointing result for the Lasso has led to various
improvements on the Lasso to ensure model consistency
even when Eq. (2) is not satisfied (Yuan & Lin, 2007; Zou,
2006). Those are based on adaptive weights based on the
non regularized least-square estimate. We propose in Sec-
tion 3 an alternative way which is based on resampling.

2Here and in the third regime, we do not take into account the
pathological cases where the sign pattern of the limit in unstable,
i.e., the limit is exactly at a hinge point of the regularization path.

In this paper, we now consider the specific case where
µn = µ0n

−1/2 for µ0 ∈ (0,∞), where we derive new
asymptotic results. Indeed, in this situation, we get the cor-
rect signs of the relevant variables (those inJ) with proba-
bility tending to one, but we also get all possible sign pat-
terns consistent with this, i.e., all other variables (those not
in J) may be non zero with asymptotically strictly posi-
tive probability. However, if we were to repeat the Lasso
estimation for many datasets obtained from the same dis-
tribution, we would obtain for eachµ0, a set of active vari-
ables, all of which includeJ with probability tending to
one, but potentially containing all other subsets. By inter-
secting those, we would get exactlyJ.

However, this requires multiple copies of the samples,
which are not usually available. Instead, we consider boot-
strapped samples which exactly mimic the behavior of hav-
ing multiple copies. See Section 3 for more details.

2.4. Model Consistency with Exact Root-n
Regularization Decay

In this section we present detailed new results regarding
the pattern consistency forµn tending to zero exactly at
raten−1/2 (see proofs in Appendix A):

Proposition 1 Assume (A1-3) andµn = µ0n
−1/2, with

µ0 > 0. Then for any sign patterns ∈ {−1, 0, 1}p such
that sJ = sign(wJ), P(sign(ŵ) = s) tends to a limit
ρ(s, µ0) ∈ (0, 1), and we have:

P(sign(ŵ) = s) − ρ(s, µ0) = O(n−1/2 log n).

Proposition 2 Assume (A1-3) andµn = µ0n
−1/2, with

µ0 > 0. Then, for any patterns ∈ {−1, 0, 1}p such that
sJ 6= sign(wJ), there exist a constantA(µ0) > 0 such that

log P(sign(ŵ) = s) 6 −nA(µ0) + O(n−1/2).

The last two propositions state that we get all relevant vari-
ables with probability tending to oneexponentially fast,
while we get exactly get all other patterns with probabil-
ity tending to a limitstrictly between zero and one. Note
that the results that we give in this paper are valid forfi-
nite n, i.e., we can derive actual bounds on probability of
sign pattern selections with known constants that explictly
depend onw, Q and the joint distributionPXY .

3. Bolasso: Bootstrapped Lasso

Given then i.i.d. observations(xi, yi) ∈ R
d × R, i =

1, . . . , n, put together into matricesX ∈ R
n×p and

Y ∈ R
n, we considerm bootstrapreplications of then

data points (Efron & Tibshirani, 1998); that is, fork =
1, . . . ,m, we consider aghost sample(xk

i , yk
i ) ∈ R

p × R,

i = 1, . . . , n, given by matricesX
k ∈ R

n×p andY
k ∈ R

n.
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Then pairs (xk
i , yk

i ), i = 1, . . . , n, are sampled uniformly
at randomwith replacementfrom the n original pairs in
(X,Y ). The sampling of thenm pairs of observations is
independent. In other words, we defined the distribution
of the ghost sample(X

∗
, Y

∗
) by samplingn points with

replacement from(X,Y ), and, given(X,Y ), them ghost
samples are independently sampled i.i.d. from the distribu-
tion of (X

∗
, Y

∗
).

The asymptotic analysis from Section 2 suggests to esti-
mate the supportsJk = {j, ŵk

j 6= 0} of the Lasso esti-
matesŵk for the bootstrap samples,k = 1, . . . ,m, and
to intersect them to define the Bolasso model estimate of
the support:J =

⋂m
k=1 Jk. OnceJ is selected, we es-

timatew by the unregularized least-square fit restricted to
variables inJ . The detailed algorithm is given in Algo-
rithm 1. The algorithm has only one extra parameter (the
number of bootstrap samplesm). Following Proposition 3,
log(m) should be chosen growing withn asymptotically
slower thann. In simulations, we always usem = 128
(except in Figure 3, where we study the influence ofm).

Algorithm 1 Bolasso

Input: data(X,Y ) ∈ R
n×(p+1)

number of bootstrap replicatesm
regularization parameterµ

for k = 1 to m do
Generate bootstrap samples(X

k
, Y

k
) ∈ R

n×(p+1)

Compute Lasso estimatêwk from (X
k
, Y

k
)

Compute supportJk = {j, ŵk
j 6= 0}

end for
ComputeJ =

⋂m
k=1 Jk

ComputeŵJ from (XJ , Y )

Note that in practice, the Bolasso estimate can be computed
simultaneously for a large number of regularization param-
eters because of the efficiency of the Lars algorithm (which
we use in simulations), that allows to find the entire regular-
ization path for the Lasso at the (empirical) cost of a single
matrix inversion (Efron et al., 2004). Thus the computa-
tional complexity of the Bolasso isO(m(p3 + p2n)).

The following proposition (proved in Appendix A) shows
that the previous algorithm leads to consistent model selec-
tion.

Proposition 3 Assume (A1-3) andµn = µ0n
−1/2, with

µ0 > 0. Then, for allm > 1, the probability that the
Bolasso does not exactly select the correct model, i.e.,
P(J 6= J), has the following upper bound:

P(J 6= J) 6 mA1e
−A2n + A3

log(n)
n1/2

+ A4
log(m)

m ,

whereA1, A2, A3, A4 are strictly positive constants.

Therefore, iflog(m) tends to infinity slower thann when
n tends to infinity, the Bolasso asymptotically selects with
overwhelming probability the correct active variable, and
by regular consistency of the restricted least-square esti-
mate, the correct sign pattern as well. Note that the previ-
ous bound is true whether the condition in Eq. (2) is sat-
isfied or not, but could be improved on if we suppose that
Eq. (2) is satisfied. See Section 4.1 for a detailed compari-
son with the Lasso on synthetic examples.

4. Simulations

In this section, we illustrate the consistency results obtained
in this paper with a few simple simulations on synthetic
examples and some medium scale datasets from the UCI
machine learning repository (Asuncion & Newman, 2007).

4.1. Synthetic examples

For a given dimensionp, we sampledX ∈ R
p from a nor-

mal distribution with zero mean and covariance matrix gen-
erated as follows: (a) sample ap×p matrixG with indepen-
dent standard normal distributions, (b) formQ = GG⊤,
(c) scaleQ to unit diagonal. We then selected the first
Card(J) = r variables and sampled non zero loading vec-
tors as follows: (a) sample each loading signs in{−1, 1}
uniformly at random and (b) rescale those by a scaling
which is uniform at random between13 and 1 (to ensure
minj∈J |wj | > 1/3). Finally, we chose a constant noise
levelσ equal to0.1 times(E(w⊤X)2)1/2, and the additive
noiseε is normally distributed with zero mean and variance
σ2. Note that the joint distribution on(X,Y ) thus defined
satisfies with probability one (with respect to the sampling
of the covariance matrix) assumptions (A1-3).

In Figure 1, we sampled two distributionsPXY with p =
16 andr = 8 relevant variables, one for which the consis-
tency condition in Eq. (2) is satisfied (left), one for which
it was not satisfied (right). For a fixed number of sample
n = 1000, we generated 256 replications and computed the
empirical frequencies of selecting any given variable for
the Lasso as the regularization parameterµ varies. Those
plots show the various asymptotic regimes of the Lasso de-
tailed in Section 2. In particular, on the right plot, although
no µ leads to perfect selection (i.e., exactly variables with
indices less thanr = 8 are selected), there is a range where
all relevant variables are always selected, while all others
are selected with probability within(0, 1).

In Figure 2, we plot the results under the same condi-
tions for the Bolasso (with a fixed number of bootstrap
replicationsm = 128). We can see that in the Lasso-
consistent case (left), the Bolasso widens the consistency
region, while in the Lasso-inconsistent case (right), the Bo-
lasso “creates” a consistency region.
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Figure 1.Lasso: log-odd ratios of the probabilities of selection
of each variable (white = large probabilities, black = small prob-
abilities) vs. regularization parameter. Consistency condition in
Eq. (2) satisfied (left) and not satisfied (right).
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Figure 2.Bolasso: log-odd ratios of the probabilities of selection
of each variable (white = large probabilities, black = small prob-
abilities) vs. regularization parameter. Consistency condition in
Eq. (2) satisfied (left) and not satisfied (right).

In Figure 3, we selected the same two distributions and
compared the probability of exactly selecting the correct
support pattern, for the Lasso, and for the Bolasso with
varying numbers of bootstrap replications (those probabili-
ties are computed by averaging over 256 experiments with
the same distribution). In Figure 3, we can see that in the
Lasso-inconsistent case (right), the Bolasso indeed allows
to fix the unability of the Lasso to find the correct pattern.
Moreover, increasingm looks always beneficial; note that
although it seems to contradict the asymptotic analysis in
Section 3 (which imposes an upper bound for consistency),
this is due to the fact that not selecting (at least) the relevant
variables has very low probability and is not observed with
only 256 replications.

Finally, in Figure 4, we compare various variable selection
procedures for linear regression, to the Bolasso, with two
distributions wherep = 64, r = 8 and varyingn. For all
the methods we consider, there is a natural way to select ex-
actly r variables with no free parameters (for the Bolasso,
we select the most stable pattern withr elements, i.e., the
pattern which corresponds to most values ofµ). We can
see that the Bolasso outperforms all other variable selec-
tion methods, even in settings where the number of samples
becomes of the order of the number of variables, which re-
quires additional theoretical analysis, subject of ongoing
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Figure 3.Bolasso (red, dashed) and Lasso (black, plain): prob-
ability of correct sign estimation vs. regularization parame-
ter. Consistency condition in Eq. (2) satisfied (left) and not
satisfied (right). The number of bootstrap replicationsm is in
{2, 4, 8, 16, 32, 64, 128, 256}.
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Figure 4.Comparison of several variable selection methods:
Lasso (black circles), Bolasso (green crosses), forward greedy
(magenta diamonds), thresholded LS estimate (red stars), adap-
tive Lasso (blue pluses). Consistency condition in Eq. (2) satis-
fied (left) and not satisfied (right). The averaged (over 32 replica-
tions) variable selection error is computed as the square distance
between sparsity pattern indicator vectors.

research. Note in particular that we compare with bagging
of least-square regressions (Breiman, 1996a) followed by
a thresholding of the loading vector, which is another sim-
ple way of using bootstrap samples: the Bolasso provides
a more efficient way to use the extra information, not for
usual stabilization purposes (Breiman, 1996b), but directly
for model selection. Note finally, that the bagging of Lasso
estimates requires an additional parameter and is thus not
tested.

4.2. UCI datasets

The previous simulations have shown that the Bolasso is
succesful at performing model selection in synthetic exam-
ples. We now apply it to several linear regression prob-
lems and compare it to alternative methods for linear re-
gression, namely, ridge regression, Lasso, bagging of Lasso
estimates (Breiman, 1996a), and a soft version of the Bo-
lasso (referred to as Bolasso-S), where instead of intersect-
ing the supports for each bootstrap replications, we select
those which are present in at least90% of the bootstrap
replications. In Table 1, we consider data randomly gener-
ated as in Section 4.1 (withp = 32, r = 8, n = 64), where
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the true model is known to be composed of a sparse loading
vector, while in Table 2, we consider regression datasets
from the UCI machine learning repository, for which we
have no indication regarding the sparsity of the best lin-
ear predictor. For all of those, we perform 10 replications
of 10-fold cross validation and for all methods (which all
have one free regularization parameter), we select the best
regularization parameter on the 100 folds and plot the mean
squarepredictionerror and its standard deviation.

Note that when the generating model is actually sparse (Ta-
ble 1), the Bolasso outperforms all other models, while in
other cases (Table 2) the Bolasso is sometimes too strict
in intersecting models, i.e., the softened version works bet-
ter and is more competitive with other methods. Studying
the effects of this softened scheme (which is more simi-
lar to usual voting schemes), in particular in terms of the
potential trade-off between good model selection and low
prediction error, and under conditions wherep is large, is
the subject of ongoing work.

5. Conclusion

We have presented a detailed analysis of the variable se-
lection properties of a boostrapped version of the Lasso.
The model estimation procedure, referred to as the Bo-
lasso, is provably consistent under general assumptions.
This work brings to light that poor variable selection re-
sults of the Lasso may be easily enhanced thanks to a
simple parameter-free resampling procedure. Our contri-
bution also suggests that the use of bootstrap samples by
L. Breiman in Bagging/Arcing/Random Forests (Breiman,
1998) may have been so far slightly overlooked and consid-
ered a minor feature, while using boostrap samples may ac-
tually be a key computational feature in such algorithms for
good model selection performances, and eventually good
prediction performances on real datasets.

The current work could be extended in various ways: first,
we have focused on a fixed total number of variables, and
allowing the numbers of variables to grow is important in
theory and in practice (Meinshausen & Yu, 2008). Second,
the same technique can be applied to similar settings than
least-square regression with theℓ1-norm, namely regular-
ization by blockℓ1-norms (Bach, 2008) and other losses
such as general convex classification losses. Finally, theo-
retical and practical connections could be made with other
work on resampling methods and boosting (Bühlmann,
2006).

A. Proof of Model Consistency Results

In this appendix, we give sketches of proofs for the asymp-
totic results presented in Section 2 and Section 3. The
proofs rely on the well-known property of the Lasso op-

Table 1.Comparison of least-square estimation meth-
ods, data generated as described in Section 4.1, with
κ = ‖QJcJQ

−1

JJ
sJ‖∞ (cf. Eq. (2)). Performance is mea-

sured through mean squared prediction error (multiplied by
100).

κ 0.93 1.20 1.42 1.28
Ridge 8.8 ± 4.5 4.9 ± 2.5 7.3 ± 3.9 8.1 ± 8.6
Lasso 7.6 ± 3.8 4.4 ± 2.3 4.7 ± 2.5 5.1 ± 6.5
Bolasso 5.4 ± 3.0 3.4 ± 2.4 3.4 ± 1.7 3.7 ± 10.2
Bagging 7.8 ± 4.7 4.6 ± 3.0 5.4 ± 4.1 5.8 ± 8.4
Bolasso-S5.7 ± 3.8 3.0 ± 2.3 3.1 ± 2.8 3.2 ± 8.2

Table 2.Comparison of least-square estimation methods, UCI
regression datasets. Performance is measured through mean
squared prediction error (multiplied by 100).

Autompg Imports Machine Housing
Ridge 18.6±4.9 7.7±4.8 5.8±18.6 28.0±5.9
Lasso 18.6±4.9 7.8±5.2 5.8±19.8 28.0±5.7
Bolasso 18.1±4.7 20.7±9.8 4.6±21.4 26.9±2.5
Bagging 18.6±5.0 8.0±5.2 6.0±18.9 28.1±6.6
Bolasso-S17.9±5.0 8.2±4.9 4.6±19.9 26.8±6.4

timization problems, namely that if the sign pattern of the
solution is known, then we can get the solution in closed
form.

A.1. Optimality Conditions

We let denoteε = Y − Xw ∈ R
n, Q = X

⊤
X/n ∈ R

p×p

and q = X
⊤

ε/n ∈ R
p. First, we can equivalently rewrite

Eq. (1) as:

min
w∈Rp

1
2 (w−w)⊤Q(w−w)−q⊤(w−w)+µn‖w‖1. (3)

The optimality conditions for Eq. (3) can be written in
terms of the sign patterns = s(w) = sign(w) and the
sparsity patternJ = J(w) = {j, wj 6= 0} (Yuan & Lin,
2007):

‖(QJcJQ−1
JJQJJ − QJcJ)wJ + (QJcJQ−1

JJqJ − qJc)

+µnQJcJQ−1
JJsJ ‖∞ 6 µn, (4)

sign(Q−1
JJQJJwJ + Q−1

JJqJ − µnQ−1
JJsJ) = sJ . (5)

In this paper, we focus on regularization parametersµn of
the formµn = µ0n

−1/2. The main idea behind the results
is to consider that(Q, q) are distributed according to their
limiting distributions, obtained from the law of large num-
bers and the central limit theorem, i.e.,Q converges toQ
a.s. andn1/2q is asymptotically normally distributed with
mean zero and covariance matrixσ2Q. When assuming
this, Propositions 1 and 2 are straightforward. The main
effort is to make sure that we can safely replace(Q, q) by
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their limiting distributions. The following lemmas give suf-
ficient conditions for correct estimation of the signs of vari-
ables inJ and for selecting a given patterns (note that all
constants could be expressed in terms ofQ andw, details
are omitted here):

Lemma 1 Assume (A2) and‖Q − Q‖2 6 λmin(Q)/2.
Thensign(ŵJ) 6= sign(wJ) implies‖Q−1/2q‖2 > C1 −
µnC2, whereC1, C2 > 0.

Lemma 2 Assume (A2) and lets ∈ {−1, 0, 1}p such that
sJ = sign(wJ). LetJ = {j, sj 6= 0} ⊃ J. Assume

‖Q − Q‖2 6 min {η1, λmin(Q)/2} , (6)

‖Q−1/2q‖2 6 min{η2, C1 − µnC4}, (7)

‖QJcJQ−1
JJqJ − qJc − µnQJcJQ−1

JJsJ‖∞ 6 µn

−C5η1µn − C6η1η2, (8)

∀i ∈ J\J, si

[
Q−1

JJ (qJ−µnsJ)
]

i
>µnC7η1+C8η1η2, (9)

with C4, C5, C6, C7, C8 are positive constants. Then
sign(ŵ) = sign(w).

Those two lemmas are useful because they relate optimality
of certain sign patterns to quantities from which we can
derive concentration inequalities.

A.2. Concentration Inequalities

Throughout the proofs, we need to provide upper bounds
on the following quantitiesP(‖Q−1/2q‖2 > α) and
P(‖Q − Q‖2 > η). We obtain, following standard argu-
ments (Boucheron et al., 2004): ifα < C9 andη < C10

(whereC9, C10 > 0 are constants),

P(‖Q−1/2q‖2 > α) 6 4p exp
(

− nα2

2pC9

)

.

P(‖Q − Q‖2 > η) 6 4p2 exp
(

− nη2

2p2C10

)

.

We also consider multivariateBerry-Esseen inequalities
(Bentkus, 2003); the probabilityP(n1/2q ∈ C) can be esti-
mated asP(t ∈ C) wheret is normal with mean zero and
covariance matrixσ2Q. The error|P(n1/2q ∈ C) − P(t ∈
C)| is thenuniformly (for all convex setsC) upperbounded
by:

400p1/4n−1/2λmin(Q)−3/2
E|ε|3‖X‖3

2 = C11n
−1/2.

A.3. Proof of Proposition 1

By Lemma 2, for anyA andn large enough, the probability
that the sign is different froms is upperbounded by

P

(

‖Q−1/2q‖2 >
A(log n)1/2

n1/2

)

+P

(

‖Q − Q‖2 >
A(log n)1/2

n1/2

)

+P {t /∈ C(s, µ0(1 − α))} + 2C11n
−1/2,

whereC(s, β) is the set oft such that (a)‖QJcJQ−1
JJ tJ −

tJc − βQJcJQ−1
JJsJ‖∞ 6 β and (b) for all i ∈

J\J, si

[
Q−1

JJ (tJ − βsJ )
]

i
> 0. Note that with

α = O((log n)n−1/2), which tends to zero, we have:
P {t /∈ C(s, µ0(1 − α))} 6 P {t /∈ C(s, µ0)} + O(α). All
terms (ifA is large enough) are thusO((log n)n−1/2).

This shows thatP(sign(ŵ) = sign(w)) > ρ(s, µ0) +
O((log n)n−1/2) where ρ(s, µ0) = P {t ∈ C(s, µ0)} ∈
(0, 1)–the probability is strictly between 0 and 1 because
the set and its complement have non empty interiors and
the normal distribution has a positive definite covariance
matrix σ2Q. The other inequality can be proved similarly.
Note that the constant inO((log n)n−1/2) depends onµ0

but by carefully considering this dependence onµ0, we can
make the inequality uniform inµ0 as long asµ0 tends to
zero or infinity at most at a logarithmic speed (i.e.,µn de-
viates fromn−1/2 by at most a logarithmic factor). Also,
it would be interesting to consider uniform bounds on por-
tions of the regularization path.

A.4. Proof of Proposition 2

From Lemma 1, the probability of not selecting any of the
variables inJ is upperbounded by

P(‖Q−1/2q‖2 >C1−µnC2)+P(‖Q−Q‖2 >λmin(Q)/2),

which is straightforwardly upper bounded (using Sec-
tion A.2) by a term of the required form.

A.5. Proof of Proposition 3

In order to simplify the proof, we made the simplifying
assumption that the random variablesX andε have com-
pact supports. Extending the proofs to take into account the
looser condition that‖X‖2 andε2 have non uniformly infi-
nite cumulant generating functions (i.e., assumption (A1))
can be done with minor changes. The probability that
⋂m

k=1 Jk is different fromJ is upper bounded by the sum
of the following probabilities:

(a) Probability of missing at least one variable in J in
any of the m replications: by Lemma 1, the probability
that for thek-th replication, one index inJ is not selected,
is upper bounded by

P(‖Q−1/2q∗‖2 > C1/2) + P(‖Q−Q∗‖2 > λmin(Q)/2),

where q∗ corresponds to the ghost sample; as common
in theoretical analysis of the bootstrap, we relateq∗ to q

as follows: P(‖Q−1/2q∗‖2 > C1/2) 6 P(‖Q−1/2(q∗ −
q)‖2 > C1/4)+P(‖Q−1/2q‖2 > C1/4) (and similarly for
P(‖Q−Q∗‖2 > λmin(Q)/2)). Because we have assumed
thatX andε have compact supports, the bootstrapped vari-
ables have also compact support and we can use concentra-
tion inequalities (given the original variablesX, and also
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after expectation with respect toX). Thus the probability
for one bootstrap replication is upperbounded byBe−Cn

whereB andC are strictly positive constants. Thus the
overall contribution of this part is less thanmBe−Cn.

(b) Probability of not selecting exactly J in all replica-
tions: note that this is not tight at all since on top of the
relevant variables which are selected with overwhelming
probability, different additional variables may be selected
for different replications and cancel out when intersecting.

Our goal is thus to boundE
{
P(J∗ 6= J|X)m

}
. By

Lemma 2, we have thatP(J∗ 6= J|X) is upper bounded
by

P

(

‖Q−1/2q∗‖2 >
A(log n)1/2

n1/2
|X

)

+P

(

‖Q − Q∗‖2 >
A(log n)1/2

n1/2
|X

)

+P(t∗ /∈ C(µ0)|X) + 2C11n
−1/2 + O( log n

n1/2
),

where now, givenX,Y , t∗ is normally distributed with
meann1/2q and covariance matrix1n

∑n
i=1 ε2

i xix
⊤
i .

As in (a), the first two terms and the last two ones are uni-
formly O( log n

n1/2
) (if A is large enough). We then have to

consider the remaining term. We haveC(µ0) = {t∗ ∈
R

p, ‖QJcJQ
−1
JJ

t∗
J
− t∗

Jc − µ0QJcJQ
−1
JJ

sJ‖∞ 6 µ0}. By
Hoeffding’s inequality, we can replace the covariance ma-
trix that depends onX and Y by σ2Q, at costO(n−1/2).
We thus have to boundP(n1/2q + y /∈ C(µ0)|q) for y

normally distributed andC(µ0) a fixed compact set. Be-
cause the set is compact, there exist constantsA,B > 0
such that, if‖n1/2q‖2 6 α for α large enough, then
P(n1/2q + y /∈ C(µ0)|q) 6 1 − Ae−Bα2

. Thus, by trunca-
tion, we obtain a bound of the form:

E
{
P(J∗ 6= J|X)m

}
6(1−Ae−Bα2

+F
log n

n1/2
)m+Ce−Bα2

6 exp(−mAe−Bα2

+ mF
log n

n1/2
) + Ce−Bα2

,

where we have used Hoeffding’s inequality to upper bound
P(‖n1/2q‖2 > α). By minimizing in closed form with
respect toe−Bα2

, i.e., withe−Bα2

= F log n
An1/2

+ log(mA/C)
mA ,

we obtain the desired inequality.
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Abstract

We describe an algorithm for learning in the
presence of multiple criteria. Our technique
generalizes previous approaches in that it can
learn optimal policies for all linear preference
assignments over the multiple reward criteria
at once. The algorithm can be viewed as an
extension to standard reinforcement learning
for MDPs where instead of repeatedly back-
ing up maximal expected rewards, we back
up the set of expected rewards that are max-
imal for some set of linear preferences (given
by a weight vector, −→w ). We present the algo-
rithm along with a proof of correctness show-
ing that our solution gives the optimal policy
for any linear preference function. The solu-
tion reduces to the standard value iteration
algorithm for a specific weight vector, −→w .

1. Introduction

In Reinforcement Learning (RL), an agent interacts
with the environment to learn optimal behavior. (Sut-
ton & Barto, 1998) Most RL techniques are based on
a scalar reward, i.e., they aim to optimize an objective
that is expressed as a function of a scalar reinforce-
ment. A natural extension to traditional RL tech-
niques is thus the case where there are multiple re-
wards. In many realistic domains, actions depend on
satisfying multiple objectives simultaneously (such as
achieving performance while keeping costs low, a robot
moving efficiently toward a goal while being close to
a recharging station, or a government funding both
military and social programs). Learning optimal poli-
cies in many real-world domains thus depends on the
ability to learn in the presence of multiple rewards.
However, the resulting policies depend heavily on the
preferences over these rewards, and they may change

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

swiftly as preferences vary. We present both an al-
gorithm for the general case of learning all optimal
policies under all assignments of linear priorities for
the reward components, and a proof showing the cor-
rectness of our algorithm.

We start with a motivating example of a simple task
with multiple rewards in Section 2. The paper then
proceeds to the main algorithm in Section 3. We ad-
dress related work in Section 4, and then Section 5
discusses the complexity of our algorithm including re-
alistic and tractable specializations of our algorithm.
Section 6 describes the application of this algorithm
to an example domain, and Section 7 discusses exten-
sions to this technique, such as implementations using
other RL methods (such as temporal difference meth-
ods) and applications of our algorithm to infer another
agent’s preferences based on observing their behavior.
Section 8 outlines the proof of the algorithm’s correct-
ness.

2. Explanation and Motivating

Example

We assume that instead of getting a single reward
signal, the agent gets a reward divided up into sev-
eral components, a reward vector. That is, we
decompose the reward signal r(s, a) (where s is a
state and a is an action) into a vector −→r (s, a) =
[r1(s, a), r2(s, a), . . . , rn(s, a)]. An agent could poten-
tially optimize many different functions of these re-
wards, but the simplest function is a weighted sum:
for every fixed weight vector −→w we obtain a total re-
ward scalar r−→w (s, a) = −→w · −→r (s, a). There is thus an
optimal policy π∗

−→w
for each weight vector −→w .

Consider, for example, a lab guinea pig running a fa-
miliar maze, shown in Figure 1. The guinea pig runs
through the maze to one of four stashes of food. Once
it has reached a stash and eaten the food, the ex-
perimenter takes it out of the maze and returns it
to its cage, so it can only hope to eat one of the
stashes per run of the maze. Assume that there are
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3 1

2

r=[0.6, 0.6] r=[1, 0]

r=[0, 1]4 r=[0.7, 0.4]

Figure 1. An example maze with rewards, split into 2 com-
ponents, at 3 different locations

only 2 types of food provided (hay and carrot), so re-
ward vectors take the form [hay,carrot]. Location 1
contains hay (−→r = [1, 0]), location 2 contains carrot
(−→r = [0, 1]), and locations 3 and 4 contain a little of
both (−→r = [0.6, 0.6] and [0.7, 0.4], respectively). Be-
cause the maze is familiar, the animal knows where the
food is placed and what sort of food is in each location.

The experimenter has several different guinea pigs and
has discovered that each has different tastes. For in-
stance, Chester likes only hay (−→w = [1, 0]), and Milo
likes only carrot (−→w = [0, 1]), but greedy Louis likes
both equally (−→w = [0.5, 0.5]). (Without loss of gen-
erality, assume that all animals’ weight vectors sat-
isfy

∑

i wi = 1: they describe relative preferences, not
absolute utilities.) So, if Chester goes to location 4
(−→r = [0.7, 0.4]), then he gets reward r = −→w · −→r = 0.7.
Milo would get 0.4, and Louis would get a reward of
0.55.

Looking at the maze, we see that although there are
4 possible strategies (with rewards shown in Figure 2,
only 3 of them are optimal for any values of −→w . One
strategy occurs when the weight vector has w0 > 0.6
(and hence w1 = 1 − w0 < 0.4): then the guinea pig
should head straight for location 1, because the reward
elsewhere will be no more than 0.6. By the exact same
logic, when the weight vector has w1 > 0.6 (and w0 <

0.4), then the animal should go to location 2. In all
other cases (0.4 ≤ w0 ≤ 0.6), it will optimize its reward
by going to location 3. Under no circumstances would
an optimal agent go to location 4! No matter what its
weight vector, some other location dominates location
4. We would like to determine exactly this: which
policies are viable and which are not (even without
knowing −→w ).

Our method learns the set of optimal policies for all
−→w

at the same time. Once the agent has learned all these
policies, it can change reward weights at runtime to
get a new optimal behavior, without having to do any

R1

R2

0

1

1

1

2

3

4

Figure 2. The potential reward vectors in the guinea pig
example

relearning. For a fixed priority scheme (fixed weight
vector −→w ) over the multiple reward components, our
algorithm results in the standard recurrence for Q-
values that is analogous to the equation for the average
weighted reward case as in (Natarajan & Tadepalli,
2005):

Q∗
−→w (s, a) = E

[−→w · −→r (s, a) + γ max
a′

Q∗
−→w (s′, a′)|s, a

]

In the general case, where we do not know the relative
priorities over the reward components, our algorithm
exploits the fact that the extrema of the set of Q-values
vectors (Q vectors that are maximal for some weight
setting) is the same as the convex hull of the Q-value
vectors. (The convex hull is defined as the smallest
convex set that contains all of a set of points. In this
case, we mean the points that lie on the boundary
of this convex set, which are of course the extreme
points–the ones that are maximal in some direction.
This is somewhat similar to the Pareto curve, since
both are maxima over trade-offs in linear domains.)
Now we can rewrite the general RL recurrence in terms
of operations on the convex hull of Q-values, and we
show this recurrence to be correct and convergent to
the value iteration algorithm in the fixed weight vector
case. Many standard RL algorithms in the literature
can be seen as limiting cases of our more general algo-
rithm. While the worst-case complexity of our general
algorithm is exponentially higher than that of fixed-−→w
cases, it not only solves all the fixed-−→w cases but also
determines which cases are worth solving. We also give
some constraints and techniques that can help reduce
the complexity.

3. Convex Hull Value Iteration

In this section, we introduce the problem definition
in the context of a traditional MDP setting and our
approach and algorithm.
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3.1. Preliminaries and Notation

Our approach is based on an MDP which is a tuple
(S, A, T, γ,−→r ), where S is a finite set of N states, A =
{a1, . . . , ak} is a set of k actions, T = {Psa(s′)} is
the set of state transition probabilities (Psa(s′) is the
transition probability of going to state s′ ∈ S by taking
action a ∈ A from state s ∈ S), γ ∈ [0, 1) is the
discount factor, and −→r : S × A 7→ R

d is the reward
function giving d-component reward vector −→r (s, a).
This differs from the standard formulation only in that
reward now comes as a vector.

A policy, π, is the map S 7→ A, and the value func-
tion for any policy π, evaluated at some state si is the
vector

−→
V

π
(si) = E[−→r (si, ai) + γ−→r (si+1, ai+1) + . . . |π] (1)

where the expectation is over the distribution of the
state and reward sequence (si,

−→r i, si+1,
−→r i+1, . . .),

that is obtained on executing the policy π starting
from the state si. The Q-function is the vector

−→
Q

π
(s, a) = E−→r (s,a),s′∼Psa

[−→r (s, a) + γ
−→
V

π
(s′)

]

(2)

where −→r (s, a), s′ ∼ Psa means that the expectation
with respect to s′ and −→r (s, a) distributed according
to Psa. The optimal Q function for a weight −→w is

Q∗
−→w

(s, a) = supπ
−→w · −→Q

π
(s, a).

3.2. Approach: Convex Hulls

Given some −→w , the resulting reward for taking an ac-
tion is r(s, a) = −→w · −→r (s, a). This gives us the follow-
ing recurrence for optimal Q-values, which is exactly
equivalent to the equation for a single reward compo-
nent:

Q−→w (s, a) = E

[−→w · −→r (s, a) + γ max
a′

Q−→w (s′, a′)|s, a
]

We can solve this recurrence directly, or we can use it
to get converging approximations to the optimal value
function—this gives rise to the value iteration method,
Q-learning, and so on.

An alternative view is that each possible policy gives a

different expected reward
−→
Q(s, a), and we simply want

to select a policy by maximizing the dot product of this

with −→w . For a fixed −→w , only one such
−→
Q(s, a) can be

optimal, but in general we might care about any
−→
Qs

that are maximal for some −→w . But this set of Q-values
that are extrema is exactly the convex hull of the Q-
values! This allows us to use standard convex hull
operations to pare down the set of points we consider
and gives rise to the following proposition.

Proposition 1. The convex hull over Q-values con-
tains the optimal policy over the average expected re-
ward r(s, a) = −→w · −→r (s, a) for any −→w .

To make this operational and derive an algorithm that
maintains all optimal policies for any weight vector −→w ,
we need a few definitions for relevant operations on the
convex hull.

We write
◦

Q(s, a) to represent the vertices of the con-
vex hull of possible Q-value vectors for taking action
a at state s. We then define the following operations
on convex hulls which will be used to construct our
learning algorithm.

Definition 1. Translation and scaling operations

−→u + b
◦

Q ≡ {−→u + b−→q : −→q ∈
◦

Q} (3)

Definition 2. Summing two convex hulls

◦

Q +
◦

U ≡ hull{−→q +−→u : −→q ∈
◦

Q,−→u ∈
◦

U} (4)

Definition 3. Extracting the Q-value To extract
the best Q-value for a given −→w , we perform a simple
maximum:

Q−→w (s, a) ≡ max
−→q ∈

◦

Q(s,a)

−→w · −→q (5)

Given these definitions, we are now ready to illustrate
the basic algorithm.

3.3. Convex Hull Value Iteration Algorithm

Our algorithm extends the single-−→w case (which is the
standard expected discounted reward framework (Bell-
man, 1957)) into the following recurrence:

◦

Q(s, a) = E

[

−→r (s, a) + γ hull
⋃

a′

◦

Q(s′, a′)|s, a
]

(6)

That is, instead of repeatedly backing up maximal ex-
pected rewards, we back up the set of expected rewards
that are maximal for some −→w . While the expectation
over hulls looks awkward, it is the natural equivalent
of an expectation of maxima, and it arises for the same
reason. We must take an expectation over s′, but once
in s′, we can choose the best action, no matter what
our −→w . The expectation’s computation can be broken
down, in the usual way, into the scalings and sums we
have already defined.

This leads us to define Algorithm 1, which extends
the value iteration algorithm (Bellman, 1957) to learn
optimal Q-values for all possible −→w . A proof of its
correctness is given in Section 8.
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Algorithm 1 Value iteration algorithm modified from
that of Bellman (1957)

Initialize
◦

Q(s, a) arbitrarily ∀s, a
while not converged do

for all s ∈ S, a ∈ A do
◦

Q(s, a)← E[−→r (s, a)

+γ hull
⋃

a′

◦

Q(s′, a′)|s, a]
end for

end while

return
◦

Q

4. Related Work

There is now a body of work addressing multi-reward
reinforcement learning. There have been algorithms
that assume a fixed ordering between different re-
wards, such as staying alive and not losing food (Gabor
et al., 1998), techniques based on formulating the mul-
tiple reward problem as optimizing a weighted sum of
the discounted total rewards for multiple reward types
(Feinberg & Schwartz, 1995), and techniques that de-
compose the reward function into multiple components
which are learned independently (with a single pol-
icy) (Russell & Zimdars, 2003). In all these cases, the
preference over rewards is assumed to be fixed and
time-invariant. In a slightly more flexible formulation,
Mannor and Shimkin (2004) take multiple reward com-
ponents and perform learning that results in expected
rewards lying in a particular region of reward space.

More recently, (Natarajan & Tadepalli, 2005) formu-
late the multiple reward RL problem as we do, using a
weighted expected discounted reward framework, and
they store both the currently best policy and its Q-
values as vectors. When priorities change dynamically
(as reflected in changes in the weight vector), the agent
can calculate new reward scalars from the vectors and
thus start from the Q-values of the best policy learned
so far rather than resetting entirely. As far as we are
aware, none of the techniques proposed tackle the gen-
eral case of learning optimal policies for all linear pref-
erence assignments over the multiple reward compo-
nents.

4.1. Relation to POMDPs

Our problem, and hence its solution, is closely related
to the standard partially observable Markov decision
process (POMDP) formulation. In a POMDP, we have
a model of both observed and unobserved variables
and use Bayesian reasoning to infer a joint distribution
over the hidden variables. Then, we must choose an

Figure 3. A POMDP formulation of multiple reward com-
ponents

optimal action based on both the observed state and
the continuous beliefs. (Kaelbling et al., 1998)

Consider the POMDP shown in Figure 3; here, the
reward depends on an unobserved multinomial ran-
dom variable, so E[r] =

∑

i P(w = i)ri. If we define
P(wt|wt−1) to be the identity, the distribution of w

will not change with t. Then, the expected reward de-
pends linearly on our prior distribution over w, and
the dual of the usual POMDP maximum-hyperplane
algorithm corresponds to a convex hull operation over
reward components. It is thus possible to write our
multiple-reward problem as a POMDP problem. This
suggests a natural route to extend our algorithm to op-
erate on POMDPs. It remains future work, however,
to see if the approximation algorithms used for solving
POMDPs can yield useful results in our domain.

5. Complexity

This algorithm relies on four convex hull operations,
whose complexity we will analyze in terms of the num-
ber of points on the hull, n; in the limit, this num-
ber converges to the number of optimal policies in the
environment. We must both scale (by probabilities
and discounts) and translate (by rewards) our con-
vex hulls; these operations only require touching every
point once, resulting in a complexity of O(n). We must
also merge two or more convex hulls. This takes time
at most O((kn)⌊d/2⌋) if d > 3, where k is the number
of hulls involved, n is the number of points in each
hull, and d is the dimension (number of reward com-
ponents) (Clarkson & Shor, 1989). Finally, we must
add two convex hulls. If done naively by adding all
pairs of points and taking a hull, this takes time at
most O(n2⌊d/2⌋). All these operations must be per-
formed whenever we back up Q-values, so we multiply
the complexity of ordinary reinforcement learning by
O(n2⌊d/2⌋). (However, in the d = 2 and d = 3 cases,
there are efficient ways to perform these operations.)

In the long run, the number of points on each convex
hull, n, must converge to a limit as the Q-values con-
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Figure 4. A resource-collection domain

verge to their optimal values. Eventually, there will
be exactly one point on each convex hull for each opti-
mal policy. However, in the short term, the number of
short-range policies we might have to track might be
much lower or even higher. Also, the number of opti-
mal policies n depends on the environment in a com-
plicated way, with the worst case being that all policies
(|A||S| of them) may be optimal for some weight vec-
tor.

5.1. Reducing the Complexity

The complexity result of our algorithmic modifications
is an exponential blowup with the number of reward
components. There are a few main ways of tackling
this. The first is to simply restrict the number of re-
ward components; with only, say, 5 or fewer, this ad-
ditional computation is likely not to be an undue bur-
den. In practice, there are currently very few problems
studied with more reward components than this.

When we must handle a high-dimensional problem,
we can reduce the complexity by applying constraints
on the weight vectors that we might optimize for.
Given the geometric nature of our approach, if we have
knowledge about the directions of allowable vectors,
such as −→a · −→w > 0, then we can simply take a partial
convex hull. This will, on average, reduce the com-
plexity of the convex hull computation by half. So, if
we know that all d elements of −→w must be positive,
then we can write that as d such constraints to divide
the convex hull complexity by 2d.

In addition, the convergence of Q-values means that
we are essentially performing the same convex hull op-
erations again and again; this means that we might be
able to reuse the information from the last iteration.
The idea is to annotate each point with a “witness”, or
proof of its status: if a point is not on the convex hull,
then we note down a set of faces that enclose it, and
if it is on the hull, we note down a direction in which
it is the extremum. Then, on the next iteration, when
these points have moved slightly and we must compute
a convex hull again, we can simply check these proofs
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Figure 6. Regions of preference space in which policies are
optimal. Axes are reward components R1 and R2; the
enemy weight is E = 1 − R1 − R2.

(in at most O(n2) time). If all the proofs are correct,
then our convex hull remains correct and the locations
of the points have moved only slightly. On the other
hand, if any proof is violated, we can simply rebuild
the convex hull in the ordinary, expensive way. In the
limit as the Q-values and policy converge, the policy
must stop changing, so this trick may greatly reduce
the complexity of refining Q-values.

# policy

1 Go directly to R2, dodging Es
2 Go to both Rs, through both Es
3 Go to R1, through E1 both ways
4 Go to both Rs, dodging E1 but through E2
5 Go to R1, dodging all Es
6 Go to R1, going through E1 only once

Table 1. The optimal policies for the example domain
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6. Example Application: Resource

Gathering

In order to demonstrate the application of this
method, we have tested it on a resource-collecting
problem similar to that of many strategy games. We
model this as a resource-collecting agent moving (in
the 4 cardinal directions) around in a grid environ-
ment shown in Figure 4, starting from the home base,
labelled H. Its goal is to gather resources and take
them back to the home base. If it reaches location R1,
it then picks up resource 1, and at R2 it gets resource
2; it can carry both at the same time. When the agent
returns to H, it receives a reward for each resource it
brings back. Also, if it steps on one of the two enemy
spaces, labeled E1 and E2, with a 10% probability it
will be attacked, receiving a penalty and resetting to
the home space, losing all it carries. Its reward space
is then [enemy, resource1, resource2], so it can get a
penalty of [-1,0,0] for being attacked, or a reward of
[0,1,0], [0,0,1], or [0,1,1] for bringing back one or both
resources. We use a discounting rate of γ = 0.9.

Depending on the relative values of the resources and
attack, the agent may find different policies to be valu-

able. The convex hull of values starting at H,
◦

V (H),
is shown in Figure 5. The points on the hull corre-
spond to optimal policies, described in Table 1; each
policy is valid for some range of preferences −→w , which
are shown in Figure 6.1

7. Extensions and Current Work

This same convex-hull technique can be used with
other RL algorithms, such as the temporal difference
learning algorithm. The critical thing to recall is that
because we are learning more than one policy at once,
we can use only off-policy learning algorithms.

Our solution can also be used for inferring the pref-
erence function from observation data. This is closely
related to the inverse reinforcement learning problem
(Ng & Russell, 2000; Abeel & Ng, 2004). The basic
idea behind inverse reinforcement learning is to use
observed behavior to infer weights from a user that
can then be used to find optimal policies. In our case,
the method for learning all policies at once can also
be used in reverse to learn the range of reward weights
that an agent must have. If we assume that an agent
we observe is rational and uses a policy that is opti-
mal for its reward weights, then we can use our obser-

1We do not show the ranges of policies optimal where
the values of the rewards are less than 0 (wi < 0); these
policies, while sometimes interesting, are not valuable for
the task.

vations of the agent to infer its reward weights. We
simply repeatedly observe its choice of action a and

use our knowledge of
◦

Q(s, a) to identify which values
of −→w are consistent with that action. Then, we take
the intersection of the constraints.

The multi-criterion RL approach also allows us to ex-
amine reward at different time scales. Instead of hav-
ing a single discounting factor γ, we could have a dis-
counting factor γi for each component. This allows
us to use a sum of exponentials with different time
constants to approximate non-exponential discounting
rates, which are helpful in explaining the preferences of
humans (Ainslie, 2001). With our convex hull method,
we can find what policies are optimal for a whole range
of discounting rates.

8. Appendix: Proof of Correctness

We prove that ∀−→w Algorithm 1 gives the optimal pol-
icy by reducing the recurrence to the standard value
iteration recurrence for any −→w . First, recall the basic
recurrence of our algorithm, Equation 6.

◦

Q(s, a)← E

[

−→r (s, a) + γ hull
⋃

a′

◦

Q(s′, a′)|s, a
]

Now apply Equation 5 to the both sides (to extract
the optimal value for −→w ):

Q−→w (s, a) ← max{−→w · −→q : −→q ∈ E

[

−→r (s, a)

+γ hull
⋃

a′

◦

Q(s′, a′)|s, a
]

}.

Next, apply the definition of an expectation

← max {−→w · −→q : −→q ∈∑

s′,−→r (s,a) P(s′,−→r (s, a)|s, a)

·
(

−→r (s, a) + γ hull
⋃

a′

◦

Q(s′, a′)

)

},

then use Equations 3 and 4 and rewrite

← max{−→w · −→q : −→q ∈ hull

{

∑

i,−→r (s,a)

P(s′i,
−→r (s, a)|s, a)

(−→r (s, a) + γ−→q ′
s′

i

)

: −→q ′
s′

1

∈ hull
⋃

a′

◦

Q(s′1, a
′), . . .

}

}.
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← max

{

−→w ·
∑

i,−→r (s,a)

P(s′i,
−→r (s, a)|s, a)

·
(

−→r (s, a) + γ−→q ′
s′

i

)

:

−→q ′
s′

1

∈ hull
⋃

a′

◦

Q(s′1, a
′), . . .

}

← max

{

E

[

−→w · −→r (s, a)

∣
∣
∣
∣
s, a

]

+γ
∑

i

P(s′i|s, a)−→w · −→q ′
s′

i

:

−→q ′
s′

1

∈ hull
⋃

a′

◦

Q(s′1, a
′), . . .

}

.

Pull −→r (s, a) (added independently to the entire set)
and γ (non-negative) out of the maximum.

← E[−→w · −→r (s, a)|s, a]

+γ max

{
∑

i

P(s′i|s, a)−→w · −→q ′
s′

i

:

−→q ′
s′

1

∈ hull
⋃

a′

◦

Q(s′1, a
′), . . .

}

But the max of a sum over different sets is the sum of
the sets’ maxima, which we simplify.

← E[−→w · −→r (s, a)|s, a] +

γ
∑

i

P(s′i|s, a)max

{

−→w · −→q ′
s′

i

:

−→q ′
s′

i

∈ hull
⋃

a′

◦

Q(s′i, a
′)

}

← E[−→w · −→r (s, a)|s, a]

+γ
∑

i

P(s′i|s, a)max

{

−→w · −→q ′
s′

i

:

−→q ′
s′

i

∈
◦

Q(s′i, a
′), a′ ∈ A(s′i)

}

← E[−→w · −→r (s, a)|s, a]

+γ
∑

i

P(s′i|s, a)max
a′

max
q′

s′
i

∈
◦

Q(s′

i
,a′)

−→w · −→q ′
s′

i

But we re-order the maxima and rewrite an expecta-
tion, and so we recover our recurrence for a single −→w .

Q−→w (s, a)← E

[

−→w · −→r (s, a) + γ max
a′

◦

Q−→w (s′, a′)

∣
∣
∣
∣
s, a

]

.

Given a −→w , at any point in the algorithm, this gives
the same Q-value as ordinary value iteration. There-
fore, the proof of convergence for the value iteration
algorithm applies to our method, and our method con-
verges exactly as quickly as ordinary value iteration
(for every −→w ).

References

Abeel, P., & Ng, A. (2004). Apprentice learning via
inverse reinforcement learning. Proc. ICML-04.

Ainslie, G. (2001). Breakdown of will. Cambridge,
Massachusetts: Cambridge University Press.

Bellman, R. E. (1957). Dynamic programming. Prince-
ton: Princeton University Press.

Clarkson, K. L., & Shor, P. W. (1989). Applications
of random sampling in computational geometry, II.
Discrete and Computational Geometry, 4, 387–421.

Feinberg, E., & Schwartz, A. (1995). Constrained
markov decision models with weighted discounted
rewards. Mathematics of Operations Research, 20,
302–320.

Gabor, Z., Kalmar, Z., & Szepesvari, C. (1998). Multi-
criteria reinforcement learning. Proc. ICML-98.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R.
(1998). Planning and acting in partially observable
stochastic domains. Artificial Intelligence.

Mannor, S., & Shimkin, N. (2004). A geometric
approach to multi-criterion reinforcement learning.
Journal of Machine Learning Research, 325–360.

Natarajan, S., & Tadepalli, P. (2005). Dynamic prefer-
ences in mult-criteria reinforcement learning. Proc.
ICML-05. Bonn, Germany.

Ng, A., & Russell, S. (2000). Algorithms for inverse
reinforcement learning. Proc. ICML-00.

Russell, S., & Zimdars, A. (2003). Q-decomposition
for reinforcement learning agents. Proc. ICML-03.
Washington, DC.

Sutton, R., & Barto, A. (1998). Reinforcement learn-
ing: An introduction. Cambridge, Massachusetts:
The MIT Press.

47



Multiple Instance Ranking

Charles Bergeron chbergeron@gmail.com

Mathematical Sciences Department, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 USA

Jed Zaretzki zaretj@rpi.edu

Curt Breneman brenec@rpi.edu

Chemistry Department, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 USA

Kristin P. Bennett bennek@rpi.edu

Mathematical Sciences Department, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 USA

Abstract

This paper introduces a novel machine learn-
ing model called multiple instance ranking
(MIRank) that enables ranking to be per-
formed in a multiple instance learning set-
ting. The motivation for MIRank stems
from the hydrogen abstraction problem in
computational chemistry, that of predicting
the group of hydrogen atoms from which
a hydrogen is abstracted (removed) during
metabolism. The model predicts the pre-
ferred hydrogen group within a molecule by
ranking the groups, with the ambiguity of
not knowing which hydrogen atom within the
preferred group is actually abstracted. This
paper formulates MIRank in its general con-
text and proposes an algorithm for solving
MIRank problems using successive linear pro-
gramming. The method outperforms multi-
ple instance classification models on several
real and synthetic datasets.

1. Introduction

This paper introduces a new machine learning
paradigm called multiple instance ranking (MIRank),
bringing the concept of ranking to the framework of
multiple instance learning. Some problems that MI-
Rank could potentially solve based on prior data are:

1. For a given country, predict the city that contains
the most profitable store.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

2. For a given state, predict the congressional dis-
trict that contains the politician that delivers the
most subsidies.

3. For a given document, predict the para-
graph/passage that contains the most pertinent
sentence/phrase/word.

4. For a given molecular class, predict the molecule
with the conformation having the highest human
immunodeficiency virus (HIV) inhibition efficacy.

5. For a given state, predict the division that con-
tains the town with the highest median housing
unit price.

6. For a given molecule, predict the site of
metabolism from which a hydrogen atom is ab-
stracted (removed).

It is this last application, that of hydrogen abstraction
from the field of computational chemistry, that moti-
vated this work. The fifth application, which involves
making predictions from the census, is also explored
here. Later in this paper, a general formulation for
multiple instance ranking is provided, an algorithm
for MIRank is proposed, and this algorithm is tested
on datasets that stem from both applications as well
as synthetic data.

As introduced by Dietterich et al. (1997), the setup
for multiple instance learning differs somewhat from
the standard learning framework. In standard classi-
fication, the task is to predict the class of each item.
Each item has a corresponding binary classification la-
bel, and features defined for each item are used to build
the model. In multiple instance classification (MIC),
each item belongs to a bag. The task is to predict the
class of each bag of items. Features are defined for
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Figure 1. Schematic of multiple instance classification.
Bags are ellipses, active bags contain stars and inactive
bags contain parallelograms.

each item, but the class label is assigned to each bag.
For simplicity of presentation, assume there are two
classes: active and inactive. By definition, an active
bag must contain at least one active item, while an
inactive bag contains exclusively inactive items. It is
not known which item is active.

Figure 1 illustrates MIC, in which bags are ellipses,
items in active bags are represented as stars, and items
in inactive bags are marked as parallelograms. The
straight line is the separating line representing the clas-
sification function. Notice that at least one item from
each active bag is found above the line, while all items
in inactive bags are located below the line.

The difficulty is that there exists an ambiguity as to
which items in an active bag are actually active. For
example, consider the drug discovery application (Di-
etterich et al., 1997), with molecules as bags and con-
formations (three-dimensional molecular shapes that
differ from each other by the rotation of atom groups
about one or more bonds) as items. If a molecule pos-
sesses one—or possibly several—conformations that
are active, then it is known that the molecule is ac-
tive. However, it is not known which conformation
is active. On the other hand, if none of a molecule’s
conformations are active, then the molecule is deemed
inactive, and in this case, it is inferred that all of that
molecule’s conformations are inactive.

Other applications of MIC include automatic image
annotation (Andrews et al., 2003), context-based im-
age indexing (Maron & Ratan, 1998), text catego-
rization (Andrews et al., 2003) and hard-drive fail-
ure prediction (Murray et al., 2005). Algorithms for
MIC stem from diverse density (Maron & Ratan, 1998;
Zhang & Goldman, 2001), neural networks (Ramon &

Figure 2. Schematic of multiple instance ranking. Boxes
are rectangles, bags are ellipses, preferred bags contain
stars, and other bags contain parallelograms.

Raedt, 2000), and generalisations of support vector
machines (Andrews et al., 2003; Mangasarian & Wild,
2008). The drug discovery application later inspired
Ray & Davis (2001) to formulate multiple instance re-
gression, where this time the response assigned to each
bag is a real number quantifying the activity of the
molecules.

Multiple instance ranking differs in that a classification
label is not known for each bag. Rather, some pref-
erence information is available for pairs of bags. For
example, it may be known that bag A ranks higher
than both bags B and C, while the relative ranking
of bags B and C may not be known. In many appli-
cations, even more structure exists. In these cases, it
is convenient to think of every bag as belonging to a
box. Within each box, exactly one bag ranks higher
than the other ones in the box, and this bag is des-
ignated the preferred bag. It is not known how the
other bags in the box rank with respect to each other.
Further, it is not known how bags rank with respect to
each other across boxes. Additionally, there remains
the ambiguity of which items in the preferred bags are
preferred and which ones are not preferred. Figure
2 illustrates the situation. Large rectangles represent
boxes. As was the case in Figure 1, bags are ellipses,
items in preferred bags are represented as stars and
items in the other bags are marked as parallelograms.
Instead of being fixed, the separating line (represent-
ing the ranking function) slides from one box to the
next. For each box, the ranking function separates at
least one item of the preferred bag from the remaining
items of the box.

The hydrogen abstraction application fits perfectly
into this framework. For each molecule (box), the task
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is to find the group (bag) from which a hydrogen atom
(item) is abstracted. It is not known which hydrogen
atom is abstracted, only to which group it belongs.

The organization of this paper is as follows. Section
2 defines some mathematical notation. Section 3 mo-
tivates multiple instance ranking through the compu-
tational chemistry problem of hydrogen abstraction.
Multiple instance ranking is formulated, and an al-
gorithm for MIRank is proposed, in Section 4. The
model and algorithm are generalized to nonlinear MI-
Rank problems in Section 5. Section 6 describes the
datasets used in this paper, and Section 7 specifies the
modeling results. Finally, Sections 8 and 9 constitute
a discussion and outlook, respectively.

2. Notation

Let x denote a vector in Rn and let xT mark the
transpose of x. Let 0 denote the vector of all zeros
and e denote the vector of all ones. Let |x| denote
the cardinality of x, that is, the number of entries in
the vector. Let ‖x‖1 denote the 1-norm of x, equal
to the sum of the absolute values of the entries of the
vector. If x has nonnegative entries, then this equals
eT x. Let X ∈ Rk×n and H ∈ Rm×n denote matrices.
I and J indicate index sets. The cardinality of the
set I is indicated by |I|. The matrix XI indicates the
matrix in R|I|×n with rows restricted to the index set
I. A kernel matrix K(X,H ′) maps Rk×n and Rn×m

into Rk×m. Each entry of the mapping results from a
function (such as the radial basis function) applied to
one row of X applied to one row of H.

3. Motivating application

Bioavailability of a drug, or its ability to be adminis-
tered orally, is a major concern to the pharmaceuti-
cal industry. This characteristic depends on a drug’s
capability to withstand degradation by intestinal and
hepatic enzymes during first-pass metabolism in or-
der to cross the intestinal lining and make it into
the bloodstream so that its medicinal effect may be
felt (Thummel et al., 1997). Hence, this process of
drug metabolism needs to be better understood. More
specifically, it is important to discover the attributes
of molecules that identify sites which are vulnerable to
enzymatic degradation.

Cytochrome CYP3A4 is but one of many metabolis-
ing enzymes found in the human liver and small intes-
tine, yet this enzyme metabolises nearly 50% of mar-
keted drugs (Guengerich, 1999; Rendic, 1997). For
CYP3A4 substrates, approximately half of the known
metabolism reactions occur via hydroxylation, the rate

Figure 3. Stick model of an Adinazolam molecule. Large
spheres represent nonhydrogen atoms while small spheres
represent hydrogen atoms. Two groups of hydrogens are
evidenced. The top group, indicated by a thick arrow, has a
hydrogen abstracted during metabolism. The lower group,
indicated by a thin arrow, does not.

limiting step of which is hydrogen atom abstraction
(Sheridan et al., 2007). Knowing where a molecule is
preferentially oxidized by this cytochrome would aid
the modification of compounds to improve their kinetic
or pharmacological profiles (Afzelius et al., 2007).

Normally, experimental techniques are used to identify
the molecular sites susceptible to metabolism. This is
a time- and labor-intensive process. While in vitro
studies are increasingly high throughput, the in silico
identification of metabolic liability early on in the drug
discovery process will help prevent taking forward poor
drug candidates. In addition, the constraints of the
biological problem fit perfectly into the framework of
a MIRank application, leading to a potential in silico
solution.

The goal is to build a model that predicts, for each
molecule, the site of abstraction of a hydrogen atom
during metabolism. In order to accomplish this, in-
dividual hydrogen atoms are first grouped together
according to molecular equivalence: hydrogens are
placed within the same group if and only if the ab-
straction of any hydrogen from within the group would
result in the same metabolised molecule. In this way,
groups are equivalent representations of potential sites
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of metabolism. Note that experimental data do not
show which individual hydrogen is abstracted during
metabolism, but rather to which group this hydrogen
atom belongs. This setup perfectly fits that of mul-
tiple instance ranking. Molecules can be viewed as
boxes, groups as bags, and individual hydrogens as
items. Figure 3 illustrates these using a stick repre-
sentation of a molecule.

Two prior modeling attempts are described. Firstly,
Singh et al. (2003) chose the hydrogen atom that has
the minimum estimated abstraction energy, with a suf-
ficiently large surface area (of 8 squared Angstroms),
as the abstracted hydrogen. Allowing 1 guess per
molecule, their rule-based model performed correctly
in 44% of molecules. Sheridan et al. (2007) later
reported that this model has a prediction rate of
51%, allowing for 2 guesses per molecule. Secondly,
Sheridan et al. (2007) assembled a database of 316
molecules (including the 50 molecules used by Singh
et al. (2003)). They used a random forest applied to
molecular descriptors, and found a model that cor-
rectly predicted the site of abstraction for 77% of
molecules, allowing for 2 guesses per molecule.

4. Formulation

Let (I, J) denote an ordered pair of bags where I and
J are lists of indices referring to their items. Let xi

denote a vector of n features for an item i, and let
matrix XI ’s rows contain the features for each index
in I. Further let f denote the ranking function. Then
the statement bag I is preferred over bag J is expressed
mathematically as

max
i∈I

f(xi) > max
j∈J

f(xj).

The maximum operator on the right hand side can be
replaced with all of the items it operates over, hence
the inequality is rewritten as

max
i∈I

f(xi) > f(xj) ∀ j ∈ J.

The maximum operator on the left hand side is also
replaced. A convex combination of the items in bag
I is taken, following the lead of Mangasarian & Wild
(2008) in their formulation of MIC. This convex com-
bination is achieved through vector vI,J whose cardi-
nality is that of I. In a slight abuse of notation, vI,J

means the vector corresponding to the pair of bags
(I, J). This vector is nonnegative vI,J ≥ 0, and its
entries sum to one: eT vI,J = 1. This vector multi-
plies matrix XI :

f(XT
I vI,J ) > f(xj) ∀ j ∈ J.

Let the model be linear defined by vector w, i.e.

f(x) = xT w. (1)

In this case, we have

vI,J
T XIw > xT

j w.

This paper focuses on linear models, because chemists
are interested model interpretation. However, this for-
mulation is readily kernelized, as discussed in Section
5.

Now introduce an empirical risk scalar ξI,j based
on the hinge-loss, allowing for errors in training the
model:

vI,J
T XIw − xT

j w ≥ 1 − ξI,j .

This inequality resembles the main constraint in
Joachims’ ranking support vector machine (2002). It
is also the key constraint in an optimization problem
whose objective function is to minimize

νLemp(ξ) + Lreg(w)

where ν > 0 is the tradeoff parameter and Lemp and
Lreg are arbitrary loss functions.

Choosing the 1-norm for both loss functions makes the
objective linear in the variables, a choice that was also
made by Mangasarian & Wild (2008). Furthermore,
using the 1-norm on w makes for sparse models, fa-
cilitating the interpretability of linear models. There-
upon, the 1-norm MIRank optimization problem is

min
ξ,w,vI,J

νeT ξ + ‖w‖1 (2)

subject to

vI,J
T XIw − xT

j w ≥ 1 − ξI,j ∀ (I, J, j) (3)

eT vI,J = 1 ∀ (I, J) (4)

vI,J ≥ 0 ∀ (I, J) (5)

ξ ≥ 0. (6)

The entries of empirical risk vector ξ are ξI,j as they
appear in the first constraint. This notation signifies
that, for each pair (I, J), there is an empirical risk
contribution from each item j ∈ J . These are non-
negative quantities, as per 6. Note that there are as
many vectors vI,J as there are pairs (I, J). These vec-
tors are forced to be nonnegative and to sum to one in
constraints 4 and 5.

Since the first constraint is linear and the remaining
terms are linear, this is a bilinear optimization prob-
lem. We use the successive linear programming algo-
rithm given in Algorithm 1 to find a locally optimal
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Algorithm 1 Multiple instance ranking algorithm

Select tolerance τ and tradeoff parameter ν.
Initialise uI,J = e

|I| ∀ (I, J).
repeat

Set vI,J = uI,J ∀ (I, J).
Fix the vI,J ’s and solve the linear program 2-6
for ξ and w.
Fix w and solve the linear program 2-6 for ξ and
the uI,J ’s.

until ‖vI − uI‖1 ≤ τ ∀ (I, J)

solution of the bilinear problem. This proposed MI-
Rank algorithm belongs to a family of algorithms that
has proven to find good local solutions on a variety of
bilinear machine learning problems. The subproblem
solutions are not necessarily unique, but this has no
impact on algorithm convergence.

The convergence proof for the MIC algorithm in Man-
gasarian & Wild (2008) can be readily adapted to Al-
gorithm 1. Specifically, the algorithm converges be-
cause the sequence of objective function values

{νeT ξ + ‖w‖1}

at each iteration is nonincreasing and bounded below
by zero, and every accumulation point satisfies a lo-
cal minima property. The formal proof is omitted for
brevity; see Mangasarian & Wild (2008).

Algorithm 1, as well the Mangasarian & Wild
(2008) algorithm for MIC, were implemented in Mat-
lab using the linear programming solver MOSEK
(www.mosek.com).

5. Nonlinear Formulation

A nonlinear MIRank function can be generated by
kernel transformations (Shawe-Taylor & Cristianini,
2004). We adopt the notation and direct kernel ap-
proach used for MIC in Mangasarian & Wild (2008).
The linear ranking function 1 is replaced by the non-
linear function:

f(x) = K(xT ,HT )α (7)

where x ∈ Rn is an item, α ∈ Rm are the dual vari-
ables and the matrix H ∈ Rn×m has as its rows all
of the m items found collectively in all of the bags
and boxes, and K(xT ,HT ) is an arbitrary kernel map.
The bilinear program generating the nonlinear MI-
Rank function becomes:

min
ξ,α,vI,J

νeT ξ + ‖w‖1 (8)

subject to

vI,J
T K(XI ,H

T )w−K(xT
j ,HT )α ≥ 1−ξI,j ∀ (I, J, j)

(9)

eT vI,J = 1 ∀ (I, J) (10)

vI,J ≥ 0 ∀ (I, J) (11)

ξ ≥ 0. (12)

The kernel formulation remains a bilinear program and
thus can be solved using Algorithm 1 by substituting
α for w and bilinear program 8-12 for bilinear program
2-6.

6. Datasets

In addition to the hydrogen abstraction dataset, sev-
eral additional datasets are used in modeling experi-
ments. All three are described here.

6.1. CYP3A4 substrate dataset

The CYP3A4 substrate dataset is made up of 227
small drug-like compounds. A series of 36 descriptors
for each hydrogen atom for all molecules are calcu-
lated:

• the charge of the hydrogen;

• the surface area of the hydrogen;

• the non hydrogen surface area of the base atom
the hydrogen is attached to;

• the hydrophobic moment: the hydrogen’s location
with regards to the hydrophobic or hydrophilic
end of the molecule;

• the span: a measure of whether the candidate hy-
drogen is located at the end or within the middle
of the molecule.

• the topological neighborhood: the distributions of
atom types within a various topological distances
from the hydrogen.

Recall that, for each molecule, the goal is to predict
from which group a hydrogen atom is abstracted, and
it is not known which hydrogen from the abstracted
site is removed.

These 227 molecules form are a subset of the 305 non-
proprietary molecules used by Sheridan et al. (2007),
and represent all those for which descriptor generation
could be completed.
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Figure 4. Synthetic dataset visualisation. Preferred bags
contain circles and other bags contain dots. Sliding line
represents the ranking function found by MIRank that sep-
arates at least one circle from remaining items in each box.

6.2. Synthetic datasets

This dataset consists of 227 boxes, five bags per box
and five items per bag. There are two features. Each
feature is calculated as follows:

µbox
i + µ

bag
j + µitem

k

with µbox
i drawn from the uniform distribution

U(−1, 1), µ
bag
j drawn from the distribution U(−A,A)

and µitem
k drawn from the distribution U(−B,B). Put

in words, the center of each box is chosen from a uni-
form distribution, and the center of each bag with
respect to its box is chosen from a different uniform
distribution, and each item with respect to its bag is
chosen from yet another uniform distribution. Param-
eters A and B characterize these synthetic datasets.
For each item, the response is the sum of the features.
The goal is, for each box, to find the bag containing the
item of greatest response. Five boxes of this dataset
are portrayed as Figure 4. It illustrates the difficulty in
constructing a linear function separating at least one
circle from each box from the remaining circles and
dots, as MIC attempts to do. On the other hand, it
it possible to find a ranking function (the sliding line)
that does this for each box, as MIRank does.

Different values for dataset parameters A and B were
attempted:

• Synthetic-1 set A = B = 0.01.

• Synthetic-2 set A = 0.1 and B = 0.01.

Table 1. Prediction accuracies

Dataset MIC MIRank

CYP3A4 substrate 67.1% ± 7.1 70.9% ± 6.9
Synthetic-1 90.8% ± 8.6 99.8% ± 0.53
Synthetic-2 96.8% ± 4.6 99.1% ± 1.8
Synthetic-3 95.5% ± 8.3 99.9% ± 0.38
Synthetic-4 95.7% ± 5.2 99.7% ± 0.91
Census-16h 52.8% ± 17.4 60.3% ± 15.1
Census-16l 46.2% ± 17.7 57.5% ± 16.0

• Synthetic-3 set A = 0.01 and B = 0.1.

• Synthetic-4 set A = B = 0.1.

6.3. Census datasets

The two census datasets (census-16h and
census-16l) belong to the Data for Evaluat-
ing Learning in Valid Experiments (DELVE,
http://www.cs.toronto.edu/∼delve/) reposi-
tory. It consists of 22784 towns spread amongst the
50 states of the United States of America. This study
only considered the 3054 towns of more than 10000
inhabitants. Each town is assigned a 5-digit Federal
Information Processing Standard (FIPS) place code
(that is not a zip code). Typically, this dataset is used
in a regression setting to model the response—which is
the town’s median housing unit price. The census-16h
and census-16l datasets differ in their features: each
consists of 16 features drawn from the 1990 census.

These datasets are fitted into the multiple instance
ranking framework as follows. States are boxes, di-
visions of towns are bags and towns are items. For
each state, towns whose place code begin with the
same number are assigned to the same division. As
no place code commences with the number 9, there
are up to 9 divisions per state. The task is to predict,
for each state, the division that contains the town with
the highest median housing unit price.

7. Results

For each dataset, results were obtained using both the
MIC and MIRank algorithms. For MIC, preferred bags
were treated as active bags and other bags were treated
as inactive bags. All results reported are for linear
functions.

The experimental design is as follows. Each dataset
was randomly split into training, validation and test-
ing subsets consisting of 60%, 20% and 20% of the
boxes, respectively. The training subset was used to
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Table 2. Hypothesis testing

Dataset P-value

CYP3A4 substrate 5.59 · 10−3

Synthetic-1 1.62 · 10−6

Synthetic-2 1.31 · 10−2

Synthetic-3 5.84 · 10−3

Synthetic-4 1.46 · 10−4

Census-16h 4.51 · 10−2

Census-16l 3.92 · 10−4

train both MIC and MIRank models for 19 values of
tradeoff parameter ν spread logarithmically over the
range [10−3, 106]. The model corresponding to the
value of ν that resulted in the best prediction accu-
racy over the validation set was retained, and a pre-
diction using this model was obtained for the testing
subset. This process was repeated 32 times, and the
average performance across these 32 testing subsets is
reported in Table 1, along with the standard deviation
as a measure of spread.

All results in Table 1 are presented as a percentage
of boxes for which the preferred bag was accurately
predicted, allowing for 2 guesses per box, which is the
metric employed by Sheridan et al. (2007). The al-
gorithm tolerance τ defined in Algorithm 1 was set to
10−3.

For all datasets, the hypothesis that MIC and MIRank
results are statistically equal is dismissed using paired
t-testing at a 5% significance level. The p-values are
reported in Table 2.

8. Discussion

The results of Section 7 make a strong case supporting
the hypothesis that these problems, when framed in a
multiple instance ranking paradigm, are better solved
by an algorithm that is designed to solve problems of
that paradigm over one that is not. Forcing MIRank
problems into a MIC paradigm was not as successful.
In other words, the improvement is due to choosing a
model that better fits the problem.

The MIRank result for the CYP3A4 substrate dataset
reported in this paper compare favourably with ex-
isting approaches to hydrogen abstraction. It clearly
outperforms the results of Singh et al. (2003). Their
results are reproducible and their reported error holds
on new molecules. Comparison with Sheridan et al.
(2007) is more difficult. Reproduction of their results
is challenging since since their descriptors are not pub-

lic and the details of the learning and model selection
methods they used are not entirely clear. Our de-
scriptors attempt to reproduce those of Sheridan et al.
(2007), but could not be generated for all molecules.
Hence, we regard their results as optimistic.

A future controlled experiment is needed to fully com-
pare the approaches of Sheridan et al. (2007) and
those of this paper. This experiment would val-
idate which descriptor set and modeling paradigm
is most well suited for this chemistry applica-
tion. To facilitate future investigations into MIRank
and hydrogen abstraction, the datasets and Matlab
source codes used in this paper are available from
http://www.rpi.edu/∼bennek/MIRank/.

9. Conclusion

This paper introduced a framework that tackles a
novel machine learning question arising from an im-
portant chemistry problem. A first working algorithm
produces excellent results on it and other problems.
We believe that this first paper for MIRank will gen-
erate future research into new algorithms and appli-
cations. This section explores several possible exten-
sions.

In the chemistry domain, we often restrict ourselves to
sparse and linear models because model interpretabil-
ity is a desired property in the particular application of
drug discovery. However, this interpretability analysis
is a paper of its own, and does not appear here.

Hydrogen abstraction is an important application of
MIRank modeling of great practical value for drug dis-
covery. We are working to expand the efficacy and ap-
plicability of the MIRank hydrogen abstraction models
in several ways. First, we are increasing the number of
molecules in the database of CYP3A4 substrates that
can be used to develop and test new MIRank models.
Second, we hope to build databases and models for new
substrates, such as CYP2D6 and CYP2C9. Third, we
are developing novel descriptors that are believed to
be indicative of hydrogen abstraction.

We are working to improve the MIRank modeling
paradigm and investigating other potential multiple
instance ranking problems. Reports here are limited
to the linear MIRank models, but as discussed the ap-
proach can be readily applied with nonlinear models
using kernel functions. Research is needed to investi-
gate how modeling results are affected by changing the
loss functions in the empirical risk and/or regulariza-
tion terms of the optimization problem.

Finally, further improvements to the MIRank algo-
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rithm are possible. More scalable and efficient algo-
rithms for finding locally optimal solutions could be
developed by exploiting recent developments in large
scale support vector machine algorithms. In addition,
integer programming or cutting plane algorithms could
be used to find global minima of the optimization prob-
lem, but at much greater computational cost.
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Abstract

We address the problem of learning classi-
fiers for a large number of tasks. We derive
a solution that produces resampling weights
which match the pool of all examples to the
target distribution of any given task. Our
work is motivated by the problem of predict-
ing the outcome of a therapy attempt for a
patient who carries an HIV virus with a set
of observed genetic properties. Such predic-
tions need to be made for hundreds of possi-
ble combinations of drugs, some of which use
similar biochemical mechanisms. Multi-task
learning enables us to make predictions even
for drug combinations with few or no train-
ing examples and substantially improves the
overall prediction accuracy.

1. Introduction

In multi-task learning one seeks to solve many clas-
sification problems in parallel. Some of the classifi-
cation problems will likely relate to one another, but
one cannot assume that the tasks share a joint con-
ditional distribution of the class label given the input
variables. The challenge of multi-task learning is to
come to a good generalization across tasks: each task
should benefit from the wealth of data available for the
entirety of tasks, but the optimization criterion needs
to remain tied to the individual task at hand.

Our work is motivated by the problem of predicting the
therapeutic success of a given combination of drugs for
a given strain of the Human Immunodeficiency Virus-1
(HIV-1). HIV is associated with the acquired immun-
odeficiency syndrome (AIDS). Being a disease that

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

claimed more than 25 million lives since 1981, AIDS is
one of the most destructive epidemics in recorded his-
tory. Currently there are more than 33 million people
infected with HIV (UNAIDS/WHO, 2007).

Antiretroviral therapy is hampered by HIV’s strong
ability to mutate and develop viral quasi-species that
can quickly be dominated by resistant variants. In or-
der to decide on a course of therapy, virus samples
taken from each individual patient are tested for a
set of resistance-relevant mutations. Given this set of
identified mutations together with the patient’s med-
ication history, a medical practitioner needs to decide
which combination of drugs to administer. The large
number of genetic mutations and the wide array of
available drug combinations render the process of pre-
dicting the success of a potential therapy difficult, at
best, for a human doctor.

Historic treatment records of HIV patients cover only
a small portion of all possible drug combinations. For
many of these combinations, only few treatments have
been recorded. This scarceness of training data pre-
cludes separate training of a powerful prediction model
for each combination from only records of treatments
which used the same drug combination. Distinct com-
binations can have similar effects when they intersect
in jointly contained drugs, or when they include drugs
that use similar mechanisms to affect the virus. There-
fore, in order to predict the outcome of a given drug
combination, it is desirable to exploit data from re-
lated combinations and thereby achieve generalization
over both virus mutations and combinations of drugs.

We contribute a new multi-task learning model that
can handle arbitrarily different data distributions for
different tasks without making assumptions about the
data generation process or the relation between tasks.
We show that by appropriately weighting each in-
stance in the pool of all examples, one can match the
distribution that governs the pool of examples of all
tasks to each of the single task distributions. We show
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how appropriate weights can be obtained by discrimi-
nating the labeled sample for a given task against the
pooled sample.

The rest of this paper is structured as follows. After
formalizing the problem setting in Section 2, we review
related transfer learning models in Section 3. We de-
vise the model for multi-task learning by distribution
matching in Section 4. In Section 5 we describe the
data sets and the experimental setting and report on
experimental results. Section 6 concludes.

2. Problem Setting

In supervised multi-task learning, each of several
tasks z is characterized by an unknown joint dis-
tribution p(x, y|z) of features x and label y given
the task z. The joint distributions of different
tasks may differ arbitrarily but usually some tasks
have similar distributions. A training sample D =
〈(x1, y1, z1), . . . , (xm, ym, zm)〉 collects examples from
all tasks. There may be tasks with no data. For each
example, input attributes xi, class label yi, and the
originating task zi are known. The entire sample D is
governed by the mixed joint density p(z)p(x, y|z). The
prior p(z) specifies the task proportions.

The goal is to learn a hypothesis fz : x 7→ y for each
task z. This hypothesis fz(x) should correctly predict
the true label y of unseen examples drawn from p(x|z)
for all z. That is, it should minimize the expected loss

E(x,y)∼p(x,y|z)[`(fz(x), y)]

with respect to the unknown joint distribution
p(x, y|z) for each individual z.

This abstract problem setting models the HIV therapy
screening application as follows. Input x describes the
genotype of the virus that a patient carries, together
with the patient’s treatment history. Genotype infor-
mation is encoded as a binary vector indicating the
presence and absence of each out of a predefined set
of resistance-relevance mutations, respectively. The
treatment history can be represented as a binary vec-
tor indicating which drugs have been administered
over the course of past treatments. A candidate com-
bination of drugs plays the role of the task z: each task
has an associated binary vector z that indicates a set
of drugs that a medical practitioner is currently giv-
ing consideration. The binary class label y indicates
whether the therapy will be successful.

In addition to training data, we may have prior knowl-
edge on the similarity of tasks which is encoded in a
kernel function k(z, z′). Prediction models for differ-
ent drug combinations can be similar because the sets

of drugs intersect (we will later refer to this as the
drug feature kernel), or because similar sets of muta-
tions in the virus render the drugs in the set ineffective
(mutation table kernel).

3. Prior Work

One obvious strategy for multi-task learning is to learn
independent models for each target task t by mini-
mizing an appropriate loss function on the portion of
Dt = {(xi, yi, zi) ∈ D : zi = t}. The other extreme
could be a one-size-fits-all model f∗(x) trained on the
entire sample.

In many applications, task-level descriptions or prior
knowledge on task similarity encoded in a kernel are
available. Bonilla et al. (2007) study an extension of
the one-size-fits-all model and find that training with a
kernel defined as the multiplication of an input feature
kernel and a task-level kernel outperforms a gating net-
work. Task-level features have also been utilized for
task clustering and for a task-dependent prior on the
model parameters (Bakker & Heskes, 2003).

Another simple extension to the one-size-fits-all model
would be to train a model for a target task from all
data with weighted examples from other tasks, using
one fixed uniform weight for each task. Such a model
is described by Wu and Dietterich (2004).

Our work is inspired by learning under covariate shift.
In the covariate shift setting the marginals ptrain(x)
and ptest(x) of training and test distributions dif-
fer, but the conditionals are identical ptrain(y|x) =
ptest(y|x). If training and test distributions were
known, then the loss on the test distribution could be
minimized by weighting the loss on the training distri-
bution with an instance-specific factor. Shimodaira
(2000) illustrates that the scaling factor has to be
ptest(x)

ptrain(x) . Bickel et al. (2007) derive a discriminative
expression for this marginal density ratio that can be
estimated – without estimating the potentially high-
dimensional densities of training and test distributions
– by discriminating training against test data.

Hierarchical Bayesian models for multi-task learning
are based on the assumption that task-specific model
parameters are drawn from a common prior. The
task dependencies are captured by estimating the com-
mon prior. Yu et al. (2005) impose a normal-inverse
Wishart hyperprior on the mean and covariance of
a Gaussian process prior that is shared by all task-
specific regression functions. Mean and covariance of
the Gaussian process are estimated using the EM al-
gorithm. A Dirichlet process can serve as prior in a hi-
erarchical Bayesian model and cluster the tasks (Xue
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et al., 2007); all tasks in one cluster share the same
model parameters. Evgeniou and Pontil (2004) derive
a kernel that is based on a hierarchical Bayesian model
with Gaussian prior (covariance matrix is scalar) on
the parameters of a regularized regression.

Larder et al. (2007) tackle the problem of predicting
virological response to a given HIV drug combination
with neural networks. Lathrop and Pazzani (1999) ap-
ply combinatorial optimization to the same problem
using features extracted from the viral genotype and
the drugs in the combination. Altmann et al. (2007)
approach the problem by including various phenotypic
information and an estimate of future evolutionary de-
velopment of the virus in the learning process.

4. Multi-Task Learning by Distribution
Matching

In learning a classifier ft(x) for target task t, we seek
to minimize the loss function with respect to p(x, y|t).
Simply pooling the available data for all tasks would
create a sample governed by

∑
z p(z)p(x, y|z). Our

approach now is to create a task-specific resampling
weight rt(x, y) for each element of the pool of exam-
ples. The sampling weights match the pool to the
target distribution p(x, y|t). The weighted sample is
governed by the correct target distribution, but is still
larger as it draws from the sample pool for all tasks.

Instead of sampling from the pool, one can weight
the loss incurred by each instance by the resampling
weight. The expected weighted loss with respect to the
mixture distribution that governs the pool equals the
loss with respect to the target distribution p(x, y|t).
Equation 1 defines the resampling weights.

E(x,y)∼p(x,y|t)[`(f(x, t), y)] (1)
= E(x,y)∼∑

z p(z)p(x,y|z) [rt(x, y)`(f(x, t), y)]

In the following, we will show that

rt(x, y) =
p(x, y|t)∑

z p(z)p(x, y|z)

satisfies Equation 1. Equation 2 expands the ex-
pectation and introduces a fraction that equals one.
Equation 3 expands the sum over z in the numerator
to run over the entire expression because the integral
over (x, y) is independent of z. Equation 4 is the ex-
pected loss over the distribution of all tasks weighted
by p(x,y|t)∑

z p(z)p(x,y|z) .

E(x,y)∼p(x,y|t)[`(f(x, t), y)] (2)

=
∫ ∑

z p(z)p(x, y|z)∑
z′ p(z′)p(x, y|z′)p(x, y|t)`(f(x, t), y)dxdy

=
∫ ∑

z

(
p(z)p(x, y|z)

p(x, y|t)∑
z′ p(z′)p(x, y|z′) (3)

`(f(x, t), y)
)

dxdy

= E(x,y)∼∑
z p(z)p(x,y|z) (4)[
p(x, y|t)∑

z′ p(z′)p(x, y|z′)`(f(x, t), y)
]

Equation 4 signifies that we can train a hypothesis for
task t by minimizing the expected loss over the distri-
bution of all tasks weighted by rt(x, y). This amounts
to minimizing the expected loss with respect to the
target distribution p(x, y|t).
Equation 4 leaves us with the problem of estimat-
ing the joint density ratio rt(x, y) = p(x,y|t)∑

z p(z)p(x,y|z) .
One might be tempted to train density estimators for
p(x, y|t) and

∑
z p(z)p(x, y|z). However, obtaining es-

timators for potentially high-dimensional densities is
unnecessarily difficult because ultimately only a scalar
weight is required for each example.

4.1. Discriminative Density Ratio Model

In this section, we derive a discriminative model that
directly estimates the resampling weights rt(x, y) =

p(x,y|t)∑
z p(z)p(x,y|z) without estimating the individual den-

sities. We reformulate the density ratio p(x,y|t)∑
z p(z)p(x,y|z)

in terms of a conditional model p(t|x, y). This con-
ditional has the following intuitive meaning: Given
that an instance (x, y) has been drawn at random from
the pool ∪zDz = D of samples for all tasks (includ-
ing Dt); the probability that (x, y) originates from Dt

is p(t|x, y). The following equations assume that the
prior on the size of the target sample is greater than
zero, p(t) > 0. In Equation 6 Bayes’ rule is applied
twice and in Equation 7 p(x, y) and p(z) are canceled
out. Equation 8 follows by

∑
z p(z|x, y) = 1.

rt(x, y) =
p(x, y|t)∑

z p(z)p(x, y|z)
(5)

=
p(t|x, y)p(x, y)

p(t)
1∑

z p(z)p(z|x,y)p(x,y)
p(z)

(6)

=
p(t|x, y)

p(t)
∑

z p(z|x, y)
(7)

=
p(t|x, y)

p(t)
(8)
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The significance of Equation 8 is that it shows how the
resampling weights rt(x, y) = p(x,y|t)∑

z p(z)p(x,y|z) can be de-
termined without knowledge of any of the task densi-
ties p(x, y|z). The right hand side of Equation 8 can be
evaluated based on a model p(t|x, y) that discriminates
labeled instances of the target task against labeled in-
stances of the pool of examples for all tasks. Intu-
itively, p(t|x, y) characterizes how much more likely
(x, y) is to occur in the target distribution than it is to
occur in the mixture distribution of all tasks. Instead
of potentially high-dimensional densities p(x, y|t) and
p(x, y|z), a conditional distribution with a single vari-
able needs to be modeled. One can apply any proba-
bilistic classifier to model this conditional distribution.

4.2. Soft-Max Model for Density Ratio
Estimation

We model p(t|x, y) of Equation 8 for all tasks jointly
with a soft-max model (the multi-class generalization
of the logistic model) with model parameters v, dis-
played in Equation 9. The parameter vector v is a
concatenation of task-specific subvectors vz, one for
each task z. With this model an estimate for p(t|x, y)
is given by p(z = t|x, y,v); this is the evaluation of the
soft-max model with respect to task t.

p(z|x, y,v) =
exp(vT

z Φ(x, y))∑
z′ exp(vT

z′Φ(x, y))
(9)

Equation 9 requires a problem-specific feature map-
ping Φ(x, y). Without loss of generality we define
this mapping for binary labels y ∈ {+1,−1} in Equa-
tion 10; δ is the Kronecker delta. In the absence of
prior knowledge about the similarity of classes, input
features x of examples with different class labels y are
mapped to disjoint subsets of the feature vector.

Φ(x, y) =
[

δ(y,+1)Φ(x)
δ(y,−1)Φ(x)

]
(10)

With this feature mapping the models for positive and
negative examples do not interact and can be trained
independently.

For training the soft-max model we maximize the reg-
ularized log-likelihood of the data. Prior knowledge on
the similarity of tasks in the form of a positive semi-
definite kernel function k(z, z′) can be be encoded in
the covariance matrix of a Gaussian prior N(0, Σ) on
parameter vector v. We set all main diagonal entries
of Σ to the scalar parameter σ2

v and set the secondary
diagonal entries corresponding to the covariances be-
tween vz and v′z to k(z, z′)ρσ2

v (assuming kernel values
0 ≤ k(z, z′) ≤ 1). Parameter σ2

v specifies the variance
of each element in v. k(z, z′)ρ is the correlation co-
efficient between elements of subvectors vz and v′z;

parameter ρ specifies the strength of this correlation.
The covariance matrix Σ is required to be invertible
and therefore 0 ≤ ρ < 1. All other entries of Σ are set
to zero. When prior knowledge on the task similarities
is encoded in the prior on the model parameters, then
this prior knowledge dominates the optimization cri-
terion for small samples while the data-driven portion
of the criterion becomes dominant and overrides prior
beliefs as more data arrives.

Optimization Problem 1 Over parameters v, max-
imize

∑

(xi,yi,zi)∈D

log(p(zi|xi, yi,v)) + vTΣ−1v.

The solution of Optimization Problem 1 is a maximum
a posteriori estimation of the soft-max model (Equa-
tion 9) over the model parameters v using a Gaussian
prior with covariance matrix Σ. Tasks with no training
examples are covered naturally in Optimization Prob-
lem 1. In this case, the Gaussian prior with the task
kernel k(z, z′) encoded in the covariance matrix deter-
mines the model.

For our experiments we use a kernelized variant of Op-
timization Problem 1 by applying the representer theo-
rem. Details on the kernelization of multi-class logistic
regression can be learned from Zhu and Hastie (2002).

4.3. Weighted Empirical Loss and Target
Model

The multi-task learning procedure first determines re-
sampling weights rz(x, y) for all tasks and instances
by solving Optimization Problem 1. In this section we
describe the second step of training an array of target
models, one for each task, using weighted examples.

With the results of Optimization Problem 1 the dis-
criminative expression for the weights of Equation 8
can be estimated. Using these weights we can evalu-
ate the expected loss over the weighted training data
as displayed in Equation 11. It is the regularized em-
pirical counterpart of Equation 4.

E(x,y)∼D

[
p(t|x, y,v)

p(t)
`(f(x, t), y)

]
+

wT
t wt

2σ2
w

(11)

An instance of Optimization Problem 2 is solved for
each task independently to produce a separate model
for this task. Optimization Problem 2 minimizes
Equation 11, the weighted regularized loss over the
training data using a standard Gaussian log-prior with
variance σ2

w on the parameters wt. Each example
is weighted by the discriminatively estimated density
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fraction from Equation 8 using the solution of Opti-
mization Problem 1.

Optimization Problem 2 For task t: over parame-
ters wt, minimize

∑

(xi,yi)∈D

p(t|xi, yi,v)
p(t)

`(f(xi,wt), yi) +
wT

t wt

2σ2
w

.

5. HIV Therapy Screening

We model HIV therapy screening as a multi-task learn-
ing problem. The input x to the prediction problem
is given by attributes of the viral genotype and the
patient’s treatment history. The combination of drugs
z plays the role of the task. Success or failure of the
therapy constitutes class-label y.

In the next subsections we describe the data sets, ref-
erence methods, and the empirical results of our study.

5.1. Data Sets and Prior Knowledge on Task
Similarity

We use data from the EuResist project (Rosen-Zvi
et al., 2008). The data set comprises a total number
of 52846 treatment records from the treatment histo-
ries of 16999 HIV patients treated in hospitals in the
period of 1977 through 2007.

We use two different definitions of therapeutic success
and failure to tag the data: virus load labeling and
multi-conditional labeling.

According to our virus load labeling definition a ther-
apy is successful if the viral load (number of virus
copies per ml blood plasma, cp/ml) drops below the
established level of virus detection of 400 cp/ml during
the time of the treatment. Otherwise the treatment is
a failure. In multi-conditional labeling, a therapy is
successful if the viral load measured in the time range
between 28 and 84 days after the start of the therapy
decreases by at least 2 orders of magnitude compared
to the most recent viral load measured one to three
months before the start of the therapy, or the viral
load drops below 400 cp/ml 56 days after the start of
the therapy. A drawback of this definition is that due
to the strict time intervals it imposes on the measure-
ments, class labels that adhere to this labeling are only
available for a small number of records. The virus load
labeling does not require these strict time intervals by
making use of any viral load measurement during the
course of therapy to label it.

Out of all available treatment records we extract two
different data sets using the two labelings. With the
virus load labeling we extract 3260 and with the multi-
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Figure 1. Histogram over number of treatment records for
drug combinations (tasks) in the virus load data set (left)
and multi-condition data set (right).

conditional labeling 2011 treatment records with cor-
responding ratios of 65.7% and 64.1% successful treat-
ments. The size of these data sets is much smaller than
the size of the original data due to missing viral load
measurements, or missing virus sequence information.

A number of 545 distinct drug combinations (tasks z)
occur at least once in the virus load data set; 433 occur
in the the multi-conditional data set. The histogram
over sample sizes per task is displayed in Figure 1.
For many combinations, only a few examples occur in
the data. For instance, in the virus load data set we
observe 253 out of 545 drug combinations with only
one data point and 411 with less than 5 instances.
Similarly, the multi-conditional data set has 213 out
of 433 drug combinations with a single data point and
331 with less than 5 observations.

We extract two types of features for each instance:
a genotypic description of the virus and information
about the treatment history of the patient. We use the
viral genotype taken from the patient shortly before
the treatment and represent it by a binary vector in-
dicating the presence of resistance-relevant mutations
of the viral sequence (Johnson et al., 2007). Drug-
resistant viral quasi-species evolve during the course
of the treatment due to selective pressure imposed by
the drug. As they remain in the patient’s body, the
treatment history plays an important role for predict-
ing the outcome of a potential treatment. Hence, we
extract all drugs given to the patient in previous treat-
ments and use a binary vector representation with a
one entry for each drug given to the patient in the
treatment history. The 82-dimensional feature vector
x for each data point results from the concatenation
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Table 1. Classification accuracies with standard errors of differences to distribution matching method (ste.∆). Symbols
(•,◦,∗,¦) indicate statistical significance according to a paired t-test with significance level α = 0.05, (•) compared to
separate baseline, (◦) compared to pooled baseline, (∗) compared to hierarchical Bayesian kernel baseline, (¦) compared
to hierarchical Bayesian Gaussian process baseline.

prior hier. Bayes hier. Bayes distribution
data set knowledge separate ste.∆ pooled ste.∆ kernel ste.∆ Gauss. proc. ste.∆ matching

virus load none 67.87% 1.80 75.00% 1.47 76.69% 1.39 76.53% 1.36 • ◦ ∗ ¦ 79.14%
drug.feat. 67.87% 1.76 75.46% 1.39 75.31% 1.34 • ◦ ∗ 77.91%
mut.table 67.87% 1.78 75.61% 1.37 76.84% 1.16 • ◦ ∗ 79.29%

multi- none 64.64% 2.41 76.67% 1.13 77.17% 1.29 76.43% 1.44 • ◦ ∗ ¦ 79.40%
condition drug.feat. 64.64% 2.29 78.41% 1.63 75.19% 1.44 • ∗ 78.16%

mut.table 64.64% 2.38 78.66% 1.11 77.42% 1.24 • 79.16%

of 65 genotypic and 17 historic treatment features.

We have prior knowledge about the similarity of com-
binations and encode this knowledge into two differ-
ent task similarity kernels k(z, z′). The binary drug
indicator vector has an entry for each drug; entries
of one indicate the presence of a drug in the combi-
nation. The drug indicator kernel is the inner prod-
uct between the normalized drug indicator vectors of
two combinations. The mutation table kernel is based
on tables about the resistance-associated mutations of
single drugs (Johnson et al., 2007). We construct bi-
nary vectors indicating resistance-relevant mutations
for the set of drugs occurring in a combination. The
kernel computes the normalized inner product between
such binary vectors for two drug combinations.

5.2. Reference Methods

The first reference method is training of a separate
logistic regression model for each task without any in-
teraction (“separate”). Tasks without any training ex-
amples get a constant classifier that assigns each test
example with 50% to each of both classes.

The next baseline is a one-size-fits-all model; all ex-
amples are pooled and only one common logistic re-
gression is trained for all tasks (“pooled”). For the
experiments with prior knowledge on task similarity
we multiply the feature kernel with the task kernel
values k(x,x′)(k(z, z′) + 1) and train one model using
this kernel (Bonilla et al., 2007). For task kernels that
can have a value of zero we include a “+1” term to
ensure that the feature kernel does not vanish.

The third reference method (“hier. Bayes kernel”) is a
logistic regression with the hierarchical Bayesian ker-
nel khBayes(x,x′) = (λ + δ(z, z′))k(x,x′) of Evgeniou
and Pontil (2004); δ(z, z′) is the Kronecker delta and λ

is a tuning parameter. For the experiments with task
similarity kernel the hierarchical Bayes and the task
kernel are multiplied. As second hierarchical Bayesian
method (“hier. Bayes Gauss. proc.”) we use the Gaus-
sian process regression of Yu et al. (2005).

5.3. Experimental Setting and Results

In our experiments we study the benefit of distribu-
tion matching for HIV therapy screening compared to
the reference methods described in Section 5.2. Op-
timization Problem 1 is solved with limited-memory
BFGS and Optimization Problem 2 with Newton gra-
dient descent using a logistic loss. For the prior term
p(t) required in Optimization Problem 2 we use a MAP
estimate |Dt|+γ∑

z(|Dz|+γ) with a symmetric Dirichlet prior.
We use RBF kernels for all methods.

We apply a training-test split of the data consistent
with the dates of the treatment records. We sort the
treatment records by date and use the first 80% of the
records as training data and the last 20% as test data.
This procedure yields 653 and 403 test examples for
the virus load and multi-conditional data set, respec-
tively. The date consistent split is necessary because
new drugs get approved over time, and under pressure
of new drugs the viral population evolves. In such en-
vironments, the prediction models should be able to
learn from data seen in the past and perform well on
unseen data in the future.

We tune the prior and regularization parameters of all
methods, the Dirichlet parameter γ, and the variance
of the RBF kernels on tuning data resulting from a
date consistent split of the training data.

The evaluation measure is the accuracy of predicting
the correct label (success or failure of a treatment)
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separate pooled hier. Bayes kernel hier. Bayes Gauss. proc distr. matching 
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Figure 2. Accuracy over different number of training examples for target combination; virus load data set (left), multi-
condition data set (right). Error bars indicate the standard error of the differences to distribution matching. The key can
be found in the box right above the diagrams.

on the test set. Table 1 shows the results of the pre-
diction accuracy for all methods over both data sets
without and with two different types of prior knowl-
edge on combination similarity. The columns “ste.∆”
placed next to the accuracy columns display the stan-
dard error of the differences to the distribution match-
ing method.

Multi-task learning by distribution matching outper-
forms, or is as good as, the best alternative method in
all cases. The improvement over the separate model
baseline is about 10-14%. We can reject the null hy-
pothesis that the pooled and the hierarchical Bayesian
kernel baseline is at least as accurate as distribution
matching in four and five cases respectively out of six
according to a paired t-test at α = 0.05.

For distribution matching, prior knowledge does not
improve the accuracy. The pooled baseline benefits
from prior knowledge for the multi-condition data set.
For the case without prior knowledge we do not ob-
serve a statistically significant difference of the two

hierarchical Bayesian methods, but they are both sig-
nificantly worse than distribution matching according
to the paired t-test. Note that the Gaussian process
baseline is a regression model; all other methods are
classification models.

Figure 2 displays the accuracy over the combinations
in the test set grouped by the number of available ex-
amples for the settings without and with the mutation
table kernel. For instance, an accuracy of 74% for the
first group “0-2” means, that only test examples from
combinations are selected that have zero, one, or two
training examples each, and the accuracy on this sub-
set of the test examples is 74%. Each of the four groups
covers about the same number of test examples. The
error bars indicate the standard error of the differences
to the distribution matching method. Note, that the
statistical tests described above are based on all test
data and are not directly related to the group-specific
error bars in the diagrams.

All methods benefit from larger numbers of training
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examples per drug combination. The slightly decreas-
ing accuracy for the virus load data set with “>38”
training examples is surprising. Further analysis re-
veals that in this case there is an accumulation of test
examples with history profiles very different from the
training examples of the same combination.

For all methods that generalize over the tasks the ben-
efit compared to the separate model baseline is the
largest for the smallest group (“0-2” and “0-1” train-
ing examples respectively).

6. Conclusion

We devised a multi-task learning method that cen-
ters around resampling weights which match the dis-
tribution of the pool of examples of multiple tasks to
the target distribution for a given task at hand. The
method creates a weighted sample that reflects the de-
sired target distribution and exploits the entire corpus
of training data for all tasks. We showed how ap-
propriate weights can be obtained by discriminating
the labeled sample for a given task against the pooled
sample. After weighting the pooled sample, a classifier
for the given task can be trained. In our experiments
on HIV therapy screening we found that the distribu-
tion matching method improves on the prediction ac-
curacy over independently trained models by 10-14%.
According to a paired t-test, distribution matching is
significantly better than the reference methods for 17
out of 20 experiments.

A combination of drugs is the standard way of treat-
ing HIV patients. The accuracy to which the likely
outcome of a combination therapy can be anticipated
can therefore directly impact the quality of HIV treat-
ments.
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Abstract

Nonnegative matrix factorization (NMF) was
popularized as a tool for data mining by Lee
and Seung in 1999. NMF attempts to ap-
proximate a matrix with nonnegative entries
by a product of two low-rank matrices, also
with nonnegative entries. We propose an al-
gorithm called rank-one downdate (R1D) for
computing an NMF that is partly motivated
by the singular value decomposition. This al-
gorithm computes the dominant singular val-
ues and vectors of adaptively determined sub-
matrices of a matrix. On each iteration, R1D
extracts a rank-one submatrix from the origi-
nal matrix according to an objective function.
We establish a theoretical result that max-
imizing this objective function corresponds
to correctly classifying articles in a nearly
separable corpus. We also provide compu-
tational experiments showing the success of
this method in identifying features in realis-
tic datasets. The method is also much faster
than other NMF routines.

1. Nonnegative Matrix Factorization

Several problems in information retrieval can be posed
as low-rank matrix approximation. The seminal pa-
per by Deerwester et al. (1990) on latent semantic
indexing (LSI) showed that approximating a term-
document matrix describing a corpus of articles via
the SVD led to powerful query and classification tech-
niques. A drawback of LSI is that the low-rank fac-
tors in general will have both positive and negative
entries, and there is no obvious statistical interpreta-
tion of the negative entries. This led Lee and Seung
(1999) among others to propose nonnegative matrix

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
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factorization (NMF), that is, approximation of a ma-
trix A ∈ Rm×n as a product of two factors WHT ,
where W ∈ Rm×k, H ∈ Rn×k, both have nonnegative
entries, and k ≤ min(m,n). Lee and Seung showed
intriguing results with a corpus of images. In a re-
lated work, Hofmann (1999) showed the application
of NMF to text retrieval. Nonnegative matrix fac-
torization has its roots in work of Gregory and Pull-
man (1983), Paatero and Tapper (1994) and Cohen
and Rothblum (1993).

Since the problem is NP-hard (Vavasis, 2007), it is not
surprising that no algorithm is known to solve NMF
to optimality. Heuristic algorithms proposed for NMF
have generally been based on incrementally improving
the objective ‖A − WHT ‖ in some norm using local
moves. A particularly sophisticated example of local
search is due, e.g., to Kim and Park (2007). A draw-
back of local search is that it is sensitive to initial-
ization and it is also sometimes difficult to establish
convergence.

We propose an NMF method based on greedy rank-one
downdating that we call R1D. R1D is partly motived
by Jordan’s algorithm for computing the SVD, which
is described in Section 2. Unlike local search methods,
greedy methods do not require an initial guess. In
Section 3, we compare our algorithm to Jordan’s SVD
algorithm, which is the archetypal greedy downdat-
ing procedure. Previous work on greedy downdating
algorithms for NMF is the subject of Section 4. In Sec-
tion 5, we present the main theoretical result of this
paper, which states that in a certain model of text due
to Papadimitriou et al. (2000), optimizing our objec-
tive function means correctly identifying a topic in a
text corpus; and Section 6 discusses the complexity of
this problem. We then turn to computational exper-
iments: in Section 7, we present results for R1D on
image datasets, and in Section 8, we present results
on text.
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2. Algorithm and Objective Function

Rank-one downdate (R1D) is based on the simple ob-
servation that the leading singular vectors of a nonneg-
ative matrix are nonnegative. This is a consequence
of the Perron-Frobenius theorem (Golub & Van Loan,
1996). Based on this observation, it is trivial to com-
pute a rank-one NMF. This idea can be extended to
approximate a higher order NMF. Suppose we com-
pute the rank-one NMF and then subtract it from
the original matrix. The original matrix will not be
nonnegative any more but all negative entries can be
forced to be zero or positive and the procedure can be
repeated.

An improvement on this idea takes only a submatrix of
the original matrix and applies the Perron-Frobenius
theorem. The point is that taking the whole matrix
will in some sense average the features, whereas a sub-
matrix can pick out particular features. A second rea-
son to take a submatrix is that a correctly chosen sub-
matrix may be very close to having a rank of one, so
the step of forcing the residuals to be zero will not in-
troduce significant inaccuracy (since they will already
be close to zero).

The outer loop of the R1D algorithm may be described
as follows.

Algorithm 1 R1D
input A ∈ Rm×n, k > 0
output W ∈ Rm×k, H ∈ Rn×k

1: for µ = 1 to k do
2: [M,N,u,v, σ] = ApproxRankOneSubmatrix(A)
3: W (M,µ) = u(M)
4: H(N,µ) = σv(N)
5: A(M,N) = 0
6: end for

Here, M is a subset of {1, . . . ,m}, N is a sub-
set of {1, . . . , n}, u ∈ Rm, v ∈ Rn and σ ∈
R, and u,v are both unit vectors. The function
ApproxRankOneSubmatrix selects these five values so
that the submatrix of A indexed by rows M and N
is approximately rank one, and in particular, is ap-
proximately equal to u(M)σvT (N). We follow Mat-
lab subscripting conventions, so that A(M,N) denotes
this particular submatrix.

This outer loop for R1D may be called “greedy rank-
one downdating” since it greedily tries to fill the
columns of W and H from left to right by finding good
rank-one submatrices of A and subtracting them from
A. The classical greedy rank-one downdating algo-
rithm is Jordan’s algorithm for the SVD, described in
Section 3. Related work on greedy rank-one downdat-

ing for NMF is the topic of Section 4.

The subroutine ApproxRankOneSubmatrix, presented
later in this section, is a heuristic routine to maximize
the following objective function:

f(M,N,u, σ,v) = ‖A(M,N)‖2
F−γ‖A(M,N)−uσvT ‖2

F

(1)
Here, γ is a penalty parameter. The Frobenius norm
of an m× n matrix B, denoted ‖B‖F is defined to be√

B(1, 1)2 + B(1, 2)2 + · · ·+ B(m,n)2. The rationale
for (1) is as follows: the first term in (1) expresses the
objective that A(M,N) should be large, while the sec-
ond term penalizes departure of A(M,N) from being
a rank-one matrix.

Since the optimal u, σ,v come from the SVD (once
M,N are fixed), the above objective function can be
rewritten just in terms of M and N as

f(M,N) =
p∑

i=1

σi(A(M,N))2 − γ

p∑
i=2

σi(A(M,N))2

= σ1(A(M,N))2

− (γ − 1) ·
(
σ2(A(M,N))2

+ · · ·+ σp(A(M,N))2
)
, (2)

where p = min(|M |, |N |). The penalty parameter γ
should be greater than 1 so that the presence of low-
rank contributions is penalized rather than rewarded.

We conjecture that maximizing (1) is NP-hard (see
Section 6), so we instead propose a heuristic routine
for optimizing it. The procedure alternates improving
M , N , u, σ and v cyclically. First, observe that if
M,N are already known, then the optimal choice of
u, σ, v can be found with the SVD. For fixed (v, N),
the objective function (1) is separable by rows of the
matrix. In particular, the contribution of row i ∈ M
is

‖A(i,N)‖2 − γ‖A(i,N)− βivT ‖2,

where βi = uiσ. Note that βi may be undefined if
i /∈ M . Nonetheless, given v, the optimal βi (i.e.,
the choice that minimizes ‖A(i,N)−uivT ‖) is easy to
compute: it is A(i,N)v, the solution to a simple least-
squares minimization. Thus, we conclude that putting
column i into index set M is favorable for the overall
objective function provided that fi > 0, where

fi = ‖A(i,N)‖2 − γ‖A(i,N)−A(i,N)vvT ‖2.

The formula for fi can be simplified as follows:

fi = A(i,N)A(i,N)T − γ(A(i,N)
−A(i,N)vvT )(A(i,N)−A(i,N)vvT )T

= −(γ − 1)A(i,N)A(i,N)T + γ(A(i,N)v)2.
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If we rescale by γ−1 (which does not affect the accep-
tance criterion), and we define new penalty parameters
γ̄ := γ/(γ−1), then we see that row i is accepted pro-
vided that

γ̄(A(i,N)v)2 −A(i,N)A(i,N)T > 0.

A similar analysis applies to the columns, and leads to
the conclusion that, given values for M and u, column
j should be accepted provided that

γ̄(uT A(M, j))2 −A(M, j)T A(M, j) > 0.

The next issue is the choice of a starting guess for
M,N,u, σ,v. The algorithm should be initialized with
a starting guess that has a positive score, or else the
rules for discarding rows and columns could conceiv-
ably discard all rows or columns. To put this more
strongly, in order to improve the score of a converged
solution, it seems sensible to select a starting guess
with a high score. For this reason, R1D uses a single
column of A as its starting guess, and in particular, the
column of A with the greatest norm. (A single row may
also be chosen.) It then chooses u to be the normaliza-
tion of this column. This column is exactly rank one,
so for the correct values of σ and v the first penalty
term of (1) is zero. We have derived the following al-
gorithm for the subroutine ApproxRankOneSubmatrix
occuring in statement 〈2〉 in R1D.

Algorithm 2 ApproxRankOneSubmatrix
input A ∈ Rm×n , parameter γ̄ > 1
output M ⊂ {1, . . . ,m}, N ⊂ {1, . . . , n},

u ∈ Rm, v ∈ Rn, σ ∈ R
1: Select j0 ∈ {1, . . . , n} to maximize ‖A(:, j0)‖
2: M = {1, . . . ,m}
3: N = {j0}
4: σ = ‖A(:, j0)‖
5: u = A(:, j0)/σ
6: repeat
7: Let v̄ = A(M, :)T u(M)
8: N = {j : γ̄v̄(j)2 − ‖A(M, j)‖2 > 0}
9: v(N) = v̄(N)/‖v̄(N)‖

10: Let ū = A(:, N)v(N)
11: M = {i : γ̄ū(i)2 − ‖A(i,N)‖2 > 0}
12: σ = ‖u(M)‖
13: u(M) = ū(M)/σ
14: until stagnation in M,N,u, σ,v

The ‘Repeat’ loop is guaranteed to make progress be-
cause each iteration increases the value of the objective
function. On the other hand, there does not seem to
be any easy way to derive a useful prior upper bound
on its number of iterations. In practice, it proceeds

quite quickly, usually converging in 10–15 iterations.
But to guarantee fast termination, monotonicity can
be forced on M and N by requiring M to shrink and N
to grow. In other words, statement 〈8〉 can be replaced
by

N = N ∪ {j : γ̄v̄(j)2 − ‖A(M, j)‖2 > 0},

and statement 〈11〉 by

M = M − {i : γ̄ū(i)2 − ‖A(i,N)‖2 ≤ 0}.

Our experiments indicate that this change does not
have a major impact on the performance of R1D.

Another possible modification to the algorithm is as
follows: we modify the objective function by adding a
second penalty term −ρ|M | · |N | to (1) where ρ > 0 is
a parameter. The purpose of this term is to penalize
very low-norm rows or columns from being inserted
into A(M,N) since they are probably noisy. For data
with larger norm, the first term of (1) should dominate
this penalty. Notice that this penalty term is also sep-
arable so it is easy to implement: the formula in 〈8〉 is
changed to γ̄v̄(j)2 − ‖A(M, j)‖2 − ρ̄|M | > 0 while the
formula in 〈11〉 becomes γ̄ū(i)2−‖A(i,N)‖2− ρ̄|N | >
0, where ρ̄ = ρ/(γ − 1). A good value for ρ̄ is to set it
so that in the initial starting point, the third penalty
term is a small fraction (say η̄ = 1/20) of the other
terms. This leads to the following definition for ρ:

ρ = η̄(γ̄ − 1)σ2/m,

which may be computed immediately after 〈4〉.

Greedy rank-one downdating appears to be much
faster than other NMF algorithms. Generating each
column of W and H requires approximately 20 matrix-
vector multiplications; these multiplications are always
at least as sparse as the original data. There is no it-
erative improvement phase. It can also be much faster
than the SVD, especially for sparse data.

3. Relationship to the SVD

The classical rank-one greedy downdating algorithm
is Jordan’s algorithm for computing the singular value
decomposition (SVD) (Stewart, 1993). Recall that the
SVD takes as input an m × n matrix A and returns
three factors U,Σ, V such that U ∈ Rm×k and U has
orthonormal columns (i.e., UT U = I), Σ ∈ Rk×k

and is diagonal with nonnegative diagonal entries, and
V ∈ Rn×k also with orthonormal columns, such that
UΣV T is the optimal rank-k approximation to A in
either the 2-norm or Frobenius norm. (Recall that
the 2-norm of an m × n matrix B, denoted ‖B‖2, is
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Algorithm 3 JordanSVD
input A ∈ Rm×n and k ≤ min(m,n)
output U,Σ, V as above.
1: for µ = 1 to k do
2: Select a random nonzero ū ∈ Rm

3: σ = ‖ū‖
4: u = ū/σ
5: repeat {power method}
6: v̄ = AT u
7: v = v̄/‖v̄‖
8: ū = Av
9: σ = ‖ū‖

10: u = ū/σ
11: until stagnation in u, σ,v
12: A = A− uσvT

13: U(:, µ) = u
14: V (:, µ) = v
15: Σ(µ, µ) = σ
16: end for

defined to be
√

λmax(BT B), where λmax denotes the
maximum eigenvalue.)

Thus, we see that R1D is quite similar to the SVD. The
principal difference is that R1D tries to find a subma-
trix indexed by M ×N at the same time that it tries
to identify the optimal u and v. Hence, the formulas
for u and v occurring in 〈9〉 and 〈13〉 of subroutine
ApproxRankOneSubmatrix, which were presented ear-
lier as solutions to a least-squares problem, may also
be regarded as steps in a power method. In particular,
this means that if M and N are fixed, then the inner
repeat loop of this subroutine will indeed converge to
the dominant singular triple of A(M,N).

As mentioned earlier, a shortcoming of the SVD is that
its factors contain both positive and negative numbers.
It has another subtler shortcoming when used for clus-
tering which is as follows: because the SVD always
operates on the entire matrix, it can return a singular
vector that averages the results from two nearly dis-
joint topics in a corpus (see Biggs et al. (2008) for an
example). R1D avoids this pitfall by seeking a subma-
trix that is approximately rank-one as it applies the
power method.

4. Related Work

As mentioned in the introduction, most algorithms
proposed in the literature are based on forming an
initial W and H and then improving them by local
search on an objective function. The objective func-
tion usually includes a term of the form ‖A−WHT ‖
in some norm, and may include other terms.

A few previous works follow an approach similar to
ours, namely, greedy subtraction of rank-one matrices.
This includes the work of Bergmann et al. (2003), who
identify the rank-one matrix to subtract as the fixed
point of an iterative process. Asgarian and Greiner
(2006) find the dominant singular pair and then trun-
cate it. Gillis (2006) finds a rank-one understimator
and subtracts that. Boutsidis and Gallopoulos (2007)
consider the use of a greedy algorithm for initializing
other algorithm and make the following interesting ob-
servation: The nonnegative part of a rank-one matrix
has rank at most 2.

The main innovation herein is the idea that the search
for the rank-one submatrix should itself be an opti-
mization subproblem. This observation allows us to
compare one candidate submatrix to another. (Gillis
also phrases his subproblem as optimization, although
his optimization problem does not explicitly seek sub-
matrices like ours.) A second innovation is our anal-
ysis in Section 5 showing that if the subproblem were
solved optimally, then R1D would be able to accu-
rately find the topics in the model of ε-separable cor-
pora (Papadimitriou et al., 2000).

5. Behavior of this objective function
on a nearly separable corpus

In this section, we establish the main theoretical result
of the paper, namely, that the objective function given
by (1) is able to correctly identify a topic in a nearly
separable corpus. We define our text model as fol-
lows. There is a universe of terms numbered 1, . . . ,m.
There is also a set of topics numbered 1, . . . , t. Topic
k, for k = 1, . . . , t, is a probability distribution over
the terms. Let P (i, k) denote the probability of term i
occurring in topic k. Thus, P is a singly stochastic ma-
trix, i.e., it has nonnegative entries with column sums
exactly 1. We assume also that there is a probability
distribution over topics; say the probability of topic k
is τk, for k = 1, . . . , t. The text model is thus specified
by P and τ1, . . . , τt. We use the Zipf distribution as
the model of document length. In particular, there is
a number L such that all documents have length less
than L, and the probability that a document of length
l occurs is

1/l

1 + 1/2 + · · ·+ 1/(L− 1)
.

We have checked that the Zipf model is a good fit for
several common datasets.

A document is generated from this text model as fol-
lows. First, topic k is chosen at random according
to the probability distribution {τ1, . . . , τt}. Then, a
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length l is chosen at random from {1, . . . , L − 1} ac-
cording to the Zipf distribution. Finally, the docu-
ment itself is chosen at random by selecting l terms in-
dependently according to the probability distribution
P (:, k). A corpus is a set of n documents chosen in-
dependently using this text model. Its term-document
matrix is the m × n matrix A such that A(i, j) is the
frequency of term i in document j.

We further assume that the text model is ε-separable,
meaning that each topic k is associated with a set of
terms Tk ⊂ {1, . . . ,m}, that T1, . . . , Tt are mutually
disjoint, and that P (i, k) ≤ ε for i /∈ Tk, i.e., the prob-
ability that a document on topic k will use a term
outside of Tk is small. Let Pmin = min{P (i, k) : i ∈
Tk, k = 1, . . . , t}. Without loss of generality, Pmin > 0
since any row i ∈ Tk such that P (i, k) = 0 may be
removed from Tk without affecting the validity of the
model. Parameter ε must satisfy an inequality men-
tioned below. This corpus model is quite similar to
that of Papadimitriou et al. (2000). One difference
is in the the document length model. Our model also
relaxes several assumptions of Papadimitriou et al.

Our main theorem is that the objective function given
by (1) correctly finds documents associated with a par-
ticular topic in a corpus.

Theorem 1. Let (P, (τ1, . . . , τt)) specify a text model,
and let α > 0 be chosen arbitrarily. Assume ε > 0
is chosen smaller than a function ε(Pmin,m, t, α) (see
Biggs et al. (2008) for this function). Suppose that the
text-model is ε-separable with respect to T1, . . . , Tt, the
subsets of terms defining the topics. Let A be the term-
document matrix of a corpus of n documents drawn
from this model when the document-length parameter
is L.

Choose γ = 4 in (1). Then with probability tending to
1 as n → ∞ and L → ∞, the optimizing pair (M,N)
of (1) satisfies the following. Let D1, . . . , Dt be the
partitioning of the columns of A according to topics.
There exists a topic k ∈ {1, . . . , t} such that A(M,N)
and A(Tk, Dk) are nearly coincident in the following
sense. ∑

(i,j)∈(M×N)4(Tk×Dk)

A(i, j)2 ≤ α
∑

(i,j)∈M×N

A(i, j)2.

Here, X 4 Y denotes the set-theoretic symmetric dif-
ference (X −Y )∪ (Y −X). The proof of this theorem
is lengthy and appears in Biggs et al. (2008). It re-
lies on Chernoff-Hoeffding estimates and perturbation
results for singular vectors such as Theorem 8.6.5 of
Golub and Van Loan (1996).

6. On the complexity of maximizing
f(M, N)

In this section, we observe that the problem of globally
maximizing (2) is NP-hard at least in the case that γ
is treated as an input parameter. This observation
explains why R1D settles for a heuristic maximization
of (2) rather than exact maximization. First, observe
that the maximum biclique (MBC) problem is NP-
hard as proved by Peeters (2003). We show that the
MBC problem can be transformed to an instance of
(2).

Let us recall the definition of the MBC problem. The
input is a bipartite graph G. The problem is to find
an (m,n)-complete bipartite subgraph K (sometimes
called a biclique) of G such that mn is maximized, i.e.,
the number of edges of K is maximized.

Suppose we are given G, an instance of the maximum
biclique problem. Let A be the left-right adjacency
matrix of G, that is, if G = (U, V,E) where U ∪ V is
the bipartition of the node set, then A has |U | rows
and |V | columns, and A(i, j) = 1 if (i, j) ∈ E for i ∈ U
and j ∈ V , else A(i, j) = 0.

Consider maximizing (2) for this choice of A. We re-
quire the following preliminary lemmas whose proofs
are omitted.

Lemma 2. Let A be a matrix that has either of the
following as a submatrix:

U1 =
(

1 0
0 1

)
or U2 =

(
1 1
0 1

)
. (3)

Then σ2(A) > 0.618.

This lemma leads to the following lemma.

Lemma 3. Suppose all entries of A ∈ Rm×n are ei-
ther 0 or 1, and suppose and at least one entry is 1.
Suppose M,N are the optimal solution for maximizing
f(M,N) given by (2). Suppose also that the parameter
γ is chosen to be 2.7mn + 1 or larger. Then the op-
timal choice of M,N must yield a matrix A(M,N) of
all 1’s, possibly augmented with some rows or columns
that are entirely zeros.

Now consider the main claim, namely, that optimize
(M,N) of the objective function for this A corresponds
to the max biclique. If A(M,N) includes a row or col-
umn entirely of zeros, then this row or column may be
dropped without affecting the value of the objective
function (2). Hence it follows from the lemma that
without loss of generality that the optimizer (M,N)
of (2) indexes a matrix of all 1’s. In that case,
σ1(A(M,N)) =

√
|M | · |N | while σ2(A(M,N)) =
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(a)

(b)

(c)

Figure 1. A binary image dataset is depicted in (a); white
indicates zeros. The result of R1D on this dataset is shown
in (b), and LSI in (c).

· · · = σp(A(M,N)) = 0 (where p = min(|M |, |N |)),
and hence f(M,N) = |M | · |N |. Thus, the value of the
objective function corresponds exactly to the number
of edges in the biclique. This completes the proof that
biclique is reducible in polynomial time to maximizing
(2).

We note that Gillis (2006) also uses the result of
Peeters for a similar purpose, namely, to show that
the subproblem arising in his NMF algorithm is also
NP-hard.

The NP-hardness result in this section requires that γ
be an input parameter. We conjecture that (2) is NP-
hard even when γ is fixed (say γ = 4 as used herein).

7. Image dataset test cases

We first demonstrate the performance of R1D on a
simple binary image dataset, depicted in Figure 1 (a).
Each of the ten dataset images is composed of one or
two “basis” triangles. The results of R1D (with pa-
rameter γ̄ = 4) and LSI on this dataset are shown in
Figure 1 (b) and (c), respectively, and the interpre-
tation is as follows. The leftmost column illustrates
the four leading columns of W , which are the learned
features. For each of these, the images on the right
are the dataset images with the largest entries in the
corresponding column of H; they should be closely as-

(a)

(b)

(c)

Figure 2. Three algorithms applied to the Frey face dataset
(black indicates zeros): (a) NMF with divergence criterion,
(b) our R1D algorithm for NMF, and (c) LSI

sociated with the feature on the left.

R1D discovered the four triangles as a basis, and to
each it associated exactly the dataset images which
contain the appropriate triangle. Alternatively, the
LSI factorization is not as interpretable.

We have also compared results against NMFDIV from
nmfpack (Hoyer, 2000; Hoyer, 2004). NMFDIV re-
quires k, the number of basis vectors to compute, as
an input parameter which globally affects the factors
W and H. If k is correctly set to 4, NMFDIV is able
to compute the same correct result as R1D. Otherwise,
some or all of the basis vectors will appear incorrect,
including the first ones. R1D and LSI will each com-
pute the same leading columns regardless of k, and
on this dataset they will not compute more than 4
columns; all subsequent columns of W and H will be
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Table 1. The amount of sparsity in the NMF computed by
R1D (γ̄ = 2) on the Frey face dataset. It is presented as
the percentage of zero values in the first few columns of W
and H.

Column % zeros in W % zeros in H

1 0.00 0.00
2 0.82 0.69
3 0.69 0.68
4 0.82 0.88
5 0.94 0.73

zero.

Figure 2 conducts a similar experiment on the Frey
face dataset, which consists of 1965 registered face im-
ages of size 28×20. Again, the leading columns of
W present the “eigenfaces” or “features” discovered
in the dataset, and the corresponding column of H
selects dataset images that are classified as carrying
the feature most prominently. R1D seems to be the
most successful at finding features and classifying im-
ages; in each case, the column of W shows a particular
highlight that distinguishes some images in the dataset
from others. NMFDIV appears to be slightly inferior
to R1D, while LSI is noticeably worse.

In this experiment, the algorithms computed 30 basis
vectors of the NMF. NMFDIV was allowed 500 itera-
tions which took 727 seconds; in contrast, LSI required
20 seconds and R1D took 47 seconds.

Additionally, R1D is effective at finding a sparse fac-
torization. Table 1 demonstrates the sparsity in the
first few columns of W and H. The first column of W
and H is fully dense, because the data matrix appears
to be approximately rank-one; its first singular value is
dominant. Apart from this, the other columns of the
NMF are sparse, and the sparsity can be controlled
by the γ̄ parameter (here we have used γ̄ = 2). Al-
ternatively, both NMFDIV and LSI perform a dense
factorization with very few values near zero in any col-
umn.

8. Text dataset test cases

In Tables 2 and 3 we illustrate LSI versus R1D (with
parameter γ̄ = 4) on the TDT Pilot Study (TDT
Study, 1997). The columns of each table are the lead-
ing columns of W , with the leading terms per column
displayed. The LSI results show that the topics are
not properly separated and terms from different top-
ics recur or are mixed. The columns in the R1D table
are clearly identifiable topics, and the terms in each

Table 2. Topics found by LSI on the TDT Pilot Study cor-
pus (tf-idf normalization).

Topic 1 Topic 2 Topic 3 Topic 4

simpson israel israel bosnian
president israeli israeli serbs
clinton bosnian palestinian serb
police peace gaza sarajevo
house serbs arafat bosnia
israel bosnia plo nato
bosnian serb jerusalem simpson
haiti sarajevo peace bihac
united palestinian palestinians air
government nato simpson troops

Table 3. Topics found by R1D on the TDT Pilot Study cor-
pus (tf-idf normalization). Note that all words in a column
do in fact refer to the same news event.

Topic 1 Topic 2 Topic 3 Topic 4

simpson masters korea deng
judge pairings korean xiaoping
ito augusta north rong
jury amateur kim paramount
defense tournament pyongyang china
trial round seoul health
angeles golf sung chinese
los noted nuclear kong
prosecution players south hong
case georgia communist daughters

columns are all correctly associated with the given top-
ics.

NMFDIV (and the other implementations of NMF in
nmfpack) were not run on this dataset because they
would exhaust all of the computer’s memory. As noted
earlier, R1D on text datasets is able to efficiently work
with sparse matrices throughout its operation. R1D
was able to compute 80 basis vectors of the TDT cor-
pus in 171 seconds, whereas LSI required 269 seconds.

9. Conclusions

We have proposed an algorithm called R1D for non-
negative matrix factorization. It is based on greedy
rank-one downdating according to an objective func-
tion, which is heuristically maximized. We have shown
that the objective function is well suited for identifying
topics in the ε-separable text model. Finally, we have
shown that the algorithm performs well in practice.
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This work raises several interesting open questions.
First, the ε-separable text model seems rather too sim-
ple to describe real text, so it would be interesting to
see if the results generalize to more realistic models.

A second arising question asks whether a re-
sult like Theorem 1 will hold for the R1D algo-
rithm. In other words, if the heuristic subroutine
ApproxRankOneSubmatrix is applied to an ε-separable
corpus, does it successfully identify a topic? Here is an
example of a difficulty. Suppose n → ∞ much faster
than L. In this case, the document j with the highest
norm will be the one in which lj is very close to L and
in which one entry A(i, j) is very close to L while the
rest are mostly zeros. This is because the maximizer
of ‖x‖2 subject to the constraint that ‖x‖1 = C oc-
curs when one entry of x is equal to C and the rest
are zero. It is likely that at least one instance of such
a document will occur regardless of the matrix P (·, ·)
if n is sufficiently large. This document will then act
as the seed for expanding M and N , but it may not
be similar to any topic. This scenario can perhaps be
prevented by a more intelligent selection of a starting
vector for ApproxRankOneSubmatrix.
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Abstract
Typically agent evaluation is done through
Monte Carlo estimation. However, stochas-
tic agent decisions and stochastic outcomes can
make this approach inefficient, requiring many
samples for an accurate estimate. We present a
new technique that can be used to simultaneously
evaluate many strategies while playing a single
strategy in the context of an extensive game. This
technique is based on importance sampling, but
utilizes two new mechanisms for significantly re-
ducing variance in the estimates. We demon-
strate its effectiveness in the domain of poker,
where stochasticity makes traditional evaluation
problematic.

1. Introduction
Evaluating an agent’s performance is a component of
nearly all research on sequential decision making. Typ-
ically, the agent’s expected payoff is estimated through
Monte Carlo samples of the (often stochastic) agent act-
ing in an (often stochastic) environment. The degree of
stochasticity in the environment or agent behavior deter-
mines how many samples are needed for an accurate esti-
mate of performance. For results in synthetic domains with
artificial agents, one can simply continue drawing samples
until the estimate is accurate enough. For non-synthetic
environments, domains that involve human participants, or
when evaluation is part of an on-line algorithm, accurate
estimates with a small number of samples are critical. This
paper describes a new technique for tackling this problem
in the context of extensive games.

An extensive game is a formal model of a sequential in-
teraction between multiple, independent agents with im-
perfect information. It is a powerful yet compact frame-
Appearing in Proceedings of the 25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

work for describing many strategic interactions between
decision-makers, artificial and human1. Poker, for ex-
ample, is a domain modeled very naturally as an exten-
sive game. It involves independent and self-interested
agents making sequential decisions based on both public
and private information in a stochastic environment. Poker
also demonstrates the challenge of evaluating agent per-
formance. In one typical variant of poker, approximately
30,000 hands (or samples of playing the game) are some-
times needed to distinguish between professional and ama-
teur levels of play. Matches between computer and human
opponents typically involve far fewer hands, yet still need
to draw similar statistical conclusions.

In this work, we present a new technique for deriving
low variance estimators of agent performance in extensive
games. We employ importance sampling while exploit-
ing the fact that the strategy of the agent being evaluated
is typically known. However, we reduce the variance that
importance sampling normally incurs by selectively adding
synthetic data that is derived from but consistent with the
sample data. As a result we derive low-variance unbiased
estimators for agent performance given samples of the out-
come of the game. We further show that we can efficiently
evaluate one strategy while only observing samples from
another. Finally, we examine the important case where we
only get partial information of the game outcome (e.g., if
a player folds in poker, their private cards are not revealed
during the match and so the sequence of game states is not
fully known). All of our estimators are then evaluated em-
pirically in the domain of poker in both full and partial in-
formation scenarios.

This paper is organized as follows. In Section 2 we in-
troduce the extensive game model, formalize our problem,
and describe previous work on variance reduction in agent
evaluation. In Section 3 we present a general procedure
for deriving unbiased estimators and give four examples of

1In this work we use the words “agent”, “player”, and
“decision-maker” interchangeably and, unless explicitly stated,
aren’t concerned if they are humans or computers.
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these estimators. We then briefly introduce the domain of
poker in Section 4 and describe how these estimators can
be applied to this domain. In Section 5 we show empirical
results of our approach in poker. Finally, we conclude in
Section 6 with some directions for future work.

2. Background
We begin by describing extensive games and then we for-
malize the agent evaluation problem.

2.1. Extensive Games

Definition 1 (Osborne & Rubenstein, 1994, p. 200) a fi-
nite extensive game with imperfect information has the fol-
lowing components:

• A finite set N of players.

• A finite set H of sequences, the possible histories of
actions, such that the empty sequence is in H and ev-
ery prefix of a sequence in H is also in H . Z ⊆ H
are the terminal histories (those which are not a pre-
fix of any other sequences). A(h) = {a : (h, a) ∈ H}
are the actions available after a non-terminal history
h ∈ H ,

• A player function P that assigns to each non-terminal
history (each member of H\Z) a member of N ∪{c},
where c represents chance. P (h) is the player who
takes an action after the history h. If P (h) = c, then
chance determines the action taken after history h.

• A function fc that associates with every history h for
which P (h) = c a probability measure fc(·|h) on
A(h) (fc(a|h) is the probability that a occurs given
h), where each such probability measure is indepen-
dent of every other such measure.

• For each player i ∈ N a partition Ii of {h ∈ H :
P (h) = i} with the property that A(h) = A(h′)
whenever h and h′ are in the same member of the par-
tition. Ii is the information partition of player i; a set
Ii ∈ Ii is an information set of player i.

• For each player i ∈ N a utility function ui from the
terminal states Z to the reals R. If N = {1, 2} and
u1 = −u2, it is a zero-sum extensive game.

A strategy of player i σi in an extensive game is a func-
tion that assigns a distribution over A(Ii) to each Ii ∈ Ii.
A strategy profile σ consists of a strategy for each player,
σ1, σ2, . . ., with σ−i referring to all the strategies in σ ex-
cept σi.

Let πσ(h) be the probability of history h occurring if play-
ers choose actions according to σ. We can decompose
πσ = Πi∈N∪{c}π

σ
i (h) into each player’s contribution to

this probability. Hence, πσ
i (h) is the probability that if

player i plays according to σ then for all histories h′ that
are a proper prefix of h with P (h′) = i, player i takes
the subsequent action in h. Let πσ

−i(h) be the product of
all players’ contribution (including chance) except player
i. The overall value to player i of a strategy profile is
then the expected payoff of the resulting terminal node, i.e.,
ui(σ) =

∑
z∈Z ui(z)πσ(z). For Y ⊆ Z, a subset of possi-

ble terminal histories, define πσ(Y ) =
∑

z∈Y πσ(z), to be
the probability of reaching any outcome in the set Y given
σ, with πσ

i (Y ) and πσ
−i(Y ) defined similarly.

2.2. The Problem

Given some function on terminal histories V : Z → < we
want to estimate Ez|σ [V (z)]. In most cases V is simply
ui, and the goal is to evaluate a particular player’s expected
payoff. We explore three different settings for this problem.
In all three settings, we assume that σi (our player’s strat-
egy) is known, while σj 6=i (the other players’ strategies) are
not known.

• On-policy full-information. In the simplest case, we
get samples z1...t ∈ Z from the distribution πσ .

• Off-policy full-information. In this case, we get sam-
ples z1...t ∈ Z from the distribution πσ̂ where σ̂ dif-
fers from σ only in player i’s strategy: πσ

−i = πσ̂
−i. In

this case we want to evaluate one strategy for player i
from samples of playing a different one.

• Off-policy partial-information. In the hardest case,
we don’t get full samples of outcomes zt, but rather
just player i’s view of the outcomes. For example, in
poker, if a player folds, their cards are not revealed
to the other players and so certain chance actions are
not known. Formally, in this case we get samples
of K(zt) ∈ K, where K is a many-to-one mapping
and zt comes from the distribution πσ̂ as above. K
intuitively must satisfy the following conditions: for
z, z′ ∈ Z, if K(z) = K(z′) then,

– V (z) = V (z′), and
– ∀σ πσ

i (z) = πσ
i (z′).

2.3. Monte Carlo Estimation

The typical approach to estimating Ez|σ [V (z)] is through
simple Monte Carlo estimation. Given independent sam-
ples z1, . . . , zt from the distribution πσ , simply estimate
the expectation as the sample mean of outcome values.

1
t

t∑
i=1

V (zi) (1)
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As the estimator has zero bias, the mean squared error of
the estimator is determined by its variance. If the variance
of V (z) given σ is large, the error in the estimate can be
large and many samples are needed for accurate estimation.

Recently, we proposed a new technique for agent eval-
uation in extensive games (Zinkevich et al., 2006). We
showed that value functions over non-terminal histories
could be used to derive alternative unbiased estimators. If
the chosen value function was close to the true expected
value given the partial history and players’ strategies, then
the estimator would result in a reduction in variance. The
approach essentially derives a real-valued function Ṽ (z)
that is used in place of V in the Monte Carlo estimator
from Equation 1. The expectation of Ṽ (z) matches the ex-
pectation of V (z) for any choice of σ, and so the result
is an unbiased estimator, but potentially with lower vari-
ance and thus lower mean-squared error. The specific ap-
plication of this approach to poker, using an expert-defined
value function, was named the DIVAT estimator and was
shown to result in a dramatic reduction in variance. A sim-
pler choice of value function, the expected value assuming
the betting is “bet-call” for all remaining betting rounds,
can even make a notable reduction. We refer to this concep-
tually and computationally simpler estimator as (Bet-Call)
BC-DIVAT.

Both traditional Monte Carlo estimation and DIVAT are fo-
cused on the on-policy case, requiring outcomes sampled
from the joint strategy that is being evaluated. Further-
more, DIVAT is restricted to full-information, where the
exact outcome is known. Although limited in these re-
gards, they also don’t require any knowledge about any of
the players’ strategies.

3. General Approach
We now describe our new approach for deriving low-
variance, unbiased estimators for agent evaluation. In this
section we almost exclusively focus on the off-policy full-
information case. Within this setting we observe a sampled
outcome z from the distribution πσ̂ , and the goal is to esti-
mate Ez|σ [V (z)]. The outcomes are observed based on the
strategy σ̂ while we want to evaluate the expectation over
σ, where they differ only in player i’s strategy. This case
subsumes the on-policy case, and we touch on the more dif-
ficult partial-information case at the end of this section. In
order to handle this more challenging case, we require full
knowledge of player i’s strategies, both the strategy being
observed σ̂i and the one being evaluated σi.

At the core of our technique is the idea that synthetic his-
tories derived from the sampled history can also be used
in the estimator. For example, consider the unlikely case
when σ is known entirely. Given an observed outcome

z ∈ Z (or even without an observed outcome) we can ex-
actly compute the desired expectation by examining every
outcome.

VZ(z) ≡
∑
z′∈Z

V (z′)πσ(z′) = Ez|σ [V (z)] (2)

Although impractical since we don’t know σ, VZ(z) is an
unbiased and zero variance estimator.

Instead of using every terminal history, we could restrict
ourselves to a smaller set of terminal histories. Let U(z′ ∈
Z) ⊆ Z be a mapping of terminal histories to a set of ter-
minal histories, where at least z′ ∈ U(z′). We can con-
struct an unbiased estimator that considers the history z′

in the estimation whenever we observe a history from the
set U(z′). Another way to consider things is to say that
U−1(z) is the set of synthetic histories considered when
we observe z. Specifically, we define the estimator VU (z)
for the observed outcome z as,

VU (z) ≡
∑

z′∈U−1(z)

V (z′)
πσ(z′)

πσ̂(U(z′))
(3)

The estimator considers the value of every outcome z′

where the observed history z is in the set U(z′). Each
outcome though is weighted in a fashion akin to impor-
tance sampling. The weight term for z′ is proportional to
the probability of that history given σ, and inversely pro-
portional to the probability that z′ is one of the considered
synthetic histories when observing sampled outcomes from
σ̂. Note that VU (z) is not an estimate of V (z), but rather
has the same expectation.

At first glance, VU may seem just as impractical as VZ since
σ is not known. However, with a careful choice of U we
can insure that the weight term depends only on the known
strategies σi and σ̂i. Before presenting example choices of
U , we first prove that VU is unbiased.

Theorem 1 If πσ̂
i (z) is non-zero for all outcomes z ∈ Z,

then,

Ez|σ̂ [VU (z)] = Ez|σ [V (z)] ,

i.e., VU is an unbiased estimator.

Proof: First, let us consider the denominator in the weight
term of VU . Since z′ ∈ U(z′) and πσ̂

i is always positive,
the denominator can only be zero if πσ̂

−i(z
′) is zero. If this

were true, πσ
−i(z

′) must also be zero, and as a consequence
so must the numerator. As a result the terminal history z′

is never reached and so it is correct to simply exclude such
histories from the estimator’s summation.

Define 1(x) to be the indicator function that takes on the
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value 1 if x is true and 0 if false.

Ez|σ̂ [VU (z)]

= Ez|σ̂

 ∑
z′∈U−1(z)

V (z′)
πσ(z′)

πσ̂(U(z′))

 (4)

= Ez|σ̂

[∑
z′

1(z ∈ U(z′))V (z′)
πσ(z′)

πσ̂(U(z′))

]
(5)

=
∑
z′

V (z′)
πσ(z′)

πσ̂(U(z′))
Ez|σ̂ [1(z ∈ U(z′))] (6)

=
∑
z′

V (z′)
πσ(z′)

πσ̂(U(z′))
πσ̂(U(z′)) (7)

=
∑
z′

V (z′)πσ(z′) = Ez|σ [V (z)] (8)

The derivation follows from the linearity of expectation, the
definition of πσ̂ , and the definition of expectation.

We now look at four specific choices of U for which the
weight term can be computed while only knowing player
i’s portion of the joint strategy σ.

Example 1: Basic Importance Sampling. The simplest
choice of U for which VU can be computed is U(z) = {z}.
In other words, the estimator considers just the sampled
history. In this case the weight term is:

πσ(z′)
πσ̂(U(z′))

=
πσ(z′)
πσ̂(z′)

(9)

=
πσ

i (z′)πσ
−i(z

′)
πσ̂

i (z′)πσ̂
−i(z′)

(10)

=
πσ

i (z′)
πσ̂

i (z′)
(11)

The weight term only depends on σi and σ̂i and so is a
known quantity. When σ̂i = σi the weight term is 1 and
the result is simple Monte Carlo estimation. When σ̂i is
different, the estimator is a straightforward application of
importance sampling.

Example 2: Game Ending Actions. A more interest-
ing example is to consider all histories that differ from the
sample history by only a single action by player i and that
action must be the last action in the history. For exam-
ple, in poker, the history where the player being evalu-
ated chooses to fold at an earlier point in the betting se-
quence is considered in this estimator. Formally, define
S−i(z) ∈ H to be the shortest prefix of z where the re-
maining actions in z are all made by player i or chance. Let
U(z) = {z′ ∈ Z : S−i(z) is a prefix of z′}. The weight

term becomes,

πσ(z′)
πσ̂(U(z′))

=
πσ(z′)

πσ̂(S−i(z′))
(12)

=
πσ
−i(z

′)πσ
i (z′)

πσ̂
−i(S−i(z′))πσ̂

i (S−i(z′))
(13)

=
πσ
−i(S−i(z′))πσ

i (z′)
πσ̂
−i(S−i(z′))πσ̂

i (S−i(z′))
(14)

=
πσ

i (z′)
πσ̂

i (S−i(z′))
(15)

As this only depends on the strategies of player i, we can
compute this quantity and therefore the estimator.

Example 3: Private Information. We can also use all
histories in the update that differ only in player i’s pri-
vate information. In other words, any history that the other
players wouldn’t be able to distinguish from the sampled
history is considered. For example, in poker, any history
where player i receiving different private cards is consid-
ered in the estimator since the opponents’ strategy cannot
depend directly on this strictly private information. For-
mally, let U(z) =

{
z′ ∈ Z : ∀σ πσ

−i(z
′) = πσ

−i(z)
}

. The
weight term then becomes,

πσ(z′)
πσ̂(U(z′))

=
πσ(z′)∑

z′′∈U(z′) πσ̂(z′′)
(16)

=
πσ
−i(z

′)πσ
i (z′)∑

z′′∈U(z′) πσ̂
−i(z′′)π

σ̂
i (z′′)

(17)

=
πσ
−i(z

′)πσ
i (z′)∑

z′′∈U(z′) πσ̂
−i(z′)π

σ̂
i (z′′)

(18)

=
πσ
−i(z

′)πσ
i (z′)

πσ̂
−i(z′)

∑
z′′∈U(z′) πσ̂

i (z′′)
(19)

=
πσ

i (z′)
πσ̂

i (U(z′))
(20)

As this only depends on the strategies of player i, we can
again compute this quantity and therefore the estimator as
well.

Example 4: Combined. The past two examples
show that we can consider histories that differ in the
player’s private information or by the player mak-
ing an alternative game ending action. We can also
combine these two ideas and consider any history
that differs by both an alternative game ending action
and the player’s private information. Define Q(z) ={
h ∈ H : |h| = |S−i(z)| and ∀σπσ

−i(h) = πσ
−i(S−i(z))

}
,
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Let U(z) = {z′ ∈ Z : a prefix of z′ is in Q(z)}.

πσ(z′)
πσ̂(U(z′))

=
πσ(z′)

πσ̂(Q(z′))
(21)

=
πσ
−i(z

′)πσ
i (z′)∑

h∈Q(z′) πσ̂
−i(h)πσ̂

i (h)
(22)

=
πσ
−i(z

′)πσ
i (z′)∑

h∈Q(z′) πσ̂
−i(S−i(z))πσ̂

i (h)
(23)

=
πσ
−i(S−i(z′))πσ

i (z′)
πσ̂
−i(S−i(z′))

∑
h∈Q(z′) πσ̂

i (h)
(24)

=
πσ

i (z′)
πσ̂

i (Q(z′))
(25)

Once again this quantity only depends on the strategies of
player i and so we can compute this estimator as well.

We have presented four different estimators that try to ex-
tract additional information from a single observed game
outcome. We can actually combine any of these estima-
tors with other unbiased approaches for reducing variance.
This can be done by replacing the V function in the above
estimators with any unbiased estimate of V . In particular,
these estimators can be combined with our previous DIVAT
approach by choosing V to be the DIVAT (or BC-DIVAT)
estimator instead of ui.

3.1. Partial Information

The estimators above are provably unbiased for both the-
policy and off-policy full-information case. We now briefly
discuss the off-policy partial-information case. In this case
we don’t directly observe the actual terminal history zt but
only a many-to-one mapping K(zt) of the history. One
simple adaptation of our estimators to this case is to use the
history z′ in the estimator whenever it is possible that the
unknown terminal history could be in U(z′), while keep-
ing the weight term unchanged. Although we lose the un-
biased guarantee with these estimators, it is possible that
the reduction in variance is more substantial than the error
caused by the bias. We investigate empirically the mag-
nitude of the bias and the resulting mean-squared error of
such estimators in the domain of poker in Section 5.

4. Application to Poker
To analyze the effectiveness of these estimators, we will
use the popular game of Texas Hold’em poker, as played
in the AAAI Computer Poker Competition (Zinkevich &
Littman, 2006). The game is two-player and zero-sum. Pri-
vate cards are dealt to the players, and over four rounds,
public cards are revealed. During each round, the players
place bets that the combination of their public and private
cards will be the strongest at the end of the game. The game
has just under 1018 game states, and has the properties of

imperfect information, stochastic outcomes, and observa-
tions of the game outcome during a match exhibit partial
information.

Each of the situations described in Section 2, on-policy and
off-policy as well as full-information and partial informa-
tion, have relevance in the domain of poker. In particular,
the on-policy full-information case is the situation where
one is trying to evaluate a strategy from full-information
descriptions of the hands, as might be available after a
match is complete. For example, this could be used to more
accurately determine the winner of a competition involving
a small number of hands (which is always the case when
humans are involved). In this situation it is critical, that the
estimator is unbiased, i.e., it is an accurate reflection of the
expected winnings and therefore does not incorrectly favor
any playing style.

The off-policy full-information case is useful for examin-
ing past games against an opponent to determine which of
many alternative strategies one might want to use against
them in the future. The introduction of bias (depending on
the strategy used when playing the past hands) is not prob-
lematic, as the goal in this case is an estimate with as little
error as possible. Hence the introduction of bias is accept-
able in exchange for significant decreases in variance.

Finally, the off-policy partial-information case corresponds
to evaluating alternative strategies during an actual match.
In this case, we want to evaluate a set of strategies, which
aren’t being played, to try and identify an effective choice
for the current opponent. The player could then choose a
strategy whose performance is estimated to be strong even
for hands it wasn’t playing.

The estimators from the previous section all have natural
applications to the game of poker:

• Basic Importance Sampling. This is a straightfor-
ward application of importance sampling. The value
of the observed outcome of the hand is weighted by
the ratio of the probability that the strategy being eval-
uated (σi) takes the same sequence of actions to the
probability that the playing strategy (σ̂i) takes the se-
quence of actions.

• Game ending actions. By selecting the fold betting
action, a player surrenders the game in order to avoid
matching an opponent’s bet. Therefore, the game
ending actions estimator can consider all histories in
which the player could have folded during the ob-
served history.2 We call this the Early Folds (EF) es-
timator. The estimator sums over all possible prefixes

2In the full-information setting we can also consider situations
where the player could have called on the final round of betting to
end the hand.
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of the betting sequence where the player could have
chosen to fold. In the summation it weights the value
of surrendering the pot at that point by the ratio of
the probability of the observed betting up to that point
and then folding given the player’s cards (and σi) to
the probability of the observed betting up to that point
given the player’s cards (and σ̂i).

• Private information. In Texas Hold’em, a player’s
private information is simply the two private cards
they are dealt. Therefore, the private information esti-
mator can consider all histories with the same betting
sequence in which the player holds different private
cards. We call this the All Cards (AC) estimator. The
estimator sums over all possible two-card combina-
tions (excepting those involving exposed board or op-
ponent cards). In the summation it weights the value
of the observed betting with the imagined cards by the
ratio of the probability of the observed betting given
those cards (and σi) to the probability of the observed
betting (given σ̂i) summed over all cards.

5. Results
Over the past few years we have created a number of strong
Texas Hold’em poker agents that have competed in the
past two AAAI Computer Poker Competitions. To evalu-
ate our new estimators, we consider games played between
three of these poker agents: S2298 (Zinkevich et al., 2007),
PsOpti4 (Billings et al., 2003), and CFR8 (Zinkevich et al.,
2008). In addition, we also consider Orange, a competitor
in the First Man-Machine Poker Championship.

To evaluate these estimators, we examined records of
games played between each of three candidate strategies
(S2298, CFR8, Orange) against the opponent PsOpti4.
Each of these three records contains one million hands of
poker, and can be viewed as full information (both players’
private cards are always shown) or as partial information
(when the opponent folds, their private cards are not re-
vealed). We begin with the full-information experiments.

5.1. Full Information

We used the estimators described previously to find the
value of each of the three candidate strategies, using full-
information records of games played from just one of the
candidate strategies. The strategy that actually played the
hands in the record of games is called the on-policy strat-
egy and the others are the off-policy strategies. The results
of one these experiments is presented in Table 1. In this ex-
periment, we examined one million full-information hands
of S2298 playing against PsOpti4. S2298 (the on-policy
strategy) and CFR8 and Orange (the off-policy strategies)
are evaluated by our importance sampling estimators, as

Table 1. Full Information Case. Empirical bias, standard devi-
ation, and root mean-squared-error over a 1000 hand match for
various estimators. 1 million hands of poker between S2298 and
PsOpti4 were observed. A bias of 0* indicates a provably unbi-
ased estimator.

Bias StdDev RMSE
S2298
Basic 0* 5103 161

DIVAT 0* 1935 61
BC-DIVAT 0* 2891 91
Early Folds 0* 5126 162

All Cards 0* 4213 133
AC+BC-DIVAT 0* 2146 68

AC+EF+BC-DIVAT 0* 1778 56
CFR8
Basic 200 ± 122 62543 1988

DIVAT 62 ± 104 53033 1678
BC-DIVAT 84 ± 45 22303 710
Early Folds 123 ± 120 61481 1948

All Cards 12 ± 16 8518 270
AC+BC-DIVAT 35 ± 13 3254 109

AC+EF+BC-DIVAT 2 ± 12 2514 80
Orange

Basic 159 ± 40 20559 669
DIVAT 3 ± 25 11350 359

BC-DIVAT 103 ± 28 12862 420
Early Folds 82 ± 35 17923 572

All Cards 7 ± 16 8591 272
AC+BC-DIVAT 8±13 3154 100

AC+EF+BC-DIVAT 6±12 2421 77

well as DIVAT, BC-DIVAT, and a few combination estima-
tors. We present the empirical bias and standard deviation
of the estimators in the first two columns. The third col-
umn, “RMSE”, is the root-mean-squared error of the esti-
mator if it were used as the method of evaluation for a 1000
hand match (a typical match length). All of the numbers
are reported in millibets per hand played. A millibet is one
thousandth of a small-bet, the fixed magnitude of bets used
in the first two rounds of betting. To provide some intu-
ition for these numbers, a player that always folds will lose
750 millibets per hand, and strong players aim to achieve
an expected win rate over 50 millibets per hand.

In the on-policy case, where we are evaluating S2298, all of
the estimators are provably unbiased, and so they only dif-
fer in variance. Note that the Basic estimator, in this case,
is just the Monte-Carlo estimator over the actual money
lost or won. The Early Folds estimator provides no vari-
ance reduction over the Monte-Carlo estimate, while the
All Cards estimator provides only a slight reduction. How-
ever, this is not nearly as dramatic as the reduction pro-
vided by the DIVAT estimator. The importance sampling
estimators, however, can be combined with the DIVAT es-
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timator as described in Section . The combination of BC-
DIVAT with All Cards (“AC+BC-DIVAT”) results in lower
variance than either of the estimators separately.3 The
addition of Early Folds (“AC+EF+BC-DIVAT”) produces
an even further reduction in variance, showing the best-
performance of all the estimators, even though Early Folds
on its own had little effect.

In the off-policy case, where we are evaluating CFR8 or Or-
ange, we report the empirical bias (along with a 95% con-
fidence bound) in addition to the variance. As DIVAT and
BC-DIVAT were not designed for off-policy evaluation, we
report numbers by combining them with the Basic estima-
tor (i.e., using traditional importance sampling). Note that
bias is possible in this case because our on-policy strategy
(S2298) does not satisfy the assumption in Theorem 1, as
there are some outcomes the strategy never plays. Basic
importance sampling in this setting not only shows statis-
tically significant bias, but also exhibits impractically large
variance. DIVAT and BC-DIVAT, which caused consid-
erable variance reduction on-policy, also should consider-
able variance reduction off-policy, but not enough to offset
the extra variance from basic importance sampling. The
All Cards estimator, on the other hand, shows dramatically
lower variance with very little bias (in fact, the empirical
bias is statistically insignificant). Combining the All Cards
estimator with BC-DIVAT and Early Folds further reduces
the variance, giving off-policy estimators that are almost as
accurate as our best on-policy estimators.

The trends noted above continue in the other experiments,
when CFR8 and Orange are being observed. For space con-
siderations, we don’t present the individual tables, but in-
stead summarize these experiments in Table 2. The table
shows the minimum and maximum empirically observed
bias, standard deviation, and the root-mean-squared error
of the estimator for a 1000 hand match. The strategies be-
ing evaluated are separated into the on-policy case, when
the record involves data from that strategy, and the off-
policy case, when it doesn’t.

5.2. Partial Information

The same experiments were repeated for the case of partial
information. The results of the experiment involving S2298
playing against PsOpti4 and evaluating our three candidate
strategies under partial information is shown in Table 3.
For DIVAT and BC-DIVAT, which require full information
of the game outcome, we used a partial information vari-
ant where the full-information estimator was used when the

3The importance sampling estimators were combined with
BC-DIVAT instead of DIVAT because the original DIVAT esti-
mator is computationally burdensome, particularly when many
evaluations are needed for every observation as is the case with
the All Cards estimator.

Table 3. Partial-Information Case. Empirical bias, standard devi-
ation, and root mean-squared-error over a 1000 hand match for
various estimators. 1 million hands of poker between S2298 and
PsOpti4 with partial information were observed. A bias of 0* in-
dicates a provably unbiased estimator.

Bias StdDev RMSE
S2298
Basic 0* 5104 161

DIVAT 81±9 2762 119
BC-DIVAT 95±9 2759 129
Early Folds 47±1 5065 167

All Cards 5±13 4218 133
AC+BC-DIVAT 96±12 2650 127

CFR8
Basic 202±80 40903 1309

DIVAT 175±47 23376 760
BC-DIVAT 183±47 23402 762
Early Folds 181±78 39877 1274

All Cards 13±19 7904 250
AC+BC-DIVAT 101±16 4014 162

Orange
Basic 204±45 23314 765

DIVAT 218±22 10029 385
BC-DIVAT 244±21 10045 401
Early Folds 218±43 22379 741

All Cards 3±19 8092 256
AC+BC-DIVAT 203±16 3880 237

game outcome was known (i.e., no player folded) and win-
nings was used when it was not. This variant can result in a
biased estimator, as can be seen in the table of results. The
All Cards estimator, although also without any guarantee of
being unbiased, actually fares much better in practice, not
displaying a statistically significant bias in either the off-
policy or on-policy experiments. However, even though
the DIVAT estimators are biased their low variance makes
them preferred in terms of RMSE in the on-policy setting.
In the off-policy setting, the variance caused by Basic im-
portance sampling (as used with DIVAT and BC-DIVAT)
makes the All Cards estimator the only practical choice.
As in the full-information case we can combine the All
Cards and BC-DIVAT for further variance reduction. The
resulting estimator has lower RMSE than either All Cards
or BC-DIVAT alone both in the on-policy and off-policy
cases. The summary of the results of the other experiments,
showing similar trends, are shown in Table 4.

6. Conclusion
We introduced a new method for estimating agent perfor-
mance in extensive games based on importance sampling.
The technique exploits the fact that the agent’s strategy
is typically known to derive several low variance estima-
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Table 2. Summary of the Full-Information Case. Summary of empirical bias, standard deviation, and root-mean-squared error over
a 1000 hand match for various estimators. The minimum and maximum encountered values for all combinations of observed and
evaluated strategies is presented. A bias of 0* indicates a provably unbiased estimator.

Bias StdDev RMSE
Min – Max Min – Max Min – Max

On Policy
Basic 0* – 0* 5102 – 5385 161 – 170

DIVAT 0* – 0* 1935 – 2011 61 – 64
BC-DIVAT 0* – 0* 2891 – 2930 91 – 92

AC+GE+BC-DIVAT 0* – 0* 1701 – 1778 54 – 56
Off Policy

Basic 49 – 200 20559 – 244469 669 – 7732
DIVAT 2 – 62 11350 – 138834 358 – 4390

BC-DIVAT 10 – 103 12862 – 173715 419 – 5493
AC+GE+BC-DIVAT 2 – 9 1816 – 2857 58 – 90

Table 4. Summary of the Partial-Information Case. Summary of empirical bias, standard deviation, and root-mean-squared error over a
1000 hand match for various estimators. The minimum and maximum encountered values for all combinations of observed and evaluated
strategies is presented. A bias of 0* indicates a provably unbiased estimator.

Bias StdDev RMSE
Min – Max Min – Max Min – Max

On Policy
Basic 0* – 0* 5104 – 5391 161 – 170

DIVAT 56 – 144 2762 – 2876 105 – 170
BC-DIVAT 78 – 199 2759 – 2859 118 – 219

AC+BC-DIVAT 78 – 206 2656 – 2766 115 – 224
Off Policy

Basic 17 – 433 23314 – 238874 753 – 7566
DIVAT 103 – 282 10029 – 88791 384 – 2822

BC-DIVAT 35 – 243 10045 – 99287 400 – 3139
AC+BC-DIVAT 63 – 230 3055 – 6785 143 – 258

tors that can simultaneously evaluate many strategies while
playing a single strategy. We prove that these estimators
are unbiased in both the on-policy and off-policy case. We
empirically evaluate the techniques in the domain of poker,
showing significant improvements in terms of lower vari-
ance and lower bias. We show that the estimators can also
be used even in the challenging problem of estimation with
partial information observations.

Acknowledgments
We would like to thank Martin Zinkevich and Morgan Kan
along with the entire University of Alberta Computer Poker
Research Group for their valuable insights. This research
was supported by NSERC and iCore.

References
Billings, D., Burch, N., Davidson, A., Holte, R., Schaeffer, J.,

Schauenberg, T., & Szafron, D. (2003). Approximating game-

theoretic optimal strategies for full-scale poker. International
Joint Conference on Artificial Intelligence (pp. 661–668).

Osborne, M., & Rubenstein, A. (1994). A course in game theory.
Cambridge, Massachusetts: The MIT Press.

Zinkevich, M., Bowling, M., Bard, N., Kan, M., & Billings, D.
(2006). Optimal unbiased estimators for evaluating agent per-
formance. American Association of Artificial Intelligence Na-
tional Conference, AAAI’06 (pp. 573–578).

Zinkevich, M., Bowling, M., & Burch, N. (2007). A new al-
gorithm for generating equilibria in massive zero-sum games.
Proceedings of the Twenty-Second Conference on Artificial In-
telligence (pp. 788–793).

Zinkevich, M., Johanson, M., Bowling, M., & Piccione, C.
(2008). Regret minimization in games with incomplete infor-
mation. Advances in Neural Information Processing Systems
20. To appear (8 pages).

Zinkevich, M., & Littman, M. (2006). The AAAI computer poker
competition. Journal of the International Computer Games
Association, 29. News item.

79



Actively Learning Level-Sets of Composite Functions

Brent Bryan BRENT@GOOGLE.COM

Google Inc., 4720 Forbes Ave., Pittsburgh, PA 15213

Jeff Schneider SCHNEIDE@CS.CMU.EDU

Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213

Abstract
Scientists frequently have multiple types of ex-
periments and data sets on which they can test
the validity of their parameterized models and lo-
cate plausible regions for the model parameters.
By examining multiple data sets, scientists can
obtain inferences which typically are much more
informative than the deductions derived from
each of the data sources independently. Sev-
eral standard data combination techniques result
in target functions which are a weighted sum of
the observed data sources. Thus, computing con-
straints on the plausible regions of the model
parameter space can be formulated as finding a
level set of a target function which is the sum
of observable functions. We propose an active
learning algorithm for this problem which selects
both a sample (from the parameter space) and an
observable function upon which to compute the
next sample. Empirical tests on synthetic func-
tions and on real data for an eight parameter cos-
mological model show that our algorithm signifi-
cantly reduces the number of samples required to
identify the desired level-set.

1. Introduction

Scientists frequently have multiple types of experiments
and data sets on which they can test the validity of their pa-
rameterized models and the plausible or optimal regions for
the model parameters. One task that can be considered is
that of computing the parameter setting (from a pre-defined
model parameter space) which maximizes the likelihood of
all the observations given the models. However, this cal-
culation does not determine whether or not the derived pa-
rameter setting is consistent with the data given the models.
Instead, a more prudent approach is to compute the set of

Appearing inProceedings of the25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

model parameters (from the parameter space) which cannot
be statistically rejected by the combination of the observed
data and theoretical models.

When given a single model and data set pair, computation
of the feasible regions of parameter space can be done by
performing a simple hypothesis test for all points in the
space; that is, we are interested in the regions of param-
eter space where the null hypothesis — that the data was
generated by the model — cannot be rejected at some spec-
ified confidence level. Extending this to the multiple model
and data setting, we are interested in determining regions of
parameter space where we cannot reject the hypothesis that
each of the data sets was generated by its respective model
at a given confidence level.

For example, when determining the spatial location of a
disease outbreak, a researcher might use information de-
rived from medical records (e.g. hospital admits), as well
as sales of over the counter and prescription medications
(Shmueli & Fienberg, 2006). Note that the presence (or
lack thereof) of a single indicator may be enough to ac-
cept or reject a single hypothesis, resulting in increased
data efficiency. Specifically, if there are many hospital ad-
mits from a single locality, the probability of disease is ex-
tremely high regardless of the over the counter and pre-
scription drug sales. Moreover, while we believe that the
underlying cause affects each of the signals we observe, we
do not necessarily believe that the signals themselves are
correlated. For instance, colds result in significant over the
counter sales with few hospital visits or prescription sales.
However, anthrax attacks will affect all three data streams.

There are many other examples of the multiple model set-
ting. Here, we focus on finding1 − α confidence re-
gions for statistical analyses involving multiple related data
sets. Traditionally, the combination of statistical evidence
has been achieved in the sciences in a somewhat ad-hoc
fashion. For instance, a joint analysis can be performed
by (loosely) intersecting the confidence regions of several
studies. Additionally, results from one publication might
be used to guide the selection of parameters in future ex-
periments, possibly in the form of a prior.
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A more rigorous and efficient approach is to consider multi-
ple experimental sources of evaluation simultaneously and
choose samples in light of their contribution to the com-
bined target function. This target function is the composi-
tion of the “observable” test functions: one for each data set
and model pair. We assume that the observable functions
share the same parameter space, but are functionally inde-
pendent. As such, hierarchical models do not apply. More-
over, whereas multi-task learning problems are based on
learning the commonality between the constituent models,
the task of locating confidence regions benefits from the
discrepancies between the models to efficiently accept or
reject a parameter vector. While in theory we could check
each point in the parameter space to determine whether or
not it should be included within our1−α confidence region,
in practice each experiment is too expensive.

As such, we develop active learning algorithms to learn
the confidence regions. Active learning using informed
choices of future experiments has long been known to dras-
tically decrease a problem’s sample complexity (Angluin,
1988). Many sampling heuristics have been developed to
learn either the entire target function (e.g. MacKay (1992);
Guestrin, C., et al. (2005)) or some feature of the target
function, such as its level sets (e.g. Bryan, B., et al. (2005);
Ramakrishnan, N., et al. (2005)). While we cannot directly
observe the value of the target function, we can use the ob-
servable functions to infer its value. By measuring all ob-
servable functions at a particular parameter setting, we can
compute the value of the target function, reducing the prob-
lem to a standard active learning problem. However, such
an approach disregards any strong evidence provided by a
single statistical test, and hence may result in extraneous
sampling of the remaining statistical models.

Rather, we are interested in active learning algorithms
which use information about each observable function to
learn some composite target function. In Section 2, we pro-
pose a heuristic for actively learning level sets of composite
functions of sums for continuous valued input spaces. In
Section 3, we show that this heuristic performs the level-
set discovery task more efficiently than both random and
sequential sampling of the constituent functions using state
of the art heuristics. In Section 4, we discuss how the task
of finding joint confidence regions can be formulated as
a level set problem, where the target function is the sum
of several observable functions. Section 5 concludes by
demonstrating the computation of 95% confidence regions
for eight cosmological parameters using our algorithm.

2. Active Learning Algorithm

Let f be a target function we are interested in learning on
the domainΘ ⊆ R

d. Suppose thatf is the linear combina-
tion of m observable functions,fi (i=1, . . . ,m). Without

loss of generality, we can drop the coefficients from the
summation (as they can be included in thefi’s) and write
f(θ) =

∑m
i=1 fi(θ) for all θ ∈ Θ. We are now interested

in finding the level set,S, of f at the thresholdt:

S =

{

θ ∈ Θ

∣
∣
∣
∣
∣

m∑

i=1

fi(θ) = f(θ) = t

}

.

In general, computing the value of eachfi may not incur
the same cost. However, we begin by assuming that the
costs are similar, and hence try to minimize the total num-
ber of samples of observable functions required to accu-
rately estimateS. Moreover, we assume thatf cannot be
directly sampled, and that neitherf nor any of thefi’s is
invertible. That is, the only way to estimate a level-set off

is to sample points from thefi’s and inferf . As we will see
in Section 4, this formulation accurately mimics combining
p-values using Fisher’s method, as the method for finding
the individualp-values may be entirely unknown.

We must now determine how best to choose samples both
among and within thefi’s. Ideally, we want to sample the
observable functionfi at the pointθ̃ ∈ Θ which best in-
creases our prediction accuracy (e.g. whether another point
is above or below the threshold) overf . Since the param-
eter space is continuous and multi-dimensional, we cannot
afford to test all possible points and observable functions.

Instead, we model each of the observable functions inde-
pendently given the current samples taken from that func-
tion, as illustrated in Figure 1. For each experiment, we
randomly select a small subset of the parameter space (usu-
ally 1000 points drawn uniformly at random, although
other distributions are possible based on domain knowl-
edge) and choose the best point and observable function
pair upon which to experiment from among these candi-
dates. We find the value of the observable function at the
selected point and add it to the data set used to model that
function. The process is then repeated.

There are several methods one could use to model each
of the fi’s, notably some form of parametric regression.
However, we chose to approximate thefi’s using Gaussian
process regression, as other forms of regression may over
smooth the data, ignoring subtle features of the function
that may become pronounced with more data. While much
work has been done studying Gaussian processes, we only
touch on the basic concepts here; we refer interested read-
ers to Cressie (1991); Rasmussen and Williams (2006).

Gaussian processes are non-parametric forms of regression.
Predictions for unobserved points are computed by using
a weighted combination of the function values for those
points which have already been observed, where a distance-
based kernel function is used to determine the relative
weights. These distance-based kernels generally weight

81



Actively Learning Level-Sets of Composite Functions

candidates
select

models
compute

result

result
add

choose sample &
observable  function

kriging

data sets

Figure 1.Outline of our sampling algorithm. Given an initial set of points (typically empty), we randomly select a set of candidates and
score them using a set of Gaussian process models. The best scoring point and observable function pair is chosen, and we evaluate the
selected observable function at the given point. This data is added to the corresponding data set.

nearby points significantly more than distant points. Thus,
assuming the underlying function is continuous, Gaussian
processes will perfectly describe the function given an in-
finite set of unique data points. While, in many applica-
tions the assumption of continuity is violated, Gaussian
processes have been successfully used to model response
surfaces in many domains with limited smoothness guar-
antees (Cressie, 1991; Santner et al., 2003).

In this work we use ordinary kriging (Cressie, 1991), which
assumes a linear semivariance as a function of distance, as
it is both data and computationally efficient. While other
forms of Gaussian Processes could be used — most notably
adaptive kernel methods (e.g. Kersting, K. et al. (2007)) —
we find that a learned model based upon a simple kriging
approximator performs well in practice and ensures that we
do not spend more time computing the next sample than we
do running the experiment.

Regardless of the kernel used, Gaussian processes predict
that the value of a target point,̃θ, will be Normally dis-
tributed with a mean and variance (fi(θ̃) andσ2

i (θ̃), respec-
tively) given by:

fi(θ̃) = f̄i + ~ΣT
i,θ̃

Σ−1
i

~Fi (1)

σ2(θ̃) = ~ΣT
i,θ̃

Σ−1
i

~Σi,θ̃ (2)

whereTi is the set of observed experiments offi,

f̄i =
1

|Ti|

|Ti|∑

j=1

fi(aj),

Fi[j] = fi(θj) − f̄i,

Σi denotes the covariance matrix between the elements of
Ti, and~Σi,θ̃ is the covariance vector between elements of

Ti andθ̃.

For a set ofni observed points (|Ti| = ni), prediction with
a Gaussian process requiresO(n3

i ) time, as ani ×ni linear
system of equations must be solved. However, for many
Gaussian processes — and ordinary kriging in particular
— the correlation between two points decreases as a func-
tion of distance. Thus, the full Gaussian process model
is approximated well by a local Gaussian process in which
only thek nearest neighbors of the query point are used, for

some fixed constantk. This reduces the computation time
toO(k3+k log(ni)) per prediction. Here, we letk = 1000.

2.1. Choosing Experiments

Given this active learning framework, we must now decide
how to choose sample / observable function pairs. We con-
sider the following heuristics:

Random One of the candidate points and an observable
function pair is chosen uniformly at random. This method
serves as a baseline for comparison of the other heuristics.

Variance The candidate point and observable function
pair which has the highest predicted variance (out of all
the candidate / observable function pairs) is selected. Us-
ing model variance to pick the next experiment is com-
mon for active learning methods whose goal is to map out
the target function over a parameter space (MacKay, 1992;
Guestrin, C., et al., 2005). In particular, (Guestrin, C., et
al., 2005) showed that greedily picking experiments based
upon model variance performs nearly as well as using a
mutual information heuristic when learning the target over
the entire parameter space; this is significant, as the mutual
information heuristic can be shown to be(1−1/e) optimal
(Guestrin, C., et al., 2005). Since variance is closely related
to distance for kriging models, this heuristic samples points
which are far from their nearest neighbors. However, when
searching for level-sets, we are less interested in the func-
tion away from the level-set boundary, and instead want to
focus our sampling resources near the predicted boundary.
In particular, sampling based solely on variance results in
substantially worse performance than heuristics that con-
centrate on the function level-set (Bryan, B., et al., 2005).

Information Gain Information gain is a common my-
opic metric used in active learning. Computing the infor-
mation gain over the whole state space for each observable
function provides an optimal 1-step experiment choice. In
some discrete or linear problems this can be done, but it is
intractable for continuous non-linear spaces. As such we
do not consider a traditional information gain heuristic, but
rely on efficient point estimates which act as proxies for
global information gain.

82



Actively Learning Level-Sets of Composite Functions

Sequential-Straddle As noted in Section 1, the problem
can be simplified to a standard active learning problem
if one sequentially samples each of the observable func-
tions in order to directly computef . (Bryan, B., et al.,
2005) showed that in a setting where experiments yield the
(approximately) true values of the target function, a good
heuristic for level set identification is the straddle heuris-
tic: straddle(θ̃) = 1.96σ2(θ̃) − |f(θ̃) − t|. This heuristic
balances the need to explore uncertain parts of parameter
space, with the desire to refine the model’s estimate around
those regions already known to be close to the level-set
boundary; the constant 1.96 ensures that points with neg-
ative scores are far from the desired level set with at least
a 95% probability. This heuristic leverages the straddle
heuristic by choosing the candidate point with the highest
combined straddle score,

combined-straddle(θ̃) = 1.96
m∑

i=1

σ2
i (θ̃)−

∣
∣
∣
∣
∣

m∑

i=1

fi(θ̃) − t

∣
∣
∣
∣
∣
,

(3)
and then sequentially sampling allm observable functions
at this point.

Variance-Straddle While (Bryan, B., et al., 2005)
showed that thestraddle heuristic works well when di-
rectly sampling the target function, we can hope to do bet-
ter by considering the output from each observable function
individually. For instance, if a sample point results in a very
large value for one of the observable functions, it may be
unlikely that the results of the otherfi’s will be such that
the resulting value off is near the level-set. In particu-
lar, when dealing withχ2 models (see Section 4), we know
thatfi ≥ 0 for all i. Thus, if a singlefi is greater than the
level-set boundary, the target function will also be greater
than the level-set boundary, and hence it may be more ef-
ficient to sample elsewhere. This heuristic simply chooses
the next sample from among the candidates based on the
combined-straddle score, and then selects the observable
function with the largest variance at that point.

Variance-MaxVarStraddle Finally, we consider a vari-
ant of thestraddle heuristic. This heuristic tries to mimic
the information gain of choosing a particular point and ob-
servable function pair. Note that after observing a point,
the variance of the kriging model is effectively zero at that
point (since we have set c to be a very small positive value).
The originalstraddle heuristic balances the expected gain
in the model fit (σ(θ̃)) with the expected distance of the
point to the level-set boundary.

However, with the multiple model formulation, we do
not expect the model variance to decrease byσ2(θ̃) =
∑m

i=1 σ2
i (θ̃), but rather byσi(θ̃) wherefi is the observ-

able function we pick. Thus, a more accurate proxy for the

information gain of a candidate point and observable func-
tion pair is:

variance-maxvarstraddle(θ̃)

= max
i

{

1.96σ2
i (θ̃)

}

−
∣
∣
∣
∣
∣

m∑

i=1

fi(θ̃) − t

∣
∣
∣
∣
∣
. (4)

We choose the candidate point that maximizes this heuristic
and the correspondingfi.

3. Experiments

We now assess the accuracy with which our active learning
model reproduces synthetic target functions for the sam-
pling heuristics just described. This is done by computing
the fraction of test points in which the predictive model
(the sum of the kriging models associated with each ob-
servable function) agrees with the true target function about
on which side of the threshold the test points lie. This pro-
cess was repeated 20 times to account for variations due to
the random nature of the candidate generation process. The
first three target functions considered were sums of two ob-
servable functions, while the fourth was a sum of four ob-
servable functions. The kriging parameters for each model
were computeda priori from the observable functions. The
considered functions are:

Gaussian This problem consisted of determining the
95% acceptance region of two axis aligned perpendicular
two dimensional Gaussian distributions centered at the ori-
gin. Both Gaussians had diagonal covariance matrices with
on diagonal elements of 1 and 16. Since working in prob-
ability space results in many near-zero values, the problem
was considered in log-space. As such, the target function
was a 2 dimensional symmetric quadratic function, and the
level-set was a circle centered at the origin. The range of
the parameter space was (θ1, θ2 ∈ [−3.4, 3.4])

Sin2D The second problem consists of finding where the
two 2D sinusoidal observable functions

f1(θ1, θ2) = sin(10θ1) + cos(4θ2) − cos(3θ1θ2)

f2(θ1, θ2) = sin(10θ2) + cos(4θ1) − cos(3θ1θ2)

sum to zero whereθ1, θ2 ∈ [0, 2]. These observable func-
tions were chosen because 1) the target threshold winds
through the plot giving ample length to test the accuracy of
the approximating model, 2) the boundary is discontinuous
with several small pieces, 3) there is an ambiguous region
around(0.9, 1), where the true function is approximately
equal to the threshold, and the gradient is small and 4) there
are areas in the domain where the function is far from the
threshold and hence we can see whether algorithms refrain
from oversampling in these regions.
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Table 1.Number of samples required to achieve a 99% accuracy on the Gaussian and SimpleSin2D tests, and a 90% accuracy on the
Sin2D and 4-Sin2D tests based on 20 trials. Thevariance-maxvarstraddle heuristic consistently performs better than competitors.

Gaussian SimpleSin2D Sin2D 4-Sin2D

random > 1000 > 1000 > 1000 > 1000
variance 95.0±11.0 > 500 105.0±11.5 188.6±32.2

variance-straddle 89.5±5.0 157.9±12.3 90.4±9.0 72.5±12.0
sequential-straddle 76.2±3.5 150.3±6.5 87.0±7.3 98.1±14.0

variance-maxvarstraddle 71.7±3.3 127.3±6.8 82.9±10.2 54.9±16.9

 0
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 2
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 2
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 0

 1

 2
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Figure 2.Predicted level-set (solid), true level-set (dashed) and experiments (squares, circle, triangles and x’s) for the 4-Sin2D func-
tion after sampling 100 points using the Variance heuristic (left), thesequential-straddle heuristic (center), and thevariance-
maxvarstraddle heuristic (right).

SimpleSin2D This problem is a simplified version of the
previous problem, where the observable functions

f1(θ1, θ2) = sin(4θ1) + cos(4θ2) − cos(θ1θ2)

f2(θ1, θ2) = sin(4θ2) + cos(4θ1) − cos(θ1θ2)

were chosen to reduce the problem’s semi-variances (again
θ1, θ2 ∈ [0 : 2]). Since problems with large semi-variances
result in large model variance estimates in the kriging mod-
els, such problems require extensive sampling to correctly
identify function level-sets. Performance on this function
highlights an algorithm’s ability to quickly rule out por-
tions of the function.

4-Sin2D This task consisted of finding where four 2D si-
nusoids sum to−2. The sinusoids chosen for this problem
were similar to those of the SimpleSin2D problem:

f1(θ1, θ2) = sin(4θ1) + cos(2θ2) − cos(3θ1)

f2(θ1, θ2) = sin(2θ2 − 2) + cos(2θ1) − cos(3θ1)

f3(θ1, θ2) = sin(3θ1θ2) + cos(2θ1) + 1

f4(θ1, θ2) = cos(θ1θ2) − sin(θ1θ2)

The resulting target function contains regions with both
high and low derivatives near the specified threshold.

Classification accuracy results for the four tests are given
in Table 1. variance-maxvarstraddle outperforms all
of the other heuristics on each of the target functions.
Unsurprisingly, the straddle-based heuristics beat the ran-
dom and variance-weighted heuristics, as both the random

and variance-weighted heuristics choose samples (roughly)
uniformly throughout the parameter space, while the
straddle-based heuristics focus on the level-set of interest.
Additionally, the advantage ofvariance-maxvarstraddle
oversequential-straddle grows as the number of observ-
able functions increases, as the relative cost of a bad choice
is increased. These results demonstrate that learning the
models independently allows for better overall prediction.

One surprising result of our experimentation is that the
sequential-straddle performs as well as thevariance-
straddle heuristic on the test functions which are sums of
two observable functions. We believe that this result illus-
trates the fact that thevariance-straddle heuristic is over
estimating the importance of the variance component of the
candidate points to the information gain of a point, while
the fact that there are only two observable functions re-
duces the efficiency of thesequential-straddle heuristic
only by a factor of two. Thevariance-straddle heuristic
will be as likely to choose a candidate point where the pre-
dicted observable functions are moderate but equal, as it is
to choose a point with a large predicted variance for one
of the observable functions, and zero variance for the other
observable functions. However, the second candidate has
much more information than the first, as selecting the sec-
ond candidate will give us the (approximately) exact value
of the target function, while selecting the first will only re-
duce the overall variance by a moderate amount. On the 4-
Sin2D task thevariance-straddle heuristic is able to make
use of the individual observable functions, but still does not
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do as well as thevariance-maxvarstraddle heuristic.

To illustrate the differences in sampling patterns between
these heuristics, we plot the samples chosen for the ob-
servable functions (with squares, circles, triangles and x’s,
respectively) with the true (dashed) and predicted (solid)
function level-sets for the 4-Sin2D task in Figure 2. The
variance-maxvarstraddle heuristic is much better at pick-
ing points than the other two heuristics. Note that the
variance-maxvarstraddle heuristic is able to learn that
some regions of the space are poor by sampling just one
of the observable functions; as such, its samples lie much
closer to the target level-set. This reinforces our hypothesis
that modeling the observable functions separately results in
additional learning opportunities.

4. Joint Statistical Analyses

Now let us look at a concrete application of this sampling
algorithm: joint statistical analyses. LetXi be a random
variable denoting a data source andxi be a generic observa-
tion of Xi. For each data set,Xi, letmi be a corresponding
model ofXi given someθ ∈ Θ. We are interested in con-
structing a confidence region for the true value of the pa-
rameter, denotedθ⋆, based on the observation thatXi = xi

for each model / data set pair.

For a single data set, consider testing the hypothesis that
θ⋆ = θ at level α for some arbitraryθ ∈ Θ. The as-
sociated acceptance region for the test,Ai(θ), is the set
of data values (model outputs) for which the test will not
reject the hypothesisθ⋆ = θ for model mi. Since we
are interested in tests with significance levelα, we require
Pθ(Xi ∈ Ai(θ)) ≥ 1 − α. We can then useAi to con-
struct a1−α confidence region,CAi

(xi), for θ⋆ based on
the observed dataxi: CAi

(xi) = {θ ∈ Θ|xi ∈ Ai(θ)}.

We consider two approaches to combine the individual con-
fidence tests above into joint confidence regions. In the first
we create a statistical model which simultaneously consid-
ers all data sets. For instance, when performing an analysis
on two data sets usingχ2 tests, we will have oneχ2 test
for data setA and a second for data setB. Since theχ2

test assumes that each of the data points have dependencies
given by the covariance matrix, we can combine the two
tests into a singleχ2 test of the form

[
~xA − ~mA

~xB − ~mB

]T [
ΣA ΣAB

ΣAB ΣB

]−1 [
~xA − ~mA

~xB − ~mB

]

∼ χ2
(a+b)

wherem†, x† and Σ† are the associated test model, ob-
served data and observed covariance of data set† given
some vector from the parameter space,a andb are the de-
grees of freedom of the tests associated with data setsA

andB respectively, andΣAB is the covariance of the data

points between data setsA andB. If data setsA andB are
independent, then all elements ofΣAB are zero and we can
write the above expression as:

(~xA − ~mA)T Σ−1
A (~xA − ~mA)

+ (~xB − ~mB)T Σ−1
B (~xB − ~mB) ∼ χ2

(a+b).

That is, the target function is merely the sum of the two
observable functions: the variance weighted sum of squares
for both data sets.

Another approach to performing simultaneous joint anal-
ysis is to combine the models’p-values. There are many
ways to combine test procedures, including using Bonfer-
roni corrections, the inverse normal method, and inverse
logit methods (Hedges, 1985). A common method to com-
bine p-values is Fisher’s method (Fisher, 1932). Fisher
noted that since ap-value,pi, has a Uniform distribution,
−2 log(pi) will have aχ2

(2) distribution. Again, using the

fact that the sum of independentχ2 random variables has a
χ2 distribution, the test becomes: rejectH0 if and only if

−2
k∑

i=1

log(pi) ≥ C whereC is the critical value of aχ2
(2k)

distribution for some particular levelα. Again, we see that
the target function is the sum of observable functions.

Thus, given the modelsmi and data setsXi, we are in-
terested in locating thoseθ ∈ Θ, such that the the result-
ing modelsmi (i = 1, . . . ,m) are accepted by the chosen
hypothesis test. This, in turn, reduces to testing whether
the sum of a set of observable functions is below a spec-
ified threshold. Specifically, given a thresholdt, we want
to find the set of points,Θ′, where the target functionf is
equal or less than the threshold:Θ′ = {θ ∈ Θ|f(θ) ≤ t}.
However, note that we need only discover the boundary,
S = {θ ∈ Θ|f(θ) = t}, asS implicitly definesΘ′. There-
fore, using eitherχ2 tests or Fisher’s method, we can apply
the algorithm described in Section 2 to locate the bound-
aries of the1−α confidence region.

5. Cosmological Data Example

To illustrate our algorithm and its application to joint sta-
tistical analyses, we show how it can be applied to an anal-
ysis of eight cosmological parameters that affect the for-
mation and evolution of our universe using three data sets:
the Comic Microwave Background (CMB) power spectrum
as observed by Wilkinson Microwave Anisotropy Project
(WMAP) (Bennett, C. L., et al., 2003), the Davis, T. M., et
al. (2007) supernovae (SN) survey and a large scale struc-
ture survey (LSS) from Tegmark, M., et al. (2006).

While models for each of these data sets try to determine
what the Universe is formed of and how it has evolved, they
measure significantly different aspects of the Universe. The
CMB data set records temperature fluctuations in the Uni-
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Figure 3.Comparison of the confidence regions derived for WMAP (a), supernova (b), and LSS (c) data sets with those derived using
all three data sets together (d). Regions of solid color indicate values forΩM andΩΛ for which some combination of the remaining
parameters results in a model with probability greater than1−α. The WMAP and LSS models are 7 parameter models, while the
supernova is a 3 parameter model, and the combination model is an 8 parameter model.

verse just after the Big-Bang. The size and spatial prox-
imity of these temperature fluctuations depict the types and
rates of particle interactions in the early universe and hence
characterize the formation of large scale structure (galax-
ies, clusters, walls and voids) in the current observable uni-
verse. Meanwhile, the supernovae data measures the ex-
pansion of the universe as a function of time, in order to
constrain the total mass and eventual fate of the Universe.
Finally, the large scale structure survey measures the de-
gree of galaxy cluster clumping in order to determine the
relative importance of dark matter and Baryonic (normal)
matter. Combined, these data sets can be used to determine
the age, composition and eventual fate of the Universe, as
well as provide strong evidence for the presence of dark
energy — a large-scale negative gravitational force.

In this analysis we look at an eight dimensional parame-
ter space comprised of the optical depth (τ), dark energy
mass fraction (ΩΛ), total mass fraction (Ωm), baryon den-
sity (ωb), dark matter density (ωdm), neutrino fraction (fn),
spectral index (ns) and galaxy bias (b). The CMB model
constrains the first seven parameters while the supernova
model constrainsωdm, ωB, ΩM andΩΛ. The LSS model
constrains all of the parameters except forτ .

Fisher’s method was used to combinep-values from each
of the three models. While for smallp-values the log of the
p-value goes to infinity, note that the algorithm is interested
in determining where the sum of thep-values corresponds
to the 95% quantile of aχ2

(6) distribution. Since this results
in t ≈ 12.6, the algorithm has no incentive to select points
which are expected to have near zerop-values.

Computing expected observations given parameter vectors
is fast for the supernovae and large scale structure models,
and hence we can quickly compute thep-values associated
with these two models usingχ2 tests. However, computing
the expected observations for the CMB data set is much
more time consuming. Typically one employs a numeri-

cal solver, such as CMBFast to approximate the Boltzmann
equation and yield the expected power spectrum.

To alleviate the problem posed by the computational costs
of CMBFast, we initialize the Gaussian process model as-
sociated with the WMAP data using the one millionp-
values derived by Bryan, B., et al. (2005). Bryan, B., et al.
(2005) uses confidence balls — a statistical procedure sim-
ilar to χ2 tests, generally with better inference properties
— to map out the level-set associated with the 95% con-
fidence region of the seven CMB parameters. Additional
models were selected using thevariance-maxvarstraddle
heuristic with one small change: If the heuristic selects the
observable function associated with the CMB data, we first
compute thep-values associated with the supernova and
large scale structure data sets to see if we can exclude the
parameter vector without needing to run CMBFast. That
is, we determine whether the sum of the logp-values from
the supernovae and large scale structure data sets alone is
larger than the threshold for the combined model. This
modification allows us to reduce the number of CMBFast
computations by about a factor of five. Using this modified
variance-maxvarstraddle heuristic, we sampled roughly
1.5 million additional parameter vectors, about 300,000 of
these points resulted in CMBFast runs. Note that 1.5 mil-
lion parameter vectors corresponds to a grid with roughly
six elements per side. Since the variance-based metrics
sample the entire parameter space, their prediction perfor-
mance is typically similar to this naive gird. Thus, using an
active learning metric that focuses on the boundary that we
are interested in (and ignores large parts of the parameter
space which can be proved to be infeasible) significantly
reduces the computational complexity of the algorithm.

In Figures 3(a)-3(c) we depict 95% confidence regions de-
rived using only a single data set projected into theΩM ver-
susΩΛ space. Confidence regions are derived by binning
the samples selected by the algorithm and including those
bins in the confidence region which contain points where
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f ≤ t, resulting in the blockiness in the diagrams. The fig-
ures illistrate that the shapes of the 95% confidence regions
for each of the data sources are quite different, validating
our supposition that different observable functions can be
used to efficiently reject parts of parameter space.

In Figure 3(d), depicts the 95% confidence region found
using the joint analysis for all three data sets; one and two
dimensional projections onto the other parameters can be
found in Bryan (2007). It is clear that using the combina-
tion of all three data sets dramatically improves the infer-
ences that can be made on the cosmological parameters’
values. In particular, note that the derived confidence re-
gion is significantly smaller than what would have been ob-
tained using a simple intersection. As a result, we cannot
blindly combine the WMAPp-values of Bryan, B., et al.
(2005) withp-values derived for the supernova and large
scale structure data sets, as the surface of the combined
target function is drastically different from the surfaces of
each of the models independently. Specifically, all of the
models in the Bryan, B., et al. (2005) data set can be re-
jected at the 95% confidence level by the supernova and
large scale structure data. This is not surprising; the anal-
ysis of Bryan, B., et al. (2005) used only CMBFast one
the WMAP data, and it is well known that CMBFast only
loosly fits the WMAP data (Spergel, D. et al., 2003). Thus
in order to accurately compute the 95% confidence regions
of the joint model (using all three data sets), we must sam-
ple new models in the multiple model framework, as we
did in Figure 3(d). Only then will we correctly learn the
true level-set of the composite target function.

6. Conclusions

We have described the problem of learning a target func-
tion based on a set of related observable functions. This
problem naturally arises in many situations including the
joint analysis of multiple data sets which describe a sin-
gle physical phenomenon. We have developed an algo-
rithm for locating the level set of this target function while
minimizing the number of experiments necessary. We de-
scribed and showed how several different heuristics for
choosing experiments from a set of candidates perform
on synthetic target functions. Our experiments indicate
that variance-maxvarstraddle outperforms both random
and variance-weighted heuristics typically applied to active
learning problems. Moreover,variance-maxvarstraddle
is better than both thesequential- andvariance-straddle
heuristics, as it appears to better approximate the informa-
tion gain of a candidate point.

Using thevariance-maxvarstraddle heuristic, we were
able to efficiently learn the level set of an eight dimen-
sional surface. This level-set corresponds to the 95% confi-
dence region of a joint analysis between three data sources.

Using the CMB, supernovae and large scale structure data
sets results in much tighter confidence regions than those
obtained using only a single source of data, allowing for
stronger scientific inferences. Standard ad hoc techniques
for combining evidence, such as intersecting the data, or
using weak priors do not result in such a significant reduc-
tion in the accepted parameter space.
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Abstract

One of the most common problems in ma-
chine learning and statistics consists of esti-
mating the mean response Xβ from a vec-
tor of observations y assuming y = Xβ + ε
where X is known, β is a vector of param-
eters of interest and ε a vector of stochastic
errors. We are particularly interested here
in the case where the dimension K of β is
much higher than the dimension of y. We
propose some flexible Bayesian models which
can yield sparse estimates of β. We show
that as K → ∞ these models are closely re-
lated to a class of Lévy processes. Simula-
tions demonstrate that our models outper-
form significantly a range of popular alterna-
tives.

1. Introduction

Consider the following linear regression model

y = Xβ + ε (1)

where y ∈ RL is the observation, β = (β1, . . . , βK) ∈
RK is the vector of unknown parameters, X is an
known L×K matrix. We will assume that ε follows a
zero-mean normal distribution ε ∼ N (

0, σ2IL

)
where

IL is the identity matrix of dimension L.

We do not impose here any restriction on L and K
but we are particularly interested in the case where
K >> L. This scenario is very common in many ap-
plication domains. In such cases, we are interested in
obtaining a sparse estimate of β; that is an estimate
β̂ = (β̂1, . . . , β̂K) such that only a subset of the com-
ponents β̂k differ from zero. This might be for sake of
variable selection (Tibshirani, 1996; Figueiredo, 2003;
Griffin & Brown, 2007) or to decompose a signal over

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
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an overcomplete basis (Lewicki & Sejnowski, 2000;
Chen et al., 2001).

Numerous models and algorithms have been proposed
in the machine learning and statistics literature to
address this problem including Bayesian stochastic
search methods based on the ‘spike and slab’ prior
(West, 2003), Lasso (Tibshirani, 1996), projection pur-
suit or the Relevance Vector Machine (RVM) (Tip-
ping, 2001). We follow here a Bayesian approach
where we set a prior distribution on β and we will
primarily focus on the case where β̂ is the result-
ing Maximum a Posteriori (MAP) estimate or equiv-
alently the Penalized Maximum Likelihood (PML) es-
timate. Such MAP/PML approaches have been dis-
cussed many times in the literature and include the
Lasso (the corresponding prior being the Laplace dis-
tribution) (Tibshirani, 1996; Lewicki & Sejnowski,
2000; Girolami, 2001), the normal-Jeffreys (NJ) prior
(Figueiredo, 2003) or the normal-exponential gamma
prior (Griffin & Brown, 2007). Asymptotic theoreti-
cal properties of such PML estimates are discussed in
(Fan & Li, 2001).

We propose here a class of prior distributions based
on scale mixture of Gaussians for β. For a finite K,
our prior models correspond to normal-gamma (NG)
and normal-inverse Gaussian (NIG) models. This class
of models includes as limiting cases both the popular
Laplace and normal-Jeffreys priors but is more flex-
ible. As K → ∞, we show that the proposed pri-
ors are closely related to the variance gamma and
normal-inverse Gaussian processes which are Lévy pro-
cesses (Applebaum, 2004). In this respect, our mod-
els are somehow complementary to two recently pro-
posed Bayesian nonparametric models: the Indian buf-
fet process (Ghahramani et al., 2006) and the in-
finite gamma-Poisson process (Titsias, 2007). Un-
der given conditions, the normal-gamma prior yields
sparse MAP estimates β̂. The log-posterior distribu-
tions associated to these prior distributions are not
convex but we propose an Expectation-Maximization
(EM) algorithm to find modes of the posteriors and
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a Markov Chain Monte Carlo (MCMC) algorithm to
sample from them. We demonstrate through simula-
tions that these Bayesian models outperform signifi-
cantly a range of established procedures on a variety
of applications.

The rest of the paper is organized as follows. In Sec-
tion 2, we propose the NG and NIG models for β. We
establish some properties of these models for K finite
and in the asymptotic case where K → ∞. We also
relate our model to the Indian buffet process (Ghahra-
mani et al., 2006) and the infinite gamma-Poisson pro-
cess (Titsias, 2007). In Section 3, we establish con-
ditions under which the MAP/PML estimate β̂ can
enjoy sparsity properties. Section 4 presents an EM
algorithm to find modes of the posterior distributions
and a Gibbs sampling algorithm to sample from them.
We demonstrate the performance of our models and
algorithms in Section 5. Finally we discuss some ex-
tensions in Section 6.

2. Sparse Bayesian Nonparametric
Models

We will consider models where the components β are
independent and identically distributed

p(β) =
K∏

k=1

p(βk)

and p (βk) is a scale mixture of Gaussians; that is

p (βk) =
∫
N (βk; 0, σ2

k)p
(
σ2

k

)
dσ2

k (2)

where N (x; µ, σ2) denotes the Gaussian distribution
of argument x, mean µ and variance σ2. We propose
two conjugate distributions for σ2

k; namely the gamma
and the inverse Gaussian distributions. The resulting
marginal distribution for βk belongs in both cases to
the class of generalized hyperbolic distributions.

In the models presented here, the unknown scale pa-
rameters are random and integrated out so that the
marginal priors on the regression coefficients are not
Gaussian. This differs from the RVM (Tipping, 2001)
where these parameters are unknown and estimated
through maximum likelihood.

2.1. Normal-Gamma Model

2.1.1. Definition

Consider the following gamma prior distribution

σ2
k ∼ G(

α

K
,
γ2

2
)

whose probability density function (pdf) G(σ2
k; α

K , γ2

2 )
is given by

(γ2

2 )
α
K

Γ( α
K )

(σ2
k)

α
K−1 exp(−γ2

2
σ2

k).

Following Eq. (2), the marginal pdf of βk is given for
βk 6= 0 by

p(βk) =
γα/K+1/2

√
π2α/K−1/2Γ( α

K )
|βk| α

K− 1
2K α

K− 1
2

(γ|βk|)
(3)

where Kν(·) is the modified Bessel function of the sec-
ond kind. We have

lim
βk→0

p(βk) =

{
γ

2
√

π

Γ( α
K− 1

2 )

Γ( α
K ) if α

K > 1
2

∞ otherwise

and the tails of this distribution decrease in
|βk|

α
K−1 exp(−γ |βk|), see Figure 1(a). The parame-

ters α and γ resp. control the shape and scale of the
distribution. When α → 0, there is a high discrepancy
between the values of σ2

k, while when α →∞, most of
the values are equal.

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

β
k

p(
β k)

 

 α
K = 0.1, c = 1
α
K = 0.1, c = 10
α
K = 0.75, c = 10

(a) Normal-gamma

−1 −0.5 0 0.5 1
0

1

2

3

4

5

6

β
k

p(
β k)

 

 α
K = 0.1, c = 1
α
K = 0.1, c = 10
α
K = 0.75, c = 10

(b) Normal-inverse Gaus-
sian

Figure 1. Probability density functions of the NG and NIG
for different values of the parameters.

This class of priors includes many standard priors. In-
deed, Eq. (3) reduces to the Laplace prior when α

K = 1
and we obtain the NJ prior when α

K → 0 and γ → 0.

In Figure 2 some realizations of the process are given
for different values α = 1, 5, 100 and γ2/2 = α.

2.1.2. Properties

It follows from Eq. (3) that

E[|βk|] =
√

4
πγ2

Γ( α
K + 1

2 )
Γ( α

K )
, E[β2

k] =
2α

γ2K

and we obtain

lim
K→∞

E[
K∑

k=1

|βk|] =
2α

γ
, E[

K∑

k=1

β2
k] =

2α

γ2
.

Hence the sum of the terms remains bounded whatever
being K.
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Figure 2. Realizations (top)
{
σ2

k

}
k=1,...,K

and (bottom)

{βk}k=1,...,K from the NG model for α = 1, 5, 100.

Using properties of the gamma distribution, it is possi-
ble to relate β to a Lévy process known as the variance
gamma process as K → ∞. First consider a finite K.
Let σ2

(1) ≥ σ2
(2) ≥ . . . ≥ σ2

(K) be the order statistics
of the sequence σ2

1 , σ2
2 , . . . , σ2

K and let π1, . . . , πK be
random variables verifying the following (finite) stick-
breaking construction

πk = ζk

k−1∏

j=1

(1− ζj) with ζj ∼ B(1 +
α

K
, α− kα

K
) (4)

where B is the Beta distribution. Finally if g ∼
G(α, γ2

2 ) then we can check that the order statistics(
σ2

(k)

)
follow the same distribution as the order statis-

tics of (gπk). The characteristic function of βk is given
by

Φβk
(u) =

1(
1− iu

γ

) α
K

1(
1 + iu

γ

) α
K

and therefore

βk
d= w1−w2 where w1 ∼ G(

α

K
,γ) and w2 ∼ G(

α

K
,γ)

It follows that βk can be written as the difference of
two variables following a gamma distribution.

As K → ∞, the order statistics
(
σ2

(k)

)
are the conic

part of a gamma process with shape parameter α and
scale parameter γ2/2; see (Tsilevich et al., 2000) for

details. In particular σ2 =
(

σ2
(1)∑

k σ2
(k)

,
σ2
(2)∑

k σ2
(k)

, . . .

)
and

∑
k σ2

(k) are independent and respectively distributed

according to PD(α) and G(α, γ2/2) where PD(α) is
the Poisson-Dirichlet distribution of scale parameter
α. It is well-known that this distribution can be re-
covered by the following (infinite) stick-breaking con-
struction (Tsilevich et al., 2000) as if we set

πk = ζk

k−1∏

j=1

(1− ζj) with ζj ∼ B(1, α) (5)

for any k then the order statistics
(
π(k)

)
are dis-

tributed from the Poisson-Dirichlet distribution.

The coefficients (βk) are thus nothing but the weights
(jumps) of the so-called variance gamma process which
is a Brownian motion evaluated at times given by a
gamma process (Applebaum, 2004; Madan & Seneta,
1990).

2.2. Normal-Inverse Gaussian Model

2.2.1. Definition

Consider the following inverse Gaussian prior distribu-
tion

σ2
k ∼ IG(

α

K
, γ) (6)

whose pdf IG(σ2
k; α

K , γ) is given by (Barndorff-Nielsen,
1997)

1√
2π

α

K
exp(γ

α

K
)(σ2

k)−3/2 exp(−1
2
(

α2

K2σ2
k

+ γ2σ2
k))

(7)
Following Eq. (2), the marginal pdf of βk is given

αγ

πK
exp(

αγ

K
)
(

α2

K2
+ β2

k

)− 1
2

K1

(
γ

√
α2

K2
+ β2

k

)
(8)

and the tails of this distribution decrease in
|βk|−3/2 exp(−γ |βk|). It is displayed in Figure 1(b).
The parameters α and γ resp. control the shape and
scale of the distribution. When α → 0, there is a
high discrepancy between the values of σ2

k, while when
α → ∞, most of the values are equal. Some realiza-
tions of the model, for different values of α are repre-
sented in Figure 3.

2.2.2. Properties

The moments are given

E[|βk|] =
2α

Kπ
exp(

γα

K
)K0(

αγ

K
), E[β2

k] =
α

Kγ

Therefore, as K →∞, the mean of sum of the absolute
values is infinite while the sum of the square is α

γ .

We can also establish in this case that the coefficients
(βk) tend to weights (jumps) of a normal-inverse Gaus-
sian process (Barndorff-Nielsen, 1997).

90



Sparse Bayesian Nonparametric Regression

0 20 40 60 80 100
0

0.2

0.4

σ k2

0 20 40 60 80 100
−1

0

1

Feature k

β k

(a) α = 1

0 20 40 60 80 100
0

0.05

0.1

σ k2

0 20 40 60 80 100
−1

0

1

Feature k

β k

(b) α = 5

0 20 40 60 80 100
0

0.005

0.01

0.015

σ k2

0 20 40 60 80 100
−1

0

1

Feature k

β k

(c) α = 100

Figure 3. Realizations (top) (σ2
k)k=1,...,K and (bottom)

(βk)k=1,...,K from the NIG model for K = 100, N = 20,
α = 1, 10, 100 and γ = α.

2.3. Extension

Consider now the case where we have N vectors of
observations {yn}N

n=1 where yn ∈ RL. We would like to
model the fact that for a given k the random variables
{βn

k }N
n=1 are statistically dependent and exchangeable.

We consider the following hierarchical model

σ2
k ∼ G(

α

K
,
γ2

2
) or σ2

k ∼ IG(
α

K
, γ)

for k = 1, . . . , K and

βn
k ∼ N (0, σ2

k)

for n = 1, . . . , N. Some realizations of the process for
different values α = 1, 5, 100 are represented in Fig-
ure 4.

In this respect, this work is complementary to two re-
cently proposed Bayesian nonparametric models: the
Indian buffet process (Ghahramani et al., 2006) and
the infinite gamma-Poisson process (Titsias, 2007). In
these two contributions, prior distributions over infi-
nite matrices with integer-valued entries are defined.
These models are constructed as the limits of finite-
dimensional models based respectively on the beta-
binomial and gamma-Poisson models. They enjoy the
following property: while the number of non-zero en-
tries of an (infinite) row is potentially infinite, the ex-
pected number of these entries is finite. These models
are also closely related to the beta and gamma pro-
cesses which are Lévy processes (Applebaum, 2004;
Teh et al., 2007; Thibaux & Jordan, 2007). Our mod-
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Figure 4. Realizations (top) (σ2
k)k=1,...,K and (bottom)

(βn
k )n=1,...,N,k=1,...,K from the normal-gamma model for

K = 100, N = 20, α = 1, 10, 100 and γ2/2 = α. The
lighter the colour, the larger |βn

k | .

els could be interpreted as prior distributions over in-
finite matrices with real-valued entries. In our case,
the number of non-zero entries of an (infinite) row is
always infinite but we can have

lim
K→∞

E

[
K∑

k=1

|βn
k |ρ

]
< ∞ (9)

for ρ = 1 or ρ = 2. Morever for some values of α
K and

γ we can also ensure that for any x > 0

lim
K→∞

Pr (∃k : |βn
k | > x) > 0; (10)

that is there is still a non-vanishing probability of hav-
ing coefficients with large values as K →∞ despite Eq.
(9).

The joint distribution is given by p(β1:N
1:K ) =∏K

k=1 p(β1:N
k ) where for the NG model

p(β1:N
k ) ∝ u

α
K−N

2
k K α

K−N
2

(γuk)

and for the NIG model

p(β1:N
k ) ∝ (qk)−(N+1)/2KN+1

2
(γqk)

where

uk =

√∑N

n=1
(βn

k )2, qk =

√
α2

K2
+ u2

k (11)

3. Sparsity Properties

Further on we will also use the following notation for
any random variable u

pen(u) ≡ log(p(u))

91



Sparse Bayesian Nonparametric Regression

Table 1. Penalizations and their derivatives for different
prior distributions

pen(β1:N
k ) pen′(β1:N

k )
Lasso γ|βk| γ
(N = 1)
NJ N log(uk) N/uk

NG
(N

2 − α
K ) log uk

− logK α
K−N

2
(γuk)

γK α
K
−N

2 −1(γuk)

K α
K
−N

2
(γuk)

NIG
N+1

2 log (qk)
− logKN+1

2
(γqk)

(N+1)uk

q2
k

+γuk

qk

KN−1
2

(γqk)

KN+1
2

(γqk)

where ‘≡’ denotes equal up to an additive constant
independent of u. When computing the MAP/PML
estimate for N data, we select

β̂1:N = arg min
β1:N

N∑
n=1

‖yn −Xβn‖22
2σ2

−
K∑

k=1

pen(β1:N
k ).

(12)
We give in Table 1 the penalizations pen(β1:N

k ) and
their derivatives for different prior distributions as a
function of uk and qk defined in Eq. (11).

When α/K = 1, the NG prior is equal to the Laplace
prior so its penalization reduces to the `1 penaliza-
tion used in Lasso and basis pursuit (Tibshirani, 1996;
Chen et al., 2001). When α/K → 0 and c → 0 the
prior is the NJ prior and the penalization reduces to
log(|βk|) which has been used in (Figueiredo, 2003).
We display in Figure 5 the contours of constant value
for various prior distributions when N = 1 and K = 2.
For α/K < 1/2, the MAP estimate (12) does not exist
as the pdf (3) is unbounded. For other values of the
parameters, a mode can dominate at zero whereas we
are interested in the data driven turning point/local
minimum (Griffin & Brown, 2007).

Consider now the case where the matrix X is orthog-
onal, σ = 1 and N = 1. The turning point and/or
MAP/PML estimate is obtained by minimizing Eq.
(12) which is equivalent to minimize componentwise

1
2
(zk − βk)2 + pen(βk) (13)

where z = XT y. The first derivative of (13) is
sign(βk) (|βk|+ pen′(|βk|))− zk. As stated in (Fan &
Li, 2001, p. 1350), a sufficient condition for the esti-
mate to be a thresholding rule is that the minimum of
the function |βk|+ pen′(|βk|) is strictly positive. Plots
of the function |βk| + pen′(|βk|) are given in Figure 6
and the resulting thresholds corresponding to the ar-
gument minimizing (13) are presented in Figure 7. It
follows that the normal-gamma prior is a thresholding
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Figure 5. Contour of constant value of pen(β1) + pen(β2)
for different prior distributions.

rule for α/K ≤ 1 and yields sparse estimates. The
normal-inverse Gaussian is not a thresholding rule as
the derivative of the penalization is 0 when βk = 0
whatever being the values of the parameters. However,
from Figure 7(d), it is clear that it can yield “almost
sparse” estimates; that is most components are such
that

∣∣∣β̂k
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Figure 6. Plots of |βk|+ pen′(|βk|).

4. Algorithms

4.1. EM

The log-posterior in Eq. (12) is not concave but we
can use the EM algorithm to find modes of it. The EM
algorithm relies on the introduction of the missing data
σ1:K = (σ1, ..., σK). Conditional upon these missing
data, the regression model is linear Gaussian and all
the EM quantities can be easily computed in closed
form; see for example (Figueiredo, 2003; Griffin &
Brown, 2007). We have at iteration i + 1 of the EM
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Figure 7. Thresholds for the different prior distributions.

β̂1:N
(i+1) = arg max

β1:N
Q(β1:N ; β̂1:N

(i) )

where Q(β1:N ; β̂1:N
(i) ) is given by

∫
log(p(β1:N |y1:N , σ1:K)).p(σ1:K |β̂1:N

(i) , y1:N )dσ1:K .

After a few calculations, we obtain

β̂n
(i+1) =

(
σ2V(i) + XT X

)−1
XT yn

with V(i) = diag(m1,(i), . . . , mK,(i)) and
mk,(i) =

(
ûk,(i)

)−1
pen′(ûk,(i)) where ûk,(i) =√∑N

n=1

(
β̂n

k,(i)

)2

, pen′(ûk,(i)) = ∂pen(uk)
∂uk

∣∣∣
ûk,(i)

(see

Table 1).

4.2. MCMC

We can also easily sample from the posterior distribu-
tion p(β1:N |y1:N ) by sampling from p(β1:N , σ2

1:K |y1:N )
using the Gibbs sampler. Indeed the full conditional
distributions p(β1:N |σ1:K , y1:N ) and p(σ2

1:K |β1:N , y1:N )
are available in closed-form. The distribution
p(β1:N |σ1:K , y1:N ) is a multivariate normal whereas we
have p(σ2

1:K |β1:N , y1:N ) =
∏K

k=1 p(σ2
k|β1:N

k ). For the
NG prior, we obtain

p(σ2
k|β1:N

k ) =
(σ2

k)
α
K−N

2 −1 exp
(
− 1

2
u2

k

σ2
k
− γσ2

k

)

2
(

uk

γ

) α
K−N

2 K α
K−N

2
(γuk)

which is a generalized inverse Gaussian distribution
from which we can sample exactly. For the NIG distri-
bution, we also obtain a generalized inverse Gaussian
distribution.

5. Applications

5.1. Simulated Data

In the following, we provide numerical comparisons
between the Laplace (that is Lasso), the RVM, NJ,
NG and NIG models. We simulate 100 datasets from
(1) with L = 50 and σ = 1. The correlation be-
tween Xk,i and Xk,j is ρ|i−j| with ρ = 0.5. We set
β = (3 1.5 0 0 2 0 0 . . .)T ∈ RK where the remaining
components of the vector are set to zero. We consider
the cases where K = 20, 60, 100, 200. Parameters of
the Lasso, NG and NIG are estimated by 5-fold cross-
validation, as described in (Tibshirani, 1996). The
Lasso estimate is obtained with the Matlab implemen-
tation of the interior point method downloadable at
http://www.stanford.edu/˜boyd/l1 ls/. For the other
priors, the estimate is obtained via 100 iterations of
the EM algorithm. Box plots of the mean square er-
ror (MSE) are reported in Figure 8. These plots show
that the performance of the estimators based on the
NG and NIG priors outperform those of classical mod-
els in that case. In Figure 9 are represented the box
plots of the number of estimated coefficients whose ab-
solute value is below T , T = 10−10 (the precision tuned
for the Lasso estimate) and T = 10−3, for K = 200.
The true number of zeros in that case is 197. The NG
outperforms the other models in identifying the zeros
of the model. On the contrary, as the NIG estimate
is not a thresholding rule, the median number of co-
efficients whose absolute value is below 10−10 for this
model is zero. However, most of the coefficients have
a very low absolute value, as the median of the coeffi-
cients with absolute value below 10−3 is equal to the
true value 197 (see Figure 9(b)). Moreover, the esti-
mator obtained by thresholding the coefficients whose
absolute value is below 10−3 to zero yields very minor
differences in terms of MSE.

5.2. Biscuit NIR Dataset

We consider the biscuits data which have been studied
in (Griffin & Brown, 2007; West, 2003). The matrix
X is composed of 300 (centered) NIR reflectance mea-
surements from 70 biscuit dough pieces. The obser-
vations y are the percentage of fat, sucrose, flour and
water associated to each piece. The objective here is
to predict the level of each of the ingredients from the
NIR reflectance measurements. The data are divided
into a training dataset (39 measurements) and a test
dataset (31 measurements). The fitted coefficients of
fat and flour, using 5-fold cross-validation, are repre-
sented in Figure 10. The estimated spikes are consis-
tent with the results obtained in (West, 2003; Griffin
& Brown, 2007). In particular, both models detect
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Figure 8. Box plots of the MSE associated to the simulated
data.
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Figure 9. Box plots of the number of estimated coefficients
whose absolute value is below a threshold T . Dash line
represents the true value of zero coefficients (197).

a spike at 1726nm, which lies in a region known for
fat absorbance. The predicted observations versus the
true observations are given in Figure 11 for the train-
ing and test datasets. The test data are well fitted
by the estimated coefficients. MSE errors for the test
dataset are reported in Table 2. The proposed models
show better performances for flour and similar perfor-
mances for fat.

6. Discussion

We have presented some flexible priors for linear re-
gression based on the NG and NIG models. The
NG prior yields sparse local maxima of the poste-
rior distribution whereas the NIG prior yields “almost
sparse” estimates; that is most of the coefficients are
extremely close to zero. We have shown that asymp-
totically these models are closely related to the vari-
ance gamma process and the normal-inverse Gaus-
sian process. Contrary to the NJ model or the RVM,
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Figure 10. Coefficients estimated with a normal-gamma
(left) and normal-inverse Gaussian (right) prior for fat
(top) and flour (bottom) ingredients.

Table 2. MSE for biscuits NIR data

Flour Fat
NJ 9.93 0.56
RVM 6.48 0.56
NG 3.44 0.55
NIG 1.94 0.49

these models require specifying two hyperparameters.
However, using a simple cross-validation procedure we
have demonstrated that these models can perform sig-
nificantly better that well-established procedures. In
particular, the experimental performance of the NIG
model are surprisingly good and deserve being further
studied. The NG prior has been discussed in (Griffin &
Brown, 2007). It was discarded because of its spike at
zero and the flatness of the penalty for large values but
no simulations were provided. They favour another
model which relies on a cylinder parabolic function1.
The NG prior has nonetheless interesting asymptotic
properties in terms of Lévy processes and we have
demonstrated its empirical performances. The NG,
NIG and Laplace priors can also be considered as par-
ticular cases of generalized hyperbolic distributions.
This class of distributions has been used in (Snoussi &
Idier, 2006) for blind source separation.

The extension to (probit) classification is straightfor-

1The authors provide a link to a program to compute
this function. Unfortunately, it is extremely slow. The re-
sulting algorithm is at least one order of magnitude slower
than our algorithms which rely on Bessel functions.
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Figure 11. Observations versus predicted observations es-
timated with a normal-gamma (left) and normal-inverse
Gaussian (right) prior for fat (top) and flour (bottom) in-
gredients.

ward by adding latent variables corresponding to the
regression function plus some normal noise. Compu-
tationally it only requires adding one line in the EM
algorithm and one simulation step in the Gibbs sam-
pler.
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Abstract

In this paper we perform an empirical
evaluation of supervised learning on high-
dimensional data. We evaluate perfor-
mance on three metrics: accuracy, AUC, and
squared loss and study the effect of increas-
ing dimensionality on the performance of the
learning algorithms. Our findings are con-
sistent with previous studies for problems of
relatively low dimension, but suggest that as
dimensionality increases the relative perfor-
mance of the learning algorithms changes.
To our surprise, the method that performs
consistently well across all dimensions is ran-
dom forests, followed by neural nets, boosted
trees, and SVMs.

1. Introduction

In the last decade, the dimensionality of many machine
learning problems has increased substantially. Much
of this results from increased interest in learning from
text and images. Some of the increase in dimension-
ality, however, results from the development of tech-
niques such as SVMs and L1 regularization that are
practical and effective in high dimensions. These ad-
vances may make it unnecessary to restrict the feature
set and thus promote building and learning from data
sets that include as many features as possible. At the
same time, memory and computational power have in-
creased to support computing with large data sets.

Perhaps the best known empirical studies to exam-
ine the performance of different learning methods
are STATLOG (King et al., 1995) and (Caruana &
Niculescu-Mizil, 2006). STATLOG was a very thor-
ough study, but did not include test problems with

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

high dimensions and could not evaluate newer learn-
ing methods such as bagging, boosting, and kernel
methods. More recently, (Caruana & Niculescu-Mizil,
2006) includes a number of new learning algorithms
that emerged after the STATLOG project, but only ex-
amined performance on problems with low-to-medium
dimension. One must question if the results of either of
these studies apply to text data, biomedical data, link
analysis data etc. where many attributes are highly
correlated and there may be insufficient data to learn
complex interactions among attributes. This paper at-
tempts to address that question.

There are several limitations to the empirical study in
(Caruana & Niculescu-Mizil, 2006). First, they per-
formed all experiments using only 5000 training cases,
despite the fact that much more labeled data was avail-
able for many problems. For one of the problems
(COVTYPE) more than 500,000 labeled cases were
available. Intentionally training using far less data
than is naturally available on each problem makes the
results somewhat contrived. Second, although they
evaluated learning performance on eight performance
metrics, examination of their results shows that there
are strong correlations among the performance mea-
sures and examining this many metrics probably added
little to the empirical comparison and may have led
to a false impression of statistical confidence. Third,
and perhaps most important, all of the data sets ex-
amined had low to medium dimensionality. The aver-
age dimensionality of the 11 data sets in their study
was about 50 and the maximum dimensionality was
only 200. Many modern learning problems have orders
of magnitude higher dimensionality. Clearly learn-
ing methods can behave very differently when learning
from high-dimensional data than when learning from
low-dimensional data.

In the empirical study performed for this paper we
complement the prior work by: 1) using the natural
size training data that is available for each problem;
2) using just three important performance metrics: ac-
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curacy, area under the ROC curve (AUC), and squared
loss; and 3) performing experiments on data with high
to very high dimensionality (750-700K dimensions).

2. Methodology

2.1. Learning Algorithms

This section summarizes the algorithms and parame-
ter settings we used. The reader should bear in mind
that some learning algorithms are more efficient at
handling large training sets and high-dimensional data
than others. For an efficient algorithm we can afford
to explore the parameter space more exhaustively than
for an algorithm that does not scale well. But that’s
not unrealistic; a practitioner may prefer an efficient
algorithm that is regarded as weak but which can be
tuned well over an algorithm that might be better but
where careful tuning would be intractable. Below we
describe the implementations and parameter settings
we used. An algorithm marked with an asterisk (e.g.
ALG∗) denotes our own custom implementation de-
signed to handle high-dimensional sparse data.

SVMs: We train linear SVMs using SVMperf

(Joachims, 2006) with error rate as the loss function.
We vary the value of C by factors of ten from 10−9

to 105. For kernel SVMs we used LaSVM, an approxi-
mate SVM solver that uses stochastic gradient descent
(Bordes et al., 2005), since traditional kernel SVM im-
plementations simply cannot handle the amounts of
data in some of our experiments. To guarantee a rea-
sonable running time we train the SVM for 30 minutes
for each parameter setting and use the gradient based
strategy for the selection of examples. We use polyno-
mial kernels of degree 2 and 3 and RBF kernels with
width {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2}. We vary
the value of C by factors of ten from 10−7 to 105.

ANN∗: We train neural nets with gradient descent
backpropagation, early stopping and no momentum
(cf. section 5). We vary the number of hidden units
{8, 16, 32} and learning rate {10−4, 10−3, 10−2}.

Logistic Regression (LR): We use the BBR package
(Genkin et al., 2006) to train models with either L1

or L2 regularization. The regularization parameter is
varied by factors of ten from 10−7 to 105.

Naive Bayes (NB∗): Continuous attributes are
modeled as coming from a normal distribution. We use
smoothing and vary the number of unobserved values
{0,0.1,0.2,0.5,1,2,5,10,20,50,100}.

KNN∗: We use distance weighted KNN. We use the
1000 nearest neighbors weighted by a Gaussian kernel
with 40 different kernel widths in the range [0.1, 820].

The distance between two points is a weighted eu-
clidean distance where the weight of each feature is
determined by its information gain.

Random Forests (RF∗): We grow 500 trees and
the size of the feature set considered at each split is
s/2, s, 2s, 4s or 8s where s is the square root of the
number of attributes, as suggested in (Breiman, 2001).

Bagged Decision Trees(BAGDT∗): We bag 100
ID3 trees. The same implementation is used for
boosted stumps (BSTST∗) and boosted trees
(BSTDT∗) but because full-size ID3 trees can’t eas-
ily be boosted, we stop splitting when a node contains
less than 50 examples. We do 210 and 215 iterations of
boosting for trees and stumps respectively and use the
validation set to pick the number of iterations from
the set {2i|i = 0, 1, ...15}.

Perceptrons (PRC∗): We train voted perceptrons
(Freund & Schapire, 1999) with 1,5,10,20 and 30 passes
through the data. We also average 100 perceptrons
each of which is obtained by a single pass through a
permutation of the data.

With SVM, ANN, LR, KNN and PRC and datasets
with continuous attributes we train both on raw and
standardized data. This preprocessing can be thought
of as one more parameter for these algorithms. To
preserve sparsity, which is crucial for the implementa-
tions we use, we treat the mean of each feature as zero,
compute the standard deviation, and divide by it.

2.2. Performance Metrics

To evaluate performance we use three metrics: accu-
racy (ACC), a threshold metric, squared error (RMS),
a probability metric, and area under the ROC curve
(AUC), an ordering metric. To standardize scores
across different problems and metrics, we divide per-
formances by the median performance observed on
each problem for that metric. For squared error we
also invert the scale so that larger numbers indicate
better performance as with accuracy and AUC.

2.3. Calibration

The output of some learning algorithms such as ANN,
logistic regression, bagged trees and random forests
can be interpreted as the conditional probability of the
class given the input. The common implementation of
other methods such as SVM and boosting, however,
are not designed to predict probabilities (Niculescu-
Mizil & Caruana, 2005).

To overcome this, we use two different methods to
map the predictions from each learning algorithm to
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calibrated probabilities. The first is Isotonic Regres-
sion (Zadrozny & Elkan, 2002), a method which fits
a non-parametric non-decreasing function to the pre-
dictions. The second calibration method is Platt’s
method (Platt, 1999) which fits a sigmoid to the pre-
dictions. (Niculescu-Mizil & Caruana, 2005) suggests
that Platt’s method outperforms isotonic regression
when there is less than about 1000 points available
to learn the calibration function, and that calibration
can hurt predictions from methods such as ANN and
logistic regression (Caruana & Niculescu-Mizil, 2006).
We will revisit those findings later in the discussion.
Finally, note that calibrating can affect metrics other
than probability metrics such as squared loss. It can
affect accuracy by changing the optimal threshold (for
calibrated predictions the optimum threshold will be
near 0.5) and Isotonic Regression can affect AUC by
creating ties on calibration plateaus where prior to cal-
ibration there was a definite ordering.

To summarize our methodology, we optimize for each
dataset and metric individually. For each algorithm
and parameter setting we calibrate the predictions us-
ing isotonic regression, Platt’s method, and the iden-
tity function (no calibration) and choose the parame-
ter settings and calibration method that optimizes the
performance metric on a validation set.

2.4. Data Sets

We compare the methods on 11 binary classification
problems whose dimensionality ranges from 761 to
685569. The datasets are summarized in Table 1.

TIS1 is from the Kent Ridge Bio-medical Data Repos-
itory. The problem is to find Translation Initia-
tion Sites (TIS) at which translation from mRNA
to proteins initiates. CRYST2 is a protein crys-
tallography diffraction pattern analysis dataset from
the X6A beamline at Brookhaven National Labora-
tory. STURN and CALAM are ornithology datasets.3

The task is to predict the appearance of two bird
species: sturnella neglecta and calamospiza melanoco-
rys. KDD98 is from the 1998 KDD-Cup. The task
is to predict if a person donates money. This is the
only dataset with missing values. We impute the
mean for continuous features and treat missing nom-
inal and boolean features as new values. DIGITS4 is
the MNIST database of handwritten digits by Cortes
and LeCun. It was converted from a 10 class problem
to a hard binary problem by treating digits less than 5

1
http://research.i2r.a-star.edu.sg/GEDatasets/Datasets.html

2http://ajbcentral.com/CrySis/dataset.html
3Art Munson, Personal Communication
4http://yann.lecun.com/exdb/mnist/

Table 1. Description of problems

Problem Attr Train Valid Test %Pos

Sturn 761 10K 2K 9K 33.65
Calam 761 10K 2K 9K 34.32
Digits 780 48K 12K 10K 49.01
Tis 927 5.2K 1.3K 6.9K 25.13
Cryst 1344 2.2K 1.1K 2.2K 45.61
KDD98 3848 76.3K 19K 96.3K 5.02
R-S 20958 35K 7K 30.3K 30.82
Cite 105354 81.5K 18.4K 81.5K 0.17
Dse 195203 120K 43.2K 107K 5.46
Spam 405333 36K 9K 42.7K 44.84
Imdb 685569 84K 18.4K 84K 0.44

as one class and the rest as the other class. IMDB and
CITE are link prediction datasets.5 For IMDB each
attribute represents an actor, director, etc. For CITE
attributes are the authors of a paper in the CiteSeer
digital library. For IMDB the task is to predict if Mel
Blanc was involved in the film or television program
and for CITE the task is to predict if J. Lee was a coau-
thor of the paper. We created SPAM from the TREC
2005 Spam Public Corpora. Features take binary val-
ues showing if a word appears in the document or not.
Words that appear less than three times in the whole
corpus were removed. Real-Sim (R-S) is a compilation
of Usenet articles from four discussion groups: simu-
lated auto racing, simulated aviation, real autos and
real aviation.6 The task is to distinguish real from sim-
ulated. DSE7 is newswire text with annotated opinion
expressions. The task is to find Subjective Expressions
i.e. if a particular word expresses an opinion.

To split data into training, validation and test sets, if
the data came with original splits for train and test
sets (i.e. DIGITS, KDD98) we preserved those splits
and created validation sets as 10% of the train set. If
the data originally was split into folds, we merged some
folds to create a training set, a validation set and a test
set. (We did this because running these experiments
is so costly that we could not afford to perform N-fold
cross validation as this would make the experiments
about N times more costly.) DSE came in 10 folds
plus a development fold twice as big as other folds.
We used the development fold as the validation set
and merged the first 5 folds for the train set and the
rest for the test set. CRYST came in 5 folds. One
fold became the validation set, 2 folds were merged for
training and the rest became the test set.

For the rest of the datasets we tried to balance be-

5http://komarix.org/ac/ds
6http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets
7Eric Breck, Personal Communication
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tween the following factors: (a) The test sets should
be large enough so that differences between learning al-
gorithms are apparent. (b) The test sets can be larger
when the learning task is easy, but more data should
be kept in the training set when the learning task is
hard. (c) Some datasets would inevitably have more
attributes than examples in the training set (IMDB,
CITE, SPAM); for the rest we tried to put enough ex-
amples in the training set so that methods with small
bias might learn something interesting. (d) The vali-
dation sets should be big enough so that parameter se-
lection and calibration works well. In general we split
the data so that we have around 50% in the training
set and 50% in the test set. Validation data is drawn
from the training set.

3. Results

Table 2 shows the performance of each learning
method on each of the eleven problems. In the ta-
ble, the problems are arranged left to right in order
of increasing dimensionality. The table is broken into
four sections. The top three sections report results for
Accuracy (ACC), Squared Error (RMS), and Area un-
der the ROC Curve (AUC). The bottom section is the
average of the performance across these three metrics.

For each metric and problem, the performances have
been standardized by dividing by the median perfor-
mance observed for that problem and metric. With-
out standardization it is difficult to perform an unbi-
ased comparison across different datasets and metrics.
A score of one indicates that the method had typical
performance on that problem and metric compared to
the other learning methods. Scores above one indi-
cate better than typical performance, while scores less
than one indicate worse than typical performance. The
scale for RMS has been reversed so that scores above
one represent better than typical, i.e., lower, RMS.8

The median performance for each problem and metric
is included in the table to allow calculating raw perfor-
mances from the standardized scores. The last column
in the table is the average score across the eleven test
problems. In each section of the table, learning algo-
rithms are sorted by these average scores. The last
column of the last section represents the average score
across all problems and metrics.

Examining the results in the bottom section shows

8This is different and simpler than the normalized scores
used in (Caruana & Niculescu-Mizil, 2006). We have exper-
imented with several ways of standardizing scores and the
results change little with different methods. The learning
methods that rank at the top (and the bottom) are least
affected by the exact standardization method.

that on average across all problems and metrics, ran-
dom forests have the highest overall performance. On
average, they perform about 1% (1.0102) better than
the typical model and about 0.6% (1.0102 vs. 1.0039)
better than the next best method, ANN. The best
methods overall are RF, ANN, boosted decision trees,
and SVMs. The worst performing methods are Naive
Bayes and perceptrons. On average, the top eight of
ten methods fall within about 2% of each other. While
it is not easy to achieve an additional 1% of perfor-
mance at the top end of the scale, it is interesting that
so many methods perform this similarly to each other
on these high-dimensional problems.

If we examine the results for each of the metrics in-
dividually, we notice that the largest differences in
performance among the different learning algorithms
occur for AUC and the smallest differences occur for
ACC. For accuracy, boosted decision trees are the best
performing models followed by random forests. How-
ever, a closer examination of the table shows that
boosted trees do better in accuracy mostly because of
their excellent performance on the datasets with rel-
atively low dimensionality. Comparing boosted trees
with random forests in the left part of the table we see
that random forests outperform boosted trees only on
the TIS dataset. The situation is reversed on the right
part of the table where boosted trees outperform ran-
dom forests only on the CITE dataset. As dimension-
ality increases, we expect boosted trees to fall behind
random forests.

In RMS, random forests are marginally better than
boosted trees. This is confirmed by a bootstrap anal-
ysis (cf. Section 4): random forests have 33% and 35%
chance of ranking 1st and 2nd respectively, while for
boosted trees the corresponding probabilities are 31%
and 21%. However, in AUC random forests are clear
winners followed by, somewhat surprisingly, KNN.

Interestingly, although ANN is the 2nd best method
overall in the bottom of the table, is does not per-
form 1st or 2nd for any of the individual metrics in
the top of the table. It is 2nd overall only because
ANNs consistently yield very good, though perhaps
not exceptional, performance on all metrics.

A fact that is not apparent from the table is that cali-
bration with isotonic regression works better than cal-
ibrating with Platt’s method, or no calibration, on
most problems and thus was used for almost all of
the results reported in the table. Since our valida-
tion sets always are larger than 1000 examples, this
confirms the findings in (Niculescu-Mizil & Caruana,
2005) that isotonic regression is preferred with large
validation sets.
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Table 2. Standardized scores of each learning algorithm
DIM 761 761 780 927 1344 3448 20958 105354 195203 405333 685569 —

ACC Sturn Calam Digits Tis Cryst Kdd98 R-S Cite Dse Spam Imdb Mean

MEDIAN 0.6901 0.7337 0.9681 0.9135 0.8820 0.9494 0.9599 0.9984 0.9585 0.9757 0.9980 —

BSTDT 0.9962 1.0353 1.0120 0.9993 1.0178 0.9998 0.9904 1.0000 0.9987 0.9992 1.0000 1.0044

RF 0.9943 1.0103 1.0076 1.0025 1.0162 1.0000 0.9995 0.9998 1.0013 1.0044 1.0000 1.0033

SVM 1.0044 1.0018 1.0024 1.0060 1.0028 0.9999 1.0156 1.0008 1.0004 1.0008 1.0003 1.0032

BAGDT 1.0001 1.0350 0.9976 1.0017 1.0111 1.0000 0.9827 1.0000 0.9996 0.9959 1.0000 1.0021

ANN 0.9999 0.9899 1.0051 1.0007 0.9869 1.0000 1.0109 1.0001 1.0018 1.0029 1.0003 0.9999

LR 1.0012 0.9896 0.8982 1.0108 1.0080 1.0000 1.0141 1.0001 1.0014 1.0026 0.9999 0.9932

BSTST 1.0077 1.0298 0.9017 0.9815 0.9930 1.0000 0.9925 0.9999 0.9948 0.9905 0.9989 0.9900

KNN 1.0139 0.9982 1.0122 0.9557 0.9972 0.9999 0.9224 1.0000 0.9987 0.9698 0.9996 0.9880

PRC 0.9972 0.9864 0.9010 0.9735 0.9930 1.0000 1.0119 0.9999 1.0007 1.0041 1.0001 0.9880

NB 0.9695 0.9347 0.8159 0.9230 0.9724 1.0000 1.0005 1.0000 0.9878 0.9509 0.9976 0.9593

RMS Sturn Calam Digits Tis Cryst Kdd98 R-S Cite Dse Spam Imdb Mean

MEDIAN 0.5472 0.5800 0.8449 0.7455 0.7051 0.7813 0.8257 0.9623 0.8154 0.8645 0.9597 —

RF 0.9980 1.0209 1.0186 1.0102 1.0277 1.0003 1.0011 0.9988 1.0072 1.0118 1.0006 1.0087

BSTDT 0.9993 1.0351 1.0363 0.9977 1.0323 0.9998 0.9781 1.0003 0.9983 1.0007 1.0003 1.0071

ANN 1.0042 0.9987 1.0088 1.0109 1.0014 1.0005 1.0315 1.0011 1.0068 1.0077 1.0022 1.0067

SVM 0.9979 0.9882 1.0076 1.0149 0.9972 0.9992 1.0409 1.0091 1.0067 0.9993 1.0004 1.0056

BAGDT 1.0007 1.0357 0.9924 1.0023 1.0218 0.9998 0.9587 1.0000 0.9994 0.9782 1.0012 0.9991

LR 1.0010 0.9963 0.8169 1.0232 0.9935 1.0007 1.0367 1.0009 1.0082 1.0073 0.9988 0.9894

PRC 0.9976 0.9841 0.8115 0.9537 0.9919 0.9998 1.0313 0.9979 1.0006 1.0071 0.9997 0.9796

BSTST 1.0078 1.0205 0.8202 0.9757 1.0021 1.0007 0.9861 1.0000 0.9900 0.9695 0.9952 0.9789

KNN 1.0119 1.0013 1.0365 0.9309 0.9986 1.0000 0.8468 0.9988 0.9983 0.9270 0.9941 0.9768

NB 0.9793 0.9509 0.7236 0.9031 0.9454 1.0000 0.9989 0.9981 0.9828 0.8984 0.9731 0.9412

AUC Sturn Calam Digits Tis Cryst Kdd98 R-S Cite Dse Spam Imdb Mean

MEDIAN 0.6700 0.7793 0.9945 0.9569 0.9490 0.5905 0.9913 0.7549 0.9008 0.9957 0.9654 —

RF 0.9892 1.0297 1.0017 1.0069 1.0134 1.0140 1.0009 1.0962 1.0304 1.0022 1.0209 1.0187

KNN 1.0397 0.9992 1.0024 0.9509 1.0007 1.0165 0.9905 1.1581 1.0027 0.9902 0.9648 1.0105

LR 1.0045 0.9903 0.9424 1.0136 1.0070 1.0492 1.0041 1.0272 1.0293 0.9999 1.0084 1.0069

ANN 1.0132 1.0008 1.0001 1.0042 0.9992 1.0461 1.0031 0.9779 1.0105 1.0001 1.0021 1.0052

BSTST 1.0199 1.0304 0.9468 0.9901 0.9993 1.0512 0.9991 0.9956 0.9973 0.9989 1.0036 1.0029

SVM 0.9870 0.9645 1.0002 1.0077 0.9909 0.9324 1.0032 1.1120 1.0100 1.0011 0.9979 1.0006

BSTDT 0.9991 1.0492 1.0033 0.9958 1.0137 0.9605 0.9962 0.9646 0.9881 1.0015 1.0041 0.9978

BAGDT 1.0009 1.0551 0.9999 1.0062 1.0116 0.9768 0.9890 0.9673 0.9691 0.9925 0.9809 0.9954

PRC 0.9973 0.9630 0.9372 0.9749 0.9937 0.9724 1.0036 0.9991 0.9777 1.0006 0.9477 0.9788

NB 0.9329 0.8936 0.8574 0.9407 0.9574 0.9860 0.9990 1.0009 0.9917 0.9798 0.8787 0.9471

AVG Sturn Calam Digits Tis Cryst Kdd98 R-S Cite Dse Spam Imdb Mean

RF 0.9938 1.0203 1.0093 1.0065 1.0191 1.0048 1.0005 1.0316 1.0130 1.0061 1.0072 1.0102

ANN 1.0058 0.9965 1.0047 1.0053 0.9958 1.0156 1.0152 0.9930 1.0064 1.0036 1.0015 1.0039

BSTDT 0.9982 1.0399 1.0172 0.9976 1.0212 0.9867 0.9882 0.9883 0.9950 1.0004 1.0014 1.0031

SVM 0.9965 0.9848 1.0034 1.0095 0.9970 0.9772 1.0199 1.0406 1.0057 1.0004 0.9995 1.0031

BAGDT 1.0006 1.0419 0.9966 1.0034 1.0148 0.9922 0.9768 0.9891 0.9894 0.9889 0.9940 0.9989

LR 1.0022 0.9921 0.8858 1.0159 1.0028 1.0166 1.0183 1.0094 1.0129 1.0033 1.0024 0.9965

KNN 1.0219 0.9996 1.0170 0.9458 0.9988 1.0055 0.9199 1.0523 0.9999 0.9623 0.9862 0.9917

BSTST 1.0118 1.0269 0.8896 0.9824 0.9982 1.0173 0.9926 0.9985 0.9941 0.9863 0.9992 0.9906

PRC 0.9974 0.9778 0.8832 0.9674 0.9929 0.9907 1.0156 0.9990 0.9930 1.0039 0.9825 0.9821

NB 0.9606 0.9264 0.7989 0.9223 0.9584 0.9953 0.9995 0.9997 0.9874 0.9430 0.9498 0.9492

3.1. Effect of Dimensionality

In this section we attempt to show the trends in per-
formance as a function of dimensionality. In Figure 1
the x-axis shows dimensionality on a log scale. The
y-axis is the cumulative score of each learning method
on problems of increasing dimensionality. The score is
the average across the three standardized performance
metrics where standardization is done by subtracting
the median performance on each problem.9 Subtract-
ing median performance means that scores above (be-
low) zero indicate better (worse) than typical perfor-
mance. The score accumulation is done left-to-right

9Here we subtract the median instead of dividing by it
because we are accumulating relative performance. Stan-
dardization by subtracting the median yields similar rank-
ings as dividing by the median.

on problems of increasing dimensionality. A line that
tends to slope upwards (downwards) signifies a method
that performs better (worse) on average compared to
other methods as dimensionality increases. A horizon-
tal line suggests typical performance across problems
of different dimensionality. Naive Bayes is excluded
from the graph because it falls far below the other
methods. Caution must be used when interpreting
cumulative score plots. Due to the order in which
scores are aggregated, vertical displacement through
much of the graph is significantly affected by the per-
formance on problems of lower dimensionality. The
end of the graph on the right, however, accumulates
across all problems and thus does not favor problems
of any dimensionality, The slope roughly corresponds
to the average relative performance across dimensions.
From the plot it is clear that boosted trees do very
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Figure 1. Cumulative standardized scores of each learning
algorithm as a function of the dimension.

well in modest dimensions, but lose ground to ran-
dom forests, neural nets, and SVMs as dimensionality
increases. Also, linear methods such as logistic regres-
sion begin to catch up as dimensionality increases.

Figure 2 shows the same results as Figure 1, but pre-
sented differently to avoid the complexity of accumu-
lation. Here each point in the graph is the average per-
formance of the 5 problems of lowest dimension (from
761 to 1344), the 5 problems of highest dimension (21K
to 685K) and 5 problems of intermediate dimension
(927 to 105K). Care must be used when interpreting
this graph because each point averages over only 5 data
sets. The results suggest that random forests overtake
boosted trees. They are among the top performing
methods for high-dimensional problems together with
logistic regression and SVMs. Again we see that neu-
ral nets are consistently yielding above average per-
formance even in very high dimension. Boosted trees,
bagged trees, and KNN do not appear to cope well
in very high dimensions. Boosted stumps, percep-
trons, and Naive Bayes perform worse than the typical
method regardless of dimension.

Figure 3 shows results similar to Figure 2 but only for
different classes of SVMs: linear-only (L), kernel-only
(K) and linear that can optimize accuracy or AUC
(L+P) (Joachims, 2006). We also plot combinations
of these (L+K and L+K+P) where the specific model
that is best on the validation set is selected. The re-
sults suggest that the best overall performance with
SVMs results from trying all possible SVMs (using the
validation set to pick the best). Linear SVMs that
can optimize accuracy or AUC outperform simple lin-
ear SVMs at modest dimensions, but have little effect
when dimensionality is very high. Similarly, simple lin-
ear SVMs though not competitive with kernel SVMs at
low dimensions, catch up as dimensionality increases.
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Figure 2. Moving average standardized scores of each
learning algorithm as a function of the dimension.
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Figure 3. Moving average standardized scores for different
SVM algorithms as a function of the dimension.

4. Bootstrap Analysis

We could not afford cross validation in these experi-
ments because it would be too expensive. For some
datasets and some methods, a single parameter set-
ting can take days or weeks to run. Instead we used
large test sets to make our estimates more reliable and
adequately large validation sets to make sure that the
parameters we select are good. However, without a
statistical analysis, we cannot be sure that the differ-
ences we observe are not merely statistical fluctuation.

To help insure that our results would not change if we
had selected datasets differently we did a bootstrap
analysis similar to the one in (Caruana & Niculescu-
Mizil, 2006). For a given metric we randomly select
a bootstrap sample (sampling with replacement) from
our 11 problems and then average the performance
of each method across the problems in the bootstrap
sample. Then we rank the methods. We repeat the
bootstrap sampling 20,000 times and get 20,000 po-
tentially different rankings of the learning methods.

101



An Empirical Evaluation of Supervised Learning in High Dimensions

Table 3 shows the results of the bootstrap analysis.
Each entry in the table shows the percentage of time
that each learning method ranks 1st, 2nd, 3rd, etc. on
bootstrap samples of the datasets. Because of space
limits, we only show results for average performance
across the three metrics.

The bootstrap analysis suggests that random forests
probably are the top performing method overall, with
a 73% chance of ranking first, a 20% chance of ranking
second, and less than a 8% chance of ranking below
2nd place. The ranks of other good methods, however,
are less clear and there appears to be a three-way tie
for 2nd place for boosted trees, ANNs, and SVMs.

5. Computational Challenges

Running this kind of experiment in high dimensions
presents many computational challenges. In this sec-
tion we outline a few of them.

In most high dimensional data features are sparse
and the learning methods should take advantage of
sparse vectors. For ANN, for example, when inputs
are sparse, a lot of computation in the forward direc-
tion can be saved by using a matrix times sparse vector
procedure. More savings happen when the weights are
updated since the gradient of the error with respect
to a weight going out of a unit with zero value van-
ishes. This is why our ANN implementation does not
use momentum. If it did, all weights would have to be
updated each iteration.

Another caveat is that for tree learning algorithms,
indexing the data by feature instead of by example
can speed up queries about which examples exhibit a
particular feature. These queries are common during
learning and one should consider this indexing scheme.
Our random forest implementation indexes by feature.

Boosted decision trees on continuous data was the
slowest of all methods. For bagged trees running times
were better because we only grew 100 trees that can
be grown in parallel. The same holds for random
forests which have the added benefit that computation
scales with the square root of dimensionality. Train-
ing ANNs was sometimes slow, mainly because ap-
plying some of the techniques in (Le Cun et al., 1998)
would not preserve the sparsity of the data. For SVMs
and logistic regression, we didn’t have computational
problems thanks to recent advances in scaling them
(Genkin et al., 2006; Bordes et al., 2005; Joachims,
2006; Shalev-Shwartz et al., 2007). As a sanity check
we compared the performance of the approximate ker-
nel SVM solver with the exact SVMlight on some of
our smallest problems and found no significant dif-

ference. Naive Bayes and perceptrons are among the
fastest methods. KNN was sufficiently fast that we
didn’t have to use specialized data structures for near-
est neighbor queries.

6. Related Work

Our work is most similar to (Caruana & Niculescu-
Mizil, 2006). We already pointed out shortcomings
in that study, but we also borrowed much from their
methodology and tried to improve on it. STATLOG
(King et al., 1995) was another comprehensive empir-
ical study that was discussed in Section 1. A study by
LeCun (LeCun et al., 1995) compares learning algo-
rithms not only based on traditional performance met-
rics but also with respect to computational cost. Our
study addresses this issue only qualitatively. Clearly,
computational issues have to be taken into considera-
tion in such large scale. A wide empirical comparison
of voting algorithms such as bagging and boosting is
conducted in (Bauer & Kohavi, 1999). The impor-
tance of evaluating performance on metrics such as
AUC is discussed thoroughly in (Provost & Fawcett,
1997). The effect of different calibration methods is
discussed in (Niculescu-Mizil & Caruana, 2005).

7. Discussion

Although there is substantial variability in perfor-
mance across problems and metrics in our experi-
ments, we can discern several interesting results. First,
the results confirm the experiments in (Caruana &
Niculescu-Mizil, 2006) where boosted decision trees
perform exceptionally well when dimensionality is low.
In this study boosted trees are the method of choice
for up to about 4000 dimensions. Above that, random
forests have the best overall performance. (Random
forests were the 2nd best performing method in the
previous study.) We suspect that the reason for this is
that boosting trees is prone to overfitting and this be-
comes a serious problem in high dimensions. Random
forests is better behaved in very high dimensions, it is
easy to parallelize, scales efficiently to high dimensions
and performs consistently well on all three metrics.

Non-linear methods do surprisingly well in high dimen-
sions if model complexity can be controlled, e.g. by
exploring the space of hypotheses from simple to com-
plex (ANN), by margins (SVMs), or by basing some
decisions on random projections (RF). Logistic regres-
sion and linear SVMs also gain in performance as di-
mensionality increases. Contrary to low dimensions, in
high dimensions we have no evidence that linear SVMs
can benefit from training procedures that directly op-
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Table 3. Bootstrap analysis of rankings by average performance across problems
AVG 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

RF 0.727 0.207 0.054 0.011 0.001 0 0 0 0 0

ANN 0.053 0.172 0.299 0.256 0.119 0.072 0.019 0.011 0 0

BSTDT 0.059 0.228 0.18 0.222 0.18 0.075 0.044 0.012 0.001 0

SVM 0.043 0.195 0.213 0.193 0.156 0.088 0.08 0.031 0.001 0

LR 0.089 0.132 0.073 0.075 0.108 0.177 0.263 0.081 0 0

BAGDT 0.002 0.012 0.109 0.123 0.251 0.284 0.123 0.078 0.016 0

KNN 0.023 0.045 0.051 0.057 0.085 0.172 0.122 0.177 0.258 0.01

BSTST 0.004 0.009 0.021 0.063 0.086 0.109 0.3 0.387 0.02 0

PRC 0 0 0 0 0.013 0.024 0.047 0.222 0.695 0

NB 0 0 0 0 0 0 0 0 0.01 0.99

timize specific metrics such as AUC.

The results suggest that calibration never hurts and
almost always helps on these problems. Even meth-
ods such as ANN and logistic regression benefit from
calibration in most cases. We suspect that the reasons
for this are the availability of more validation data for
calibration than in previous studies and that high di-
mensional problems are harder in some sense.
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Abstract

Recent developments in programmable,
highly parallel Graphics Processing Units
(GPUs) have enabled high performance
implementations of machine learning algo-
rithms. We describe a solver for Support
Vector Machine training running on a GPU,
using the Sequential Minimal Optimization
algorithm and an adaptive first and second
order working set selection heuristic, which
achieves speedups of 9-35× over LIBSVM
running on a traditional processor. We
also present a GPU-based system for SVM
classification which achieves speedups of
81-138× over LIBSVM (5-24× over our own
CPU based SVM classifier).

1. Introduction

Driven by the capabilities and limitations of modern
semiconductor manufacturing, the computing indus-
try is currently undergoing a massive shift towards
parallel computing (Asanović et al., 2006). This shift
brings dramatically enhanced performance to those al-
gorithms which can be adapted to parallel computers.

One set of such algorithms are those used to implement
Support Vector Machines (Cortes & Vapnik, 1995).
Thanks to their robust generalization performance,
SVMs have found use in diverse classification tasks,
such as image recognition, bioinformatics, and text
processing. Yet, training Support Vector Machines
and using them for classification remains very com-
putationally intensive. Much research has been done
to accelerate training time, such as Osuna’s decompo-
sition approach (Osuna et al., 1997), Platt’s Sequential

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

Minimal Optimization (SMO) algorithm (Platt, 1999),
Joachims’ SVM light (Joachims, 1999), which intro-
duced shrinking and kernel caching, , and the working
set selection heuristics used by LIBSVM (Fan et al.,
2005). Despite this research, SVM training time is
still significant for large training sets.

In this paper, we show how Support Vector Machine
training and classification can be adapted to a highly
parallel, yet widely available and affordable computing
platform: the graphics processor, or more specifically,
the Nvidia GeForce 8800 GTX, and detail the perfor-
mance gains achieved.

The organization of the paper is as follows. Section 2
describes the SVM training and classification problems
briefly. Section 3 gives an overview of the architec-
tural and programming features of the GPU. Section
4 presents the details of implementation of the paral-
lel SMO approach on the GPU. Section 5 explains the
implementation details of the SVM classification prob-
lem. We present our results in Section 6 and conclude
in Section 7.

2. Support Vector Machines

We consider the standard two-class soft-margin SVM
classification problem (C-SVM), which classifies a
given data point x ∈ Rn by assigning a label y ∈
{−1, 1}.

2.1. SVM Training

Given a labeled training set consisting of a set of data
points xi, i ∈ {1, ..., l} with their accompanying la-
bels yi, i ∈ {1, ..., l}, the SVM training problem can
be written as the following Quadratic Program, where
αi is a set of weights, one for each training point, which
are being optimized to determine the SVM classifier,
C is a parameter which trades classifier generality for
accuracy on the training set, and Qij = yiyjΦ(xi, xj),
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where Φ(xi, xj) is a kernel function.

max
α

F (α) =
l∑
i=1

αi −
1
2
αTQα

subject to 0 ≤ αi ≤ C, ∀i ∈ 1 . . . l

yTα = 0

(1)

We consider the standard kernel functions shown in
table 1.

Table 1. Standard Kernel Functions

Linear Φ(xi, xj) = xi · xj

Polynomial Φ(xi, xj ; a, r, d) = (axi · xj + r)d

Gaussian Φ(xi, xj ; γ) = exp
˘
−γ||xi − xj ||2

¯
Sigmoid Φ(xi, xj ; a, r) = tanh(axi · xj + r)

2.1.1. SMO Algorithm

The SVM Training problem can be solved by many
methods, each with different parallelism implications.
We have implemented the Sequential Minimal Opti-
mization algorithm (Platt, 1999), with a hybrid work-
ing set selection heuristic making use of the first order
heuristic proposed by (Keerthi et al., 2001) as well
as the second order heuristic proposed by (Fan et al.,
2005).

The SMO algorithm is a specialized optimization ap-
proach for the SVM quadratic program. It takes ad-
vantage of the sparse nature of the support vector
problem and the simple nature of the constraints in
the SVM QP to reduce each optimization step to its
minimum form: updating two αi weights. The bulk of
the computation is then to update the Karush-Kuhn-
Tucker optimality conditions for the remaining set of
weights and then find the next two weights to update
in the next iteration. This is repeated until conver-
gence. We state this algorithm briefly, for reference
purposes.

Algorithm 1 Sequential Minimal Optimization
Input: training data xi, labels yi, ∀i ∈ {1..l}
Initialize: αi = 0, fi = −yi, ∀i ∈ {1..l},
Initialize: bhigh, blow, ihigh, ilow
Update αihigh

and αilow

repeat
Update fi, ∀i ∈ {1..l}
Compute: bhigh, ihigh, blow, ilow
Update αihigh

and αilow

until blow ≤ bhigh + 2τ

For the first iteration, we initialize bhigh = −1, ihigh =
min{i : yi = 1}, blow = 1, and ilow = min{i : yi = −1}.

During each iteration, once we have chosen ihigh and
ilow, we take the optimization step:

α′
ilow

= αilow
+ yilow

(bhigh − blow)/η (2)
α′
ihigh

= αihigh
+ yilow

yihigh
(αilow

− α′
ilow

) (3)

where η = Φ(xihigh
, xihigh

) + Φ(xilow
, xilow

) −
2Φ(xihigh

, xilow
). To ensure that this update is fea-

sible, α′
ilow

and α′
ihigh

must be clipped to the valid
range 0 ≤ αi ≤ C.

The optimality conditions can be tracked through the
vector fi =

∑l
j=1 αjyjΦ(xi, xj) − yi, which is con-

structed iteratively as the algorithm progresses. After
each α update, f is updated for all points. This is one
of the major computational steps of the algorithm, and
is done as follows:

f ′
i = fi + (α′

ihigh
− αihigh

)yihigh
Φ(xihigh

, xi)

+ (α′
ilow
− αilow

)yilow
Φ(xilow

, xi)
(4)

In order to evaluate the optimality conditions, we de-
fine index sets:

Ihigh = {i : 0 < αi < C} ∪ {i : yi > 0, αi = 0}
∪ {i : yi < 0, αi = C}

(5)

Ilow = {i : 0 < αi < C} ∪ {i : yi > 0, αi = C}
∪ {i : yi < 0, αi = 0}

(6)

Because of the approximate nature of the solution pro-
cess, these index sets are computed to within a toler-
ance ε, e.g. {i : ε < αi < (C − ε)}.

We can then measure the optimality of our current
solution by checking the optimality gap, which is the
difference between bhigh = min{fi : i ∈ Ihigh}, and
blow = max{fi : i ∈ Ilow}. When blow ≤ bhigh+ 2τ , we
terminate the algorithm.

2.1.2. Working set selection

During each iteration, we need to choose ihigh and ilow,
which index the α weights which will be changed in the
following optimization step. The first order heuristic
from (Keerthi et al., 2001) chooses them as follows:

ihigh = arg min{fi : i ∈ Ihigh} (7)
ilow = arg max{fi : i ∈ Ilow} (8)

The second order heuristic from (Fan et al., 2005)
chooses ihigh and ilow to optimize the unconstrained
SVM functional. An optimal approach to this problem
would require examining

(
l
2

)
candidate pairs, which

would be computationally intractable. To simplify the
problem, ihigh is instead chosen as in the first order
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heuristic, and then ilow is chosen to maximally im-
prove the objective function while still guaranteeing
progress towards the constrained optimum from prob-
lem (1). More explicitly:

ihigh = arg min{fi : i ∈ Ihigh} (9)
ilow = arg max{∆Fi(α) : i ∈ Ilow, fihigh

< fi} (10)

After choosing ihigh, we compute for all i ∈ {1..l}

βi = fihigh
− fi (11)

ηi = Φ(xihigh
, xihigh

) + Φ(xi, xi)− 2Φ(xihigh
, xi)

(12)

∆Fi(α) = β2
i /ηi (13)

We then find the maximum ∆Fi over all valid points
(i ∈ Ilow) for which we are guaranteed to progress
towards the constrained optimum (fihigh

< fi).

2.1.3. Adaptive heuristic

The second order heuristic utilizes more information
from the SVM training problem, and so it generally re-
duces the number of iterations necessary during the so-
lution process. However, it is more costly to compute.
In our GPU implementation, the geometric mean of
iteration time over our benchmark set using the sec-
ond order heuristic increased by 1.9× compared to the
first order heuristic. On some benchmarks, the total
number of iterations decreased sufficiently to provide
a significant speedup overall, but on others, the sec-
ond order heuristic is counterproductive for our GPU
implementation.

To overcome this problem, we implemented an adap-
tive heuristic that chooses between the two selection
heuristics dynamically, with no input or tuning from
the user. The adaptive heuristic periodically samples
progress towards convergence as a function of wall-
clock time using both heuristics, then chooses the more
productive heuristic.

This sampling occurs every l/10 iterations, and dur-
ing each sample, the heuristic under test is executed
for two phases of 64 iterations each. The average op-
timality gap in each of these phases is computed, and
then the rate of progress is estimated by dividing the
change in the optimality gap over the two phases by
the time it has taken to execute them. The same sam-
pling process is then performed with the other heuris-
tic, and the best heuristic is then used until the next
sampling period.

2.2. SVM Classification

The SVM classification problem is as follows: for each
data point z which should be classified, compute

ẑ = sgn

{
b+

l∑
i=1

yiαiΦ(xi, z)

}
(14)

where z ∈ Rn is a point which needs to be classified,
and all other variables remain as previously defined.

From the classification problem definition, it follows
immediately that the decision surface is defined by ref-
erencing a subset of the training data, or more specif-
ically, those training data points for which the cor-
responding αi > 0. Such points are called support
vectors.

Generally, we classify not just one point, but a set
of points. We exploit this for better performance, as
explained in Section 5.

3. Graphics Processors

Graphics processors are currently transitioning from
their initial role as specialized accelerators for trian-
gle rasterization to general purpose engines for high
throughput floating-point computation. Because they
still service the large gaming industry, they are ubiq-
uitous and relatively inexpensive.

GPU architectures are specialized for compute-
intensive, memory-intensive, highly parallel computa-
tion, and therefore are designed such that more re-
sources are devoted to data processing than caching or
control flow. State of the art GPUs provide up to an
order of magnitude more peak IEEE single-precision
floating-point than their CPU counterparts. Addition-
ally, GPUs have much more aggressive memory sub-
systems, typically endowed with more than 10x higher
memory bandwidth than a CPU. Peak performance is
usually impossible to achieve on general purpose ap-
plications, yet capturing even a fraction of peak per-
formance yields significant speedup.

GPU performance is dependent on finding high degrees
of parallelism: a typical computation running on the
GPU must express thousands of threads in order to
effectively use the hardware capabilities. As such, we
consider it an example of future “many-core” process-
ing (Asanović et al., 2006). Algorithms for machine
learning applications will need to consider such par-
allelism in order to utilize many-core processors. Ap-
plications which do not express parallelism will not
continue improving their performance when run on
newer computing platforms at the rates we have en-
joyed in the past. Therefore, finding large scale par-
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allelism is important for compute performance in the
future. Programming for GPUs is then indicative of
the future many-core programming experience.

3.1. Nvidia GeForce 8800 GTX

In this project, we employ the NVIDIA GeForce 8800
GTX GPU, which is an instance of the G80 GPU ar-
chitecture, and is a standard GPU widely available
on the market. Pertinent facts about the GPU plat-
form can be found in table 2. We refer the reader to
the Nvidia CUDA reference manual for more details
(Nvidia, 2007).

Table 2. Nvidia GeForce 8800 GTX Characteristics

# of stream processors 128
Peak general purpose IEEE SP 346 GFlops
Multiprocessor local store size 16 kB
Clock rate 1.35 GHz
Memory capacity 768 MB
Memory bandwidth 86.4 GB/s
CPU←→GPU bandwidth 3.2 Gbit/s

3.2. CUDA

Nvidia provides a programming environment for its
GPUs called the Compute Unified Device Architecture
(CUDA). The user codes in annotated C++, acceler-
ating compute intensive portions of the application by
executing them on the GPU.
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Figure 1. Logical organization of the GeForce 8800

Figure 1 illustrates how the GPU appears to the pro-
grammer. The programmer organizes the computa-
tion into grids, which are organized as a set of thread
blocks. The grids run sequentially on the GPU, mean-
ing that all computation in the grid must finish before
another grid is invoked. As mentioned, grids contain
thread blocks, which are batches of threads that exe-
cute together, sharing local memories and synchroniz-
ing at programmer specified barriers. A maximum of
512 threads can comprise a thread block, which puts a

limit on the scope of synchronization and communica-
tion in the computation. However, enormous numbers
of blocks can be launched in parallel in the grid, so
that the total number of threads that can be launched
in parallel is very high. In practice, we need a large
number of thread blocks to ensure that the compute
power of the GPU is efficiently utilized.

4. SVM Training Implementation

Since GPUs need a large number of threads to effi-
ciently exploit parallelism, we create one thread for
every data point in the training set. For the first
phase of the computation, each thread computes f ′

i

from equation (4). We then apply a working set selec-
tion heuristic to select the next points which will be
optimized. The details are explained in the following
section.

4.1. Map Reduce

At least since the LISP programming language, pro-
grammers have been mapping independent computa-
tions onto partitioned data sets, using reduce oper-
ations to summarize the results. Recently, Google
proposed a Map Reduce variant for processing large
datasets on compute clusters (Dean & Ghemawat,
2004). This algorithmic pattern is very useful for ex-
tracting parallelism, since it is simple to understand,
and maps well to parallel hardware, given the inherent
parallelism in the map stage of the computation.

The Map Reduce pattern has been shown to be useful
for many machine learning applications (Chu et al.,
2007), and is a natural fit for our SVM training algo-
rithm. For the first order heuristic, the computation of
f ′
i for all points is the map function, and the search for
blow, bhigh, ilow and ihigh is the reduction operation.
For the second order heuristic, there are two Map Re-
duce stages: one to compute f ′

i , bhigh and ihigh, and
another where the map stage computes ∆Fi for all
points, while the reduce stage computes blow and ilow.

Map + 

Local 

Reduce 

Global 

Reduce 

Figure 2. Structuring the Map Reduce

Because the CUDA programming model has strict lim-
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itations on synchronization and communication be-
tween thread blocks, we organize the reductions in two
phases, as shown in figure 2. The first phase does the
map computation, as well as a local reduce within a
thread block. The second phase finishes the global re-
duction. Each phase of this process is implemented as
a separate call to the GPU.

4.2. Implementation Details

4.2.1. Caching

Since evaluating the kernel function Φ(·) is the dom-
inant part of the computation, it is useful to cache
as much as possible from the matrix of kernel func-
tion evaluations Kij = Φ(xi, xj) (Joachims, 1999). We
compute rows of this matrix on the fly, as needed by
the algorithm, and cache them in the available memory
on the GPU.

When updating the vector f , we need access to two
rows of K, since we have changed exactly two entries
in α. In our system, the CPU checks to see which of
these two rows, if any, are present in the cache. If a row
is not present, the CPU voids the least recently used
row of the cache, and assigns it to the new row which
is needed. For the rows which hit in the cache, the
GPU avoids doing the kernel evaluations. Otherwise,
the GPU writes out the appropriate row or rows after
computing the kernel values. When using the second
order heuristic, the computation of ∆F references the
row ofK corresponding to ihigh, which guarantees that
the next update of f will have a cache hit for its access
to the same row.

4.2.2. Data Movement

Programming the GPU requires manually copying
data from the host computer to the GPU and vice
versa, and it also requires manually copying data from
the GPU’s global memory to the fast local stores. As
mentioned previously, if the cache does not contain a
particular row of K corresponding to the point xj , that
row will need to be generated, which means that we
need to compute Φ(xi, xj) ∀i ∈ 1..l. Since the vector
xj is shared between all computations, we load it into
the GPU’s local store. This is key to performance,
since accessing the local store is orders of magnitude
faster than accessing the global memory.

4.3. Related Work

There have been previous attempts to parallelize the
SVM training problem. The most similar to ours is
(Cao et al., 2006), which parallelizes the SMO algo-
rithm on a cluster of computers using MPI. Both our

approach and their approach use the concurrency in-
herent in the KKT condition updates as the major
source of parallelism. However, in terms of imple-
mentation, GPUs present a completely different model
than clusters, and hence the amount of parallelism ex-
ploited, such as the number of threads, granularity of
computation per thread, memory access patterns, and
data partitioning are very different. We also imple-
ment more sophisticated working set selection heuris-
tics.

Many other approaches for parallelizing SVM train-
ing have been presented. The cascade SVM (Graf
et al., 2005) is another proposed method for paralleliz-
ing SVM training on clusters. It uses a method of di-
vide and conquer to solve large SVM problems. (Zanni
et al., 2006) parallelize the underlying QP solver us-
ing Parallel Gradient Projection Technique. Work has
been done on using a parallel Interior Point Method for
solving the SVM training problem (Wu et al., 2006).
(Collobert et al., 2002) proposes a method where the
several smaller SVMs are trained in a parallel fashion
and their outputs weighted using a Artificial Neural
Network. (Ferreira et al., 2006) implement a gradi-
ent based solution for SVM training, which relies on
data parallelism in computing the gradient of the ob-
jective function for an unconstrained QP optimization
at its core. Some of these techniques, for example, the
training set decomposition approaches like the Cas-
cade SVM are orthogonal to the work we describe, and
could be applied to our solver. (Bottou et al., 2007)
give an extensive overview of parallel SVM implemen-
tations. We implemented the parallel SMO training
algorithm because of its relative simplicity, yet high
performance and robust convergence characteristics.

5. SVM Classification Implementation

We approached the SVM classification problem by
making use of Map Reduce computations as well as
vendor supplied Basic Linear Algebra Subroutines -
specifically, the Matrix Matrix Multiplication routine
(SGEMM), which calculates C ′ = αAB + βC, for
matrices A, B, and C and scalars α and β. For
the Linear, Polynomial, and Sigmoid kernels, calcu-
lating the classification value involves finding the dot
product between all test points and the support vec-
tors, which is done through SGEMM. For the Gaus-
sian kernel, we use the simple identity ||x − y||2 =
x·x+y·y−2x·y to recast the computation into a Matrix
Matrix multiplication, where the SGEMM computes
Dij = −γ||zi − xj ||2 = 2γ(zi · xj)− γ(zi · zi + xj · xj),
for a set of unknown points z and a set of support vec-
tors x. We then apply a map reduce computation to
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combine the computed D values to get the final result.

Continuing the Gaussian example, the map function
exponentiates Dij element wise, multiplies each col-
umn of the resulting matrix by the appropriate yjαj .
The reduce function sums the rows of the matrix and
adds b to obtain the final classification for each data
point as given by equation (14). Other kernels require
similar Map Reduce calculations to finish the classifi-
cation.

6. Results

The SMO implementation on the GPU is compared
with LIBSVM, as LIBSVM uses Sequential Minimal Op-
timization for SVM training. We used the Gaussian
kernel in all of our experiments, since it is widely em-
ployed.

6.1. Training

We tested the performance of our GPU implementa-
tion versus LIBSVM on the datasets detailed in tables
3 and 4.

Table 3. Datasets - References and training parameters

Dataset C γ

Adult (Asuncion & Newman, 2007) 100 0.5
Web (Platt, 1999) 64 7.8125
MNIST (LeCun et al., 1998) 10 0.125
USPS (Hull, 1994) 10 2−8

Forest (Asuncion & Newman, 2007) 10 0.125
Face (Rowley et al., 1998) 10 0.125

Table 4. Dataset Size

Dataset # Points # Dimensions

Adult 32,561 123
Web 49,749 300

MNIST 60,000 784
USPS 7,291 256
Forest 561,012 54
Face 6,977 381

The sizes of the datasets are given in table 4. Refer-
ences for the datasets used and the (C, γ) values used
for SVM training are provided in table 3.

We ran LIBSVM on an Intel Core 2 Duo 2.66 GHz pro-
cessor, and gave LIBSVM a cache size of 650 MB, which
is larger than our GPU implementation was allowed.
CPU-GPU communication overhead was included in
the solver runtime, but file I/O time was excluded for
both our solver and LIBSVM. Table 5 shows results
from our solver. File I/O varies from 1.2 seconds for
USPS to about 12 seconds for Forest dataset. The
CPU - GPU data transfer overhead was also very low.

The time taken to transfer the training data to the
GPU and copy the results back was less than 0.6 sec-
onds, even for our largest dataset (Forest).

Since any two solvers give slightly different answers
on the same optimization problem, due to the inex-
act nature of the optimization process, we show the
number of support vectors returned by the two solvers
as well as how close the final values of b were for the
GPU solver and LIBSVM, which were both run with
the same tolerance value τ = 0.001. As shown in the
table, the deviation in number of support vectors be-
tween the two solvers is less than 2%, and the deviation
in the offset b is always less than 0.1%. Our solver pro-
vides equivalent accuracy to the LIBSVM solver, which
will be shown again in the classification results section.

Table 5. SVM Training Convergence Comparison

Dataset Number of SVs Difference
GPU LIBSVM in b (%)

Adaptive

Adult 18,674 19,058 -0.004
Web 35,220 35,232 -0.01
MNIST 43,730 43,756 -0.04
USPS 684 684 0.07
Forest 270,351 270,311 0.07
Face 3,313 3,322 0.01

Table 6 contains performance results for the two
solvers. We see speedups in all cases from 9× to 35×.
For reference, we have shown results for the solvers
using both heuristics statically. Examining the data
shows that the adaptive heuristic performs robustly,
surpassing or coming close to the performance of the
best static heuristic on all benchmarks.

6.2. Classification

Results for our classifier are presented in table 8.
We achieve 81 − 138× speedup over LibSVM on the
datasets shown. As with the solver, file I/O times
were excluded from overall runtime. File I/O times
vary from 0.4 seconds for Adult dataset to about 6
seconds for MNIST dataset.

6.2.1. Optimizations to CPU based classifier

LIBSVM classifies data points serially. This effectively
precludes data locality optimizations and produces sig-
nificant slowdown. It also represents data in a sparse
format, which can cause overhead as well.

To optimize the CPU classifier, we performed the fol-
lowing:

1. We changed the data structure used for storing
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Table 6. SVM Training Results

Dataset GPU 1st Order GPU 2nd Order GPU Adaptive LIBSVM Speedup (×)
Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s) (Adaptive)

Adult 114,985 30.15 40,044 30.46 64,446 26.92 43,735 550.2 20.4
Web 79,749 174.17 81,498 290.23 70,686 163.89 85,299 2422.46 14.8
MNIST 68,055 475.42 67,731 864.46 68,113 483.07 76,385 16965.79 35.1
USPS 6,949 0.596 3,730 0.546 4,734 0.576 4,614 5.092 8.8
Forest 2,070,867 4571.17 236,601 1441.08 450,506 2023.24 275,516 66523.53 32.9
Face 6,044 1.30 4,876 1.30 5,535 1.32 5,342 27.61 20.8

the support vectors and test vectors from a sparse
indexed set to a dense matrix.

2. To maximize performance, we used BLAS rou-
tines from the Intel Math Kernel Library to per-
form operations similar to those mentioned in Sec-
tion 5.

3. Wherever possible, loops were parallelized (2-way
for the dual-core machine) using OpenMP.

These optimizations improved the classification speed
on the CPU by a factor of 3.4 − 28.3×. The speedup
numbers for the different datasets are shown in table 8.
It should be noted that the GPU version is better than
the optimized CPU versions by a factor of 4.9−23.9×.

For some insight into these results, we note that the op-
timized CPU classifier performs best on problems with
a large number of input space dimensions, which helps
make the SVM classification process compute bound.
For problems with a small number of input space di-
mensions, the SVM classification process is memory
bound, meaning it is limited by memory bandwidth.
Since the GPU has much higher memory bandwidth,
as noted in section 3, it is even more attractive for such
problems.

We tested the combined SVM training and classifica-
tion process for accuracy by using the SVM classifier
produced by the GPU solver with the GPU classifi-
cation routine, and used the SVM classifier provided
by LIBSVM’s solver to perform classification with LIB-
SVM. Thus, the accuracy of the classification results
presented in table 7 reflect the overall accuracy of the
GPU solver and GPU classifier system. The results
are identical, which shows that our GPU based SVM
system is as accurate as traditional CPU based meth-
ods.

Table 7. Accuracy of GPU SVM classification vs. LIBSVM

GPU LIBSVM
Dataset Accuracy Accuracy

Adult 6619/8000 6619/8000
Web 3920/4000 3920/4000
MNIST 2400/2500 2400/2500
USPS 1948/2007 1948/2007
Face 23665/24045 23665/24045

7. Conclusion

This work has demonstrated the utility of graphics
processors for SVM classification and training. Train-
ing time is reduced by 9 − 35×, and classification
time is reduced by 81 − 138× compared to LIBSVM,
or 5 − 24× over our own CPU based SVM classifier.
These kinds of performance improvements can change
the scope of SVM problems which are routinely solved,
increasing the applicability of SVMs to difficult clas-
sification problems. For example, training a classifier
for an input data set with almost 600000 data points
and 50 dimensions takes only 34 minutes on the GPU,
compared with over 18 hours on the CPU.

The GPU is a very low cost way to achieve such high
performance: the GeForce 8800 GTX fits into any
modern desktop machine, and currently costs $300.
Problems which used to require a compute cluster can
now be solved on one’s own desktop. New machine
learning algorithms that can take advantage of this
kind of performance, by expressing parallelism widely,
will provide compelling benefits on future many-core
platforms.
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Table 8. Performance of GPU SVM classifier compared to LIBSVM and Optimized CPU classifier

LibSVM CPU Optimized classifier GPU Classifier
Dataset Time (s) Time (s) Speedup (×) compared Time (s) Speedup (×) compared Speedup (×) compared

to LIBSVM to LibSVM to CPU optimized code

Adult 61.307 7.476 8.2 0.575 106.6 13.0
Web 106.835 15.733 6.8 1.063 100.5 14.8
MNIST 269.880 9.522 28.3 1.951 138.3 4.9
USPS 0.777 0.229 3.4 0.00958 81.1 23.9
Face 88.835 5.191 17.1 0.705 126.0 7.4
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Abstract

We present a data structure enabling efficient
nearest neighbor (NN) retrieval for bregman
divergences. The family of bregman diver-
gences includes many popular dissimilarity
measures including KL-divergence (relative
entropy), Mahalanobis distance, and Itakura-
Saito divergence. These divergences present
a challenge for efficient NN retrieval because
they are not, in general, metrics, for which
most NN data structures are designed. The
data structure introduced in this work shares
the same basic structure as the popular met-
ric ball tree, but employs convexity proper-
ties of bregman divergences in place of the tri-
angle inequality. Experiments demonstrate
speedups over brute-force search of up to sev-
eral orders of magnitude.

1. Introduction

Nearest neighbor (NN) search is a core primitive in
machine learning, vision, signal processing, and else-
where. Given a database X, a dissimilarity measure
d, and a query q, the goal is to find the x ∈ X mini-
mizing d(x, q). Brute-force search is often impractical
given the size and dimensionality of modern data sets,
so many data structures have been developed to accel-
erate NN retrieval.

Most retrieval data structures are for the `2 norm and,
more generally, metrics. Though many dissimilarity
measures are metrics, many are not. For example,
the natural notion of dissimilarity between probability
distributions is the KL-divergence (relative entropy),
which is not a metric. It has been used to compare
histograms in a wide variety of applications, includ-
ing text analysis, image classification, and content-
based image retrieval (Pereira et al., 1993; Puzicha

Appearing in Proceedings of the 25 th International Confer-
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et al., 1999; Rasiwasia et al., 2007). Because the KL-
divergence does not satisfy the triangle inequality, very
little of the research on NN retrieval structures applies.

The KL-divergence belongs to a broad family of dis-
similarities called bregman divergences. Other exam-
ples include Mahalanobis distance, used e.g. in classi-
fication (Weinberger et al., 2006); the Itakura-Saito di-
vergence, used in sound processing (Gray et al., 1980);
and `22 distance. Bregman divergences present a chal-
lenge for fast NN retrieval since they need not be sym-
metric or satisfy the triangle inequality.

This paper introduces bregman ball trees (bbtrees), the
first NN retrieval data structure for general bregman
divergences. The data structure is a relative of the
popular metric ball tree (Omohundro, 1989; Uhlmann,
1991; Moore, 2000). Since this data structure is built
on the triangle inequality, the extension to bregman
divergences is non-trivial.

A bbtree defines a hierarchical space decomposition
based on bregman balls; retrieving a NN with the tree
requires computing bounds on the bregman divergence
from a query to these balls. We show that this diver-
gence can be computed exactly with a simple bisection
search that is very efficient. Since only bounds on the
divergence are needed, we can often stop the search
early using primal and dual function evaluations.

In the experiments, we show that the bbtree provides a
substantial speedup—often orders of magnitude—over
brute-force search.

2. Background

This section provides background on bregman diver-
gences and nearest neighbor search.

2.1. Bregman Divergences

First we briefly overview bregman divergences.

Definition 1 (Bregman, 1967). Let f be a strictly
convex differentiable function. 1 The bregman diver-

1Additional technical restrictions are typically put on
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}df (x, y)

f

xy

Figure 1. The bregman divergence between x and y.

gence based on f is

df (x, y) ≡ f(x)− f(y)− 〈∇f(y), x− y〉.

One can interpret the bregman divergence as the dis-
tance between a function and its first-order taylor ex-
pansion. In particular, df (x, y) is the difference be-
tween f(x) and the linear approximation of f(x) cen-
tered at y; see figure 1. Since f is convex, df (x, y) is
always nonnegative.

Some standard bregman divergences and their base
functions are listed in table 1.

A bregman divergence is typically used to assess sim-
ilarity between two objects, much like a metric. But
though metrics and bregman divergences are both used
for similarity assessment, they do not share the same
fundamental properties. Metrics satisfy three basic
properties: non-negativity: d(x, y) ≥ 0; symmetry:
d(x, y) = d(y, x); and, perhaps most importantly, the
triangle inequality: d(x, z) ≤ d(x, y) + d(y, z). Breg-
man divergences are nonnegative, however they do not
satisfy the triangle inequality (in general) and can be
asymmetric.

Bregman divergences do satisfy a variety of geometric
properties, a couple of which we will need later. The
bregman divergence df (x, y) is convex in x, but not
necessarily in y. Define the bregman ball of radius R
around µ as

B(µ,R) ≡ {x : df (x, µ) ≤ R}.
Since df (x, µ) is convex in x, B(µ,R) is a convex set.

Another interesting property concerns means. For a
set of points, the mean under a bregman divergence is
well defined and, interestingly, is independent of the
choice of divergence:

µX ≡ argminµ
∑
x∈X

df (x, µ) =
1
|X|

∑
x∈X

x.

This fact can be used to extend k-means to the family
of bregman divergences (Banerjee et al., 2005).

f . In particular, f is assumed to be Legendre.

Table 1. Some standard bregman divergences.

f(x) df (x, y)

`22
1
2
‖x‖22 1

2
‖x− y‖22

KL
P
xi log xi

P
xi log xi

yi

Mahalanobis 1
2
x>Qx 1

2
(x− y)>Q(x− y)

Itakura-Saito −
P

log xi

P“
xi
yi
− log xi

yi
− 1
”

2.2. NN Search

Because of the tremendous practical and theoreti-
cal importance of nearest neighbor search in machine
learning, computational geometry, databases, and else-
where, many retrieval schemes have been developed to
reduce the computational cost of finding NNs.

KD-trees (Friedman et al., 1977) are one of the earli-
est and most popular data structures for NN retrieval.
The data structure and accompanying search algo-
rithm provide a blueprint for a huge body of future
work (including the present one). The tree defines a
hierarchical space partition where each node defines an
axis-aligned rectangle. The search algorithm is a sim-
ple branch and bound exploration of the tree. Though
KD-trees are useful in many applications, their per-
formance has been widely observed to degrade badly
with the dimensionality of the database.

Metric ball trees (Omohundro, 1989; Uhlmann, 1991;
Yianilos, 1993; Moore, 2000) extend the basic method-
ology behind KD-trees to metric spaces by using met-
ric balls in place of rectangles. The search algorithm
uses the triangle inequality to prune out nodes. They
seem to scale with dimensionality better than KD-trees
(Moore, 2000), though high-dimensional data remains
very challenging. Some high-dimensional datasets are
intrinsically low-dimensional; various retrieval schemes
have been developed that scale with a notion of intrin-
sic dimensionality (Beygelzimer et al., 2006).

In many applications, an exact NN is not required;
something nearby is good enough. This is especially
true in machine learning applications, where there is
typically a lot of noise and uncertainty. Thus many
researchers have switched to the problem of approxi-
mate NN search. This relaxation led to some signifi-
cant breakthroughs, perhaps the most important be-
ing locality sensitive hashing (Datar et al., 2004). Spill
trees (Liu et al., 2004) are another data structure for
approximate NN search and have exhibited very strong
performance empirically.
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The present paper appears to be the first to describe
a general method for efficiently finding bregman NNs;
however, some related problems have been examined.
(Nielsen et al., 2007) explores the geometric properties
of bregman voronoi diagrams. Voronoi diagrams are
of course closely related to NN search, but do not lead
to an efficient NN data structure beyond dimension 2.
(Guha et al., 2007) contains results on sketching breg-
man (and other) divergences. Sketching is related to
dimensionality reduction, which is the basis for many
NN schemes.

We are aware of only one NN speedup scheme for KL-
divergences (Spellman & Vemuri, 2005). The results
in this paper are quite limited: experiments were con-
ducted on only one dataset and the speedup is less
than 3x. Moreover, there appears to be a significant
technical flaw in the derivation of their data structure.
In particular, they cite the pythagorean theorem as an
equality for projection onto an arbitrary convex set,
whereas it is actually an inequality.

3. Bregman Ball Trees

This section describes the bregman ball tree data
structure. The data structure and search algorithms
follow the same basic program used in KD-trees and
metric trees; in place of rectangular cells or metric
balls, the fundamental geometric object is a bregman
ball.

A bbtree defines a hierarchical space partition based
on bregman balls. The data structure is a binary tree
where each node i is associated with a subset of the
database Xi ⊂ X. Node i additionally defines a breg-
man ball B(µi, Ri) with center µi and radius Ri such
that Xi ⊂ B(µi, Ri). Interior (non-leaf) nodes of tree
have two child nodes l and r. The database points
belonging to node i are split between child l and r;
each point in Xi appears in exactly one of Xl or Xr.2

Though Xl and Xr are disjoint, the balls B(µl, Rl)
and B(µr, Rr) may overlap. The root node of the tree
encapsulates the entire database. Each leaf covers a
small fraction of the database; the set of all leaves
cover the entirety.

3.1. Searching

This subsection describes how to retrieve a query’s
nearest neighbor with a bbtree. Throughout, X =
{x1, . . . , xn} is the database, q is a query, and df (·, ·)
is a (fixed) bregman divergence. The point we are

2The disjointedness of the two point sets is not essential.

searching for is the left NN

xq ≡ argminx∈Xdf (x, q).

Finding the right NN (argminx∈Xdf (q, x)) is consid-
ered in section 5.

Branch and bound search locates xq in the bbtree.
First, the tree is descended; at each node, the search al-
gorithm chooses the child for which df (µ, q) is smallest
and ignores the sibling node (temporarily). Upon ar-
riving at a leaf node i, the algorithm calculates df (x, q)
for all x ∈ Xi. The closest point is the candidate NN;
call it xc. Now the algorithm must traverse back up
the tree and consider the previously ignored siblings.
An ignored sibling j must be explored if

df (xc, q) > min
x∈B(µj ,Rj)

d(x, q). (1)

The algorithm computes the right side of (1); we come
back that in a moment. If (1) holds, then node j and
all of its children can be ignored since the NN can-
not be found in that subtree. Otherwise, the subtree
rooted at j must be explored. This algorithm is easily
adjusted to return the k-nearest neighbors.

The algorithm hinges on the computation of (1)—the
bregman projection onto a bregman ball. In the `22 (or
arbitrary metric) case, the projection can be computed
analytically with the triangle inequality. Since general
bregman divergences do not satisfy this inequality, we
need a different way to compute—or at least bound—
the right side of (1). Computing this projection is the
main technical contribution of this paper, so we discuss
it separately in section 4.

3.2. Approximate Search

As we mentioned in section 2.2, many practical appli-
cations do not require an exact NN. This is especially
true in machine learning applications, where there is
typically a lot of noise and even the representation of
points used is heuristic (e.g. selecting an appropriate
kernel for an SVM often involves guesswork). This
flexibility is fortunate, since exact NN retrieval meth-
ods rarely work well on high-dimensional data.

Following (Liu et al., 2004), a simple way to speed up
the retrieval time of the bbtree is to simply stop af-
ter only a few leaves have been examined. This idea
originates from the empirical observation that metric
and KD-trees often locate a point very close to the NN
quickly, then spend most of the execution time back-
tracking. We show empirically that the quality of the
NN degrades gracefully as the number of leaves ex-
amined decreases. Even when the search procedure is
stopped very early, it returns a solution that is among
the nearest neighbors.
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3.3. Building

The performance of the search algorithm depends on
how many nodes can be pruned; the more, the better.
Intuitively, the balls of two siblings should be well-
separated and compact. If the balls are well-separated,
a query is likely to be much closer to one than the
other. If the balls are compact, then the distance from
a query to a ball will be a good approximation to the
distance from a query to the nearest point within the
ball. Thus at each level, we’d like to divide the points
into two well-separated sets, each of which is compact.
A natural way to do this is to use k-means, which has
already been extended to bregman divergences (Baner-
jee et al., 2005).

The build algorithm proceeds from top down. Start-
ing at the top, the algorithm runs k-means to partition
the points into two clusters. This process is repeated
recursively. The total build time is O(n log n). Clus-
tering from the bottom-up might yield better results,
but the O(n2 log n) build time is impractical for large
datasets.

4. Computing the Bound

Recall that the search procedure needs to determine if
the bound

df (xc, q) > min
x∈B(µ,R)

df (x, q) (2)

holds, where xc is the current candidate NN. We first
show that the right side can be computed to accu-
racy ε in only O(log 1

ε ) steps with a simple bisection
search. Since we only actually need upper and lower
bounds on the quantity, we then present a procedure
that augments the bisection search with primal and
dual bounds so that it can stop early.

The right of (2) is a convex program:

min
x

df (x, q)

subject to: df (x, µ) ≤ R. (P)

The search algorithm will need to solve (P) many times
in the course of locating q’s NN, so we need to be able
to compute a solution very quickly.

Before considering the general case, let us pause to
examine the `22 case. In this case, we can compute the
projection xp analytically:

xp = θµ+ (1− θ)q,

where θ =
√

2R
‖q−µ‖ .

q

µ xp

What properties of this projection might extend to all
of bregman divergences?

1. First, xp lies on the line between q and µ; this
drastically reduces the search space from a D-
dimensional convex set to a one-dimensional line.

2. Second, xp lies on the boundary of B(µ,R)—i.e
df (xp, µ) = R. Combined with property 1, this
fact completely determines xp: it is the point
where the line between µ and q intersects the shell
of B(µ,R).

3. Finally, since the `22 ball is spherically symmetric,
we can compute this intersection analytically.

We prove that the first property is a special case of
a fact that holds for all bregman divergences. Addi-
tionally, the second property generalizes to bregman
divergences without change. The final property does
not go through, so we will not be able to find a solution
to (P) analytically.

Throughout, we use q′ ≡ ∇f(q), µ′ ≡ ∇f(µ), etc. to
simplify notation. xp denotes the optimal solution to
(P).

Claim 2. x′p lies on the line between q′ and µ′.

Proof. The lagrange dual function of (P) is

inf
x
df (x, q) + λ(df (x, µ)−R), (3)

where λ ≥ 0. Differentiating (3) with respect to x and
setting it equal to 0, we get

∇f(xp)−∇f(q) + λ∇f(xp)− λ∇f(µ) = 0.

We use the change of variable θ ≡ λ
1+λ and rearrange

to arrive at

∇f(xp) = θµ′ + (1− θ)q′,

where θ ∈ [0, 1).

Thus we see that property 1 of the `22 projection is a
special case of a relationship between the gradients;
it follows from claim 2 because ∇f(x) = x for the `22
divergence.
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Since f is strictly convex, the gradient mapping is one-
to-one. Moreover, the inverse mapping is given by the
gradient of the convex conjugate, defined as

f∗(y) ≡ sup
x
{〈x, y〉 − f(x)}. (4)

Symbolically:

x′x

∇f∗

∇f

Thus to solve (P), we can look for the optimal x′ along
θµ′+(1−θ)q′, and then apply ∇f∗ to recover xp.3 To
keep notation simple, we define

x′θ ≡ θµ′ + (1− θ)q′ and (5)
xθ ≡ ∇f∗(x′θ). (6)

Now onto the second property.
Claim 3. df (xp, µ) = R—i.e. the projection lies on
the boundary of B(µ,R).

The claim follows from complementary slackness ap-
plied to (3). Claims 2 and 3 imply that finding the
projection of q onto B(µ,R) is equivalent to

find θ

subject to: df (xθ, µ) = R

θ ∈ (0, 1]
xθ = ∇f∗(θµ′ + (1− θ)q′).

Fortunately, solving this program is simple.
Claim 4. df (xθ, µ) is monotonic in θ.

This claim follows from the convexity of f∗. Since
df (xθ, µ) is monotonic, we can efficiently search for θp
satisfying df (xθp

, µ) = R using bisection search on θ.
We summarize the result in the following theorem.
Theorem 5. Suppose ‖∇2f∗‖2 is bounded around x′p.
Then a point x satisfying

|df (x, q)− df (xp, q)| ≤ ε+O(ε2)

can be found in O(log 1/ε) iterations. Each iteration
requires one divergence evaluation and one gradient
evaluation.

4.1. Stopping Early

Recall that the point of all this analysis is to evaluate
whether

df (xc, q) > min
x∈B(µ,R)

df (x, q), (7)

3All of the base functions in table 1 have closed form
conjugates.

where xc is the current candidate NN. If (7) holds, the
node in question must be searched; otherwise it can
be pruned. We can evaluate the right side of (7) ex-
actly using the bisection method described previously,
but an exact solution is not needed. Suppose we have
bounds a and A satisfying

A ≥ min
x∈B(µ,R)

df (x, q) ≥ a.

If df (xc, q) < a, the node can be pruned; if df (xc, q) >
A, the node must be explored. We now describe upper
and lower bounds that are computed at each step of
the bisection search; the search proceeds until one of
the two stopping conditions is met.

A lower bound is given by weak duality. The lagrange
dual function is

L(θ) ≡ df (xθ, q) +
θ

1− θ
(
df (xθ, µ)−R

)
. (8)

By weak duality, for any θ ∈ [0, 1),

L(θ) ≤ min
x∈B(µ,R)

df (x, q). (9)

For the upper bound, we use the primal. At any θ
satisfying df (xθ, µ) ≤ R, we have

df (xθ, q) ≥ min
x∈B(µ,R)

df (x, q). (10)

Let us now put all of the pieces together. We wish to
evaluate whether (7) holds. The algorithm performs
bisection search on θ, attempting to locate the θ satis-
fying df (xθ, µ) = R. At step i the algorithm evaluates
θi on two functions. First, it checks the lower bound
bound given by the dual function L(θi) defined in (8).
If L(θi) > df (xc, q), then the node can be pruned.
Otherwise, if xθi ∈ B(µ,R), we can update the upper
bound. If df (xθi , q) < df (xc, q), then the node must
be searched. Otherwise, neither bound holds, so the
bisection search continues. See Algorithm 1 for pseu-
docode.

5. Left and Right NN

Since a bregman divergence can be asymmetric, it de-
fines two NN problems:

• (lNN) return argminx∈Xdf (x, q) and

• (rNN) return argminx∈Xdf (q, x).

The bbtree data structure finds the left NN . We show
that it can also be used to find the right NN.
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Algorithm 1 CanPrune
Input: θl, θr ∈ (0, 1], q, xc, µ ∈ RD, R ∈ R.
Set θ = θl+θr

2 .
Set xθ = ∇f∗(θµ′ + (1− θ)q′)
if L(θ) > df (xc, q) then

return Yes
else if xθ ∈ B(µ,R) and df (xθ, q) < df (xc, q) then

return No
else if df (xθ, µ) > R then

return CanPrune(θl, θ, q, xc, µ)
else if df (xθ, µ) < R then

return CanPrune(θ, θr, q, xc, µ)
end if

Recall that the convex conjugate of f is defined as
f∗(y) ≡ supx{〈x, y〉−f(x)}. The supremum is realized
at a point x satisfying ∇f(x) = y; thus

f∗(y′) = 〈y, y′〉 − f(y).

We use this identity to rewrite df (·, ·):
df (x, y) = f(x)− f(y)− 〈y′, x− y〉

= f(x) + f∗(y′)− 〈y′, x〉
= df∗(y′, x′).

This relationship provides a simple prescription for
adapting the bbtree to the rNN problem: build a bb-
tree for the divergence df∗ and the database X ′ ≡
{∇f(x1), . . . ,∇f(xn)}. On query q, q′ ≡ ∇f(q) is
computed and the bbtree finds x′ ∈ X ′ minimizing
df∗(x′, q′). The point x whose gradient is x′ is then
the rNN to q.

6. Experiments

We examine the performance benefit of using bbtrees
for approximate and exact NN search. All experiments
were conducted with a simple C implementation that
is available from the author’s website.

The results are for the KL-divergence. We chose to
evaluate the bbtree for the KL-divergence because it
is used widely in machine learning, text mining, and
computer vision; moreover, very little is known about
efficient NN retrieval for it. In contrast, there has
been a tremendous amount of work for speeding up
the `22 and Mahalanobis divergences—they both may
be handled by standard metric trees and many other
methods. Other bregman divergences appear much
less often in applications. Still, examining the prac-
tical performance of bbtrees for these other bregman
divergences is an interesting direction for future work.

We ran experiments on several challenging datasets.

• rcv-D. We used latent dirichlet allocation (LDA)
(Blei et al., 2003) to generate topic histograms for
500k documents in the rcv1 corpus (Lewis et al.,
2004). These histograms were generated by build-
ing a LDA model on a training set and then per-
forming inference on 500k documents to gener-
ate their posterior dirichlet parameters. Suitably
scaled, these parameters give a representation of
the documents in the topic simplex (Blei et al.,
2003). We generated data using this process for
D = 8, 16, . . . , 256 topics.

• Corel histograms. This dataset contains 60k
color histograms generated from the Corel image
dataset. Each histogram is 64-dimensional.

• Semantic space. This dataset is a 371-
dimensional representation of 5000 images from
the Corel Stock photo collection. Each image is
represented as a distribution over 371 description
keywords (Rasiwasia et al., 2007).

• SIFT signatures. This dataset contains 1111-
dimensional representations of 10k images from
the PASCAL 2007 dataset (Everingham et al.,
2007). Each point is a histogram of quantized
SIFT features as suggested in (Nowak et al.,
2006).

Notice that most of these datasets are fairly high-
dimensional.

We are mostly interested in approximate NN retrieval,
since that is likely sufficient for machine learning appli-
cations. If the bbtree is stopped early, it is not guar-
anteed to return an exact NN, so we need a way to
evaluate the quality of the point it returns. One nat-
ural evaluation metric is this: How many points from
the database are closer to the query than the returned
point? Call this value NC for “number closer”. If NC
is small compared to the size of the database, say 10
versus 100k, then it will likely share many properties
with the true NN (e.g. class label).4

The results are shown in figure 2. These are strong
results; it is shown that the bbtree is often orders
of magnitude faster than brute-force search without
a substantial degradation of quality. More analysis
appears in the caption.

4A different evaluation criteria is the approximation ra-
tio ε satisfying df (x, q) ≤ (1 + ε)df (xq, q), where xq is q’s
true NN. We did not use this measure because it is dif-
ficult to interpret. For example, suppose we find ε = .3
approximate NNs from two different databases A and B.
It could easily be the case that all points in A are 1.3-
approximate NNs, whereas only the exact NN in database
B is 1.3-approximate.
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Figure 2. Log-log plots (base 10): y-axis is the exponent of the speedup over brute force search, x-axis is the
exponent of the number of database points closer to the query than the reported NN. The y-axis ranges from 100

(no speedup) to 105. The x-axis ranges from 10−2 to 102. All results are averages over queries not in the database.

Consider the plot for rcv-128 (center). At x = 100, the bbtree is returning one of the two nearest
neighbors (on average) out of 500k points at a 100x speedup over brute force search. At x = 101, the bbtree is
returning one of the eleven nearest neighbors (again, out of 500k points) and yields three orders of magnitude
speedup over brute force search.

The best results are achieved on the rcv-D datasets and the Corel histogram dataset. The improve-
ments are less pronounced for the SIFT signature and Semantic space data, which may be a result of both
the high dimensionality and small size of these two datasets. Even so, we are getting useful speedups on the
semantic space dataset (10-100x speedup with small error). For the SIFT signatures, we are getting a 10x
speedup while receiving NNs in the top 1%.
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Table 2. Exact search

dataset dimensionality speedup
rcv-8 8 64.5
rcv-16 16 36.7
rcv-32 32 21.9
rcv-64 64 12.0
corel histograms 64 2.4
rcv-128 128 5.3
rcv-256 256 3.3
semantic space 371 1.0
SIFT signatures 1111 0.9

Finally, we consider exact NN retrieval. It is well
known that finding a (guaranteed) exact NN in mod-
erate to high-dimensional databases is very challeng-
ing. In particular, metric trees, KD-trees, and relatives
typically afford a reasonable speedup in moderate di-
mensions, but the speedup diminishes with increasing
dimensionality (Moore, 2000; Liu et al., 2004). When
used for exact search, the bbtree reflects this basic pat-
tern. Table 2 shows the results. The bbtree provides
a substantial speedup on the moderate-dimensional
databases (up through D = 256), but no speedup on
the two databases of highest dimensionality.

7. Conclusion

In this paper, we introduced bregman ball trees and
demonstrated their efficacy in NN search. The exper-
iments demonstrated that bbtrees can speed up ap-
proximate NN retrieval for the KL-divergence by or-
ders of magnitude over brute force search. There are
many possible directions for future research. On the
practical side, which ideas behind the many variants of
metric trees might be useful for bbtrees? On the the-
oretical side, what is a good notion of intrinsic dimen-
sionality for bregman divergences and can a practical
data structure be designed around it?
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Abstract
In high-dimensional classification problems it is
infeasible to include enough training samples to
cover the class regions densely. Irregularities in
the resulting sparse sample distributions cause
local classifiers such as Nearest Neighbors (NN)
and kernel methods to have irregular decision
boundaries. One solution is to “fill in the holes”
by building a convex model of the region spanned
by the training samples of each class and classi-
fying examples based on their distances to these
approximate models. Methods of this kind based
on affine and convex hulls and bounding hyper-
spheres have already been studied. Here we pro-
pose a method based on the bounding hyper-
disk of each class – the intersection of the affine
hull and the smallest bounding hypersphere of its
training samples. We argue that in many cases
hyperdisks are preferable to affine and convex
hulls and hyperspheres: they bound the classes
more tightly than affine hulls or hyperspheres
while avoiding much of the sample overfitting
and computational complexity that is inherent in
high-dimensional convex hulls. We show that the
hyperdisk method can be kernelized to provide
nonlinear classifiers based on non-Euclidean dis-
tance metrics. Experiments on several classifica-
tion problems show promising results.

1. Introduction
Nearest neighbours (NN) – assigning the query to the class
with the nearest training sample(s) under some suitable dis-
tance metric – is one of the simplest methods for multi-

Appearing in Proceedings of the 25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

class classification. Asymptotically it makes at most twice
as many errors as the optimal Bayes rule classifier, but
this result assumes dense sampling which requires train-
ing sets that are exponentially large in the dimensionality
of the underlying feature space class distributions. In high-
dimensional problems such as text, gene or visual object
classification, tractable training sets are necessarily much
smaller than this, and the performance of NN can often be
poor. The main problem is the sparse and irregular distribu-
tion of the training samples, which often leaves “holes” in
the input space – regions that have few or no nearby train-
ing samples from the relevant class. Equivalently, local
density estimates in high dimensions are intrinsically noisy
because any region with a radius significantly smaller than
that of the class has such a small volume relative to that of
the class that it typically contains few or no samples. These
effects make the inter-class decision boundaries of high di-
mensional NN and local kernel based methods erratic, thus
leading to classification errors.

One way to circumvent this problem is to approxi-
mate each class with a point set that “fills in the
holes” between the examples. In particular, any
convex set containing the examples has this prop-
erty. Several approximations of this kind have already
been studied including the affine hulls, convex hulls,
bounding hyperspheres and bounding hyperellipsoids of
the examples (Gulmezoglu et al., 2001,Laaksonen, 1997,
Nalbantov et al., 2007,Vincent & Bengio, 2001). Despite
the simplicity of their geometry, such approximations are
useful in high dimensions because in any case fine local de-
tails can not be resolved with practical numbers of samples.
Queries are classified to the class whose convex approxi-
mation is closest to the query point – a convex nearest-point
problem that can be solved reasonably efficiently with stan-
dard methods. This is equivalent to NN in which additional
points are fantasized to fill in the set of each class.

Affine hulls (i.e. spanning linear subspaces that have
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been shifted to pass through the centroid of the
class) were first used for global classifiers of isolated
words and hand-written digits in (Gulmezoglu et al., 2001,
Laaksonen, 1997), giving good classification performance.
Similarly, (Nalbantov et al., 2007) used convex hulls for
global classifiers on some of the UCI and SlatLog prob-
lems, comparing these to Support Vector Machines (SVMs)
both theoretically and empirically. Such global convex
approximations may fail to capture the decision bound-
aries of classes with nonlinear boundaries and one can
also build more local approximations, or even build a
separate approximation for each query sample based on
convex approximations of its k nearest neighbours from
each class. Again the query is classified to the (lo-
cally) nearest hull. Although this is not immune to the
hole problem, (Vincent & Bengio, 2001) reported signifi-
cant improvements over traditional NN for affine and con-
vex hull methods of this kind in handwritten digit clas-
sification. Another way to handle complex boundaries is
via nonlinear mapping to a high-dimensional feature space
(e.g. via a kernel) followed by a global convex set approxi-
mation of the kind described below.

Besides classification, approximations based on affine or
convex hulls have also been used for dimensionality reduc-
tion. Mixtures of Principal Component Analyzers can be
used to approximate nonlinear data manifolds under local
linearity assumptions (Hinton et al., 1997). Locally Lin-
ear Embedding (Roweis & Saul, 2000) approximates the
nonlinear structure of high-dimensional data by exploit-
ing local affine/convex reconstructions. (Verbeek, 2006)
combined several locally valid linear manifolds to obtain
a global nonlinear mapping between the high-dimensional
sample space and a low-dimensional manifold. In
(Cevikalp et al., 2008), we proposed a margin based dis-
criminative dimensionality reduction method based on con-
vex models of classes.

The current paper presents a new convex approximation
based classifier that models each class with its bounding
hyperdisk – the intersection of the affine hull and the min-
imal bounding hypersphere of its training examples. Hy-
perdisks are attractive primitives because they maintain the
stability of the affine hull and hypersphere methods while
providing better localization of the training samples and
hence potentially better discrimination. Convex hull ap-
proximations tend to be unrealistically tight (for practical
training set sizes, classes typically extend considerably be-
yond the convex hull of the training samples) while affine
hull and hypersphere ones tend to be too loose in comple-
mentary senses (one too “broad”, the other too “deep”).
The hyperdisk approach to some extent captures the best
aspects of each method. It can be applied both globally and
locally and it is simple enough to be expressible in terms of
dot products and hence to allow kernelization.

The paper is organized as follows. In section 2 we recall the
affine and convex hull based methods. Section 3 introduces
the hyperdisk method. Section 4 describes our experiments
and data sets. Finally, section 5 presents conclusions and
future directions.

2. Background on Related Methods
2.1. Nearest Affine Hull (NAH) Classification

Let the training samples be xci ∈ IRd, where c = 1, . . . , C
indexes the C classes and i = 1, . . . , Nc indexes the Nc
samples of class c. We suppose that the affine hull of the
samples from each class is a proper subset of IRd of dimen-
sion less than d (which certainly holds whenNc � d). The
affine hull is the affine span of the training samples, i.e. the
smallest affine subspace containing them

Haff
c =

{
x =

∑Nc

i=1 αi xci

∣∣∣∣ ∑i αi = 1
}
. (1)

The affine hull gives a rather loose approximation to the
class region because it does not constrain the position of
the training points within the affine subspace. The distance
from a query point xq to an affine hull Haff

c is the norm of
the displacement from xq to the closest point on the hull,
which can be expressed as the orthogonal projection of xq
normal to the subspace (see, e.g., (Cevikalp et al., 2007) for
derivations):

d(xq, Haff
c ) = ‖(I−Pc)(xq−µc)‖ = ‖P⊥c xq−µ⊥c ‖. (2)

Here: I is the identity matrix, Pc is the orthogonal projec-
tion onto the spanning subspace (the range of the covari-
ance matrix) of the class-c training samples, and P⊥c =
I − Pc is the orthogonal projection onto the null space
of the covariance – i.e. the orthogonal complement of
the spanning subspace, called the indifference subspace in
(Gulmezoglu et al., 2001,Cevikalp et al., 2005). µc can be
any reference point in Haff

c – e.g. one of the samples xci,
or their mean – and µ⊥c = P⊥c µc, the residual of µc un-
der the projection, encodes the orthogonal displacement of
Haff
c from the origin.

As its name suggests, the NAH classifier assigns the query
to the class whose affine hull is the closest:

g(xq) = min
c=1,...,C

(d(xq, Haff
c )). (3)

Equivalently, NAH chooses the class that provides the
best (smallest ‖error‖) reconstruction of the query using
an affine combination of training samples. The decision
boundaries of NAH are piecewise quadratic. Numerically,
point projections can be computed on the fly without ex-
plicitly evaluating and storing the d×d projection matrices
Pc and P⊥c by using Pc = Qc Q>c where Qc is the U ma-
trix of the thin SVD (or equivalently the Q matrix of the
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thin QR decomposition) of the matrix of centred class-c
training examples [xc1 − µc, . . . ,xcNc − µc].

In practice the training data is often somewhat noisy. This
can harm the classification performance owing to the inclu-
sion of spurious ‘noise’ dimensions in the affine hulls. To
reduce this we suppress dimensions of the SVD (and hence
of Qc) that correspond to overly small singular values.

For nonlinear classes that lie on smooth manifolds, NAH
can also be applied locally by finding the k-nearest samples
to the query from each class, building local affine hulls us-
ing these nearest neighbors, and assigning the query to the
class with the closest hull (Vincent & Bengio, 2001). This
can reproduce complex nonlinear decision boundaries.

2.2. Nearest Convex Hull (NCH) Classification

The affine hull gives a rather loose approximation to the
class region. Alternatively, we can take a maximally tight
bound by approximating the class with the convex hull of
its training samples. For this, we include non-negativity
constraints αi ≥ 0, i = 1, . . . , Nc in (1) and replace all of
the affine hull distance computations with convex hull ones.
The distance from a query xq to the convex hull of class c
is the norm of the displacement from xq to the closest point
on the hull. This reduces to solving the following quadratic
programming problem

min
αc

1
2
||xq −Xc αc||2

s.t.

Nc∑
i=1

αci = 1, αci ≥ 0, i = 1, . . . , Nc,
(4)

where Xc is a matrix whose columns are the class-c train-
ing samples. Given the optimal α∗ci coefficients, the dis-
tance from xq to the convex hull of the class c is ||xq −
Xc α∗c ||. This is repeated for each class and the query is
assigned to the class with the closest convex hull.

Finding the maximum margin between two classes is
equivalent to finding the closest points on their convex
hulls (Bennett & Bredensteiner, 2000) so convex distances
can also be computed by using a classical hard-margin
SVM algorithm to find the margin (convex distance) sep-
arating each class from the given query point.

NAH and NCH are “one class” methods in the sense that
we do not explicitly calculate the decision boundaries dur-
ing the training phase. Instead they remain implicit and the
decisions are made on-line for each test sample. However
both approaches can be viewed as large margin classifiers
closely related to hard-margin linear SVM’s. In particular,
the piecewise linear/quadratic decision boundary of NCH
contains the SVM boundary as one facet, and generalizes it
to use distance to the convex hull rather than linear separa-
tion as the decision criterion.

minimal enclosing hyperdisks

Classification is by distance

to nearest hyperdisk

(intersection of affine hull and

bounding hypersphere)

Classes are modelled by their

Figure 1. The principle of the proposed nearest bounding hyper-
disk method. Classes are modelled by the bounding hyperdisk
of their training examples and new examples are classified to the
class with the closest hyperdisk.

3. Nearest Bounding Hyperdisk (NHD)
Classification

In high-dimensional spaces, classes often extend well be-
yond the convex hulls of their training samples. For ex-
ample, any individual simplex spanned by points sampled
from a high-dimensional hypersphere can include only a
negligible fraction of the volume of the sphere even if the
vertices themselves are well spaced and close to the sur-
face of the sphere. Conversely, affine hulls often give a
rather loose approximation to the class as they do not con-
strain the positions of the training points within the affine
subspace. This is problematic if the classes have similar or
intersecting affine hulls but very different distributions of
samples within their hulls. In such cases the classification
performance will be poor if the affine projections of the
queries onto the affine hulls are too far from training sam-
ples (e.g. as indicated by large values of the αi coefficients
for the constructed affine projections). The “soft margin”
approach to handling this is to allow negative weights in
(4) but to penalize over-large values by including upper and
lower bounds in the quadratic program. However this dete-
riorates the run-time efficiency of NAH because the affine
hull parameters of classes can no longer be computed in
advance.

Instead, we can keep both a simpler geometric interpre-
tation and good run-time efficiency by approximating the
class samples with their bounding hyperdisk, i.e. the in-
tersection of their affine hull and their minimal bounding
hypersphere.

3.1. Global Nearest Hyperdisk Method

We will only describe the basic global Nearest Hyper-
disk (NHD) classifier, but local application is also pos-
sible in the same way as for NAH and NCH. NHD ap-
proximates each class with the smallest bounding hyper-
disk of its training samples – the set formed by inter-
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Figure 2. Computing distances from queries to a hyperdisk. The
affine projection of the query on the left lies outside the hyper-
sphere so it needs to be projected along the affine hull onto the
hypersphere before the query-hyperdisk distance can be calcu-
lated. The affine projection of the query at the top already lies
within the hypersphere so no adjustment is necessary.

secting their affine hull and their smallest bounding hy-
persphere. Such hyperdisks can be computed economi-
cally and they support rapid nearest point computations.
There are already a number of methods based on affine
hulls or bounding hyperspheres – for example hyperspheres
have been used for outlier detection (Tax & Duin, 2004,
Shawe-Taylor & Cristianini, 2004) and binary classifica-
tion (Wang et al., 2005) – but we are not aware of any pre-
vious machine learning method based on hyperdisks. The
bounding hypersphere of class c is characterized by its cen-
ter sc and radius rc. These can be found by solving the
following quadratic program

min
γ,rc,ξ

r2c + γ

Nc∑
i=1

ξi

s.t. ||xci − sc||2 ≤ r2c + ξi, i = 1, . . . , Nc,

(5)

or its dual

min
α

∑
i,j

αiαj〈xci,xcj〉 −
∑
i

αi〈xci,xci〉

s.t.

Nc∑
i=1

αi = 1, 0 ≤ αi ≤ γ, i = 1, . . . , Nc.
(6)

Here αi are Lagrange multipliers and γ ∈ [0, 1] is a ceiling
parameter that can be set to a finite value to eliminate over-
distant points as outliers. Given the solution, the center
of the hypersphere is sc =

∑Nc

i=1 αixci and the radius is
rc = ||xci − sc|| for any xci with 0 < αi < γ.

To compute the distance from a query to the hyperdisk of
a class, we find the affine projection of the query onto the
affine hull by xaff

q = Pc(xq − µc) + µc = Pcxq + µ⊥c .
If the projection lies outside the bounding hypersphere we
move it along the line joining it to the center of the sphere
until it touches the sphere. The distance from the query
to the disk is the distance from it to the (possibly moved)

projection – see fig. 2. Formally, the distance is

d(xq, Hdisk
c ) =

√
max(‖xaff

q −sc‖ − rc, 0)2 + ‖xq−xaff
q ‖2.

3.2. Kernelization of the Hyperdisk Method

We now show that the hyperdisk method can be kernelized,
allowing it to be used in implicit high dimensional feature
spaces induced by Mercer kernels. This brings all of the
usual advantages and disadvantages of kernelization, no-
tably scope for a richer choice of distance functions and
highly nonlinear decision boundaries that can aid data sep-
arability in return for the need to work with an implicit
model defined by a large set of training samples.

The kernel trick can be used to map the data into an implicit
feature space as in Kernel PCA (Schölkopf et al., 1998).
Let φ(·) be the implicit feature space embedding and
k(x,y) = φ>(x)φ(y) be the corresponding kernel func-
tion. Suppose that we want to project a sample x onto the
affine hull of a given set of samples {xi|i = 1, . . . ,m}.
Let Φ = [φ(x1), . . . ,φ(xm)] be their feature space em-
bedding matrix, K = Φ>Φ = [k(xi,xj)] be their m ×m
kernel matrix and kx = Φ>φ(x) = [k(xi,x)] be them×1
kernel vector of x against the samples. The feature space
mean of the samples is µ = 1

mΦ 1m where 1m is an m-
vector of 1’s. The explicit approach detailed below (3) is
based on the thin SVD UDV> of the matrix of centered
sample features [φ(x1) − µ, . . . ,φ(xm) − µ] = Φ Π,
where Π = I − 1

m 1m 1>m is an orthogonal projection in
sample space that implements subtraction of the mean on
Φ. Given this, the projection of x onto the affine hull of
the mapped samples is then U U>(φ(x) − µ) + µ, and
the squared residual of this projection is ‖φ(x) − µ‖2 −
‖U>(φ(x) − µ)‖2. Also, we are free to use any origin
and linear basis that we choose for computations within the
affine hull so long as we do so consistently. In particular,
if we choose the orthogonal basis given by U centred at
µ⊥ = (I−UU>)µ, the projection of x onto the affine hull
is represented simply by U>φ(x).

Noting that the D matrices of thin SVDs (i.e. taking only
the significantly non-zero singular values) are invertible,
we have U = Φ Π V D−1 = Φ A>where A = D−1V>Π.
In the kernelized case we can not evaluate the SVD of
Φ Π explicitly because this would require numerical com-
putations in feature space, but we can work implicitly in
sample-space in terms of the eigendecomposition VΛV>

of the centred kernel matrix K̃ = (Φ Π)>(Φ Π) =
Π K Π. Here, V is the same matrix as in the SVD of Φ Π
and Λ = D2 so that A = Λ−1/2 V>Π.

Putting all of these pieces together and noting that
‖φ(x)‖2 = k(x,x), we find that the squared residual error
of the projection of x onto the affine hull of the examples
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Figure 3. The kernelized NAH/NCH/NHD classifiers are based
on distances between query samples and affine, etc., hulls of
classes within the subspace spanned by the complete training data.
These distances produce the same class assignments as the origi-
nal classifiers.

is

k(x,x)− k>xA>Akx − (2 kx −K1m

m )>(I−A>AK)1m

m
(7)

and the sample-space representative of the feature-space
projection of x into the affine hull of the samples is sim-
ply A kx. We can use the representation vectors A kx for
any affine computation within the feature space affine hull,
including calculations of hyperspheres and convex hulls,
projections of new samples onto these, and within-hull dis-
tance computations. To calculate the overall squared dis-
tance from the example to the desired convex set within the
hull, the squared residual error of the projection onto the
hull (7) needs to be added to the squared within-hull dis-
tance.

In retrospect the obvious way to perform the above com-
putations would be to use a separate feature subspace (Φ,
K, kx, A, etc.) for each class, but in the experiments be-
low we actually worked in a global feature subspace based
on the combined training samples of all classes. This sub-
space contains the affine hulls of all of the classes so the
projections of test samples onto classes can be done in two
stages, first projecting the sample onto the global affine
hull, then projecting the result onto the class hull within
the global one. The first projection is class-independent so
it simply adds a sample-dependent constant residual to all
of the sample-class distances. For decisions based on rela-
tive sample-class distances, these constants can be ignored.
As a result, it suffices to perform all computations with
the global A kx vectors as though they were the original
affine input points. In particular, the kernelized versions of
NAH, NHD and NCH simply apply the corresponding lin-
ear method to the A kx vectors of the global feature sub-
space. This process is illustrated in fig. 3. It only provides
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Figure 4. Top: the first two dimensions of the four disk dataset.
Bottom: overall test-set recognition rates for NHD, NAH and
NCH on this dataset for varying numbers of training points.

relative distances, so k(x,x) is never needed.

4. Experiments
We compared the proposed hyperdisk method (NHD) to
Nearest Neighbour (NN), Nearest Affine Hull (NAH),
Nearest Convex Hull (NCH) and Nearest Sphere Center1

(NSC) classifiers in two regimes: high-dimensional prob-
lems where the dimensionality of the input space is much
larger than the size of the training sets and the native (un-
kernelized) classifier is used; and low-dimensional prob-
lems where the training sets are larger than the dimension-
ality of the input space and a kernelized classifier is needed.
We tested the methods on three tasks from multi-class vi-
sual recognition in the high-dimensional regime, and on
five tasks from the UCI collection in the low-dimensional
one. In each case, we optimized the algorithm parameters
using global coarse-to-fine search, with random partitions
of the training data into training and validation sets.

4.1. Experiments on Synthetic Data

Before starting, we illustrate some properties of the meth-
ods on a simple synthetic data set with four classes.
This was produced by creating four unit-radius spheres
(one for each class) in 300 dimensions with centres
(±0.2,±0.2, 0, . . . , 0), sampling test and training points
uniformly within each sphere, then compressing 200 of the
dimensions including the second one by a factor of 10 – see

1NSC computes bounding hyperspheres for each class and as-
signs the query to the class whose sphere center is nearest.
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fig. 4 (top). This produces a high dimensional data set with
100D-disk like classes and many irrelevant variables. The
classes are fairly well separable but the data has somewhat
suboptimal scaling. For the NAH and NHD methods we
estimated the affine dimension using an eigenvalue gap de-
tector that reliably gave the correct result (100) for all runs
with more than about 120 training points.

Fig. 4 (bottom) shows the resulting recognition rates for
NAH, NHD and NCH with varying numbers of training
samples. The hyperdisk method predominates, particu-
larly for larger numbers of training samples. The exam-
ple is somewhat idealized – the data is quite clean and the
classes have a form that is well adapted to the hyperdisk
model – but it illustrates several advantages of the hyper-
disk method. Firstly, NCH performs poorly. It separates
classes {A,B} from {C,D} almost perfectly, but it is not
much better than random (around 55-60% correct) at sepa-
rating A from B and C from D. This happens because the
interclass spacing is small and the convex hulls of the train-
ing samples fill so little of the volume of the 100-D class
disks that test samples are almost as likely to lie close to
the hull of the wrong class as to that of the right one – i.e.
even though the hulls “fill in the gaps” between the train-
ing samples, they are still very poor estimates of the actual
class boundaries. NCH is also much slower than NAH and
NHD at run time because it needs to solve a quadratic pro-
gram for each test sample to find the nearest point on the
hull. Both problems are endemic to the convex hull formu-
lation.

Secondly, NAH does surprisingly well, especially when
one considers that it has an asymptotic error rate of 50%:
for exact estimates of the 100-D affine hulls of the classes,
A and C (and similarly, B andD) are indistinguishable be-
cause they have identical affine hulls. Empirically NAH
does much better than this because the estimates of the
affine hulls are noisy: being estimated from examples of
class A, the hull for class A always passes close to the
centre of class A, but its random tilt typically makes it
pass somewhat further from the centre of class C, and vice
versa. Hence, empirical NAH estimates indirectly incor-
porate some information about the relative positions of the
classes within their affine hyperplanes. This may explain
why the performances of NAH and NHD are often simi-
lar in the below experiments on real data. However, as the
above results suggest, it is often advisable to incorporate
the position information explicitly by using NHD.

4.2. Experiments on Image Datasets

ORL Face Dataset.2 The Olivetti-Oracle Research Lab
face dataset contains 10 upright 92 × 112 frontal face im-
ages per person of C = 40 individuals, taken at different

2www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

Figure 5. Some examples from the Birds dataset.

times with slightly different lighting conditions, image po-
sitions, facial expressions and facial details. For this ex-
periment we used the raw image pixels as input features
without applying any visual preprocessing. For training we
randomly selected N = 3, 5, 7 images of each individual,
keeping the remaining 10 − N for testing. The results are
summarized in table 4.1 (top left). The NHD and NAH
classifiers were equal best among the methods tested, fol-
lowed by NCH, then NN, with NSC coming last.

Coil100 Objects Dataset.3 The Coil100 dataset includes
72 views each of 100 different objects taken on a turntable
at orientations spaced at 5 degree intervals. We chose 40
objects randomly for the experiments. We used the raw
grayscale pixels of the 128× 128 images as input features,
without applying any further visual preprocessing. For
training we randomly selected N = 18, 36, 54 images of
each object, keeping the remaining 72−N for testing. The
results are given in table 4.1 (top right). NHD and NAH
again give very similar results with NHD having a slight
edge. NHD achieves the best accuracy for N = 18, 54
while for N = 36 NCH is preferred to NHD and NAH.
NSC again produced the worst results.

Birds Dataset. This contains six categories, each with 100
images (Lazebnik et al., 2005). It is a challenging visual
object recognition task with the birds appearing against
highly cluttered backgrounds and the images having large
intra-class, scale, and viewpoint variability. Some exam-
ple images are shown in fig. 5. We use a “bag of fea-
tures” representation for the images as they are too di-
verse to allow simple geometric alignment of their objects.
In this method, patches are sampled from the image at
many different positions and scales, either densely, ran-
domly or based on the output of some kind of salient re-
gion detector. Here we used a dense grid of patches. Each
patch was described using the robust visual descriptor SIFT
(Lowe, 2004) and vector quantized using nearest neighbor
assignment against a 2000 word visual dictionary learned
from the complete set of training patches. For training we
randomly selected N = 25, 50, 75 images of each class,
keeping the remaining 100−N for testing.

The results are given in table 4.1 (bottom left). For N =
50, 75, NCH achieves the best recognition rates whereas

3www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
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Table 1. Classification Rates (%) and their standard deviations on respectively the ORL Face data set (top left), the COIL data set (top
right), and the Birds data set (bottom left). The recognition rates are averages over 15 random training/test splits. (Bottom right)
Classification Rates (%) on selected UCI data sets.

ORL N = 3 N = 5 N = 7
NHD 88.50± 2.2 95.30± 1.5 97.00± 1.8
NAH 88.50± 2.2 95.30± 1.5 97.00± 1.8
NCH 88.47± 2.2 94.97± 1.5 96.72± 1.6
NSC 86.50± 2.8 91.77± 1.5 93.61± 2.0
NN 87.74± 2.3 94.30± 1.5 96.11± 1.7

COIL N = 18 N = 36 N = 54
NHD 97.38± 0.3 99.35± 0.4 99.93± 0.1
NAH 97.33± 0.3 99.32± 0.5 99.93± 0.1
NCH 97.35± 0.3 99.41± 0.3 99.41± 0.4
NSC 82.81± 3.3 82.94± 1.2 83.98± 1.2
NN 96.56± 0.5 98.84± 0.4 99.72± 0.3

Birds N = 25 N = 50 N = 75
NHD 86.62± 1.6 90.51± 1.2 92.14± 1.8
NAH 86.62± 1.6 90.51± 1.2 92.14± 1.8
NCH 86.60± 1.6 90.91± 1.4 92.67± 1.7
NSC 84.43± 2.3 87.82± 1.8 87.85± 1.8
NN 53.38± 4.1 60.51± 8.3 64.05± 2.6

UCI Iris IS MF Wine WDBC
NHD 96.7 96.0 98.4 96.7 96.3
NAH 96.7 95.7 98.4 96.7 95.3
NCH 96.0 95.7 98.2 97.8 97.7
NSC 96.0 93.5 97.9 96.1 95.1
NN 96.0 96.3 97.6 94.5 96.0

Table 2. The key parameters of the low-dimensional datasets se-
lected from the UCI Repository.

Data set # Classes # Examples Dim.
Iris 3 150 4
IS 7 2310 19
MF 10 2000 256
Wine 3 178 13
WDBC 2 569 30

NHD and NAH are equal best for N = 25. All of the con-
vex approximation based methods significantly outperform
Nearest Neighbours.

4.3. Experiments with UCI Datasets

In the second group of experiments we tested the kernelized
versions of the methods on five lower-dimensional datasets
from the UCI repository: Iris, Image Segmentation (IS),
Multiple Features (MF) - pixel averages, Wine, and Wis-
consin Diagnostic Breast Cancer (WDBC). The key param-
eters of the datasets are summarized in table 2 and the re-
sults are presented in table 4.1 (bottom right).

In each case the dimensionality of the input space is smaller
than the number of samples in each class. It follows that
the native NAH classifier cannot be used directly because
the affine hull of each class typically spans the entire input
space. However kernelized versions of all of the classi-
fiers can still be applied. The NCH and NSC formulations
directly support kernelization while for NAH and NHD
we used the Kernel PCA projection method described in
section 3.2. We used Gaussian kernels and 5-fold cross-
validation for all experiments.

NHD and NAH were the equal best classifiers for the Iris
and MF databases while NCH came first for Wine and
WDBC, and NN for IS. In all of the cases tested the
proposed NHD classifier either matches or outperforms
the NAH classifier. The convex approximation based ap-
proaches typically outperformed NN, but the difference
was not as high as in the Birds database.

4.4. Discussion

The NHD and NAH classifiers often had almost identical
performance but when there were differences NHD usually
dominated. This suggests that NHD’s tighter bounds on
the classes are sometimes useful, but that they are often
inactive, either because the affine hull projections of most
queries already lie within the class hyperspheres or because
the additional projections onto the hyperspheres do not add
useful new discriminant information.

NHD and NAH often outperformed NCH in both the high-
dimensional native experiments and the low-dimensional
kernelized ones. As mentioned above, in high dimensions
the convex hulls of the training samples typically signifi-
cantly underestimate the extents of the classes unless the
number of samples is exponential in the dimension of the
class. Thus, despite the simplicity of their underlying ap-
proximations, the affine hulls and hyperdisks may often
turn out to be better guides to the region spanned by the
class than the convex hulls.

In the low-dimensional problems, NN (and related kernel
methods) often perform relatively well, perhaps because
hole artifacts are not so prevalent in low dimensions. Sim-
ilarly, as the dimension decreases, NCH progressively im-
proves relative to NAH because it provides tighter bounds
on the class regions. NHD seems to offer a useful compro-
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mise here.

In terms of run-time efficiency NAH and NHD are to be
preferred as the affine hull and bounding hyperdisk param-
eters can be computed off-line. When there are large num-
bers of training samples, NCH often becomes prohibitively
slow at run-time because it needs to solve a quadratic pro-
gram for each sample-hull distance computation.

5. Summary and Conclusions
We have introduced a new method for high-dimensional
classification based on approximating each class with the
minimal bounding hyperdisk of its training samples – the
intersection of their affine hull and their bounding hyper-
sphere – and assigning test samples to the class with the
nearest hyperdisk. For robustness, the algorithm uses PCA
to suppress over-small “noise” dimensions in the affine hull
and it removes outliers from the hypersphere calculation by
bounding their Lagrange multipliers. In practice the hy-
perdisk approximation offers a useful middle ground be-
tween the loose approximation provided by the affine hull
of the samples and the over-tight one given by their con-
vex hull. It can also be kernelized to allow it to be used in
lower-dimensional problems that require complex decision
boundaries.

Future work. We are currently working on large-margin
classifiers that calculate explicit decision boundaries during
the training phase by maximizing the separation between
the affine hull or hyperdisk approximations of the classes.
These may be useful alternatives to SVMs, which maxi-
mize the separation between the convex hulls of the classes.
Given that the affine hull and hyperdisk methods were often
more accurate than the convex hull ones in the experiments,
the new methods may yield more efficient classifiers than
SVM in terms of both accuracy and computational com-
plexity.
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Abstract
We present a novel commentator system that
learns language from sportscasts of simulated
soccer games. The system learns to parse and
generate commentaries without any engineered
knowledge about the English language. Train-
ing is done using only ambiguous supervision
in the form of textual human commentaries and
simulation states of the soccer games. The sys-
tem simultaneously tries to establish correspon-
dences between the commentaries and the simu-
lation states as well as build a translation model.
We also present a novel algorithm, Iterative Gen-
eration Strategy Learning (IGSL), for deciding
which events to comment on. Human evaluations
of the generated commentaries indicate they are
of reasonable quality compared to human com-
mentaries.

1. Introduction

Children acquire language through exposure to linguistic
input in the context of a rich, relevant, perceptual envi-
ronment. By connecting words and phrases to objects and
events in the world, the semantics of language is grounded
in perceptual experience (Harnad, 1990). Ideally, a ma-
chine learning system would be able to acquire language in
a similar manner without human supervision. As a step
in this direction, we present a commentator system that
can describe events in a simulated soccer game by learn-
ing from sample human commentaries paired with the sim-
ulation states. A screenshot of our system with generated
commentaries is shown in Figure 1.

Although there has been some interesting computational
work in grounded language learning (Roy, 2002; Bailey
et al., 1997; Yu & Ballard, 2004), most of the focus has
been on dealing with raw perceptual data and the com-
plexity of the language involved has been very modest.

Appearing inProceedings of the 25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

Figure 1.Screenshot of our commentator system

To help make progress, we study the problem in a simu-
lated environment that retains many of the important prop-
erties of a dynamic world with multiple agents and ac-
tions while avoiding many of the complexities of robotics
and vision. Specifically, we use the Robocup simulator
(Chen et al., 2003) which provides a fairly detailed physi-
cal simulation of robot soccer. While several groups have
constructed Robocup commentator systems (André et al.,
2000) that provide a textual natural-language (NL) tran-
script of the simulated game, their systems use manually-
developed templates and are incapable of learning.

Our commentator learns to semantically interpret and gen-
erate language in the Robocup soccer domain by observing
an on-going commentary of the game paired with the dy-
namic simulator state. By exploiting existing techniques
for abstracting a symbolic description of the activity on
the field from the detailed state of the physical simulator
(André et al., 2000), we obtain a pairing of natural language
with a symbolic description of the perceptual context in
which it was uttered. However, such training data is highly
ambiguous because each comment usually co-occurs with
several events in the game. We integrate and enhance ex-
isting methods for learning semantic parsers and NL gen-
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erators (Kate & Mooney, 2007; Wong & Mooney, 2007a)
in order to learn to understand and produce grounded lan-
guage from such ambiguous training data.

2. Background

Systems for learning semantic parsers induce a function
that maps NL sentences tomeaning representations (MRs)
in some formal logical language. Existing work has fo-
cused on learning from a supervised corpus in which
each sentence is manually annotated with its correct MR
(Mooney, 2007). Such human annotated corpora are ex-
pensive and difficult to produce, limiting the utility of this
approach. The systems described below assume they have
access to a formal context-free grammar, called themean-
ing representation grammar (MRG), that defines the MR
language (MRL).

2.1. KRISP and KRISPER

KRISP(Kate & Mooney, 2006) uses SVMs with string ker-
nels (Lodhi et al., 2002) to learn semantic parsers. For
each production in the MRG, the system learns an SVM
string classifier that recognizes the associated NL words or
phrases. The resulting suite of classifiers is then used to
construct the most probable MR for a complete NL sen-
tence. Given the partial matching provided by string ker-
nels and the over-fitting prevention provided by SVMs,
KRISPhas been experimentally shown to be robust to noisy
training data.

KRISPER(Kate & Mooney, 2007) is an extension to KRISP

that handles ambiguous training data, in which each sen-
tence is annotated only with aset of potential MRs, only
one of which is correct. It employs an iterative approach
analogous to EM that improves upon the selection of the
correct NL–MR pairs in each iteration. In the first itera-
tion, it assumes that all of the MRs paired with a sentence
are correct and trains KRISP with the resulting noisy su-
pervision. In subsequent iterations, KRISPERuses the cur-
rently trained parser to score each potential NL–MR pair,
selects the most likely MR for each sentence, and retrains
the parser. In this manner, KRISPERis able to learn from
the type of weak supervision expected for a grounded lan-
guage learner exposed only to sentences in ambiguous con-
texts. However, the system has previously only been tested
on artificially corrupted or generated data.

2.2. WASP

WASP learns semantic parsers usingstatistical machine
translation (SMT) techniques (we use the Wong & Mooney
(2007b) version). It induces aprobabilistic synchronous
context-free grammar (PSCFG) (Wu, 1997) to translate NL
sentences into logical MRs using a modification of recent

Purple goalie turns the ball over to 
Pink8

Purple team is very sloppy today
Pink8 passes to Pink11

Pink11 looks around for a teammate

Pink11 makes a long pass to Pink8

Pink8 passes back to Pink11

badPass ( PurplePlayer1 , 
PinkPlayer8 )

turnover ( PurplePlayer1 , 
PinkPlayer8 )

kick ( PinkPlayer8 ) 

pass ( PinkPlayer8 , PinkPlayer11 ) 

kick ( PinkPlayer11 ) 

kick ( PinkPlayer11 ) 

ballstopped 

kick ( PinkPlayer11 ) 

pass ( PinkPlayer11 , PinkPlayer8 )

kick ( PinkPlayer8 ) 

pass ( PinkPlayer8 , PinkPlayer11 )

Natural Language Commentary Meaning Representation

Figure 2.Sample trace of ambiguous training data

methods in syntax-based SMT (Chiang, 2005). Since a
PSCFG is symmetric with respect to input/output, the same
learned model can also be used togenerate NL sentences
from formal MRs. Thus, WASP learns a PSCFG that sup-
ports both semantic parsing and natural language gener-
ation. Since it does not have a formal grammar for the
NL, the generator also learns ann-gram language model
for the NL and uses it to choose the overall most probable
NL translation of a given MR using a noisy-channel model
(Wong & Mooney, 2007a).

3. Sportscasting Data

To train and test our system, we assembled human-
commentated soccer games from the Robocup simulation
league (www.robocup.org). Since our focus is language
learning not computer vision, we chose to use simulated
games instead of real game video to simplify the extrac-
tion of perceptual information. Symbolic representations
of game events were automatically extracted from the sim-
ulator traces by a rule-based system. The extracted events
mainly involve actions with the ball, such as kicking and
passing, but also include other game information such as
whether the current playmode is kickoff, offside, or cor-
ner kick. The events are represented as atomic formulas in
predicate logic with timestamps. These logical facts consti-
tute the requisite MRs, and we manually developed a sim-
ple MRG for this formal semantic language.

For the NL portion of the data, we had humans commen-
tate games while watching them on the simulator. The com-
mentators typed their comments into a text box, which were
recorded with a timestamp. To construct the final ambigu-
ous training data, we paired each comment with all of the
events that occurred five seconds or less before the com-
ment was made. A sample set of ambiguous training data
is shown in Figure 2. Note that the use of English words
for predicates and constants in the MR is for human read-
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Number of comments Events per comment
Number of events Total Have MRs Have Correct MR Max Average Std. Dev.

2001 final 3992 722 671 520 9 2.235 1.641
2002 final 2125 514 458 376 10 2.403 1.653
2003 final 2112 410 397 320 12 2.849 2.051
2004 final 2223 390 342 323 9 2.729 1.697

Table 1.Statistics about the dataset

ability only, the system treats these as arbitrary conceptual
tokens and must learn their connection to English words.

We annotated a total of four games, namely, the finals for
the Robocup simulation league for each year from 2001 to
2004. Summary statistics about the data are shown in Ta-
ble 1. The 2001 final has almost twice the number of events
as the other games because it went into double overtime.
For evaluation purposes only, a gold-standard matching
was produced by examining each comment manually and
selecting the correct MR if it exists. The bold lines in Fig-
ure 2 indicate the correct matches. Notice some sentences
do not have correct matches (about one fifth of our data).
For example, the sentence “Purple team is very sloppy to-
day” cannot be represented in our MRL and consequently
does not have a corresponding correct MR. On the other
hand, in the case of the sentence “Pink11 makes a long pass
to Pink8”, the correct MR falls outside the 5-second win-
dow. For each game, Table 1 shows the total number of NL
sentences, the number of these that have at least one recent
extracted event to which itcould refer, and the number of
these that actuallydo refer to one of these recent extracted
events. The maximum, average, and standard deviation for
the number of recent events paired with each comment is
also given.

4. New Algorithms

While existing systems are capable of solving parts of the
sportscasting problem, none of them are able to perform
the whole task on their own. We introduce three new end-
to-end systems below which are able to learn from the am-
biguous supervision in our training data and generate com-
mentaries on unseen games.

4.1. WASPER

Since our primary goal is to learn a sportscaster rather than
a parser, we use WASP to learn a system that can also
generate NL from MRs produced by the perceptual sys-
tem. However, WASP requires unambiguous training data
which is not available for our domain. Therefore, we ex-
tend WASPusing EM-like retraining similar to KRISPERto
handle ambiguously annotated data, resulting in a system
we call WASPER. In general, any system that learns se-
mantic parsers can be extended to handle ambiguous data

as long as it can produce confidence levels for given NL–
MR pairs.

4.2. KRISPER-WASP

KRISPhas been shown to be superior to WASP at handling
noisy training data (Kate & Mooney, 2006). Consequently,
we can expect KRISPER’s parser to outperform WASPER’s
because EM-like training on ambiguous data initially cre-
ates a lot of noisy, incorrect supervision. Even if the aver-
age number of possible MRs per sentence is only 2, it still
results in at least 50% noise in the training data in the first
iteration. However, KRISPERcannot learn a language gen-
erator, which is necessary for our sportscasting task. As a
result, we create a new system called KRISPER-WASP that
is both good at disambiguating the training data and capa-
ble of generation. We first use KRISPER to train on the
ambiguous data and produce a disambiguated training set
by using its prediction for the most likely MR for each sen-
tence. This unambiguous training set is then used to train
WASP to produce both a parser and a generator.

4.3. WASPER-GEN

In both KRISPERand WASPER, the criterion for selecting
the best NL–MR pairs during retraining is based on maxi-
mizing the probability of parsing a sentence into a particu-
lar MR. However, since WASPERis capable of both parsing
and generation, we could alternatively select the best NL–
MR pairs by evaluating how likely it is togenerate the sen-
tence from a particular MR. Thus, we built another version
of WASPER (WASPER-GEN) that disambiguates the train-
ing data in order to maximize the performance ofgenera-
tion rather than parsing. It uses a generation-based score
rather than a parsing-based score to select the best NL–MR
pairs. Specifically, an NL–MR pair(n,m) is scored by
using the current trained generator to generate an NL sen-
tence form and then comparing the generated sentence to
n to compute the NIST score. NIST score is a machine
translation (MT) metric that measures the precision of a
translation in terms of the proportion ofn-grams it shares
with a human translation (Doddington, 2002). It is also
used to evaluate NL generation. Another popular MT met-
ric is BLEU score (Papineni et al., 2002) but we found
it inadequate for our domain because it overly penalizes
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translations shorter than the target sentences. Most of our
generated commentaries are shorter than the human com-
mentaries due to the fact that humans are more verbose and
many details of the human descriptions are not represented
by our MRL.

4.4. Learning for Strategic Generation

A language generator alone is not enough to produce a
sportscast. In addition to knowinghow to say something,
one must also knowwhat to say. A sportscaster must also
choose which events to describe. In NLP, deciding what to
say is calledstrategic generation.

We developed a simple method for learning which events
to describe. For each event type (i.e. for each predicate like
pass, or goal), the system uses the training data to esti-
mate a probability that it is mentioned by the sportscaster.
Given the gold-standard NL–MR matches, this probability
is easy to estimate; however, the learner does not know the
correct matching. Instead, the system must estimate the
probabilities from the ambiguous training data. We com-
pare two basic methods for estimating these probabilities.

The first method uses theinferred NL–MR matching pro-
duced by the language-learning system. The probability
of commenting on each event type,Ei, is estimated as the
percentage of events of typeEi that have been matched to
some NL sentence.

The second method, which we call Iterative Generation
Strategy Learning (IGSL), uses a variant of EM, treating
the matching assignments as hidden variables, initializing
each match with a prior probability, and iterating to im-
prove the probability estimates of commenting on each
event type. Unlike the first method, IGSL uses MRs not
associated with any sentences explicitly in training. Algo-
rithm 1 shows the pseudocode. Each sentence accounts for
at most one occurrence of an event being commented (some
comments do not correspond to any MRs), so we enforce
that the counts associated with a sentence add up to exactly
one. In the initial iteration, every possible match gets as-
signed a weight inversely proportional to its amount of am-
biguity. Thus, a sentence associated with five possible MRs
will assign each match a weight of1

5 . In the subsequent it-
erations, we use the learned estimates for each event type
to assign weights to the edges, again normalizing to make
sure that the weights of the edges coming out of each sen-
tence sum to one.

To generate a sportscast, we first use the learned probabil-
ities to determine which events to describe. For each time
step, we only consider commenting on the event with the
highest probability. The system then generates a comment
for this event stochastically based on the estimated proba-
bility for its event type.

Algorithm 1 Iterative Generation Strategy Learning

input event typesE = {E1, ..., Ei, ..., En}, the number
of occurrences of each event typetotalCount(Ei), sen-
tencesS and their associated sets of meaning represen-
tationsMR(s),

output probabilities of commenting on each event type
Pr(Ei)

for event typeEi ∈ E do
Initialize count = 0
for sentences ∈ S andEi ∈ MR(s) do

count = count + 1
|(MR(s))|

end for
Pr(Ei) = count

totalCount(Ei)

end for

repeat
for event typeEi ∈ E do

Initialize count = 0
for sentences ∈ S andEi ∈ MR(s) do

totalProb = 0
for eventEj ∈ MR(s) do

totalProb = totalProb + Pr(Ej)
end for
count = count + Pr(Ei)

totalProb

end for
Pr(Ei) = count

totalCount(Ei)

end for
until Convergence or MAXITER reached

5. Experimental Evaluation

This section presents experimental results on the Robocup
data for four systems: KRISPER, WASPER, KRISPER-
WASP, and WASPER-GEN. To better gauge the effect of ac-
curate ambiguity resolution, we also include results of un-
modified WASP. Since WASP requires unambiguous train-
ing data, we randomly pick a meaning for each sentence
from its set of potential MRs. Finally, we also include the
result of WASP trained usinggold matching which con-
sists of the correct NL–MR pairs annotated by a human.
This represents an upper-bound on what our systems could
achieve if they disambiguated the training data perfectly.

We evaluate each system on three tasks: matching, pars-
ing, and generation. The matching task measures how well
the systems can disambiguate the training data. The pars-
ing and generation tasks measure how well the systems can
translate from NL to MR, and from MR to NL, respectively.

Since there are four games in total, we trained using all
possible combinations of one to three games, and in each
case, tested on the games not used for training. Results
were averaged over all train/test combinations. We evalu-
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Figure 3.Matching Results

ated matching and parsing using F-measure, the harmonic
mean of recall and precision. Precision is the fraction of the
system’s annotations that are correct. Recall is the fraction
of the annotations from the gold-standard that the system
correctly produces. Generation is evaluated using NIST
scores which roughly estimates how well the produced sen-
tences match with the target sentences.

5.1. Matching NL and MR

Since handling ambiguous training data is an important as-
pect of grounded language learning, we first evaluate how
well the various systems pick the correct NL–MR pairs.
Figure 3 shows the F-measure for identifying the correct
set of pairs for the various systems. WASPER does bet-
ter than random matching, but worse than the other two
systems. While we expected KRISPER to perform better
since it is more adept at handling noisy data, it is some-
what surprising that WASPER-GEN does about the same. A
potential explanation is that WASPER-GEN avoids making
certain systematic errors typical of the other systems. This
is discussed further in section 5.3.

5.2. Semantic Parsing

Next, we present results on the accuracy of the learned se-
mantic parsers. Each trained system is used to parse and
produce an MR for each sentence in the test set that has a
correct MR in the gold-standard matching. A parse is con-
sidered correct if and only if it matches the gold standard
exactly. Parsing is a fairly difficult task because there is
usually more than one way to describe the same event. For
example, “Player1 passes to player2” can refer to the same
event as “Player1 kicks to player2.” Thus, accurate pars-
ing requires learning all the different ways people describe
an event. Synonymy is not limited to verbs. In our data,
“Pink1”, “PinkG” and “pink goalie” all refer to player1 on
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the pink team. Since we are not providing the systems with
any prior knowledge, parsers have to learn all these differ-
ent ways of referring to the same entity.

Results are shown in Figure 4, and, as expected, follow the
matching results. Systems that did better at disambiguat-
ing the training data also did better on parsing since their
supervised training data is less noisy. When trained on 3
games, KRISPERdoes the best since it is most effective at
handling the noise in the final supervised data. However, it
tends to do worse than the other systems when given less
training data.

5.3. Generation

The third evaluation task is generation. All of the WASP-
based systems are given each MR in the test set that has a
gold-standard matching NL sentence and asked to generate
an NL description. The quality of the generated sentence is
measured by comparing it to the gold-standard using NIST
scoring.
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This task is easier than parsing because the system only
needs to learnone way to accurately describe an event. This
property is reflected in the results, shown in Figure 5, where
even the baseline system WASP does fairly well, outper-
forming WASPERand KRISPER-WASP. As the number of
event types is fairly small, only a relatively small number
of correct matchings is required to perform this task well as
long as each event type is associated with a correct sentence
pattern more often than any other sentence patterns. Con-
sequently, it is far more costly to make systematic errors as
is the case for WASPERand KRISPER-WASP.

Even though systems such as WASPER and KRISPER-
WASP do fairly well at disambiguating the training data,
the mistakes they make in selecting the NL–MR pairs of-
ten repeat the same basic error. For example, abad pass
event is often followed by aturnover event. If initially the
system incorrectly determines that the comment “Player1
turns the ball over to the other team” refers to abad pass,
it will parse the sentence “Player2 turns the ball over to the
other team” as abad pass as well since it just reinforced
that connection. Even if the system trains on a correct ex-
ample where abad pass is paired with the linguistic input
“Player1 made a bad pass”, it does not affect the parsing of
the first two sentences and does not correct the mistakes.
As a result, abad pass becomes incorrectly associated
with the sentence pattern “Someone turns the ball over to
the other team.”

On the other hand, WASPER-GEN does the best due to the
imbalance between the variability of natural language com-
ments and the MRs. While the same MR will typically oc-
cur many times in a game, the exact same comments are
almost never uttered again. This leads to two performance
advantages for WASPER-GEN.

WASPER-GEN avoids making the same kind of system-
atic mistakes as WASPER and KRISPER-WASP. Follow-
ing the previous example, when WASPER-GEN encounters
the correct matching forbad pass, it learns to associate
bad passes with the correct sentence pattern. When it goes
back to those first two incorrect pairings, it will likely cor-
rect its mistakes. This is because the same MRbad pass
is present in all three examples. Thus, it will slowly move
away from the incorrect connections. Of course, parsing
and generation are symmetrical processes, so using gener-
ation to disambiguate data has its own problems. Namely, it
is possible to converge to a point where many events gener-
ates the same natural language description. However, since
there is much more variability in natural language, it is very
unlikely that the same sentence pattern will occur repeat-
edly, each time associated with different events.

Another performance advantage of WASPER-GEN can be
found by looking at the objective differences. Systems
such as WASPER and KRISPER-WASP which use parsing
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IGSL WASPER-GEN

cornerkick 1 pass 1
pass 0.983 badPass 0.708
badPass 0.970 cornerkick 0.438
goal 0.970 block 0.429
block 0.955 turnover 0.377

Table 2.Top scoring predicates with their estimated probabilities
of being described

scores, try to learn a good translation model for each sen-
tence pattern. On the other hand, WASPER-GEN only tries
to learn a good translation model for each MR pattern.
Thus, WASPER-GEN is more likely to converge on a good
model as there are fewer MR patterns than sentence pat-
terns. However, it can be argued that learning good transla-
tion models for each sentence pattern will help in producing
more varied commentaries, a quality that is not captured by
the NIST score.

5.4. Strategic Generation

The different methods for learning strategic generation are
evaluated based on how often the events they describe co-
incide with those the human decided to describe in the test
data. For the first method, results from using the inferred
matchings produced by KRISPER, WASPER, KRISPER-
WASP, and WASPER-GEN as well as the gold and random
matching for establishing baselines are all presented in Fig-
ure 6. From the graph, it is clear that IGSL outperforms
learning from the inferred matchings and actually performs
at a level close to using the gold matching. However, it is
important to note that we are limiting the potential of learn-
ing from the gold matching by using only the predicates to
decide whether to talk about an event.

The top scoring predicates from IGSL as well as the best
result from using inferred matchings, WASPER-GEN, are
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English Semantic Sportscasting
Fluency Correctness Ability

Human 3.938 4.25 3.625
Machine 3.438 3.563 2.938

Table 3.Human evaluation of overall sportscast

shown in Table 2. While both systems learn to talk about
frequent events such as passing, WASPER-GEN does poorly
on rare, but significant events such as goal scoring. This
is because WASPER-GEN saw those events very rarely in
training and did not learn to correctly match them to sen-
tences. It is worth noting that IGSL learns a higher prob-
ability for events in general. This improves its recall and
hurts its precision. However, since many of its top-ranked
events such as goals are rare, the overall quality is main-
tained without becoming overly verbose. Therefore, we
used IGSL for the human evaluations below.

5.5. Human Evaluation

Automatic evaluation of generation is an imperfect approx-
imation of human assessment at best. Moreover, automati-
cally evaluating the quality of an entire generated sportscast
is even more difficult. Consequently, we recruited four
fluent English speakers with no previous experience with
Robocup or any of our systems to serve as human judges.
We compared their subjective evaluations of human and
machine generated sportscasts. Each judge was given 8
clips of simulated game video along with subtitled com-
mentaries. The 8 clips use 4 game segments of 2 minutes
each, one from each of the four games. Each of the 4 game
segments is shown twice, once with human commentary
and once with generated commentary. We use IGSL to de-
termine the events to comment on and use WASPER-GEN

(our best performing system for generation) to produce the
commentaries. The system was always trained on three
games, leaving out the one from which the test segment was
extracted. The videos are shown in random order with the
human and machine commentaries of a segment flipped be-
tween judges to ensure no consistent bias toward segments
being shown earlier or later. We asked the judges to score
the commentaries using the following metrics:

English Semantic Sportscasting
Score Fluency Correctness Ability

5 Flawless Always Excellent
4 Good Usually Good
3 Non-native Sometimes Average
2 Disfluent Rarely Bad
1 Gibberish Never Terrible

Fluency and semantic correctness, or adequacy, are stan-
dard metrics in human evaluations of NL translations and
generations. Fluency measures how well the commentaries
are structured, including syntax and grammar. Semantic

correctness indicates whether the commentaries actually
describe what is happening in the game. Finally, sportscast-
ing ability measures the overall quality of the sportscast.
This includes whether the sportscasts are interesting and
flow well. The scores are averaged over all four games and
across all the judges. Table 3 shows the results.

While human commentaries are clearly superior to the ma-
chine’s, the largest difference between the average scores
is only 0.7. Moreover, the judges indicated that they were
able to understand and follow the generated commentaries
without trouble. Part of the reason for the lower scores
actually result from our impoverished MRL. Semantic cor-
rectness scores were deducted when the machine misses
commenting on certain facts not represented in our MRL
such as the location of the ball and the players. The lack
of temporal or locality information also results in dry and
repetitive comments which hurt the sportscasting score.
This is an important point that is not captured by the NIST
score. In our NIST score evaluation, each sentence is
treated separately and no attempt was made at measuring
how well the individual comments fit together. However, it
is clear from the human evaluations that variability of sen-
tence pattern is vital to a good sportscast. The machine can
correctly comment on all the factual events in a game and
still produce a bad sportscast that no one wants to listen to.

6. Related Work

Robotics and vision researchers have worked on inferring
a grounded meaning of individual words or short refer-
ring expressions from visual perceptual context, e.g. (Roy,
2002; Bailey et al., 1997; Barnard et al., 2003; Yu & Bal-
lard, 2004). However, the complexity of the natural lan-
guage used in this existing work is very restrictive, many of
the systems use pre-coded knowledge of the language, and
almost all use static images to learn language describing
objects and their relations, and cannot use dynamic video
to learn language describing actions. Some recent work on
video retrieval has focused on learning to recognize events
in sports videos and connect them to English words (Fleis-
chman & Roy, 2007). There has also been recent work on
grounded language learning in simulated computer-game
environments (Gorniak & Roy, 2005). However, none of
this prior work makes use of modern statistical-NLP pars-
ing techniques, learns to build formal meaning representa-
tions for complete sentences, or learns to generate natural
language.

There has been some recent work on learning generation
strategies using reinforcement learning (Zaragoza & Li,
2005). In contrast, our domain does not include interaction
with the users and no feedback is available.
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7. Future Work

The current system is limited by its simple MRL. For ex-
ample, the location of players or the ball is not represented.
Moreover, we do not keep contextual information which
makes it difficult to generate interesting, non-repetitive
sportscasts. Contextual information would also help us pro-
vide comments not directly induced by the events happen-
ing now, such as the current score. Finally, it is clear that
we need a more hierarchical representation that captures
the relationships between events in order to avoid mak-
ing systematic matching errors on frequently co-occurring
events.

With respect to algorithms, using learned strategic-
generation knowledge (information about what events are
likely to illicit comments) could improve the resolution of
ambiguities. We would also like to eventually apply our
methods to real captioned video input using the latest meth-
ods in computer vision.

8. Conclusion

We have presented an end-to-end system that learns from
sample commentaries and generates sportscasts for novel
games. Dealing with the ambiguity inherent in the training
environment is a critical issue in learning language from
perceptual context. We have evaluated various methods for
disambiguating the training data in order to build a lan-
guage generator. Using a generation evaluation metric as
the criterion for selecting the best NL–MR pairs produced
the best results overall. Our system also learns a simple
model of strategic generation from the ambiguous training
data by estimating the probability that each event type in-
vokes a comment. Experimental evaluation verified that the
system learns to accurately parse and generate comments
and to generate sportscasts that are competitive with those
produced by humans.
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Abstract
Similarity matrices generated from many appli-
cations may not be positive semidefinite, and
hence can’t fit into the kernel machine frame-
work. In this paper, we study the problem of
training support vector machines with an indef-
inite kernel. We consider a regularized SVM for-
mulation, in which the indefinite kernel matrix is
treated as a noisy observation of some unknown
positive semidefinite one (proxy kernel) and the
support vectors and the proxy kernel can be com-
puted simultaneously. We propose a semi-infinite
quadratically constrained linear program formu-
lation for the optimization, which can be solved
iteratively to find a global optimum solution. We
further propose to employ an additional pruning
strategy, which significantly improves the effi-
ciency of the algorithm, while retaining the con-
vergence property of the algorithm. In addition,
we show the close relationship between the pro-
posed formulation and multiple kernel learning.
Experiments on a collection of benchmark data
sets demonstrate the efficiency and effectiveness
of the proposed algorithm.

1. Introduction

Kernel methods work by embedding the data into a high-
dimensional (possibly infinite-dimensional) feature space,
where the embedding is defined implicitly through a ker-
nel function. Evaluating the kernel function on all pairs
of data points produces a symmetric and positive semidefi-
nite (PSD) kernel matrix. Support Vector Machine (SVM)
with a positive semidefinite kernel matrix has been applied
successfully in numerous classification tasks including face
recognition, image retrieval, and micro-array gene ex-
pression data analysis (Cristianini & Shawe-Taylor, 2000;
Scḧolkopf & Smola, 2001; Tong & Chang, 2001). The PSD

Appearing inProceedings of the25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

property of the kernel matrix ensures the existence of a Re-
producing Kernel Hilbert Space (RKHS) and results in a
convex formulation for SVM. Thus, a global optimal solu-
tion exists.

In practice, however, similarity matrices generated from
many applications may not be PSD (Qamra et al., 2005;
Roth et al., 2003a; Shimodaira et al., 2001). The problem
of learning with a non-PSD similarity matrix (indefinite
kernel) has been addressed by many researchers (Wu et al.,
2005; Haasdonk, 2005; Lin & Lin, 2003). One simple
and popular approach is to generate a PSD kernel matrix
by transforming the spectrum of the indefinite kernel ma-
trix (Wu et al., 2005). Several representative transforma-
tion methods includedenoisewhich neglects the negative
eigenvalues (Graepel et al., 1998; Pekalska et al., 2002),
flip which flips the sign of the negative eigenvalues (Grae-
pel et al., 1998),diffusionwhich applies matrix diffusion on
the indefinite kernel (Kondor & Lafferty, 2002), andshift
which shifts all the eigenvalues by a positive constant (Roth
et al., 2003b). One common limitation of these approaches
is that the transformation may lead to the loss of valuable
information in the data.

Several other works use the non-PSD similarity matrix as
a kernel, but they change the formulation of SVM. In (Lin
& Lin, 2003), an SMO-type method is proposed to find sta-
tionary points for the non-convex dual formulation of SVM
with a non-PSD sigmoid kernel. However, this method is
based on the assumption that a corresponding RKHS still
exists such that SVM formulations are valid. Haasdonk
(2005) interprets learning with an indefinite kernel as the
minimization of distance between two convex hulls in some
pseudo-Euclidean (pE) space. However, it assumes that the
representer theorem holds in such a pE space. Ong et al.
(2004) associate the indefinite kernels with a Reproducing
Kernel Krĕın Space (RKKS), in which a general represen-
ter theorem exists and a regularized risk functional can be
defined.

Recently, Luss and d’Aspremont (2007) propose a regu-
larized SVM formulation, in which the indefinite kernel
matrix is considered as a noisy observation of some un-
known PSD one (proxy kernel). One attractive property
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of this formulation is that the support vectors as well as
the proxy kernel can be found simultaneously. However,
the convex reformulation in (Luss & d’Aspremont, 2007)
involves a nondifferentiable objective function. To facili-
tate the calculation of the gradient, Luss and d’Aspremont
(2007) quadratically smoothed the objective function, re-
sulting in two algorithms including the projected gradient
method and the analytic center cutting plan method.

In this paper, we study the problem of training SVM with
an indefinite kernel matrix following the formulation in
(Luss & d’Aspremont, 2007). We show that this problem
can be reformulated as a semi-infinite quadratically con-
strained linear program (SIQCLP), which includes a finite
number of optimization variables with an infinite number
of constraints. We then propose an iterative algorithm to
solve this SIQCLP problem, which consists of two key
steps: computing an intermediate SVM solution by solving
a quadratically constraint linear program with a restricted
subset of constraints, and updating the subset of constraints
based on the obtained intermediate SVM solution. We fur-
ther show the convergence property of the proposed itera-
tive algorithm.

One limitation of the proposed algorithm is that the com-
putational cost for solving the quadratically constraint lin-
ear program depends on the number of constraints, which
gradually increases during the iteration. We propose to
improve the efficiency of the iterative algorithm by prun-
ing inactive constraints at each iteration. We show that
such pruning will not affect the convergence property of
the algorithm. In addition, we show the close relationship
between the proposed SIQCLP formulation and multiple
kernel learning (MKL). More specifically, the intermedi-
ate quadratically constraint linear program with a restricted
subset of constraints is shown to be equivalent to a regu-
larized version of the multiple kernel learning formulation
in (Lanckriet et al., 2004). Thus, efficient algorithms for
MKL (Lanckriet et al., 2004; Rakotomamonjy et al., 2007;
Sonnenburg et al., 2006) can be applied to solve the SIQ-
CLP problem. We have performed experiments on a col-
lection of benchmark data sets. The presented experimen-
tal results demonstrate the efficiency and effectiveness of
the proposed algorithm.

2. Background

AssumeK ∈ R
n×n is a valid kernel matrix, that is,K is

positive semidefinite (PSD). Lety = [y1, · · · , yn] ∈ R
n

be the vector of class labels, whereyi ∈ {−1,+1}. The
dual formulation of 1-norm soft margin SVM classification
is given by (Scḧolkopf & Smola, 2001):

max
α∈Rd

αT e− 1
2αT Y KY α

subject to αT y = 0, 0 ≤ α ≤ C, (1)

whereα is the vector of Lagrange dual variables,Y =
diag(y), C is a pre-specified parameter, ande is a vector
of all ones of lengthn.

SinceK is PSD, the optimization problem in Eq. (1) is a
convex Quadratic Program (QP) (Boyd & Vandenberghe,
2004); hence a global optimal solution can be found via
standard optimization techniques such as primal-dual inte-
rior point methods (Nocedal & Wright, 1999). In practice,
however, many similarity matrices may be non-PSD (in-
definite kernels), including sigmoid kernels (Vapnik, 1995)
for various values of its parameters and hyperbolic tangent
kernels (Smola et al., 2000). Additional examples include
the protein sequence similarity measures based on Smith-
Waterman and BLAST scores.

In (Luss & d’Aspremont, 2007), the indefinite kernel is
considered as a noisy observation of some unknown PSD
kernel (proxy kernel), and the following max-min opti-
mization problem is proposed for simultaneous proxy ker-
nel learning and SVM classification:

max
α∈Rd

min
K∈Rd×d

αT e− 1
2αT Y KY α + ρ‖K −K0‖2F

subject to αT y = 0, 0 ≤ α ≤ C, K � 0, (2)

whereK0 is a pre-specified indefinite kernel matrix,K is
the unknown proxy kernel matrix, andρ > 0 is the pre-
specified parameter, and|| · ||F denotes the Frobenius norm
of a matrix (Golub & Van Loan, 1996).

The objective function in Eq. (2) is convex inK and con-
cave inα, thus a global optimal solution exists. How-
ever, direct optimization of Eq. (2) in terms of bothα
andK leads to a complex optimization problem involving
nondifferentiable objective function (Luss & d’Aspremont,
2007). To facilitate the calculation of the gradient, Luss and
d’Aspremont (2007) quadratically smoothed the objective
function. Two algorithms including the projected gradient
method and the analytic center cutting plan method are pro-
posed for the proposed formulation.

3. Problem Formulation

We propose to solve the optimization problem in Eq. (2) by
first reformulating it as a semi-infinite program (SIP) (Het-
tich & Kortanek, 1993a). The SIP problem refers to opti-
mization problems that maximizes the functionalF (z) sub-
ject to a system of constraints onz, expressed asg(z, t) ≤ 0
for all t in some setB. When the objective is linear
and the constraints are quadratic, the optimization problem
is known as semi-infinite quadratically constrained linear
program (SIQCLP).

For notational simplicity, we denote the objective function
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in Eq. (2) as:

S(α,K) = αT e− 1

2
αT Y KY α + ρ‖K −K0‖2F . (3)

The optimal solution to the max-min problem in Eq. (2)
is a saddle-point for the functionS(α,K) subject to the
constraints in Eq. (2). Let (α∗,K∗) be optimal to Eq. (2).
For any feasibleα andK in Eq. (2), we have

S(α,K∗) ≤ S(α∗,K∗) ≤ S(α∗,K); (4)

moreover, it can be verified that

S(α,K∗) = min
K̃�0

S(α, K̃) ≤ S(α,K). (5)

By adding an additional variablet ∈ R, the max-min op-
timization problem in Eq. (2) can be reformulated into a
SIQCLP problem as follows:

max
α∈Rd, t∈R

t

subject to αT y = 0, 0 ≤ α ≤ C

t ≤ S(α,K), ∀ K � 0. (6)

The optimization problem in Eq. (6) has two optimization
variables (t andα) with an infinite number of (quadratic)
constraints, i.e., one quadratic constraintt ≤ S(α,K) for
each kernel matrixK. When there is only one (fixed) ker-
nel matrixK involved in Eq. (6), this optimization problem
reduces to a standard SVM problem.

4. Algorithm

We propose an iterative algorithm to solve Eq. (6), which is
guaranteed to converge to a global optimum. The algorithm
is closely related to thebundle method(Hiriart-Urruty &
Lemarechal, 1993; Teo et al., 2007).

The optimization problem in Eq. (6) maximizes its objec-
tive function with respect to two variablest andα with an
infinite number of (quadratic) constraints. We approach
the optimum by optimizing the variablest and α with a
restricted subset of the infinite number of constraints, and
then updating the constraint subset based on the obtained
suboptimalt andα in an iterative manner. It is similar to
the strategy presented in (Sonnenburg et al., 2006). The al-
gorithm belongs to a family of algorithms for solving gen-
eral SIP problems called theexchange methods, in which
the constraints are exchanged at each iteration. The global
optimality property of the final solution after convergence
is guaranteed (Hettich & Kortanek, 1993b).

For a restricted subset of constraints, called alocalization
set of kernel matricesK = {Ki}pi=1, the intermediate sub-
optimalt andα can be computed by solving the following

optimization problem:

max
α∈Rd, t∈R

t

subject to αT y = 0, 0 ≤ α ≤ C

t ≤ S(α,Ki), i = 1, · · · , p. (7)

This corresponds to a quadratically constrained linear pro-
gram (QCLP) withp quadratic constraints. The optimiza-
tion problem is often called therestricted master problem,
and the obtained suboptimal solution pair (α, t) is calledin-
termediate solution. Note that this QCLP problem can be
solved efficiently using general optimization solvers.

To approach the optimum of the SIQCLP problem from a
given intermediate solution pair (t, α), we find the next con-
straint with the maximum violation, i.e., the kernel matrix
K that minimizesS(α,K). The optimalK can be com-
puted by solving the following minimization problem:

min
K

S(α,K) = min
K

ρ‖K −K0‖2F −
1

2
αT Y KY α. (8)

If the optimalK∗ to Eq. (8) satisfiest ≤ S(α,K∗), then
the current intermediate solution pair (t, α) is optimal for
the optimization problem in Eq. (6). Otherwise,K∗ is
added into the localization setK. The intermediate solu-
tion pair (t, α) is updated by solving the restricted master
problem based on the updatedK. We repeat this iterative
process until convergence. The final solution is guaranteed
to be globally optimal (Sonnenburg et al., 2006).

It can be shown (Luss & d’Aspremont, 2007) that the opti-
mal K∗ to the optimization problem in Eq. (8) for a fixed
α is given by:

K∗ =
(
K0 + Y ααT Y/(4ρ)

)

+
. (9)

HereX+ refers to the positive part of a symmetric matrix
X, i.e., X+ =

∑

i max(0, λi)xix
T
i , whereλi andxi are

thei-th eigenvalue and eigenvector ofX.

Based on the discussions above, we propose an iterative
algorithm to solve the optimization in Eq. (6). The pseudo-
code is presented in Algorithm 1. Note that the algorithm
searches for a quadratic constraint (specified byK∗) with
the maximum violation in step1, then updates the inter-
mediate solution (t, α), which is repeated iteratively until
convergence. When no more constraints with violation can
be found, i.e., all constraints are satisfied, Algorithm 1 con-
verges. In practice, we determine the convergence by com-
paring an upper and lower bound of the objective as de-
scribed in the next section.

4.1. Convergence Analysis

We analyze the convergence property of Algorithm 1. Re-
call that Algorithm 1 alternates between the updating of the
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Algorithm 1 Proposed Algorithm
Input: Indefinite kernelK0 and class label vectory;
Output: α andK;
Initialization: (t0, α0)← maxα S(α, (K0)+);
Initialization: i← 1,K = ∅;
Do

Step1: computeK∗ from Eq. (9) andKi ← K∗;
if S(αi−1,Ki) ≥ ti−1 then exit the loop;

elseupdate localization setK← K ∪ {Ki};
end if
Step2: compute (ti, αi) by solving Eq. (7);
i← i + 1;

until convergence

localization setK (step1) and the updating of the interme-
diate solution pair (t, α) (step2). At the i-th iteration, a
new kernel matrixKi is computed from Eq. (9) based on
αi−1. That is,

S(αi−1,Ki) = min
K�0

S(αi−1,K). (10)

With the addition ofKi, the localization set is updated as
K = {Kj}ij=1. We denote

l−i = max
j≤i

S(αj−1,Kj). (11)

Let (ti, αi) be the solution pair to the optimization problem
in Eq. (7) after thei-th iteration. Denoteu+

i = ti. That is,

αi = argmax
α

(

min
K∈K

S(α,K)

)

, (12)

u+
i ≡ ti = min

K∈K

S(αi,K) = max
α

min
K∈K

S(α,K), (13)

whereK is the updated restricted localization set.

The following theorem shows that Algorithm 1 makes con-
tinuous progress towards the optimal solution:

Theorem 4.1. Let l−i and u+
i be defined in Eq. (11) and

Eq. (13), respectively. Let (α∗, t∗) be the optimal solution
pair to the optimization problem in Eq. (6). Then

u+
i ≥ t∗ ≥ l−i . (14)

Moreover, the sequence{u+
i } is monotonically decreasing,

and the sequences{l−i } is monotonically increasing.

Proof. For any feasibleα in Eq. (6), we have

min
K∈K

S(α,K) ≥ min
K�0

S(α,K). (15)

It follows that the inequality above also holds for their cor-
responding pointwise maximum with respect toα. From
Eq. (13) and the equality below

t∗ = max
α∈Rd

min
K�0

S(α,K), (16)

we haveu+
i ≥ t∗. On the other hand, it follows from

Eq. (10) that

Kj = arg min
K�0

S(αj−1,K), j = 1, · · · , i. (17)

Thus{(αj−1, S(αj−1,Kj)), j = 1, · · · , i} is a set of fea-
sible solution pairs to the optimization problem in Eq. (6).
Since(α∗, t∗) is the optimal solution pair to Eq. (6), we
havet∗ ≥ S(αj−1,Kj), for j = 1, · · · , i. If follows from
Eq. (11) thatt∗ ≥ l−i .

From Eq. (13), we have

u+
i = max

α
min
K∈K

S(α,K). (18)

Thus, the sequence{u+
i } is monotonically decreasing, as

the size of localization setK monotonically increases. It
follows from Eq. (11) that{l−i } is monotonically increas-
ing. This completes the proof of the theorem.

Based on the result in Theorem 4.1, we can use the gap be-
tweenu+

i andl−i to trace the convergence of Algorithm 1.
When this gap is smaller that a pre-specified tolerance, we
stop the algorithm.

4.2. Pruning Inactive Constraints

In Algorithm 1, a quadratically constraint linear program
(QCLP) is involved at each iteration (step2). The com-
putational cost for solving QCLP grows with the number
of quadratic constraints, which increases by one after each
iteration. We show that at each iteration, many (inactive)
quadratic constraints can be pruned, while retaining the
convergence property of the algorithm.

Assume that(αi, ti) is the optimal solution pair at thei-th
iteration withKi = {Kj}pj=1 as the localization set. We
further partitionKi into two subsets asKi = Ki

act ∪Ki
ina

such that

ti = S(αi,K), ∀ K ∈ Ki
act, (19)

and

ti < S(αi,K), ∀ K ∈ Ki
ina, (20)

where the equalities in Eq. (19) and inequalities in Eq. (20)
are calledactive and inactive constraints (Nocedal &
Wright, 1999), respectively. LetK∗ be the optimal ma-
trix given in Eq. (9) withα = αi. In Algorithm 1, we use
Ki∪K∗ as the new localization set. We propose to improve
the efficiency by removing the inactive constraints from the
optimization and updating the new localization setKi+1 as
Ki+1 = Ki

act ∪K∗. Let (αi+1, ti+1) be the optimal solu-
tion pair at the(i + 1)-th iteration with the updatedKi+1

as the localization set. To show the convergence, we need
to proveti+1 ≤ ti, as summarized below:
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Lemma 4.1. Let ti and ti+1 be defined as above. Then
ti+1 ≤ ti.

Proof. Prove by contradiction. Assume thatti+1 ≤ ti
doesn’t hold, i.e.,ti+1 > ti.

Let (α̃, t̃) be the optimal solution pair to the optimization
problem in Eq. (7) withKi

act as the localization set. It is
clear thatti+1 ≤ t̃, asKi

act ⊂ Ki+1 = Ki
act ∪K∗. Thus

t̃ ≥ ti+1 > ti.

For anyK ∈ Ki
act, we haveS(α̃,K) ≥ t̃. Sincet̃ > ti,

the following holds for anyK ∈ Ki
act:

S(α̃,K) ≥ t̃ > ti = S(αi,K). (21)

For anyη ∈ (0, 1), letβ = ηα̃+(1− η)αi. SinceS(α,K)
is concave onα andti = S(αi,K) for anyK ∈ Ki

act from
Eq. (19), the following holds for anyK ∈ Ki

act:

S(β,K) ≥ ηS(α̃,K) + (1− η)S(αi,K) > ti. (22)

Recall that for anyK ∈ Ki
ina, we haveS(αi,K) > ti.

SinceS(α,K) is continuous onα, andKi
ina is a finite set,

there exists anǫ ∈ (0, 1) sufficiently close to zero such that

S(βǫ,K) > ti, ∀ K ∈ Ki
ina, (23)

whereβǫ = ǫα̃ + (1− ǫ)αi.

It follows from Eqs. (22) and (23) that

t̂ = min
K∈Ki

S(βǫ,K) > ti. (24)

Since (βǫ, t̂) is a feasible solution pair to Eq. (7) withKi as
the localization set, Eq. (24) contradicts with our assump-
tion that (αi, ti) is the optimal solution pair to Eq. (7). This
completes the proof of the lemma.

Lemma 4.1 shows that the upper bound defined in Eq. (13)
with the inactive constraints pruned as above decreases
monotonically. As the lower bound defined in Eq. (11) al-
ways increases monotonically, the proposed pruning strat-
egy retains the convergence property in Theorem 4.1.

5. Relationship with Multiple Kernel
Learning

We show the close relationship between the proposed SIQ-
CLP formulation in Eq. (6) and the multiple kernel learning
formulation in (Lanckriet et al., 2004).

For a given set of kernel matrices{Ki}pi=1 and a class label
vectory, Lanckriet et al. (2004) propose to learn an optimal
convex combination of thep pre-specified kernel matrices

by solving the following optimization problem:

min
{θi}

max
α∈Rd

αT e− 1

2
αT Y

(
p
∑

i=1

θiKi

)

Y α

subject to
p
∑

i=1

θi tr(Ki) = 1,

αT y = 0, 0 ≤ α ≤ C, (25)

whereY = diag(y), andC is the pre-specified parameter.

Recall thatK0 is a indefinite kernel matrix. For each of the
given PSD kernel matrixKi, we denote

µi = ‖Ki −K0‖2F , i = 1, · · · , p, (26)

whereµi measures the distance betweenKi and K0 in
terms of Frobenius norm. Consider a regularized version
of the optimization problem in Eq. (25) given by:

min
{θi}

max
α∈Rd

αT e− 1

2
αT Y

(
p
∑

i=1

θiKi

)

Y α + ρ

p
∑

i=1

θiµi

subject to
p
∑

i=1

θi = 1, αT y = 0, 0 ≤ α ≤ C, (27)

whereρ is the pre-specified parameter as in Eq. (6). The
optimization problem in Eq. (27) computes an optimal lin-
ear combination of thep pre-specified kernel matrices by
maximizing the margin for SVM classification, while pe-
nalizing kernels with a large deviation fromK0.

The following theorem shows the equivalence relationship
between the regularized MKL problem in Eq. (27) and the
SIQCLP formulation in Eq. (7).

Theorem 5.1. Let {Ki}pi=1 be a set of pre-specified PSD
kernel matrices. Then the optimization problem in Eq. (7)
is equivalent to the one in Eq. (27).

Proof. Since all constraints in Eq. (27) are linear and the
objective is convex on{θi} and concave onα, the min-
imization and the maximization in Eq. (27) can be ex-
changes. This leads to the following optimization problem:

max
α∈Rd

min
K�0

αT e− 1

2
αT Y KY α + ρ

p
∑

i=1

θiµi

= max
α∈Rd

min∑
θi=1

αT e− 1

2
αT Y

p
∑

i=1

θiKiY α + ρ

p
∑

i=1

θiµi

= max
α∈Rd

min∑
θi=1

(
p
∑

i=1

θiti

)

, (28)

whereti is defined as

ti =

(

αT e− 1

2
αT Y KiY α + ρµi

)

. (29)
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Figure 1.Convergence of the proposed algorithms without the
pruning strategy applied (top graph) and with the pruning strat-
egy applied (bottom graph).

From Eq. (28) and Eq. (29), the optimization problem in
Eq. (27) can be reformulated as:

max
α∈Rd, t∈R

t

subject to αT y = 0, 0 ≤ α ≤ C,

t ≤ αT e− 1

2
αT Y KiY α + ρµi,

i = 1, · · · , p,

which is equivalent to the SIQCLP formulation given in
Eq. (7). We complete the proof of this theorem.

The equivalent result in Theorem 5.1 implies that our pro-
posed SIQCLP formulation in Eq. (6) can be solved by
recycling existing efficient MKL implementations (Rako-
tomamonjy et al., 2007; Sonnenburg et al., 2006).

6. Experiments

We experimentally evaluate the convergence property of
the proposed algorithms. We also compare the proposed al-
gorithms with other representative ones using a collection
of benchmark data sets.

6.1. Experimental Setup

We use several benchmark data sets from the UCI repos-
itory (Newman et al., 1998) including Sonar, Ionosphere,

Breast Cancer, and Diabetes, as well as USPS (Hull, 1994)
and Heart1. For USPS, we select two classes correspond-
ing to two digits3 and5, and randomly select600 samples
for each digit.

In our simulation study, we first generate Gaussian ker-
nels from the data with the parameter value estimated
via cross-validation and then construct indefinite kernels
through perturbation. More specifically, we randomly gen-
erate a matrixE with zero mean and identity covariance
matrix, and then applyξÊ as the perturbation, wherêE =
(E + ET )/2 andξ > 0 is small constant. We setC = 1 in
SVM. The value ofρ is estimated via cross-validation.

6.2. Convergence

In this experiment, we empirically evaluate the conver-
gence property of the proposed algorithms with and with-
out pruning. We also investigate the number of kernel ma-
trices involved when the pruning strategy is employed. We
use the sonar data set for this study, and the perturbation
matrix is set to be0.1Ê.

The results are presented in Figure 1. The top graph in Fig-
ure 1 shows the convergence of the upper bound as well as
the lower bound of the objective value when the algorithm
without the pruning strategy is applied. The bottom graph
shows the convergence result for the case when the pruning
strategy is applied. We can observe from the figure that the
upper bound and lower bound curves approach each other
gradually during the iteration. More specifically, the up-
per bound monotonically decreases, while the lower bound
monotonically increases, both approaching the optimal ob-
jective value. This is consistent with our convergence re-
sults in Section 4.1. Interestingly, our results show that the
proposed algorithms with or without the pruning strategy
applied result in a similar convergent rate. We further ob-
serve that the gap between the upper and lower bound is
less that10−2 after about150 iterations, and it takes about
600 iterations to attain a gap smaller than10−5.

Figure 2 shows the number of kernels (the size of the lo-
calization set) involved at each iteration. We can observe
from the figure that with the pruning strategy, the number of
kernels involved in the algorithm stabilizes around a small
constant. In contrast, this number increases gradually when
the pruning strategy is not applied. These results demon-
strate the advantage of the proposed pruning strategy.

We show in Figure 3 the generalization performance (mea-
sured by classification accuracy) of the proposed algorithm
with pruning at each of the first 70 iterations. We observe a
large variation at the first few iterations, while the accuracy
becomes more stable after about 40 iterations. We further
run the algorithm until convergence and the resulting accu-

1http://www.is.umk.pl/projects/datasets-stat.html#heart
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Data Set Size λ− num. λ+ num. λmin λmax |λmax/λmin| Denoise Flip Shift SVM Indefinite SVM

Sonar 208 57.41 150.62 −1.36 18.42 13.55 78.57 79.52 78.10 72.86 80.95
Ionosphere 351 169.62 181.45 −25.50 94.49 3.71 75.57 71.43 71.41 68.00 77.43

Breast Cancer 683 323.21 359.82 −3.51 390.52 111.26 95.38 95.62 95.38 89.54 95.36
Heart 270 125.57 144.71 −10.96 42.93 3.92 71.02 67.28 65.42 65.43 72.22

USPS-3-5 1200 520.12 680.31 −3.54 81.99 23.16 96.25 96.88 95.63 96.11 96.81
Diabetes 768 381.22 385.18 −3.93 8.13 2.06 68.83 64.28 62.98 66.23 70.08

Table 1.Comparison of the proposed algorithm with other representative algorithms in terms of classification accuracy (in percent-
age). All values shown in the table are the averaged ones over 10 partitions of the data into training and test sets with a ratio4 : 1.
λ− num (λ+ num) denotes the number of negative (positive) eigenvalues;λmin (λmax) denotes the minimum (maximum) eigenvalue;
|λmax/λmin| denotes the ratio of the absolute values ofλmax andλmin. SVM refers to applying indefinite kernel in the SVM formu-
lation directly, while indefinite SVM refers to our proposed algorithm with the pruning strategy applied.
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Figure 2.The number of kernel matrices involved for the pro-
posed algorithms with and without the pruning.

racy is about 76%. We obtain a similar observation from
other data sets. This implies that an early-stopping strategy
could be employed for the proposed algorithm.
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Figure 3.Generalization performance (measured by classification
accuracy in percentage) of the proposed algorithm with pruning.

6.3. Classification Performance

In this experiment, we compare our proposed algo-
rithms (Indefinite SVM) with other representative ones in-
cluding Denoise, Flip, Shift, and SVM using indefinite ker-
nels in terms of classification accuracy. The presented ex-

perimental results are averaged over 10 random partitions
of the data into a training and a test set with a ratio4 : 1.

The experimental results are summarized in Table 1. We
also report the maximum and minimum eigenvalues of the
indefinite kernel matrix in the table. We can observe from
the table that Indefinite SVM is competitive with all other
algorithms in most cases. It outperforms all other algo-
rithms on the Sonar, Ionosphere, Heart, and Diabetes data
sets, where the perturbed kernel matrix has a relatively
small ratio|λmax/λmin|. For the other two data sets in-
cluding Breast Cancer and USPS-3-5, where the perturbed
kernel matrix has a relatively large ratio|λmax/λmin|, In-
definite SVM is comparable to the best among all other al-
gorithms. These results demonstrate the effectiveness of
the proposed learning algorithm, especially when the in-
definite kernel matrix is highly non-PSD. A similar trend
has been observed in (Luss & d’Aspremont, 2007).

7. Conclusion

In this paper, we study the problem of training SVM
with an indefinite kernel matrix following the formula-
tion in (Luss & d’Aspremont, 2007). We propose a semi-
infinite quadratically constrained linear program formula-
tion, which can be solved iteratively. The algorithm alter-
nates between the computation of an intermediate SVM so-
lution by solving a quadratically constraint linear program
with a subset of constraints, and the computation of the
new constraint set based on the obtained intermediate SVM
solution. We further propose to improve the efficiency of
the iterative algorithm by pruning inactive constraints at
each iteration. We show that such pruning will not affect
the convergence property of the algorithm. In addition, we
show the close relationship between the proposed SIQCLP
formulation and multiple kernel learning. The presented
analysis provides new insights into the nature of this learn-
ing formulation.

We have performed a simulation study using a collection
of benchmark data sets. Our results verify the conver-
gence property of the proposed algorithms. Our empiri-
cal results show that the proposed algorithms with or with-
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out the pruning strategy applied result in a similar conver-
gent rate, while a much smaller number of kernel matri-
ces are involved when the pruning strategy is applied. Our
results also demonstrate the favorable performance of the
proposed algorithms in terms of classification accuracy in
comparison with several other representative algorithms.
Our future works include the analysis of the convergence
rate of the proposed algorithms similar to the analysis con-
ducted in (Teo et al., 2007), the estimation of the regulariza-
tion parameterρ, and the application of the proposed algo-
rithms to real-world applications involving indefinite ker-
nels such as protein sequence and structure analysis based
on various sequence/structure alignment measures.
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Abstract

We consider the problem of learning to follow
a desired trajectory when given a small num-
ber of demonstrations from a sub-optimal ex-
pert. We present an algorithm that (i) ex-
tracts the—initially unknown—desired tra-
jectory from the sub-optimal expert’s demon-
strations and (ii) learns a local model suit-
able for control along the learned trajectory.
We apply our algorithm to the problem of
autonomous helicopter flight. In all cases,
the autonomous helicopter’s performance ex-
ceeds that of our expert helicopter pilot’s
demonstrations. Even stronger, our results
significantly extend the state-of-the-art in au-
tonomous helicopter aerobatics. In particu-
lar, our results include the first autonomous
tic-tocs, loops and hurricane, vastly superior
performance on previously performed aero-
batic maneuvers (such as in-place flips and
rolls), and a complete airshow, which requires
autonomous transitions between these and
various other maneuvers.

1. Introduction

Many tasks in robotics can be described as a trajectory
that the robot should follow. Unfortunately, specify-
ing the desired trajectory and building an appropriate
model for the robot dynamics along that trajectory are
often non-trivial tasks. For example, when asked to
describe the trajectory that a helicopter should follow
to perform an aerobatic flip, one would have to spec-
ify a trajectory that (i) corresponds to the aerobatic
flip task, and (ii) is consistent with the helicopter’s dy-
namics. The latter requires (iii) an accurate helicopter
dynamics model for all of the flight regimes encoun-
tered in the vicinity of the trajectory. These coupled
tasks are non-trivial for systems with complex dynam-
ics, such as helicopters. Failing to adequately address
these points leads to a significantly more difficult con-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

trol problem.

In the apprenticeship learning setting, where an ex-
pert is available, rather than relying on a hand-
engineered target trajectory, one can instead have the
expert demonstrate the desired trajectory. The expert
demonstration yields both a desired trajectory for the
robot to follow, as well as data to build a dynamics
model in the vicinity of this trajectory. Unfortunately,
perfect demonstrations can be hard (if not impossible)
to obtain. However, repeated expert demonstrations
are often suboptimal in different ways, suggesting that
a large number of suboptimal expert demonstrations
could implicitly encode the ideal trajectory the subop-
timal expert is trying to demonstrate.

In this paper we propose an algorithm that ap-
proximately extracts this implicitly encoded opti-
mal demonstration from multiple suboptimal expert
demonstrations, and then builds a model of the dy-
namics in the vicinity of this trajectory suitable for
high-performance control. In doing so, the algorithm
learns a target trajectory and a model that allows the
robot to not only mimic the behavior of the expert but
even perform significantly better.

Properly extracting the underlying ideal trajectory
from a set of suboptimal trajectories requires a signifi-
cantly more sophisticated approach than merely aver-
aging the states observed at each time-step. A simple
arithmetic average of the states would result in a tra-
jectory that does not even obey the constraints of the
dynamics model. Also, in practice, each of the demon-
strations will occur at different rates so that attempt-
ing to combine states from the same time-step in each
trajectory will not work properly.

We propose a generative model that describes the ex-
pert demonstrations as noisy observations of the unob-
served, intended target trajectory, where each demon-
stration is possibly warped along the time axis. We
present an EM algorithm—which uses a (extended)
Kalman smoother and an efficient dynamic program-
ming algorithm to perform the E-step—to both infer
the unobserved, intended target trajectory and a time-
alignment of all the demonstrations. The time-aligned
demonstrations provide the appropriate data to learn
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good local models in the vicinity of the trajectory—
such trajectory-specific local models tend to greatly
improve control performance.

Our algorithm allows one to easily incorporate prior
knowledge to further improve the quality of the learned
trajectory. For example, for a helicopter performing
in-place flips, it is known that the helicopter can be
roughly centered around the same position over the
entire sequence of flips. Our algorithm incorporates
this prior knowledge, and successfully factors out the
position drift in the expert demonstrations.

We apply our algorithm to learn trajectories and dy-
namics models for aerobatic flight with a remote con-
trolled helicopter. Our experimental results show that
(i) our algorithm successfully extracts a good trajec-
tory from the multiple sub-optimal demonstrations,
and (ii) the resulting flight performance significantly
extends the state of the art in aerobatic helicopter
flight (Abbeel et al., 2007; Gavrilets et al., 2002). Most
importantly, our resulting controllers are the first to
perform as well, and often even better, than our ex-
pert pilot.

We posted movies of our autonomous helicopter flights
at:

http://heli.stanford.edu

The remainder of this paper is organized as follows:
Section 2 presents our generative model for (multi-
ple) suboptimal demonstrations; Section 3 describes
our trajectory learning algorithm in detail; Section 4
describes our local model learning algorithm; Section 5
describes our helicopter platform and experimental re-
sults; Section 6 discusses related work.

2. Generative Model

2.1. Basic Generative Model

We are given M demonstration trajectories of length
Nk, for k = 0..M − 1. Each trajectory is a sequence
of states, sk

j , and control inputs, uk
j , composed into a

single state vector:

yk
j =

[
sk

j

uk
j

]

, for j = 0..Nk − 1, k = 0..M − 1.

Our goal is to estimate a “hidden” target trajectory of
length T , denoted similarly:

zt =

[
s⋆

t

u⋆
t

]

, for t = 0..T − 1.

We use the following notation: y = {yk
j | j = 0..Nk −

1, k = 0..M − 1}, z = {zt | t = 0..T − 1}, and similarly
for other indexed variables.

The generative model for the ideal trajectory is given
by an initial state distribution z0 ∼ N (µ0,Σ0) and an

approximate model of the dynamics

zt+1 = f(zt) + ω
(z)
t , ω

(z)
t ∼ N (0,Σ(z)). (1)

The dynamics model does not need to be particularly
accurate—in our experiments, we use a single generic
model learned from a large corpus of data that is not
specific to the trajectory we want to perform. In our
experiments (Section 5) we provide some concrete ex-
amples showing how accurately the generic model cap-
tures the true dynamics for our helicopter.1

Our generative model represents each demonstration
as a set of independent “observations” of the hidden,
ideal trajectory z. Specifically, our model assumes

yk
j = zτk

j
+ ω

(y)
j , ω

(y)
j ∼ N (0,Σ(y)). (2)

Here τk
j is the time index in the hidden trajectory to

which the observation yk
j is mapped. The noise term in

the observation equation captures both inaccuracy in
estimating the observed trajectories from sensor data,
as well as errors in the maneuver that are the result of
the human pilot’s imperfect demonstration.2

The time indices τk
j are unobserved, and our model

assumes the following distribution with parameters dk
i :

P(τk
j+1|τk

j ) =







dk
1 if τk

j+1 − τk
j = 1

dk
2 if τk

j+1 − τk
j = 2

dk
3 if τk

j+1 − τk
j = 3

0 otherwise

(3)

τk
0 ≡ 0. (4)

To accommodate small, gradual shifts in time between
the hidden and observed trajectories, our model as-
sumes the observed trajectories are subsampled ver-
sions of the hidden trajectory. We found that hav-
ing a hidden trajectory length equal to twice the
average length of the demonstrations, i.e., T =

2( 1
M

∑M
k=1 Nk), gives sufficient resolution.

Figure 1 depicts the graphical model corresponding to
our basic generative model. Note that each observa-
tion yk

j depends on the hidden trajectory’s state at

time τk
j , which means that for τk

j unobserved, yk
j de-

pends on all states in the hidden trajectory that it
could be associated with.

2.2. Extensions to the Generative Model

Thus far we have assumed that the expert demon-
strations are misaligned copies of the ideal trajectory

1The state transition model also predicts the controls
as a function of the previous state and controls. In our
experiments we predict u⋆

t+1 as u⋆
t plus Gaussian noise.

2Even though our observations, y, are correlated over
time with each other due to the dynamics governing the ob-
served trajectory, our model assumes that the observations
yk

j are independent for all j = 0..Nk − 1 and k = 0..M − 1.
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Figure 1. Graphical model representing our trajectory as-
sumptions. (Shaded nodes are observed.)

merely corrupted by Gaussian noise. Listgarten et
al. have used this same basic generative model (for
the case where f(·) is the identity function) to align
speech signals and biological data (Listgarten, 2006;
Listgarten et al., 2005). We now augment the basic
model to account for other sources of error which are
important for modeling and control.

2.2.1. Learning Local Model Parameters

For many systems, we can substantially improve our
modeling accuracy by using a time-varying model ft(·)
that is specific to the vicinity of the intended trajectory
at each time t. We express ft as our “crude” model,
f , augmented with a bias term3, β⋆

t :

zt+1 = ft(zt) + ω
(z)
t ≡ f(zt) + β⋆

t + ω
(z)
t .

To regularize our model, we assume that β⋆
t changes

only slowly over time. We have β⋆
t+1 ∼ N (β⋆

t ,Σ(β)).

We incorporate the bias into our observation model
by computing the observed bias βk

j = yk
j − f(yk

j−1)
for each of the observed state transitions, and mod-
eling this as a direct observation of the “true” model
bias corrupted by Gaussian noise. The result of this
modification is that the ideal trajectory must not only
look similar to the demonstration trajectories, but it
must also obey a dynamics model which includes those
errors consistently observed in the demonstrations.

2.2.2. Factoring out Demonstration Drift

It is often difficult, even for an expert pilot, during
aerobatic maneuvers to keep the helicopter centered
around a fixed position. The recorded position tra-
jectory will often drift around unintentionally. Since
these position errors are highly correlated, they are
not explained well by the Gaussian noise term in our
observation model.

To capture such slow drift in the demonstrated trajec-

3Our generative model can incorporate richer local
models. We discuss our choice of merely using biases in our
generative trajectory model in more detail in Section 4.

tories, we augment the latent trajectory’s state with a
“drift” vector δk

t for each time t and each demonstrated
trajectory k. We model the drift as a zero-mean ran-
dom walk with (relatively) small variance. The state
observations are now noisy measurements of zt + δk

t

rather than merely zt.

2.2.3. Incorporating Prior Knowledge

Even though it might be hard to specify the complete
ideal trajectory in state space, we might still have prior
knowledge about the trajectory. Hence, we introduce
additional observations ρt = ρ(zt) corresponding to
our prior knowledge about the ideal trajectory at time
t. The function ρ(zt) computes some features of the
hidden state zt and our expert supplies the value ρt

that this feature should take. For example, for the
case of a helicopter performing an in-place flip, we use
an observation that corresponds to our expert pilot’s
knowledge that the helicopter should stay at a fixed
position while it is flipping. We assume that these ob-
servations may be corrupted by Gaussian noise, where
the variance of the noise expresses our confidence in
the accuracy of the expert’s advice. In the case of the
flip, the variance expresses our knowledge that it is,
in fact, impossible to flip perfectly in-place and that
the actual position of the helicopter may vary slightly
from the position given by the expert.

Incorporating prior knowledge of this kind can greatly
enhance the learned ideal trajectory. We give more
detailed examples in Section 5.

2.2.4. Model Summary

In summary, we have the following generative model:

zt+1 = f(zt) + β⋆
t + ω

(z)
t , (5)

β⋆
t+1 = β⋆

t + ω
(β)
t , (6)

δk
t+1 = δk

t + ω
(δ)
t , (7)

ρt = ρ(zt) + ω
(ρ)
t , (8)

yk
j = zτk

j
+ δk

j + ω
(y)
j , (9)

τk
j ∼ P(τk

j+1|τk
j ) (10)

Here ω
(z)
t , ω

(β)
t , ω

(δ)
t , ω

(ρ)
t , ω

(y)
j are zero mean Gaussian

random variables with respective covariance matrices
Σ(z),Σ(β),Σ(δ),Σ(ρ),Σ(y). The transition probabili-
ties for τk

j are defined by Eqs. (3, 4) with parameters

dk
1 , dk

2 , dk
3 (collectively denoted d).

3. Trajectory Learning Algorithm

Our learning algorithm automatically finds the time-
alignment indexes τ , the time-index transition prob-
abilities d, and the covariance matrices Σ(·) by (ap-
proximately) maximizing the joint likelihood of the
observed trajectories y and the observed prior knowl-

146



Learning for Control from Multiple Demonstrations

edge about the ideal trajectory ρ, while marginalizing
out over the unobserved, intended trajectory z. Con-
cretely, our algorithm (approximately) solves

max
τ ,Σ(·),d

log P(y,ρ, τ ; Σ(·),d). (11)

Then, once our algorithm has found τ ,d,Σ(·), it finds
the most likely hidden trajectory, namely the trajec-
tory z that maximizes the joint likelihood of the ob-
served trajectories y and the observed prior knowledge
about the ideal trajectory ρ for the learned parameters
τ ,d,Σ(·).4

The joint optimization in Eq. (11) is difficult because
(as can be seen in Figure 1) the lack of knowledge of
the time-alignment index variables τ introduces a very
large set of dependencies between all the variables.
However, when τ is known, the optimization problem
in Eq. (11) greatly simplifies thanks to context spe-
cific independencies (Boutilier et al., 1996). When τ

is fixed, we obtain a model such as the one shown in
Figure 2. In this model we can directly estimate the
multinomial parameters d in closed form; and we have
a standard HMM parameter learning problem for the
covariances Σ(·), which can be solved using the EM al-
gorithm (Dempster et al., 1977)—often referred to as
Baum-Welch in the context of HMMs. Concretely, for
our setting, the EM algorithm’s E-step computes the
pairwise marginals over sequential hidden state vari-
ables by running a (extended) Kalman smoother; the
M-step then uses these marginals to update the covari-
ances Σ(·).

Figure 2. Example of graphical model when τ is known.
(Shaded nodes are observed.)

To also optimize over the time-indexing variables τ ,
we propose an alternating optimization procedure. For

4Note maximizing over the hidden trajectory and the
covariance parameters simultaneously introduces undesir-
able local maxima: the likelihood score would be highest
(namely infinity) for a hidden trajectory with a sequence
of states exactly corresponding to the (crude) dynamics
model f(·) and state-transition covariance matrices equal
to all-zeros as long as the observation covariances are non-
zero. Hence we marginalize out the hidden trajectory to
find τ ,d, Σ(·).

fixed Σ(·) and d, and for fixed z, we can find the opti-
mal time-indexing variables τ using dynamic program-
ming over the time-index assignments for each demon-
stration independently. The dynamic programming al-
gorithm to find τ is known in the speech recognition
literature as dynamic time warping (Sakoe & Chiba,
1978) and in the biological sequence alignment litera-
ture as the Needleman-Wunsch algorithm (Needleman
& Wunsch, 1970). The fixed z we use, is the one that
maximizes the likelihood of the observations for the
current setting of parameters τ ,d,Σ(·).5

In practice, rather than alternating between complete
optimizations over Σ(·),d and τ , we only partially op-
timize over Σ(·), running only one iteration of the EM
algorithm.

We provide the complete details of our algorithm in
the full paper (Coates et al., 2008).

4. Local Model Learning

For complex dynamical systems, the state zt used
in the dynamics model often does not correspond to
the “complete state” of the system, since the latter
could involve large numbers of previous states or unob-
served variables that make modeling difficult.6 How-
ever, when we only seek to model the system dynamics
along a specific trajectory, knowledge of both zt and
how far we are along that trajectory is often sufficient
to accurately predict the next state zt+1.

Once the alignments between the demonstrations are
computed by our trajectory learning algorithm, we can
use the time aligned demonstration data to learn a se-
quence of trajectory-specific models. The time indices
of the aligned demonstrations now accurately associate
the demonstration data points with locations along the
learned trajectory, allowing us to build models for the
state at time t using the appropriate corresponding
data from the demonstration trajectories.7

5Fixing z means the dynamic time warping step only
approximately optimizes the original objective. Unfortu-
nately, without fixing z, the independencies required to
obtain an efficient dynamic programming algorithm do not
hold. In practice we find our approximation works very
well.

6This is particularly true for helicopters. Whereas the
state of the helicopter is very crudely captured by the 12D
rigid-body state representation we use for our controllers,
the “true” physical state of the system includes, among
others, the airflow around the helicopter, the rotor head
speed, and the actuator dynamics.

7We could learn the richer local model within the tra-
jectory alignment algorithm, updating the dynamics model
during the M-step. We chose not to do so since these mod-
els are more computationally expensive to estimate. The
richer local models have minimal influence on the align-
ment because the biases capture the average model error—
the richer models capture the derivatives around it. Given
the limited influence on the alignment, we chose to save
computational time and only estimate the richer models
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Figure 3. Our XCell Tempest autonomous helicopter.

To construct an accurate nonlinear model to predict
zt+1 from zt, using the aligned data, one could use lo-
cally weighted linear regression (Atkeson et al., 1997),
where a linear model is learned based on a weighted
dataset. Data points from our aligned demonstrations
that are nearer to the current time index along the
trajectory, t, and nearer the current state, zt, would
be weighted more highly than data far away. While
this allows us to build a more accurate model from
our time-aligned data, the weighted regression must
be done online, since the weights depend on the cur-
rent state, zt. For performance reasons8 this may often
be impractical. Thus, we weight data only based on
the time index, and learn a parametric model in the re-
maining variables (which, in our experiments, has the
same form as the global “crude” model, f(·)). Con-
cretely, when estimating the model for the dynamics
at time t, we weight a data point at time t′ by:9

W (t′) = exp

(

− (t − t′)2

σ2

)

,

where σ is a bandwidth parameter. Typical values for
σ are between one and two seconds in our experiments.
Since the weights for the data points now only depend
on the time index, we can precompute all models ft(·)
along the entire trajectory. The ability to precompute
the models is a feature crucial to our control algorithm,
which relies heavily on fast simulation.

5. Experimental Results

5.1. Experimental Setup

To test our algorithm, we had our expert helicopter
pilot fly our XCell Tempest helicopter (Figure 3),

after alignment.
8During real-time control execution, our model is

queried roughly 52000 times per second. Even with KD-
tree or cover-tree data structures a full locally weighted
model would be much too slow.

9In practice, the data points along a short segment of
the trajectory lie in a low-dimensional subspace of the state
space. This sometimes leads to an ill-conditioned param-
eter estimation problem. To mitigate this problem, we
regularize our models toward the “crude” model f(·).

which can perform professional, competition-level ma-
neuvers.10

We collected multiple demonstrations from our expert
for a variety of aerobatic trajectories: continuous in-
place flips and rolls, a continuous tail-down “tic toc,”
and an airshow, which consists of the following maneu-
vers in rapid sequence: split-S, snap roll, stall-turn,
loop, loop with pirouette, stall-turn with pirouette,
“hurricane” (fast backward funnel), knife-edge, flips
and rolls, tic-toc and inverted hover.

The (crude) helicopter dynamics f(·) is constructed
using the method of Abbeel et al. (2006a).11 The
helicopter dynamics model predicts linear and angular
accelerations as a function of current state and inputs.
The next state is then obtained by integrating forward
in time using the standard rigid-body equations.

In the trajectory learning algorithm, we have bias
terms β⋆

t for each of the predicted accelerations. We
use the state-drift variables, δk

t , for position only.

For the flips, rolls, and tic-tocs we incorporated our
prior knowledge that the helicopter should stay in
place. We added a measurement of the form:

0 = p(zt) + ω(ρ0), ω(ρ0) ∼ N (0,Σ(ρ0))

where p(·) is a function that returns the position co-
ordinates of zt, and Σ(ρ0) is a diagonal covariance ma-
trix. This measurement—which is a direct observation
of the pilot’s intended trajectory—is similar to advice
given to a novice human pilot to describe the desired
maneuver: A good flip, roll, or tic-toc trajectory stays
close to the same position.

We also used additional advice in the airshow to in-
dicate that the vertical loops, stall-turns and split-S
should all lie in a single vertical plane; that the hurri-
canes should lie in a horizontal plane and that a good
knife-edge stays in a vertical plane. These measure-
ments take the form:

c = N⊤p(zt) + ω(ρ1), ω(ρ1) ∼ N (0,Σ(ρ1))

where, again, p(zt) returns the position coordinates of
zt. N is a vector normal to the plane of the maneu-
ver, c is a constant, and Σ(ρ1) is a diagonal covariance
matrix.

10We instrumented the helicopter with a Microstrain
3DM-GX1 orientation sensor. A ground-based camera sys-
tem measures the helicopter’s position. A Kalman filter
uses these measurements to track the helicopter’s position,
velocity, orientation and angular rate.

11The model of Abbeel et al. (2006a) naturally general-
izes to any orientation of the helicopter regardless of the
flight regime from which data is collected. Hence, even
without collecting data from aerobatic flight, we can rea-
sonably attempt to use such a model for aerobatic flying,
though we expect it to be relatively inaccurate.
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Figure 4. Colored lines: demonstrations. Black dotted line: trajectory inferred by our algorithm. (See text for details.)

5.2. Trajectory Learning Results

Figure 4(a) shows the horizontal and vertical position
of the helicopter during the two loops flown during
the airshow. The colored lines show the expert pi-
lot’s demonstrations. The black dotted line shows the
inferred ideal path produced by our algorithm. The
loops are more rounded and more consistent in the in-
ferred ideal path. We did not incorporate any prior
knowledge to this extent. Figure 4(b) shows a top-
down view of the same demonstrations and inferred
trajectory. The prior successfully encouraged the in-
ferred trajectory to lie in a vertical plane, while obey-
ing the system dynamics.

Figure 4(c) shows one of the bias terms, namely the
model prediction errors for the Z-axis acceleration of
the helicopter computed from the demonstrations, be-
fore time-alignment. Figure 4(d) shows the result after
alignment (in color) as well as the inferred acceleration
error (black dotted). We see that the unaligned bias
measurements allude to errors approximately in the -
1G to -2G range for the first 40 seconds of the airshow
(a period that involves high-G maneuvering that is not
predicted accurately by the “crude” model). However,
only the aligned biases precisely show the magnitudes
and locations of these errors along the trajectory. The
alignment allows us to build our ideal trajectory based
upon a much more accurate model that is tailored to
match the dynamics observed in the demonstrations.

Results for other maneuvers and state variables are
similar. At the URL provided in the introduction we
posted movies which simultaneously replay the differ-
ent demonstrations, before alignment and after align-
ment. The movies visualize the alignment results in
many state dimensions simultaneously.

5.3. Flight Results

After constructing the idealized trajectory and models
using our algorithm, we attempted to fly the trajectory
on the actual helicopter.

Our helicopter uses a receding-horizon differential dy-
namic programming (DDP) controller (Jacobson &
Mayne, 1970). DDP approximately solves general con-
tinuous state-space optimal control problems by taking
advantage of the fact that optimal control problems

with linear dynamics and a quadratic reward function
(known as linear quadratic regulator (LQR) problems)
can be solved efficiently. It is well-known that the so-
lution to the (time-varying, finite horizon) LQR prob-
lem is a sequence of linear feedback controllers. In
short, DDP iteratively approximates the general con-
trol problem with LQR problems until convergence, re-
sulting in a sequence of linear feedback controllers that
are approximately optimal. In the receding-horizon al-
gorithm, we not only run DDP initially to design the
sequence of controllers, but also re-run DDP during
control execution at every time step and recompute
the optimal controller over a fixed-length time interval
(the horizon), assuming the precomputed controller
and cost-to-go are correct after this horizon.

As described in Section 4, our algorithm outputs a
sequence of learned local parametric models, each of
the form described by Abbeel et al. (2006a). Our
implementation linearizes these models on the fly with
a 2 second horizon (at 20Hz). Our reward function
penalizes error from the target trajectory, s⋆

t , as well
as deviation from the desired controls, u⋆

t , and the
desired control velocities, u⋆

t+1 − u⋆
t .

First we compare our results with the previous state-
of-the-art in aerobatic helicopter flight, namely the in-
place rolls and flips of Abbeel et al. (2007). That
work used hand-specified target trajectories and a sin-
gle nonlinear model for the entire trajectory.

Figure 5(a) shows the Y-Z position12 and the collec-
tive (thrust) control inputs for the in-place rolls for
both their controller and ours. Our controller achieves
(i) better position performance (standard deviation of
approximately 2.3 meters in the Y-Z plane, compared
to about 4.6 meters and (ii) lower overall collective
control values (which roughly represents the amount
of energy being used to fly the maneuver).

Similarly, Figure 5(b) shows the X-Z position and the
collective control inputs for the in-place flips for both
controllers. Like for the rolls, we see that our con-
troller significantly outperforms that of Abbeel et al.
(2007), both in position accuracy and in control energy
expended.

12These are the position coordinates projected into a
plane orthogonal to the axis of rotation.
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Figure 5. Flight results. (a),(b) Solid black: our results. Dashed red: Abbeel et al. (2007). (c) Dotted black: autonomous
tic-toc. Solid colored: expert demonstrations. (See text for details.)

Besides flips and rolls, we also performed autonomous
“tic tocs”—widely considered to be an even more chal-
lenging aerobatic maneuver. During the (tail-down)
tic-toc maneuver the helicopter pitches quickly back-
ward and forward in-place with the tail pointed toward
the ground (resembling an inverted clock pendulum).
The complex relationship between pitch angle, hori-
zontal motion, vertical motion, and thrust makes it ex-
tremely difficult to create a feasible tic-toc trajectory
by hand. Our attempts to use such a hand-coded tra-
jectory with the DDP algorithm from (Abbeel et al.,
2007) failed repeatedly. By contrast, our algorithm
readily yields an excellent feasible trajectory that was
successfully flown on the first attempt. Figure 5(c)
shows the expert trajectories (in color), and the au-
tonomously flown tic-toc (black dotted). Our con-
troller significantly outperforms the expert’s demon-
strations.

We also applied our algorithm to successfully fly a
complete aerobatic airshow, which consists of the fol-
lowing maneuvers in rapid sequence: split-S, snap roll,
stall-turn, loop, loop with pirouette, stall-turn with
pirouette, “hurricane” (fast backward funnel), knife-
edge, flips and rolls, tic-toc and inverted hover.

The trajectory-specific local model learning typically
captures the dynamics well enough to fly all the afore-
mentioned maneuvers reliably. Since our computer
controller flies the trajectory very consistently, how-
ever, this allows us to repeatedly acquire data from
the same vicinity of the target trajectory on the real
helicopter. Similar to Abbeel et al. (2007), we incorpo-
rate this flight data into our model learning, allowing
us to improve flight accuracy even further. For exam-
ple, during the first autonomous airshow our controller
achieves an RMS position error of 3.29 meters, and this
procedure improved performance to 1.75 meters RMS
position error.

Videos of all our flights are available at:

http://heli.stanford.edu

6. Related Work

Although no prior works span our entire setting of
learning for control from multiple demonstrations,
there are separate pieces of work that relate to var-
ious components of our approach.

Atkeson and Schaal (1997) use multiple demonstra-
tions to learn a model for a robot arm, and then find an
optimal controller in their simulator, initializing their
optimal control algorithm with one of the demonstra-
tions.

The work of Calinon et al. (2007) considered learning
trajectories and constraints from demonstrations for
robotic tasks. There, they do not consider the system’s
dynamics or provide a clear mechanism for the inclu-
sion of prior knowledge. Our formulation presents a
principled, joint optimization which takes into account
the multiple demonstrations, as well as the (complex)
system dynamics and prior knowledge. While Calinon
et al. (2007) also use some form of dynamic time warp-
ing, they do not try to optimize a joint objective cap-
turing both the system dynamics and time-warping.

Among others, An et al. (1988) and, more recently,
Abbeel et al. (2006b) have exploited the idea of
trajectory-indexed model learning for control. How-
ever, contrary to our setting, their algorithms do not
time align nor coherently integrate data from multiple
trajectories.

While the work by Listgarten et al. (Listgarten, 2006;
Listgarten et al., 2005) does not consider robotic con-
trol and model learning, they also consider the prob-
lem of multiple continuous time series alignment with
a hidden time series.

Our work also has strong similarities with recent work
on inverse reinforcement learning, which extracts a re-
ward function (rather than a trajectory) from the ex-
pert demonstrations. See, e.g., Ng and Russell (2000);
Abbeel and Ng (2004); Ratliff et al. (2006); Neu and
Szepesvari (2007); Ramachandran and Amir (2007);
Syed and Schapire (2008).
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Most prior work on autonomous helicopter flight only
considers the flight-regime close to hover. There
are three notable exceptions. The aerobatic work
of Gavrilets et al. (2002) comprises three maneuvers:
split-S, snap-roll, and stall-turn, which we also include
during the first 10 seconds of our airshow for com-
parison. They record pilot demonstrations, and then
hand-engineer a sequence of desired angular rates and
velocities, as well as transition points. Ng et al. (2004)
have their autonomous helicopter perform sustained
inverted hover. We compared the performance of our
system with the work of Abbeel et al. (2007), by far
the most advanced autonomous aerobatics results to
date, in Section 5.

7. Conclusion

We presented an algorithm that takes advantage of
multiple suboptimal trajectory demonstrations to (i)
extract (an estimate of) the ideal demonstration, (ii)
learn a local model along this trajectory. Our algo-
rithm is generally applicable for learning trajectories
and dynamics models along trajectories from multi-
ple demonstrations. We showed the effectiveness of
our algorithm for control by applying it to the chal-
lenging problem of autonomous helicopter aerobatics.
The ideal target trajectory and the local models out-
put by our trajectory learning algorithm enable our
controllers to significantly outperform the prior state
of the art.

Acknowledgments

We thank Garett Oku for piloting and building our
helicopter. Adam Coates is supported by a Stanford
Graduate Fellowship. This work was also supported
in part by the DARPA Learning Locomotion program
under contract number FA8650-05-C-7261.

References

Abbeel, P., Coates, A., Quigley, M., & Ng, A. Y. (2007).
An application of reinforcement learning to aerobatic he-
licopter flight. NIPS 19.

Abbeel, P., Ganapathi, V., & Ng, A. Y. (2006a). Learning
vehicular dynamics with application to modeling heli-
copters. NIPS 18.

Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning
via inverse reinforcement learning. Proc. ICML.

Abbeel, P., Quigley, M., & Ng, A. Y. (2006b). Using inac-
curate models in reinforcement learning. Proc. ICML.

An, C. H., Atkeson, C. G., & Hollerbach, J. M. (1988).
Model-based control of a robot manipulator. MIT Press.

Atkeson, C., & Schaal, S. (1997). Robot learning from
demonstration. Proc. ICML. g

Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Lo-
cally weighted learning for control. Artificial Intelligence
Review, 11.

Boutilier, C., Friedman, N., Goldszmidt, M., & Koller, D.
(1996). Context-specific independence in Bayesian net-
works. Proc. UAI.

Calinon, S., Guenter, F., & Billard, A. (2007). On learn-
ing, representing and generalizing a task in a humanoid
robot. IEEE Trans. on Systems, Man and Cybernetics,
Part B.

Coates, A., Abbeel, P., & Ng, A. Y. (2008). Learning
for control from multiple demonstrations (Full version).
http://heli.stanford.edu/icml2008.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the EM
algorithm. J. of the Royal Statistical Society.

Gavrilets, V., Martinos, I., Mettler, B., & Feron, E. (2002).
Control logic for automated aerobatic flight of minia-
ture helicopter. AIAA Guidance, Navigation and Con-
trol Conference.

Jacobson, D. H., & Mayne, D. Q. (1970). Differential dy-
namic programming. Elsevier.

Listgarten, J. (2006). Analysis of sibling time series data:
alignment and difference detection. Doctoral disserta-
tion, University of Toronto.

Listgarten, J., Neal, R. M., Roweis, S. T., & Emili, A.
(2005). Multiple alignment of continuous time series.
NIPS 17.

Needleman, S., & Wunsch, C. (1970). A general method
applicable to the search for similarities in the amino acid
sequence of two proteins. J. Mol. Biol.

Neu, G., & Szepesvari, C. (2007). Apprenticeship learning
using inverse reinforcement learning and gradient meth-
ods. Proc. UAI.

Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J.,
Tse, B., Berger, E., & Liang, E. (2004). Autonomous in-
verted helicopter flight via reinforcement learning. ISER.

Ng, A. Y., & Russell, S. (2000). Algorithms for inverse
reinforcement learning. Proc. ICML.

Ramachandran, D., & Amir, E. (2007). Bayesian inverse
reinforcement learning. Proc. IJCAI.

Ratliff, N., Bagnell, J., & Zinkevich, M. (2006). Maximum
margin planning. Proc. ICML.

Sakoe, H., & Chiba, S. (1978). Dynamic programming al-
gorithm optimization for spoken word recognition. IEEE
Transactions on Acoustics, Speech, and Signal Process-
ing.

Syed, U., & Schapire, R. E. (2008). A game-theoretic ap-
proach to apprenticeship learning. NIPS 20.

151



Spectral Clustering with Inconsistent Advice

Tom Coleman colemant@csse.unimelb.edu.au

James Saunderson j.saunderson@ugrad.unimelb.edu.au

Anthony Wirth awirth@csse.unimelb.edu.au

The University of Melbourne, Victoria 3010 Australia

Abstract

Clustering with advice (often known as con-
strained clustering) has been a recent focus
of the data mining community. Success has
been achieved incorporating advice into the
k-means and spectral clustering frameworks.
Although the theory community has explored
inconsistent advice, it has not yet been incor-
porated into spectral clustering. Extending
work of De Bie and Cristianini, we set out a
framework for finding minimum normalised
cuts, subject to inconsistent advice.

1. Introduction

Clustering is an exploratory data analysis problem
which asks us to form groups of related objects. Al-
though humans have a good intuition for clustering in
two dimensions, if the data is in a higher dimensional
space, it can be hard to visualise. In this paper, we
will focus on the problem of clustering data into two
clusters, subject to a balance criterion and advice.

1.1. Clustering with advice

It is sensible for clustering algorithms to be able to
incorporate must-link and cannot-link advice1, as it is
known in the constrained clustering community. For
example, in biology, when experimentally clustering
proteins (or genes etc), it is often practical to test as-
sociations of individual pairs. However, there is no
guarantee that the advice we generate in this way will
be correct. Additionally, it is well known that hu-

1Traditionally in the literature, what we call advice is
referred to as constraints. We use the term advice here to
avoid confusion with constraints that are introduced into
the problem in later sections.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

man and biological ‘experiments’ are often subject to
noise. If we have enough noisy advice, that advice will
be inconsistent—that is, there is no way to cluster the
data which agrees with all the advice.

In that case, the objective naturally becomes to re-
spect as much advice as possible. In fact, if we ignore
all the data apart from the advice, we have the the
2-correlation clustering problem (2CC), known to be
NP-hard (Bansal et al., 2004). In this context, we can
think of the advice graph—which has an edge for each
piece of advice, labelled with a + for a must-link, and
a − otherwise.

1.2. Balanced clustering

A natural problem to solve when clustering in general
is the normalised cut (Shi & Malik, 2000). Normalised
cut (Ncut) asks us to find a cut which minimises inter-
cluster affinity whilst maximising intra-cluster affinity
in a sensible way. In the two cluster case, this is to

minimise the quantity
cut(S, S̄)

vol(S)vol(S̄)
, where cut(S, S̄)

measures the affinity across the cut and vol(S) is the
total degree (out-affinity) of all the nodes within S.

Our aim for the paper is to attempt to optimise both
the Ncut and 2CC criteria simultaneously. To do so
we will need to relax the problems—we cannot hope
to solve them combinatorially.

1.3. Relaxed versions of the clustering

problems

Traditionally, spectral approaches were used for the
Ncut problem, as they led to fast algorithms. Re-
cently there has been a trend towards tighter, semidef-
inite programming (SDP)-based, relaxations. We will
demonstrate how to alter the basic spectral clustering
algorithm, and the SDP techniques, to integrate and
deal sensibly with inconsistent advice.

Suppose that the advice is consistent (it is simple to
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check this fact). Once we know that this is the case,
it is sensible to constrain the space of the solutions
that we explore only to contain clusterings that are
consistent with this advice.

1.4. Existing approaches

Spectral Clustering Spectral Clustering appeared
first in the literature in the 1970s. Much of the recent
popularity of the technique was instigated by the con-
nection to Ncut as shown by Shi and Malik (2000).

Advice Advice (instance-level constraints) for clus-
tering problems was introduced to the machine
learning community in the work of Wagstaff and
Cardie (2000) who developed a variant of the classic
k-means algorithms to incorporate advice.

Kamvar, Klein and Manning (2003) integrated advice
into the spectral formulation by directly changing en-
tries of the Laplacian matrix. Xing et al. (2003) im-
prove on this idea by essentially changing the Lapla-
cian in a more consistent way. They do this by finding
a metric that best agrees with the advice. These meth-
ods do not directly exploit the nature of the spectral
algorithm.

SDP relaxations for N-cut Xing and Jor-
dan (2003) outline a SDP formulation for the Ncut

problem for multiple clusters and highlight the con-
nection to spectral clustering. De Bie and Cristian-
ini (2006) provide an SDP which is easier to deal with,
and demonstrate that the subspace trick can also be
used to introduce advice to this problem.

The subspace trick De Bie, Suykens and
De Moor (2004) outline a subspace trick to integrate
advice into spectral clustering by constraining a so-
lution to be within the subspace of solutions which
agree with the advice. This approach was also pre-
viously mentioned in the work of Yu and Shi (2001).
This technique leaves the spectral algorithm essentially
unchanged; it now just searches for eigenvectors in a
different subspace. However it is not necessarily ap-
parent from their work how to extend this technique
to inconsistent advice. This is the key issue addressed
in this paper.

1.5. Addressing Inconsistency

So how can we apply the subspace trick when the ad-
vice we have is no longer consistent?

As a first approach (Method One), we could sim-
ply try to solve 2CC defined by the advice, and reject
any advice that this solution fails to respect. A good

(a) N-cut problem (b) CC problem

Figure 1. A problem for which not all optimal solutions to
2CC are optimal for the accompanying Ncut problem.

solution to 2CC will ensure that we minimise the num-
ber of such edges that we will have to ignore. Then
the advice that remains will be consistent, and we can
then use the subspace trick. Or indeed, we could use
any other constraint-based clustering algorithm in this
way.

However, this idea has some problems. A toy example
of inconsistent advice in Figure 1 shows that deleting
any one of the three edges will result in an optimal so-
lution to 2CC. However, one specific cut (namely sep-
arating node 3 from nodes 1 and 2) has a much better
Ncut cost. So, in forcing a particular optimal solution
to 2CC, we are constraining our Ncut solution too
much. A second approach (Method Two) that solves
this problem is to calculate the cost of an approxi-
mately optimal solution to 2CC. Rather than force
our Ncut solution to be consistent with this 2CC so-
lution, instead we simply require that our Ncut solu-
tion has the same correlation clustering cost. This ap-
proach will give the Ncut side of our algorithm some
room to move, avoiding situations like Figure 1. This
technique will be outlined in section 4.1.

A third approach (Method Three) is to allow the al-
gorithm to differ from the optimum correlation cluster-
ing cost, but only by some a given factor. So now the
Ncut side of the problem has some breathing space
in which to find a good solution, whilst we are still
forcing a very good solution to 2CC. This approach is
developed in section 4.2.

2. Relaxing the Problem

2.1. Normalised Cut

To define the Ncut problem, we begin with an edge-
weighted affinity graph with associated affinity ma-
trix A. Distant edges may have zero affinity—we can
represent this by deleting the connecting edge, which
will speed up the computation.
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We represent a 2-clustering by a vector v, where each
coordinate represents a datapoint, and is either +1 or
−1 depending on cluster assignment. The Ncut value
becomes:

Ncut(v) =
vTL(A)v

vTL(ddT )v
(1)

where d is the vector of vertex degrees, and L(X) is the
Laplacian of matrix X . Recall that if e is the vector
consisting of all ones and diag(x) is the matrix with
vector x on the main diagonal and zeros elsewhere,
then L(X) = diag(Xe) − X .

2.2. Spectral Clustering

In the spectral relaxation, instead of assigning
±1 to each vertex, we assign a real number
vi. If v = (v1, . . . , vn) then Ncut relaxes to

P1. Spectral clustering

min
vTL(A)v

vT Dv
s.t. dT v = 0

where D = diag(d). This relaxation is correct because
vTL(A)v is invariant under translations of v so we can
add the constraint dT v = 0 without changing the op-
timum cost. With this constraint, the denominator of
(1) can be simplified as in P1.

It turns out that v = D
1

2 u is an optimum solution
of P1, where u is the eigenvector of D− 1

2L(A)D− 1

2

corresponding to the smallest non-zero eigenvalue.

2.3. The SDP formulation

In the two cluster case, De Bie and Cristianini (2006)
devised an efficient relaxation of Ncut to a semidef-
inite program. In this case, instead of assigning ±1
to the vertices we assign vectors vi of some com-
mon length. If X is the Gram matrix of these
vectors (i.e. Xij = vT

i vj) then the relaxation is

P2. De Bie and Cristianini SDP

min
X,q

L(A) • X

s.t.
L(ddT ) • X = 1 (2)

∀i ∈ [n] Xii = q (3)

X � 0 (4)

where A • B = trace(AB) for matrices of appropriate
dimension. Here the free variable q is the common
(squared) length of the vi and (2) is a scaling con-
straint corresponding to the denominator of the Ncut

objective function (1).

Importantly, given any X � 0 we can find v1, . . . , vn

such that Xij = vT
i vj ; we can thus convert a solution

to P2 to an assignment of vectors to the vertices of
the graph.

Spectral clustering can be recovered from P2 by re-
moving the constraints of (3) (see Goemans (1997)).

2.4. The ‘subspace trick’

The subspace trick of De Bie, Suykens and
De Moor (2004) gives a method for incorporating con-
sistent advice into spectral and SDP relaxations of
Ncut. As an example, consider spectral clustering
and suppose we have two ‘blocks’ of independent ad-
vice. The first that two vertices, say v1 and v2, should
be in the same cluster and both should be in a differ-
ent cluster to v3, the second that vertices v4 and v5

should be in the same cluster. Then it makes sense
to constrain the solution vector v so that v1 = v2 and
v4 = v5 guaranteeing that these pairs of vertices end
up in the same cluster after rounding. It also makes
sense to constrain v so that v3 = −v2 = −v1. This can
be done by assuming v has the form

v =











1 0 0
1 0 0
−1 0 0
0 1 0
0 1 0
0 0 In−5











u = Y u

where u ∈ R
n−3. The identity matrix corresponds to

vertices for which we have no advice and so should not
constrain.

3. Correlation Clustering

Given an advice graph, in the form of + (must-link) or
− (cannot-link) edges between datapoints, the corre-
lation clustering problem asks us to cluster the data-
points so that the number of pieces of advice (i.e. edge
labels) that are disobeyed is minimised.

3.1. 2CC — the combinatorial problem

In general, unlike the affinity graph, the advice graph
is not connected. So we can solve correlation clustering
independently on each connected component. We call
the vertices in a connected component an advice block.
We assume without loss of generality that the order on
the vertices ensures that the vertices within each block
are consecutive. Here we will deal with the problem
of solving 2CC for a single advice block B with m

vertices. In later sections, we will consider multiple
advice blocks.

If e is an edge within B let we ∈ ±1 correspond to the
the sign of e. As for Ncut, we assign vi = ±1 to each
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vertex depending on the cluster in which we place that
vertex. For convenience, let Eij be the matrix with a
1 in the (i, j) entry and zeros everywhere else.

Our immediate aim is to find, in terms of v, a simple
expression for the number of constraints violated by
the labelling.

Consider a single edge e = {i, j} of B with label we.
Define

Me = (Eii + Ejj) − we(Eij + Eji)

and note that Me � 0 because its eigenvalues are 0
and 2. Now

vT Mev = v2
i − 2wevivj + v2

j (5)

= |vi − wevj |2 (6)

=

{

0 if v respects the advice on e

4 otherwise.
(7)

So if we define MB =
∑

e Me it follows that

vT MBv = 4 × (# pieces of advice violated by v).

Thus 2CC is essentially

min
v∈{−1,1}m

vT MBv. (8)

Note that a clustering that satisfies all the advice in a
block will have cost zero. Also observe that vT v = m

is a constant so we could replace the objective function
with (vT MBv)/(vT v) without changing the optimum
vector.

3.2. Relaxations of 2CC

Recall that our overall aim is to constrain any algo-
rithm we have for (approximately) solving Ncut to
produce clusterings which are, in terms of 2CC cost,
not much worse than the optimum.

Since we cannot hope to solve (8) exactly, we will in-
stead solve a relaxed version of it. In this paper we
consider two relaxations which arise in much the same
way as the spectral and SDP relaxations of Ncut.

P3. Spectral relaxation of correlation clustering

min
v

vT MBv

vT v

Observe that the solution of P3 is given by any
non-zero vector in the λmin-eigenspace of MB.

P4. SDP relaxation of correlation clustering

min
X

MB • X

s.t. ∀i ∈ [m] Xii = 1 (9)

X � 0

For either relaxation, if the advice is consistent, the
relaxation produces a solution of the same cost (zero)
as the optimal solution to the combinatorial problem
(8). This is because any solution of the original prob-
lem is a feasible point of the relaxed problem, and the
relaxed problem has non-negative cost as MB � 0.

4. Clustering with inconsistent advice

In this section, we give the details of Method Two

and Method Three, introduced in Section 1.5, for
both the spectral and SDP relaxations of Ncut.

Throughout, let B1, . . . ,Bp be the advice blocks of the
advice graph. Let vB denote the projection of v onto
the coordinates involved in advice block B. Along sim-
ilar lines, if uB is a vector of length |B| ≤ n associated
with the advice block B, define ũB to be the length n

vector that agrees with uB in the appropriate coordi-
nates and has zeros elsewhere. For a |B| × |B| matrix

MB we also define M̃B in a similar fashion.

4.1. Combining 2CC and Ncut: Method Two

Let optj denote the optimum cost of the SDP relax-
ation of 2CC (P4) for block j. For the SDP relax-
ation, we can add the constraint that for each advice
block, the 2CC cost of point X is at most q · optj .
(The scaling by q is necessary because in P4 the vari-
ables satisfy Xii = 1 whereas in P2 the variables sat-
isfy Xii = q.) This forces the new SDP (P5) only to
consider points of minimum SDP-relaxed 2CC cost.

P5. Method Two(SDP version)

min
X,q

L(A) • X

s.t.

L(ddT ) • X = vol(V)

∀i ∈ [n] Xii = q

∀j ∈ [p] M̃Bj
• X ≤ q · optj (10)

X � 0

In the spectral case, the analogous thing to do would
be to add the following constraints to the spectral re-
laxation of Ncut.

∀j ∈ [p]
vT
Bj

MBj
vBj

vT
Bj

vBj

≤ λmin(MBj
) (11)

But doing so would mean the problem would no longer
be an eigenvalue problem—in fact it would be an
SDP—which would undermine the main strength of
spectral clustering, its speed.

Luckily, the condition in (11) is equiva-
lent to the condition that each vBj

is in
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the λmin-eigenspace of MBj
, resulting in P6.

P6. Method Two(spectral version)

min
v

vTL(A)v

vT Dv

s.t. dT v = 0 (12)

∀j ∈ [p] vBj
∈ λmin-eigenspace of MBj

(13)

The constraints (12) and (13) are forcing v to be in
some linear subspace of R

n. So the problem can then
be solved using the subspace trick. Details of how to
do this are in Appendix A.

4.2. Combining 2CC and Ncut: Method Three

The main drawback of Method Two is that it does
not give the algorithm much freedom to balance the
trade-off between the 2CC and the Ncut problem. If
the advice is quite inconsistent, then forcing the algo-
rithm to follow solutions of a relaxation of 2CC too
closely will result in poor performance.

Above, we forced the algorithm to produce a (relax-
ation of) a clustering that had cost at most the mini-
mum cost of the appropriate relaxation of 2CC. Now
we introduce a parameter f ≥ 1 which tells us the fac-
tor by which we are willing to exceed the 2CC cost.

This is straightforward to introduce to the SDP for-
mulation. We simply replace the constraints (11) of
P5 with

∀j ∈ [p] M̃Bj
• X ≤ f · q · optj . (14)

In the spectral formulation, the constraints we actually
want to add are

∀j ∈ [p]
vT
Bj

MBj
vBj

vT
Bj

vBj

≤ f ·λmin(MBj
) (15)

but, again we cannot add these and still have an eigen-
value problem. Unfortunately in this case we cannot
get a constraint equivalent to (15) by the subspace
trick. So, in the interests of producing a practical al-
gorithm, we approximate (15) by

∀j ∈ [p] vBj
∈ (≤ f · λmin)-eigenspace of MBj

(16)

where the (≤ f ·λmin)-eigenspace of MBj
is the span of

all eigenvectors of MBj
with eigenvalue at most f ·λmin.

If v satisfies (16) then it satisfies (15), but the converse
does not necessarily hold.

Replacing the constraints in (13) of P6 with the con-
straints in (16) gives our final spectral algorithm for
clustering with inconsistent advice. It can again be
solved with the subspace trick, using the techniques
outlined in Appendix A, because all the constraints
simply force v to be in some linear subspace of R

n.

5. Experimental Investigations

5.1. Experiment Setup

In order to test the performance of the algorithms on
real world datasets, we used six of the UCI repository
datasets (Asuncion & Newman, 2007). All datasets
are multi-dimensional binary classification problems.

Both datasets were stripped of incomplete records, and
in one case (the Spambase dataset), sampled down to
500 datapoints. In each case, the two clusters were
of different sizes. This contributed to the mediocre
performance of the pure spectral algorithm. This gives
us reason to believe that adding advice will help the
situation.

For reasons of speed, our experiments primarily use
the spectral version of each of the algorithms. Re-
laxed solutions are rounded to clusterings by cutting
at zero. This ensures that advice respected in the re-
laxed solution is respected in the final clustering.

Advice We generated two different ‘types’ of syn-
thetic advice for these problems to get a sense of how
the algorithms perform. The first we call Dense—here
we are generating around n pieces of advice. We are
generating that advice in a dense fashion—we concen-
trate all advice within 5 separate groups of 20 data-
points. This simulates a few sets of experiments done
on some small subset of the total dataspace. Each
piece of advice agrees with the actual classification in-
dependently with some probability p.

The second type of advice is the Complete case—
here we are simulating pairwise comparisons that are
relatively cheap, but quite noisy. So we generate a
piece of advice for each pair of datapoints, and thus
our advice graph is complete.

2CC Algorithms In order to test Method One,
we need to solve 2CC on each advice block. In the
Dense case, we use a tight, strongly performing SDP
relaxation (Agarwal et al., 2005). In the complete
case, we use the simple 3-approximation algorithm of
Bansal, Blum and Chalwa (2004) with a final local
search step (see also our other paper (Coleman et al.,
2008)).

For each advice type on each dataset, we ran spectral
clustering with no advice (as a baseline), Method

One (as a second baseline), and then spectral clus-
tering with every different meaningful f value from 1
upwards. That is, every increment in f that added
one additional eigenvector to a single block, until all
eigenvectors were added (which is exactly the same as
the no advice case).
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5.2. Results

Dense advice Figure 2 displays the results of the
Dense advice problem on the Heart Disease dataset
with p = 0.75. We can see that the advice here is
sufficiently inconsistent that algorithms which follow
it closely (i.e. Method One and Method Two)
perform far worse than the algorithm that ignores it
completely (that is, spectral alone). But we can see
that by increasing f and striking a balance between
ignoring advice and respecting it too strongly, we can
achieve results that outperform either extreme. We
also note that two other datasets, Congressional

Voting Records and Australian, perform simi-
larly.

Figure 3 shows the results of running very similar ad-
vice (again p = 0.75) on the Spambase dataset. Here
we can see that algorithms that strictly follow the ad-
vice outperform algorithms that ignore it, quite sig-
nificantly. It is perhaps unsurprising then that when
we allow the algorithm more and more freedom to ig-
nore the advice we move toward the baseline no advice
score. This highlights the fact that these algorithms
are not always of use—there needs to be enough inac-
curacy in the advice that attempting to follow it is not
a great idea.

However, if we lower p to be 0.65, the situation
changes, and we get a scenario as demonstrated by
Figure 4. Here as for the Heart Disease case, using
only the 2CC solution is worse than using no advice at
all, and for a large range of f values, the compromise
of using some advice is better than either extreme.
Here the Haberman dataset performs similarly. The
difference in this case is that for high f values, very
poor performance is exhibited. We will discuss this in
the next section.

Finally, we consider the Hepatitis dataset (Figure 5).
Here we see new behaviour, as our algorithms only
begin to perform well for high f values.

Complete Advice Figures 6 and 7 show the results
of the experiments on the two datasets with Com-

plete advice. We first notice that in order to get
meaningful experiments, we needed to set p extra-
ordinarily low—all the way down to p = 0.53. If p

is much higher than this, advice is so complete that
any incorrect edges will be vastly overshadowed by cor-
rect ones, and simply solving 2CC on the instance will
give 100% accuracy.

However, with p = 0.53 and the problem interesting,
we can see that things are similar to the Dense case.
Again, when f is low, we start at the 2CC-baseline,
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Figure 2. Heart Disease dataset, Dense advice, p =
0.75. The unbroken line is the baseline no advice accu-
racy; the dashed line is the correlation clustering based
algorithm (Method One).
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Figure 3. Spambase dataset, Dense Advice, p = 0.75
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Figure 4. Spambase dataset, Dense advice, p = 0.65
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Figure 5. Hepatitis dataset, Dense advice, p = 0.6
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Figure 6. Heart Disease dataset, Complete advice, p =
0.53
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Figure 7. Spambase dataset, Complete advice, p = 0.53

and as f increases we move towards and above the no-
advice baseline. An interesting point is that the 2CC

baseline is around 0.5 in both cases. Note that this is
an extremely low score—the advice alone is useless for
solving the problem, yet it is still a useful addendum
for the spectral method.

As we saw in the Dense case, one interesting difference
between the two datasets is the way the performance
drops off as f increases. For Heart Disease, the
performance seems to asymptote to the no-advice case
as we increase f (as we would expect). However, in
both cases for the Spambase data, there is a huge
dropoff in performance for high end f values. We have
no explanation currently for this phenomenon.

6. Conclusions and further work

We have presented a new algorithm that uses incon-
sistent advice in spectral clustering. This paper is
the first to do so. Initial experiments indicate that in
many situations our methods are successful, however
further theoretical and experimental work is needed.
For example, given a clustering problem with incon-
sistent advice, how do we know when to use Method

Three rather than Method Two? And if we are to
use Method Three, how do we decide which value
of f to choose?

This paper was intended as a largely theoretical
work—experiments were performed to give prelimi-
nary evidence that the techniques work. Certainly
a more thorough comparison to existing work is
needed—a technique similar to Method One could
be used in order to compare our algorithms to other
approaches that can only deal with consistent con-
straints. These will be tested in the full version of
the paper.

Additionally, in this paper we focused on clustering
into two clusters. This is for two reasons. First, there
is no obvious way to express cannot-link advice when
we have more than two clusters—the approach used
here does not generalise nicely. Furthermore, we do
not know of an SDP relaxation of the problem which
fits into the framework of this paper for the case of
more than two clusters. Future work will try to ad-
dress these problems.
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A. Implementing spectral clustering

with inconsistent advice

In this section we explain how to implement the spec-
tral version of Method Two and Method Three

using the subspace trick.

Let WBj
be a matrix whose columns are a basis for the

(≤ f · λmin)-eigenspace of MBj
. Let N (X) and R(X)

respectively denote the nullspace and range space of a
matrix X . Then the problem can be written as follows:

P7. Spectral clustering with inconsistent advice

min
v

vTL(A)v

s.t.
vT Dv = 1

v ∈ N (dT ) (17)

∀j ∈ [p] vBj
∈ R(WBj

) (18)

Let

W =










WB1
· · · 0 0

0 · · · 0 0
...

. . .
...

...
0 · · · WBp

0
0 · · · 0 I










where the dimension of I is the number of vertices
not involved in any advice. Then we can replace the
constraints (17) and (18) with

v ∈ N (dT ) ∩R(W ) = C
Suppose Y is a matrix satisfying R(Y ) = C and
Y T DY = I. Then if we let v = Y u it is clear that
v ∈ R(Y ) which is what we want. So P7 becomes

min (uT Y T )L(A)(Y u) s.t. uT u = 1 (19)

A solution of (19) is given by taking u to be an
eigenvector corresponding to the smallest eigenvalue
of Y TL(A)Y . The solution to the original problem is
then v = Y u.

Elementary linear algebra shows Y generated thus is
satisfactory:

1. Let N be a matrix whose columns are an or-
thonormal basis for N (dT W ) with respect to the
inner product 〈x, y〉 = yT x.

2. Let R be a matrix whose columns are an orthonor-
mal basis for R(W ) with respect to the inner
product 〈x, y〉D = yT Dx.

3. Set Y = RN .
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Abstract

We describe a single convolutional neural net-
work architecture that, given a sentence, out-
puts a host of language processing predic-
tions: part-of-speech tags, chunks, named en-
tity tags, semantic roles, semantically similar
words and the likelihood that the sentence
makes sense (grammatically and semanti-
cally) using a language model. The entire
network is trained jointly on all these tasks
using weight-sharing, an instance of multitask
learning. All the tasks use labeled data ex-
cept the language model which is learnt from
unlabeled text and represents a novel form of
semi-supervised learning for the shared tasks.
We show how both multitask learning and
semi-supervised learning improve the general-
ization of the shared tasks, resulting in state-
of-the-art performance.

1. Introduction

The field of Natural Language Processing (NLP) aims
to convert human language into a formal representa-
tion that is easy for computers to manipulate. Current
end applications include information extraction, ma-
chine translation, summarization, search and human-
computer interfaces.

While complete semantic understanding is still a far-
distant goal, researchers have taken a divide and con-
quer approach and identified several sub-tasks useful
for application development and analysis. These range
from the syntactic, such as part-of-speech tagging,
chunking and parsing, to the semantic, such as word-
sense disambiguation, semantic-role labeling, named
entity extraction and anaphora resolution.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

Currently, most research analyzes those tasks sepa-
rately. Many systems possess few characteristics that
would help develop a unified architecture which would
presumably be necessary for deeper semantic tasks. In
particular, many systems possess three failings in this
regard: (i) they are shallow in the sense that the clas-
sifier is often linear, (ii) for good performance with
a linear classifier they must incorporate many hand-
engineered features specific for the task; and (iii) they
cascade features learnt separately from other tasks,
thus propagating errors.

In this work we attempt to define a unified architecture
for Natural Language Processing that learns features
that are relevant to the tasks at hand given very lim-
ited prior knowledge. This is achieved by training a
deep neural network, building upon work by (Bengio &
Ducharme, 2001) and (Collobert & Weston, 2007). We
define a rather general convolutional network architec-
ture and describe its application to many well known
NLP tasks including part-of-speech tagging, chunking,
named-entity recognition, learning a language model
and the task of semantic role-labeling.

All of these tasks are integrated into a single system
which is trained jointly. All the tasks except the lan-
guage model are supervised tasks with labeled training
data. The language model is trained in an unsuper-
vised fashion on the entire Wikipedia website. Train-
ing this task jointly with the other tasks comprises a
novel form of semi-supervised learning.

We focus on, in our opinion, the most difficult of
these tasks: the semantic role-labeling problem. We
show that both (i) multitask learning and (ii) semi-
supervised learning significantly improve performance
on this task in the absence of hand-engineered features.

We also show how the combined tasks, and in par-
ticular the unsupervised task, learn powerful features
with clear semantic information given no human su-
pervision other than the (labeled) data from the tasks
(see Table 1).
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The article is structured as follows. In Section 2 we
describe each of the NLP tasks we consider, and in Sec-
tion 3 we define the general architecture that we use
to solve all the tasks. Section 4 describes how this ar-
chitecture is employed for multitask learning on all the
labeled tasks we consider, and Section 5 describes the
unlabeled task of building a language model in some
detail. Section 6 gives experimental results of our sys-
tem, and Section 7 concludes with a discussion of our
results and possible directions for future research.

2. NLP Tasks

We consider six standard NLP tasks in this paper.

Part-Of-Speech Tagging (POS) aims at labeling
each word with a unique tag that indicates its syn-
tactic role, e.g. plural noun, adverb, . . .

Chunking, also called shallow parsing, aims at label-
ing segments of a sentence with syntactic constituents
such as noun or verb phrase (NP or VP). Each word
is assigned only one unique tag, often encoded as a
begin-chunk (e.g. B-NP) or inside-chunk tag (e.g. I-
NP).

Named Entity Recognition (NER) labels atomic
elements in the sentence into categories such as “PER-
SON”, “COMPANY”, or “LOCATION”.

Semantic Role Labeling (SRL) aims at giving a se-
mantic role to a syntactic constituent of a sentence.
In the PropBank (Palmer et al., 2005) formalism one
assigns roles ARG0-5 to words that are arguments
of a predicate in the sentence, e.g. the following
sentence might be tagged “[John]ARG0 [ate]REL [the
apple]ARG1 ”, where “ate” is the predicate. The pre-
cise arguments depend on a verb’s frame and if there
are multiple verbs in a sentence some words might have
multiple tags. In addition to the ARG0-5 tags, there
there are 13 modifier tags such as ARGM-LOC (loca-
tional) and ARGM-TMP (temporal) that operate in a
similar way for all verbs.

Language Models A language model traditionally
estimates the probability of the next word being w in
a sequence. We consider a different setting: predict
whether the given sequence exists in nature, or not,
following the methodology of (Okanohara & Tsujii,
2007). This is achieved by labeling real texts as posi-
tive examples, and generating “fake” negative text.

Semantically Related Words (“Synonyms”) This
is the task of predicting whether two words are seman-
tically related (synonyms, holonyms, hypernyms...)
which is measured using the WordNet database
(http://wordnet.princeton.edu) as ground truth.

Our main interest is SRL, as it is, in our opinion, the
most complex of these tasks. We use all these tasks to:
(i) show the generality of our proposed architecture;
and (ii) improve SRL through multitask learning.

3. General Deep Architecture for NLP

All the NLP tasks above can be seen as tasks assign-
ing labels to words. The traditional NLP approach is:
extract from the sentence a rich set of hand-designed
features which are then fed to a classical shallow clas-
sification algorithm, e.g. a Support Vector Machine
(SVM), often with a linear kernel. The choice of fea-
tures is a completely empirical process, mainly based
on trial and error, and the feature selection is task
dependent, implying additional research for each new
NLP task. Complex tasks like SRL then require a
large number of possibly complex features (e.g., ex-
tracted from a parse tree) which makes such systems
slow and intractable for large-scale applications.

Instead we advocate a deep neural network (NN) ar-
chitecture, trained in an end-to-end fashion. The in-
put sentence is processed by several layers of feature
extraction. The features in deep layers of the network
are automatically trained by backpropagation to be rel-
evant to the task. We describe in this section a general
deep architecture suitable for all our NLP tasks, and
easily generalizable to other NLP tasks.

Our architecture is summarized in Figure 1. The first
layer extracts features for each word. The second layer
extracts features from the sentence treating it as a se-
quence with local and global structure (i.e., it is not
treated like a bag of words). The following layers are
classical NN layers.

3.1. Transforming Indices into Vectors

As our architecture deals with raw words and not en-
gineered features, the first layer has to map words into
real-valued vectors for processing by subsequent layers
of the NN. For simplicity (and efficiency) we consider
words as indices in a finite dictionary of words D ⊂ N.

Lookup-Table Layer Each word i ∈ D is embed-
ded into a d-dimensional space using a lookup table
LTW (·):

LTW (i) = Wi ,

where W ∈ Rd×|D| is a matrix of parameters to be
learnt, Wi ∈ Rd is the ith column of W and d is the
word vector size (wsz ) to be chosen by the user. In
the first layer of our architecture an input sentence
{s1, s2, . . . sn} of n words in D is thus transformed
into a series of vectors {Ws1 , Ws2 , . . . Wsn

} by apply-
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ing the lookup-table to each of its words.

It is important to note that the parameters W of the
layer are automatically trained during the learning
process using backpropagation.

Variations on Word Representations In practice,
one may want to introduce some basic pre-processing,
such as word-stemming or dealing with upper and
lower case. In our experiments, we limited ourselves to
converting all words to lower case, and represent the
capitalization as a separate feature (yes or no).

When a word is decomposed into K elements (fea-
tures), it can be represented as a tuple i =
{i1, i2, . . . iK} ∈ D1 × · · · × DK , where Dk is the dic-
tionary for the kth-element. We associate to each ele-
ment a lookup-table LTW k(·), with parameters W k ∈
Rdk×|Dk| where dk ∈ N is a user-specified vector size.
A word i is then embedded in a d =

∑
k dk dimensional

space by concatenating all lookup-table outputs:

LTW 1,...,W K (i)T = (LTW 1(i1)T, . . . , LTW K (iK)T)

Classifying with Respect to a Predicate In a
complex task like SRL, the class label of each word in a
sentence depends on a given predicate. It is thus neces-
sary to encode in the NN architecture which predicate
we are considering in the sentence.

We propose to add a feature for each word that encodes
its relative distance to the chosen predicate. For the ith

word in the sentence, if the predicate is at position posp

we use an additional lookup table LT distp(i− posp).

3.2. Variable Sentence Length

The lookup table layer maps the original sentence into
a sequence x(·) of n identically sized vectors:

(x1,x2, . . . , xn), ∀t xt ∈ Rd . (1)

Obviously the size n of the sequence varies depending
on the sentence. Unfortunately normal NNs are not
able to handle sequences of variable length.

The simplest solution is to use a window approach:
consider a window of fixed size ksz around each word
we want to label. While this approach works with
great success on simple tasks like POS, it fails on more
complex tasks like SRL. In the latter case it is common
for the role of a word to depend on words far away
in the sentence, and hence outside of the considered
window.

When modeling long-distance dependencies is impor-
tant, Time-Delay Neural Networks (TDNNs) (Waibel
et al., 1989) are a better choice. Here, time refers

Input Sentence
the cat sat on the matfeature 1 (text)
s1(1) s1(2) s1(3) s1(4) s1(5) s1(6)feature 2

...
feature K sK(1) sK(2) sK(3) sK(4) sK(5) sK(6)

Max Over Time ...

Optional Classical NN Layer(s)

Softmax

Lookup Tables

LTw

... ... ...... ... ... ...
1

LTwK

#hidden units * (n-2)

Convolution Layer
...

#hidden units

#classes

(d1+d2+...dK)*n

n words, K features

Figure 1. A general deep NN architecture for NLP. Given
an input sentence, the NN outputs class probabilities for
one chosen word. A classical window approach is a special
case where the input has a fixed size ksz, and the TDNN
kernel size is ksz; in that case the TDNN layer outputs
only one vector and the Max layer performs an identity.

to the idea that a sequence has a notion of order. A
TDNN “reads” the sequence in an online fashion: at
time t ≥ 1, one sees xt, the tth word in the sentence.

A classical TDNN layer performs a convolution on a
given sequence x(·), outputting another sequence o(·)
whose value at time t is:

o(t) =
n−t∑

j=1−t

Lj · xt+j , (2)

where Lj ∈ Rnhu×d (−n ≤ j ≤ n) are the parameters
of the layer (with nhu hidden units) trained by back-
propagation. One usually constrains this convolution
by defining a kernel width, ksz, which enforces

∀ |j| > (ksz − 1)/2, Lj = 0 . (3)

A classical window approach only considers words in
a window of size ksz around the word to be labeled.
Instead, if we use (2) and (3), a TDNN considers at the
same time all windows of ksz words in the sentence.

TDNN layers can also be stacked so that one can ex-
tract local features in lower layers, and more global
features in subsequent ones. This is an approach typ-
ically used in convolutional networks for vision tasks,
such as the LeNet architecture (LeCun et al., 1998).

We then add to our architecture a layer which captures
the most relevant features over the sentence by feeding
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the TDNN layer(s) into a “Max” Layer, which takes
the maximum over time (over the sentence) in (2) for
each of the nhu output features.

As the layer’s output is of fixed dimension (indepen-
dent of sentence size) subsequent layers can be classical
NN layers. Provided we have a way to indicate to our
architecture the word to be labeled, it is then able to
use features extracted from all windows of ksz words
in the sentence to compute the label of one word of
interest.

We indicate the word to be labeled to the NN with an
additional lookup-table, as suggested in Section 3.1.
Considering the word at position posw we encode the
relative distance between the ith word in the sentence
and this word using a lookup-table LT distw(i− posw).

3.3. Deep Architecture

A TDNN (or window) layer performs a linear oper-
ation over the input words. While linear approaches
work fairly well for POS or NER, more complex tasks
like SRL require nonlinear models. One can add to the
NN one or more classical NN layers. The output of the
lth layer containing nhul

hidden units is computed with
ol = tanh(Ll · ol−1), where the matrix of parameters
Ll ∈ Rnhul

×nhul−1 is trained by backpropagation.

The size of the last (parametric) layer’s output olast

is the number of classes considered in the NLP task.
This layer is followed by a softmax layer (Bridle, 1990)
which makes sure the outputs are positive and sum to
1, allowing us to interpret the outputs of the NN as
probabilities for each class. The ith output is given by
eolast

i /
∑

j eolast
j . The whole network is trained with

the cross-entropy criterion (Bridle, 1990).

3.4. Related Architectures

In (Collobert & Weston, 2007) we described a NN
suited for SRL. This work also used a lookup-table to
generate word features (see also (Bengio & Ducharme,
2001)). The issue of labeling with respect to a predi-
cate was handled with a special hidden layer: its out-
put, given input sequence (1), predicate position posp,
and the word of interest posw was defined as:

o(t) = C(t− posw, t− posp) · xt.

The function C(·) is shared through time t: one could
say that this is a variant of a TDNN layer with a ker-
nel width ksz = 1 but where the parameters are con-
ditioned with other variables (distances with respect
to the verb and word of interest).

The fact that C(·) does not combine several words in
the same neighborhood as in our TDNN approach lim-

its the dependencies between words it can model. Also
C(·) is itself a NN inside a NN. Not only does one have
to carefully design this additional architecture, but it
also makes the approach more complicated to train
and implement. Integrating all the desired features
in x() (including the predicate position) via lookup-
tables makes our approach simpler, more general and
easier to tune.

4. Multitasking with Deep NN

Multitask learning (MTL) is the procedure of learning
several tasks at the same time with the aim of mutual
benefit. This an old idea in machine learning; a good
overview, especially focusing on NNs, can be found in
(Caruana, 1997).

4.1. Deep Joint Training

If one considers related tasks, it makes sense that fea-
tures useful for one task might be useful for other ones.
In NLP for example, POS predictions are often used as
features for SRL and NER. Improving generalization
on the POS task might therefore improve both SRL
and NER.

A NN automatically learns features for the desired
tasks in the deep layers of its architecture. In the case
of our general architecture for NLP presented in Sec-
tion 3, the deepest layer (consisting of lookup-tables)
implicitly learns relevant features for each word in the
dictionary. It is thus reasonable to expect that when
training NNs on related tasks, sharing deep layers in
these NNs would improve features produced by these
deep layers, and thus improve generalization perfor-
mance. The last layers of the network can then be
task specific.

In this paper we show this procedure performs very
well for NLP tasks when sharing the lookup-tables of
each considered task, as depicted in Figure 2. Training
is achieved in a stochastic manner by looping over the
tasks:

1. Select the next task.
2. Select a random training example for this task.
3. Update the NN for this task by taking a gradient

step with respect to this example.
4. Go to 1.

It is worth noticing that labeled data for training each
task can come from completely different datasets.

4.2. Previous Work in MTL for NLP

The NLP field contains many related tasks. This
makes it a natural field for applying MTL, and sev-
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Lookup Tables

Convolution

Task 1

Max

Classical NN Layer(s)

Softmax

LTw2 LTw3

Lookup Tables

Convolution

Task 2

Max

Classical NN Layer(s)

Softmax

LTw1 LTw2‘

Figure 2. Example of deep multitasking with NN. Task 1
and Task 2 are two tasks trained with the architecture
presented in Figure 1. One lookup-table (in black) is shared
(the other lookup-tables and layers are task specific). The
principle is the same with more than two tasks.

eral techniques have already been explored.

Cascading Features The most obvious way to
achieve MTL is to train one task, and then use this
task as a feature for another task. This is a very com-
mon approach in NLP. For example, in the case of
SRL, several methods (e.g., (Pradhan et al., 2004))
train a POS classifier and use the output as features
for training a parser, which is then used for building
features for SRL itself. Unfortunately, tasks (features)
are learnt separately in such a cascade, thus propagat-
ing errors from one classifier to the next.

Shallow Joint Training If one possesses a dataset la-
beled for several tasks, it is then possible to train these
tasks jointly in a shallow manner: one unique model
can predict all task labels at the same time. Using this
scheme, the authors of (Sutton et al., 2007) proposed a
conditional random field approach where they showed
improvements from joint training on POS tagging and
noun-phrase chunking tasks. However the requirement
of jointly annotated data is a limitation, as this is often
not the case. Similarly, in (Miller et al., 2000) NER,
parsing and relation extraction were jointly trained in
a statistical parsing model achieving improved perfor-
mance on all tasks. This work has the same joint label-
ing requirement problem, which the authors avoided
by using a predictor to fill in the missing annotations.

In (Sutton & McCallum, 2005a) the authors showed
that one could learn the tasks independently, hence
using different training sets, by only leveraging predic-
tions jointly in a test time decoding step, and still ob-
tain improved results. The problem is, however, that
this will not make use of the shared tasks at training
time. The NN approach used here seems more flexible
in these regards.

Finally, the authors of (Musillo & Merlo, 2006) made
an attempt at improving the semantic role labeling
task by joint inference with syntactic parsing, but their
results are not state-of-the-art. The authors of (Sutton
& McCallum, 2005b) also describe a negative result at
the same joint task.

5. Leveraging Unlabeled Data

Labeling a dataset can be an expensive task, especially
in NLP where labeling often requires skilled linguists.
On the other hand, unlabeled data is abundant and
freely available on the web. Leveraging unlabeled data
in NLP tasks seems to be a very attractive, and chal-
lenging, goal.

In our MTL framework presented in Figure 2, there is
nothing stopping us from jointly training supervised
tasks on labeled data and unsupervised tasks on un-
labeled data. We now present an unsupervised task
suitable for NLP.

Language Model We consider a language model
based on a simple fixed window of text of size ksz us-
ing our NN architecture, given in Figure 2. We trained
our language model to discriminate a two-class classi-
fication task: if the word in the middle of the input
window is related to its context or not. We construct
a dataset for this task by considering all possible ksz
windows of text from the entire of English Wikipedia
(http://en.wikipedia.org). Positive examples are
windows from Wikipedia, negative examples are the
same windows but where the middle word has been
replaced by a random word.

We train this problem with a ranking-type cost:
X

s∈S

X

w∈D

max (0, 1− f(s) + f(sw)) , (4)

where S is the set of sentence windows of text, D is the
dictionary of words, and f(·) represents our NN archi-
tecture without the softmax layer and sw is a sentence
window where the middle word has been replaced by
the word w. We sample this cost online w.r.t. (s, w).

We will see in our experiments that the features (em-
bedding) learnt by the lookup-table layer of this NN
clusters semantically similar words. These discovered
features will prove very useful for our shared tasks.

Previous Work on Language Models (Bengio &
Ducharme, 2001) and (Schwenk & Gauvain, 2002) al-
ready presented very similar language models. How-
ever, their goal was to give a probability of a word
given previous ones in a sentence. Here, we only want
to have a good representation of words: we take advan-
tage of the complete context of a word (before and af-

164



A Unified Architecture for Natural Language Processing

ter) to predict its relevance. Perhaps this is the reason
the authors were never able to obtain a good embed-
ding of their words. Also, using probabilities imposes
using a cross-entropy type criterion and can require
many tricks to speed-up the training, due to normal-
ization issues. Our criterion (4) is much simpler in
that respect.

The authors of (Okanohara & Tsujii, 2007), like us,
also take a two-class approach (true/fake sentences).
They use a shallow (kernel) classifier.

Previous Work in Semi-Supervised Learning
For an overview of semi-supervised learning, see
(Chapelle et al., 2006). There have been several uses
of semi-supervised learning in NLP before, for exam-
ple in NER (Rosenfeld & Feldman, 2007), machine
translation (Ueffing et al., 2007), parsing (McClosky
et al., 2006) and text classification (Joachims, 1999).
The first work is a highly problem-specific approach
whereas the last three all use a self-training type ap-
proach (Transductive SVMs in the case of text classifi-
cation, which is a kind of self-training method). These
methods augment the training set with labeled exam-
ples from the unlabeled set which are predicted by the
model itself. This can give large improvements in a
model, but care must be taken as the predictions are
of course prone to noise.

The authors of (Ando & Zhang, 2005) propose a setup
more similar to ours: they learn from unlabeled data
as an auxiliary task in a MTL framework. The main
difference is that they use shallow classifiers; however
they report positive results on POS and NER tasks.

Semantically Related Words Task We found it
interesting to compare the embedding obtained with
a language model on unlabeled data with an em-
bedding obtained with labeled data. WordNet is
a database which contains semantic relations (syn-
onyms, holonyms, hypernyms, ...) between around
150, 000 words. We used it to train a NN similar to
the language model one. We considered the problem
as a two-class classification task: positive examples are
pairs with a relation in Wordnet, and negative exam-
ples are random pairs.

6. Experiments

We used Sections 02-21 of the PropBank dataset ver-
sion 1 (about 1 million words) for training and Sec-
tion 23 for testing as standard in all SRL experiments.
POS and chunking tasks use the same data split via
the Penn TreeBank. NER labeled data was obtained
by running the Stanford Named Entity Recognizer (a

Table 1. Language model performance for learning an em-
bedding in wsz = 50 dimensions (dictionary size: 30, 000).
For each column the queried word is followed by its index in
the dictionary (higher means more rare) and its 10 nearest
neighbors (arbitrary using the Euclidean metric).

france jesus xbox reddish scratched
454 1973 6909 11724 29869

spain christ playstation yellowish smashed
italy god dreamcast greenish ripped
russia resurrection psNUMBER brownish brushed
poland prayer snes bluish hurled
england yahweh wii creamy grabbed
denmark josephus nes whitish tossed
germany moses nintendo blackish squeezed
portugal sin gamecube silvery blasted
sweden heaven psp greyish tangled
austria salvation amiga paler slashed

CRF based classifier) over the same data.

Language models were trained on Wikipedia. In all
cases, any numeric number was converted as “NUM-
BER”. Accentuated characters were transformed to
their non-accentuated versions. All paragraphs con-
taining other non-ASCII characters were discarded.
For Wikipedia, we obtain a database of 631M words.
We used WordNet to train the “synonyms” (semanti-
cally related words) task.

All tasks use the same dictionary of the 30, 000 most
common words from Wikipedia, converted to lower
case. Other words were considered as unknown and
mapped to a special word.

Architectures All tasks were trained using the NN
shown in Figure 1. POS, NER, and chunking tasks
were trained with the window version with ksz = 5.
We chose linear models for POS and NER. For chunk-
ing we chose a hidden layer of 200 units. The language
model task had a window size ksz = 11, and a hidden
layer of 100 units. All these tasks used two lookup-
tables: one of dimension wsz for the word in lower
case, and one of dimension 2 specifying if the first let-
ter of the word is a capital letter or not.

For SRL, the network had a convolution layer with
ksz = 3 and 100 hidden units, followed by another
hidden layer of 100 hidden units. It had three lookup-
tables in the first layer: one for the word (in lower
case), and two that encode relative distances (to the
word of interest and the verb). The last two lookup-
tables embed in 5 dimensional spaces. Verb positions
are obtained with our POS classifier.

The language model network had only one lookup-
table (the word in lower case) and 100 hidden units.
It used a window of size ksz = 11.

We show results for different encoding sizes of the word
in lower case: wsz = 15, 50 and 100.
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Table 2. A Deep Architecture for SRL improves by learning auxiliary tasks that share the first layer that represents words
as wsz-dimensional vectors. We give word error rates for wsz=15, 50 and 100 and various shared tasks.

wsz=15 wsz=50 wsz=100
SRL 16.54 17.33 18.40
SRL + POS 15.99 16.57 16.53
SRL + Chunking 16.42 16.39 16.48
SRL + NER 16.67 17.29 17.21
SRL + Synonyms 15.46 15.17 15.17
SRL + Language model 14.42 14.30 14.46
SRL + POS + Chunking 16.46 15.95 16.41
SRL + POS + NER 16.45 16.89 16.29
SRL + POS + Chunking + NER 16.33 16.36 16.27
SRL + POS + Chunking + NER + Synonyms 15.71 14.76 15.48
SRL + POS + Chunking + NER + Language model 14.63 14.44 14.50
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Figure 3. Test error versus number of training epochs over PropBank, for the SRL task alone and SRL jointly trained
with various other NLP tasks, using deep NNs.

Results: Language Model Because the language
model was trained on a huge database we first trained
it alone. It takes about a week to train on one com-
puter. The embedding obtained in the word lookup-
table was extremely good, even for uncommon words,
as shown in Table 1. The embedding obtained by
training on labeled data from WordNet “synonyms”
is also good (results not shown) however the coverage
is not as good as using unlabeled data, e.g. “Dream-
cast” is not in the database.

The resulting word lookup-table from the language
model was used as an initializer of the lookup-table
used in MTL experiments with a language model.

Results: SRL Our main interest was improving SRL
performance, the most complex of our tasks. In Ta-
ble 2, we show results comparing the SRL task alone
with the SRL task jointly trained with different com-
binations of the other tasks. For all our experiments,
training was achieved in a few epochs (about a day)
over the PropBank dataset as shown in Figure 3. Test-
ing takes 0.015s to label a complete sentence (given one
verb).

All MTL experiments performed better than SRL
alone. With larger wsz (and thus large capacity) the
relative improvement becomes larger from using MTL
compared to the task alone, which shows MTL is a
good way of regularizing: in fact with MTL results
are fairly stable with capacity changes.

The semi-supervised training of SRL using the lan-
guage model performs better than other combinations.
Our best model performed as low as 14.30% in per-
word error rate, which is to be compared to previ-
ously published results of 16.36% with an NN archi-
tecture (Collobert & Weston, 2007) and 16.54% for a
state-of-the-art method based on parse trees (Pradhan
et al., 2004)1. Further, our system is the only one not
to use POS tags or parse tree features.

Results: POS and Chunking Training takes about
30 min for these tasks alone. Testing time for label-
ing a complete sentence is about 0.003s. We obtained
modest improvements to POS and chunking results us-

1Our loss function optimized per-word error rate. We
note that many SRL results e.g. the CONLL 2005 evalua-
tion use F1 as a standard measure.
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ing MTL. Without MTL (for wsz = 50) we obtain
2.95% test error for POS and 4.5% (91.1 F-measure)
for chunking. With MTL we obtain 2.91% for POS
and 3.8% (92.71 F-measure) for chunking. POS error
rates in the 3% range are state-of-the-art. For chunk-
ing, although we use a different train/test setup to the
CoNLL-2000 shared task (http://www.cnts.ua.ac.
be/conll2000/chunking) our system seems compet-
itive with existing systems (better than 9 of the 11
submitted systems). However, our system is the only
one that does not use POS tags as input features.

Note, we did not evaluate NER error rates because
we used non-gold standard annotations in our setup.
Future work will more thoroughly evaluate these tasks.

7. Conclusion

We proposed a general deep NN architecture for NLP.
Our architecture is extremely fast enabling us to take
advantage of huge databases (e.g. 631 million words
from Wikipedia). We showed our deep NN could be
applied to various tasks such as SRL, NER, POS,
chunking and language modeling. We demonstrated
that learning tasks simultaneously can improve gener-
alization performance. In particular, when training
the SRL task jointly with our language model our
architecture achieved state-of-the-art performance in
SRL without any explicit syntactic features. This is
an important result, given that the NLP community
considers syntax as a mandatory feature for semantic
extraction (Gildea & Palmer, 2001).
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Abstract

Errors in map-making tasks using computer
vision are sparse. We demonstrate this by
considering the construction of digital ele-
vation models that employ stereo matching
algorithms to triangulate real-world points.
This sparsity, coupled with a geometric the-
ory of errors recently developed by the au-
thors, allows for autonomous agents to cal-
culate their own precision independently of
ground truth. We connect these develop-
ments with recent advances in the mathemat-
ics of sparse signal reconstruction or com-
pressed sensing. The theory presented here
extends the autonomy of 3-D model recon-
structions discovered in the 1990s to their er-
rors.

1. Introduction

Autonomy of robots or intelligent sensors depends
on developing algorithms that can assess their own
performance independent of ground truth. Consider
an Aerial Mapping Appliance (AMA) that must con-
struct a map or 3-D model of the world based on pho-
tographs. Researchers in computer vision discovered
in the 1990s that a faithful 3-D model of an imaged
scene was possible without any knowledge of the po-
sitions, or orientations of the camera that took the
photographs (Beardsley et al., 1996). This reconstruc-
tion is even possible without knowing the internal pa-
rameters of the camera (Pollefeys et al., 1999). The
geometry of multiple images contains all the necessary
information to do this reconstruction. This indepen-
dence of 3-D model reconstruction from ground truth

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

(in this case, camera positions, etc.) raises the possi-
bility that the errors in the reconstruction can also be
recovered autonomously by an intelligent agent such
as the AMA.

Autonomous error estimation for 3-D model recon-
struction was recently demonstrated to be possible by
the authors (Corrada-Emmanuel et al., 2007; Corrada-
Emmanuel & Schultz, 2008). The theory depends on
making a distinction between accuracy and precision.
Knowledge of accuracy is not possible without ground
truth. Precision can be estimated autonomously. This
paper will demonstrate that autonomous precision es-
timation is also related to the mathematics of sparse
signal reconstruction or compressed sensing (Donoho,
2006a). The precision errors of measurements, not just
the measurements, are sparse themselves. This spar-
sity is the key to their reconstruction.

2. The Distinction between Geometric
Accuracy and Precision

The concepts of accuracy and precision are well known
to all scientists. The Machine Learning community
knows these concepts as bias and variance (Bishop,
2007). Bias refers to how far an estimate is from the
true value. Variance captures how noisy that estimate
is given the measurements used to compute it. Our
meaning of accuracy and precision in 3-D models is
analogous to bias and variance but not equivalent. Our
definitions are geometrical in nature.

Imagine that one had a set of 3-D models of a scene.
Furthermore, along with the models one also has the
ground truth or exact locations of points in the scene.
The total error of the models can be defined as∑

models

∑
points

[~xmodel(point)− ~xtrue(point)]2 (1)

We can decrease the total error in the models by ap-
plying a global transformation to all the models. For
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example, the models may be systematically off by 1
meter in some direction. The geometric precision of
the models is defined as the minimum possible total
error after application of a global transformation to
all the models:

min
T

∑
models

∑
points

[T (~xmodel(point))− ~xtrue(point)]2 .

(2)
The geometric accuracy is defined as difference be-
tween the total error and the geometric precision.

We describe some simple examples to clarify these def-
initions. Imagine a 3-D model reconstruction that is
merely a translated example of the real world, i.e. all
locations are off by 1 meter to the North. The recon-
struction has an accuracy error of 1 meter and zero
precision error. A model with zero accuracy error but
some precision error can be created by taking a per-
fect reconstruction and individually randomizing the
elevation of the reconstruction with zero mean.

The concept of geometric accuracy can thus be cap-
tured by a successive set of transformations that the
reader may want to view as encompassing the usual
hierarchy of projective, affine and euclidean transfor-
mations (Hartley & Zisserman, 2000; Faugeras et al.,
2001) or some subset of them. The rest of this paper
will use the words accuracy and precision as shorthand
for these geometric definitions.

2.1. Autonomous Elevation Difference
Equations and Geometric Precision

Our central claim is that precision can be estimated
autonomously even as the accuracy of the models is
completely unknown. Autonomous geometric preci-
sion error estimation is possible by creating quantities
that are invariant under global accuracy transforma-
tions. In this paper we will consider one such quantity
that is useful for characterizing the precision errors in
DEMs and has been discussed in our previous papers
(Corrada-Emmanuel et al., 2007):

∆P,Q(x, y) =
1
P

P∑
i=1

Zi −
1
Q

Q∑
j=1

Zj (3)

=
1
P

P∑
i=1

δi −
1
Q

Q∑
j=1

δj , (4)

where the integers P and Q are between 1 and the
number of models being compared, 1 ≤ P ≤ M and
1 ≤ Q ≤ M . A DEM i is a collection of elevation
postings at different (x,y) locations, {Zi(x, y)}. The
precision error in each posting is denoted by δi(x, y),

so in general one can write

Zi(x, y) = Ztrue(x, y) + δi(x, y). (5)

By picking the integers P and Q less than or equal
to the number of DEM models, we guarantee that the
true value of the elevation cancels out at each posting
since

1
P
∗ (P ∗ Ztrue)−

1
Q
∗ (Q ∗ Ztrue) = 0 (6)

so that equation 4 follows from equation 3.

By considering all possible values P and Q one can
find a set of linearly independent equations for the el-
evation precision errors. We call this independent set
the autonomous difference equations. Note that these
equations are not being used to construct a better esti-
mate of the true elevation by performing some simple
averaging over them. Their sole purpose is to probe
the errors in the reconstructed elevations. More gen-
eral expressions that take into account x and y posi-
tion errors can be constructed but we defer discussion
of these to future papers.

Equation 3 can be calculated from the observable ele-
vations. The task of the autonomous agent is to esti-
mate the precision errors {δi} in equation 4 and how
they are correlated with each other. Once the agent
knows these correlations, the precision error of a fused
estimated can be decreased while possibly increasing
its accuracy error. This may be a suitable action to
take since in many computer vision tasks accuracy is
cheaper to fix than precision, a point we clarify in our
concluding remarks.

3. The Covariance Matrix for Precision
Errors

An AMA or robot on a mapping mission will not know
beforehand what errors it will make during its activi-
ties. Sensors could systematically malfunction. Light-
ing conditions may be unfavorable at certain viewing
angles. These and other factors will inevitably mean
that repeated measurements of the same scene will be
partly correlated, or their precision may vary widely.
How should the 3-D models obtained from different
vantage points be fused? How fast is the precision er-
ror in the reconstructions decreasing as a function of
the collected images? Has the AMA attained a desired
precision level and therefore completed its mission?
Autonomous mission planning by robots requires an-
swers to these questions.

We argue that a principled approach to answering
these questions must rely on an autonomous estima-
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tion of the covariance matrix of the 3-D models. Hav-
ing multiple measurements whose errors are strongly
correlated is not much better than a single measure-
ment, for example. Knowing the covariance matrix
would allow the agent to discard bad data, understand
its rate of error decrease as a function of data collec-
tion, and provide a fused estimate that monotonically
improves with time.

The covariance matrix for DEM errors is composed
of entries of the form 〈δiδj〉 − 〈δi〉 〈δj〉. For ease of
discussion, we will assume that the precision error has
been de-meaned so 〈δi〉 = 0 for all i, so the covariance
matrix is equivalent to 〈δiδj〉 in this paper.

It is impossible, generally, to calculate this covariance
matrix given a set of measurements. We explain this
fully by constructing a linear algebra system for the
covariance matrix based on the autonomous difference
equations (eqs. 3 and 4) to demonstrate that it defines
an under-determined system – one where we have less
equations that unknowns.

3.1. An Under-Determined Linear Algebra
System for the Covariance Matrix Entries

Squaring the autonomous difference equations and av-
eraging over all the posting locations (x, y) gives a set
of linear equations for all the entries in the covariance
matrix. We denote this system by

S = Φ∆. (7)

The vector S is the “signal” of the DEM precision
errors. Its components are calculated using equation
3. The matrix Φ consists of the rational fractions that
come from expanding the square of equation 4. The
vector ∆ are the entries < δiδj > of the covariance
matrix that we want to estimate.

Equation 7 defines an under-determined linear sys-
tem because the number of independent entries in
the covariance matrix is M(M + 1)/2 given M mod-
els (the matrix is symmetric). The number of inde-
pendent equations that can be constructed from the
autonomous difference equations is equal to M(M +
1)/2 − M . Therefore, the system is always under-
determined by M equations.

3.2. The Correlated-Pair Error Model

This limitation was circumvented in our earlier papers
(Corrada-Emmanuel et al., 2007) by assuming that the

covariance matrix had the simple form
∗ ∗ 0 0 . . .
∗ ∗ 0 0 . . .
0 0 ∗ ∗ . . .
0 0 ∗ ∗ . . .
...

...
...

...
. . .

 (8)

The block-diagonal shape came from our production
of two DEMs from every photographic pair, a practice
that differs from the usual photogrammetric conven-
tion of producing a single DEM from a photographic
pair. We assumed that only the two DEMs from
the same photographic pair were correlated with each
other. These correlated-pair DEMs gave rise to the
block-diagonal form of the covariance matrix. In ef-
fect, we assumed that the covariance matrix was sparse
since this correlated-pair model only requires n+ n/2
non-zero terms to be estimated for the covariance ma-
trix.

3.2.1. Asymmetry in Computer Vision Stereo
Matching

The reason one can produce two different DEMs
from two photographs is that stereo matching algo-
rithms may not be perfectly symmetric in their out-
put (Brown et al., 2003). This means that a DEM
produced by matching image A to image B, which we
denote by A → B, will not lead to the same DEM
as doing B → A. Of course, the resulting DEM pair
(A→ B, B → A) is highly correlated. The correlated-
pair error model in equation 8 is meant to capture
this unknown, but possibly large, cross-correlation be-
tween the errors in the pair. One can readily calculate
that this block-diagonal error model allows one to cal-
culate the precision error exactly whenever three or
more photographs overlap on the same scene.

4. Sparsity of Geometric Precision
Error

As useful as the correlated-pair error model may be in
certain circumstances it is a model and therefore can-
not form the foundation of a robust process for error
estimation. It is conceivable that DEMs from unre-
lated photographs could become correlated in their er-
rors due to environmental factors or even instrument
malfunction. A robust estimation of the covariance
matrix should not depend on any assumptions of how
DEMs are correlated.

Recent developments in the mathematics of sparse
signal reconstruction or compressed sensing (Donoho,
2006a) offer us a mathematical procedure to deal with
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this situation. During a mapping mission photographs
taken from different viewing positions and orienta-
tions will lead to mapping errors that are uncorrelated
but occasionally may have strong correlations between
them. We just do not know a priori which DEMs will
be correlated with each other, only that these cross-
correlations will be sparse.

As we noted in section 3.1, the linear system is at
the margin of being completely determined being shy
by just M equations. If the covariance matrix was
sparse enough in the sense that on the order of M
independent entries were zero, the estimation would
be robust. We can express this condition by dividing
the number of equations we have (M(M + 1)/2−M)
by the number we need (M(M + 1)/2)

1− 2
M + 1

. (9)

As the number of models increases, this fraction be-
comes increasingly near to one – the condition for be-
ing well-determined.

We hypothesize that given enough models (M →∞),
any experimental situation can be driven into a sparse
regime for the precision error covariance matrix. Note
that we are not talking about sparsity of the models
themselves, but of the correlations between their pre-
cision errors.

The under-determined linear system 7 can be solved
by using the `1-minimization technique advocated in
the compressed sensing literature (Donoho, 2006b)

min ||∆||1 subject to S = Φ∆. (10)

This problem can be solved as a convex optimization
problem (Donoho, 2006b) by recasting it as the equiv-
alent linear program:

min
∑

i

ui subject to (11)

ui + ∆i ≥ 0 (12)
ui −∆i ≥ 0 (13)
Φ∆ = S (14)

In the experimental section of the paper we will show
that this approach reconstructs a covariance matrix for
the precision errors that is very close to the correlated-
pair model (eq. 8). Some off-diagonal terms hypoth-
esized to be zero are about 5 times smaller than the
in-pair cross correlation. We emphasize that this spar-
sity of errors hypothesis is an experimental assertion.
No mathematical proof can be given that this spar-
sity condition can be met. The applicability of the

assertion is based on the experimental realization of
the AMA and the features of the terrain. A device
built with stable imaging sensors of high quality that
is mapping a reasonably static terrain would be a good
candidate for a suitable condition that meets our spar-
sity assumption.

5. More Data Means Higher Resolution
Error Maps

The name compressed sensing comes from the realiza-
tion that sparsity implies a low-dimensional or com-
pressible signal. If pictures of a natural scene taken
with a n × n CCD can always be compressed, why
take n2 measurements? The imaging of the scene can
be compressed by using less pixels and then recon-
structed with an under-determined linear system. This
has been dramatically demonstrated by the Rice Uni-
versity one-pixel camera (Wakin et al., 2006). About
1,000 measurements with a single pixel reproduced im-
ages captured by a 4,000 pixel CCD. Compressed sens-
ing implies that we are wasting effort by taking too
many measurements.

The error theory presented here gives a different per-
spective on this issue. Yes, reconstructing a 3-D model
of the world can be done with less measurements.
However, errors are an important aspect of all mea-
surements. How confident can we be of any particular
reconstruction? The only way to understand this is to
produce not just maps of the territory that is being
mapped, i.e. DEMs, but to also produce error maps
of the same territory. The procedure for precision er-
ror estimation depends on averaging over all postings
that a collection of DEMs have in common. Sparsity
is only present after this averaging. The error map
therefore has a much lower resolution than the DEM
itself. Multiple measurements are needed to increase
the resolution of this error map. In this view, no mea-
surement is ever wasted – it leads to higher resolution
in the error map of the measurements.

This suggests that the resolution of the error map
should be studied by decreasing the map area that
is used to create the average covariance matrix of the
precision errors. As the averaging area is diminished,
various cross-correlations between different DEMs will
start to turn on. At some point, the number of these
off-diagonal terms will be large enough to violate the
condition of sparsity and the resolution limit of the er-
ror map would be reached. This resolution limit may
vary across the mapped area and would naturally de-
pend on the particular dataset. This phenomenon will
be demonstrated in the experimental section.
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(a) Twenty-Nine Palms correlated-
pair model covariance

(b) Twenty-Nine Palms `1 minimiza-
tion covariance

(c) Duke Forest covariance

Figure 1. Comparison of the covariance matrix obtained with `1-minimization versus that obtained by using the correlated-
pair error model. All values are in units of m2. Blue represents positive values, red negative values. The hue scale for
figures (a) and (b) is normalized so that a value of 0.12 m2 results in a completely saturated color pixel. Figure (c) is
normalized with 2.5 m2.

6. Experimental Results

We demonstrate the formalism for sparse precision er-
ror estimation by using a set of four aerial images taken
of a desert terrain in the Twenty-Nine Palms region
in California, USA. The images have been arbitrarily
labeled as {A,B,C,D}. Four photographs allow us
to produce 4*3=12 DEMs from all possible matching
chains of the form i → j. A blunder removal pro-
cess, however, automatically identified that two of the
DEMs ( B → D, and D → B) differed in their eleva-
tion estimates by more than one meter for all postings.
This pair was excluded from our calculations so the re-
sults presented here involve the remaining 10 DEMs.

6.1. Random Reconstructions via
`1-Minimization

For 10 DEMs there are on the order of fifty thousand
ways to write equation 4. The number of indepen-
dent equations in this set is 45. An independent set
selected from all possible permutations of the differ-
ence equations leads to a different reconstruction ma-
trix Φ. To carry out the `1-minimization estimate of
the 10x10 covariance matrix for the DEMs, we ran-
domly selected ten different linearly independent sets
and their corresponding Φ matrices. This was done
to study the numerical stability of the reconstruction
procedure. The statistical average was done over an
overlap region of the DEMS that spanned the postings
500 to 1500 where 2000 by 2000 was the original size of
the individual DEMs. This was done to exclude edge
effects and increase the density of postings on which
all DEMs gave an elevation estimate. Only postings

for which we had a full 10 measurements were used.
The number of postings was equal to 940,010 out of
a possible million. Each posting represents an area of
(0.38 m)2.

The reconstruction of the covariance matrix is shown
in figure 1(b). The covariance matrix is presented as a
10x10 pixel image. For comparison, the covariance ma-
trix reconstructed with the correlated-pair error model
is shown in figure 1(a). No numerically significant vari-
ation in the reconstructed covariance matrix was ob-
served with 10 randomly selected Φ matrices so a single
figure is sufficient to summarize the results. Note that
about 12 entries in the covariance matrix are practi-
cally zero – two more than the 10 entries required to
define a well-determined linear system.

The `1-minimization procedure also ascribes most
of the cross-correlations to the DEMs that come
from asymmetrically matching the same pair of pho-
tographs. In addition, the sparse reconstruction has
discovered that some of the DEMs are negatively cor-
related.

Is this error reconstruction correct? At this time we
can point to its self-consistent character as strong evi-
dence for its correctness. Neither the autonomous ele-
vation difference equations or the `1-minimization pro-
cedure assume that certain DEMs are strongly corre-
lated. Yet the empirically reconstructed matrix clearly
shows that the 10 DEMs have a strong 5-pair structure
exemplified by the block-diagonal structure. The re-
construction has ‘discovered’ that we used DEMs from
asymmetric matching pairs.

Another self-consistent feature of the reconstruction is
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that the more precise a DEM is, the smaller its cross-
correlation with its asymmetric pair becomes. This is
a behavior that we would expect from a system that
is producing increasingly precise estimates.

6.1.1. Duke Forest DEMs

The Twenty-Nine Palms data, just discussed, is ex-
tremely high quality. The images were taken with a
high-quality photogrammetric instrument. To confirm
that precision errors can be recovered in more noisy
data, we studied a series of aerial photographs of a
forest canopy in the Duke Forest, NC taken with an
off-the-shelf digital camera.

We randomly selected a track of images and picked
four consecutive images. The images where multi-band
and we chose the near-ir and green bands. The combi-
nation of bands and asymmetric pair matches resulted
in twenty DEMs. The recovered precision error co-
variance matrix is shown in Figure 1(c). The recovery
is similar to that for the Twenty-Nine Palms data, in
that the highly-correlated pairs were discovered once
again. As befits the noisier data set, the precision er-
ror estimated is ≈ 2.0 m2 versus the 0.1 m2 value for
the Twenty-Nine Palms images.

6.2. Horizontal Resolution of the Precision
Error Covariance Matrix

The self-consistent character of the reconstruction can
be exploited further. The linear program that recov-
ers the error has as side constraints that the diagonal
terms of the covariance matrix have to be positive, a
required property for the

〈
δ2i
〉

terms. To keep the re-
construction as a linear program, we did not require
that the cross-correlations terms satisfy the inequality∣∣∣∣∣∣ < δiδj >√

< δ2i >< δ2j >

∣∣∣∣∣∣ ≤ 1. (15)

The output of the linear program just turns out to
satisfy these constraints for this particular dataset.
Indeed, we now use the breakdown in these cross-
correlation constraints to probe how much resolution
can be obtained in the error map of the DEMs.

To study the resolution limit of `1-minimization proce-
dure, we shrank the size of the area in the Twenty-Nine
maps over which the difference equations were aver-
aged. We have no independent way of verifying the va-
lidity of the reconstruction except the self-consistency
check that the reconstructed vector does indeed rep-
resent a covariance matrix – its dimensionless cross-
correlations should have an absolute value less than or
equal to one.

Surprisingly the resolution of the covariance matrix for
this data is on the order of 5x5 postings. We show an
example of the covariance matrix for a patch encom-
passing the postings 500 to 505 in both directions in
figure 2(a). The covariance matrix for the patch en-
compassing the postings 500 to 510 is shown in figure
2(b). The breakdown in reconstruction for the 5x5
patch is most evident in the cross-correlations related
to the DEM in position 9. For this particular patch the
variance of DEM 9 is calculated as 1.1 10−5 m2 and
the variance of DEM 1 is calculated as 1.0 10−1 m2.
The dimensionless cross-correlation between them has
a value of 30.0 – the `1-minimization has not produced
a proper covariance matrix for this small patch.

No breakdown is found in the 10x10 patch. Similar
results were obtained over a handful of other patches
over the mapped scene. Interestingly, an earlier paper
by the authors had found that for this dataset the
horizontal decorrelation length was in the order of 5
postings, a result that was obtained by a “cheating”
experiment that used ray-tracing to establish a pseudo
ground truth against which the error at the individual
posting level could be calculated.

7. Conclusions and Future Work

We conclude by discussing the utility of estimating
precision error even while neglecting or increasing the
accuracy error. Geometric accuracy is defined by a
global set of transformations. The parameters needed
to define it are finite and readily extracted by knowing
at most the location for three points in the world. In
that sense, accuracy is cheap to obtain. Precision, on
the other hand, captures the local variability of the
3-D model reconstructions. The parameters needed
to model it, if one wished to do so, are correspond-
ingly large. Therefore, 3-D model precision is expen-
sive for the user to correct since it involves multiple
measurements spread over the whole scene. Therefore,
the autonomous error estimation algorithm presented
here should have application in computer vision tasks
where accuracy is not needed. An example of such a
task is species identification by shape where the res-
olution is more important than the absolute size or
orientation of the objects. Many more examples can
be thought of, where accuracy is not relevant but pre-
cision is. One obvious class of problems for which this
algorithm would not be helpful is those that require
accurate geolocation of an object in the scene. A rea-
sonable guarantee of accuracy can be obtained by us-
ing proper external references (GPS, attitude-heading
sensors, etc.) but this algorithm is invariant to their
accuracy error.
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Table 1. Covariance matrix entries along the block diagonal for the ten DEMs in the 29 Palms dataset. Variance is in
units of m2.

DEM < δ2i > < δiδj > /
√
< δ2i >< δ2j >

AB 0.044 0.45BA 0.046
AC 0.056 0.59CA 0.056
AD 0.036 0.38DA 0.031
BC 0.114 0.73CB 0.108
CD 0.100 0.69DC 0.085

(a) `1-minimization

DEM < δ2i > < δiδj > /
√
< δ2i >< δ2j >

AB 0.048 0.50BA 0.053
AC 0.054 0.57CA 0.054
AD 0.041 0.44DA 0.036
BC 0.115 0.73CB 0.108
CD 0.104 0.71DC 0.089

(b) Correlated-pair error model

(a) Covariance matrix for a patch of size 5x5 (b) Covariance matrix for a patch of size 10x10
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The present paper has demonstrated that the covari-
ance matrix of the geometric precision errors can be
measured autonomously. The present formalism ap-
plies to other areas of Machine Learning, indeed, to
any scientific setting where multiple scalar predictions
are available for a set of entities. For example, the
precision error equations (3) can used for comparing
the relevance judgment of various information retrieval
algorithms. Instead of elevations, one would use the
binary judgment of relevancy to compare the retrieval
models.

Future work will continue to explore the utility of the
precision error covariance matrix for data fusion (what
is the optimal way to combine the DEMs to minimize
the total precision error?), and extend the formalism of
the precision error equations (3) to multi-dimensional
or other non-scalar models such as 3-D locations or
parse trees in computational linguistics.
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Abstract

This paper uses the notion of algorithmic sta-
bility to derive novel generalization bounds
for several families of transductive regres-
sion algorithms, both by using convexity and
closed-form solutions. Our analysis helps
compare the stability of these algorithms.
It suggests that several existing algorithms
might not be stable but prescribes a tech-
nique to make them stable. It also reports
the results of experiments with local trans-
ductive regression demonstrating the benefit
of our stability bounds for model selection, in
particular for determining the radius of the
local neighborhood used by the algorithm.

1. Introduction

Many learning problems in information extraction,
computational biology, natural language processing
and other domains can be formulated as transductive
inference problems (Vapnik, 1982). In the transduc-
tive setting, the learning algorithm receives both a la-
beled training set, as in the standard induction setting,
and a set of unlabeled test points. The objective is to
predict the labels of the test points. No other test
points will ever be considered. This setting arises in a
variety of applications. Often, the points to label are
known but they have not been assigned a label due
to the prohibitive cost of labeling. This motivates the

Appearing in Proceedings of the 25 th International Confer-
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use of transductive algorithms which leverage the un-
labeled data during training to improve learning per-
formance.

This paper deals with transductive regression, which
arises in problems such as predicting the real-valued
labels of the nodes of a known graph in computational
biology, or the scores associated with known docu-
ments in information extraction or search engine tasks.

Several algorithms have been devised for the specific
setting of transductive regression (Belkin et al., 2004b;
Chapelle et al., 1999; Schuurmans & Southey, 2002;
Cortes & Mohri, 2007). Several other algorithms in-
troduced for transductive classification can be viewed
in fact as transductive regression ones as their objec-
tive function is based on the squared loss, e.g., (Belkin
et al.2004a; 2004b). Cortes and Mohri (2007) also gave
explicit VC-dimension generalization bounds for trans-
ductive regression that hold for all bounded loss func-
tions and coincide with the tight classification bounds
of Vapnik (1998) when applied to classification.

This paper presents novel algorithm-dependent gen-
eralization bounds for transductive regression. Since
they are algorithm-specific, these bounds can often be
tighter than bounds based on general complexity mea-
sures such as the VC-dimension. Our analysis is based
on the notion of algorithmic stability.

In Sec. 2 we give a formal definition of the transductive
regression setting and the notion of stability for trans-
duction. Our bounds generalize the stability bounds
given by Bousquet and Elisseeff (2002) for the in-
ductive setting and extend to regression the stability-
based transductive classification bounds of (El-Yaniv
& Pechyony, 2006). Standard concentration bounds
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such as McDiarmid’s bound (McDiarmid, 1989) can-
not be readily applied to the transductive regression
setting since the points are not drawn independently
but uniformly without replacement from a finite set.
Instead, a generalization of McDiarmid’s bound that
holds for random variables sampled without replace-
ment is used, as in (El-Yaniv & Pechyony, 2006).
Sec. 3.1 gives a simpler proof of this bound.

This concentration bound is used to derive a general
transductive regression stability bound in Sec. 3.2. In
Sec. 4, we present the stability coefficients for a family
of local transductive regression algorithms. The anal-
ysis in this section is based on convexity. In Sec. 5, we
study the stability of other transductive regression al-
gorithms (Belkin et al., 2004a; Wu & Schölkopf, 2007;
Zhou et al., 2004; Zhu et al., 2003) based on their
closed form solution and propose a modification to the
seemingly unstable algorithm that makes them stable
and guarantees a non-trivial generalization bound. Fi-
nally, Sec. 6 shows the results of experiments with lo-
cal transductive regression demonstrating the benefit
of our stability bounds for model selection, in partic-
ular for determining the radius of the local neighbor-
hood used by the algorithm. This provides a partial
validation of our bounds and analysis.

2. Definitions

Let us first describe the transductive learning setting.
Assume that a full sample X of m + u examples is
given. The learning algorithm further receives the la-
bels of a random subset S of X of size m which serves
as a training sample. The remaining u unlabeled ex-
amples, xm+1, . . . , xm+u ∈ X, serve as test data. We
denote by X ⊢ (S, T ) a partitioning of X into the
training set S and the test set T . The transductive
learning problem consists of predicting accurately the
labels ym+1, . . . , ym+u of the test examples, no other
test examples will ever be considered (Vapnik, 1998).1

The specific problems where the labels are real-valued
numbers, as in the case studied in this paper, is that
of transduction regression. It differs from the standard
(induction) regression since the learning algorithm is
given the unlabeled test examples beforehand and can
thus exploit this information to improve performance.

We denote by c(h, x) the cost of an error of a hypoth-

1Another natural setting for transduction is one where
the training and test samples are both drawn according to
the same distribution and where the test points, but not
their labels, are made available to the learning algorithm.
However, as pointed out by Vapnik (1998), any generaliza-
tion bound in the setting we analyze directly yields a bound
for this other setting, essentially by taking the expectation.

esis h on a point x labeled with y(x). The cost func-
tion commonly used in regression is the squared loss
c(h, x) = (h(x) − y(x))2. In the remaining of this pa-
per, we will assume a squared loss but many of our
results generalize to other convex cost functions. The
training and test errors of h are respectively R̂(h) =
1
m

∑m
k=1 c(h, xk) and R(h) = 1

u

∑u
k=1 c(h, xm+k). The

generalization bounds we derive are based on the no-
tion of transductive algorithmic stability.

Definition 1 (Transduction β-stability). Let L be a
transductive learning algorithm and let h denote the
hypothesis returned by L for X ⊢(S, T ) and h′ the hy-
pothesis returned for X ⊢(S′, T ′). L is said to be uni-
formly β-stable with respect to the cost function c if
there exists β ≥ 0 such that for any two partitionings
X ⊢(S, T ) and X ⊢(S′, T ′) that differ in exactly one
training (and thus test) point and for all x ∈ X,

∣
∣c(h, x) − c(h′, x)

∣
∣ ≤ β. (1)

3. Transduction Stability Bounds

3.1. Concentration Bound for Sampling

without Replacement

Stability-based generalization bounds in the inductive
setting are based on McDiarmid’s inequality (1989).
In the transductive setting, the points are drawn uni-
formly without replacement and thus are not indepen-
dent. Therefore, McDiarmid’s concentration bound
cannot be readily used. Instead, a generalization of
McDiarmid’s bound for sampling without replacement
is needed as in El-Yaniv and Pechyony (2006).

We will denote by Sm
1 a sequence of random vari-

ables S1, . . . , Sm and write Sm
1 = xm

1 as a short-
hand for the m equalities Si = xi, i = 1, . . . ,m and
Pr[xm

i+1|xi−1
1 , xi]=Pr[Sm

i+1 =xm
i+1|Si−1

1 =xi−1
1 , Si =xi].

Theorem 1 ((McDiarmid, 1989), 6.10). Let Sm
1 be

a sequence of random variables, each Si taking values
in the set X, and assume that a measurable function
φ : Xm 7→ R satisfies: ∀i ∈ [1,m],∀xi, x

′
i ∈ X,

˛

˛

˛

ESm

i+1

h

φ|Si−1

1 , Si = xi

i

− ESm

i+1

h

φ|Si−1

1 , Si = x
′
i

i

˛

˛

˛

≤ ci.

Then, ∀ǫ > 0, Pr [|φ − E [φ] | ≥ ǫ] ≤ 2 exp

„

−2ǫ2
Pm

i=1
c2

i

«

.

The following is a concentration bound for sampling
without replacement needed to analyze the general-
ization of transductive algorithms.

Theorem 2. Let xm
1 be a sequence of random vari-

ables, sampled from an underlying set X of m + u el-
ements without replacement, and let that φ : Xm 7→ R
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be a symmetric function such that for all i ∈ [1,m] and
for all x1, . . . , xm ∈ X and x′

1, . . . , x
′
m ∈ X,

˛

˛φ(x1, . . . , xm) − φ(x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)

˛

˛ ≤ c.

Then, ∀ǫ > 0, Pr
ˆ

˛

˛φ − E [φ]
˛

˛ ≥ ǫ
˜

≤ 2 exp

„

−2ǫ2

α(m, u)c2

«

,

where α(m,u) = mu
m+u−1/2 · 1

1−1/(2 max{m,u}) .

Proof. For a fixed i ∈ [1,m], let g(Si−1

1
) =

ESm

i+1

ˆ

φ|Si−1

1
, Si =xi

˜

− ESm

i+1

ˆ

φ|Si−1

1
, Si =x′

i

˜

. Then,

g(xi−1
1 ) =

∑

x
m

i+1

φ(xi−1
1 , xi,x

m
i+1) Pr[xm

i+1|xi−1
1 , xi] −

∑

x′m

i+1

φ(xi−1
1 , x′

i,x
′m
i+1) Pr[x′m

i+1|xi−1
1 , x′

i].

For uniform sampling without replacement,
the probability terms can be written as:
Pr
ˆ

x
m
i+1|x

i−1

1
, xi

˜

=
Qm−1

k=i
1

m+u−k
= u!

(m+u−i)!
.

Thus, g(xi−1

1
) = u!

(m+u−i)!
[
P

xm

i+1

φ(xi−1

1
, xi,x

m
i+1) −

P

x′m

i+1

φ(xi−1

1
, x′

i,x
′m
i+1)]. To compute the expression

between brackets, we divide the set of permutations
{x′m

i+1} into two sets, those that contain xi and those
that do not. If a permutation x′m

i+1 contains xi we

can write it as x′k−1
i+1 xix

′m
k+1, where k is such that

x′
k = xi. We then match it up with the permutation

xix
′k−1
i+1 x′m

k+1 from the set {xix
m
i+1}. These two

permutations contain exactly the same elements, and
since the function φ is symmetric in its arguments,
the difference in the value of the function on the
permutations is zero.

In the other case, if a permutation x′m
i+1 does not

contain the element xi, then we simply match it up
with the same permutation in {xm

i+1}. The match-
ing permutations appearing in the summation are then
xix

′m
i+1 and x′

ix
′m
i+1 which clearly only differ with re-

spect to xi. The difference in the value of the func-
tion φ in this case can be bounded by c. The num-
ber of such permutations is (m − i)!

(
m+u−(i+1)

m−i

)
=

(m+u−i−1)!
(u−1)! , which leads to the following upper bound:

∑

x
m

i+1

φ(xi−1
1 , xi,x

m
i+1) − ∑

x′m

i+1

φ(xi−1
1 , x′

i,x
′m
i+1) ≤

(m+u−i−1)!
(u−1)! c, which implies that |g(xi−1

1 )| ≤ u!
(m+u−i)! ·

(m+u−i−1)!
(u−1)! c ≤ u

m+u−ic. Then, combining Theorem 1

with the identity
∑m

i=1
1

(m+u−i)2 ≤ m
m+u−1/2

1
u−1/2 ,

yields that Pr
[∣
∣φ − E [φ]

∣
∣ ≥ ǫ

]
≤ 2 exp

(
−2ǫ2

αu(m,u)c2

)

,

where αu(m,u) = mu
m+u−1/2 · 1

1−1/(2u) . The function

φ is symmetric in m and u in the sense that selecting
one of the sets uniquely determines the other set. The
statement of the theorem then follows from a similar
bound with αm(m,u) = mu

m+u−1/2 · 1
1−1/(2m) , taking

the tighter of the two.

3.2. Transductive Stability Bound

To obtain a general transductive regression stability
bound, we apply the concentration bound of Theo-
rem 2 to the random variable φ(S) = R(h)− R̂(h). To
do so, we need to bound ES [φ(S)], where S is a ran-
dom subset of X of size m, and |φ(S) − φ(S′)| where
S and S′ are samples differing by exactly one point.

Lemma 1. Let H be a bounded hypothesis set (∀x ∈
X, |h(x) − y(x)| ≤ B) and L a β-stable algorithm re-
turning the hypotheses h and h′ for two training sets S

and S of size m each, respectively, differing in exactly
one point. Then,

|φ(S) − φ(S′)| ≤ 2β + B2(m + u)/(mu). (2)

Proof. By definition, S and S′ differ exactly in one
point. Let xi ∈ S, xm+j ∈ S′ be the points in which
the two sets differ. The lemma follows from the obser-
vation that for each one of the m− 1 common labeled
points in S and S′, and for each one of the u − 1
common test points in T and T ′ (recall T = X \ S,
T ′ = X \ S′), the difference in cost is bounded by
β, while for xi and xm+j , the difference in cost is
bounded by B2. Then, it follows that |φ(S)−φ(S′)| ≤
(u−1)β

u + (m−1)β
m + B2

u + B2

m ≤ 2β + B2
(

1
u + 1

m

)
.

Lemma 2. Let h be the hypothesis returned by a β-
stable algorithm L. Then, |ES [φ(S)] | ≤ β.

Proof. By definition of φ(S), its expectation is
1

u

Pu

k=1
ES [c(h, xm+k)] − 1

m

Pm

k=1
ES [c(h, xk)]. Since

ES [c(h, xm+j)] is the same for all j ∈ [1, u], and
ES [c(h, xi)] the same for all i ∈ [1,m], for any i

and j, ES [φ(S)] = ES [c(h, xm+j)] − ES [c(h, xi)] =
ES′ [c(h′, xi)] − ES [c(h, xi)]. Thus, ES [φ(S)] =
ES,S′∼X [c(h′, xi) − c(h, xi)] ≤ β.

Theorem 3. Let H be a bounded hypothesis set (∀x ∈
X, |h(x)− y(x)| ≤ B) and L a β-stable algorithm. Let
h be the hypothesis returned by L when trained on X ⊢
(S, T ). Then, for any δ > 0, with prob. at least 1 − δ,

R(h) ≤ R̂(h)+β+

(

2β +
B2(m + u)

mu

)
√

α(m,u) ln 1
δ

2
.

Proof. The result follows directly from Theorem 2 and
Lemmas 1 and 2.

This is a general bound that applies to any transduc-
tive algorithm. To apply it, the stability coefficient β,
which depends on m and u, needs to be determined. In
the subsequent sections, we derive bounds on β for a
number of transductive regression algorithms (Cortes
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& Mohri, 2007; Belkin et al., 2004a; Wu & Schölkopf,
2007; Zhou et al., 2004; Zhu et al., 2003).

4. Stability of Local Transductive

Regression Algorithms

This section describes and analyzes a general family
of local transductive regression algorithms (LTR) gen-
eralizing the algorithm of Cortes and Mohri (2007).

LTR algorithms can be viewed as a generalization of
the so-called kernel regularization-based learning al-
gorithms to the transductive setting. The objective
function that they minimize is of the form:

F (h, S) = ‖h‖2

K
+

C

m

m
X

k=1

c(h, xk)+
C′

u

u
X

k=1

ec(h, xm+k), (3)

where ‖·‖K is the norm in the reproducing kernel
Hilbert space (RKHS) with associated kernel K, C ≥ 0
and C ′ ≥ 0 are trade-off parameters, and c̃(h, x) =
(h(x) − ỹ(x))2 is the error of the hypothesis h on the
unlabeled point x with respect to a pseudo-target ỹ.

Pseudo-targets are obtained from neighborhood labels
y(x) by a local weighted average. Neighborhoods can
be defined as a ball of radius r around each point in
the feature space. We will denote by βloc the score-
stability coefficient of the local algorithm used, that
is the maximal amount by which the two hypotheses
differ on an given point, when trained on samples dis-
agreeing on one point. This notion is stronger than
that of cost-based stability.

In this section, we use the bounded-labels assumption,
that is ∀x ∈ S, |y(x)| ≤ M . We also assume that
for any x ∈ X, K(x, x) ≤ κ2. We will use the fol-
lowing bound based on the reproducing property and
the Cauchy-Schwarz inequality valid for any hypothe-
sis h ∈ H : ∀x ∈ X,

|h(x)|= |〈h, K(x, ·)〉| ≤ ‖h‖
K

p

K(x, x) ≤ κ‖h‖
K

. (4)

Lemma 3. Let h be the hypothesis minimizing (3).
Assume that for any x ∈ X, K(x, x) ≤ κ2. Then, for
any x ∈ X, |h(x)| ≤ κM

√
C + C ′.

Proof. The proof is a straightforward adaptation of
the technique of (Bousquet & Elisseeff, 2002) to LTR al-
gorithms. By Eqn. 4, |h(x)| ≤ κ‖h‖K . Let 0 ∈ R

m+u

be the hypothesis assigning label zero to all examples.
By definition of h,

F (h, S) ≤ F (0, S) ≤ (C + C
′)M2

.

Using ‖h‖K ≤
√

F (h, S) yields the statement.

Since |h(x)| ≤ κM
√

C + C ′, this immediately gives us
a bound on |h(x) − y(x)| ≤ M(1 + κ

√
C + C ′). Thus,

we are in a position to apply Theorem 3 with B = AM ,
A = 1 + κ

√
C + C ′.

We now derive a bound on the stability coefficient β.
To do so, the key property we will use is the convexity
of h 7→ c(h, x). Note, however, that in the case of c̃, the
pseudo-targets may depend on the training set S. This
dependency matters when we wish to apply convexity
with two hypotheses h and h′ obtained by training on
different samples S and S′. For convenience, for any
two such fixed hypotheses h and h′, we extend the
definition of c̃ as follows. For all t ∈ [0, 1],

c̃(th+(1−t)h′, x) =
(
(th+(1−t)h′)(x)−(tỹ+(1−t)ỹ′)

)2
.

This allows us to use the same convexity property for
c̃ as for c for any two fixed hypotheses h and h′, as
verified by the following lemma, and does not affect
the proofs otherwise.

Lemma 4. Let h be a hypothesis obtained by training
on S and h′ by training on S′. Then, for all t ∈ [0, 1],

tc̃(h, x) + (1 − t)c̃(h′, x) ≥ c̃(th + (1 − t)h′, x). (5)

Proof. Let ỹ = ỹ(x) be the pseudo-target value at x

when the training set is S and ỹ′ = ỹ′(x) when the
training set is S′. For all t ∈ [0, 1],

tc(h, x) + (1 − t)c(h′
, x) − c(th + (1 − t)h′

, x)

= t(h(x) − ey)2 + (1 − t)(h′(x) − ey′)2

−
ˆ

t(h(x) − ey) + (1 − t)(h′(x) − ey′)
˜

2

.

The statement of the lemma follows directly by the
convexity of x 7→ x2 over real numbers.

Let h be a hypothesis obtained by training on
S and h′ by training on S′. Let ∆ = h −
h′. Then, for all x ∈ X, |c(h, x) − c(h′, x)| =
|∆(x) ((h(x) − y(x)) + (h′(x) − y(x))) | ≤ 2M(1 +
κ
√

C + C ′)|∆(x)|. As in 4, for all x ∈ X, |∆(x)| ≤
κ‖∆‖K , thus for all x ∈ X,

|c(h, x) − c(h′
, x)| ≤ 2M(1 + κ

√
C + C′)κ‖∆‖

K
. (6)

Lemma 5. Assume that for all x ∈ X, |y(x)| ≤ M .
Let S and S′ be two samples differing by exactly one
point. Let h be the hypothesis returned by the algorithm
minimizing the objective function F (h, S), h′ be the
hypothesis obtained by minimization of F (h, S′) and
let ỹ and ỹ′ be the corresponding pseudo-targets. Then,

C [c(h′, xi) − c(h, xi)] /m − C ′ [c̃(h′, xi) − c̃(h, xi)] /u

≤ 2AM (κ‖∆‖K (C/m + C ′/u) + βlocC
′/u) .

where ∆ = h′ − h and A = 1 + κ
√

C + C ′.
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Proof. Let c̃(hi, ỹi) = c̃(h, xi) and c̃(h′
i, ỹ

′
i) = c̃(h′, xi).

By Lemma 3 and the bounded-labels assumption,

|c̃(h′
i, ỹ

′
i) − c̃(hi, ỹi)|

= |c̃(h′
i, ỹ

′
i) − c̃(h′

i, ỹi) + c̃(h′
i, ỹi) − c̃(hi, ỹi)|

≤ |(ỹ′
i − ỹi)(ỹ

′
i + ỹi − 2h′

i)| + |(h′
i − hi)(h

′
i + hi − 2ỹi)| .

By the score-stability of local estimates, ỹ′(xi) −
ỹ(xi) ≤ βloc. Thus,

|c̃(h′
i, ỹ

′
i) − c̃(hi, ỹi)| ≤ 2AM(βloc + κ‖∆‖K). (7)

Using 6 leads after simplification to the statement of
the lemma.

The proof of the following theorem is based on
Lemma 4 and Lemma 5 and is reserved to a longer
version of this paper.

Theorem 4. Assume that for all x ∈ X, |y(x)| ≤ M

and there exists κ such that ∀x ∈ X, K(x, x) ≤ κ2.
Further, assume that the local estimator has uniform
stability coefficient βloc. Let A = 1+κ

√
C + C ′. Then,

LTR is uniformly β-stable with

β ≤ 2(AM)2κ2

[
C

m
+

C ′

u
+

√
(

C

m
+

C ′

u

)2

+
2C ′βloc

AMκ2u

]

.

Our experiments with LTR will demonstrate the benefit
of this bound for model selection (Sec. 6).

5. Stability Based on Closed-Form

Solutions

5.1. Unconstrained Regularization Algorithms

In this section, we consider a family of transductive
regression algorithms that can be formulated as the
following optimization problem:

min
h

hT Qh + (h − y)T C(h − y). (8)

Q ∈ R
(m+u)×(m+u) is a symmetric regularization ma-

trix, C ∈ R
(m+u)×(m+u) is a symmetric matrix of em-

pirical weights (in practice it is often a diagonal ma-
trix), y ∈ R

(m+u)×1 are the target values of the m

labeled points together with the pseudo-target values
of the u unlabeled points (in some formulations, the
pseudo-target value is 0), and h ∈ R

(m+u)×1 is a col-
umn vector whose ith row is the predicted target value
for the xi. The closed-form solution of (8) is given by

h = (C−1Q + I)−1y. (9)

The formulation (8) is quite general and includes as
special cases the algorithms of (Belkin et al., 2004a;

Wu & Schölkopf, 2007; Zhou et al., 2004; Zhu et al.,
2003). We present a general framework for bounding
the stability coefficient of these algorithms and then
examine the stability coefficient of each of these algo-
rithms in turn.

For a symmetric matrix A ∈ R
n×n we will denote by

λM (A) its largest eigenvalue and λm(A) its smallest.
Then, for any v ∈ R

n×1, λm(A)‖v‖2 ≤ ‖Av‖2 ≤
λM (A)‖v‖2. We will also use in the proof of the fol-
lowing proposition the fact that for symmetric matri-
ces A,B ∈ R

n×n, λM (AB) ≤ λM (A)λM (B).

Proposition 1. Let h and h′ solve (8), under test
and training sets that differ exactly in one point and
let C,C′,y,y′ be the analogous empirical weight and
the target value matrices. Then,

‖h′−h‖2 ≤ ‖y′ − y‖2

λm(Q)
λM (C) + 1

+
λM (Q)‖C′−1 − C−1‖2 ‖y‖2
(

λm(Q)
λM (C′) + 1

) (
λm(Q)
λM (C) + 1

) .

Proof. Let ∆ = h′ − h and ∆y = y′ − y. Let C =
(C−1Q + I) and C

′ = (C′−1
Q + I). By definition,

∆ = C
′−1

y′ − C
−1y

= C
′−1

∆y + (C′−1 − C
−1)y

= C
′−1

∆y + (C−1
[

(C−1 − C′−1
)Q

]

C
′−1

)y.

Thus, ‖∆‖2 ≤ ‖∆y‖2

λm(C)
+

λM (Q)‖C′−1 − C−1‖2 · ‖y‖2

λm(C′)λm(C)
.

(10)

Furthermore, λm(C) ≥ λm(Q)
λM (C)+1. Plugging this bound

back into Eqn. 10 yields:

‖∆‖2 ≤ ‖∆y‖2

λm(Q)
λM (C) + 1

+
λM (Q)‖C′−1 − C−1‖2‖y‖2
(

λm(Q)
λM (C′) + 1

) (
λm(Q)
λM (C) + 1

) .

Since ‖h′ − h‖∞ is bounded by ‖h′ − h‖2, the propo-
sition provides a bound on the score-stability of h for
the transductive regression algorithms of Zhou et al.
(2004); Wu and Schölkopf (2007); Zhu et al. (2003).
For each of these algorithms, the pseudo-targets used
are zero. If we make the bounded labels assumption
(∀x∈X, |y(x)| ≤ M , for some M >0), it is not difficult
to show that ‖y − y′‖2 ≤

√
2M and ‖y‖2 ≤ √

mM .
We now examine each algorithm in turn.

Consistency method (CM) In the CM algo-
rithm (Zhou et al., 2004), the matrix Q is a normal-
ized Laplacian of a weight matrix W ∈ R

(m+u)×(m+u)

that captures affinity between pairs of points in the
full sample X. Thus, Q = I − D−1/2WD−1/2, where
D ∈ R

(m+u)×(m+u) is a diagonal matrix, with [D]i,i =
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∑

j [W]i,j . Note that λm(Q) = 0. Furthermore, ma-
trices C and C′ are identical in CM, both diagonal ma-
trices with (i, i)th entry equal to a positive constant
µ > 0. Thus C−1 = C′−1 and using Prop. 1, we ob-
tain the following bound on the score-stability of the
CM algorithm: βCM ≤

√
2M .

Local learning regularization (LL− Reg) In the
LL− Reg algorithm (Wu & Schölkopf, 2007), the
regularization matrix Q is (I − A)T (I − A), where
I ∈ R

(m+u)×(m+u) is an identity matrix and A ∈
R

(m+u)×(m+u) is a non-negative weight matrix that
captures the local similarity between all pairs of points
in X. A is normalized, i.e. each of its rows sum to
1. Let Cl, Cu > 0 be two positive constants. The
matrix C is a diagonal matrix with [C]i,i = Cl if
xi ∈ S and Cu otherwise. Let Cmax = max{Cl, Cu}
and Cmin = min{Cl, Cu}. Thus, ‖C′−1 − C−1‖2 =√

2
(

1
Cmin

− 1
Cmax

)

. By the Perron-Frobenius theo-

rem, its eigenvalues lie in the interval (−1, 1] and
λM (A) ≤ 1. Thus, λm(Q) ≥ 0 and λM (Q) ≤
4 and we have the following bound on the score-
stability of the LL− Reg algorithm: βLL−Reg ≤

√
2M +

4
√

mM
(

1
Cmin

− 1
Cmax

)

≤
√

2M + 4
√

mM
Cmin

.

Gaussian Mean Fields algorithm GMF (Zhu et al.,
2003) is very similar to the LL− Reg, and admits ex-
actly the same stability coefficient.

Thus, the stability coefficients of the algorithms of
CM, LL− Reg, and GMF can be large. Without addi-
tional constraints on the matrix Q, these algorithms
do not seem to be stable enough for the generalization
bound of Theorem 3 to converge. A particular exam-
ple of constraint is the condition

∑m+u
i=1 h(xi) = 0 used

by Belkin et al.’s algorithm (2004a). In the next sec-
tion, we give a generalization bound for this algorithm
and then describe a general method for making the
algorithms just examined stable.

5.2. Stability of Constrained Regularization

Algorithms

This subsection analyzes constrained regularization al-
gorithms such as the Laplacian-based graph regular-
ization algorithm of Belkin et al. (2004a). Given a
weighted graph G = (X,E) in which edge weights
represent the extent of similarity between vertices, the
task consists of predicting the vertex labels. The hy-
pothesis h returned by the algorithm is solution of the

following optimization problem:

min
h∈H

h
T
Lh +

C

m

m
X

i=1

(h(xi) − yi)
2

subject to:

m+u
X

i=1

h(xi) = 0,

(11)

where L ∈ R
(m+u)×(m+u) is a smoothness matrix, e.g.,

the graph Laplacian, {yi | i ∈ [1,m]} are the target
values of the m labeled nodes.

The hypothesis set H in this case can be thought of
as a hyperplane in R

m+u that is orthogonal to the
vector 1 ∈ R

m+u. Maintaining the notation used in
(Belkin et al., 2004a), we let PH denote the operator
corresponding to the orthogonal projection on H. For
a sample S drawn without replacement from X, define
IS ∈ R

(m+u)×(m+u) to be the diagonal matrix with
[IS ]i,i = 1 if xi ∈ S and 0 otherwise. Similarly, let
yS ∈ R

(m+u)×1 be the column vector with [yS ]i,1 = yi

if xi ∈ S and 0 otherwise. The closed-form solution on
a training sample S is given by (Belkin et al., 2004a):

hS =
“

PH

“

m

C
L + IS

””−1

yS . (12)

Theorem 5. Assume that the vertex labels of the
graph G = (X,E) and the hypothesis h obtained by
optimizing Eqn. 11 are both bounded (∀x, |h(x)| ≤ M

and |y(x)| ≤ M for some M > 0). Let A = 1 + κ
√

C.
Then, for any δ > 0, with probability at least 1 − δ,

R(h) ≤ bR(h) + β +

„

2β +
(AM)2(m + u)

mu

«

s

α(m, u) ln 1

δ

2
,

with α(m,u) = mu
m+u−1/2 · 1

1−1/(2 max{m,u}) and β ≤
(4
√

2M2)/(mλ2/C − 1) + (4
√

2mM2)/(mλ2/C − 1)2,
λ2 is the second smallest eigenvalue of the Laplacian.

Proof. The proof is similar to that of (Belkin et al.,
2004a) but uses our general transductive regression
bound instead.

The generalization bound we just presented differs in
several respects from that of Belkin et al.(2004a). Our
bound explicitly depends on both m and u while theirs
shows only a dependency on m. Also, our bound does
not depend on the number of times a point is sampled
in the training set (parameter t), thanks to our analysis
based on sampling without replacement.

Contrasting the stability coefficient of Belkin’s algo-
rithm with the stability coefficient of LTR (Theorem 4),
we note that it does not depend on C ′ and βloc. This
is because unlabeled points do not enter the objec-
tive function, and thus C ′ = 0 and ỹ(x) = 0 for all
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x ∈ X. However, the stability does depend on the sec-
ond smallest eigenvalue λ2 and the bound diverges as
λ2 approaches C

m . In all our regression experiments,
we observed that this algorithm does not perform as
well in comparison with LTR.

5.3. Making Seemingly Unstable Algorithms

Stable

In Sec. 5.2, we saw that imposing additional con-
straints on the hypothesis, e.g., h · 1 = 0, allowed one
to derive non-trivial stability bounds. This idea can
be generalized and similar non-trivial stability bounds
can be derived for “stable” versions of the algorithms
presented in Sec. 5.1 CM, LL− Reg, and GMF. Recall
that the stability bound in Prop. 1 is inversely propor-
tional to the smallest eigenvalue λm(Q). The main dif-
ficulty with using the proposition for these algorithms
is that λm(Q) = 0 in each case. Let vm denote the
eigenvector corresponding to λm(Q) and let λ2 be the
second smallest eigenvalue of Q. One can modify (8)
and constrain the solution to be orthogonal to vm by
imposing h · vm = 0. In the case of (Belkin et al.,
2004a), vm = 1. This modification, motivated by the
algorithm of (Belkin et al., 2004a), is equivalent to
increasing the smallest eigenvalue to be λ2.

As an example, by imposing the additional constraint,
we can show that the stability coefficient of CM becomes
bounded by O(C/λ2), instead of Θ(1). Thus, if C =
O(1/m) and λ2 = Ω(1), it is bounded by O(1/m) and
the generalization bound converges as O(1/m).

6. Experiments

6.1. Model Selection Based on Bound

This section reports the results of experiments using
our stability-based generalization bound for model se-
lection for the LTR algorithm. A crucial parameter
of this algorithm is the stability coefficient βloc(r) of
the local algorithm, which computes pseudo-targets ỹx

based on a ball of radius r around each point. We de-
rive an expression for βloc(r) and show, using extensive
experiments with multiple data sets, that the value r∗

minimizing the bound is a remarkably good estimate
of the best r for the test error. This demonstrates the
benefit of our generalization bound for model selection,
avoiding the need for a held-out validation set.

The experiments were carried out on several publicly
available regression data sets: Boston Housing, Ele-
vators and Ailerons2. For each of these data sets, we
used m = u, inspired by the observation that, all other

2www.liaad.up.pt/~ltorgo/Regression/DataSets.html.

parameters being fixed, the bound of Theorem 3 is
tightest when m = u. The value of the input variables
were normalized to have mean zero and variance one.
For the Boston Housing data set, the total number of
examples was 506. For the Elevators and the Ailerons
data set, a random subset of 2000 examples was used.
For both of these data sets, other random subsets of
2000 samples led to similar results. The Boston Hous-
ing experiments were repeated for 50 random parti-
tions, while for the Elevators and the Ailerons data
set, the experiments were repeated for 20 random par-
titions each. Since the target values for the Elevators
and the Ailerons data set were extremely small, they
were scaled by a factor 1000 and 100 respectively in a
pre-processing step.

In our experiments, we estimated the pseudo-target
of a point x′ ∈ T as a weighted average of the la-
beled points x ∈ N(x′) in a neighborhood of x′. Thus,
ỹx′ =

∑

x∈N(x′) αxyx/
∑

x∈N(x′) αx. Weights are de-

fined in terms of a similarity measure K(x, x′) cap-
tured by a kernel K: αx = K(x, x′). Let m(r) be
the number of labeled points in N(x′). Then, it is
easy to show that βloc ≤ 4αmaxM/(αminm(r)), where
αmax = maxx∈N(x′) αx and αmin = minx∈N(x′) αx.
Thus, for a Gaussian kernel with parameter σ, βloc ≤
4M/(m(r)e−2r2/σ2

). To estimate βloc, one needs an
estimate of m(r), the number of samples in a ball of
radius r from an unlabeled point x′. In our experi-
ments, we estimated m(r) as the number of samples
in a ball of radius r from the origin. Since all fea-
tures are normalized to mean zero and variance one,
the origin is also the centroid of the set X.

We implemented a dual solution of LTR and used Gaus-
sian kernels, for which, the parameter σ was selected
using cross-validation on the training set. Experiments
were repeated across 36 different pairs of values of
(C,C ′). For each pair, we varied the radius r of the
neighborhood used to determine estimates from zero
to the radius of the ball containing all points.

Figure 1(a) shows the mean values of the test MSE of
our experiments on the Boston Housing data set for
typical values of C and C ′. Figures 1(b)-(c) show sim-
ilar results for the Ailerons and Elevators data sets.
For the sake of comparison, we also report results for
induction. The relative standard deviations on the
MSE are not indicated, but were typically of the order
of 10%. LTR generally achieves a significant improve-
ment over induction.

The generalization bound we derived in Eqn. 3 con-
sists of the training error and a complexity term
that depends on the parameters of the LTR algorithm
(C,C ′,M,m, u, κ, βloc, δ). Only two terms depend
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Figure 1. MSE against the radius r of LTR for three data sets: (a) Boston Housing. (b) Ailerons. (c) Elevators. The small
horizontal bar indicates the location (mean ± one standard deviation) of the minimum of the empirically determined r.

upon the choice of the radius r: R̂(h) and βloc. Thus,
keeping all other parameters fixed, the theoretically
optimal radius r∗ is the one that minimizes the train-
ing error plus the slack term. The figures also include
plots of the training error combined with the complex-
ity term, appropriately scaled. The empirical mini-
mization of the radius r coincides with or is close to
r∗. The optimal r based on test MSE is indicated with
error bars.

6.2. Stable Versions of Unstable Algorithms

We refer to the stable version of the CM algorithm
presented in Sec. 5.1 as CM− STABLE. We compared
CM and CM− STABLE empirically on the same datasets,
again using m = u. For the normalized Laplacian we
used k-nearest neighbors graphs based on Euclidean
distance. The parameters k and C were chosen by
five-fold cross-validation over the training set. The
experiment was repeated 20 times with random par-
titions. The averaged mean-squared errors with stan-
dard deviations, are reported in Table 6.2.

Dataset CM CM− STABLE

Elevators 0.3228 ± 0.0264 0.3293 ± 0.0286
Ailerons 0.1149 ± 0.0081 0.1184 ± 0.0087
Housing 57.93 ± 6.5 57.92 ± 6.5

We conclude from this experiment that CM and
CM− STABLE have the same performance. However, as
we showed previously, CM− STABLE has a non-trivial
risk bound and thus comes with some guarantee.

7. Conclusion

We presented a comprehensive analysis of the stability
of transductive regression algorithms with novel gen-
eralization bounds for a number of algorithms. Since
they are algorithm-dependent, our bounds are often
tighter than those based on complexity measures such
as the VC-dimension. Our experiments also show the
effectiveness of our bounds for model selection and the
good performance of LTR algorithms.
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Abstract

In one-class classification we seek a rule to
find a coherent subset of instances similar to
a few positive examples in a large pool of
instances. The problem can be formulated
and analyzed naturally in a rate-distortion
framework, leading to an efficient algorithm
that compares well with two previous one-
class methods. The model can be also be ex-
tended to remove background clutter in clus-
tering to improve cluster purity.

1. Introduction

Often we are given a large set of data items among
which we would like to find a coherent subset. For
instance, in document retrieval we might want to re-
trieve a small set of relevant documents similar to a
few seed documents. In genomics, it is useful to find
the set of genes that are strongly co-expressed with a
few genes of interest. In both cases, we prefer high-
precision answers over high-recall ones.

A popular intuition for this one-class classification
problem is that of finding a small ball (under some
appropriate norm) that contains as many of the seed
elements as possible (Tax & Duin, 1999). Most previ-
ous approaches to the problem take the point of view
of outlier and novelty detection, in which most of the
examples are identified as relevant. However, Cram-
mer and Chechik (2004) seek a small subset of relevant
examples, rather than keep all but few outliers.

Most approaches to one-class classification use convex

1Work done mainly at the University of Pennsylvania.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

cost functions that focus on the large-scale distribution
of the data. Those functions grow linearly outside class
and and are constant inside it (Schölkopf et al., 1995;
Tax & Duin, 1999; Ben-Hur et al., 2001). In a related
study, Schölkopf et al. (2001) seek to separate most of
the examples from the origin using a single hyperplane.
More recently, Crammer and Singer (2003) generalized
that approach to the general case of Bregman diver-
gences. In all of those methods, the convexity of the
cost function forces the the solution to shrink to the
center of mass as the radius of the ball goes to zero,
thus ignoring any local substructure.

In contrast to the previous work, Crammer and
Chechik (2004) assumed that the distribution of points
outside the one class is not relevant, so they chose a
cost function that grows linearly inside the class but is
constant outside it. This cost function is thus indiffer-
ent to the values of the irrelevant instances. A flat cost
outside the class is expected to be better than a grow-
ing cost when the relevant instances are mostly in a
small region, or when there are relatively few relevant
instances. Unfortunately, their cost function leads to
a non-convex optimization problem that requires an
approximate solution.

Using ideas from rate-distortion theory (Cover &
Thomas, 1991), we express the one-class problem as
a lossy coding of each instance into a few possible
instance-dependent codewords. Unlike previous meth-
ods that use just two (Crammer & Chechik, 2004) or
a small number (Bekkerman & McCallum, 2005) of
possible codewords for all instances, the total num-
ber of codewords in our method is greater than the
number of instances. To preclude trivial codings, we
force each instance to associate only with a few pos-
sible codewords. Finding the best coding function is
an optimization problem for which we provide an ef-
ficient algorithm. The optimization has an “inverse
temperature” parameter that represents the tradeoff
between compression and distortion. As temperature
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decreases, the solution passes through a series of phase
transitions associated with different sizes for the one
class. This model outperforms two previous algo-
rithms proposed for the problem, which are effective
only in more restricted situations.

Our one-class model is also effective on the task of
clustering a set of instances into multiple classes when
some of the instances are clutter that should not be
included in any cluster. This task can be reduced to
an alternation between applications of the one-class al-
gorithm and hard clustering. Initial experiments with
synthetic and real world data show that by leaving
some instances out of the clusters, the quality of the
clustering improves.

2. One-Class as Rate-Distortion

Optimization

We are given a set of instances indexed by the integer
random variable 1 ≤ X ≤ m. Each instance is de-
scribed by a point vx ∈ R

d (possibly restricted to the
simplex), and p(x) = p(X = x) is a prior distribution
over instances. Our goal is to find a small coherent sub-
set of instances from a large set of possible instances.
In particular, the learning task is to find a centroid w

in the space such that there are many seed instances
vx close to it.

We formalize the task as a source coding problem. An
instance x is either coded with the one class, with dis-
tortion D (vx‖w), and assigned the code 0, or it is
coded as itself with zero distortion. The distortion
D can be any Bregman divergence (Censor & Zenios,
1997), which includes as special cases the Euclidean
distance and the KL divergence between distributions.

The random variable T represents the code for an in-
stance: if T = 0 , the instance was coded with the one
class, while if T = x > 0, the instance is coded as itself.
Although T has m + 1 distinct values, only one code
x is associated with the event T = x > 0. The coding
process is summarized by the conditional probability
q(t|x) of encoding x as t. These constraints mean that
q(t|x) = 0 if t /∈ {x, 0}, that is, the only nonzero prob-
ability outcomes for x are T = 0 or T = x.

The marginal

q(0) =
∑

x

p(x)q(0|x) , (1)

is the probability of assigning any instance to the one
class. The other marginals are a product of two terms
q(x) = p(x)q(x|x), because of the constraints that
q(t|x) = 0 for t 6= 0 and t 6= x. We explicitly al-
low soft assignments, 0 ≤ q(0|x) ≤ 1. As we will see

below, instances in the one class have a hard assign-
ment to the class, but instances outside have a soft
assignment.

We use the information bottleneck (IB) frame-
work (Tishby et al., 1999) to formalize the assignment
process. IB is an information-theoretic approach to
regularized unsupervised learning that aims to extract
a meaningful representation of some data X based on
its association with side information. For generality,
we choose here the rate-distortion formulation of the
IB, which solves for the assignment by optimizing the
tradeoff between two quantities: the amount of com-
pression applied to the source data X, measured by
the mutual information I(T ;X), and the average dis-
tortion between the data and its representation:

min
w,{q(0|x)}

I(T ;X) + βD(w, {q(0|x)}) . (2)

For one-class learning, the distortion term measures
how well on average the centroid w serves as a proxy
to each of the instances vx:

D(w, {q(0|x)}) =
∑

x

p(x)q(0|x)D (vx‖w) .

In contrast with standard rate distortion and IB for-
mulations, the average distortion is computed only for
T = 0, because the distortion is zero for T > 0.

We first rewrite the mutual information term using the
constraints q(t|x) = 0 if t 6= x and t 6= 0:

I(T ;X) =
∑

x,t p(x)q(t|x) log
(

q(t|x)
q(t)

)

=
∑

x p(x)
[

q(0|x) log
(

q(0|x)
q(0)

)

+q(x|x) log
(

q(x|x)
q(x)

)]

=
∑

x p(x)




q(0|x) log

(
q(0|x)
q(0)

)

+

(1− q(0|x)) log
(

q(x|x)
q(x|x)p(x)

)



 .

Then, the minimization (2) can be written as:

min
{q(t|x),w}

m∑

x=1

p(x)

[

q(0|x) log

(
q(0|x)

q(0)

)

+(1− q(0|x)) log

(
1

p(x)

)]

+β
∑

x

p(x)q(0|x)D (vx‖w) (3)

s.t. 0 ≤ q(0|x) ≤ 1, 1 ≤ x ≤ m (4)

The corresponding Lagrangian is:

∑m
x=1 p(x)

[

q(0|x)log
(

q(0|x)
q(0)

)

+(1−q(0|x)) log
(

1
p(x)

)]

+β
∑

x p(x)q(0|x)D (vx‖w)+
∑

x p(x)νxq(0|x) .
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Setting to zero its derivative with respect to q(0|x), we
get:

p(x)

[

log

(
q(0|x)

q(0)

)

+βp(x)D (vx‖w)+log p(x)+νx

]

=0 ,

Using the KKT conditions, we solve for q(0|x):

q(0|x) = min

{

q(0)
e−βD(vx‖w)

p(x)
, 1

}

. (5)

Setting the derivative of the Lagrangian with respect
to w to zero we get:

w =

∑

x p(x)q(0|x)vx
∑

x p(x)q(0|x)
=

∑

x

q(x|0)vx . (6)

That is, the centroid is the average of all the points
vx weighted by their probability of membership in the
single class.Like in the IB, the solution has a set of
self-consistent equations: (1), (5), and (6).

Note that this rate-distortion formulation can be ex-
pressed as a tradeoff between two information quan-
tities, as in the original IB. When D is the KL diver-
gence, the optimization in (2) (or (3)) is equivalent to
minimizing the tradeoff I(X;T )− βI(T ;Y ) under the
above constraints, where the random variable Y gives
side information through the vectors vx.

3. Algorithm

The sequential algorithm of Slonim (2003) finds effi-
ciently a local maximum of the IB objective. The al-
gorithm alternates between selecting an instance and
deciding whether moving it to another cluster would
improve the objective. The item is reassigned to the
cluster which yields the best improvement. A simi-
lar algorithm has been proposed for one-class prob-
lems (Crammer & Chechik, 2004). At each round, an
instance is either removed from the class or added to
the class, depending on what would most improve the
objective.

We present a different algorithm for our model, in-
spired by Blahut-Arimoto algorithm and the original
IB algorithm. The new algorithm iterates between
the self-consistent equations (1), (5), and (6). Anal-
ogously to those algorithms, ours alternates between
fixing q(0|x) and q(0) and fixing w, and solving for the
other parameters. We solve easily for w by computing
the weighted average in (6). To solve for q(0|x) and
q(0), let w be fixed and define dx = D (vx‖w). We
now show how to compute q(0|x) and q(0) efficiently.

Eq. (5) cannot be solved directly for q(0|x) because
it involves q(0), which in turn depends on q(0|x).

However, we can break this cycle by analyzing more
carefully the properties of the solution. Let C =
{x : q(0|x) = 1}. From (1) we get:

q(0) =
∑

x

p(x)q(0|x) =
∑

x∈C

p(x) + q(0)
∑

x/∈C

e−βdx (7)

Assume that C 6= ∅. Solving for q(0), we obtain:
q(0) =

(∑

x∈C p(x)
)
/
(
1−∑

x/∈C e−βdx

)
. This equa-

tion is well defined if 0 ≤ q(0) ≤ 1, or equivalently:

∑

x/∈C

e−βdx ≤ 1−
∑

x∈C

p(x) . (8)

If C contains all the points, this is trivially satisfied. If
C = ∅, (7) becomes q(0)

(
1−∑

x e−βdx

)
= 0 . There-

fore, there is a unique β0 such that for all β ≥ β0 we
have q(0) = 0. If p(x) > 0 for all x we then have
q(0|x) = 0.

In summary, the solution of the optimization problem
is given by the set C = {x : q(0|x) = 1}. We cannot
search for that set näıvely, but fortunately the follow-
ing lemma gives an efficient way to find the set by
sorting its possible members.

Lemma 1 Let x1, . . . , xm be a permutation of [1,m]
such that 0 < βdx1

+ log p(x1) ≤ · · · ≤ βdxm
+

log p(xm). Then C = {xi : 1 ≤ i ≤ k} for some k ∈
[0,m].

Proof: Assume that C 6= ∅. From (5) we know that
q(0|x) = min

{
q(0)e−βdx−log(p(x)), 1

}
. We now show

that if xk ∈ C for some k, then xj ∈ C for all 1 ≤ j < k.
If xk ∈ C, by definition q(0)e−βdx

k
−log p(xk) ≥ 1. For

j < k, by hypothesis we have −βdxk
− log p(xk) ≥

−βdxj
− log p(xj). Thus, q(0)e−βdxj

−log p(xj) ≥ 1, and
thus xj ∈ C.
The lemma allows us to solve (3) easily for a fixed w.
The inputs for the algorithm are the prior over items
p(x), the distortions dx, and the tradeoff parameter
β. First, we order the items x in ascending order of
the combined distortion and log-prior βdx +log(p(x)).
As in the lemma, we obtain an ordering x1, . . . , xm.
Among the possible C = {xi : 1 ≤ i ≤ k} that satisfy
(8), we choose the one that minimizes the objective. A
näıve implementation would require O(m log m) time
to sort the items, and then additional O(m) steps for
each of the m candidate subsets C, yielding an overall
complexity of O(m2). However, we can use dynamic
programming to compute the objective for C ∪ {xk}
from quantities saved from computing the objective
for C. Equation (3) can be rearranged as:
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Input

• Distortion values dx for x ∈ {1 . . . m}
• Prior p(x) for x ∈ {1 . . . m}
• Tradeoff parameter β ≥ 0

Sort the words in accordance to their score

βdx1
+ log(p(x1)) ≤ · · · ≤ βdxm

+ log(p(xm))

Initialize k = m, ak = 1, pk = 1, Jk = β
∑

x p(x)dx,
cbest = k, Jbest = Jk.

Loop: While k > 0

1. Compute ak−1 = ak − e
−βdx

k−1

2. Compute pk−1 = pk − p(xk−1)
3. if pk−1 ≤ ak−1

• Compute Jk−1 using (10).
• If Jk−1 < Jbest then set kbest = k−1 and
Jbest = Jk−1.

4. Set k ← k − 1.

Compute: q(0|x) using (5) and (7)

Output: q(0|x)

Figure 1. Finding the one class for fixed distortion.

H [p(x)] +
∑

x

p(x)

[

q(0|x) log

(
p(x)q(0|x)

q(0)

)]

+

β
∑

x

p(x)q(0|x)dx

The sum can be split according to whether x ∈ C and
rearranged again:

H [p(x)] +
∑

x∈C p(x) [log (p(x)) + βdx]
−

(∑

x∈C p(x)
)
log

(∑

x∈C p(x)
)

+
(∑

x∈C p(x)
)
log

(
1−∑

x/∈C e−βdx

)
.

(9)

Let Ck = {xi : 1 ≤ i ≤ k}, Jk the value of the objec-

tive on Ck, pk =
∑k

j=1 p(xj) =
∑

x∈C p(x), and by

ac = 1 −∑m
j=k+1 e

−βdxj = 1 −∑

x/∈C e−βdx . These
quantities can be computed recursively as follows. Let
Jm = β

∑

x p(x)dx, pm = 1 and am = 1. Given Jk,
pk and ak, we can compute the following in unit time:
ak−1 = ak − e−βdx

k and pk−1 = pk − p(xk). Finally,
by examining (9) we get,

Jk−1 = Jk − p(xk−1)[βdxk−1
+ log p(xk−1)]

+[pk log(pk)− pk log(ak)]

−[pk−1 log(pk−1)− pk−1 log(ak−1)](10)
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Figure 2. Illustration of the seri-
ous of phase transitions of q(0|x)
as the temperature 1/β is modi-
fied.

Fig. 1 gives an
outline of the al-
gorithm.

The following
properties of
the solution
are worth not-
ing. When the
temperature
t = 1/β is high,
all the instances
belong to the
single cluster
with probability 1. As the temperature drops, in-
stances are pulled out of the class, one after the other,
as q(0|x) becomes strictly less than 1. Finally, at a
critical temperature t0, all the instances are pulled
out of the class, that is, q(0|x) = 0 for all x. We show
this process in Fig. 2. There are five points, indexed 1
through 5. The distortion of each point is proportional
to its index. The y axis is temperature t = 1/β. For
high values of t, all the instances belong to the class
with probability 1. At t ≈ 3.1 the model goes through
its first phase transition, as the instance with the
highest distortion is pulled out of the class, and its
probability of belonging there drops exponentially.
There are three more similar phase transition for
instances 4, 3 and 2 respectively. Then, at t ≈ 1.5 the
model goes through a discontinuous phase transition
and q(0|x) falls to zero for all instances.

In summary, the algorithm iterates between two steps:
compute w given q(0|x) and q(0) using (6) (expecta-
tion), and use the algorithm in Fig. 1 to find q(0|x)
and q(0) from dx = D (vx‖w) (maximization). In this
aspect the algorithm is similar to EM, and thus we
might suspect that it has a maximum-likelihood ana-
log (Slonim & Weiss, 2002).

4. Multiclass Clustering

It seems natural to generalize from one class to mul-
tiple classes by replacing the one class centroid with
k > 1 centroids. There are k + 1 outcomes for each
instance: either code it using one of the k centroids, or
code it with itself. We now formalize this extension.

We might at first think that we could just generalize
q(t|x) from the previous model to range over a set of
k +m values — m points and k centroids — where for
given x the value of q(t|x) is non-zero for at most k+1
values of t, the k clusters and self-coding. However,
this direct approach leads to a derivation that can not
be decomposed nicely as in the one class case, because
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1−q(x|x) is not informative about individual clusters,
just about their sum.

Instead, we break the coding scheme into two stages.
First, given an instance x, we determine whether
to code it using one of the centroids or by itself
t = x. Then, for non-self-coded instances, we de-
cide their cluster. Formally, given x we decide if we
want to code it by itself (with probability q(x|x)) or
by some centroid (with probability q(0|x)). Next, if
we decide to code the instance with one of the cen-
troids, we denote the centroid’s identity by S, and
denote the probability of encoding using centroid S

given the point identity x and the decision to code
it 0 by r(s|0, x) = Pr [S = s|0, x] We also define the
marginals, q(s, 0) =

∑

x p(x)q(0|x)r(s|0, x) .

As in (2), we write a rate-distortion objective. The
rate equals to the mutual information between possi-
ble codings and input variables. The distortion-rate
optimization is

min
{q(·|x)},r(s|0,x),{ws}

β
∑

x,s

p(x)q(0|x)r(s|0, x)D (vx‖ws)

+
∑

x

p(x)
∑

s

q(0|x)r(s|0, x) log

(
q(0|x)r(s|0, x)

q(s, 0)

)

+
∑

x

p(x)q(x|x) log

(
q(x|x)

q(x)

)

, (11)

subject to normalization q(0|x) + q(x|x) = 1 and
∑

s r(s|0, x) = 1. The marginals are defined naturally,
q(x) = p(x)q(x|x) and q(0) =

∑

x p(x)q(0|x). Before
solving the optimization problem we further assume
that every point x is associated with exactly one cen-
troid (if any), that is r(s|0, x) = 1 or r(s|0, x) = 0.
From normalization there is only a single cluster s for
which r(s|0, x) = 1, denoted by s(x). We also denote
by E(s) = {x : s(x) = s}. We do so for two reasons,
first, without doing so we could not separate q(0|x)
and q(s, 0) from each other (for different values of s)
and could not get a solution similar to (5). Second,
we show below that we can solve this problem by al-
ternating between two algorithms, one of them is the
sequential-IB (sIB) (Slonim, 2003) designed for hard
clustering. We call this algorithm MCRD (multiclass
rate-distortion-based algorithm).

We now solve the optimization analogously to the
derivation starting at (3). After writing the La-
grangian we use its derivations to compute self con-
sistent equations. (details omitted for lack of space).
First, we have

q(0|x) = min

{
q(s(x), 0)

p(x)
e−ds(x),x , 1

}

, (12)

which is the equivalent of (5). Note that the values of
q(0|x) are tied for x ∈ E(s). Thus, there are k sets
of equations, each set tying all points in E(s) and the
exact value of q(0|x) for x ∈ E(s) and q(s, 0) can be
solved separately using the algorithm of Fig. 1.

Next, we can compute the derivative of the Lagrangian
with respect to the other variables and obtain self con-
sistent equations

ws=

∑

xp(x)q(0|x)r(s|0, x)vx
∑

x p(x)q(0|x)r(s|0, x)
=

∑

x∈E(s)p(x)q(0|x)vx
∑

x∈E(s) p(x)q(0|x)
,

and r(s|0, x) ∝ q(s, 0)e−βD(vx‖ws). The last equation
can not be used to solve the problem since we assume
that r(s|0, x) is an integer. In practice, we use the
following lemma which relates the optimization prob-
lem of (11) and the optimization problem of the IB
method (Tishby et al., 1999).

Lemma 2 The following two optimization problems
are equivalent up to a linear transformation:

1. The optimization problem of (11) over ws and
r(s|0, x), where we fix q(0|x) and q(s, 0), and
r(s|0, x) ∈ {0, 1}.

2. The rate-distortion formulation of the IB
method (Slonim, 2003), where the assignment
probabilities are either 0 or 1, and a reweighted
prior proportional to p(x)q(0|x).

(Proof omitted due to lack of space.) Using the lemma
and the discussion preceding it, we have an algorithm
for MCRD that alternates between two steps: (1) Use
the sIB algorithm to set the values of ws and r(s|0, x),
given q(0|x) and q(s, 0), with prior proportional to
p(x)q(0|x). (2) Use k calls to the algorithm on Fig. 1
to find q(0|x) and q(s, 0) from ds(x),x = D (vx‖ws).

5. Experiments

We compare our algorithm (OCRD-BA) with two pre-
viously proposed methods: the IB-related one-class
algorithm of Crammer and Chechik (2004) (OC-IB),
and a well-known convex optimization method (Tax
& Duin, 1999; Schölkopf et al., 2001; Crammer &
Singer, 2003) (OC-Convex). We obtained Crammer
and Chechik’s data and followed their evaluation pro-
tocol to achieve comparable results. For lack of space,
we just discuss document retrieval experiments, al-
though we obtained qualitatively comparable results
on gene expression data as well.
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Figure 3. Precision-Recall plots for four (out of five) categories of Reuters-21678 dataset using OC-IB, OC-Convex, and
OCRD-BA (this paper).

5.1. Document Retrieval

This is a document retrieval task that was previ-
ously described in detail (Crammer & Chechik, 2004,
Sec. 6.2). The task uses a subset of the five most
frequent categories of Reuters-21578. For each cate-
gory, half of its documents were used for training, and
the remaining half, together with the remaining docu-
ments from other categories, were used for evaluation.
During training, each of the algorithms searched for a
meaningful subset of the training data and generated
a centroid. The centroid was used then to label the
test data, and to compute recall and precision.

All algorithms used the KL divergence to compare em-
pirical word distributions for different documents. For
OC-IB and OC-Convex, we used the parameter values
in the previous study (Crammer & Chechik, 2004).
For our algorithm, OCRD-BA, we set the prior p(x)
to be uniform over the training set, and used a range of
values of β that yielded a range of class sizes. We used
a single random document to initialize the centroid
maintained by OCRD-BA, as was done for OC-IB. We
trained five models for each value of β, each using a
different random example for initialization, and picked
the one which attained the best value of the objective.

After picking a model, we fixed the induced centroid
w and computed the distortion D (vx‖w) for all the
test examples vx. We then ran the first half of our
algorithm ( Fig. 1) to compute the cluster assignments
q(0|x). Finally, a test point vx was assigned to the
class if q(0|x) = 1. We used the actual Reuters labels
to plot precision and recall values for different β values.

The results are summarized in Fig. 3, where there is
one plot per category (except the earn category where
all algorithms perform the same). As in the previous
study (Crammer & Chechik, 2004), we observe that
OC-IB achieves better precision than OC-Convex on
low recall values. The previous study argues that OC-
Convex converges to the center-of-mass of the data for

low values of recall while OC-IB exploits local struc-
ture and thus performs better. As recall increases,
OC-Convex improves and OC-IB degrades, until OC-
Convex performs better than OC-IB for high values of
recall.

Our method, OCRD-BA, strikes a balance between the
two previous methods: at low values of recall, OCRD-
BA is comparable in performance to OC-IB and at
higher values of recall OCRD-BA is comparable to
OC-Convex. Furthermore, in the crude category, our
method outperformed both algorithms. This suggests
that OCRD-BA is similar to OC-IB for small classes
and to OC-Convex for large classes. We discuss this
issue later.

5.2. Clustering

We evaluated the MCRD algorithm using a synthetic
dataset and a real dataset. The synthetic dataset
(Synth4G) has 900 points in the plane. Of those,
400 were generated from 4 Gaussian distributions with
σ = 0.1, 100 points from each Gaussian. The remain-
ing 500 point were generated from a uniform distribu-
tion. We ran the algorithm allowing up to five clusters
with various values of β. The output of the algorithm
for four values of β is plotted in Fig. 4. The title of
each plots summarize the value of β used, number of
points associated with a cluster, and (in parenthesis)
the size of each cluster. For low values of β the algo-
rithm prefers to reduce the rate (over distortion) and
effectively group all points into a single cluster. As
β increases the algorithm uses more clusters until all
5 possible clusters are used (left panel). As β is in-
creased the algorithm prefers to remove points from
the clusters, but still use 5 centroids (second panel),
until at some point the algorithm only four clusters are
used (third panel). Then, for higher values of β five
clusters are used again (right panel). This may be due
to the fact, that for large β, the actual length scale is
small, and thus, practically, there are more than five
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Figure 4. Clusterings produced by MCRD with (k = 5) on the synthetic data set for four values of β. Self-coded points
are marked by black dots, coded points by colored dots and cluster centroids by bold circles.

clusters (more than five small, dense regions).

We also evaluated on Multi5 1, a real-world high di-
mensional multiclass dataset which has been used
by Slonim et al. (2002) to evaluate the sIB clustering
algorithm. The dataset has 500 documents from 5 cat-
egories, each represented as a distribution over 2, 000
words. We compare the MCRD algorithm (β = 1.6)
with sIB, which by default, uses all the points in
clustering thereby achieving 100% recall. We follow
Slonim et al., (2002, Sec. 7.4) to get precision at
various recall values for sIB, and for other experimen-
tal details. The precision at various recall values is
summarized in Fig. 5. We observe that MCRD con-
sistently outperforms sIB at all recall levels. Specif-
ically, MCRD achieves very high precision at low re-
call values, which is one of the objectives of current
work. These experimental results further support our
hypothesis that better clustering of the data can be ob-
tained if the algorithm is allowed to selectively leave
out data points which are unlikely to help the cluster-
ing task.

6. Related Work

Crammer and Chechik (2004) proposed to use the in-
formation bottleneck for one-class problems. They
compressed the points using two possible events: a
point can be either belong to the single class or not.
In the former case, the distortion is proportional to
the distance between the point and the centroid. In
the later case, the distortion equals fixed predefined
value R, which intuitively sets the diameter of the
class. This formulation suffers from some drawbacks.
First, it uses two interacting parameters, the R pa-
rameter just discussed, and an inverse temperature β

to set the hardness of the solution. In practice, they
set β to yield only hard solutions. Second, their dis-
tortion does not make sense in term of compression,
as the compressor effectively can either approximate a
point (using the single class) or ignore it.
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Figure 5. Precision vs. Recall for sIB and MCRD algo-
rithms (β = 1.6) on the Multi5 1 dataset. Results are
obtained by averaging over 5 random permutations of the
data. For each permutation, 5 restarts were used and the
model with the best objective was selected.

Instead, we use m + 1 values for the compression vari-
able T , but regularization forces the compressor to
generate sparse solutions. In contrast to a fixed non-
zero distortion used for out-of-class points, we use a
zero distortion because the out-of-class points are not
encoded. As a result, our method uses a single inverse
temperature parameter to set the size of the class. A
point can either be in the class alone (hard assignment)
or both in the class and outside (soft assignment).

The centroid is defined as a weighted average of all
of the data. Points which belong to the cluster have
the same weight, while other points are weighted pro-
portionally to the exponent of their distance from the
centroid. This behavior combines properties of two
previous approaches. As in Crammer and Chechik’s
work, the points belonging to the class give an equal
contribution in the location of the centroid. But
like in discriminative one-class methods (Crammer &
Singer, 2003) points outside the class still affect its
centroid. Thus our method uses information from all
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the data, unlike discriminative methods that only see
outliers (Tax & Duin, 1999).

The fact that the centroid in our model is contributed
to by both typical points and outliers may explain the
results of the experiments. The OC-IB method (Cram-
mer & Chechik, 2004) works in a low-recall condition,
that is, with a small class. In this condition, points
outside the cluster will have a negligible effect on the
centroid, yielding the OC-IB solution. For large val-
ues of β, points outside the class have a stronger ef-
fect on the centroid’s location, similarly to discrimi-
native methods (Crammer & Singer, 2003). Further-
more, when using the KL divergence, points that are
not contributing to the centroids at all (removed from
data), would typically have a divergence of infinity to
the centroids. Our methods allows to reduce the effect
of outliers (by giving them exponential small weight),
but still allow them to contribute to the centroids (pos-
itive weight).

Gupta and Ghosh (2006) present an extension of the
Crammer and Chechik algorith that clusters points
while allowing some of them to be ignored. Recently,
Lashkari and Golland (2008) proposed an exemplar-
based algorithm , in which any point can serve as a
centroid (similarly to k-medians). They show that un-
der some choices, some points can be coded by them-
selves. Our method is different in that it allows cen-
troids that do not coincide with any data point (similar
to k-means).

7. Conclusions

Building on the rate-distortion formulation of the in-
formation bottleneck method, we cast the problem of
identifying a small coherent subset of data as an opti-
mization problem that trades off class size (compres-
sion) for accuracy (distortion). We analyzed a rate-
distortion view of the model and demonstrated that
it goes through a sequence of phase transitions that
correspond to different class sizes. We demonstrated
that our method combines the best of two previous
methods, each of which is good in a narrower range
of class sizes. We also showed that our method al-
lows us to move from one-class to standard clustering,
but with background noise left out. The proposed ap-
proach for one-class learning can be extended to the
idea of regularizing by using constraints over a large set
of decisions which can be used for other more complex
associations among random variables, and in particu-
lar for bi-clustering.
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Abstract
Point processes are difficult to analyze because
they provide only a sparse and noisy observa-
tion of the intensity function driving the process.
Gaussian Processes offer an attractive framework
within which to infer underlying intensity func-
tions. The result of this inference is a continu-
ous function defined across time that is typically
more amenable to analytical efforts. However, a
naive implementation will become computation-
ally infeasible in any problem of reasonable size,
both in memory and run time requirements. We
demonstrate problem specific methods for a class
of renewal processes that eliminate the memory
burden and reduce the solve time by orders of
magnitude.

1. Introduction
Point processes with temporally or spatially varying inten-
sity functions arise naturally in many fields of study. When
the intensity function is itself a random process (often a
Gaussian Process), the process is called a doubly-stochastic
or Cox point process. Application domains including eco-
nomics and finance (e.g. Basu & Dassios, 2002), neu-
roscience (e.g. Cunningham et al., 2008), ecology (e.g.
Moller et al., 1998), and others.

Given observed point process data, one can use a Gaussian
Process (GP) framework to infer an optimal estimate of the
underlying intensity. In this paper we consider GP prior
intensity functions coupled with point process observation
models. The problem of intensity estimation then becomes
a modification of GP regression and inherits the computa-

Appearing in Proceedings of the 25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

tional complexity inherent in GP methods (e.g. Rasmussen
& Williams, 2006). The data size n will grow with the
length (e.g. total time) of the point process. Naive methods
will be O(n2) in memory requirements (storing Hessian
matrices) andO(n3) in run time (matrix inversions and de-
terminants). At one thousand data points (such as one sec-
ond of millisecond-resolution data), a naive solution to this
problem is already quite burdensome on a common work-
station. At ten thousand or more, this problem is for all
practical purposes intractable.

While applications of doubly-stochastic point processes are
numerous, there is little work proposing solutions to the
serious computational issues inherent in these methods.
Thus, the development of efficient methods for intensity es-
timation would be of broad appeal. In this paper, we do not
address the appropriateness of doubly-stochastic point pro-
cess models for particular applications, but rather we focus
on the significant steps required to make such modelling
computationally tractable. We build on previous work from
both GP regression and large-scale optimization to create
a considerably faster and less memory intensive algorithm
for doubly-stochastic point-process intensity estimation.

As part of the GP intensity estimation problem we optimize
model hyperparameters using a Laplace approximation to
the marginal likelihood or evidence. This requires an iter-
ative approach which divides into two major parts. First,
at each iteration we must find a modal (MAP) estimate of
the intensity function. Second, we must calculate the ap-
proximate model evidence and its gradients with respect to
GP hyperparameters. Both aspects of this problem present
computational and memory problems. We develop meth-
ods to reduce the costs of both drastically.

We show that for certain classes of renewal process ob-
servation models, MAP estimation may be framed as a
tractable convex program. To ensure nonnegativity in the
intensity function we use a log barrier Newton method

192



Fast Gaussian Process Methods for Point Process Intensity Estimation

(Boyd & Vandenberghe, 2004), which we solve efficiently
by deriving decompositions of matrices with known struc-
ture. By exploiting a recursion embedded in the algorithm,
we avoid many costly matrix inversions. We combine these
advances with large scale optimization techniques, such as
conjugate gradients (CG, as used by Gibbs & MacKay,
1997) and fast fourier transform (FFT) matrix multiplica-
tion methods.

To evaluate the model evidence, as well as its gradients
with respect to hyperparameters, we again exploit the struc-
ture imposed by the renewal process framework to find an
exact but considerably less burdensome representation. We
then show that a further approximation loses little in accu-
racy, but makes the cost of this computation insignificant.

Combining these advances, we are able to reduce a prob-
lem that is effectively computationally infeasible to a prob-
lem with minimal memory load and very fast solution time.
O(n2) memory requirements are eliminated, and O(n3)
computation is reduced to modestly superlinear.

2. Problem Overview
Define x ∈ IR

n to be the intensity function (the high dimen-
sional signal of interest); x is indexed by input1 time points
t ∈ IR

n. Let the observed data y = {y0, . . ., yN} ∈ IR
N+1

be a set of N + 1 time indices into the vector x; that is, the
ith point event occurs at time yi, and the intensity at that
time is xyi

. Denote all hyperparameters by θ. In general,
the prior and observation models are both functions of θ.
The GP framework implies a normal prior on the intensity
p(x | θ) = N (µ1,Σ), where the nonzero mean is a sen-
sible choice because the intensity function is constrained
to be nonnegative. Thus we treat µ as a hyperparameter
(µ ∈ θ). The positive definite covariance matrix Σ (also a
function of θ) is defined by an appropriate kernel such as
a squared exponential or Ornstein-Uhlenbeck kernel (see
Rasmussen & Williams, 2006, for a discussion of GP ker-
nels). The point-process observation model gives the like-
lihood p(y | x, θ). In this work, we consider renewal pro-
cesses (i.e. one-dimensional point processes with indepen-
dent event interarrival times), a family of point processes
that has both been well-studied theoretically and applied in
many domains (Daley & Vere-Jones, 2002).

The GP prior is log concave in x, and the nonnegativity
constraint on intensity (x � 0) is convex (constraining x
to be nonnegative is equivalent to solving an unconstrained
problem where the prior on the vector x is a truncated mul-
tivariate normal distribution, but this is not the same as

1In this work we restrict ourselves to a single input dimen-
sion (which we call time), as it aligns with the family of renewal
processes in one-dimension. Some ideas here can be extended to
multiple dimensions (e.g. if using a spatial Poisson process).

truncating the GP prior in the continuous, infinite dimen-
sional function space; see Horrace, 2005). Thus, if the ob-
servation model is also log concave in x, the MAP estimate
x∗ is unique and can be readily found using a log barrier
Newton method (Boyd & Vandenberghe, 2004; Paninski,
2004). Renewal processes are simply defined by their in-
terarrival distribution fz(z). A common construction for
a renewal process with an inhomogeneous underlying in-
tensity is to use the intensity rescaling m(ti | ti−1) =
∫ ti

ti−1

x(u)du (in practice, a discretized sum of x) (Barbieri
et al., 2001; Daley & Vere-Jones, 2002). Accordingly, the
density for an observation of event times y can be defined

p(y) =

N
∏

i=1

p(yi | yi−1)

=
N
∏

i=1

|m′(yi | yi−1)| fz(m(yi | yi−1)) (1)

by a change of variables for the interarrival distribution
(Papoulis & Pillai, 2002). Since m(t) is a linear trans-
formation of the intensity function (our variables of inter-
est), the observation model obeys log concavity as long as
the distribution primitive fz(z) is log concave. Examples
of suitable renewal processes include the inhomogeneous
Poisson, gamma interval, Weibull interval, inverse Gaus-
sian (Wald) interval, Rayleigh interval, and other processes
(Papoulis & Pillai, 2002). For this paper, we choose one
of these distributions and focus on its details. However, for
processes of the form above, the implementation details are
identical up to the forms of the actual distributions.

To solve the GP intensity estimation, we first find a MAP
estimate x∗ given fixed hyperparameters θ, and then we ap-
proximate the model evidence p(y | θ) (for which we need
x∗) and its gradients in θ. Iterating these two steps, we can
find the optimal model θ̂ (we do not integrate over hyper-
parameters). Finally, MAP estimation under these optimal
hyperparameters θ̂ gives an optimal estimate of the under-
lying intensity. This iterative solution for θ̂ can be written:

θ̂ = argmax
θ

p(θ)p(y | θ) (2)

≈ argmax
θ

p(θ)p(y | x∗, θ)p(x∗ | θ)
(2π)

n

2

|Λ∗ + Σ−1|
1

2

,

where the last term is a Laplace approximation to the in-
tractable form of p(y | θ), x∗ is the mode of p(y | x)p(x)
(MAP estimate), and Λ∗ = −∇2

x
log p(y | x, θ) |x=x∗ .

The log concavity of our problem in x supports the choice
of a Laplace approximation. Each of the two major steps
in this algorithm (MAP estimation and model selection) in-
volves computational and memory challenges. We address
these challenges in Sections 4 and 5.
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The computational problems inherent in GP methods have
been well studied, and much progress has been made
in sparsification (e.g. Quinonero-Candela & Rasmussen,
2005). Unfortunately, these methods do not apply directly
to point process estimation, as there are no distinct training
and test sets. The reader might wonder if a coarser grid
would be adequate, thereby obviating the detailed meth-
ods developed here. We have found in experiments (not
shown) that the sacrifice in accuracy required to allow rea-
sonable computational tractability is large, and thus we do
not consider the coarse grid a viable option. One could also
consider re-expressing the problem in terms of the integrals
m(yi | yi−1) appearing in Eq. 1. While this is possible in
certain cases, it requires additional approximation. Finally,
we note that the Laplace approximation is often inferior to
Expectation Propagation (EP) (Kuss & Rasmussen, 2005)
for GP methods. While many of the same techniques used
here could also be used with EP, EP requires additional ap-
proximations and computational overhead. We find in ex-
periments (not shown) that EP yields similar accuracy to
the Laplace approximation in this domain, but EP incurs
increased complexity and computational load.

3. Model Construction
To demonstrate our fast method, we choose the specific ob-
servation model of an inhomogeneous gamma interval pro-
cess (Barbieri et al., 2001) (with hyperparameter γ ∈ θ,
γ ≥ 1). If time has been discretized with precision ∆, this
can be written

p(y | x, θ) =

N
∏

i=1

[

γxyi

Γ(γ)

(

γ

yi−1
∑

k=yi−1

xk∆

)γ−1

· exp

{

−γ

yi−1
∑

k=yi−1

xk∆

}]

, (3)

(where we have ignored terms that scale with ∆). Let
f(x) = − log p(y | x, θ)p(x | θ). Our MAP estima-
tion problem is to minimize f(x) subject to the constraint
x � 0 (nonnegativity). In the log barrier method, we con-
sider the above problem as a sequence of convex problems
where we seek to minimize, at increasing values of τ , the
(unconstrained) objective function

fτ (x) = f(x)−
n
∑

k=1

(1

τ

)

log (xk) (4)

which has Hessian (positive definite by our log concave
construction):

H = ∇2
x
fτ (x) = Σ−1 + Λ, where Λ = B + D, (5)

with D = diag(x−2
y0

, . . ., 0, . . ., x−2
yi

, . . ., 0. . ., x−2
yN

) +

( 1
τ
)diag(x−2

1 , . . ., x−2
n ) being positive definite and diago-

nal. B is block diagonal with N blocks B̂i:

B̂i = bib
T
i where bi =

√

(γ − 1)

( yi−1
∑

k=yi−1

xk

)

−1

1. (6)

B is thus block rank 1 (with the positive eigenvalue in each
block corresponding to the eigenvector bi). This matrix is
key, as we exploit its structure to achieve improvements in
computational performance.

4. MAP Estimation Problem
As outlined in Section 2, we first find the MAP estimate x∗

for any model defined by hyperparameters θ. The log bar-
rier method has the intensive requirements of calculating
the objective Eq. 4, its gradient g (in x), and the Newton
step xnt = −H−1g. Each of these calculations is O(n3)
in run time and O(n2) in memory. We show an approach
that alleviates these burdens.

4.1. Finding the Newton Step xnt

First we consider the Hessian, H = Σ−1 + Λ, which itself
contains the costly inverse Σ−1. We would like to avoid
this inversion of Σ entirely with the matrix inversion lemma
(Sherman-Woodbury-Morrison formula):

−H−1 = −(Σ−1 + Λ)−1

= −Σ + ΣR(I + RT ΣR)−1RT Σ (7)

where R is any valid factorization such that RRT = Λ.
This decomposition preserves symmetry in the remaining
matrix inverse (required for CG) and has advantageous nu-
merical properties. With this form, instead of calculating
xnt = −H−1g directly, we need only multiply the right-
most expression in Eq. 7 with the gradient g. Doing so
requires the inversion (I +RT ΣR)−1v where v = RT Σg.
CG allows us to avoid directly calculating matrix inverses
and instead achieve the desired inversion by iteratively
multiplying (I + RT ΣR)z for different vectors z (Gibbs
& MacKay, 1997).

It is common to precondition the CG method to reduce
the number of iterations required for convergence. How-
ever, our experience with preconditioning (using both clas-
sic preconditioners and some of our own design) was that
it actually degraded run-time performance. Precondition-
ers typically aim to improve the condition number of the
Hessian, which indeed they do in this problem. However,
the rapidity of CG convergence here is facilitated more by
spectral concentration – many eigenvalues being equal or
close to 1 – than by overall conditioning. Thus, we found it
more effective to use CG inversion directly on (I+RT ΣR).
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In general, however, finding the decomposition Λ = RRT

is an O(n3) operation, which would remove any computa-
tional benefit from this approach. For log concave renewal
processes, we can derive a valid decomposition in closed
form and linear computation time. Since Λ is block diago-
nal, we consider only one block without loss of generality.
Calling this block Λ̂, we know Λ̂ = bbT + D̂, where D̂ is a
diagonal block of the larger diagonal matrix D, and b is de-
fined in Eq. 6. D̂ is positive definite, so T = D̂−

1

2 satisfies
TD̂T = I (a similarity transform). Then, calling b̃ = Tb,
we have T Λ̂T = b̃b̃T + I . With this form, we see that the
general structure of T Λ̂T is preserved under the desired
matrix decomposition, up to scaling of the components:

(αb̃b̃T + I)(αb̃b̃T + I)T = (α2‖b̃‖2 + 2α)b̃b̃T + I (8)

and we want to choose α such that (Eq. 8) equals b̃b̃T + I .
Using the quadratic formula to find this α, we see then that

R̃ =

(

√

1 + ‖b̃‖2 − 1

‖b̃‖2

)

b̃b̃T + I (9)

satisfies T Λ̂T = R̃R̃T . Since T is diagonal, it easily in-
verts to T−1 = D̂

1

2 . Then:

Λ̂ = T−1R̃R̃T T−1 = (T−1R̃)(T−1R̃)T = R̂R̂T . (10)

To be explicit, we have found that

R̂ =

(

√

1 + ‖D̂−
1

2 b‖2 − 1

‖D̂−
1

2 b‖2

)

bbT D̂−
1

2 + D̂
1

2 (11)

is a valid decomposition R̂R̂T = Λ̂. This decomposition
can be seen as a partial rank-one (blockwise) update to a
Cholesky factorization (Gill et al., 1974), in that D̂ can triv-
ially be factorized to D̂

1

2 . The final form is not, however, a
Cholesky factorization, since R̂ is not triangular (making a
triangular factor would require additional computation and
the explicit representation of the Cholesky matrix).

Since all of the products needed to construct R̂ can be
formed in O(m) time (where m is the size of the block),
and since the larger matrix R can be formed by tiling the
blocks R̂, we have a total complexity for this decomposi-
tion of O(n). We can then use CG to find the solution to
(I + RT ΣR)−1(RT Σg). With this inversion calculated,
we can perform the remaining forward multiplications in
Eq. 7; this completes calculation of a Newton step.

In fact, we need not form the matrix R in memory. Instead,
we retain each of its component elements (in Eq. 11), and
reduce multiplication of a vector by R to a sequence of in-
ner products and multiplications by diagonal matrices, all

of which can be stored and calculated in O(n) time. Thus,
we eliminate the need for O(n2) storage, and we perform
the relevant matrix multiplications in O(n) time. Since R
can be multiplied in linear time, the complexity of mul-
tiplying vectors by (I + RT ΣR) depends on multiplying
vectors by the covariance matrix Σ.

Since we have evenly spaced resolution of our data x in
time indices ti, Σ is Toeplitz. This matrix can be embed-
ded in a larger circulant matrix, multiplication by which
is simply a convolution operation of the argument vector
with a row of this circulant matrix. Thus, the operation
can be quickly done in O(nlog n) using frequency domain
multiplications(Silverman, 1982). Further, we need never
represent the matrix Σ; we only store the first row of the
circulant matrix. Again we have eliminated O(n2) mem-
ory needs. Other methods for fast kernel matrix multiplica-
tions include Fast Gauss Transforms (FGT) (Raykar et al.,
2005) and kd-Trees (Shen et al., 2006; Gray & Moore,
2003). We note that the single input dimension (time) en-
ables this Toeplitz structure, and thus an extension to mul-
tiple dimensions should use FGT or similar. The regular
structure of the data points in any dimension make Σ mul-
tiplications very fast with such a method. Further, these
methods avoid explicit representation of Σ. Here, the sim-
ple FFT approach for this one-dimensional problem signif-
icantly outperforms other (more general) methods in both
speed and accuracy.

Finally, we note that the matrix (I +RT ΣR) is particularly
well suited to CG. Although RT ΣR is full rank by defini-
tion, in practice its spectrum has very few large eigenvalues
(typically fewer than N , the number of events). Loosely,
the matrix looks like identity plus low rank. In practice, the
CG method converges with high accuracy almost always in
fewer than 50 steps (very often under 30). This is drasti-
cally fewer than the worst case of n steps (n of 103 to 104).

Instead of decomposing Λ = RRT , one might have con-
sidered using the matrix inversion lemma to write (Σ−1 +
Λ)−1 = Σ − ΣΛ(Λ + ΛΣΛ)−1ΛΣ. Indeed this valid
form enables all of the CG and fast multiplication methods
previously discussed. While it may seem that this form’s
ease of derivation (compared to the matrix decomposition
in Eq. 11) warrants its use in general, the matrix to be in-
verted is poorly conditioned compared to (I +RT ΣR), and
thus the inversion requires more CG steps. We have found
in testing that the number of CG steps can roughly dou-
ble. Thus, the decomposition of Eq. 11 is computationally
worthwhile.

In this section, we have constructed a fast method for cal-
culating the Newton step that costs O(nlog n) per CG step
and incurs a very small number of CG steps. Also, we
have avoided explicit representation of any matrix, so that
memory requirements are only linear in the data size n, al-
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lowing problem sizes of potentially millions of time steps.
These two factors stand in contrast to the cubic run time
and quadratic storage needs of a naive method.

4.2. Evaluating the Gradient and Objective
Calculating the objective fτ (x) (Eq. 4) and its gradient
(both required for the log barrier method) require finding
Σ−1(x − µ1). Note that the kth iterate x(k) (of the log
barrier method) has the form

(x(k) − µ1) = x(k−1) + t(k−1)x
(k−1)
nt − µ1

=

k−1
∑

j=1

t(j)x
(j)
nt + (x(0) − µ1) (12)

where t(j) and x
(j)
nt represent the jth iterates of the Newton

step size t and the step xnt, and x(0) is the algorithm initial
point. The most logical starting point x(0) is µ1, in which
case the rightmost term in Eq. 12 drops out. Thus, letting
x(0) = µ1 and using the form of xnt = −H−1g with
−H−1 defined as in Eq. 7, we write:

Σ−1(x(k) − µ1) =

k−1
∑

j=1

t(j)
(

−g(j)+R(j)(I+R(j)T ΣR(j))−1R(j)T Σg(j)
)

.

(13)

In the earlier calculation of xnt (Section 4.1), both of the
right hand side arguments in Eq. 13 have already been
found. As such, we have a recurrence that obviates the
invertion of Σ, with no additional memory demands (Ras-
mussen & Williams, 2006).

The above steps reduce a naive MAP estimation (of any
log concave renewal process) that requires cubic effort and
quadratic storage to an algorithm that is modestly superlin-
ear in run time and linear in memory requirements.

5. Model Selection Problem
Having now found x∗ for any hyperparameters θ, the sec-
ond major part of the problem is to find the negative log-
arithm of our approximation to the evidence p(y | θ) in
Eq. 2, and its gradients with respect to θ. The approximated
log evidence can be written as:

− log p(y | θ) ≈ −log p(y | x∗)

+
1

2
(x∗ − µ1)T Σ−1(x∗ − µ1) +

1

2
log |I + ΣΛ∗|

(14)

(ignoring constants). Each of these terms has an explicit
and an implicit gradient with respect to θ, where the lat-
ter result from the dependence of the MAP estimate x∗

on the hyperparameters (such implicit gradients are typi-
cal for the use of Laplace approximation in GP learning;
see Rasmussen & Williams, 2006, section 5.5.1). The im-
plicit gradients in this problem are extremely computation-
ally burdensome to calculate (requiring the trace of matrix
inversions and matrix-matrix products for each element of
x). In empirical tests, we find implicit gradients to be quite
small relative to the explicit gradients (often by several or-
ders of magnitude). Ignoring these gradients is undesirable
but essential to make this problem computationally feasi-
ble. Thus we consider only explicit gradients. This is a
common approach for GP methods; see Rasmussen and
Williams (2006).

Efficient computation of the first two terms of Eq. 14, as
well as their gradients with respect to θ, can be achieved
by the fast multiplication method and the recursion derived
in Sec. 4. Specifically, the values of the first and second
terms of Eq. 14 are calculated during the MAP estimation,
so no additional memory or computation is necessary for
them. The gradient of the first term is nonzero only with
respect to γ and is linear in x (no matrix multiplications
are required). Thus it can be quickly calculated with no
additional memory demands. Computation of the gradient
of the second term (the prior) can exploit the fact that we
calculated Σ−1(x∗ − µ1) in the final step of the MAP es-
timation. The gradient of this term with respect to µ is a
simple inner product 1T (Σ−1(x∗ − µ1)) (since we have
already calculated the right side of this inner product, this
computation isO(n) in run time and requires no additional
memory). The gradient of this term with respect to a kernel
hyperparameter θi (e.g. a lengthscale or variance) is:

d

dθi

[1

2
(x∗ − µ1)T Σ−1(x∗ − µ1)

]

=

1

2

(

Σ−1(x∗ − µ1)
)T
( dΣ

dθi

)

(

Σ−1(x∗ − µ1)
)

. (15)

Since we have Σ−1(x∗ − µ1), this gradient only requires
one matrix-vector multiplication. dΣ

dθi

has the same Toeplitz
structure as Σ and can thus be quickly multiplied. Thus,
calculating the first two terms of Eq. 14 and their gradients
adds no complexity to the method developed so far.

Only the term 1
2 log |I + ΣΛ∗| presents difficulty. De-

terminants in general require O(n2) memory and O(n3)
solve time using a Cholesky or PLU factorization, so we
must consider the problem more carefully. We examine the
eigenstructure of (I + ΣΛ∗). Since we are not trying to
find a MAP estimate, there is no log barrier term (i.e. let
τ → ∞); thus D (from Eq. 5) is rank N only. This means
that Λ∗ = B + D (Eq. 6) is block outer product plus sub
rank diagonal, so it is also rank deficient with block rank 2.
Thus, it has 2N nonzero eigenvalues (two corresponding to
each of the N events, one in each block from B and one in
each block from D). Using the eigenvalue decomposition
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Λ∗ = USUT , we see

log |I + ΣΛ∗| = log |I + ΣUSUT |

= log |UT ||I + ΣUSUT ||U |

= log |I + UT ΣUS|, (16)

since the orthogonal matrix U has determinant 1 and
UT U = I by definition. Since Λ∗ has rank 2N , we know
that S is diagonal with zeros on the last n−2N entries. By
construction, the number of events N is much smaller than
the total data size n. Since the determinant of a matrix is
the product of its eigenvalues, the unit eigenvalue dimen-
sions of I + UT ΣUS can be ignored. We define S as the
2N × 2N submatrix of S that is made up of the diagonal
block with nonzero diagonal entries. Further define U as
the corresponding 2N eigenvectors. Then, since the other
dimensions of UT ΣUS contribute nothing to the determi-
nant, we have

log |I + ΣΛ∗| = log |I + UT ΣUS|

= log |I + U
T
ΣU S|

= log |I + Σ S|, (17)

where I is now the 2N × 2N identity, and we have fur-
ther defined Σ = U

T
ΣU . Computationally, Σ is formed

by multiplying Σ with the columns of U . Since Λ∗ is block
rank 2, both matrices S and U can be found in closed form
(N rank 2 eigendecompositions, one decomposition per
block). This calculation of Eq. 17 requires 2N matrix mul-
tiplications which each have a run time cost of O(nlog n).

We can make a small approximation that simplifies this
problem even further. Typically, N of these 2N eigenval-
ues are substantially larger than the other N . Each block
of Λ∗ contributes two nonzero eigenvalues. The larger is
due to the diagonal entry x−2

yi
(from the matrix D) and is

nearly axis aligned. The smaller eigenvalue is due to the
outer product vector from block B̂i. Examination of the
denominators in the definition of B̂i and D in Eqs. 5 and
6 explains the difference in magnitude, since x2

yi
is much

smaller than the square of sums denominator in B̂i. We ap-
proximate the eigenvector as the yi axis and approximate
its eigenvalue as the corresponding value in Λ∗. Then S is
size N ×N . This savings is small, but importantly we can
form Σ = U

T
ΣU simply by picking out the N rows and

columns of Σ corresponding to the event times yi.

In this formulation, we are left with matrices of size N×N
only, so we have some modest number of O(N 3) opera-
tions; this approach is considerably faster and scales better
than the exact method above. We have also reduced O(n2)
storage to O(N2). The following section elucidates the
quality of this approximation.

To calculate the gradients with respect to this log determi-
nant term, we also use the approximation of Eq.17. We call

our approximate gradient of this term the gradient of the ap-
proximation in Eq. 17. This approximation can readily be
differentiated with respect to the hyperparameters (again,
typical for GP; see Rasmussen & Williams, 2006). Since
these approximations are matrices in the event space N (not
time space n), these gradients are quickly calculated with a
handful of O(N3) operations and with storage of O(N 2).

6. Results and Discussion
The methods developed here maintain computational accu-
racy while achieving massive speed-up and the elimination
of memory burden. First, we have shown a fast method
that achieves an accurate approximation of the MAP esti-
mate x∗ in much less time than a naive method. We have
made all matrix multiplications implicit, thereby eliminat-
ing the memory burden of representing full matrices. We
call this piece the “MAP Estimation.” Second, we found
the approximate model evidence, as well as its gradients,
so as to perform model selection on the hyperparameters
θ. These calculations, which involved the calculation of a
log determinant and its gradients (Eq. 17), were achieved
with matrices of significantly reduced dimension, again re-
moving the storage demands of teh naive method. We call
this piece the “log determinant approximation.” These two
pieces must be iterated (as described before Eq. 2) to find
both the optimal model θ̂ and the optimal intensity x∗. We
call this iterative method (combining the two pieces above)
the “full GP intensity estimation.” We show here that each
piece is fast and accurate, and finally that they combine to
make an overall method that is considerably faster than a
standard implementation, with minimal sacrifice to accu-
racy.

To demonstrate results, we pick six representative intensity
functions, consisting of sinusoids of various amplitudes
(5-100 events/second), means (15-150 events/second), fre-
quencies (1-2 Hz), and lengths (0.5-10 seconds of millisec-
ond resolution data, implying data sizes n of 500 to 10000).
This set is by no means exhaustive, but it does indicate
how this method outperforms a naive implementation in a
range of scenarios. Our testing over many different inten-
sity functions (including those in Cunningham et al., 2008)
agrees with the results shown here. We simulate point pro-
cess data y from these intensities, and we implement both
the naive and the fast method on these process realizations.

All results are given for 2006era Linux (FC4) 64 bit work-
stations with 2-4GB of RAM running MATLAB (R14sp3,
BLAS ATLAS 3.2.1 on AMD processors). The naive
method was implemented in MATLAB. The fast method
was similarly implemented in MATLAB with some use of
the C-MEX interface for linear operations such as multi-
plication of a vector by the (implicitly represented) matrix
R.
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Table 1. Performance for fast and naive methods. Results averaged over 10 independent trials.

Data Set
1 2 3 4 5 6

Data Size(n) 500 1000 1000 2000 4000 10000
Num. Events (N )1 20-30 30-40 140-160 55-70 55-70 140-160

MAP Estimation
Fast Solve Time(s) 0.12 0.17 0.46 0.32 7.6 37.9
Naive Solve Time(s) 7.04 40.5 39.5 333 3704 1day3

Speed Up 58× 232× 86× 1043× 493× 2000×3

MS Error (Fast vs. Naive)2 4.3e-4 4.2e-4 2.1e-4 5.2e-6 6.1e-6 -
Avg. CG Iters. 6.4 5.5 16.2 8.1 29.9 49.7

Log Determinant Approximation
Fast Solve Time(s) 6.5e-4 1.8e-3 1.9e-2 2.8e-3 2.8e-3 2.5e-2
Naive Solve Time(s) 0.24 1.02 0.97 5.7 34.7 5403

Speed Up 375× 566× 52× 2058× 1.3e4× 2.2e4×3

Avg. Acc. of Fast Approx. 99.1% 98.8% 99.8% 98.9% 99.7% -
Avg. Model Selection Iters. 54.3 54.6 89.1 68.1 39.4 40.7

Full GP Intensity Estimation (Iterative Model Selection and MAP Estimation)
Fast Solve Time(s) 4.4 7.1 30.3 18.7 128 423
Naive Solve Time(s) 443 3094 4548 2.4e4 1.5e5 1month3

Speed Up 105× 451× 150× 1512× 1166× 1e4×3

MS Error (Fast vs. Naive)2 0.10 0.03 10.8 0.01 0.01 -
1 Entries show a range of data used.
2 Squared norm of x(t) is roughly 103 to 105, so these errors are insignificant.
3 Unable to complete naive method; numbers estimated from cubic scaling.

First we demonstrate the utility of our fast MAP estimation
method on problems of several different sizes and with dif-
ferent x. We compare the fast MAP estimation to a naive
implementation, demonstrating the average mean squared
(MS) error (between the fast and naive estimates) and the
average solve time. These results are found in the first part
of Table 1. The squared norm of x is roughly 103 to 105,
so the errors shown (the difference between the naive and
fast methods) are vanishingly small. Thus, the fast MAP
estimation gives an extremely accurate approximation of
the naive MAP estimate. For all practical purposes, the fast
MAP estimation method is exact.

The naive method scales in run time as the cube of data size
n, as expected. The fast method and the speed-up factor
do not appear to scale linearly in the data size. Indeed,
run time depends heavily on the number of CG iterations
required to solve the MAP estimation. This number of CG
steps depends on problem size n, number of events N , and
hyperparameters such as the lengthscale of the covariance
matrix. Even so, major gains are achieved.

Second, we demonstrate our model selection accuracy and

speed-up (the log determinant approximation). We run the
full iterative fast method with both MAP estimation and
evidence model selection. At each iterate of θ, we calcu-
late evidence and its gradients using both the fast and naive
methods. In the second section of Table 1, we show av-
erage solution times for calculating the log determinant in
both naive and fast methods, and we compare their accu-
racy. For the sake of brevity, we demonstrate only the cal-
culation of log |I + ΣΛ∗|, not its gradients with respect to
the hyperparameters. Those calculations show very similar
speed-ups and are as well approximated. Thus, the log de-
terminant is calculated to 99-100% accuracy with the naive
method, and we have a highly accurate approximation.

Finally, the full intensity estimation problem requires it-
erative evidence calculations and MAP estimations, so we
must also demonstrate the accuracy of the full fast method
versus the full naive method. The last part of Table 1 shows
this result (Full GP Intensity Estimation). We see that all
data sets converge to quite similar results in both the fast
and the naive methods, and the fast method enjoys signif-
icant speed-up. The MS errors shown compare the result
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of the fast method to the result of the naive method and are
very small compared to the squared norm of x (103 to 105).

We have demonstrated a method for inferring optimal in-
tensity estimates from an observation of renewal process
data, and we have exploited problem structure to make this
method computationally attractive. As an extension, we
also developed this fast GP technique for multiple obser-
vations y(i) of the same underlying x. It uses the same
approach with comparable performance improvements. As
such, we do not report it here.

Since we avoid all explicit representations of n × n matri-
ces, our memory requirements are very minor for a problem
of this size. The major run time improvements in Table 1
require effectively no loss of accuracy from an exact naive
approach, and thus the additional technical complexity of
this approach is well justified. Having fast, scalable meth-
ods for point process intensity estimation problems may
mean the difference between theoretically interesting ap-
proaches and methods that become well used in practice.
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Abstract

This paper focuses on a new clustering task,
called self-taught clustering. Self-taught clus-
tering is an instance of unsupervised transfer
learning, which aims at clustering a small col-
lection of target unlabeled data with the help
of a large amount of auxiliary unlabeled data.
The target and auxiliary data can be differ-
ent in topic distribution. We show that even
when the target data are not sufficient to al-
low effective learning of a high quality feature
representation, it is possible to learn the use-
ful features with the help of the auxiliary data
on which the target data can be clustered ef-
fectively. We propose a co-clustering based
self-taught clustering algorithm to tackle this
problem, by clustering the target and auxil-
iary data simultaneously to allow the feature
representation from the auxiliary data to in-
fluence the target data through a common
set of features. Under the new data represen-
tation, clustering on the target data can be
improved. Our experiments on image clus-
tering show that our algorithm can greatly
outperform several state-of-the-art clustering
methods when utilizing irrelevant unlabeled
auxiliary data.

1. Introduction

Clustering (Jain & Dubes, 1988) aims at partition-
ing objects into groups, so that the objects in the
same groups are relatively similar, while the objects in
different groups are relatively dissimilar. Clustering
has a long history in machine learning (MacQueen,

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

1967), and recent works on clustering research have
focused on improving the clustering performance us-
ing the prior knowledge in semi-supervised clustering
(Wagstaff et al., 2001) and supervised clustering (Fin-
ley & Joachims, 2005).

In the past, semi-supervised clustering incorporates
pairwise supervision, such as must-link or cannot-link
constraints (Wagstaff et al., 2001), to bias clustering
results. Supervised clustering methods learn distance
functions from a small sample of auxiliary labeled data
(Finley & Joachims, 2005). Different from these clus-
tering problems, in this paper, we address a new clus-
tering task where we use a large amount of auxiliary
unlabeled data to enhance the clustering performance
of a small amount of target unlabeled data. In our
problem, we do not have any labeled data or pairwise
supervisory constraint knowledge. All we have are the
auxiliary data which are totally unlabeled and may be
irrelevant to the target data. Our target data consist
of a collection of unlabeled data from which it may
be insufficient to learn a good feature representation.
Thus, applying clustering directly on these target data
may give very poor performance. However, with the
help of auxiliary data, we are able to uncover a good
feature set to enable high quality clustering on the tar-
get data.

Our problem can be considered as an instance of trans-
fer learning, which makes use of knowledge gained from
one learning task to improve the performance of an-
other, even when these learning tasks or domains fol-
low different distributions (Caruana, 1997). However,
since all the data are unlabeled, we can consider it
as an instance of unsupervised transfer learning (Teh
et al., 2006). This unsupervised transfer learning prob-
lem could also be viewed as a clustering version of the
self-taught learning (Raina et al., 2007), which uses
irrelevant unlabeled data to help supervised learning.
Thus, we refer to our problem as self-taught clustering
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(a) diamond (b) platinum

(c) ring (d) titanium

Figure 1. Example for common features among different
types of objects, using images as the instance.

(or STC for abbreviation).

To tackle the problem, we observe that the perfor-
mance of clustering highly relies on data represen-
tation when the objective function and the distance
measure are fixed. Therefore, to improve the clus-
tering performance, one alternative way is to seek a
better data representation. We observe that different
objects may share some common or relevant features.
For example, in Figure 1, diamond and ring share
quite a lot of features about “diamond”; ring and
platinum share quite a lot of features about “plat-
inum”; moreover, platinum and titanium share quite
a lot of features about “metal”. In this situation,
the auxiliary data can be used to help uncover a bet-
ter data representation to benefit the target data set.
Our approach to tackling this problem is by using co-
clustering (Dhillon et al., 2003), so that the commonal-
ity can be found in the feature spaces that corresponds
to similar semantic meanings.

In our solution to the self-taught clustering problem,
two clustering operations, on the target data and the
auxiliary data are respectively performed together.
This is done through co-clustering. We extend the
information theoretic co-clustering algorithm (Dhillon
et al., 2003) which minimizes loss in mutual informa-
tion before and after co-clustering. An iterative al-
gorithm is proposed to monotonically reduce the ob-
jective function. The experimental results show that
our algorithm can greatly improve the clustering per-
formance by effectively using auxiliary unlabeled data,
as compared to several other state-of-the-art clustering
algorithms.

2. Problem Formulation

For clarity, we first define the self-taught clustering
task. Let X and Y be two discrete random variables,
taking values from two value sets {x1, . . . , xn} and
{y1, . . . , ym}, respectively. X and Y correspond to the
target and auxiliary data. Let Z be a discrete random
variable, taking values from the value set {z1, . . . , zk},
that corresponds to the common feature space of both
target and auxiliary data.

Let p(X,Z) be the joint probability distribution with
respect to X and Z, and q(Y,Z) be the joint probabil-
ity distribution with respect to Y and Z. In general,
p(X,Z) and q(Y,Z) can be considered as two n×k and
m × k matrices respectively, which can be estimated
from data observations. For example, consider the case
that x1 = {z1, z3}, x2 = {z2}, and x3 = {z2, z3}.
Then, the joint probability distribution p(X,Z) can
be estimated as

p(X,Z) =





0.2 0.0 0.2
0.0 0.2 0.0
0.0 0.2 0.2



 . (1)

We wish to cluster X into N partitions X̃ =
{x̃1, . . . , x̃N} and Y into M clusters Ỹ = {ỹ1, . . . , ỹM}.
Furthermore, Z can be clustered into K feature clus-
ters Z̃ = {z̃1, . . . , z̃K}. We use CX : X 7→ X̃,
CY : Y 7→ Ỹ and CZ : Z 7→ Z̃ to denote three cluster-
ing functions, which map variables in the three value
sets to their corresponding clusters. For brevity, in the
following, we will use X̃, Ỹ and Z̃ to denote CX(X),
CY (Y ) and CZ(Z), respectively.

Our objective is to find a good clustering function CX

for the target data, with the help of the clusters CY

on the auxiliary data and CZ on the common feature
space.

3. The Self-taught Clustering

Algorithm

In this section, we present our co-clustering based self-
taught clustering (STC) algorithm, and then discuss
its theoretical properties based on information theory.

3.1. Objective Function for Self-taught

Clustering

We extend the information theoretic co-clustering
(Dhillon et al., 2003) to model our self-taught clus-
tering algorithm. In the information theoretic co-
clustering, the objective function of co-clustering is
defined as minimizing loss in mutual information be-
tween instances and features, before and after co-
clustering. Formally, using the target data X and their
feature space Z for illustration, the objective function
can be expressed as

I(X,Z)− I(X̃, Z̃), (2)

where I(· ; ·) denotes the mutual information between
two random variables (Cover & Thomas, 1991) that

I(X;Z) =
∑

x∈X

∑

z∈Z p(x, z) log p(x,z)
p(x)p(z) . Moreover,

I(X̃, Z̃) corresponds to the joint probability distribu-
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tion p(X̃, Z̃) which is defined as

p(x̃, z̃) =
∑

x∈x̃

∑

z∈z̃

p(x, z). (3)

For example, for the joint probability p(X,Z) in Equa-
tion (1), suppose that the clustering on X is X̃ =
{x̃1 = {x1, x2}, x̃2 = {x3}}, and the clustering on Z is
Z̃ = {z̃1 = {z1, z2}, z̃2 = {z3}}. Then,

p(X̃, Z̃) =

[
0.4 0.2
0.2 0.2

]

. (4)

In this work, we model our self-taught clustering al-
gorithm (STC) as performing co-clustering operations
on the target data X and auxiliary data Y , simultane-
ously, while the two co-clusters share the same features
clustering Z̃ on the feature set Z. Thus, the objective
function can be formulated as

J = I(X,Z)− I(X̃, Z̃) + λ
[

I(Y,Z)− I(Ỹ , Z̃)
]

. (5)

In Equation (2), I(X,Z) − I(X̃, Z̃) is computed on
the co-clusters on the target data X, while I(Y,Z) −
I(Ỹ , Z̃) on the auxiliary data Y . λ is a trade-off
parameter to balance the influence between the tar-
get data and the auxiliary data which we will test
in our experiments. From Equation (5), we can see
that, although the two co-clustering objective func-
tions I(X,Z)−I(X̃, Z̃) and I(Y,Z)−I(Ỹ , Z̃) are per-
formed separately, they share the same feature cluster-
ing Z̃. This is the “bridge” to transfer the knowledge
between the target and auxiliary data.

Our remaining task is to minimize the value of the
objective function in Equation (5)1. However, min-
imizing Equation (5) is not an easy task, since it is
non-convex and there are no good solutions currently
to directly optimize this objective function. In the fol-
lowing, we will rewrite the objective function in Equa-
tion (5) into the form of Kullback-Leibler divergence
(Cover & Thomas, 1991) (KL divergence), and mini-
mize the reformulated objective function.

3.2. Optimization for Co-clustering

We first define two new probability distributions
p̃(X,Z) and q̃(Y,Z) as follows.

Definition 1 Let p̃(X,Z) denote the joint probability
distribution of X and Z with respect to the co-clusters
(CX , CZ); formally,

p̃(x, z) = p(x̃, z̃)
p(x)

p(x̃)

p(z)

p(z̃)
, (6)

1To be mentioned, in this paper, our minimization is
for a fixed numbers of clusters N , M and K.

where x ∈ x̃ and z ∈ z̃. Therefore, with regard to
Equations (1) and (4), p̃(X,Z) is given by

p̃(X,Z) =





0.089 0.178 0.133
0.044 0.089 0.067
0.067 0.133 0.200



 . (7)

Likewise, let q̃(Y,Z) denote the joint probability dis-
tribution of Y and Z with respect to the co-clusters
(CY , CZ). We have

q̃(y, z) = q(ỹ, z̃)
q(y)

q(ỹ)

q(z)

q(z̃)
, (8)

where y ∈ ỹ and z ∈ z̃.

Using the probability distributions p̃(X,Z) and
q̃(Y,Z) defined above, we can reformulate the objec-
tive function in Equation (5) into a form based on KL
divergence (Cover & Thomas, 1991).

Lemma 1 When the clusters CX , CY and CZ are
fixed, the objective function in Equation (5) can be re-
formulated as

I(X;Z)− I(X̃; Z̃) + λ
[

I(Y ;Z)− I(Ỹ ; Z̃)
]

(9)

= D(p(X,Z)||p̃(X,Z)) + λ D(q(Y,Z)||q̃(Y,Z)),

where D(·||·) denotes the KL divergence between two
probability distributions (Cover & Thomas, 1991),

where D(p||q) =
∑

x p(x) log p(x)
q(x) .

Proof Based on the Lemma 2.1 in (Dhillon et al.,
2003), I(X,Z)−I(X̃, Z̃) = D(p(X,Z)||p̃(X,Z)). Sim-
ilarly, I(Y,Z)−I(Ỹ , Z̃) = D(q(Y,Z)||q̃(Y,Z)). There-
fore, Lemma 1 can be proved straightforwardly.

Lemma 1 converts the loss in mutual information to
the KL divergence between the distributions p and p̃,
and between q and q̃, respectively. However, the prob-
ability distributions in Lemma 1 are joint distribu-
tions, and are therefore difficult to optimize. Hence, in
Lemma 2, we rewrite the objective function in Lemma
1 as a conditional probability form. We then show how
to optimize the objective function in the new form.

Lemma 2 The KL divergence with respect to joint
probability distributions can be reformulated as

D(p(X,Z)||p̃(X,Z))

=
∑

x̃∈X̃

∑

x∈x̃

p(x)D(p(Z|x)||p̃(Z|x̃)) (10)

=
∑

z̃∈Z̃

∑

z∈z̃

p(z)D(p(X|z)||p̃(X|z̃)). (11)
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Similarly,

D(q(Y,Z)||q̃(Y,Z))

=
∑

ỹ∈Ỹ

∑

y∈ỹ

q(y)D(q(Z|y)||q̃(Z|ỹ)) (12)

=
∑

z̃∈Z̃

∑

z∈z̃

q(z)D(q(Y |z)||q̃(Y |z̃)). (13)

Proof We only give the proof to Equation (10). Using
an identical argument, Equations (11), (12) and (13)
can be easily derived.

D(p(X,Z)||p̃(X,Z)) =
∑

x̃∈X̃

∑

z̃∈Z̃

∑

x∈x̃

∑

z∈z̃

p(x, z) log
p(x, z)

p̃(x, z)
.

Since p̃(x, z) = p(x)p(x̃,z̃)
p(x̃)

p(z)
p(z̃) = p(x)p̃(z|x̃), we have

D(p(X,Z)||p̃(X,Z))

=
∑

x̃∈X̃

∑

z̃∈Z̃

∑

x∈x̃

∑

z∈z̃

p(x)p(z|x) log
p(x)p(z|x)

p(x)p̃(z|x̃)

=
∑

x̃∈X̃

∑

x∈x̃

p(x)
∑

z̃∈Z̃

∑

z∈z̃

p(z|x) log
p(z|x)

p̃(z|x̃)

=
∑

x̃∈X̃

∑

x∈x̃

p(x)D(p(Z|x)||p̃(Z|x̃)).

From Lemma 2 and Equation (10), we can see that
minimizing D(p(Z|x)||p̃(Z|x̃)) for a single x can reduce
the value of D(p(X,Z)||p̃(X,Z)) and thus can then
decrease global optimization function in Equation (9).
Therefore, if we iteratively choose the best cluster x̃ for
each x to minimize D(p(Z|x)||p̃(Z|x̃)), the objective
function will be minimized monotonically. Formally,

CX(x) = arg min
x̃∈X̃

D(p(Z|x)||p̃(Z|x̃)). (14)

Using a similar argument on Y and Z, we have

CY (y) = arg min
ỹ∈Ỹ

D(q(Z|y)||q̃(Z|ỹ)), (15)

and

CZ(z) = arg min
z̃∈Z̃

p(z)D(p(X|z)||p̃(X|z̃))

+λ q(z)D(q(Y |z)||q̃(Y |z̃)). (16)

Based on Equation (14), (15) and (16), an alternative
way to minimize the objective function in Equation (9)
is derived, as shown in Algorithm 1.

In Algorithm 1, in each iteration, our self-taught clus-
tering algorithm (STC) minimizes the objective func-
tion by choosing the best x̃, ỹ and z̃ for each x, y and

Algorithm 1 The Self-taught Clustering Algorithm:
STC
Input: A target unlabeled data set X; an auxiliary
unlabeled data set Y ; the feature space Z shared by

both X and Y ; the initial clustering functions C
(0)
X ,

C
(0)
Y and C

(0)
Z ; the number of iterations T .

Output: The final clustering function C
(T )
X on the

target data X.
Procedure STC

1: Initialize p(X,Z) and q(Y,Z) based on the data
observations on X, Y , and Z.

2: Initialize p̃(0)(X,Z) based on p(X,Z), C
(0)
X , C

(0)
Z ,

and Equation (6).

3: Initialize q̃(0)(Y,Z) based on q(Y,Z), C
(0)
Y , C

(0)
Z ,

and Equation (8).
4: for t← 1, . . . , T do

5: Update C
(t)
X (X) based on p, p̃(t−1), and Equa-

tion (14).

6: Update C
(t)
Y (Y ) based on q, q̃(t−1), and Equa-

tion (15).

7: Update C
(t)
Z (Z) based on p, q, p̃(t−1), q̃(t−1), and

Equation (16).

8: Update p̃(t) based on based on p(X,Z), C
(t)
X ,

C
(t)
Z , and Equations (6).

9: Update q̃(t) based on based on q(Y,Z), C
(t)
Y ,

C
(t)
Z , and Equations (8).

10: end for

11: Return C
(T )
X as the final clustering function on the

target data X.

z based on Equations (14), (15) and (16). As we dis-
cussed above, this can reduce the value of the global
objective function in Equation (9). In the following
theorem, we show the monotonically decreasing prop-
erty of the objective function of the STC algorithm.

Theorem 1 In Algorithm 1, let the value of objective
function J in the t-th iteration be

J (C
(t)
X , C

(t)
Y , C

(t)
Z ) = (17)

D(p(X,Z)||p̃(t)(X,Z)) + λ D(q(Y,Z)||q̃(t)(Y,Z)).

Then,

J (C
(t)
X , C

(t)
Y , C

(t)
Z ) ≥ J (C

(t+1)
X , C

(t+1)
Y , C

(t+1)
Z ). (18)

Proof (Sketch) Since in each iteration, the cluster-
ing functions are updated based on Equations (14),
(15) and (16), which locally minimize the values of
D(p(X,Z)||p̃(X,Z)) and D(q(Y,Z)||q̃(Y,Z)), the ob-
jective function is monotonically non-increasing as a
result. Theorem 1 follows as a consequence.
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Note that, although STC is able to minimize the ob-
jective function value in Equation (9), it is only able to
find a locally optimal one. Finding the global optimal
solution is NP-hard. The next corollary emphasizes
the convergence property of our algorithm STC.

Corollary 1 Algorithm 1 converges in a finite number
of iterations.

Proof (Sketch) The convergence of our algorithm
STC can be proved straightforwardly based on the
monotonical decreasing property in Theorem 1, and
the finiteness of the solution space.

3.3. Complexity Analysis

We now analyze the computational cost of our algo-
rithm STC. Suppose that the total number of (x, z)
co-occurrences in the target data set X is L1, and
the total number of (y, z) co-occurrences in the aux-
iliary data set Y is L2. In each iteration, updating
the target instance clustering CX takes O(N · L1).
Updating the auxiliary instance clustering CY takes
O(M · L2). Moreover, updating the feature clustering
CZ takes O(K · (L1 + L2)). Since the number of it-
erations is T , the time complexity of our algorithm is
O(T · ((K + N) · L1 + (K + M) · L2))). In the follow-
ing experiments, it is shown that T = 10 is enough
for convergence. Usually, the number of clusters N ,
M and K can be considered as constants, so that the
time complexity of STC is O(L1 + L2).

Considering space complexity, our algorithm needs to
store all the (x, z) and (y, z) co-occurrences and their
corresponding probabilities. Thus, the space complex-
ity is O(L1 + L2). This indicates that the time com-
plexity and the space complexity of our algorithm are
all linear on the input. We conclude that the algorithm
scales well.

4. Experiments

In this section, we evaluate our self-taught cluster-
ing algorithm STC on the image clustering tasks, and
show effectiveness of STC.

4.1. Data Sets

We conduct our experiments on eight clustering tasks
generated based on the Caltech-256 image corpus
(Griffin et al., 2007). There are a total of 256 cate-
gories in the Caltech-256 data set, where we randomly
chose 20 categories from this corpus. For each cat-
egory, 70 images are randomly selected to form our
clustering tasks. Six binary clustering tasks, one 3-
way clustering task, and one 5-way clustering task were

generated using these 20 categories, as shown in Table
1. The first column in Table 1 presents the categories
with respect to the target unlabeled data. For each
clustering task, we used the data from the correspond-
ing categories as target unlabeled data, while the data
from the remaining categories as the auxiliary unla-
beled data.

For data preprocessing, we used the “bag-of-words”
method (Li & Perona, 2005) to represent images in our
experiments. Interesting points in images are found
and described by SIFT descriptor (Lowe, 2004). Then,
we clustered all the interesting points to get the code-
book, and set the number of clusters to 800. Using this
codebook, each image can be represented as a vector
in the subsequent learning processes.

4.2. Evaluation Criteria

In these experiments, we used entropy to measure the
quality of clustering results, which reveals the purity
of clusters. Specifically, the entropy for a cluster x̃

is defined as H(x̃) = −∑

c∈C p(c|x̃) log2 p(c|x̃), where
c represents a category label in the evaluation cor-

pus, and p(c|x̃) is defined as p(c|x̃) = |{x|`(x)=c∧x∈x̃}|
|x̃| ,

where `(x) denotes the true label of x in the evalu-
ation corpus. The total entropy for the whole clus-
tering is defined as the weighted sum of the entropy
with respect to all the clusters; formally, H(X̃) =
∑

x̃∈X̃
|x̃|
n H(x̃). The quality of clustering X̃ is eval-

uated using the entropy H(X̃).

4.3. Empirical Analysis

We compared our algorithm STC to several state-of-
the-art clustering methods as baseline methods. For
each baseline method considered below, we have two
different options: one is to apply the baseline method
on the target data only, which we refer to as separate,
and the other is to apply on the combined data con-
sisting of target data and the auxiliary data, which we
refer as combined. The first baseline method is a tradi-
tional 1D-clustering solution CLTUO (Zhao & Karypis,
2002) using its default parameter. The second baseline
method is clustering on the target data under a new
feature representation that is first constructed through
feature clustering (on the target or the combined data
set); this baseline is designed to evaluate the effec-
tiveness of co-clustering based method as opposed to
naively constructing new data representation for clus-
tering. We refer to this class of baseline methods as
Feature Clustering. The third baseline method is
an information theoretic co-clustering method applied
to the target (or the combined) data set (Dhillon et al.,
2003), which we refer to as Co-clustering. This base-
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Table 1. Performance in terms of entropy for each data set and evaluation method.

Data Set
CLUTO Feature Clustering Co-clustering

STC
separate combined separate combined separate combined

eyeglass vs sheet-music 0.527 0.966 0.669 0.669 0.630 0.986 0.187
airplane vs ostrich 0.352 0.696 0.512 0.479 0.426 0.753 0.252

fern vs starfish 0.865 0.988 0.588 0.953 0.741 0.968 0.575
guitar vs laptop 0.923 0.965 0.999 0.970 0.925 1.000 0.569
hibiscus vs ketch 0.371 0.446 0.659 0.649 0.399 0.793 0.252

cake vs harp 0.882 0.879 0.998 0.911 0.860 0.996 0.772

car-side, tire, frog 1.337 1.385 1.362 1.413 1.316 1.275 1.000
cd, comet, vcr, diamond-ring, skyscaper 1.663 1.827 1.755 1.751 1.715 1.772 1.274

Average 0.865 1.019 0.943 0.974 0.877 1.068 0.610
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Figure 2. The entropy curves as a
function of different number of feature
clusters.
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Figure 3. The entropy curves as a
function of different trade-off param-
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Figure 4. The entropy curves as a
function of different number of iter-
ations.

line is designed to test the effectiveness of our special
co-clustering model for self-taught clustering.

Table 1 presents the clustering performance in en-
tropy according to each data set and each evaluation
method. From this table, we can see that Feature

Clustering and Co-clustering perform somewhat
worse than CLUTO. This is a little different from the re-
sults shown in the previous literatures such as (Dhillon
et al., 2003). In our opinion, it is because our self-
taught clustering problem focuses on a different situ-
ation from the previous ones; that is, the target data
are insufficient for traditional clustering algorithms.
In our experiments, there are only 70 instances in
each category, which is too few to build a good fea-
ture clustering partition. Therefore, the performance
of Feature Clustering and Co-clustering declines.
Moreover, the performance with respect to combined

is worse than that with respect to separate in gen-
eral. We believe that it is because the target data
and the auxiliary data are more or less independent of
each other, and thus the topics in the combined data
set may be biased towards the auxiliary data and thus
harm the clustering performance on the target data.
In general, our algorithm STC greatly outperforms the
three baseline methods. We observe that the reason
for the outstanding performance of STC is that the
co-clustering part of STC makes feature clustering re-
sult consistent with the clustering result on both the
target data and the auxiliary data. Therefore, using
this feature clustering as the new data representation,

the clustering performance of the target data is im-
proved.

In our STC algorithm, it is assumed that we have al-
ready known the number of feature clusters K. How-
ever, in reality, this number should be carefully tuned.
In these experiments, we tuned this parameter em-
pirically. Figure 2 presents the entropy curves with
respect to different number of feature clusters given
by CLUTO, Feature Clustering, Co-clustering and
STC respectively. The entropy in Figure 2 is the aver-
age over 6 binary image clustering tasks. Note that the
curve given by CLUTO never changes, since CLUTO does
not incorporate feature clustering. From this figure,
we can see Feature Clustering and Co-clustering

perform somewhat unstably as a function of the in-
creasing number of feature clustering. We believe the
reason is that there are only too few instances in each
clustering task, which makes the traditional clustering
results unreliable. Our algorithm STC incorporates a
large amount of auxiliary unlabeled data, so that its
variance is much smaller than that of traditional clus-
tering algorithms. STC performs increasingly better
in general, along with the increasing number of fea-
ture clustering, until the number of feature clusters
reaches 32. When the number of feature clusters is
greater than 32, the performance of STC becomes in-
sensitive to the number of feature clusters. We believe
a number of feature clustering which is no less than 32
will be sufficient to make STC perform well. In these
experiments, we set the number of feature clustering
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to 32.

We next tested the choice for the trade-off parame-
ter λ in our algorithm STC (refer to Equation (5)).
Generally, it is difficult to theoretically determine the
value of the trade-off parameter λ. Instead, in this
work, we tuned this parameter empirically on the data
set fern vs starfish. Figure 3 presents the entropy
curve given by STC along with changing trade-off pa-
rameter λ. From this figure, it can be seen that, when
λ decreases, which implies that the weights of the aux-
iliary unlabeled data lower, the performance of STC
declines rapidly. On the other hand, when λ is suffi-
ciently large, i.e. λ > 1, the performance of STC is
relatively insensitive to the parameter λ. This indi-
cates the auxiliary data can help the clustering on the
target data in our clustering tasks. In these experi-
ments, we set the trade-off parameter λ to one, which
is the best point in Figure 3.

Since our algorithm STC is iterative, the convergence
property is also important to evaluate. Theorem 1
and Corollary 1 have already proven the convergence
of STC theoretically. Here, we analyze the conver-
gence of STC empirically. Figure 4 shows the entropy
curve given by STC corresponding to different num-
ber of iterations on the data set fern vs starfish.
From this figure, we can see that STC converges very
well after 7 iterations, while the performance of STC
reaches the lowest point when STC converges. This
indicates that our algorithm STC converges very fast
and very well. In these experiments, we set the num-
ber of iterations T to 10. We believe 10 iterations are
enough for STC to converge.

5. Related Work

In this section, we review several past research works
that are related to our work, including semi-supervised
clustering, supervised clustering and transfer learning.

Semi-supervised clustering improves clustering perfor-
mance by incorporating additional constraints pro-
vided by a few labeled data, in the form of must-
links (two examples must in the same cluster) and
cannot-links (two examples cannot in the same clus-
ter) (Wagstaff et al., 2001). It finds a balance be-
tween satisfying the pairwise constraints and optimiz-
ing the original clustering criteria function. In addition
to (Wagstaff et al., 2001), Basu et al. (2002) used a
small amount of labeled data to generate initial seed
clusters in K-means and constrained K-means algo-
rithm by labeled data. Basu et al. (2004) generalized
the previous semi-supervised clustering algorithms and
proposed a probabilistic framework based on hidden

Markov random fields that combines the constraints
and clustering distortion measures in a general frame-
work. Recent semi-supervised clustering works include
(Nelson & Cohen, 2007; Davidson & Ravi, 2007).

Supervised clustering is another branch of work de-
signed to improve clustering performance with the help
of a collection of auxiliary labeled data. To address the
supervised clustering problem, Finley and Joachims
(2005) proposed an SVM-based supervised clustering
algorithm by optimizing a variety of different cluster-
ing functions. Daumé III and Marcu (2005) developed
a Bayesian framework for supervised clustering based
on Dirichlet process prior.

Transfer learning emphasizes the transferring of knowl-
edge across different domains or tasks. For example,
multi-task learning (Caruana, 1997) or clustering (Teh
et al., 2006) learns the common knowledge among dif-
ferent related tasks. Wu and Dietterich (2004) investi-
gated methods for improving SVM classifiers with aux-
iliary training data sources. Raina et al. (2006) pro-
posed to learn logistic regression classifiers by incorpo-
rating labeled data from irrelevant categories through
constructing informative prior from the irrelevant la-
beled data. Raina et al. (2007) proposed a new learn-
ing strategy known as self-taught learning, which uti-
lizes irrelevant unlabeled data to enhance the classifi-
cation performance.

In this paper, we propose a new clustering framework
called self-taught clustering which is an instance of un-
supervised transfer learning. The basic idea is to use
irrelevant unlabeled data to help the clustering of a
small amount of target data. To our best knowledge,
our self-taught clustering problem is novel in capturing
a large class of machine learning problems.

6. Conclusions and Future Work

In this paper, we investigated an unsupervised trans-
fer learning problem called self-taught clustering, and
developed a solution by using an unlabeled auxiliary
data to help improve the target clustering results. We
proposed a co-clustering based self-taught clustering
algorithm (STC) to solve this problem. In our al-
gorithm, two co-clusterings are performed simultane-
ously on the target data and the auxiliary data to un-
cover the shared feature clusters. Our empirical results
show that the auxiliary data can help the target data
to construct a better feature clustering as data rep-
resentation. Under the new data representation, the
clustering performance on the target data is indeed
enhanced, and our algorithm can greatly outperform
several state-of-the-art clustering methods in the ex-
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periments.

In this work, we tackled the self-taught clustering
by finding a better feature representation using co-
clustering. In the future, we will explore several other
ways in finding common feature representations.
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Abstract

We present an active learning scheme that
exploits cluster structure in data.

1. Introduction

The active learning model is motivated by scenarios in
which it is easy to amass vast quantities of unlabeled
data (images and videos off the web, speech signals
from microphone recordings, and so on) but costly to
obtain their labels. It shares elements with both su-
pervised and unsupervised learning. Like supervised
learning, the goal is ultimately to learn a classifier.
But like unsupervised learning, the data come unla-
beled. More precisely, the labels are hidden, and each
of them can be revealed only at a cost. The idea is to
query the labels of just a few points that are especially
informative about the decision boundary, and thereby
to obtain an accurate classifier at significantly lower
cost than regular supervised learning. Indeed, there
are canonical examples in which active learning prov-
ably yields exponentially lower label complexity than
supervised learning (Cohn et al., 1994; Freund et al.,
1997; Dasgupta, 2005; Balcan et al., 2006; Balcan
et al., 2007; Castro & Nowak, 2007; Hanneke, 2007;
Dasgupta et al., 2007). However, these examples are
highly specific, and the wider efficacy of active learning
remains to be characterized.

Sampling bias. A typical active learning heuristic
might start by querying a few randomly-chosen points,
to get a very rough idea of the decision boundary. It
might then query points that are increasingly closer to
its current estimate of the boundary, with the hope of
rapidly honing in. Such heuristics immediately bring
to the forefront the unique difficulty of active learn-
ing, the fundamental characteristic that separates it

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

from other learning models: sampling bias. As train-
ing proceeds, and points are queried based on increas-
ingly confident assessments of their informativeness,
the training set quickly diverges from the underlying
data distribution. It consists of an unusual subset of
points, hardly a representative subsample; why should
a classifier trained on these strange points do well on
the overall distribution? In section 2, we make this in-
tuition concrete, and show how ill-managed sampling
bias causes many active learning heuristics to not be
consistent: even with infinitely many labels, they fail
to converge to a good hypothesis.

The two faces of active learning. The recent liter-
ature offers two distinct narratives for explaining when
active learning is helpful. The first has to do with effi-
cient search through the hypothesis space. Each time a
new label is seen, the set of plausible classifiers (those
roughly consistent with the labels seen so far) shrinks
somewhat. Using active learning, one can explicitly
select points whose labels will shrink this set as fast
as possible. Most theoretical work in active learning
attempts to formalize this intuition.

The second argument for active learning has to do with
exploiting cluster structure in data. Suppose, for in-
stance, that the unlabeled points form five nice clus-
ters; with luck, these clusters will be “pure” and only
five labels will be necessary! Of course, this is hope-
lessly optimistic. In general, there may be no nice clus-
ters, or there may be viable clusterings at many differ-
ent resolutions. The clusters themselves may only be
mostly-pure, or they may not be aligned with labels
at all. In this paper, we present a scheme for cluster-
based active learning that is statistically consistent
and never has worse label complexity than supervised
learning. In cases where there exists cluster structure
(at whatever resolution) that is loosely aligned with
class labels, the scheme detects and exploits it.

Our model. We start with a hierarchical clustering
of the unlabeled points. This should be constructed
so that some pruning of it is weakly informative of the
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class labels. We describe an active learning strategy
with good statistical properties, that will discover and
exploit any informative pruning of the cluster tree. For
instance, suppose it is possible to prune the cluster tree
to m leaves (m unknown) that are fairly pure in the
labels of their constituent points. Then, after querying
just O(m) labels, our learner will have a fairly accurate
estimate of the labels of the entire data set. These can
then be used as is, or as input to a supervised learner.
Thus, our scheme can be used in conjunction with any
hypothesis class, no matter how complex.

2. Active Learning and Sampling Bias

Many active learning heuristics start by choosing a
few unlabeled points at random and querying their
labels. They then repeatedly do something like this:
fit a classifier h ∈ H to the labels seen so far; and
query the label of the unlabeled point closest to the
decision boundary of h (or the one on which h is most
uncertain, or something similar). Such schemes make
intuitive sense, but do not correctly manage the bias
introduced by adaptive sampling. Consider this 1-d
example:

w∗ w

5%45% 5% 45%

Here the data lie in four groups on the line, and are
(say) distributed uniformly within each group. Filled
blocks have a + label, while clear blocks have a − la-
bel. Most of the data lies in the two extremal groups,
so an initial random sample has a good chance of com-
ing entirely from these. Suppose the hypothesis class
consists of thresholds on the line: H = {hw : w ∈ R}
where hw(x) = 1(x ≥ w). Then the initial bound-
ary will lie somewhere in the center group, and the
first query point will lie in this group. So will every
subsequent query point, forever. As active learning
proceeds, the algorithm will gradually converge to the
classifier shown as w. But this has 5% error, whereas
classifier w∗ has only 2.5% error. Thus the learner
is not consistent: even with infinitely many labels, it
returns a suboptimal classifier.

The problem is that the second group from the left gets
overlooked. It is not part of the initial random sample,
and later on, the learner is mistakenly confident that
the entire group has a − label. And this is just in
one dimension; in high dimension, the problem can
be expected to be worse, since there are more places
for this troublesome group to be hiding out. For a

1

9
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3

87

5% 5%45%

65

2

45%

Figure 1. The top few nodes of a hierarchical clustering.

discussion of this problem in text classification, see
the recent paper of Schutze et al. (2006).

Sampling bias is the most fundamental challenge posed
by active learning. This paper presents a broad frame-
work for managing this bias that is provably sound.

3. A Clustering-Based Framework for

Guiding Sampling

Our active learner starts with a hierarchical clustering
of the data. Figure 1 shows how this might look for
the example of the previous section.

Here only the top few nodes of the hierarchy are shown;
their numbering is immaterial. At any given time, the
learner works with a particular partition of the data
set, given by a pruning of the tree. Initially, this is
just {1}, a single cluster containing everything. Ran-
dom points are drawn from this cluster and their la-
bels are queried. Suppose one of these points, x, lies
in the rightmost group. Then it is a random sample
from node 1, but also from nodes 3 and 9. Based on
these random samples, each node of the tree maintains
statistics about the relative numbers of positive and
negative instances seen. A few samples reveal that the
top node 1 is very mixed while nodes 2 and 3 are sub-
stantially more pure. Once this transpires, the parti-
tion {1} will be replaced by {2, 3}. Subsequent random
samples will be chosen from either 2 or 3, according
to a sampling strategy favoring the less-pure node. A
few more queries down the line, the pruning will likely
be refined to {2, 4, 9}. This is when the benefits of the
partitioning scheme become most obvious; based on
the samples seen, it can be concluded that cluster 9 is
(almost) pure, and thus (almost) no more queries will
be made from it until the rest of the space has been
partitioned into regions that are similarly pure.

The querying can be stopped at any stage; then, each
cluster in the current partition gets assigned the ma-
jority label of the points queried from it. In this way,
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the entire data set gets labeled, and the number of
erroneous labels induced is kept to a minimum. If de-
sired, these labels can be used for a subsequent round
of supervised learning, with any learning algorithm
and any hypothesis class.

3.1. Preliminary Definitions

The cost of a pruning. Say there are n unlabeled
points, and we have a hierarchical clustering repre-
sented by a binary tree T with n leaves. For any node
v of the tree, denote by Tv both the subtree rooted at
v and also the data points contained in this subtree
(at its leaves). A pruning of the tree is a subset of
nodes {v1, . . . , vm} such that the Tvi

are disjoint and
together cover all the data. At any given stage, the
active learner will work with a partition of the data
set given by a pruning of T . In the analysis, we will
also deal with a partial pruning : a subset of a pruning.

A weight of a node v ∈ T is the proportion of the data
set in Tv: wv = (number of leaves of Tv)/n. Likewise,
the weight of a partial pruning is the fraction of the
data set that it covers, w(P ) =

∑

v∈P wv. A full prun-
ing has weight 1.

Suppose there are k possible labels, and that their pro-
portions in Tv are pv,l for l = 1, . . . , k. Then the error
introduced by assigning all points in Tv their majority
label is ǫv = 1 − maxl pv,l. Consequently, the error
induced by a particular pruning (or partial pruning)
P—that is, the fraction of incorrect labels when each
cluster of P is assigned its majority label—is

ǫ(P ) =
1

w(P )

∑

v∈P

wvǫv

In pruning the tree, it always helps to go as far down
as possible, provided we can accurately estimate the
majority labels in those nodes.

Empirical estimates for individual nodes. Due
of limited sampling, we will only have labels from some
of the nodes, and even for those, we may not be able
to correctly determine the majority label. If we as-
sign label l to all the points in Tv, the induced er-
ror is ǫv,l = 1 − pv,l. Likewise, when each cluster
v of pruning (or partial pruning) P is assigned label
L(v) ∈ {1, 2, . . . , k}, the error induced is

ǫ(P,L) =
1

w(P )

∑

v∈P

wvǫv,L(v).

We will at any given time have only very imperfect
estimates of the pv,l’s and thus of these various er-
ror probabilities. Fix any node v, and suppose that at

Table 1. Key quantities in the algorithm and analysis. The
indexing (t) specifies the empirical quantity at time t.

dv depth of node v in tree
dP maximum depth of nodes in P
wv weight of node v
pv,l fraction of label l in node v

L∗(v) majority label of node v (that is, arg maxl pv,l)
nv(t) number of points sampled from node v
pv,l(t) fraction of label l in points sampled from Tv

A(t) admissible (node,label) pairs
ǫv,l(t) 1 − pv,l(t)
eǫv,l(t) ǫv,l(t) if (v, l) ∈ A(t); otherwise 1

time t, we have queried nv(t) random points contained
in that node. This gives us estimates of its class prob-
abilities, pv,l(t). Correspondingly, our estimate of ǫv,l

will be ǫv,l(t) = 1− pv,l(t).

The quality of these estimates can be assessed us-
ing generalization bounds. At any given time t, we
can associate with each node v and label l a con-
fidence interval [pLB

v,l , p
UB
v,l ] within which we expect

the true probability pv,l to lie. One possibility is to
use [max(pv,l(t)−∆v,l(t), 0),min(pv,l(t)+∆v,l, 1)], for

∆v,l(t) ≈ 1
nv(t) +

√
pv,l(t)(1−pv,l(t))

nv(t) . In Lemma 1, we

will give a precise value for ∆v,l(t) for which we are
able to assert that (with high probability) every pv,l is
always within this interval. However, there are other
ways of constructing confidence intervals as well. The
most accurate is simply to use the binomial (or hyper-
geometric) distribution directly.

When are we confident about the majority label

of a subtree? As mentioned above, it is advantageous
to descend as far as possible in the tree, provided we
are confident about our estimate of the majority label.
To this end, define

Av,l(t) = true ⇔ (1−pLB
v,l (t)) < β·min

l′ 6=l
(1−pUB

v,l′(t)).

(1)
Av,l asserts that l is an admissible label for node v,
in the weak sense that it incurs at most β times as
much error as any other label. To see this, notice that
label l gets at most 1 − pLB

v,l (t) fraction of the points

wrong, whereas l′ gets at least 1 − pUB
v,l′(t) fraction of

the points wrong. In our experiments, we use β = 2,
in which case

Av,l(t) = true ⇔ pLB
v,l (t) > 2pUB

v,l′(t)− 1 ∀l′ 6= l.

For any given v, t, several different labels l might sat-
isfy this criterion, for instance if pLB

v,l (t) = pUB
v,l (t) =

1/k for all labels l. When there are only two possible
labels, the criterion further simplifies to pLB

v,l (t) > 1/3.
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We will maintain a set of (v, l) pairs for which the
condition Av,l(t) is either true or was true sometime
in the past:

A(t) = {(v, l) : Av,l(t
′) for some t′ ≤ t}.

A(t) is the set of admissible (v, l) pairs at time t. We
use it to stop ourselves from descending too far down
tree T when only a few samples have been drawn.
Specifically, we say pruning P and labeling L are ad-
missible in tree T at time t if:

• L(v) is defined for P and ancestors of P in T .

• (v, L(v)) ∈ A(t) for any node v that is a strict
ancestor of P in T .

• For any node v ∈ P , there are two options:

– either (v, L(v)) ∈ A(t);

– or there is no l for which (v, l) ∈ A(t). In this
case, if v has parent u, then (u,L(v)) ∈ A(t).

This final condition implies that if a node in P is not
admissible (with any label), then it is forced to take
on an admissible label of its parent.

Empirical estimate of the error of a pruning.

For any node v, the empirical estimate of the er-
ror induced when all of subtree Tv is labeled l is
ǫv,l(t) = 1 − pv,l(t). This extends to a pruning (or
partial pruning) P and a labeling L:

ǫ(P,L, t) =
1

w(P )

∑

v∈P

wvǫv,L(v)(t).

This can be a bad estimate when some of the nodes
in P have been inadequately sampled. Thus we use a
more conservative adjusted estimate:

ǫ̃v,l(t) =

{

1− pv,l(t) if (v, l) ∈ A(t)

1 if (v, l) 6∈ A(t)

with ǫ̃(P,L, t) = (1/w(P ))
∑

v∈P wv ǫ̃v,L(v)(t). The
various definitions are summarized in Table 1.

Picking a good pruning. It will be convenient to
talk about prunings not just of the entire tree T but
also of subtrees Tv. To this end, define the score of v at
time t—denoted s(v, t)—to be the adjusted empirical
error of the best admissible pruning and labeling (P,L)
of Tv. More precisely, s(v, t) is

min{ǫ̃(P,L, t) : (P,L) admissible in Tv at time t}.

Written recursively, s(v, t) is the minimum of

• ǫ̃v,l(t), for all l;

Algorithm 1 Cluster-adaptive active learning

Input: Hierarchical clustering of n unlabeled
points; batch size B

P ← {root} (current pruning of tree)
L(root)← 1 (arbitrary starting label for root)
for time t = 1, 2, . . . until the budget runs out do

for i = 1 to B do

v ← select(P )
Pick a random point z from subtree Tv

Query z’s label l

Update empirical counts and probabilities
(nu(t), pu,l(t)) for all nodes u on path from z

to v

end for

In a bottom-up pass of T , update A and compute
scores s(u, t) for all nodes u ∈ T (see text)
for each (selected) v ∈ P do

Let (P ′, L′) be the pruning and labeling of Tv

achieving scores s(v, t)
P ← (P \ {v}) ∪ P ′

L(v)← L′(u) for all u ∈ P ′

end for

end for

for each cluster v ∈ P do

Assign each point in Tv the label L(v)
end for

• wa

wv
s(a, t) + wb

wv
s(b, t), whenever v has children a, b

and (v, l) ∈ A(t) for some l.

Starting from the empirical estimates pv,l(t), p
LB
v,l , p

UB
v,l ,

it is possible to update the set A(t) and to compute
all the ǫ̃v,l(t) and s(v, t) values in a single linear-time,
bottom-up pass through the tree.

3.2. The Algorithm

Algorithm 1 contains the active learning strategy. It
remains to specify the the manner in which the hier-
archical clustering is built and the procedure select.
Regardless of how these decisions are made, the al-
gorithm is statistically sound in that the confidence
intervals pv,l±∆v,l(t) are valid, and these in turn vali-
date the guarantees for admissible prunings/labelings.
This leaves a lot of flexibility to explore different clus-
tering and sampling strategies.

The select procedure. This controls the selective
sampling. Some options:

(1) Choose v ∈ P with probability ∝ wv. This is
similar to random sampling.

(2) Choose v with probability ∝ wv(1 − pUB
v,L(v)(t)).

This is an active learning rule that reduces sampling
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in regions of the space that have already been observed
to be fairly pure in their labels.

(3) For each subtree (Tz, z ∈ P ), find the observed
majority label, and assign this label to all points in
the subtree; fit a classifier h to this data; and choose
v ∈ P with probability ∝ min{|{x ∈ Tv : h(x) =
+1}|, |{x ∈ Tv : h(x) = −1}|}. This biases sampling
towards regions close to the current decision boundary.

Building a hierarchical clustering. The scheme
works best when there is a pruning P of the tree such
that |P | is small and a significant fraction of its con-
stituent clusters are almost-pure. One option is to
run a standard hierarchical clustering algorithm, like
average linkage, perhaps with a domain-specific dis-
tance function (or one generated from a neighborhood
graph). Another option is to use a bit of labeled data
to guide the construction of the hierarchy.

3.3. Naive Sampling

First consider the naive sampling strategy in which
a node v ∈ P is selected in proportion to its weight
wv. We’ll show that if there is an almost-pure pruning
with m nodes, then only O(m) labels are needed before
the entire data is labeled almost-perfectly. Proofs are
deferred to the full version of the paper.

Theorem 1 Pick any δ, η > 0 and any pruning Q

with ǫ(Q) ≤ η. With probability at least 1 − δ, the
learner induces a labeling (of the data set) with error
≤ (β + 1)ǫ(Q) + η when the number of labels seen is

Bt = O

(
β + 1

β − 1
· |Q|

η
log

2dQkB|Q|
ηδ

)

.

Recall that β is used in the definition of an admissible
label (equation (1)); we use β = 2 in our experiments.

The number of prunings with m nodes is about 4m;
and these correspond to roughly (4k)m possible clas-
sifications (each of the m clusters can take on one of
k labels). Thus this result is what one would expect
if one of these classifiers were chosen by supervised
learning. In our scheme, we do not evaluate such clas-
sifiers directly, but instead evaluate the subregions of
which they are composed. We start our analysis with
confidence intervals for pv,l and nv.

Lemma 1 Pick any δ > 0. With probability at least
1− δ, the following holds for all nodes v ∈ T , all labels
l, and all times t.

(a) |pv,l − pv,l(t)| ≤ ∆v,l ≤ ∆v,l(t), where

∆v,l =
2

3nv(t)
log

1

δ′
+

√

2pv,l(1− pv,l)

nv(t)
log

1

δ′
.

∆v,l(t) =
5

nv(t)
log

1

δ′
+

√

9pv,l(t)(1− pv,l(t))

2nv(t)
log

1

δ′
.

for δ′ = δ/(kBt2d2
v).

(b) nv(t) ≥ Btwv/2 if Btwv ≥ 8 log(t222dv/δ).

Our empirical assessment of the quality of a pruning
P is a blend of sampling estimates pv,l(t) and perfectly
known values wv. Next, we examine the rate of con-
vergence of ǫ(P,L, t) to the true value ǫ(P,L).

Lemma 2 Assume the bounds of Lemma 1 hold.
There is a constant c such that for all prunings (or
partial prunings) P ⊂ T , all labelings L, and all t,

w(P ) · |ǫ(P,L, t)− ǫ(P,L)| ≤ c ·
(

|P |
Bt

log
kBt22dP

δ
+

√

w(P )ǫ(P,L)
|P |
Bt

log
kBt22dP

δ

)

.

Lemma 2 gives useful bounds on ǫ(P,L, t). Our algo-
rithm uses the more conservative estimate ǫ̃(P,L, t),
which is identical to ǫ(P,L, t) except that it automati-
cally assigns an error of 1 to any (v, L(v)) 6∈ A(t), that
is to say, any (node, label) pair for which insufficiently
many samples have been seen. We need to argue that
for nodes v of reasonable weight, and their majority
labels L∗(v), we will have (v, L∗(v)) ∈ A(t).

Lemma 3 There is a constant c′ such that (v, l) ∈
A(t) for any node v with majority label l and

wv ≥ max

(
8

Bt
log

t222dv

δ
,

β + 1

β − 1
· c′

Bt
log

kBt2d2
v

δ

)

.

The purpose of the set A(t) is to stop the algorithm
from descending too far in the tree. We now quantify
this. Suppose there is a good pruning that contains a
node q whose majority label is L∗(q). However, our al-
gorithm descends far below q, to some pruning P (and
associated labeling L) of Tq. By the definition of ad-
missible pruning, this can only happen if (q, L(q)) lies
in A(t). Under such circumstances, it can be proved
that (P,L) is not too much worse than (q, L∗(q)).

Lemma 4 For any node q, let (P,L) be the admissible
pruning and labeling of Tq found by our algorithm at
time t. If (q, L(q)) ∈ A(t), then ǫ(P,L) ≤ (β + 1)ǫq.
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Proof sketch of Theorem 1. Let Q, t be as in the theo-
rem statement, and let L∗ denote the optimal labeling
(by majority label) of each node. Define V to be the
set of all nodes v with weight exceeding the bound in
Lemma 3. As a result, (v, L∗(v)) ∈ A(t) for all v ∈ V .

Suppose that at time t, the learning scheme is using
some pruning P with labeling L. We will decompose
P and Q into three groups of nodes each: (i) Pa ⊂ P

are strict ancestors of Qa ⊂ Q; (ii) Pd ⊂ P are strict
descendants of Qd ⊂ Q; and (iii) the remaining nodes
are common to P and Q.

Since nodes of Pa were never expanded to Qa, we
can show w(Pa)ǫ(Pa, L) ≤ w(Pa)ǫ(Qa, L∗) + 2η/3 +
w(Qa \ V ). Meanwhile, from Lemma 4 we have
w(Pd)ǫ(Pd, L) ≤ (β + 1)w(Qd)ǫ(Qd, L

∗) + w(Qd \ V ).
Putting it all together, we get ǫ(P,L) − ǫ(Q,L∗) ≤
η + (β + 1)ǫ(Q), under the conditions on t.

3.4. Active Sampling

Suppose our current pruning and labeling are (P,L).
So far we have only discussed the naive strategy of
choosing query nodes u ∈ P with probability propor-
tional to wu. For active learning, a more intelligent
and adaptive strategy is needed. A natural choice is
to pick u with probability proportional to wuǫUB

u,L(u)(t),

where ǫUB
u,l = 1−pLB

u,l (t) is an upper bound on the error
associated with node u. This takes advantage of large,
pure clusters: as soon as their purity becomes evident,
querying is directed elsewhere.

Fallback analysis. Can the adaptive strategy per-
form worse than naive random sampling? There is one
problematic case. Suppose there are only two labels,
and that the current pruning P consists of two nodes
(clusters), each with 50% probability mass; however,
cluster A has impurity (minority label probability) 5%
while B has impurity 50%. Under our adaptive strat-
egy, we will query 10 times more from B than from
A. But suppose B cannot be improved: any attempts
to further refine it lead to subclusters which are also
50% impure. Meanwhile, it might be possible to get
the error in A down to zero by splitting it further. In
this case, random sampling, which weighs A equally
to B, does better than the active learning scheme.

Such cases can only occur if the best pruning has high
impurity, and thus active learning still yields a pruning
that is not much worse than optimal. To see this, pick
any good pruning Q (with optimal labeling L∗), and
let’s see how adaptive sampling fares with respect to
Q. Suppose our scheme is currently working with a
pruning P and labeling L. Divide P into two regions:
P0 = {p ∈ P : p ∈ Tv for some v ∈ Q} and P1 = P \

P0. The danger is that we will sample too much from
P0, where no further improvement is needed (relative
to Q), and not enough from P1. But it can be shown
that either the active strategy samples from P1 at least
half as often as the random strategy would, or the
current pruning is already pretty good, in that

ǫ(P,L) ≤ 2ǫ(Q,L∗)+terms involving sampling error.

Benefits of active learning. Active sampling is sure
to help when the hierarchical clustering has some large,
fairly-pure clusters near the top of the tree. These
will be quickly identified, and very few queries will
subsequently be made in those regions. Consider an
idealized example in which there are only two possi-
ble labels and each node in the tree is either pure or
(1/3, 2/3)-impure. Specifically: (i) each node has two
children, with equal probability mass; and (ii) each
impure node has a pure child and an impure child.
In this case, active sampling can be seen to yield a
convergence rate 1/n2 in contrast to the 1/n rate of
random sampling.

The example is set up so that the selected pruning
P (with labeling L) always consists of pure nodes
{a1, a2, . . . , ad} (at depths 1, 2, . . . , d) and a single im-
pure node b (at depth d). These nodes have weights
wai

= 2−i, i = 1, . . . , d, and wb = 2−d; the im-
pure node causes the error of the best pruning to be
ε = 2−d/3. The goal, then, is to sample enough from
node b to cut this error in half (say, because the target
error is ε/2). This can be achieved with a constant
number of queries from node b, since this is enough to
render the majority label of its pure child admissible
and thus offer a superior pruning.

If we were to completely ignore the pure nodes, then
the next several queries could all be made in node b;
we thus halve the error with only a constant number
of queries. Continuing this way leads to an exponen-
tial improvement in convergence rate. Such a policy of
neglect is fine in our present example, but this would
be imprudent in general: after all, the nodes we ignore
may actually turn out impure, and only further sam-
pling would reveal them as such. We instead select a
node u with probability proportional to wuǫUB

u,L(u)(t),
and thus still select a pure node ai with probability
roughly proportional to wai

/nai
(t). This allows for

some cautionary exploration while still affording an
improved convergence rate.

The chance of selecting the impure node b is

wbǫ
UB
b,L(b)

wbǫ
UB
b,L(b) +

∑d
i=1 wai

ǫUB
ai,L(ai)

≥ Ω




ε

ε + d
P

d
i=1

nai
(t)



 .
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The inequality follows (with high probability) because
the error bound for b is always at least the true error ε

(up to constants), while another argument shows that

d∑

i=1

wai
ǫUB
ai,L(ai)

= O

(
d∑

i=1

wai

nai
(t)

)

= O

(

d
∑d

i=1 nai
(t)

)

.

We need to argue that the pure nodes do not get
queried too much. Well, if they have been queried
at least

√

d/ε = O(
√

(1/ε) log 1/ε) times, the chance

of selecting b is Ω(
√

ε/d); another O(
√

d/ε) queries
with active sampling suffice to land a constant num-
ber in node b—just enough to cut the error in
half. Overall, the number of queries needed is then
O(
√

(1/ε) log(1/ε)), considerably less than the O(1/ε)
required of random sampling.

4. Experiments

How many label queries can we save by exploiting
cluster structure with active learning? Our analysis
suggests that the savings is tied to how well the clus-
ter structure aligns with the actual labels. To evaluate
how accommodating real world data is in this sense,
we studied the performance of our active learner on
several natural classification tasks.

4.1. Classification Tasks

When used for classification, our active learning frame-
work decomposes into three parts: (1) unsupervised hi-
erarchical clustering of the unlabeled data, (2) cluster-
adaptive sampling (Algorithm 1, with the second vari-
ant of select), and (3) supervised learning on the re-
sulting fully labeled data. We used standard statistical
procedures, Ward’s average linkage clustering and lo-
gistic regression, for the unsupervised and supervised
components, respectively, in order to assess just the
role of the cluster-adaptive sampling method.

We compared the performance of our active learner
to two baseline active learning methods, random sam-
pling and margin-based sampling, that only train a
classifier on the subset of queried labeled data. Ran-
dom sampling chooses points to label at random, and
margin-based sampling chooses to label the points
closest to the decision boundary of the current classi-
fier (as described in Section 2). Again, we used logistic
regression with both of these methods.

A few details: We ran each active learning method 10
times for each classification task, allowing the budget
of labels to grow in small increments. For each bud-
get size, we evaluated the resulting classifier on a test
set, computed its misclassification error, and averaged
this error over the repeated trials. Finally, we used
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Figure 2. Results on OCR digits. Left: Errors of the best
prunings in the OCR digits tree. Right: Test error curves
on classification task.

ℓ2-regularization with logistic regression, choosing the
trade-off parameter with 10-fold cross validation.

OCR digit images. We first considered multi-class
classification of the MNIST handwritten digit images.1

We used 10000 training images and 2000 test images.

The tree produced by Ward’s hierarchical cluster-
ing method was especially accommodating for cluster-
adaptive sampling. Figure 2 (left) depicts this quanti-
tatively; it shows the error of the best k-pruning of the
tree for several values of k. For example, the tree had a
pruning of 50 nodes with about 12% error. Our active
learner found such a pruning using just 400 labels.

Figure 2 (right) plots the test errors of the three active
learning methods on the multi-class classification task.
Margin-based sampling and cluster-adaptive sampling
both outperformed random sampling, with margin-
based sampling taking over a little after 2000 label
queries. The initial advantage of cluster-adaptive sam-
pling reflects its ability to discover and subsequently
ignore relatively pure clusters at the onset of sampling.
Later on, it is left sampling from clusters of easily con-
fused digits (e.g. 3’s, 5’s, and 8’s).

The test error of the margin-based method appeared
to actually dip below the test error of classifier trained
using all of the training data (with the correct labels).
This appears to be a case of fortunate sampling bias.
In contrast, cluster-adaptive sampling avoids this issue
by concentrating on converging to the same result as
if it had all of the correct training labels.

Newsgroup text. We also considered four pairwise
binary classification tasks with the 20 Newsgroups
data set. Following Schohn and Cohn (2000), we chose
four pairs of newsgroups that varied in difficulty. We
used a version of the data set that removes duplicates
and some newsgroup-identifying headers, but other-

1http://yann.lecun.com/exdb/mnist/
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Figure 3. Results on newsgroup text. Top: Errors of the
best prunings in various trees for atheism/religion pair.
Bottom: Test error curves on newsgroup tasks.

wise represents each document as a simple word count
vector.2 Each newsgroup had about 1000 documents,
and the data for each pair were partitioned into train-
ing and test sets at a 2:1 ratio. We length-normalized
the count vectors before training the logistic regression
models in order to speed up the training and improve
classification performance.

The initial word count representation of the newsgroup
documents yielded poor quality clusterings, so we tried
various techniques for preprocessing text data before
clustering with Ward’s method: (1) normalize each
document vector to unit length; (2) apply TF/IDF and
length normalization to each document vector; and (3)
infer a posterior topic mixture for each document us-
ing a Latent Dirichlet Allocation model trained on the
same data (Blei et al., 2003). For the last technique,
we used Kullback-Leibler divergence as the notion of
distance between the topic mixture representations.
Figure 3 (top) plots the errors of the best prunings.
Indeed, the various changes-of-representation and spe-
cialized notions of distance help build clusterings of
greater utility for cluster-adaptive active learning.

In all four pairwise tasks, both margin-based sampling
and cluster-adaptive sampling outperformed random
sampling. Figure 3 (bottom) shows the test errors
on two of these newsgroup pairs. We observed the
same effects regarding cluster-adaptive sampling and

2http://people.csail.mit.edu/jrennie/20Newsgroups/

margin-based sampling as in the OCR digits data.

4.2. Rare Category Detection

To demonstrate its versatility, we applied our cluster-
adaptive sampling method to a rare category detec-
tion task. We used the Statlog Shuttle data, a set of
43500 examples from seven different classes; the small-
est class comprises a mere 0.014% of the whole. To
discover at least one example from each class, ran-
dom sampling needed over 8000 queries (averaged over
several trials). In contrast, cluster-adaptive sampling
needed just 880 queries; it sensibly avoided sampling
much from clusters confidently identified as pure, and
instead focused on clusters with more potential.
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Abstract

After a classifier is trained using a machine learn-
ing algorithm and put to use in a real world sys-
tem, it often faces noise which did not appear
in the training data. Particularly, some subset
of features may be missing or may become cor-
rupted. We present two novel machine learn-
ing techniques that are robust to this type of
classification-time noise. First, we solve an ap-
proximation to the learning problem using linear
programming. We analyze the tightness of our
approximation and prove statistical risk bounds
for this approach. Second, we define the online-
learning variant of our problem, address this vari-
ant using a modified Perceptron, and obtain a
statistical learning algorithm using an online-to-
batch technique. We conclude with a set of ex-
periments that demonstrate the effectiveness of
our algorithms.

1. Introduction

Supervised machine learning techniques often play a cen-
tral role in solving complex real-world classification prob-
lems. First, we collect a training set of labeled examples
and present this set to a machine learning algorithm. Then,
the learning algorithm constructs a classifier, which can be
put to use as a component in a working system. The pro-
cess of collecting the training set and constructing the clas-
sifier is called thetraining phase, whereas everything that
occurs after the hypothesis has been determined is called
theclassification phase. In many cases, the training phase
can be performed under sterile and controlled conditions,
and care can be taken to collect a high quality training set.
In contrast, the classification phase often takes place in the
noisy and uncertain conditions of the real world, and some

Appearing inProceedings of the25 th International Conference
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of the features that were available during the training phase
may be missing or corrupted. In this paper, we explore
the possibility of anticipating and preparing for this typeof
classification-time noise.

The problem of corrupted and missing features occurs in
a variety of different classification settings. For example,
say that our goal is to learn an automatic medical diagno-
sis system. Each instance represents a patient, each feature
contains the result of a medical test performed on that pa-
tient, and the purpose of the system is to detect a certain
disease. When constructing the training set, we go to the
trouble of carefully performing every possible test on each
patient. However, when the learned classifier is eventu-
ally deployed as part of a diagnosis system, and applied
to new patients, it is highly unlikely that all of the test re-
sults will be available. Technical difficulties may prevent
certain tests from being performed. Different patients may
have different insurance policies, each covering a different
set of tests. A patient’s blood sample may become con-
taminated, replacing the features that correspond to blood
tests with random noise, while having no effect on other
features. We would still like our diagnosis system to make
accurate predictions. Alternatively, our goal may be to train
a fingerprint recognition system that controls the lock on a
door. After a few days of flawless operation, a user with
greasy fingers comes along and leaves an oily smudge on
the fingerprint scanner panel. From then on, all of the fea-
tures measured from the area under the smudge are either
distorted or cannot be extracted altogether. Ideally, the fin-
gerprint recognition system should continue operating.

We take a worst-case approach to our problem, and assume
that the set of affected features is chosen by an adversary
individually per instance. More specifically, we assume
that each feature is assigned an a-priori importance value
and the adversary may remove or corrupt any feature sub-
set whose total value is upper-bounded by a predefined pa-
rameter. In many natural settings, missing and damaged
features are not actually chosen adversarially, but we find it
beneficial to have our algorithm as robust as possible.
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We present two different learning algorithms for our prob-
lem, each with pros and cons. The first approach formu-
lates the learning problem as a linear program (LP), in a
way that closely resembles the quadratic programming for-
mulation of the Support Vector Machine (Vapnik, 1998).
However, the number of constraints in this LP grows ex-
ponentially with the number of features. Using tricks from
convex analysis, we derive a related polynomial-size LP,
and give conditions under which it is an exact reformulation
of the original exponential-size LP. When these conditions
do not hold, the polynomial-size LP still approximates the
exponential-size LP, and we prove an upper bound on the
approximation difference. Despite the fact that the distribu-
tion of training examples is different from the distribution
of examples observed during the classification phase, we
prove a statistical generalization bound for this approach.

Letting m denote the size of our training set andn the
number of features, our polynomial LP formulation uses
O(mn) variables andO(mn) sparse constraints. Depend-
ing on the dataset, this can still be rather large for off-the-
shelf LP solvers. We see this as a shortcoming of our first
approach, which brings us to our second algorithmic ap-
proach. We define an online learning problem, which is
closely related to the original statistical learning problem.
We devise a modified version of the Perceptron algorithm
(Rosenblatt, 1958) for this online problem, and convert this
Perceptron into a statistical learning algorithm using an
online-to-batch conversion technique (Cesa-Bianchi et al.,
2004). This approach benefits from the computational ef-
ficiency of the online Perceptron, and from the generaliza-
tion properties and theoretical guarantees provided by the
online-to-batch technique. Experimentally, we observe that
the efficiency of our second approach seems to come at the
price of accuracy.

Choosing an adequate regularization scheme is one of the
keys to solving this problem successfully. Many existing
machine learning algorithms, such as the Support Vector
Machine, useL2 regularization to promote statistical gen-
eralization. WhenL2 regularization is used, the learning
algorithm may put a large weight on one feature and com-
pensate by putting a small weight on another feature. This
promotes classifiers that focus their weight on the features
that contribute the most. For example, in the degenerate
case where one of the features actually equals the label, an
L2 regularized learning algorithm is likely to put most of its
weight on that one feature. Some algorithms useL1 regu-
larization to further promote sparse solutions. In the con-
text of our work, sparsity actually makes a classifier more
susceptible to adversarial feature-corrupting noise. Here
we prefer dense classifiers, which hedge their bets as much
as possible. Both of the algorithms presented in this paper
achieve this density by using aL∞ regularization scheme.
It is interesting to note that the choice of theL∞ norm

emerges as a natural one in the theoretical analysis of our
first, LP-based learning approach.

1.1. Related Work

Previous papers on “noise-robust learning” mainly deal
with the problem of learning with a noisy training set,
a research topic which is entirely orthogonal to ours.
The learning algorithms presented in (Dietterich & Bakiri,
1995) and (Gamble et al., 2007) try to be robust to general
additive noise that appears at classification time, but not
necessarily to feature deletion or corruption. (?) presents
adversarial learning as a one-shot two-player game be-
tween the classifier and an adversary, and designs a ro-
bust learning algorithm from a Bayesian-learning perspec-
tive. Our approach shares the motivation of (?) but is oth-
erwise significantly different. In the related field of on-
line learning, where the training and classification phases
are interlaced and cannot be distinguished, (Littlestone,
1991) proves that the Winnow algorithm can tolerate vari-
ous types of noise, both adversarial and random.

Our work is most closely related to the work in (Globerson
& Roweis, 2006), and its more recent enhancement in (Teo
et al., 2008). Our motivation is the same as theirs, and the
approaches share some similarities. Our experiments, pre-
sented in Sec. 4, suggest that our algorithms achieve con-
siderably better performance, but we would also like to em-
phasize more fundamental differences between the two ap-
proaches: We allow features to have different a-priori im-
portance levels, and we take this information into account
in our algorithm and analysis. Our approach usesL∞ reg-
ularization to promote a dense solution, where (Globerson
& Roweis, 2006) usesL2 regularization. Our second ap-
proach, which uses online-to-batch conversion techniques,
is entirely novel. Finally, we prove statistical generalization
bounds for our algorithms despite the change in distribution
at classification time.

2. A Linear Programming Formulation

In this section, and throughout the paper, we use lower-
case bold-face letters to denote vectors, and their plain-face
counterparts to denote each vector’s components. We also
use the notation[n] as shorthand for{1, . . . , n}.

2.1. Feature Deleting Noise

We first examine the case where features are missing at
classification time. LetX ⊆ R

n be an instance space
and letD be a probability distribution on the product space
X × {±1}. We receive a training setS = {(xi, yi)}m

i=1

sampled i.i.d. fromD, which we use to learn our classifier.
We assign each featurej ∈ [n] a valuevj ≥ 0. Infor-
mally, we think ofvj as the a-prioriinformativenessof fea-
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turej, or as the importance of featurej to the classification
task. It can also represent the cost of obtaining the feature
(such as the price of a medical test). Next, we define the
value of a subsetJ of features as the sum of values of the
features in that subset, and we denoteV (J) =

∑

j∈J vj .
For instance, we frequently useV ([n]) when referring to
∑n

j=1 vj andV ([n] \ J) when referring to
∑

j 6∈J vj . Next,
we fix a noise-tolerance parameterN in [0, V ([n])] and de-
fine P = V ([n]) − N . During the classification phase,
instances are generated in the following way: First, a pair
(x, y) is sampled fromD. Then, an adversary selects a
subset of featuresJ ⊂ [n] such thatV ([n] \ J) ≤ N , and
replacesxj with 0 for all j 6∈ J . The adversary selectsJ
for each instance individually, and with full knowledge of
the inner workings of our classifier. The noise-tolerance pa-
rameterN essentially acts as an upper bound on the amount
of damage the adversary is allowed to inflict. We would
like to use the training setS (which does not have miss-
ing features) to learn a binary classifier that is robust to this
specific type of classification-time noise.

We focus on learning linear margin-based classifiers. A lin-
ear classifier is defined by a weight vectorw ∈ R

n and a
bias termb ∈ R. Given an instancex, which is sampled
from D, and a set of coordinatesJ left intact by the adver-
sary, the linear classifier outputsb +

∑

j∈J wjxj . The sign
of b +

∑

j∈J wjxj constitutes the actual binary prediction,
while |b +

∑

j∈J wjxj | is understood as the degree of con-
fidence in that prediction. A classification mistake occurs
if and only if y(b+

∑

j∈J wjxj) ≤ 0, so we define therisk
of the linear classifier(w, b) as

R(w, b) = Pr
(x,y)∼D

(

∃J with V ([n] \ J) < N (1)

s.t. y
(
b +

∑

j∈J wjxj

)
≤ 0

)

.

Since D is unknown, we cannot explicitly minimize
Eq. (1). Thus, we turn to the empirical estimate of Eq. (1),
theempirical risk, defined as

1

m

m∑

i=1

[[

min
J : V ([n]\J)≤N

yi

(
b +

∑

j∈J wjxi,j

)
≤ 0

]]

, (2)

where[[π]] denotes the indicator function of the predicateπ.
Minimizing the empirical risk directly constitutes a difficult
combinatorial optimization problem. Instead, we formulate
a linear program that closely resembles the formulation of
the Support Vector Machine (Vapnik, 1998). We choose
a margin parameterγ > 0 and a regularization parameter
C > 0, and solve the problem

min
w,b,ξ

1
mγ

∑m
i=1 ξi (3)

s.t. ∀ i ∈ [m] ∀J : V ([n] \ J) ≤ N

yi

(
b +

∑

j∈J wjxi,j

)
≥ γV (J)

P − ξi ,

∀ i ∈ [m] ξi ≥ 0 , ‖w‖∞ ≤ C .

The objective function of Eq. (3) is called theempirical
hinge-lossobtained on the sampleS. Since ξi is con-
strained to be non-negative, each training example con-
tributes a non-negative amount to the total loss. Moreover,
the objective function of Eq. (3) upper bounds the empiri-
cal risk of(w, b). More specifically, for any feasible point
(w, b, ξ) of Eq. (3),ξi upper boundsγ times the indicator
function of the event

min
J : V ([n]\J)≤N

yi

(
b +

∑

j∈J wjxi,j

)
≤ 0 .

To see this, note that for a given example(xi, yi), if there
exists a feature subsetJ such thatV ([n] \ J) ≤ N and
yi(b +

∑

j∈J wjxj) ≤ 0 then the first constraint in Eq. (3)
enforcesξi ≥ γV (J)/P . The assumptionV ([n] \ J) ≤ N

now implies thatV (J) ≥ P , and thereforeξi ≥ γ. If such
a setJ does not exist, then the second constraint in Eq. (3)
enforcesξi ≥ 0.

The optimization problem above actually does more than
minimize an upper bound on the empirical risk. It also re-
quires the margin attained by the feature subsetJ to grow
with proportion toV (J). While a true adversary would
always inflict the maximal possible damage, our optimiza-
tion problem also prepares for the case where less damage
is inflicted, requiring the confidence of our classifier to in-
crease as less noise is introduced. We also restrictw to a
hyper-box of radiusC, which controls the complexity of
the learned classifier and promotes dense solutions. More-
over, this constraint is easy to compute and makes our algo-
rithms more efficient. Although Eq. (3) is a linear program,
it is immediately noticeable that the size of its constraintset
may grow exponentially with the number of featuresn. For
example, ifvj = 1 for all j ∈ [n] and ifN is a positive in-
teger, then the linear program contains over

(
n
N

)
constrains

per example. We deal with this problem below.

2.2. A Polynomial Approximation

Taking inspiration from (Carr & Lancia, 2000), we find
an efficient approximate formulation of Eq. (3), which
turns out to be an exact reformulation of Eq. (3) when
vj ∈ {0, 1} for all j ∈ [n]. Specifically, we replace Eq. (3)
with

min 1
mγ

∑m
i=1 ξi (4)

s.t. ∀ i ∈ [m] Pλi − ∑n
j=1 αi,j + yib ≥ −ξi

∀ i ∈ [m] ∀ j ∈ [n] yiwjxi,j − γvj

P ≥ λivj − αi,j ,

∀ i ∈ [m] ∀ j ∈ [n] αi,j ≥ 0 ,

∀ i ∈ [m] λi ≥ 0 and ξi ≥ 0 ,

‖w‖∞ ≤ C ,

where the minimization is overw ∈ R
n, b ∈ R, ξ ∈ R

m,
λ ∈ R

m, andα1, . . . ,αm, each inR
n. The number of
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variables and the number of constraints in this problem are
bothO(mn). The following theorem explicitly relates the
optimization problem in Eq. (4) with the one in Eq. (3).

Theorem 1. If (w⋆, b⋆, ξ⋆,λ⋆,α⋆
1, . . . ,α

⋆
m) is an optimal

solution to Eq. (4), then(w⋆, b⋆, ξ⋆) is a feasible point of
Eq. (3), and therefore the value of Eq. (4) upper-bounds the
value of Eq. (3). Moreover, ifvj ∈ {0, 1} for all j ∈ [n],
then(w⋆, b⋆, ξ⋆) is an optimal solution to Eq. (3). Finally,
if it does not hold thatvj ∈ {0, 1} for all j ∈ [n], and
assuming‖xi‖ ≤ 1 for all i, then the difference between
the value of Eq. (4) and the value of Eq. (3) is at mostC/γ.

As a first step towards proving Thm. 1, we momentarily
forget about the optimization problem at hand and focus on
another question: given a specific triplet(w, b, ξ), is it a
feasible point of Eq. (3) or not? More concretely, for each
training example(xi, yi), we would like to determine if for
all J with V ([n] \ J) ≤ N it holds that

yi

(
b +

∑

j∈J wjxi,j

)
≥ γV (J)

P − ξi . (5)

We can answer this question by comparing−ξi with the
value of the following integer program:

min
τ∈{0,1}n

yib +
∑n

j=1 τj

(
yiwjxi,j − γvj

P

)
(6)

s.t. P ≤ ∑n
j=1 τjvj .

For example, if the value of this integer program is less than
−ξi, then letτ ′ be an optimal solution and we have that
yi(b+

∑n
j=1 τ ′

jwjxi,j) < (γ
∑n

j=1 τ ′
jvj)/P −ξi. Namely,

the setJ = {j ∈ [n] : τ ′
j = 1} violates Eq. (5). On the

other hand, if there exists someJ with V ([n]\J) ≤ N that
violates Eq. (5) then its indicator vector is a feasible point
of Eq. (6) whose objective value is less than−ξi.

Directly solving the integer program in Eq. (6) may be dif-
ficult, so instead we examine the properties of the following
linear relaxation:

min
τ

yib +
∑n

j=1 τj

(
yiwjxi,j − γvj

P

)
(7)

s.t. ∀j ∈ [n] 0 ≤ τj ≤ 1 and P ≤ ∑n
j=1 τjvj .

To analyze this relaxation we require the following lemma.

Lemma 1. Fix an example(xi, yi), a linear classifier
(w, b), and a scalarξi > 0, and letθ be the value of Eq. (7)
with respect to these choices. (a) Ifθ ≥ −ξi then Eq. (5)
holds. (b) In the special case wherevj ∈ {0, 1} for all
j ∈ [n] and whereN is an integer,θ ≥ −ξi if and only if
Eq. (5) holds. (c) There exists a minimizer of Eq. (7) with
at most one coordinate in(0, 1).

The proof of the lemma is straightforward but technical,
and is omitted due to lack of space. Lemma 1 tells us that
comparing the value of the linear program in Eq. (7) with

−ξi provides a sufficient condition for Eq. (5) to hold for
the example(xi, yi). Moreover, this condition becomes
both sufficient and necessary in the special case where
vj ∈ {0, 1} for all j ∈ [n]. We now proceed with prov-
ing the first part of Thm. 1 using claim (a) in Lemma 1.
The remaining parts of the theorem follow similarly from
claims (b) and (c) in the lemma.

Proof of Theorem 1.Let (w⋆, b⋆, ξ⋆,λ⋆,α⋆
1, . . . ,α

⋆
m) be

an optimal solution to the linear program in Eq. (4). Specif-
ically, it holds for all i ∈ [m] that α⋆

i and λ⋆
i are non-

negative, thatPλ⋆
i −

∑n
j=1 α⋆

i,j + yib
⋆ ≥ −ξ⋆

i , and that

∀ j ∈ [n] yiw
⋆
j xi,j −

γvj

P
≥ λ⋆

i vj − α⋆
i,j .

Therefore, it also holds that the value of the following op-
timization problem

max
αi,λi

Pλi − ∑n
j=1 αi,j + yib

⋆ (8)

s.t. ∀ j ∈ [n] yiw
⋆
j xi,j − γvj

P ≥ λivj − αi,j ,

∀ j ∈ [n] αi,j ≥ 0 and λi ≥ 0 ,

is at least−ξ⋆
i . The strong duality principle of linear pro-

gramming (Boyd & Vandenberghe, 2004) states that the
value of Eq. (8) equals the value of its dual optimization
problem, which is:

min
τ

yib
⋆ +

∑n
j=1 τj

(
yiw

⋆
j xi,j − γvj

P

)
(9)

s.t. ∀ j ∈ [n] 0 ≤ τj ≤ 1 and P ≤ ∑n
j=1 τjvj .

In other words, the value of Eq. (9) is also at least−ξ⋆
i .

Using claim (a) of Lemma 1, we have that

yi

(
b⋆ +

∑

j∈J w⋆
j xi,j

)
≥ γV (J)

P − ξ⋆
i ,

holds for allJ with V ([n] \ J) ≤ N . The optimization
problem in Eq. (4) also constrains‖w‖∞ ≤ C andξi ≥ 0
for all i ∈ [m], thus,(w⋆, b⋆, ξ⋆) satisfies the constraints in
Eq. (3). Since Eq. (3) and Eq. (4) have the same objective
function, the value of Eq. (3) is upper bounded by the value
of Eq. (4).

2.3. Generalization Bounds

We now prove a generalization bound on the risk of the
classifier learned in our framework, using PAC-Bayesian
techniques (McAllester, 2003). Throughout, we assume
that ‖x‖∞ ≤ 1 with probability 1 overD. For simplic-
ity, we assume that the bias termb is 0, and thatvj > 0
for all j. These assumptions can be relaxed at the cost of
a somewhat more complicated analysis. Given a classifier
w, let ℓγ(w,x, y) denote theγ-loss attained on the exam-
ple (x, y), defined as

[[

min
J : V ([n]\J)≤N

y
∑

j∈J

wjxj <
γV (J)

P

]]

, (10)
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where[[·]] again denotes the indicator function. Note that
E[ℓ0(w,x, y)] = R(w, 0), whereR is defined in Eq. (1).

Theorem 2. Let S be a sample of sizem drawn i.i.d from
D. For anyδ > 0, with probability at least1 − δ, it holds
for all w ∈ R

n with ‖w‖∞ ≤ C that the risk associated
with w is at most

sup
{

ǫ : KL
(

1
m

∑m
i=1 ℓγ(w,xi, yi)

∥
∥
∥ ǫ

)

≤ β(m,δ,γ)
m−1

}

,

where β(m, δ, γ) = ln(m/δ) +
∑n

j=1 ln(4PC/(γvj))
and KL is the Kullback-Leibler divergence. The above
is upper-bounded by the empiricalγ-loss (which equals
1
m

∑m
i=1 ℓγ(w,xi, yi)), plus the additional term

√

2

m

∑m
i=1 ℓγ(w,xi, yi)

β(m,δ,γ)
m−1 +

2β(m, δ, γ)

m − 1
.

Proof sketch.The proof follows along similar lines to the
PAC-Bayesian bound for linear classifiers in (McAllester,
2003). First, define the axis-aligned boxB =

∏n
j=1[wj −

γvj

2P , wj +
γvj

2P ] ∩ [−C,C]. We use the margin concept to
upper boundE(x,y)∼D[ℓ0(w,x, y)] by the expectedℓγ/2

loss overD of a classifier sampled uniformly fromB ∩
[−C,C]n. We can upper bound this expected loss us-
ing the PAC-Bayesian theorem (McAllester, 2003), where
the uniform distribution overB ∩ [−C,C]n is the poste-
rior classifier distribution, and the uniform distributionover
[−C,C]n is the prior. The bound we get is defined in terms
of the average empiricalℓγ/2 loss of a random classifier
from B, plus a complexity term dependent on the volume
ratio betweenB and [−C,C]n. Finally, this average loss
can be upper bounded by the empiricalℓγ loss ofw by re-
peating the technique of the first stage. The weaker bound
stated in the theorem follows from a lower bound on the
KL divergence, presented in (McAllester, 2003).

It is interesting to note thatL∞ regularization emerges as
the most natural one in this setting, since it induces the most
convenient type of margin for relating theℓ0, ℓγ/2, ℓγ loss
functions as described above. This lends theoretical sup-
port to our choice of theL∞ norm in our algorithms.

2.4. Feature Corrupting Noise

We now shift our attention to the case where a subset of the
features is corrupted with random noise, and show that the
the same LP approach used to handle missing features can
also deal with corrupted features if the margin parameter
γ in Eq. (4) is sufficiently large. For simplicity, we shall
assume that all features are supported on[−1, 1] with zero
mean. Unlike the feature deleting noise, we now assume
that the each feature selected by the adversary is replaced
with noise sampled from some distribution, also supported
on [−1, 1] and having zero mean. The following theorem

relates the risk of a classifier in the above setting, to its
expectedγ-loss in the feature deletion setting, where the
latter can be bounded with Thm. 2.

Theorem 3. Let ǫ, C, andN be arbitrary positives, and
let γ be at leastC

√

N ln(1/ǫ)/2. Assume that we solve
Eq. (4) with parametersγ, C, N and withvj = 1 for all
j ∈ [n]. Letw be the resulting linear classifier, and assume
for simplicity that the bias termb is zero. Letf be a random
vector-valued function onX , such that for everyx ∈ X ,
f(x) is the instancex after the feature corruption scheme
described above. Then, usingℓγ as defined in Eq. (10), for
(x, y) drawn randomly fromD, we have:

Pr
(
y〈w, f(x)〉 ≤ 0

)
≤ E [ℓγ(w,x, y)] + ǫ .

Proof. Let (x, y) be an example and letJ denote the fea-
ture subset which remains uncorrupted by the adversary.
Using Hoeffding’s bound and our assumption onγ, we

have thatPr
(

y
∑

j /∈J wjfj(x) ≤ −γ
)

is upper bounded

by ǫ. Therefore, with probability at least1 − ǫ over the
randomness off , y〈w, f(x)〉 is equal to:

y
∑

j∈J

wjxj + y
∑

j /∈J

wjfj(x) > y
∑

j∈J

wjxj − γ . (11)

Thus, with probability at least1 − ǫ, Pr(y〈w, f(x)〉 < 0)
is upper bounded byE[ℓγ(w,x, y)]. Otherwise, with prob-
ability at mostǫ, Pr(y〈w, f(x)〉 < 0) ≤ 1.

We conclude with an interesting observation. In the fea-
ture corruption setting, making a correct prediction boils
down to achieving a sufficiently large margin on the uncor-
rupted features. Letr ∈ (0, 1) be a fixed ratio between
N andn, and letn grow to infinity. Assuming a reason-
able degree of feature redundancy, the termy

∑

j∈J wjxj

grows asΘ(n). On the other hand, Hoeffding’s bound tells
us thaty

∑

j 6∈J wjxj grows only asO(
√

N). Therefore,
for r arbitrarily close to1 and a large enoughn, the first
sum in Eq. (11) dominates the second. Namely, by setting
γ = Ω(

√
N) in Eq. (4), our ability to withstand feature cor-

ruption matches our ability to withstand feature deletion.

3. Solving the Problem with the Perceptron

We now turn to our second learning algorithm, taking a
different angle on the problem. We momentarily forget
about the original statistical learning problem and instead
define a related online prediction problem. In online learn-
ing there is no distinction between the training phase and
the classification phase, so we cannot perfectly replicate
the classification-time noise scenario discussed above. In-
stead, we assume that an adversary removes features from
every instance that is presented to the algorithm. We ad-
dress this online problem with a modified version of the
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Perceptron algorithm (Rosenblatt, 1958) and use an online-
to-batch conversion technique to convert the online algo-
rithm back into a statistical learning algorithm. The de-
tour through online learning gives us efficiency while the
online-to-batch technique provides us with the statistical
generalization properties we are interested in.

3.1. Perceptron with Projections onto the Cube

We start with a modified version of the well-known Per-
ceptron algorithm (Rosenblatt, 1958), which observes a se-
quence of examples

(
(xi, yi)

)m

i=1
, one example at a time,

and incrementally builds a sequence
(
(wi, bi)

)m

i=1
of lin-

ear margin-based classifiers, while constraining them to a
hyper-cube. Before processing examplei, the algorithm
has the vectorwi and the bias termbi stored in its mem-
ory. An adversary takes the instancexi and reveals only
a subsetJi of its features to the algorithm, attempting to
cause the online algorithm to make a prediction mistake.
In choosingJi, the adversary is restricted by the constraint
V ([n] \ J) ≤ N . Next, the algorithm predicts the label
associated withxi to be

sign
(

bi +
∑

j∈Ji
wi,jxi,j

)

.

After the prediction is made, the correct labelyi is revealed
and the algorithms suffers a hinge-lossξ(w, b,x, y), de-
fined as
[

max
J : V ([n]\J)≤N

γV (J)

P
− y

(
b +

∑

j∈J wjxj

)
]

+

, (12)

whereP = V ([n]) − N and[α]+ denotes the hinge func-
tion, max{α, 0}. Note thatξ(wi, bi,xi, yi) upper-bounds
γ times the indicator of a prediction mistake on the current
example, for any choice ofJi made by the adversary. We
choose to denote the loss byξ to emphasize the close rela-
tion betweenξ(wi, bi,xi, yi) andξi in Eq. (3). Due to our
choice of loss function, we can assume that the adversary
chooses the subsetJi that inflicts the greatest loss.

The algorithm now uses the correct labelyi to construct the
pair (wi+1, bi+1), which is used to make the next predic-
tion. If ξ(w, b,x, y) = 0, the algorithm defineswi+1 = wi

andbi+1 = bi. Otherwise, the algorithm defineswi+1 us-
ing the following coordinate-wise update

j ∈ [n] wi+1,j =

{
[wi,j + yiτxi,j ]±C if j ∈ Ji

wi,j otherwise
,

andbi+1 = [bi + yiτ ]±C , whereτ =
√

n+1C√
2m

and [α]±C

abbreviates the functionmax
{

min{α,C},−C
}

. This up-
date is nothing more than the standard Perceptron update
with constant learning rateτ , with an added projection step
onto the hyper-cube of radiusC. The specific value ofτ

used above is the value that optimizes the cumulative loss
bound below. As in the previous section, restricting the
online classifier to the hyper-cube helps us control its com-
plexity, while promoting dense classifiers. It also comes in
handy in the next stage, when we convert the online algo-
rithm into a statistical learning algorithm.

Using a rather straightforward adaptation of standard Per-
ceptron loss bounds, to the case where the hypothesis is
confined to the hyper-cube, leads us to the following the-
orem, which compares the cumulative loss suffered by the
algorithm with the cumulative loss suffered by any fixed
hypothesis in the hyper-cube of radiusC.

Theorem 4. Choose anyC > 0 and let w⋆ ∈ R
n

and b⋆ ∈ R be such that‖w⋆‖∞ ≤ C and |b⋆| ≤
C. Let

(
(xi, yi)

)m

i=1
be an arbitrary sequence of exam-

ples, with ‖xi‖1 ≤ 1 for all i. Assume that this se-
quence is presented to our modified Perceptron, and let
ξ(wi, bi,xi, yi) be as defined in Eq. (12). Then it holds
that 1

γm

∑m
i=1 ξ(wi, bi,xi, yi) is upper-bounded by

1

γm

m∑

i=1

ξ(w⋆, b⋆,xi, yi) +
C

γ

√

2(n + 1)

m
.

The next step is to convert our online algorithm into a sta-
tistical learning algorithm.

3.2. Converting Online to Batch

To obtain a statistical learning algorithm, with risk guar-
antees, we assume that the sequence of examples pre-
sented to the modified Perceptron algorithm is a training
set sampled i.i.d. from the underlying distributionD. We
turn to the simple averaging technique presented in (Cesa-
Bianchi et al., 2004) and definēw = 1

m

∑m
i=1 wi−1 and

b̄ = 1
m

∑m
i=1 bi−1. (w̄, b̄) is called theaverage hypothesis,

and defines our robust classifier. We use the derivation in
(Cesa-Bianchi et al., 2004) to prove that the average classi-
fier provides an adequate solution to our original problem.

Note that the loss function we use, defined in Eq. (12), is
bounded and convex in its first two arguments. This al-
lows us to apply (Cesa-Bianchi et al., 2004, Corollary 2) to
relate the risk of(w̄, b̄) with the cumulative online loss suf-
fered by the Perceptron. It also allows us to apply Hoeffd-
ing’s bound to relate the expected loss of any fixed classifier
(w⋆, b⋆) with its empirical loss on the training set. Com-
bining both bounds results in the following corollary.

Corollary 1. For anyδ > 0, with probability at least1− δ

over the random sampling ofS, our algorithm constructs
(w̄, b̄) such thatE(x,y)∼D

[
ξ(w̄, b̄,x, y)

]
is at most

min
(w,b)∈H

E [ξ(w, b,x, y)] + (3C+φ)

√

2(n + 1 + ln(2
δ ))

m
,
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Figure 1.A comparison of our LP-based approach with the algo-
rithm of (Globerson & Roweis, 2006) (GR) and with SVM on
SPAM (left) and MNIST (right), with random noise.

whereφ = γ maxJ:V ([n]\J)≤N

(
V (J)/P

)
, andH is the

set of all pairs(w, b) such that‖w‖∞ ≤ C and|b| ≤ C.

Using the fact that the hinge loss upper-boundsγ times the
indicator function of a prediction mistake, regardless of the
adversary’s choice of the feature set, we have that the ex-
pected hinge loss upper-boundsγR(w̄, b̄).

4. Experiments and Conclusions

We compare the performance of our two algorithms (LP-
based and online-to-batch) with that of a linearL2 SVM
(Joachims, 1998) and with the results reported in (Glober-
son & Roweis, 2006). We used the GLPK package
(http://www.gnu.org/software/glpk) to solve
the LP formulation of our LP-based algorithm.

We begin with a highly illustrative sanity check. We gener-
ated a synthetic dataset of1000 linearly separable instances
in R

20 and added label noise by flipping each label with
probability 0.2. Then, we added two copies of the actual
label as additional features to each instance, for a total
of 22 features. We randomly split the data into equally
sized training and test sets, and trained an SVM classi-
fier on the training set. We setvj = 1 for j ∈ [20] and
v21 = v22 = 10, expressing our prior knowledge that the
last two features are more valuable. Using these feature
values, we applied our technique with different values of
the parameterN . We removed one or both of the high-
value features from the test set and evaluated the classi-
fiers. With only one feature removed both SVM and our
approach attained a test error of zero. With two features
removed, the test error of the SVM classifier jumped to
0.477 ± 0.004 (over100 random repetitions of the exper-
iment), indicating that it essentially put all of its weight
on the two perfect features. With the noise parameter set
to N = 20, our approach attained a test error of only
0.22± 0.002. This is only marginally above the best possi-
ble error rate for this setting.

Following the lead of (Globerson & Roweis, 2006),
we conducted experiments using the SPAM and MNIST
datasets. The SPAM dataset, taken from the UCI reposi-
tory, is a collection of spam and non-spam e-mails. Spam
can be detected by different word combinations, so we ex-
pect considerable feature redundancy in this dataset. The
MNIST dataset is a collection of pixel-maps of handwritten
digits. Again, following (Globerson & Roweis, 2006), we
focused on the binary problem of distinguishing the digit4
from the digit7. Adjacent pixels often contain redundant
information, making MNIST well-suited for our needs.

On each dataset, we performed2 types of experiments. The
first type follows exactly the protocol used in (Globerson
& Roweis, 2006). Namely, the algorithm is trained with a
small training set of50 instances, and its performance is
tested in the face ofrandomfeature-deleting noise, which
uniformly deletesN non-zero features from each test in-
stance, for various choices ofN . Notice that this setting
deviates from the adversarial setting considered so far, and
the reason for conducting this experiment is to compare our
results to those reported in (Globerson & Roweis, 2006).
A validation set is used for parameter tuning. We did not
test our online-to-batch algorithm within this setting, since
it has little advantage with such a small training set. The
results are presented in Fig. 1, and show test error as a
function of the number of deleted features. Compared to
its competitors, our algorithm has a clear and substantial
advantage.

The second type of experiment simulates more closely the
adversarial setting discussed throughout the paper. Using
10-fold cross-validation, we corrupted each test instance
using a greedy adversary, which deletes the most valuable
features of each instance until either the limitN is reached
or all useful features are deleted.1/9 of the training set
was used for parameter tuning. Due to computational con-
siderations when running our LP-based algorithm, we per-
formed a variant of bagging by randomly splitting the train-
ing set into chunks, training on each chunk individually,
and finally averaging the resulting weight vectors. In con-
trast, our online-to-batch algorithm trained on the entire
training set at once, and so did the SVM algorithm. We
repeated this process for different values ofN . For the
SPAM dataset, we repeated this entire experiment twice,
once with features valuesvj set uniformly to1, and once
with vj set using a mutual information heuristic. Formally,
we set

vj = 1
Z max

c∈R

I
(
[[xj > c]]; y

)
,

whereZ is such that
∑

vj = n, and whereI([[xj > c]]; y)
is the mutual information between the predicate[[xj > c]]
and the labely, over all examples in the training set. Intu-
itively, we are calculating the amount of information con-
tained in each individual feature on the label, provided that
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Figure 2.Experiments on SPAM with∀j ∈ J, vj = 1 (left) and withvj set with a mutual information heuristic (center). Experiments
on MNIST withvj set with a mutual information heuristic (right).

we are looking only at linear threshold functions. When ex-
perimenting with the MNIST dataset, we only used the val-
ues ofvj set by our heuristic. This is a natural choice since
the features of MNIST are of markedly different impor-
tance levels. For example, the corner pixels, which are al-
ways zero, are completely uninformative, while other pix-
els may be very informative. The results are presented in
Fig. 2, and show test error as a function ofN . Clearly, our
algorithms have the advantage. SVM repeatedly puts all of
its eggs in a small number of baskets, and is severely pun-
ished for this, while our technique anticipates the actions
of the adversary and hedges its bets accordingly.

Moreover, the results in Fig. 2 demonstrate the tradeoffs
between our LP-based and online-to-batch algorithms. Al-
though we have handicapped the LP-based algorithm by
chunking the training set, its performance is comparable
and sometimes superior to that of the online-to-batch algo-
rithm. With less or without chunking, we expect its perfor-
mance to be even better.

We conclude that our proposed algorithms successfully
withstand feature corruption at classification time, and con-
siderably improve upon the current state of the art. On a
more general note, this work has interesting connections to
a recent trend in machine learning research, which is to de-
velop sparse classifiers supported on a small subset of the
features. In our setting, we are interested in the exact op-
posite, and the efficacy of using theL∞ norm is clearly
demonstrated here. The trade-off between robustness and
sparsity provides fertile ground for future research.
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Abstract

We propose a new rule induction algorithm
for solving classification problems via prob-
ability estimation. The main advantage of
decision rules is their simplicity and good in-
terpretability. While the early approaches to
rule induction were based on sequential cov-
ering, we follow an approach in which a sin-
gle decision rule is treated as a base classi-
fier in an ensemble. The ensemble is built
by greedily minimizing the negative loglike-
lihood which results in estimating the class
conditional probability distribution. The in-
troduced approach is compared with other
decision rule induction algorithms such as
SLIPPER, LRI and RuleFit.

1. Introduction

Decision rule is a logical statement of the form: “if
condition then response”. It can be treated as a sim-
ple classifier that gives a constant response for the ob-
jects satisfying the condition part, and abstains from
the response for all the other objects. Induction of
decision rules has been widely considered in the early
machine learning approaches (Michalski, 1983; Cohen,
1995; Fürnkranz, 1996), and rough set approaches to
knowledge discovery (Stefanowski, 1998). The most
popular algorithms were based on a sequential cov-
ering procedure (also known as separate-and-conquer
approach). In this technique, a rule is learned which
covers a part of the training examples, then examples

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

are removed from the training set and the process is
repeated until no examples remain.

Although it seems that decision (classification) trees
are much more popular in data mining and machine
learning applications, recently we are able to ob-
serve again a growing interest in decision rule mod-
els. As an example, let us mention such algorithms as
RuleFit (Friedman & Popescu, 2005), SLIPPER (Co-
hen & Singer, 1999), Lightweight Rule Induction
(LRI) (Weiss & Indurkhya, 2000). All these algorithms
follow a specific iterative approach to decision rule gen-
eration by treating each decision rule as a subsidiary
base classifier in the ensemble. This approach can be
seen as a generalization of the sequential covering, be-
cause it approximates the solution of the prediction
task by sequentially adding new rules to the ensem-
ble without adjusting those that have already been
added (RuleFit is an exception since it generates the
trees first and then transforms them to rules). Each
rule is fitted by concentrating on objects which were
hardest to classify correctly by rules already present in
the ensemble. All these algorithms can be explained
within the framework of boosting (Freund & Schapire,
1997; Mason et al., 1999; Friedman et al., 2000) or
forward stagewise additive modeling (FSAM) (Hastie
et al., 2003), a greedy procedure for minimizing a loss
function on the dataset.

The algorithm proposed in this paper, Maximum
Likelihood Rule Ensembles (MLRules), benefits from
the achievements in boosting machines (Freund &
Schapire, 1997; Mason et al., 1999; Friedman et al.,
2000; Friedman, 2001). Its main idea consists in rule
induction by greedily minimizing the negative loglike-
lihood (also known as logit loss in binary classification
case) to estimate the conditional class probability dis-
tribution. Minimization of such loss function with a
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tree being a base classifier has already been used in
LogitBoost (Friedman et al., 2000) and MART (Fried-
man, 2001), however, here we show a modified proce-
dure, adapted to the case when the decision rule is a
base classifier in the ensemble. In contrary to RuleFit
(where trees are generated first), rules are generated
directly; in contrary to SLIPPER and LRI, negative
loglikelihood loss is used. Moreover, our approach is
distinguished from other approaches to rule induction
by the fact of estimating the class probability distri-
bution instead of single classification and by using the
same single measure (value of the negative loglikeli-
hood) at all stages of the learning procedure: setting
the best cuts (conditions), stopping the rule’s growth
and determining the response (weight) of the rule. We
derive the algorithm for two optimization techniques,
depending on whether we expand the loss function to
the first order (fitting to the gradient) or to the second
order (Newton steps). We report experiments showing
the performance of MLRules and comparing them with
the competitive rule ensemble methods.

The paper is organized as follows. In Section 2,
the problems of classification is described. Section 3
presents a framework for learning rule ensembles. Sec-
tion 4 is devoted to the problem of a single rule gen-
eration. In Section 5 we discuss the issue of conver-
gence of the method, and we propose a modification
to the main algorithm. Section 6 contains experimen-
tal results. The last section concludes the paper and
outlines further research directions.

2. Problem Statement

In the classification problem, the aim is to predict the
unknown class label y ∈ {1, . . . ,K} of an object using
known values of the attributes x = (x1, x2, . . . , xm).
This is done by constructing a classification function
f(x) that predicts accurately the value of y. The ac-
curacy of a single prediction is measured in terms of
the loss function L(y, f(x)), while the overall accuracy
of the function f(x) is measured by the expected loss
(risk) over the data distribution P (x, y):

R(f) = E[L(y, f(x))].

Since P (x, y) is unknown, the risk-minimizing function
(Bayes classifier), f∗ = arg minf E[L(y, f(x))], is also
unknown. The learning procedure uses only a set of
training examples {(x1, y1), . . . , (xn, yn)} to construct
f to be a good approximation of f∗. Usually, it is
performed by minimization of the empirical risk:

Remp(f) =
1
n

n∑
i=1

L(yi, f(xi)), (1)

where function f is chosen from a restricted family
of functions. The most commonly used loss function
is 0-1 loss, L0-1(y, f(x)) = 1 − δy,f(x), where δij =
1 if i = j, otherwise δij = 0. If the correct class
is predicted, classification function is not penalized,
otherwise the unit penalty is imposed. Bayes classifier
has the following form:

f∗(x) = arg min
k∈{1,...,K}

Pr(y = k|x). (2)

The 0-1 loss has several drawbacks. Firstly, if we intro-
duce unequal costs of misclassification, f∗(x) does not
longer have the form (2). Moreover, 0-1 loss is insensi-
tive to the “confidence” of prediction: minimization of
0-1 loss results only in finding the most probable class,
without estimating its probability. On the contrary,
probability estimation provides us with the conditional
class distribution P (y|x), by which we can measure the
prediction confidence. Moreover, all we need to obtain
the Bayes classifier for any loss function is the condi-
tional probability distribution. Here we consider the
estimation of probabilities using the well-known max-
imum likelihood estimation (MLE) method. MLE can
be stated as the empirical risk minimization by tak-
ing the negative logarithm of the conditional likelihood
(negative log-likelihood) as the loss function:

` =
n∑
i=1

− logP (yi|xi). (3)

We model probabilities P (1|x), . . . , P (K|x) with a vec-
tor f(x) = (f1(x), . . . , fK(x)) using the multinomial
logistic transform:

P (y|x) =
efy(x)∑K
k=1 e

fk(x)
. (4)

Then (3) has the form:

`(f) =
n∑
i=1

log

(
K∑
k=1

efk(xi)

)
− fyi

(xi). (5)

This expression (with the exception that vector func-
tion f is used instead of scalar f) has the form of (1) if

we identify L(yi, f(xi)) = log
(∑K

k=1 e
fk(xi)

)
−fyi

(xi).
It is worth mentioning that the Bayes function f∗(x)
is obtained by the inverse of (4).

3. Rules Ensembles

In this section, we describe the scheme of learning rule
ensembles. Let Xj be the set of all possible values
of attribute j. Condition part of the rule consists of
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a conjunction of elementary expressions of the form
xj ∈ Sj , where xj is the value of object x on attribute
j and Sj is a subset of Xj , j ∈ {1, . . . ,m}. We assume
that in the case of ordered value sets, Sj has the form
of the interval [sj ,∞) or (−∞, sj ] for some sj ∈ Xj , so
that the elementary expressions take the form xj ≥ sj
or xj ≤ sj . For nominal attributes, we consider ele-
mentary expressions of the form xj = sj or xj 6= sj .
Let Φ be the set of elementary expressions constitut-
ing the condition part of the rule and let Φ(x) be an
indicator function equal to 1 if x satisfies the condition
part of the rule (all elementary expressions in the con-
dition part), otherwise Φ(x) = 0. We say that a rule
covers an object x, if Φ(x) = 1. The response of the
rule is a vector α ∈ RK assigned to the region defined
by Φ. Therefore, we define a decision rule as:

r(x) = αΦ(x). (6)

Notice that the decision rule takes only two values,
r(x) ∈ {α,0}, depending whether x satisfies the con-
dition part or not. In this paper, we assume the clas-
sification function is a linear combination of M rules:

f(x) =
M∑
m=1

rm(x). (7)

Using (4), we can obtain conditional probabilities from
(7). Moreover, from (4) it follows that P (y|x) is a
monotone function of fy(x). Therefore, from (2) we
have that object x is classified to the class with the
highest fk(x). Thus, combination (7) has very simple
interpretation as a voting procedure: rules vote for
each class k, and object x is classified to the class with
the highest vote.

The construction of an optimal rules ensemble mini-
mizing the negative loglikelihood (empirical risk) is a
hard optimization problem. That is why we follow here
a forward stagewise strategy (Hastie et al., 2003), i.e.
the rules are added one by one, greedily minimizing
the loss function:

rm = arg min
r
`(fm−1+r) = arg min

Φ,α
`(fm−1+Φα), (8)

where rm is a rule obtained in the m-th iteration and
fm−1 is the rule ensemble after m−1 iterations. It has
been shown (Hastie et al., 2003) that “shrinking” the
base classifier while adding it to the ensemble improves
the prediction accuracy. That is why we set:

fm(x) = fm−1(x) + ν · rm(x),

where ν ∈ (0, 1] is the shrinkage parameter, which con-
stitutes a trade-off between accuracy and interpretabil-
ity. Higher values (ν ∼ 1) produce smaller ensembles,
while low values (ν ∼ 0.1) produce larger but more
accurate ones.

4. Generation of a Single Rule

In this section, we describe how the algorithm gener-
ates single rules. In order to obtain a rule, one has to
solve (8). The optimization procedure is still compu-
tationally hard. Therefore, we restrict analysis to the
rules voting for only one class, so that the response
of the rule has the form α = αv, where v is a vector
with only one non-zero coordinate vk = 1, for some
k = 1, . . . ,K, and α is a positive real value.

We propose two heuristic procedures for solving (8).
The first, called gradient method (Mason et al., 1999),
approximates `(f + αvΦ) up to the first order with
respect to α:

`(f + αvΦ) ' `(f) + α`′(f ,vΦ), (9)

where

`′(f ,vΦ) =
∂`(f + αvΦ)

∂α

∣∣∣∣
α=0

. (10)

Since the first term in (9) is constant, minimization of
the loss for any positive α is equivalent to minimiza-
tion of the second term. Thus, if we define:

Lm(Φ) = min
v
−`′(f ,vΦ) (11)

(we remind, that there are only K possible vectors
v, so the arg min operation can be done by simply
checking all K possibilities), then Φm can be obtained
by minimizing Lm(Φ).

The second heuristic, Newton method, approximates
`(f + αvΦ) up to the second order:

`(f + αvΦ) ' `(f) + α`′(f ,vΦ) +
α2

2
`′′(f ,vΦ), (12)

where `′(f ,vΦ) is defined as before, and:

`′′(f ,vΦ) =
∂2`(f + αvΦ)

∂α2

∣∣∣∣
α=0

. (13)

Due to convexity of the loglikelihood, expression (12)
is minimized by the Newton step:

α = − `
′(f ,vΦ)
`′′(f ,vΦ)

. (14)

By substituting (14) into (12), and taking the square
root, we get:

Lm(Φ) = min
v
− `′(f ,vΦ)√

`′′(f ,vΦ)
, (15)

and we can obtain Φm by minimizing Lm(Φ).
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Algorithm 1 MLRules
input: set of n training examples {(yi,xi)}n1 ,

M – number of decision rules.
output: rule ensemble {rm(x)}M1 .

f0 := α0.
for m = 1 to M do

Φm(x) = arg minΦ Lm(Φ)
αm = −`′(f ,vΦ)/`′′(f ,vΦ)
rm(x) = αmΦm(x)
fm(x) = fm−1(x) + νrm(x)

end for

Expressions `′(f ,vΦ) and `′′(f ,v) have a very simple
form. Let v be such that vk = 1. Then:

`′(f ,vΦ) =
∑

Φ(xi)=1

pik − δk,yi , (16)

`′′(f ,vΦ) =
∑

Φ(xi)=1

pik(1− pik), (17)

where pik = P (k|xi) and δi,j = 1 iff i = j. To calculate
Lm(Φ), these expressions must be obtained for each k.

What we still need for finding Φm using both gradient
and Newton techniques, is a fast procedure for mini-
mizing Lm(Φ), regardless whether it is defined by (11)
or (15). We propose the following simple iterative pro-
cedure: at the beginning, Φm is empty (no elementary
expressions are specified) and we set Lm(Φ) = 0. In
each step, an elementary expression xj ∈ Sj is added
to Φm that minimizes Lm(Φ) (if it exists). Such ex-
pression is searched by sequentially testing the ele-
mentary expressions, attribute by attribute. For or-
dered attributes, each expression of the form xj ≥ sj
or xj ≤ sj is tested, for every sj ∈ Xj ; for nominal
attributes, we test each expression of the form xj = sj
or xj 6= sj , for every sj ∈ Xj . Adding new expressions
is repeated until Lm(Φ) cannot be decreased. We also
simultaneously obtain vm, i.e. the value of v for which
the minimum is reached in (11) or (15). Notice that
since Lm(Φ) = 0 at the beginning, Lm(Φ) must be
strictly negative at the end, otherwise no rule will be
generated. The procedure for finding optimal Φ is very
fast and proved to be efficient in computational exper-
iments. The ordered attributes can be sorted once be-
fore generating any rule. This procedure resembles the
way the decision trees are generated. Here, we look,
however, for only one path from the root to the leaf.
Moreover, let us notice that a minimal value of Lm(Φ)
is a natural stop criterion in building a single rule and
we do not use any other measures (e.g. impurity mea-
sures) for choosing the optimal cuts.

Having found Φm, we can obtain αm by solving the

following convex line-search problem:

αm = arg min
α
`(f + αvmΦm). (18)

To speed up the computations, we follow, however,
simpler procedure and obtain αm by the Newton step
(14). The whole procedure for constructing the rule
ensemble is presented as Algorithm 1. We call this pro-
cedure MLRules. Note that we start with f(x) equal
to α0, which is a “default rule” with fixed Φ(x) ≡ 1,
while v0 and α0 are obtained as usual. Since the re-
sponse always indicates the majority class, such a rule
serves as a default classification when no other rule
covers a given object.

In our implementation of the algorithm, we employed
the resampling technique (Friedman & Popescu, 2003),
which is known to improve both accuracy and compu-
tational complexity. To obtain less correlated rules,
we search for Φm, using (11) or (15), on a random
subsample (drawn without replacement) of the train-
ing set of size η < n. Then, however, the response αm
is obtained using all of the training objects (includ-
ing those objects, which have not been used to obtain
Φm). This usually decreases |αm|, so it plays the role
of a regularization method, and avoids overfitting the
rule to the training set.

5. Extensions

In this section, we shortly discuss the problem of con-
vergence and propose two simple extensions of the
main algorithm.

5.1. Convergence

The procedure of obtaining αm with the Newton step
does not always decrease the empirical risk and does
not guarantee the convergence of the algorithm. How-
ever, using a simple backtracking line-search is suffi-
cient for convergence: we start with αm obtained by
the Newton step. If `(f + αvΦ) < `(f), the procedure
stops; otherwise repeat αm := αm/2 until the above
condition is satisfied. This procedure ends after a fi-
nite number of steps, since from the definition of Lm,
either (11) or (15), it follows that Lm = 0 if and only
if `′(f ,vΦ) = 0, so if a rule is generated, Lm < 0 and
vΦ is a descent direction. Therefore, ` is decreased
in each iteration. Since ` is bounded from below, the
procedure converges, i.e.: limm→∞ `(fm) = `∞. In the
implementation of the algorithm we do not use such
a procedure since the algorithm is stopped after M
rounds anyway.

This raises the question, whether `∞ is the solution
with the minimum achievable value of negative log-
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likelihood in the class of rule ensembles F , i.e. if `∞ is
equal to `∗ = inff∈F `(f)? The answer is negative be-
cause a greedy procedure is used to find the condition
part of rule Φ. Then, even if a “descent direction” rule
exists, the procedure may fail to find it (although the
resampling strategy improves the procedure by ran-
domly perturbing the training set in each iteration,
which helps to avoid “local minima”). Nevertheless,
this questions seems not to be of practical importance
here, since we fix the maximal number of rules M .
This is due to the empirical evidences showing that
ensemble methods sometimes overfit on real-life data
when the size of the ensemble is too large. In the next
subsection, we describe another stopping condition, in-
dependent of the parameter M .

5.2. Avoiding overfitting

A decision rule has the form of m-dimensional rectan-
gle. It can be shown, that the class of m-dimensional
rectangles has Vapnik-Chervonenkis (VC) dimension
equal to 2m and the VC dimension does not depend
on the number of cuts. This is contrary to the tree
classifier, for which the VC dimension grows to infin-
ity with increasing number of cuts (nodes). Therefore,
in case of tree ensembles, one usually specifies some
constraints on tree complexity, e.g. maximal number
of nodes, while in case of a rule ensemble no such con-
straints are necessary.

The theoretical results (Schapire et al., 1998) suggest
that an ensemble with a simple base classifier (with low
VC dimension) and high prediction confidence (mar-
gin) on the dataset generalizes well, regardless of the
size of the ensemble. Nevertheless, we conducted the
computational experiments which show that the per-
formance of rule ensemble can deteriorate as the num-
ber of rules grows, especially for the problems with
high noise level. Similar phenomenon has been ob-
served for other boosting algorithms, in particular for
AdaBoost (Mason et al., 1999; Friedman et al., 2000;
Dietterich, 2000). Therefore, we propose a procedure
for stopping the ensemble growth, based on the simple
“holdout set” analysis.

Each rule is induced from the subsample of size η < n
without replacement. Thus, there are n − η objects
which do not take part in the induction procedure and
can be used as a holdout set to estimate the quality
of the induced rule. Since each rule votes for a sin-
gle class, we calculate a simple 0-1 error (accuracy) of
such a rule on the covered objects from the holdout
set. A rule is acceptable if the holdout error is bet-
ter (lower) than random guessing. Then, the stopping
condition has the following form: in any p subsequent

iterations at least q rules are not acceptable. Such
“averaging” over the iterations removes variations and
allows us to observe the longer-term behavior of rule
acceptability. We set p = 10 and q = 8, and those
values were obtained by noticing, that when the null
hypothesis states that rules are not worse than ran-
dom guessing, at least 8 unacceptable rules must be
obtained in 10 trials to reject the null hypothesis in
the binomial test with confidence level 0.05. Another
possibility for stopping the ensemble growth is running
the internal cross validation, but such procedure has
not been used in the experiment due to computational
complexity.

5.3. Ordinal classification

It is often the case that a meaningful order relation be-
tween class labels exists. For example, in recommender
systems, users are often asked to evaluate items on
five value (“stars”) scale. Such problems are often re-
ferred to as ordinal classification problems. Here we
show how the order relation can be taken into account
in MLRules. Without loss of generality, we assume
that the order between classes is concordant with the
order between class labels coded as natural numbers
Y = {1, . . . ,K}.

To capture the ordinal properties of Y , we only
take into account rules voting for “at least” and “at
most” class unions, where by “at least” class union
we mean set {k, . . . ,K} for some k, while by “at
most” class union we mean {1, . . . , k}. Such rules
can be incorporated by considering the vectors v in
the response of the rule to be of the form: v =
{−1, . . . ,−1, 1, . . . , 1} (vote for “at least” union) or
v = {1, . . . , 1,−1, . . . ,−1} (vote for “at most” union),
so that the rule increases the probability of a class
union, and not of a single class.

The whole algorithm remains the same, apart from the
formulas (16) and (17), which now takes the form:

`′(f ,vΦ) =
∑

Φ(xi)=1

K∑
k=1

vk(pik − δk,yi
), (19)

`′′(f ,vΦ) =
∑

Φ(xi)=1

K∑
1=t

vkpik

(
1−

K∑
k=1

vkpik

)
.(20)

The experimental verification of the usefulness of such
rule representation is postponed for future research
due to the lack of space.

6. Experimental Results

In this section, we show the results of the computa-
tional experiments on real datasets. First, we examine
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the behavior of the ensemble as the number of rules
increases. Then, we compare our algorithm with ex-
isting approaches to rule induction.

6.1. Error curves
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Figure 1. Train and test errors as functions of the ensemble
size, obtained by splitting the data into train (66%) and
test (33%) sets and averaging over 50 random splits. The
lower lines (dashed-dotted) correspond to the train error,
upper solid lines – to the test error with stopping condition
described in Section 5.2, upper dashed line – test error
when the stopping condition was not applied. Parameters
of the MLRules are: ν = 0.1, η = 0.5n

In Figure 6.1, we present the train and test error as a
function of the ensemble size M for two real datasets,
taken from the UCI Repository (Asuncion & Newman,
2007). On the sonar dataset, both ensembles (gradient
and Newton) do not overfit and the test error decreases
even if the number of rules reaches 1000; this is a rather
typical situation. An atypical one can be found on the
second dataset (haberman), where from some point,
test error starts to increase. However, then a stopping
condition described in Section 5.2 is satisfied which
prevents rule ensemble from overfitting.

6.2. Comparison with other rule ensemble
algorithms

To check the performance of MLRules on the real
datasets, we compare them with three existing rule
induction algorithms. SLIPPER (Cohen & Singer,
1999) was proposed within the AdaBoost reweighting
scheme and uses an induction procedure which involves
pruning. LRI (Weiss & Indurkhya, 2000) generates
rules in the form of a DNF-formula and uses a spe-
cific reweighting scheme based on the cumulative er-
rors. RuleFit (Friedman & Popescu, 2005) is based on
FSAM framework (Hastie et al., 2003), but it uses the
regression trees as base classifiers and then transforms
them to rules. All three approaches are thus based
on some boosting/reweighting strategy. According to
our knowledge, RuleFit has not been compared with
SLIPPER and LRI yet.

We used 35 files taken from UCI Repository (Asun-
cion & Newman, 2007), among which 20 files are bi-
nary classification tasks and 15 are multi-class tasks.
We omit characteristics of the datasets due to lack
of space. We tested four classifiers on each dataset
(MLRules with gradient and Newton steps, LRI and
SLIPPER) and RuleFit on binary datasets only (Rule-
Fit does not handle multi-class case). We selected the
following parameters for each method:

• SLIPPER: we set maximum number of iteration
to 500, rest of parameters were set to default (we
kept the internal cross validation, used to choose
the optimal number of rules).

• LRI: According to (Weiss & Indurkhya, 2000), we
set the rule length to 5 and froze feature after 50
rounds; we also chose 200 rules per class and 2
disjuncts since some previous tests showed that
those values work well in practice.

• RuleFit: According to the experiment in (Fried-
man & Popescu, 2005), we chose mixed rule-linear
mode, set average tree size to 4, increased the
number of trees to 500, and chose subsample size
η as min{0.5n, 100 + 6

√
n}.

• MLRules: We set η = 0.5n, ν = 0.1,M = 500,
but for the tree biggest datasets (letter, optdigits,
pendigits) we increased M to 2000 (to compare,
LRI had 26× 200 rules for letter). Those param-
eters have not been optimized on the UCI data.
We used artificial data to this end and due to the
space limit we omit the characteristic of the data
generating model.

Each test was performed using 10-fold cross validation
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Table 1. Test errors and ranks (in parenthesis). MLRules.G and MLRules.N are MLRules with gradient and Newton
method, respectively. Average ranks in the last row correspond to comparing LRI and MLRules on all 35 files.

Dataset SLIPPER LRI RuleFit MLRules.G MLRules.N
Binary-class Datasets

haberman 0.268(3.0) 0.275(5.0) 0.272(4.0) 0.262 (2.0) 0.249 (1.0)
breast-c 0.279(3.0) 0.293(4.0) 0.297(5.0) 0.259 (1.0) 0.273 (2.0)
diabetes 0.254(4.0) 0.254(3.0) 0.262(5.0) 0.247 (1.0) 0.253 (2.0)
credit-g 0.277(5.0) 0.239(1.0) 0.259(3.0) 0.241 (2.0) 0.260 (4.0)
credit-a 0.170(5.0) 0.122(1.0) 0.132(3.0) 0.133 (4.0) 0.130 (2.0)
ionosphere 0.065(3.0) 0.068(4.0) 0.085(5.0) 0.060 (1.0) 0.063 (2.0)
colic 0.150(4.0) 0.161(5.0) 0.147(3.0) 0.139 (2.0) 0.133 (1.0)
hepatitis 0.167(2.0) 0.180(3.0) 0.194(4.0) 0.162 (1.0) 0.201 (5.0)
sonar 0.264(5.0) 0.149(2.0) 0.197(4.0) 0.120 (1.0) 0.154 (3.0)
heart-statlog 0.233(5.0) 0.196(4.0) 0.185(3.0) 0.167 (1.0) 0.174 (2.0)
liver-disorders 0.307(5.0) 0.266(1.0) 0.307(4.0) 0.275 (2.0) 0.278 (3.0)
vote 0.050(5.0) 0.039(3.0) 0.050(5.0) 0.034 (1.0) 0.037 (2.0)
heart-c 0.195(5.0) 0.185(3.0) 0.189(4.0) 0.165 (2.0) 0.155 (1.0)
heart-h 0.200(5.0) 0.183(3.0) 0.183(4.0) 0.180 (2.0) 0.170 (1.0)
breast-w 0.043(5.0) 0.033(2.0) 0.041(4.0) 0.031 (1.0) 0.034 (3.0)
sick 0.016(2.0) 0.018(4.0) 0.019(5.0) 0.016 (3.0) 0.012 (1.0)
tic-tac-toe 0.024(2.0) 0.122(5.0) 0.053(3.0) 0.113 (4.0) 0.003 (1.0)
spambase 0.059(5.0) 0.049(3.0) 0.059(4.0) 0.047 (2.0) 0.046 (1.0)
cylinder-bands 0.217(4.0) 0.165(2.0) 0.381(5.0) 0.144 (1.0) 0.193 (3.0)
kr-vs-kp 0.006(2.0) 0.031(5.0) 0.029(4.0) 0.010 (3.0) 0.005 (1.0)
avg. rank 3.9 3.15 4.05 1.85 2.05

Multi-class Datasets
anneal 0.018 0.007(3.0) — 0.006 (1.5) 0.006 (1.5)
balance-scale 0.17 0.088(2.0) — 0.078 (1.0) 0.091 (3.0)
ecoli 0.211 0.140(2.0) — 0.149 (3.0) 0.140 (1.0)
glass 0.340 0.285(3.0) — 0.244 (1.0) 0.248 (2.0)
iris 0.080 0.053(2.0) — 0.053 (2.0) 0.053 (2.0)
letter 0.821 0.069(1.0) — 0.137 (3.0) 0.088 (2.0)
segment 0.215 0.021(2.0) — 0.029 (3.0) 0.020 (1.0)
soybean 0.505 0.413(3.0) — 0.073 (2.0) 0.067 (1.0)
vehicle 0.301 0.210(1.0) — 0.236 (3.0) 0.216 (2.0)
vowel 0.448 0.059(1.0) — 0.148 (3.0) 0.104 (2.0)
car 0.045 0.054(2.0) — 0.057 (3.0) 0.028 (1.0)
cmc 0.477 0.435(1.0) — 0.437 (2.0) 0.439 (3.0)
dermatology 0.161 0.057(3.0) — 0.019 (1.0) 0.024 (2.0)
optdigits 0.560 0.019(1.0) — 0.026 (3.0) 0.021 (2.0)
pendigits 0.460 0.010(2.0) — 0.014 (3.0) 0.010 (1.0)
avg. rank — 2.26 — 1.9 1.84

5 4 3 2 1

CD = 1.364

MLRules.G

MLRules.N
LRI

SLIPPER

RuleFit

Figure 2. Critical difference diagram

(with exactly the same train/test splits for each classi-
fier) and average 0-1 loss on the test set was calculated.
The results are shown in Table 6.2.

We first restrict the analysis to binary-class problems
only. To compare multiple classifiers on the multi-

ple datasets, we follow Demšar (2006), and make the
Friedman test, which uses ranks of each algorithm
to check whether all the algorithms perform equally
well (null hypothesis). Friedman statistics gives 33.28
which exceeds the critical value 9.488 (for confidence
level 0.05), so we can reject the null hypothesis and
state that classifiers are not equally good. Next, we
proceed to a post-hoc analysis and calculate the criti-
cal difference (CD) according to the Nemeneyi statis-
tics. We obtain CD = 1.364 which means that al-
gorithms with difference in average ranks more than
1.364 are significantly different. In Figure 6.2 aver-
age ranks were marked on a line, and groups of classi-
fiers that are not significantly different were connected.
This shows that both MLRules algorithms are not sig-
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nificantly different to LRI, however they outperform
both SLIPPER and RuleFit. On the other hand, none
of three well-known rule ensemble algorithms (LRI,
SLIPPER, RuleFit) is significantly better to any other.

The situation remains roughly the same if we com-
pare the algorithms using all 35 datasets. We exclude
RuleFit (it does not work with multi-class problems)
and SLIPPER (its results are very poor, the worst al-
most every time1). Thus, we end up with 3 algorithms.
Friedman statistics gives 3.53 which does not exceed
the critical value 5.991, so that the null hypothesis
cannot be rejected. Note that the difference in ranks
decreased, mainly because LRI performs excellent on
the largest datasets (letters and digits recognition).

It is interesting to check how much of the improve-
ment in accuracy of MLRules comes from shrinkage,
resampling and regularizing the rule response, because
those techniques can also be simply incorporated to
SLIPPER and LRI. We plan to investigate this issue
in our future research.

7. Conclusions and Future Research

We proposed a new rule induction algorithm for solv-
ing classification problems, called MLRules, based on
the maximum likelihood estimation method and us-
ing boosting strategy in rule induction. In contrary
to previously considered algorithms, it estimates the
conditional class probability distribution and therefore
can work with any cost matrix for classification. We
considered two optimization techniques, based on gra-
dient and Newton steps, and introduced a stopping
condition to avoid overfitting. The performance of
MLRules was verified on a large collection of datasets,
both binary- and multi-class. Our algorithm is com-
petitive or outperforms the best existing approaches
to rule induction.

We also suggested the way in which MLRules can cap-
ture the order between classes and therefore can solve
the ordinal classification problems. We plan to verify
this issue experimentally in the future.
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Abstract

We address the problem of learning deci-
sion functions from training data in which
some attribute values are unobserved. This
problem can arise, for instance, when train-
ing data is aggregated from multiple sources,
and some sources record only a subset of at-
tributes. We derive a generic joint optimiza-
tion problem in which the distribution gov-
erning the missing values is a free parame-
ter. We show that the optimal solution con-
centrates the density mass on finitely many
imputations, and provide a corresponding al-
gorithm for learning from incomplete data.
We report on empirical results on benchmark
data, and on the email spam application that
motivates our work.

1. Introduction

In many applications, one has to deal with training
data with incompletely observed attributes. For in-
stance, training data may be aggregated from differ-
ent sources. If not all sources are capable of providing
the same set of input attributes, the combined train-
ing sample contains incompletely observed data. This
situation occurs in email spam detection, where it is
helpful to augment the content of an email with real-
time information about the sending server, such as its
blacklist status. This information is available for all
training emails that arrive at a mail server under one’s
own control, and it is also available at application time.
But if one wants to utilize training emails from public
archives, this information is missing.

We adress a learning setting in which values are miss-
ing at random: here, the presence or absence of values

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

does not convey information about the class labels. If
this condition is not met, it is informative to consider
the presence or absence of values as additional input to
the decision function. Techniques for learning from in-
complete data typically involve a distributional model
that imputes missing values, and the desired final pre-
dictive model. Prior work on learning from incomplete
data is manifold in the literature, and may be grouped
by the way the distributional model is used.

The first group models the distribution of missing val-
ues in a first step, and learns the decision function
based on the distributional model in a second step.
Shivaswamy et al. (2006) formulate a loss function
that takes a fixed proportion of the probability mass
of each instance into account, with respect to the es-
timated distribution of missing values. They derive
second order cone programs which renders the method
applicable only to very small problems. Other exam-
ples include Williams and Carin (2005), Williams et al.
(2005), and Smola et al. (2005).

The second group estimates the parameters of a distri-
butional model and the final predictive model jointly.
As an example, recently Liao et al. (2007) propose
an EM-algorithm for jointly estimating the imputa-
tion model and a logistic regression classifier with lin-
ear kernel, assuming the data arises from a mixture of
multivariate Gaussians.

The third group makes no model assumption about the
missing values, but learns the decision function based
on the visible input alone. For example, Chechik et al.
(2007) derive a geometrically motivated approach. For
each example, the margin is re-scaled according to the
visible attributes. This procedure specifically aims at
learning from data with values that are structurally
missing—as opposed to missing at random. Chechik
et al. (2007) find empirically that the procedure is not
adequate when values are missing at random.

Jointly learning a distributional model and a kernel
predictive model relates to the problem of learning a
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kernel function from a prescribed set of parameterized
kernels. This problen drew a lot of attention recently;
see, for example, Argyriou et al. (2005) and Micchelli
and Pontil (2007).

Estimating the distributional model first and training
the predictive model in a second step leaves the user
free to choose any learning algorithm for this second
step. However, a harder problem has to be solved than
would be necessary. If one is only interested in a deci-
sion function that minimizes the desired loss, knowing
the values or distribution of the missing attributes in
the training set is not actually required. Furthermore,
errors made in the imputation step and errors made in
estimating the parameters of the predictive model can
add up in a sequential procedure.

Consequently, we investigate learning the decision
function and the distribution of imputations depen-
dently. Unlike prior work on this topic, we develop a
solution for a very general class of optimization crite-
ria. Our solution covers a wide range of loss functions
for classification and regression problems. It comes
with all the usual benefits of kernel methods. We de-
rive an optimization problem in which the distribution
governing the missing values is a free parameter. The
optimization problem searches for a decision function
and a distribution governing the missing values which
together minimize a regularized empirical risk.

No fixed parametric form of the distributional model
is assumed. A regularizer that can be motivated by a
distributional assumption may bias the distributional
model towards a prior belief. However, the regularizer
may be overruled by the data, and the resulting distri-
butional model may be different from any parametric
form. We are able to prove that there exists an opti-
mal solution based on a distribution that is supported
by finitely many imputations. This justifies a greedy
algorithm for finding a solution. We derive manifesta-
tions of the general learning method and study them
empirically.

The paper is structured as follows. After introducing
the problem setting in Section 2, we derive an opti-
mization problem in Section 3. Section 4 proves that
there is an optimal solution that concentrates the den-
sity mass on finitely many imputations and presents
an algorithm. Example instantiations of the general
solution are presented in Section 5. We empirically
evaluate the method in Section 6. Section 7 concludes.

2. Problem Setting

We address the problem of learning a decision func-
tion f from a training sample in which some attribute

values are unobserved.

Let X be a matrix of n training instances xi and let
y be the vector of corresponding target values yi. In-
stances and target values are drawn iid from an un-
known distribution p(x, y) with xi ∈ R

d and yi ∈ Y,
where Y denotes the set of possible target values. Ma-
trix Z indicates which features are observed. A value
of zil = 1 indicates that xil, the l-th feature of the i-th
example, is observed. Values are missing at random:
yi is conditionally independent of zi given xi.

The goal is to learn a function f : x 7→ y that pre-
dicts target values for completely observed examples.
The decision function should incur only a minimal true
risk R(f) =

∫
L(y, f(x))p(x, y)dxdy, where L is a loss

function for the task at hand.

As a means to minimizing the true risk, we seek a
function f in the reproducing kernel Hilbert space Hk

induced by a kernel k that minimizes a regularized
empirical risk functional R(f) =

∑n
i=1 l(yi, f(xi)) +

η‖f‖2k. We demand k to be a Mercer kernel. Loss
function l approximates the true loss L. The represen-
ter theorem allows us to write the minimizer as a sum
over functions in Hk centered at training instances:
f(x) =

∑n
j=1 cjk(xj ,x).

The learning problem from completely observed data
would amount to solving Optimization Problem 1.

Optimization Problem 1 (Primal learning prob-

lem, observed data). Over c, minimize

R(c, k)=
n∑

i=1

l
(

yi,

n∑

j=1

cjk(xj ,xi)
)

+η

n∑

i,j=1

cicjk(xj ,xi)

We require that the loss function be defined in such
a way that Optimization Problem 1 can be written
in the dual form of Optimization Problem 2. A wide
range of loss functions satisfies this demand; we will
later see that this includes hinge loss and squared loss.

Optimization Problem 2 (Dual of learning

problem). Given a < 0, over c, maximize

a 〈c,Kc〉 −R∗(c)

subject to the constraints

∀m∗

1

i=1g
∗
i (c) ≤ 0, ∀m∗

2

j=1h
∗
j (c) = 0. (1)

R∗(c) denotes a differentiable convex function of the
dual variables c which we demand to be independent
of the kernel matrix K. The inequality constraints g∗i
are differentiable convex and the equality constraints
h∗

j differentiable affine. We like to note that the re-
quirement of independence between R∗ and K is not
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very restrictive in practice, as we will see in chapter
5. Furthermore, we demand strong duality to hold
between Optimization problems 1 and 2.

3. Learning from Incomplete Data in

One Step

If any instance xi has unobserved features, then
k(xi,x) and, consequently, the decision function f are
not properly defined. In order to learn from incom-
plete data, we will marginalize the decision function
and risk functional by the observable attributes and
integrate over all unobserved quantities. To this end,
we define ω ∈ ΩZ

X
⊂ R

n×d as a matrix of imputations
constrained by ωil = xil if zil = 1. We demand ΩZ

X
to

be compact for the rest of this paper. Let ωi denote
the i-th row of ω. Then we can define a family of ker-
nels K(ω)(xj ,xi) = k(ωj ,ωi). Any probability mea-
sure p(ω) on imputations induces a marginalization of
the kernel by the observable variables. Equation 2 in-
tegrates over all imputations of unobserved values; it
can be evaluated based on the observed values.

K(p)(xj ,xi) =

∫

ω∈ΩZ

X

k(ωj ,ωi)dp(ω) (2)

Any probability measure p(ω) constitutes an optimiza-
tion criterion R(c,K(p)). In the absence of knowledge
about the true distribution of missing values, p(ω) be-
comes a free parameter. Note that p(ω) is a continu-
ous probability measure that is not constrained to any
particular parametric form; the space of parameters is
therefore of infinite dimensionality.

It is natural to add a regularizer Q(p) that reflects
prior belief on the distribution of imputations p(ω) to
the optimization criterion, in addition to the empiri-
cal risk and regularizer on the predictive model. The
regularizer is assumed to be continuous in p. The reg-
ularizer does not constrain p(ω) to any specific class
of distribution, but it reflects that some distributions
are believed to be more likely. Without a regularizer,
the criterion can often be minimized by imputations
which move instances with missing values far away
from the separator, thereby removing their influence
on the outcome of the learning process. This leads to
Optimization Problem 3.

Optimization Problem 3 (Learning problem

with infinite imputations). Given n training ex-
amples with incomplete feature values, γ > 0, kernel
function k, over all c and p, minimize

R̃k,γ(c, p) = R(c,K(p)) + γQ(p) (3)

subject to the constraints

∀ω : p(ω) ≥ 0,
∫

ω∈ΩZ

X

p(ω)dω = 1.

Each solution to Optimization Problem 3 integrates
over infinitely many different imputations. The search
space contains all continuous probability measures on
imputations, the search is guided by the regularizer Q.
The regularization parameter γ determines the influ-
ence of the regularization on the resulting distribution.
For γ → ∞ the solution of the optimization reduces
to the solution obtained by first estimating the distri-
bution of missing attribute values that minimizes the
regularizer. For γ → 0 the solution is constituted by
the distribution minimizing the risk functional R.

4. Solving the Optimization Problem

In this section, we devise a method for efficiently find-
ing a solution to Optimization Problem 3. Firstly, we
show that there exists an optimal solution ĉ, p̂ with p̂

supported on at most n+2 imputations ω ∈ ΩZ

X
. Sec-

ondly, we present an algorithm that iteratively finds
the optimal imputations and parameters minimizing
the regularized empirical risk.

4.1. Optimal Solution with Finite Combination

In addition to the parameters c of the predictive mod-
els, continuous probability measure p(ω) contributes
an infinite set of parameters to Optimization Problem
3. The implementation of imputations as parameters
of a kernel family allows us to show that there exists
an optimal probability measure p̂ for Equation 3 such
that p̂ consists of finitely many different imputations.

Theorem 1. Optimization Problem 3 has an optimal
solution ĉ, p̂ in which p̂ is supported by at most n + 2
imputations ω ∈ ΩZ

X
.

Proof. The compactness of ΩZ

X
and the continuity of K

immediately imply that there exists some solution to
Optimization Problem 3. It remains to be shown that
at least one of the solutions is supported by at most
n + 2 imputations. Let c̄, p̄ be any solution and let all
requirements of the previous section hold. The idea
of this proof is to construct a correspondence between
distributions over imputations and vectors in R

n+1,
where a finite support set is known to exist. Define
S(ω) = K(ω)c̄ ∈ R

n and D = {(S(ω)⊤, Q(ω))⊤ : ω ∈
ΩZ

X
} ⊂ R

n+1. Since ΩZ

X
is compact and K(·) and Q(·)

are continuous by definition, D is compact as well. We
define a measure over D as µ(A×B) = p̄({ω : S(ω) ∈
A ∧Q(ω) ∈ B}).
Then, by Carathéodory’s convex hull theorem, there
exists a set of k vectors {(s⊤1 , q1)

⊤, . . . , (s⊤k , qk)⊤} ⊆ D

with k ≤ n + 2 and nonnegative constants νi with
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∑k
i=1 νi = 1, such that

∫

D

(s⊤, q)⊤dµ((s⊤, q)⊤) =
k∑

i=1

(s⊤i , qi)
⊤νi.

For each i, select any ωi such that (S(ωi)
⊤, Q(ωi)) =

(s⊤i , qi). We construct p̂ by setting p̂(ω) =
∑k

i=1 νiδωi
,

where δωi
denotes the Dirac measure at ωi. The op-

timal ĉ results as arg minc R(c,K(p̂)). We have

∫

D

sdµ((s⊤, q)⊤) =

k∑

i=1

siνi, and

∫

D

qdµ((s⊤, q)⊤) =

k∑

i=1

qiνi.

Then

K(p̄)c̄ =

(
∫

ΩZ

X

K(ω)dp̄(ω)

)

c̄ =

∫

ΩZ

X

S(ω)dp̄(ω)

=

∫

D

S(ω)dµ
(
(S(ω)⊤, Q(ω))⊤

)

=

k∑

i=1

siνi =

∫

ΩZ

X

S(ω)dp̂(ω)

=

∫

ΩZ

X

K(ω)dp̂(ω)c̄ = K(p̂)c̄.

Likewise,

Q (p̄) =

∫

D

Q (ω) dµ
(
(S(ω)⊤, Q(ω))⊤

)

=

k∑

i=1

qiνi = Q(p̂).

Since Q(p) does not depend on c, c̄ =
arg minc R(c,K(p̄)), and by strong duality,
c̄ = arg maxc a 〈c,K(p̄)c〉 − R∗(c). This implies
that the Karush-Kuhn-Tucker conditions hold for c̄,
namely there exist constants κi ≥ 0 and λj such that

aK(p̄)c̄−∇R∗(c̄) +
∑

i

κi∇g∗i (c̄) +
∑

j

λj∇h∗
j (c̄) = 0

∀i g∗i (c̄) ≤ 0, ∀j h∗
i (c̄) = 0, ∀i κig

∗
i (c̄) = 0

It is easy to see that therefore c̄ is also a maximizer
of a 〈c,K(p̂)c〉 − R∗(c), because K(p̄)c̄ = K(p̂)c̄ and
the Karush-Kuhn-Tucker conditions still hold. Their
sufficiency follows from the fact that K(p) is positive
semi-definite for any p, and the convexity and affinity
premises. Thus,

R(c̄,K(p̄)) + γQ(p̄)

=
[

min
c

R(c,K(p̄))
]

+ γQ(p̄)

=
[

max
c

a 〈c,K(p̄)c〉 −R∗(c)
]

+ γQ(p̄)

= [a 〈c̄,K(p̄)c̄〉 −R∗(c̄)] + γQ(p̄)

= [a 〈c̄,K(p̂)c̄〉 −R∗(c̄)] + γQ(p̂)

=
[

max
c

a 〈c,K(p̂)c〉 −R∗(c)
]

+ γQ(p̂)

=
[

min
c

R(c,K(p̂))
]

+ γQ(p̂)

= R(ĉ,K(p̂)) + γQ(p̂).

We have now established that there exists a solution
with at most n + 2 imputations.

4.2. Iterative Optimization Algorithm

This result justifies the following greedy algorithm to
find an optimal solution to Optimization Problem 3.
The algorithm works by iteratively optimizing Prob-
lem 1 (or, equivalently, 2), and updating the distribu-
tion over the missing attribute values. Let pω̄ denote
the distribution p(ω) = δω̄. Algorithm 1 shows the
steps.

Algorithm 1 Compute optimal distribution of impu-
tations on ΩZ

X

Initialization: Choose p(1) = pω(1) ; e.g., ω
(1)
il = 0 for

all zil 6= 1
for t = 1 . . . do

1. ĉ← arg minc R(c,K(p(t)))
2. Find ω(t+1) ∈ ΩZ

X
: R̃k,γ(ĉ, pω(t+1)) <

R̃k,γ(ĉ, p(t)). If no such ω(t+1) exists, terminate.

3. βt ← arg minβ∈(0,1]

[

minc R̃k,γ(c, βpω(t+1) +

(1− β)p(t))
]

4. p(t+1) ← βtpω(t+1) + (1− βt)p
(t)

5. ∀j < t : βj ← βj(1− βt)
end for

Step 1 consists of minimizing the regularized empiri-
cal risk functional R, given the current distribution.
In step 2 a new imputation is constructed which im-
proves on the current objective value. Since in gen-
eral R̃k,γ(c, pω) is not convex in ω, one cannot find
the optimal ω efficiently. But the algorithm only re-
quires to find any better ω. Thus it is reasonable to
perform gradient ascent on ω, with random restarts
in case the found local optimum does not satisfy the
inequality of step 2. In step 3 and 4 the optimal dis-
tribution consisting of the weighted sum of currently
used Dirac impulses

∑t
i=1 βiδωi

and the new imputa-
tion δω(t+1) is computed. This step is convex in β if
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R̃k,γ(c, βpω(t+1) +(1−β)p(t)) is linear in β. By looking
at Optimization Problem 2, we see that this is the case
for R. Thus the convexity depends on the choice for
Q (see Sect. 5.2). Step 5 updates the weights of the
previous imputations.

The algorithm finds t imputations ω(j) and their
weights βj , as well as the optimal example coefficients
c. We can construct the classification function f as

f(x) =
t∑

j=1

n∑

i=1

βjcik(ω
(j)
i ,x). (4)

Note that the value n + 2 is an upper bound for the
number of basic kernels which constitute the optimal
solution. The algorithm is not guaranteed to terminate
after n + 2 iterations, because the calculated imputa-
tions are not necessarily optimal. In practice, however,
the number of iterations is usually much lower. In our
experiments, the objective value of the optimization
problem converges in less than 50 iterations.

5. Example Learners

In this chapter we present manifestations of the generic
method, which we call weighted infinite imputations,
for learning from incomplete data that we use in the
experimental evaluation.

Recall from Section 3 the goal to learn a decision func-
tion f from incomplete data that minimizes the ex-
pected risk R(f) =

∫
L(y, f(x))p(x, y)dxdy. In clas-

sification problems the natural loss function L be-
comes the zero-one loss, whereas in regression prob-
lems the loss depends on the specific application; com-
mon choices are the squared error or the ǫ-insensitive
loss. The considerations in the previous chapters show
that, in order to learn regression or classification func-
tions from training instances with missing attribute
values, we only have to specify the dual formulation of
the preferred learning algorithm on complete data and
a regularizer on the distribution of imputations p.

5.1. Two Standard Learning Algorithms

For binary classification problems, we choose to ap-
proximate the zero-one by the hinge loss and perform
support vector machine learning. The dual formula-
tion of the SVM is given by RSV M (c, k) =

∑n
i=1

ci

yi
−

1
2

∑n
i,j=1 cicjk(xj ,xi) subject to the constraints 0 ≤

ci

yi
≤ 1

η and
∑n

i=1 ci = 0. We see that the demands
of Optimization Problem 2 are met and a finite solu-
tion can be found. Taking the SVM formulation as
the dual Optimization Problem 2 gives us the means –
in conjunction with an appropriate regularizer Q – to

learn a classification function f from incomplete data.

For regression problems, the loss depends on the task
at hand, as noted above. We focus on penalizing the
squared error, though we like to mention that the ap-
proach works for other losses likewise. One widely used
learning algorithm for solving the problem is kernel
ridge regression. Again, we can learn the regression
function f from incomplete data by using the same
principles as described above. Kernel ridge regression
minimizes the regularized empirical risk

∑n
i=1(yi −

f(xi))
2 + η‖f‖2. The dual formulation RKRR(c, k) =

∑n
i=1 ciyi − 1

4

∑n
i=1 c2

i + 1
4η

∑n
i,j=1 cicjk(xi, xj) again

meets the demands of the dual optimization problem
2. Substituting its primal formulation for R in step 1
of Algorithm 1 and in Eqn. 3 solves the problem of
learning the regression function from incomplete data
after specifying a regularizer Q.

5.2. Regularizing towards Prior Belief in

Feature Space

A regularizer on the distribution of missing values can
guide the search towards distributions ω̂ that we be-
lieve to be likely. We introduce a regularization term
which penalizes imputations that are different from
our prior belief ω̂. We choose to penalize the sum
of squared distances between instances xi and ω̂i in
feature space Hk induced by kernel k. We define the
squared distance regularization term Qsq as

Qsq(k, ω̂) =

n∑

i=1

‖φk(xi)− φk(ω̂i)‖22

=
n∑

i=1

k(xi,xi)− 2k(xi, ω̂i) + k(ω̂i, ω̂i).

Note that when using Qsq, step 3 of Algorithm 1 be-
comes a convex minimization procedure.

5.3. Imputing the Mean in Feature Space

In principle any imputation we believe is useful for
learning a good classifier can be used as ω̂. Sev-
eral models of the data can be assumed to com-
pute corresponding optimal imputations. We like
to mention one interesting model, namely the class-
based mean imputation in the feature space Hk in-
duced by kernel k. This model imputes missing
values such that the sum of squared distances be-
tween completed instances to the class-dependent
mean in feature space is minimal over all possi-
ble imputations. ω̂ = arg minω

∑n
i=1 ‖φk(ωi) −

1
nyi

∑

j:yj=yi
φk(ωj)‖22, where ny denotes the num-

ber of instances with label y. Simple alge-
braic manipulations show that this is equivalent to
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minimizing the sum of squared distances between
all instances

∑

υ∈{−1,1}
1

nυ

∑

i,j:yi=yj=υ ‖φk(ωi) −
φk(ωj)‖22 =

∑

υ∈{−1,1}
1

nυ

∑

i,j:yi=yj=υ

[
k(ωi,ωi) −

2k(ωi,ωj) + k(ωj ,ωj)
]

Definition 1 (Mean in Feature Space). The class-
based mean in feature space imputation method im-
putes missing values ω̂ which optimize

ω̂ = arg min
ω

∑

υ∈{−1,+1}

1

nυ

∑

i,j:yi=yj=υ
[
k(ωi,ωi)− 2k(ωi,ωj) + k(ωj ,ωj)

]

Note that this model reduces to the standard mean in
input space when using the linear kernel.

6. Empirical Evaluation

We evaluate the performance of our generic approach
weighted infinite imputations for two example realiza-
tions. We test for classification performance on the
email spam data set which motivates our investiga-
tion. Furthermore, we test on seven additional binary
classification problems and three regression problems.

6.1. Classification

We choose to learn the decision function for the binary
classification task by substituting the risk functional of
the support vector machine, −RSV M , as presented in
section 5.1 for R and the squared distance regularizer
Qsq (Section 5.2) for Q in Optimization Problem 3.

For the motivating problem setting, we assemble a
data set of 2509 spam and non-spam emails, which
are preprocessed by a linear text classifier which is
currently in use at a large webspace hosting company.
This classifier discriminates reasonably well between
spam and non-spam, but there is still a small fraction
of misclassified emails. The classifier has been trained
on about 1 million emails from a variety of sources, in-
cluding spam-traps as well as emails from the hosting
company itself, recognizing more than 10 million dis-
tinct text features. On this scale, training a support
vector machine with Gaussian kernel is impractical,
therefore we employ a two-step procedure. We discard
the contents of the emails and retain only their spam
score from the text classifier and their size in bytes as
content features in the second-step classifier. At the
time of collection of the emails, we record auxiliary
real-time information about the sending servers. This
includes the number of valid and invalid receiver ad-
dresses of all emails seen from the server so far, and
the mean and standard deviation of the sizes and spam
scores of all emails from the server. Such information

is not available for emails from external sources, but
will be available when classifying unseen emails. We
randomly draw 1259 emails, both spam and non-spam,
with server information, whereas half of those were
drawn from a set of misclassified spam-emails. We aug-
ment this set with 1250 emails drawn randomly from
a source without server information for which only 2
of the 8 attributes are observed.

To evaluate the common odd versus even digits dis-
crimination, random subsets of 1000 training examples
from the USPS handwritten digit recognition set are
used. We test on the remaining 6291 examples. Ad-
ditionally, we test on KDD Cup 2004 Physics (1000
train, 5179 test, 78 attributes) data set and on the
4-view land mine detection data (500, 213, 41) as
used by Williams and Carin (2005). In the latter,
instances consist of 4 views on the data, each from
a separate sensor. Consequently, we randomly select
complete views as missing. From the UCI machine
learning repository we take the Breast (277 instances,
9 features), Diabetes (768, 8), German (1000, 20), and
Waveform (5000, 21) data sets. Selection criteria for
this subset of the repository were minimum require-
ments on sample size and number of attributes.

On each data set we test the performance of weighted
infinite imputation using four different regularization
imputations ω̂ for the regularizer Qsq(K(p), ω̂). These
imputations are computed by mean imputation in in-
put space (MeanInput) and mean imputation in fea-
ture space (MeanFeat) as by Definition 1. Addi-
tionally we use the EM algorithm to compute the at-
tributes imputed by the maximum likelihood parame-
ters of an assumed multivariate Gaussian distribution
with no restrictions on the covariate matrix (Gauss),
and a Gaussian Mixture Model with 10 Gauss centers
and spherical covariances (GMM).

Four learning procedures based on single imputations
serve as reference methods: the MeanInput, Mean-

Feat, Gauss, and GMM reference methods first de-
termine a single imputation, and then invoke the learn-
ing algorithm.

All experiments use a spheric Gaussian kernel. Its vari-
ance parameter σ as well as the SVM-parameter η are
adjusted using the regular SVM with a training and
test split on fully observed data. All experiments on
the same data set use this resulting parameter setting.
Results are averaged over 100 runs were in each run
training and test split as well as missing attributes are
chosen randomly. If not stated otherwise, 85% of at-
tributes are marked missing on all data sets. In order
to evaluate our method on the email data set, we per-
form 20-fold cross-validation. Since the emails with
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Table 1. Classification accuracies and standard errors for all data sets. Higher accuracy values are written in bold face,
“∗” denotes significant classification improvement.

MeanInput Gauss GMM MeanFeat

Email Single imp 0.9571 ± 0.0022 0.9412 ± 0.0037 0.9505 ± 0.0030 0.9570 ± 0.0022
WII 0.9571 ± 0.0022 0.9536 ± 0.0022 ∗ 0.9527 ± 0.0024 0.9600 ± 0.0019 ∗

USPS Single imp 0.8581 ± 0.0027 0.8688 ± 0.0022 0.9063 ± 0.0012 0.8581 ± 0.0027
WII 0.8641 ± 0.0027 ∗ 0.8824 ± 0.0024 ∗ 0.9105 ± 0.0015 ∗ 0.8687 ± 0.0027 ∗

Physics Single imp 0.6957 ± 0.0035 0.5575 ± 0.0038 0.6137 ± 0.0050 0.6935 ± 0.0028
WII 0.7084 ± 0.0039 ∗ 0.6543 ± 0.0055 ∗ 0.6881 ± 0.0049 ∗ 0.7036 ± 0.0032 ∗

Mine Single imp 0.8650 ± 0.0025 0.8887 ± 0.0023 0.8916 ± 0.0023 0.8660 ± 0.0026
WII 0.8833 ± 0.0026 ∗ 0.8921 ± 0.0021 0.8946 ± 0.0022 ∗ 0.8844 ± 0.0026 ∗

Breast Single imp 0.7170 ± 0.0055 0.7200 ± 0.0048 0.7164 ± 0.0048 0.7085 ± 0.0057
WII 0.7184 ± 0.0056 0.7243 ± 0.0048 ∗ 0.7212 ± 0.0050 ∗ 0.7152 ± 0.0057 ∗

Diabetes Single imp 0.7448 ± 0.0025 0.7053 ± 0.0036 0.7154 ± 0.0043 0.7438 ± 0.0026
WII 0.7455 ± 0.0025 0.7234 ± 0.0036 ∗ 0.7389 ± 0.0031 ∗ 0.7439 ± 0.0024

German Single imp 0.7331 ± 0.0029 0.7058 ± 0.0029 0.7056 ± 0.0028 0.7364 ± 0.0029

WII 0.7368 ± 0.0025 ∗ 0.7118 ± 0.0030 ∗ 0.7120 ± 0.0028 ∗ 0.7357 ± 0.0027

Waveform Single imp 0.8700 ± 0.0019 0.8241 ± 0.0031 0.7827 ± 0.0049 0.8679 ± 0.0020
WII 0.8700 ± 0.0019 0.8612 ± 0.0019 ∗ 0.8583 ± 0.0020 ∗ 0.8686 ± 0.0020 ∗
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Figure 1. Detailed results on USPS classification task.

missing attributes cannot be used as test examples,
the test sets are only taken from the fully observed
part of the data set.

Table 6.1 shows accuracies and standard errors for
the weighted infinite imputations (WII) method with
squared distance regularization compared to all single
imputations ω̂ on each data set. Regularization pa-
rameter γ is automatically chosen for each run based
on the performance on a separate tuning set. Base-
lines are obtained by first imputing ω̂ and learning the
classifier in a second step. The weighted infinite impu-
tations method outperforms the single imputation in
virtually all settings. We test for significant improve-
ments with a paired t-test on the 5% significance level.
Significant improvements are marked with a “∗” in the
table.

We explore the dependence of classification perfor-

mance on training sample size and the percentage of
missing attribute values in more detail. The first graph
in Figure 1 shows improvements in classification accu-
racy of our method over the single imputations de-
pending on the percentage of missing values. Graph
2 shows classification accuracy improvements depend-
ing on the size of the labeled training set. Both ex-
periments are performed on USPS data set and we
again adjust γ separately for each run based on the
performance on the tuning set. We note that similar
results are obtained for the other classification prob-
lems. The weighted infinite imputation method can
improve classification accuracy even when only 30%
of the attribute values are missing. It shows, though,
that it works best if at least 60% are missing, depend-
ing on ω̂. On the other hand, we see that it works for
all training set sizes, again depending on ω̂. Similar
results are obtained for the other data sets.
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Table 2. Mean squared error results and standard errors for regression data sets. Smaller mean squared errors are written
in bold face, “∗” denotes significant improvement.

MeanInput Gauss GMM MeanFeat

Housing Single imp 193.0908 ± 19.9408 288.6192 ± 41.5954 160.4940 ± 16.2004 1134.5635 ± 101.9452
WII 66.5144 ± 0.8958 ∗ 62.3073 ± 0.8479 ∗ 66.7959 ± 0.9173 ∗ 64.7926 ± 0.9619 ∗

Ailerons Single imp 81.7671 ± 4.5862 172.5037 ± 8.6705 79.8924 ± 4.0297 193.5790 ± 10.4899
WII 11.8034 ± 0.1494 ∗ 8.7505 ± 0.0932 ∗ 11.7595 ± 0.1530 ∗ 11.8220 ± 0.1387 ∗

Cpu act Single imp 10454.176 ± 962.598 15000.380 ± 973.100 10123.172 ± 933.143 15710.812 ± 1099.603
WII 306.257 ± 12.500 ∗ 204.180 ± 5.058 ∗ 305.651 ± 13.627 ∗ 247.988 ± 8.010 ∗

To evaluate the convergence of our method, we mea-
sure classification accuracy after each iteration of the
learning algorithm. It shows that classification accu-
racy does not change significantly after about 5 itera-
tions for a typical γ, in this case γ = 105 for the USPS
data set. On average the algorithm terminates after
about 30-40 iterations. The computational demands of
the weighted infinite imputation method are approxi-
mately quadratic in the training set size for the classifi-
cation task, as can be seen in Graph 3 of Figure 1. This
result depends on the specific risk functional R and its
optimization implementation. Nevertheless, it shows
that risk functionals which are solvable in quadratic
time do not change their computational complexity
class when learned with incomplete data.

6.2. Regression

We evaluate the weighted infinite imputations method
on regression problems using the squared error as loss
function. Consequently, risk functional RKRR (Sect.
5.1) is used as R and again the squared distance reg-
ularizer Qsq for Q in Optimization Problem 3. From
UCI we take the Housing data (506, 14), and from the
Weka homepage cpu act (1500, 21) and ailerons (2000,
40). Ridge parameter η and RBF-kernel parameter σ

were again chosen such that they lead to best results
on the completely observed data. Regularization pa-
rameter γ was chosen based on the performance on
a tuning set consisting of 150 examples. Results are
shown in Table 2. We can see that our method outper-
forms the results obtained with the single imputations
significantly for all settings.

7. Conclusion

We devised an optimization problem for learning de-
cision functions from incomplete data, where the dis-
tribution p of the missing attribute values is a free
parameter. The investigated method makes only mi-
nor assumptions on the distribution by the means of a
regularizer on p that can be chosen freely. By simul-
taneously optimizing the function and the distribution
of imputations, their dependency is taken into account

properly. We presented a proof that the optimal so-
lution for the joint learning problem concentrates the
density mass of the distribution on finitely many impu-
tations. This justifies the presented iterative algorithm
that finds a solution. We showed that instantiations
of the general learning method consistently outperform
single imputations.
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Abstract

Rich representations in reinforcement learning
have been studied for the purpose of enabling
generalization and making learning feasible in
large state spaces. We introduce Object-Oriented
MDPs (OO-MDPs), a representation based on
objects and their interactions, which is a natural
way of modeling environments and offers impor-
tant generalization opportunities. We introduce
a learning algorithm for deterministic OO-MDPs
and prove a polynomial bound on its sample
complexity. We illustrate the performance gains
of our representation and algorithm in the well-
known Taxi domain, plus a real-life videogame.

1. Introduction

In the standard Markov Decision Process (MDP) formal-
ization of the reinforcement-learning (RL) problem (Sut-
ton & Barto, 1998), a decision maker interacts with an en-
vironment consisting of finite state and action spaces. Al-
gorithms for RL in MDP environments suffer from what is
known as the curse of dimensionality: an exponential ex-
plosion in the total number of states as a function of the
number of state variables. Learning in environments with
extremely large state spaces is challenging if not infeasible
without some form of generalization. Exploiting the un-
derlying structure of a problem can enable generalization
and has long been recognized as important in representing
sequential decision tasks (Boutilier et al., 1999).

In this paper, we propose an extension to the standard MDP
formalism, which we call Object-Oriented MDPs (OO-
MDPs), and present an efficient learning algorithm for de-
terministic OO-MDPs. We claim that this object-based ap-
proach is a natural way of viewing and describing many
real-life domains that enables multiple opportunities for

Appearing in Proceedings of the 25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

generalization. There are many ways of incorporating ob-
jects into models for learning and decision making—this
paper explores one particular approach as a first attempt to
understand the issues that arise.

Our representation has multiple connections with other for-
malisms proposed in the Relational Reinforcement Learn-
ing literature (van Otterlo, 2005), but emphasizes simplic-
ity and tractability over expressive power. Our representa-
tion starts from attributes that can be directly perceived by
the agent, rather than predicates or propositions introduced
by the designer (although we allow the encoding of prior
knowledge in propositional form). A similar formalism,
relational MDPs (RMDPs), was introduced by Guestrin
et al. (2003) in the context of planning, and is based on
the same insight. While our formalism has similarities to
RMDPs, we introduce a number of changes, mainly in the
way transition dynamics are described, to enable efficient
learning and generalization.

To present and test our approach, we first provide bench-
mark experiments in the well-known Taxi domain (Diet-
terich, 2000). We further demonstrate its applicability by
designing an agent that can solve an interesting problem in
the real-life videogame Pitfall1.

2. Notation

We use a standard Markov Decision Process (MDP) no-
tation throughout this paper (Puterman, 1994). A finite
MDP M is a five tuple 〈S,A, T,R, γ〉. We use T (s′|s, a)
to denote the transition probability of state s′ given state–
action pair (s, a) and R(s, a) to denote the expected reward
value. A deterministic MDP is one in which there is a sin-
gle next state s′ for every given state s and action a; that is,
∀s ∈ S, a ∈ A,∃s′ ∈ S : T (s′|s, a) = 1.

3. Object-oriented Representation

We will use the Taxi domain, defined by Dietterich (2000),
as an example to introduce our formalism. Taxi is a grid-

1 c©1982 Activision, Inc.
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Figure 1. The taxi domain. (a) Original 5 × 5 Taxi problem. (b)
Extended 10× 10 version, with a different wall distribution and 8
possible passenger locations and destinations.

world domain (see Figure 1.a), where a taxi has the task
of picking up a passenger in one of a pre-designated set
of locations (identified in the figure by the letters Y, G, R,
B) and dropping it off at a goal destination, also one of the
pre-designed locations. The set of actions for the taxi are
North, South, East, West, PICKUP and DROPOFF. Walls
in the grid limit the taxi’s movements.

A common factored-state representation for the Taxi prob-
lem uses Dynamic Bayesian Networks (DBNs) to indicate
how state variables influence each other. For example, the
location of the taxi after a North action only depends on
its current location and is independent of the passenger or
destination variables.

We depart from this representation and introduce one based
on objects and their interactions. Many elements in our
representation are similar to those of relational MDPs
(Guestrin et al., 2003) with significant differences in the
way we represent transition dynamics. Similar to RMDPs,
we define a set of classes C = {C1, . . . , Cc}. Each class in-
cludes a set of attributes Att(C) = {C.a1, . . . , C.aa}, and
each attribute has a domain Dom(C.a). A particular envi-
ronment will consist of a set of objects O = {o1, . . . , oo},
where each object is an instance of one class: o ∈ Ci. The
state of an object o.state is a value assignment to all its at-
tributes. The state of the underlying MDP is the union of
the states of all its objects: s =

⋃o
i=1 oi.state.

An OO-MDP representation of Taxi has four object classes:
Taxi, Passenger, Destination and Wall. Taxi, Passenger and
Destination have attributes x and y, which define their lo-
cation in the grid. Passenger also has a Boolean attribute
in-taxi, which specifies whether the passenger is inside the
taxi. Walls have an attribute that indicates their position in
the grid. The Taxi domain, in its 5 × 5 version shown in
Figure 1.a, has one object of each class Taxi, Passenger,
and Destination, and multiple (26) objects of class Wall.
This list of objects points out a significant feature of the

OO-MDP representation. Whereas in the classical MDP
model, the effect of encountering walls is felt as a prop-
erty of specific locations in the grid, the OO-MDP view is
that wall interactions are the same regardless of their loca-
tion. As such, agents’ experience can transfer gracefully
throughout the state space.

When two objects interact in some way, they define a rela-
tion between them. A combination of the relation estab-
lished, plus the internal states of the two objects, deter-
mines an effect—a change in value of one or multiple at-
tributes in either or both interacting objects. This behavior
is defined at the class level, meaning that different objects
that are instances of the same class behave in the same way
when interacting with other objects. Formally, a relation
r : Ci × Cj → Boolean is a function, defined at the class
level, over the combined attributes of objects of classes Ci

and Cj . Its value gets defined when instantiated by two ob-
jects o1 ∈ Ci and o2 ∈ Cj . For our Taxi representation,
we will define 5 relations: touchN (o1, o2), touchS(o1, o2),
touchE(o1, o2), touchW (o1, o2) and on(o1, o2), which de-
fine whether an object o2 ∈ Cj is exactly one cell North,
South, East or West of an object o1 ∈ Ci, or if both objects
are overlapping (same x, y coordinates). Different domains
require different relations.

When the object taxii ∈ Taxi is on the northern edge of
the grid and tries to perform a North action, it hits some
object wallj ∈ Wall and the observed behavior is that it
doesn’t move. We say that a touchN (taxii, wallj) rela-
tion has been established and the effect of an action North
under that condition is no-change. On the other hand, if
¬touchN (taxii, wallj) is true and the taxi performs the ac-
tion North, the effect will be taxii.y ← taxii.y + 1. As
stated before, these behaviors are defined at the class level,
so we can refer in general to the relation touchN (Taxi, Wall)
as producing the same kind of effects on any instance of
taxii ∈ Taxi and wallj ∈ Wall.

We define some properties of these transition dynamics
more formally in the next section.

3.1. Transition Dynamics

Every state s induces a certain value assignment to all at-
tributes of all objects—and therefore all relations—in the
domain. Transitions are determined by interactions be-
tween objects. Every pair of objects o1 ∈ Ci and o2 ∈ Cj ,
their internal states o1.state and o2.state, an action a, and
the set of relations r(o1, o2) that are true—or false—at the
current state, determine an effect—a change of value in
some of the objects’ attributes.

Definition 1 An effect is a single operation over a single
attribute att in the OO-MDP. We will group effects into
types, based on the kind of operation they perform. Ex-
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amples of types are arithmetic (increment att by 1, subtract
2 from att), and constant assignment (set att to 0).

Definition 2 A term t is any Boolean function. In our OO-
MDP representation, we will consider terms representing
either a relation between two objects, a certain possible
value of an attribute of any of the objects or, more gener-
ally, any Boolean function defined over the state space that
encodes prior knowledge. All transition dynamics in an
OO-MDP are determined by the different possible settings
of a special set of terms called T .

Definition 3 A condition is a set Tc of terms and negations
of terms from T that must be true in order to produce a
particular effect e under a given action a.

We can summarize an OO-MDP transition cycle as follows:

1: while agent is acting do
2: Agent observes current state s and returns action a.
3: From state s, the environment extracts all relations

that currently hold between objects and observes
the value of all attributes of all objects, assigning
a True/False value to all terms in T .

4: For each (if any) fulfilled condition in Tc, there’s an
effect that will occur, determining a set of effects to
be applied to s.

5: If no conditions were fulfilled, no change takes place
to s.

6: Otherwise, the environment uses the set of effects to
compute s′. New state s← s′.

7: The environment chooses a reward r from R(s, a).
8: Agent is told r.
9: end while

4. DOORMAX: Learning and Solving
Deterministic OO-MDPs

We introduce Deterministic Object-Oriented Rmax
(DOORMAX), an algorithm for learning and solving
deterministic OO-MDPs. DOORMAX is correct and,
as we will show, provably efficient under the following
assumptions.

Assumption 1 For each action and each attribute, only ef-
fects of one type can occur.

Assumption 2 For every action a, attribute att and effect
type t, there is a set CE of condition–effect pairs that deter-
mine changes to att given a. No effect can appear twice on
this list, and there are at most k different pairs—|CE| ≤ k.
Plus, no conditions Ti and Tj in the set CE contain each

other: ¬(Ti ⊂ Tj ∨ Tj ⊂ Ti). The number of terms or
negations of terms in any condition is bounded by a known
constant M .

Assumption 3 Effects are invertible, that is, given states s
and s′, for each attribute att and each effect type we can
determine a unique effect that would transform att from its
value in s to its value in s′.

4.1. Definitions and Data Structures

We introduce some definitions, notation, and data struc-
tures that will be used to describe DOORMAX:

• T is the union of all terms t that will be involved in
the conditions that determine the transition dynamics
of the environment described by the OO-MDP, plus
their negations ¬t, with |T | = 2n.

• For every state s ∈ S, the function cond(s) returns the
subset of terms in T that are true in s.

• A condition Tc ⊆ T is represented by a string cS of
length n, where ci

S = 1 if ti ∈ Tc, ci
S = 0 if ¬ti ∈ Tc

and ci
S = * if ti /∈ Tc ∧ ¬ti /∈ Tc.

• Given two conditions represented as strings c1 and c2,
we define the commutative operator ⊕ : c× c→ c as
follows:

c1 c2 c1 ⊕ c2

0 0 0
1 1 1
0 1 *

0|1 * *

• A condition c1 matches another condition c2, noted
c1 |= c2, if ∀1 ≤ i ≤ n : ci

1 = * ∨ ci
1 = ci

2.

• For any states s and s′ and attribute att, the function
effatt(s, s

′) returns one effect of each type that would
transform attribute att in s into its value in s′.

• A prediction p is a pair (p.model, p.effect), where
p.model is a condition that represents the set of terms
that need to be true for p.effect to occur.

• For each action a, each attribute att and each ef-
fect type type, a set of predictions pred(a, att, type)
is maintained. We refer to the set of models in a set of
predictions as pred(a, att, type).models.

• If an action a produces no effect from a given state
s (s′ = s), we call the induced condition cond(s) a
failure condition. We define Fa to be a set of failure
conditions for action a.

• Two effects are incompatible if, for any initial value
of an attribute, applying these two effects would yield
two different final values.
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4.2. OO-MDP Representation of Taxi

To facilitate understanding of the notation and data struc-
tures, we present a full example of our representation in the
Taxi domain.

The set of terms T , which determines the transition dynam-
ics of the OO-MDP, includes the four touchN/S/E/W rela-
tions between the taxi and the walls; the relevant relations
between the taxi and the passenger and destination; the at-
tribute value passenger.in-taxi = T ; and all their nega-
tions:

{ touchN/S/E/W (taxi, wall), on(taxi, passenger),
¬touchN/S/E/W (taxi, wall), ¬on(taxi, passenger),
on(taxi, destination), ¬on(taxi, destination),
passenger.in-taxi = T , passenger.in-taxi = F }

Consider the state s where the taxi is in position (2, 4) (as
in Figure 1.a), the passenger is inside the taxi, and the des-
tination is G. For this state, the function cond(s) returns:

{ touchN (taxi, wall), ¬touchS(taxi, wall),
¬touchE(taxi, wall), touchW (taxi, wall),
¬on(taxi, passenger), ¬on(taxi, destination),
passenger.in-taxi = T }.

The corresponding 7-character string representation for this
condition is 1001001, following the prior order for the
terms.

Let’s now assume that the agent tries to perform the ac-
tion East, which takes it to state s′ where the taxi is in
location (3, 4). The corresponding cond(s′) is similar, ex-
cept that now the taxi is not touching a wall to its West
(¬touchW (taxi, wall)). The corresponding string represen-
tation of the new condition is: 1000001. The observed ef-
fect is that the taxi moved to location (3, 4). In our repre-
sentation, two effect types are allowed: arithmetic and con-
stant assignment. Therefore, the function efftaxi.x(s, s′)
will return two values: increment(1) and set-to(3).

Now, the agent takes another East action, and gets to state
s′′, where location is (4, 4), it’s touching a wall to the East
and standing on the destination. cond(s′′) can now be rep-
resented as 1010011. The two observed effects to taxi.x are
increment(1) and set-to(4). Note that the transition model
for an OO-MDP need not predict the changes to the condi-
tions, only to the attributes. The condition values are then
derived separately using the knowledge of the relevant re-
lations and their definitions.

Finally, we’ll consider separately the actions that produce
no effect. Let’s assume the agent also attempted an action
North from each of the previous states, which resulted in it
hitting a wall and staying in the same state. We treat these
cases differently: The corresponding conditions 1001001,
1000001 and 1010011 will be identified as failure condi-
tions for action North and incorporated into the set FNorth.

Whenever we observe a new condition ci such that any ex-
isting condition in FNorth matches it, we predict that per-
forming a North action will have no effect.

4.3. Learning Algorithm

The DOORMAX algorithm (Algorithm 1) follows the gen-
eral structure of most RL algorithms in the Rmax fam-
ily, which work as follows. Using examples of transi-
tions (s, a, s′), a learning algorithm constructs the tran-
sition model T . The learning algorithm must satisfy the
KWIK (knows what it knows) conditions (Li et al., 2008),
which say: (1) all predictions must be accurate (assuming a
valid hypothesis class), and (2) however, the learning algo-
rithm may also return ⊥, which indicates that it cannot yet
predict the output for this input. The sample complexity
or KWIK bound of a learning algorithm is the maximum
number of times it returns ⊥. In the Rmax setting, any
transition that cannot yet be predicted is assumed to lead to
a fictious smax state from which maximum reward can be
obtained.

Algorithm 1 DOORMAX: main() method
1: // Set up data structures:
2: for all actions a ∈ A do
3: Fa ← ∅
4: for all attributes att ∈ ⋃

c∈C Att(c) do
5: for all effect types type do
6: pred(a, att, type)← ∅
7: Add pred(a, att, type) to set of active predic-

tions P
8: end for
9: end for

10: end for
11: while ¬(Termination criterion) do
12: Observe current state s.
13: Choose action a according to exploration pol-

icy, based on prediction for T (s′|s, a) returned by
predictTransition(s, a).

14: Observe new state s′.
15: Update learned model using method

addExperience(s, a, s′, k).
16: end while

The two main routines of the algorithm are
predictTransition (Algorithm 2), which pre-
dicts the next state given a current state and action
based on the current model, and addExperience
(Algorithm 3), which learns a model of the OO-MDP. If
predictTransition is not able to predict a next state
with accuracy, it returns smax.

To help understand these routines, we present a couple of
intuitions, based on the Taxi examples presented in the pre-
vious section. Notice that if we applied the ⊕ operator to
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cond(s) and cond(s′), the two conditions from which an
East action produced an increment(1) effect, we would ob-
tain: 1001001 ⊕ 1000001 = 100*001. The resulting con-
dition indicates that the term touchW (wall, taxi) is irrele-
vant with respect to action East and effect increment(1). If
we also compare the two pairs of effects obtained, we ob-
serve that we consistently observed increment(1), whereas
set-to(3) and set-to(4) are incompatible effects. These ob-
servations constitute the central ideas for the learning algo-
rithm.

Algorithm 2 predictTransition(s,a) method
0: Inputs: state s and action a.
0: Output: a predicted state s′ ∈ S ∪ {smax}.
1: if ∃c ∈ Fa s.t. c |= cond(s) then
2: // The current condition is a known failure condition.
3: Return s
4: else
5: for all attributes att ∈ ⋃

c∈C Att(c) do
6: E ← ∅
7: for all effect types type do
8: if ∃p ∈ pred(a, att, type) s.t. p.model |=

cond(s)S then
9: Add p.effect to E

10: end if
11: end for
12: if E = ∅ ∨ ∃ei, ej ∈ E s.t. ei and ej are incom-

patible then
13: Return smax

14: else
15: // Set E contains all the individual operations

that need to be applied to attributes in s in order
to convert it to s′.

16: s′ ← apply E to s
17: Return s′

18: end if
19: end for
20: end if

5. Analysis

Under the current assumptions, the effects of a given action
on a given attribute assuming effects of a given type can be
learned with a worst-case bound of O(nM ), where n = |T |
is the number of terms and M is the maximum number of
terms involved in any of the conditions. This worst-case
bound can be guaranteed by a variant of SLF-Rmax, an al-
gorithm introduced by Strehl et al. (2007).

The uniqness assumption, Assumption 2, is not needed for
SLF-Rmax to achieve this worst-case bound. However,
DOORMAX, by taking advantage of this assumption, is
able to learn faster in many domains. Some empirical evi-

dence to support this claim appears in Section 6.

If we assume M is a constant, SLF-Rmax can be used to
provide guaranteed efficient results. However, for many
domains DOORMAX will result much more efficient in
practice. We conjecture that the two approaches can be run
in parallel, to achieve the best of both.

Intuitively, the good empirical results of DOORMAX lie in
the way condition-effects are learned each time they are ob-
served. The worst-case occurs when the agent observes an
exponential amount of failures before observing instances
of the set of effects it needs to learn.

We now show that the problem of learning the transition
dynamics of an OO-MDP has polynomial sample complex-
ity in the KWIK setting, when by sample we only refer to
the cases where an effect is observed (as opposed to failure
samples where s′ = s).

We split the proof in two parts. First, we show that learning
the right (condition, effect) pairs for a single action and at-
tribute is KWIK-learnable, and then we show that learning
the right effect type for each action–attribute, given all the
possible effect types, is also KWIK learnable.

Theorem 1 The transition model for a given action a, at-
tribute att and effect type type in a deterministic OO-MDP
is KWIK-learnable with a bound of O(nk+k+1), where n
is the number of terms in a condition and k is the maximum
number of effects per action–attribute.

Proof:

Given state s and action a, the predictor for effect type type
will return ⊥ if cond(s) is not a known failure condition
and there is no condition in pred(a, att, type) that matches
cond(s). In that case, it gets to observe s′ and updates its
model with cond(s) and the observed effect e. We show
that the number of times the model can be updated until it
always has a correct prediction is O(nk + k + 1):

• if the effect e has never been observed before for
this particular action, attribute and effect type, it gets
added to pred(a, att, type). This outcome happens at
most k times, which is the maximum number of dif-
ferent effects allowed per action-attribute-type combi-
nation.

• if the effect e has never been observed, but
|pred(a, att, type)| = k, the algorithm concludes that
the current effect type is not the correct one for this
action–attribute, and it removes all predictions of this
type from its set P . This event can only happen once.

• if the effect e is such that there already exists a predic-
tion for it, ⊥ is only returned if the existing condition
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in the model does not match cond(s). This case can
only happen if a term in the model is a 0 or 1 and the
observation is the opposite. Once it happens, that term
becomes a *, so there will never be another mismatch
for that term, as * matches either 0 or 1. In the worst
case, with every ⊥ returned, one term at a time gets
converted into *. These updates can only happen n
times for each effect in pred(a, att, type), for a total of
nk times.

Therefore, there can be at most nk + k + 1 updates to the
model for a particular action a, attribute att and effect type
type before pred(a, att, type) either has a correct prediction
or gets eliminated. �

Corollary 1 The transition model for a given action and
attribute in a deterministic OO-MDPs is KWIK-learnable
with a bound of O(h(nk + k + 1) + (h − 1)), where n is
the number of terms in a condition, k is the max number of
effects per action–attribute, and h is the number of effect
types.

Proof: Whenever DOORMAX needs to predict s′ given
state s and action a, it will consult its current predictions
for each attribute and effect type. It will return ⊥ if:

• for any of the h effect types typei, pred(a, att, typei)
returns ⊥. As shown in Theorem 1, pred(a, att, typei)
can only return ⊥ up to nk + k + 1 times. Therefore,
this case can only happen h(nk + k + 1) times.

• for some attribute att, there are two effect types
type1 and type2 such that pred(a, att, type1) �=
pred(a, att, type2). When this happens, we get to ob-
serve the actual effect e, which will necessarily mis-
match one of the predictions. The model will there-
fore be updated by removing either pred(a, att, type1)
or pred(a, att, type2) from its set of predictions. This
case can only occur h− 1 times for a given action and
attribute.

We have shown that, in total, DOORMAX will only predict
⊥ O(h(nk + k + 1) + (h − 1)) times before having an
accurate model of the transition dynamics for an action and
attribute in the OO-MDP. �

6. Experiments

First, we use the Taxi domain to demonstrate how DOOR-
MAX makes use of the OO-MDP representation to outper-
form Factored-Rmax, an algorithm based on a factored-
state MDP representation. Second, we show how DOOR-
MAX and Factored-Rmax scale when the size of the state
space increases, by comparing them on the 10×10 version
of Taxi. Finally, we demonstrate how DOORMAX can be

Algorithm 3 addExperience(s,a,s’,k) method

0: Inputs: an observation < s, a, s′ >; k, the maximum
number of different effects possible for any action, at-
tribute and effect type.

1: if s = s′ then
2: // Found a failure condition for action a, update Fa

3: Remove all c ∈ Fa s.t. cond(s) |= c.
4: Fa ← Fa ∪ {cond(s)}
5: else
6: for all attributes att ∈ ⋃

c∈C Att(c) do
7: for all e ∈ effatt(s, s

′) do
8: Find a prediction p ∈ pred(a, att, e.type) such

that p.effect = e
9: if ∃p then

10: // We already have a (condition, effect) pre-
diction for current a, att, and type. Update
condition and verify that there are no over-
laps.

11: p.model← p.model⊕ cond(s)S .
12: if ∃c ∈ (pred(a, att, e.type) \ p).models s.t.

p.model |= c then
13: // Conditions overlap, violating an as-

sumption, meaning it is not the right type
of effect for this action and attribute.

14: Remove pred(a, att, e.type) from P
15: end if
16: else
17: // We observed an effect for which we had

no prediction. If its condition does not over-
lap an existing condition, then add this new
prediction.

18: if ∃c ∈ pred(a, att, e.type).models s.t.
cond(s) |= c ∨ c |= cond(s) then

19: Remove pred(a, att, e.type) from P
20: else
21: Add (cond(s), e) to pred(a, att, e.type).
22: // Verify that there aren’t more than k pre-

dictions for this action, attribute and type.
23: if |pred(a, att, e.type)| > k then
24: Remove pred(a, att, e.type) from P
25: end if
26: end if
27: end if
28: end for
29: end for
30: end if
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applied to succesfuly model and solve a real-life problem,
the Pitfall videogame.

6.1. Taxi

The first experiments we present are based on the Taxi do-
main previously introduced. We run experiments on two
versions: the original 5 × 5-grid version presented by Di-
etterich (2000), which consists of 500 states, and an ex-
tended 10×10-grid version with 8 passenger locations and
destinations, with 7200 states (see Figure 1). The purpose
of the extended version is to demonstrate how DOORMAX
scales by properly generalizing its knowledge about con-
ditions and effects when more objects of the same known
classes are introduced.

We compare DOORMAX against Factored-Rmax, an al-
gorithm from the Rmax family that uses a factored-state
MDP and models transitions using a DBN provided as in-
put. Both algorithms are model based and use Rmax-style
exploration, so we hope to be able to truly compare the un-
derlying representations.

The representation used for DOORMAX was described in
the previous sections. In the case of Factored-Rmax, we
provide a DBN with some derived features that make learn-
ing faster. The state variables used are the Taxi x and y
locations, plus two Boolean features: in-taxi, representing
whether the passenger is in the taxi, and at-destination,
representing whether the taxi is standing at the passenger’s
destination.

The experiments for both algorithms and both versions of
the Taxi problem were repeated 100 times, and the re-
sults averaged. For each experiment, we run a series of
episodes, each starting from a random start state. We eval-
uate the agent’s learned policy after each episode on a set
of six “probe” combinations of 〈taxi (x,y) location, pas-
senger location, passenger destination〉. The probe states
used were: {(2, 2), Y,R}, {(2, 2), Y,G}, {(2, 2), Y,B},
{(2, 2), R,B}, {(0, 4), Y,R}, {(0, 3), B,G}. We report
the number of steps taken before learning an optimal policy
for these six start states.

The results are shown in the following table, with the last
column showing the ratio between the results for the 10×10
version vs the 5× 5 one:

Taxi 5× 5 Taxi 10× 10 Ratio
Number of states 500 7200 14.40
Factored Rmax

# steps 1676 19866 11.85
Time per step 43.59ms 306.71ms 7.03

OO-Rmax
# steps 529 821 1.55

Time per step 13.88ms 293.72ms 21.16

We can see how DOORMAX not only learns with signifi-
cantly less sample complexity, but also how well it scales to
the larger problem. After increasing the number of states by
more than 14 times, DOORMAX only requires 1.55 times
the experience.

The main difference between DOORMAX and Factored-
Rmax is their internal representation, and the kind of gen-
eralization it enables. After just a few examples in which
¬touchN (taxi, wall) is true, DOORMAX learns that the
action North has the effect of incrementing taxi.y by 1,
whereas under touchN (taxi, wall) it fails. This knowledge,
as well as its equivalent for touchS/E/W , is generalized
to all 25 (or 100) different locations. Factored-Rmax only
knows that variable taxi.y′ in state s′ depends on its value
in state s, but still needs to learn the transition dynamics for
each possible value of taxi.y (5 or 10 different values). In
the case of actions East and West, it’s even worse, as walls
make taxi.x′ depend on both taxi.x and taxi.y, which are
25 (or 100) different values.

As DOORMAX is based on interactions between objects, it
learns that the relation between taxi and wall is indepen-
dent of the wall location. Each new wall is therefore the
same as any known wall, rather than a new exception in the
movement rules, the kind Factored-Rmax needs to learn.

6.2. Pitfall

Pitfall is a video game released in 1982 by Activision for
the Atari game console. The goal is to have the main char-
acter (Man) traverse a series of screens while collecting as
many points as possible while avoiding obstacles (such as
holes, pits, logs, crocodiles and walls) and under the time
constraint of 20 minutes. All transitions in Pitfall are deter-
ministic. Our goal in this experiment was to have the Man
cross the first screen from the left to the right with as few
actions as possible. Figure 2 ilustrates this first screen.

Our experiments were run using a modified Atari emula-
tor that ran the actual game and detected objects from the
displayed image. We used a simple heuristic that identified
objects by color clusters and sent joystick commands to the
emulator to influence the play. For each frame of the game,
a list of object locations was sent to an external learning
module that analyzed the state of the game and returned an
action to be executed before the emulator continued on to
the next frame. If we consider that we start from screen
pixels, the flat state representation for Pitfall is enormous:
16640x420. By breaking it down into basic objects, through
an object recognition mechanism, the state space is in the
order of the number of objects to the number of possible
locations of each object: 6640x420. OO-MDPs allow for
a very succint representation of the problem, that can be
learned with only a few experience samples.
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Figure 2. Initial screen of Pitfall.

The first screen contains six object types: Man, Hole, Lad-
der, Log, Wall and Tree. Objects have the attributes x,
y, width and height, which define their location on the
screen and dimension. The Man also has a Boolean at-
tribute of direction that specifies which way he is fac-
ing. We extended the touchX relation from Taxi to
describe diagonal relations between objects, including:
touchNE(oi, oj), touchNW (oi, oj), touchSW (oi, oj) and
touchSE(oi, oj). These relations were needed to properly
capture the effects of moving on and off of ladders.

In our implementation of DOORMAX, we defined seven
actions: WalkRight, WalkLeft, JumpLeft, JumpRight, Up,
Down and JumpUp. For each of these actions, however, the
emulator has to actually execute a set sequence of smaller
frame-specific actions. For example, WalkLeft requires four
frames: one to tell Pitfall to move the Man to the left, and
three frames where no action is taken to allow for the ani-
mation of the Man to complete. Effects are represented as
arithmetic increments or decrements to the attributes x, y,
width, height, plus a constant assignment of either R or L
to the attribute direction.

The starting state of Pitfall is fixed, and given that all
transitions are deterministic, only one run of DOORMAX
was necessary to learn the dynamics of the environment.
DOORMAX learns an optimal policy after 494 actions, or
4810 game frames, exploring the area beneath the ground
as well as the objects en route to the goal. Once the transi-
tion dynamics are learned, restarting the game results in the
Man exiting the first screen through the right, after jumping
the hole and the log, in 94 actions (905 real game frames),
which is what the optimal policy requires.

A few examples of the (condition, effect) pairs learned by
DOORMAX are shown below:

Action Condition Effects
WalkRight direction = L {direction = R,

Δx = +8}
WalkRight touchE(Man, Wall) no-effect
JumpRight direction = R Δx = +214

Up on(Man, Ladder) Δy = +8

7. Conclusions and Future Work

We introduced OO-MDPs, an object-oriented representa-
tion for reinforcement-learning problems that provides a
natural way of modeling a broad set of domains, while en-
abling generalization. We presented DOORMAX, a learn-
ing algorithm for deterministic OO-MDPs that not only
outperforms state-of-the-art algorithms for factored-state
representations, but also scales very nicely with respect to
the size of the state space, as long as transition dynamics
between objects do not change. We presented bounds for
learning transition dynamics of determinstic OO-MDPs in
the KWIK framework.

One limitation of our work is that we do not yet have a
provably efficient algorithm for stochastic domains, which
is part of our future work. While OO-MDPs can model
stochastic transitions, a more complex learning algorithm
would be needed to learn transitions effectively in the face
of noise.

The second component of our future research is the exten-
sion of the object-oriented model to be able to handle in-
heritance. We hope to be able to exploit knowledge about
objects being part of a common super-class to learn their
behaviors faster. Ideally, algorithms could also learn the
object definitions and classes automatically, as well.
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Abstract

Learning to rank is becoming an increasingly
popular research area in machine learning.
The ranking problem aims to induce an or-
dering or preference relations among a set of
instances in the input space. However, col-
lecting labeled data is growing into a burden
in many rank applications since labeling re-
quires eliciting the relative ordering over the
set of alternatives. In this paper, we pro-
pose a novel active learning framework for
SVM-based and boosting-based rank learn-
ing. Our approach suggests sampling based
on maximizing the estimated loss differential
over unlabeled data. Experimental results on
two benchmark corpora show that the pro-
posed model substantially reduces the label-
ing effort, and achieves superior performance
rapidly with as much as 30% relative im-
provement over the margin-based sampling
baseline.

1. Introduction

Learning to rank has recently drawn broad attention
among machine learning researchers (Joachims, 2002;
Freund et al., 2003; Cao et al., 2006). The objec-
tive of rank learning is to induce a mapping (ranking
function) from a predefined set of instances to a set
of partial (or total) orders. For instance, in recom-
mendation systems each customer is represented with
a set of features ranging from the income level to age
and her preference order over a set of products (e.g.
movies in Netflix). The ranking task is to learn a map-
ping from the feature space to a set of permutations of
the products. The applications include document re-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

trieval, collaborative filtering, product rating, and so
on. In this paper, we are interested in IR applications,
and focus on document retrieval. A number of queries
are provided such that each query is associated with
an ordering of documents indicating the relevance of
each document to the given query. Like many other
ranking applications, this requires a human expert to
carefully examine the documents in order to assign
relevance-based permutations. It is often unrealistic
to spend extensive human effort and money for label-
ing in ranking. Thus, it is crucial to design methods
that will considerably reduce the labeling effort with-
out significantly sacrificing ranking accuracy.

The active learning paradigm addresses this type of
problem. The central idea is to start with only a small
amount of labeled examples and sequentially select
new examples to be labeled by an oracle. The selected
examples are then added to the training set. It is clear
that labeling data in ranking requires a complete (or
partial) ordering of data whereas in classification la-
beling considers only absolute class assignments. The
target domain of a set of permutations is more com-
plex than that of absolute classes. Hence, it is even
more crucial to select the most informative examples
to be labeled in order to learn a ranking model using
fewer labeled examples.

In this paper, we propose a novel active sampling
framework for SVM rank learning (Joachims, 2002),
or RankSVM in short, and RankBoost (Freund et al.,
2003). The proposed method considers the capacity of
an unlabeled example to update the current model if
rank-labeled and added to the training set. We show
that this capacity can be defined as a function that
estimates the error of a ranker introduced by the ad-
dition of a new example. The capacity function takes
different forms in RankSVM and RankBoost due to
different formulations of the ranking function. For
example in the case of RankSVM, the ranking func-
tion is defined via a normal vector which is a weighted
sum of the support vectors whereas the ranking func-
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tion is a weighted sum of weak learners in RankBoost.
However, in both cases, the proposed strategy selects
the samples which are estimated to produce a faster
convergence from the current predicted ranking to the
true ranking. Our empirical evaluations on two bench-
mark corpora from topic distillation tasks in TREC
competitions show a significant advantage favoring our
method against the margin-based sampling heuristic
of (Brinker, 2004; Yu, 2005) and a random sampling
baseline.

The rest of the paper is organized as follows: Section 2
provides a brief literature review to the related work.
Section 3 motivates the choice of the proposed active
learning framework and introduces two novel methods
for active learning in the RankSVM and RankBoost
settings. In Section 4, we report the experimental re-
sults and demonstrate the effectiveness of our methods
on benchmark datasets. Finally, we offer our conclu-
sions and next steps in Section 5.

2. Related Work

A number of strategies have been proposed for active
learning in the classification framework. Some of those
center around the version space (Mitchell, 1982) reduc-
tion principle (Tong & Koller, 2000): selecting unla-
beled instances that limit the volume of the version
space the most, or equivalently selecting the ones with
the smallest margin. Some of the others adopt the idea
of reducing the generalization error (Roy & McCallum,
2001; Xu et al., 2003; Nguyen & Smeulders, 2004; Don-
mez et al., 2007): the selection of the unlabeled data
that has the highest affect on the test error, i.e. points
in the maximally uncertain and highly dense regions
of the underlying data distribution (Xu et al., 2003;
Nguyen & Smeulders, 2004; Donmez et al., 2007).

Unfortunately, it is not straightforward to extend these
theoretical principles to ranking problems. The gen-
eralization power of ranking functions is measured by
different evaluation metrics than the ones used for clas-
sification. Moreover, the classical performance metrics
for ranking, such as MAP (Mean Average Precision),
precision at the kth rank cut-off, NDCG (Normalized
Discounted Cumulative Gain), etc., are harder to di-
rectly optimize than the classical loss functions for
classification, i.e. log loss, 0/1 loss, squared loss, etc.

Recently, there have been attempts to address the
challenges in active sampling for rank learning.
Brinker (2004) uses a notion of the margin as an ap-
proximation to reducing the volume of the version
space. The margin in the ranking scenario is defined
as the minimum difference of scores between two in-

stances assuming the ranking solution is a real-valued
scoring function. Yu (2005) adopted the same notion
of margin for SVM rank learning and proposed a batch
mode for instance selection that minimizes the sum of
the rank score differences of all data pairs within a
set of samples. Yu (2005) proposed an efficient im-
plementation which considers only the rank-adjacent
pairs and showed that this strategy is optimal in terms
of selecting the most ambiguous set of samples with re-
spect to the ranking function. The major drawback of
this margin-based sampling method of (Brinker, 2004;
Yu, 2005) is that a scoring function for ranking may
assign very similar scores to instances with the same
rank label since the ranking function does not distin-
guish between the relative order of two relevant or
two non-relevant examples. However, such instances
do not carry any additional information for the rank
learner to distinguish between the relevant and the
non-relevant data.

Another recent development in active rank learning
is the divergence-based sampling method of (Amini
et al., 2006). The proposed method selects the sam-
ples at which two different ranking functions maxi-
mally disagree. One of the two functions is the current
ranking function trained on the labeled data, and the
other is a randomized function obtained by cross vali-
dation. The divergence-based strategy is effective only
when provided with a sufficiently large initial labeled
set, which is impractical for many real-world ranking
applications, such as document retrieval.

3. Active Sampling in Rank Learning

3.1. Motivation

This section presents a novel method for active learn-
ing using RankSVM and RankBoost. Roy and McCal-
lum (2001) argue that an optimal active learner is the
one that asks for the labels of the examples that, once
incorporated into training, would result in the lowest
expected error on the test set. The expected error on
the test set can be estimated using the posterior dis-
tribution P̂D(y | x) of class labels estimated from the
training set using some loss function L

EP̂D
=

∫

x

L(P (y | x), P̂D(y | x))P (x) (1)

Their aim is then to select the point x∗ such that when
added to the training set with a chosen label y∗, the
classifier trained on the new set {D + (x∗, y∗)} would
have less error than any other candidate x.

∀(x, y)EP̂D+(x∗,y∗)

≤ EP̂D+(x,y)

(2)
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Since the true label y∗ is unknown, the expectation
calculation is carried out by calculating the estimated
error for each possible label y ∈ Y , and then taking
the average weighted by the current learner’s posterior
P̂D(y | x). The naive implementation of this method
would be quite inefficient and almost intractable on
large datasets. Roy and McCallum (2001) address this
problem using fast updates for a Naive Bayes classifier.
Although efficient re-training procedures are available
for some learners such as SVMs (Cauwenberghs & Pog-
gio, 2000), it would still be infeasible for ranking tasks,
especially considering the interactive nature of rank-
ing systems. In this paper, we propose a method to
estimate how likely the addition of a new example will
result in the lowest expected error on the test set with-
out any re-training on the enlarged training set. Our
method is based on the likelihood of an example to
change the current hypothesis significantly. There are
a number of reasons why we believe this is a reasonable
indicator for estimating that error:

• Adding a new data point to the labeled set can
only change the error on the test set if it changes
the current learner.

• The more significant that change, the greater
chance to learn the true hypothesis faster.

• We note that a big change in the current hypoth-
esis might not always lead to better generaliza-
tion. However, as more data is sampled and the
hypothesis gets closer to the truth, it is less likely
that a single outlier could hurt the performance
noticeably.

In the following sections, we briefly review the
RankSVM and the RankBoost algorithms and propose
a novel active learning method for each.

3.2. Preliminaries

Assume the data is represented as a set of feature vec-
tors ~x ∈ R

d and corresponding labels (ranks) y ∈ Y =
{r1, r2, ..., rn} where n denotes the number of ranks.
We assume binary relevance in this paper, though our
framework can be generalized to multi-level ranking
scenarios as long as the rank learner works on pair-
wise preference relationships, which is the case for the
majority of rank learning algorithms. Features are nu-
merical values for attributes in the data. Assume fur-
ther that there exists a preference relationship between
data vectors such that yi ≻ yj denotes ~xi is ranked
higher than ~xj . A perfect ranking function f ∈ F

preserves the order relationships between instances:

~xi ≻ ~xj ⇔ f(~xi) > f(~xj)

Suppose we are given a set of instances D = {(~xi, yi) :
(~xi, yi) ∈ X × Y }m

i=1. The objective for rank learning
is to learn a mapping f : X × Y 7→ R that minimizes
a given loss function on the training data.

3.3. SVM Rank Learning

Assume f ∈ F is a linear function, i.e. f(~x) = 〈~w, ~x〉,
that satisfies

~xi ≻ ~xj ⇔ 〈~w, ~xi〉 > 〈~w, ~xj〉

The SVM model targeting this problem can be formu-
lated as a Quadratic Optimization problem:

min
~w

1

2
‖~w‖2 + C

∑

ξij (3)

subject to 〈~w, ~xi〉 ≥ 〈~w, ~xj〉 + 1 − ξij , ξij ≥ 0 ∀i, j

The above optimization can be equivalently written
by re-arranging the constraints and substituting the
trade-off parameter C for λ = 1

2C as follows:

min
~w

K∑

k=1

[
1 − zk

〈
~w, ~x1

k − ~x2
k

〉]

+
+ λ‖~w‖2 (4)

where [. . .]+ indicates the standard hinge loss. ~x1 −~x2

is a pairwise difference vector whose label z is positive,
i.e., z = +1 if ~x1 ≻ ~x2 and z = −1 otherwise. K is
the total number of such pairs in the training set. Fi-
nally, a ranked list is obtained by sorting the instances
according to the output of the ranking function in de-
scending order.

3.4. Active Sampling for RankSVM

Let us consider a candidate example ~x ∈ U , where
U is the set of unlabeled examples. Assume ~x is
incorporated into the labeled set with a rank label
y ∈ Y . We denote the total loss on the instance
pairs that include ~x by a function of ~x and ~w, i.e.

D(~x, ~w) =
∑Jy

j=1 [1 − zj 〈~w, ~xj − ~x〉]+ where Jy is the
number of examples in the training set with a differ-
ent label than the label y of ~x. For instance, Jy is
the number of negative(non-relevant) examples in the
training set if y is assumed to be positive(relevant),
and vice versa. The objective function to be mini-
mized by RankSVM then becomes:

min
~w

{

λ‖~w‖2 +

K∑

k=1

[
1 − zk

〈
~w, ~x1

k − ~x2
k

〉]

+
+ D(~x, ~w)

}

(5)

Assume ~w∗ is the solution to the optimization in Equa-
tion 4, and it is unique. Burges and Crisp (2000) show
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the necessary and sufficient conditions for the unique-
ness of the SVM solution. There are only rare cases
where uniqueness does not hold, thus it is a rather
safe assumption to make. Since we do not actually re-
run the optimization problem on the enlarged data, we
restrict ourselves to the current solution(hypothesis)
~w∗. Instead of re-optimizing, we estimate the effect
of adding each candidate instance on the training loss
using the current solution to tell how much incorpo-
rating x into the labeled set is likely to change the
current hypothesis. First, let us consider two cases.

1. Assume ~w∗ = argmin~w D(~w, ~x)
Then, ~w∗ is also the solution to the optimization
problem in Equation 5, combining the assump-
tion with ~w∗ being the solution to Equation 4.
That means, adding ~x to the training set would
not change the current hypothesis. From an ac-
tive learning point of view, this example is useless
since the learning algorithm is indifferent to its
inclusion.

2. Assume ~w∗ 6= argmin~w D(~w, ~x)
This is the situation where the current solution
could be different if that example ~x were incorpo-
rated into training. The magnitude of the differ-
ence depends on the magnitude of the deviation
of D(~w∗, ~x) from its optimal value, min~wD(~w, ~x).

We now study the second case in more detail. Let ~̂w

be the weight vector that minimizes D(~w, ~x), i.e. ~̂w =

argmin~w D(~w, ~x). Then, as the difference ‖~w∗ − ~̂w‖
increases it becomes less likely that ~w∗ is optimal for
Equation 5. In other words, the current solution ~w∗ is
in most need of updating in order to compensate for
the loss on the new pairs. Let us write ~̂w in terms of
~w∗ as follows:

~̂w = ~w∗ − ∆w

Minimizing D(~w, ~x) requires working with the hinge
loss, the direct optimization of which is difficult due
to the discontinuity of the derivative. However, it
can still be solved using a gradient-descent-type algo-
rithm1. Recall the objective function to be minimized:

min
~w

D(~w, ~x) = min
~w

Jy∑

j=1

[1 − zj 〈~w, ~xj − ~x〉]+ (6)

The derivative of the above equation with respect to
~w at a single point ~xj , ∆~wj , is:

∆~wj =

{

0 if zj 〈~w, ~xj − ~x〉 ≥ 1

−zj(~xj − ~x) if zj 〈~w, ~xj − ~x〉 < 1
(7)

1For a detailed discussion on solving SVM rank learning
using gradient descent, see (Cao et al., 2006).

Algorithm 1 RankBoost

Input: initial data distribution D1 over X × X

for t = 1 to T do

Train a weak learner on Dt

Obtain the weak ranking ht : X 7→ R

Choose a weight αt ∈ R for ht

Dt+1(~x
1, ~x2) = Dt(~x

1,~x2)exp(−αt(ht(~x
1)−ht(~x

2)))
Zt

end for

We substitute ~w in Equation 7 for the current weight
vector ~w∗ to estimate how the solution of Equation 6
deviates from it, i.e. ‖~w∗ − ~̂w‖ = ‖∆~w‖. We can
now write the magnitude of the total derivative as a
function of ~x and the rank label y as follows:

g(~x, y) = ‖∆~w‖ =
∑

j

‖∆~wj‖ (8)

=

Jy∑

j=1

{

0 if zj 〈~w∗, ~xj − ~x〉 ≥ 1

‖ − zj(~xj − ~x)‖ if zj 〈~w∗, ~xj − ~x〉 < 1

g(~x, y) estimates how likely the current hypothesis is
to be updated to minimize the loss introduced as a
result of the addition of the example ~x with the rank
label y. Thus, we use this function to estimate the
ability of each unlabeled candidate example to change
the current learner if incorporated into training. Since
the true labels of the candidate examples are unknown,
we use the current learner to estimate the true label
probabilities. Then, we can take the expectation of
g(~x, y) by taking the weighted sum over the current
posterior P̂ (y | ~x) for all y ∈ Y . Among all the un-
labeled examples, we choose the one with the highest
value for that expectation:

~x∗ = argmax
~x∈U

∑

y∈Y

P̂ (y | ~x)g(~x, y)

= argmax
~x∈U

{

P̂ (y = 1 | ~x)g(~x, y = 1) + (9)

P̂ (y = −1 | ~x)g(~x, y = −1)

}

3.5. RankBoost Learning

RankBoost is a boosting algorithm designed for rank-
ing problems. Like all algorithms in boosting fam-
ily, RankBoost learns a weak learner on each round,
and maintains a distribution Dt over the ranked pairs,
X ×X, to emphasize the pairs whose relative order is
the hardest to learn. An outline of the algorithm is
given as Algorithm 1. Zt is a normalization constant,
and the final ranking is a weighted sum of the weak
rankings H(~x) =

∑T
t=1 αtht(~x). For more details and

theoretical discussion see (Freund et al., 2003).
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3.6. Active Sampling for RankBoost

This section introduces a similar method for active
sampling for the RankBoost algorithm (Freund et al.,
2003). Consider a candidate point ~x ∈ U and assume
it is merged into the training set with rank label y ∈ Y .
Unlike RankSVM, RankBoost algorithm does not di-
rectly operate with an optimization function. But the
ranking loss with respect to the distribution at time t

can be written as:

∑

~x1,~x2

Dt(~x
1, ~x2)I(H(~x2) ≥ H(~x1)) (10)

where I is defined to be 1 if the predicate holds and 0
otherwise. Hence, this is a sum over misranked pairs,
assuming ~x1 ≻ ~x2. The distribution at time T + 1 can
be written as:

DT+1(~x
1, ~x2) = D1(~x

1, ~x2)
exp(H(~x2) − H(~x1))

∏

t Zt

(11)
The initial distribution term D1 can be dropped with-
out loss of generality, assuming it is uniform (which is
reasonable given the fact that we do not have prior in-
formation about the data). Similarly to RankSVM, we
would like to estimate how much the current ranking
function would change if the point ~x were in the train-
ing set. We estimate this deviation by the difference
in the ranking loss after enlarging the current labeled
set with each example ~x ∈ U . The ranking loss on the
enlarged set with respect to the distribution DT+1 is:

∑

~x1,~x2

exp(H(~x2) − H(~x1))
∏

t Zt
I(H(~x2) ≥ H(~x1))+

∑

~xj ,~x

exp(H(~xj) − H(~x))
∏

t Zt
I(H(~xj) ≥ H(~x)) (12)

Note that the rank label y of ~x is assumed to be pos-
itive (relevant) with ~x ≻ ~xj in this case. We have a
similar calculation for the case where y is assumed to
be negative (non-relevant). We adopt the distribution
DT+1 because 1) it can easily be written in terms of
the final ranking function, 2) it contains information
about which pairs remain the hardest to determine af-
ter the iterative weight updates. Then, the difference
in the ranking loss between the current and the aug-
mented set simply becomes:

∆L(~x, y = 1) =
∑

~xj ,~x

exp(H(~xj) − H(~x))
∏

t Zt
I(H(~xj) ≥ H(~x))

(13)
This difference indicates how much the current rank-
ing function needs to be modified to compensate for

the loss incurred by including this example. Note that
I(x ≥ 0) ≤ ex for ∀x ∈ R (Freund et al., 2003). There-
fore, the upper bound on ∆L can be written as:

∆L(~x, y = 1) ≤
∑

~xj ,~x

exp(2(H(~xj) − H(~x)))
∏

t Zt
(14)

∆L(~x, y = −1) can be similarly bounded, e.g.

∆L(~x, y = −1) ≤ ∑

~x,~xm

exp(2(H(~x)−H(~xm)))
Q

t
Zt

. Now, the

loss difference can be estimated by taking the expec-
tation over the possible rank labels of ~x with respect
to the current ranker’s posterior, P̂ (y | ~x):

EP̂ (∆L(~x)) = P̂ (y = 1 | ~x)∆L(~x, y = 1)+

P̂ (y = −1 | ~x)∆L(~x, y = −1) (15)

Note the similarity with Equation 9 in the SVM
case. Finally, we select the instance ~x that has
the highest expected loss differential, e.g. ~x∗ =
argmax~x EP̂ (∆L(~x)). For notational clarity, we take
the maximum over the upper bound in Equation 14 as
follows:

~x∗ = argmax
~x∈U

{

P̂ (y = 1 | ~x)(
∑

~xj ,~x

exp(2(H(~xj)−H(~x))))

+ P̂ (y = −1 | ~x)(
∑

~x,~xm

exp(2(H(~x) − H(~xm))))

}

(16)

For simplicity, we leave out the normalization constant
∏

t Zt since we are interested in the relative expecta-
tion rather than the absolute expectation.

3.7. Final Selection

The sample selection in both RankSVM and Rank-
Boost requires estimating a posterior label distribu-
tion. We adopt a sigmoid function to estimate that
posterior in the SVM case, as suggested by (Platt,
1999):

P̂ (y | ~x) =
1

1 + exp(−y ∗ f(~x) + C)

where f(~x) is the real-valued score of the ranking al-
gorithm, and C is a constant for calibrating the esti-
mate. C is tuned on a separate corpus not used for
evaluation in this paper. The final ranking in Rank-
Boost is a sum of weak learners with the corresponding
weights. When the weights are too small (or too large),
the posterior gets close to the extreme (either 0 or 1)
regardless of the example. Hence, we normalize the
RankBoost output dividing by the maximum possible
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Figure 1. Comparison of different active learners on TREC 2003. The horizontal line indicates the performance when the
entire training data is used. Only ∼ 15% of the training data is actively labeled in total by each method.

rank score without changing the rank order:

P̂ (y | ~x) =
1

1 + exp(−y ∗ H(~x)
P

T
t=1

αt
+ C)

Note max~xH(~x) = max~x

∑T
t=1 αtht(~x) =

∑T
t=1 αt

since the weak learner ht(~x) in RankBoost is a {0,1}-
valued function defined on the ordering information
provided by the corresponding feature (Freund et al.,
2003).

4. Evaluation

4.1. Data and Settings

We used two datasets in the experiments: TREC 2003
and 2004 topic distillation tasks in LETOR (Liu et al.,
2007). The topic distillation task in TREC is very sim-
ilar to web search where a page is considered relevant
to a query if it is an entry page of some web site rele-
vant to the query. The relevance judgments on the web
pages with respect to the queries are binary. There are
44 features, e.g. content and hyperlink features, each
of which is extracted from each document-query pair
and normalized into [0, 1]. There are 50 and 75 queries
with 1% and 0.6% relevant documents in TREC03
and TREC04, respectively. The total number of docu-
ments per query is ∼ 1000 for both datasets. We used

the standard train/test splits over 5 folds in LETOR.
For each fold, we randomly picked 16 documents in-
cluding exactly one relevant document per query for
initial labeling. The remaining training data is consid-
ered as the unlabeled set. We compared our method
with the margin-based sampling of (Brinker, 2004; Yu,
2005) and random sampling baselines. Each method
selects 5 documents per query for labeling at each
round, e.g. our method selects the top 5 documents
according to the criteria in Equation 9 and 16. Then,
the ranking function is re-trained, and evaluated on
the test set. This process is repeated for 25 iterations
which corresponds to labeling only ∼ 15% of the entire
training data. The reported results are averaged over
5 folds.

We adopted two standard, widely used performance
metrics for evaluation, namely the Mean Average
Precision (MAP) and the Normalized Discounted
Cumulative Gain (NDCG) (Järvelin & Kekäläinen,
2002). For a single query, average precision is de-
fined as the average of the precision as computed
at each rank for all relevant documents: AP =

P

N
n=1

(P (r)∗rel(r))

# relevant documents for this query where r is the rank, N

is the number of documents retrieved, rel() is a bi-
nary function on the relevance of a given rank, and
P (r) = # relevant docs in top r results

r is the precision at
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Figure 2. Comparison of different active learners on TREC 2004. The horizontal line indicates the performance when the
entire training data is used. Only ∼ 15% of the training data is actively labeled in total by each method.

the rank cut-off r. MAP is obtained by averaging the
AP values for all queries. NDCG is cumulative and dis-
counted since the overall utility of a list is measured
by the sum of the gain of each relevant document, but
the gain is discounted as a function of rank position.
The NDCG value of a rank list at position n is given

as follows: NDCG@n = Zn

∑n
j=1

2r(j)−1
log(1+j) where r(j)

is the rank of the jth document in the list, and Zn is
the normalization constant so that a perfect ranking
yields an NDCG score of 1.

4.2. Results

Figure 1 and 2 plot the performance of the pro-
posed method (denoted by DiffLoss), and as compara-
tive baselines, the margin-based sampling and random
sampling strategies on TREC 2003 and 2004 datasets.
DiffLoss has a clear advantage over margin-based and
random sampling in all cases with respect to differ-
ent evaluation metrics. The differences over the en-
tire operating range are also statistically significant
(p < 0.0001) according to a two-sided paired t-test at
95% confidence level. DiffLoss especially achieves 30%
relative improvement over the margin-based sampling
for RankSVM on TREC 2003 dataset.

The horizontal line in each figure indicates the perfor-

mance if all the training data was used, which we call
the “optimal” performance. The performance of Dif-
fLoss for RankBoost is comparable to the “optimal” on
TREC 2003 and 2004 datasets. In case of RankSVM,
DiffLoss is close to the “optimal” on TREC 2003, and
outperforms it on TREC 2004 dataset. More precisely,
DiffLoss using RankSVM reaches the optimal perfor-
mance (even surpassing it on TREC 2004) after 10
rounds of labeling on average (labeling 5 documents
per query at each round). DiffLoss using RankBoost,
on the other hand, reaches 95% and 90% of the optimal
performance on MAP and NDCG@10, respectively on
TREC 2004 dataset after 10 rounds. This suggests
that carefully chosen samples might lead to a higher
level of accuracy than blindly using large amounts of
training data. This is an important development over
traditional supervised rank learning since it not only
reduces the expensive labeling effort, but also may lead
to greater generalization power. As follow-up work, we
intend to explore methods that will automatically tell
the sampling algorithm when to stop so that maximum
gain with minimum cost is obtained, as well as explor-
ing the underlying criteria for measuring the quality
of actively selected examples.

We conducted another set of experiments to test the
hypothesis that selecting a diverse set of samples might
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lead to better results. We adopted the maximal
marginal relevance principle of (Carbonell & Gold-
stein, 1998), originally proposed for text summariza-
tion. The idea is to select samples for labeling such
that they have both the maximum potential to change
the current ranking function and are maximally dis-
similar to each other. See (Carbonell & Goldstein,
1998) for more details. However, incorporating this di-
versity principle into our selection criteria only slightly
improved our results at the very beginning of the learn-
ing curve, but the improvement vanished afterwards.
Thus, we do not report these results here in this paper.

5. Conclusion

We proposed two novel active sampling methods based
on SVM rank learning and RankBoost. Our frame-
work relies on the estimated risk of the ranking func-
tion on the labeled set after adding a new instance with
all possible labels. The samples with the largest ex-
pected risk(loss) differential are selected to maximize
the degree of learning at the fastest rate. Empirical
results on two standard test collections indicate that
our method significantly reduces the required number
of labeled examples to learn an accurate ranking func-
tion. Possible extensions of this work include a study
of the risk minimization in terms of direct optimization
of ranking performance metrics, such as MAP, NDCG,
precision@k, etc. and self-regulating algorithms that
can decide when to terminate.
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Abstract
Partially Observable Markov Decision Processes
(POMDPs) have succeeded in planning domains that
require balancing actions that increase an agent’s
knowledge and actions that increase an agent’s re-
ward. Unfortunately, most POMDPs are defined with
a large number of parameters which are difficult to
specify only from domain knowledge. In this paper,
we present an approximation approach that allows us
to treat the POMDP model parameters as additional
hidden state in a “model-uncertainty” POMDP. Cou-
pled with model-directed queries, our planner actively
learns good policies. We demonstrate our approach on
several POMDP problems.

1. Introduction

Partially Observable Markov Decision Processes
(POMDPs) have succeeded in many planning do-
mains because they can reason in the face of uncertainty,
optimally trading between actions that gather information
and actions that achieve a desired goal. This ability has
made POMDPs attractive in real-world problems such as
dialog management (Roy et al., 2000), but such problems
often require a large number of parameters that are difficult
to specify from domain knowledge alone. Recent advances
can solve POMDPs with tens of thousands of states (Shani
et al., 2007), but learning in POMDPs remains limited to
small problems (Jaulmes et al., 2005).

Traditional reinforcement learning approaches (Watkins,
1989; Strehl et al., 2006; Even-Dar et al., 2005) to learning
in MDP or POMDP domains require a reinforcement signal
to be provided after each of the agent’s actions. If learning
must occur through interaction with a human expert, the

Appearing inProceedings of the 25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

feedback requirement may be undesirable. The traditional
approach also does not guarantee the agent’s performance
during training. We identify and address three limitations
in the traditional approach in this work:

1. Gathering sufficient training data for supervised learning
may be prohibitively expensive.

2. Most approaches require the agent to experience a large
penalty (i.e., make critical mistakes) to discover the con-
sequences of a poor decision.

3. Accurate numerical reward feedback is especially hard to
obtain from people, and inverse reinforcement learning
(identifying the reward model without explicit reinforce-
ment) poses its own challenges (Ng & Russell, 2000).

Our objective is to propose a framework for simultaneous
learning and planning in POMDPs that overcomes the lim-
itations above, allowing us to build agents that behave ef-
fectively in domains with model uncertainty.

We now discuss how our approach will address each of
these three issues. To address the issue of long training
periods, we adopt a Bayesian reinforcement learning ap-
proach and express model-uncertainty as additional hid-
den state. Bayesian methods (Dearden et al., 1999; Strens,
2000; Poupart et al., 2006; Jaulmes et al., 2005) have re-
ceived recent attention in reinforcement learning because
they allow experts to incorporate domain knowledge into
priors over models. Thus, the system begins the learn-
ing process as a robust, functional (if conservative) agent
while learning to adapt online to novel situations. The do-
main knowledge specified as a prior can also provide the
agent with a basic understanding of potential pitfalls. Our
work builds on previous Bayesian reinforcement learning
approaches in that we provide both practical approximation
schemes as well as guarantees on correctness and conver-
gence.

To ensure robustness toward catastrophic mistakes, we de-
velop an active learning scheme that determines when addi-
tional training is needed (typically active learning involves
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asking for a few labels from unlabeled data; in this work,
the ‘label’ corresponds to asking for the optimal action at a
particular point in time). If the agent deems that model
uncertainty may cause it to take undue risks, it queries
an expert regarding what action it should perform. These
queries both limit the amount of training required and al-
low the agent to infer the potential consequences of an ac-
tion without executing it. Depending on the domain, we
can imagine that different forms of information are most
readily available. For example, in a navigation task, it may
be straight-forward to query a state oracle (i.e., a GPS sys-
tem) for a location. Similarly, rewards may be easy to mea-
sure based on quantities such as energy usage or time to
goal. However, in other domains—particularly when work-
ing with human-robot interaction and dialog management
systems—policy information may be more accurate; a hu-
man user may know what he wishes the agent to do, but
may be unable to provide the agent with an accurate state
representation (which is often complex, for optimization
purposes). In these domains, asking for policy informa-
tion, instead of a traditional reward signal, also side-steps
the issue of getting explicit reward feedback from a human
user, which can also be inaccurate (Millet, 1998). In this
work, we deal exclusively with policy-based queries.

We are still left with the inverse reinforcement learning
problem, as the user’s response regarding correct actions
provides only implicit information about the underlying re-
ward. To date, Bayesian reinforcement learning has suc-
ceeded in learning observation and transition distributions
(Jaulmes et al., 2005; Poupart et al., 2006), where updates
have closed forms (such as updating Dirichlet counts); pre-
vious inverse reinforcement learning work (Ng & Russell,
2000) does not extend to the partially observable case. To
overcome this issue, we use a non-parametric approach to
model distributions over POMDPs; we demonstrate our ap-
proach on several standard problems.

We describe two practical contributions. First, we pro-
pose an approximation based on minimizing the immedi-
ate Bayes risk for choosing actions when transition, obser-
vation, and reward models are uncertain. The Bayes risk
criterion avoids the computational intractability of solving
large, continuous-valued POMDPs; we show it performs
well in a variety of problems. Second, to gather informa-
tion about the model without assuming state observabil-
ity, we introduce the notion ofmeta-queries. These meta-
queries accelerate learning and help the agent to infer the
consequences of a potential pitfall without experiencing its
effects. They are a powerful way of gaining information,
but they make the strong assumption that they will be an-
swered. Fortunately, a number of decision-making prob-
lems exist where this assumption is reasonable, particularly
in collaborative human-machine tasks (e.g. automated dia-
logue systems and shared robot control scenarios).

2. The POMDP Model

A POMDP consists of the n-tuple{S,A,O,T ,Ω,R,γ}. S,
A, and O are sets of states, actions, and observations.
The transition functionT (s′|s, a) is a distribution over the
states the agent may transition to after taking actiona from
states. The observation functionΩ(o|s, a) is a distribution
over observationso that may occur in states after taking
actiona. The reward functionR(s, a) specifies the imme-
diate reward for each state-action pair. The factorγ ∈ [0, 1)
weighs the importance of current and future rewards.

In the POMDP model, the agent must choose actions based
on past observations; the true state is hidden. The belief,
a probability distribution over states, is a sufficient statistic
for a history of actions and observations. The belief at time
t + 1 can be computed from the previous belief,bt, the last
actiona, and observationo, by applying Bayes rule:

b
a,o
t+1(s)=Ω(o|s, a)

∑

s′∈S

T (s|s′, a)bt(s
′)/Pr(o|b, a), (1)

wherePr(o|b, a)=
∑

s′∈S Ω(o|s′, a)
∑

s∈S T (s′|s, a)bt(s).
If the goal is to maximize the expected discounted reward,
then the optimal policy is given by:

Vt(b) = max
a∈A

Qt(b, a), (2)

Qt(b, a) = R(b, a) + γ
∑

o∈O

Pr(o|b, a)Vt(b
a,o), (3)

where the value functionV (b) is the expected discounted
reward that an agent will receive if its current belief isb and
Q(b, a) is the value of taking actiona in beliefb. The exact
solution to equation 3 is only tractable for tiny problems, so
we use a point-based approximation (Pineau et al., 2003).

3. Modeling POMDP Uncertainty

We assume that the setsS, A, andO are known. The
POMDP learning problem is to determine the parameters
of T , Ω, andR that describe the dynamics and objective of
the problem domain. A Bayesian approach is attractive in
many real-world settings because we may have strong no-
tions regarding certain parameters, but the value of those
parameters may be difficult to specify exactly. We place
a prior over the model parameters to express our domain
knowledge, and improve upon this prior with experience.

If the state, action, and observation sets are discrete,T and
Ω are collections of multinomial distributions. As conju-
gate priors, Dirichlet distributions are a natural choice of
prior for T andΩ. We use a uniform prior over expert-
specified ranges for the reward functionR. Together these
priors specify a distribution over POMDP models. To build
a POMDP that incorporates the model parameters into the
hidden state, we consider the joint state spaceS′ = S×M ,
whereM is the space of models as described by all valid
values for the model parameters. AlthoughS′ is contin-
uous and high dimensional, the transition model forM is
simple (assuming the true model is static).
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The formulation above makes the agent aware of the un-
certainty in the model parameters, and by trying various
actions, it will be able to reduce uncertainty both in its
state and in the parameters. However, the model informa-
tion provided by the standard actions may be weak, and we
would like the agent to be able to explicitly reduce model
uncertainty in a safe manner. To allow for active learning,
we augment the action spaceA of our original POMDP
with a set of meta-queries{qm}. The meta-queries consult
an oracle (e.g., a domain expert) for the optimal action at
a particular time step. We assume that the expert has ac-
cess to the history of actions and observations (as does the
agent), as well as the true POMDP model, and thus can ad-
vise the agent on the optimal action at any particular time.
The agent begins by confirming the action it thinks is best:

“I think ai is the best action. Should I doai?”

If the oracle answers to the negative, the agent follows with
what it thinks is next best:

“Then I thinkaj is best. Is that correct?”

until it receives an affirmative response. The ordered list of
actions helps give the expert a sense of the agent’s uncer-
tainty; if the agent is uncertain, the expert might advise itto
gather information rather than risk an incorrect decision.1

Meta-queries may be applied in situations where an expert
is available to guide the agent. Unlike the oracle of Jaulmes
et al. (2005), the meta-queries ask for policy information,
not state information, which can be important if optimiza-
tion procedures make the state-space unintuitive to the user
(e.g., Williams and Young (2005)). In human-robot interac-
tion, it may also simply be more natural to ask “I think you
want me to go to the coffee machine. Should I go there?”
which may be more natural than “Please enter your most re-
cent statement” or “Please enter our position coordinates.”

We can think of these meta-queries simply as additional
actions and simply attempt to solve the model-uncertainty
POMDP with this augmented action space. However, such
an approach quickly becomes intractable. Therefore, we
will treat the meta-query as a special action to be taken
if the other actions are too risky. We take the costξ of
querying the user to be a fixed parameter of the problem.

4. Solution Techniques

Table 1 summarizes our two-part approach to solving the
model-uncertainty POMDP. First, given a history of ac-
tions and observations, the agent must select the next ac-
tion. Second, the agent must update its distribution over
the model parameters given additional interactions with the
environment. In the most general case, both steps are in-
tractable via standard POMDP solution techniques.2

1Our simulations used a shortened meta-query for speed.
2Analytic updates are possible if the distributions take certain

forms (Poupart & Vlassis, 2008), but even here pruning is needed
to keep the solutions to a tractable size.

Table 1. POMDP active learning approach.
ACTIVE LEARNING WITH BAYES RISK

• Sample POMDPs from a prior distribution.
• Complete a task choosing actions based on Bayes risk:

– Use the POMDP samples to compute the action
with minimal Bayes risk (Section 4.1).

– If the risk is larger than a givenξ, perform a
meta-query (Section 4.1).

– Update each POMDP sample’s belief based on
the observation received (Section 4.2).

• Once a task is completed, update prior (Section 4.2):

– Use a kernel incorporating action-observation
history to propagate POMDP samples.

– Weight POMDPs based on meta-query history.

Performance and termination bounds are in 4.3 and 4.4.

4.1. Bayes-Risk Action Selection

Let the lossLm(a, a∗; b) of taking actiona in modelm be
Q∗

m(b, a) − Q∗
m(b, a∗), wherea∗ is the optimal action in

beliefb according to modelm. Given a beliefpM (m) over
models, the expected lossEM [L] is the Bayes risk:

BR(a) =

∫

M

(Q∗
m(bm, a) − Q∗

m(bm, a∗
m))pM (m), (4)

whereM is the space of models,bm is the current be-
lief according to modelm, and a∗

m is the optimal ac-
tion for the current beliefbm according to modelm. Let
a′ = arg maxa∈A BR(a) be the action with the least risk.
In the passive learning scenario, our agent just performsa′.

If the risk of the least-risky actiona′ is large, the agent may
still incur significant losses. We would like our agent to be
sensitive to the absolute magnitude of the risks that it takes.
In the active learning scenario, the agent performs a meta-
query ifBR(a′) is less than−ξ, that is, if the least expected
loss is more than the cost of the meta-query. The series of
meta-queries will lead us to choose the correct action and
thus incur no risk.

Intuitively, our criterion selects the least risky action now
and hopes that the uncertainty over models will be resolved
at the next time step. We can rearrange equation 4 to get:

BR(a)=

∫

M

Q(bm, a)pM (m)−
∫

M

Q(bm, a∗
m)pM (m). (5)

The second term is independent of the action choice; to
maximizeBR(a), one may simply maximize the first term:

VBR = max

∫

M

Q(bm, a)pM (m). (6)

The Bayes risk criterion is similar to theQMDP heuris-
tic (Littman et al., 1995), which uses the approximation
V (b) = max

∑

s Q(s, a)b(s) to plan in known POMDPs.
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In our case, the belief over statesb(s) is replaced by a be-
lief over modelspM (m) and the action-value function over
statesQ(s, a) is replaced by an action-value function over
beliefsQ(bm, a). In theQMDP heuristic, the agent assumes
that the uncertainty over states will be resolved after the
next time step. Our Bayes-risk criterion may be viewed
as similarly assuming that the next action will resolve the
uncertainty over models.

Though similar, the Bayes risk action selection criterion
differs fromQMDP in two important ways. First, our ac-
tions come from POMDP solutions and thus do fully con-
sider the uncertainty in the POMDP state. UnlikeQMDP ,
we do not act on the assumption that our state uncertainty
will be resolved after taking the next action; our approx-
imation supposes that only the model uncertainty will be
resolved. Thus, if the model stochasticity is an important
factor, our approach will take actions to reduce state uncer-
tainty. This observation is true regardless of whether the
agent is passive (does not ask meta-queries) or active.

In the active learning setting, the second difference is
the meta-query. Without the meta-query, while the agent
may take actions to resolve state uncertainty, it will never
take actions to reduce model uncertainty. However, meta-
queries ensure that the agent rarely (with probabilityδ)
takes a less thanξ-optimal action in expectation. Thus
the meta-queries make the learning process robust from the
start and allow the agent to resolve model uncertainty.

Approximation and bounds: The integral in equation 4
is computationally intractable, so we approximate it with a
sum over a sample of POMDPs from the space of models:

BR(a) ≈
∑

i

(Q(bi, a) − Q(bi, a
∗
i ))pM (mi) (7)

There are two main sources of approximation that can lead
to error in our computation of the Bayes risk:

• Error due to the Monte Carlo approximation of the in-
tegral in equation 4: Note that the maximum value of
the Q(bi, a) − Q(bi, a

∗
i ) is trivially upper bounded by

Rmax−min(Rmin,ξ)
1−γ and lower bounded by zero. Applying

the Hoeffding bound with sampling errorǫs and confi-
denceδ, we will requirenm samples:3

nm =
(Rmax − min(Rmin, ξ))

2

2(1 − γ)2ǫ2s
log

1

δ
(8)

• Error due to the point-based approximation ofQ(bi, a):
The differenceQ(bi, a)−Q(bi, a

∗
i ) may have an error of

up toǫPB = 2(Rmax−Rmin)δB

(1−γ)2 , whereδB is the sampling
density of the belief points. This result is directly from
the error bound due to Pineau et al. (2003).

3An error ofǫ with confidenceδ meansPr[x − x̂ > ǫ] < δ.

To obtain a confidenceδ when calculating if the Bayes
risk is greater than−ξ, we combine these bounds, setting
ǫs = ξ − ǫPB, and computing the appropriate number of
samplesn from equation 8. We note however that the Ho-
effding bounds used to derive this approximation are quite
loose; for example in the shuttle POMDP problem, we used
200 samples, whereas equation 8 suggested over 3000 sam-
ples may have been necessary even with a perfect POMDP
solver.

4.2. Updating the Model Distribution

As described in Section 3, we initially placed Dirichlet pri-
ors over the transition and observation parameters and uni-
form priors over the reward parameters. As our agent in-
teracts with the environment, it receives two sources of in-
formation to update its prior: a historyh of actions and
observations and a set of meta-queries (and responses)Q.
Givenh andQ, the posteriorpM|h,Q over models is:

pM|h,Q(m|h, Q) ∝ p(Q|m)p(h|m)pM (m), (9)

whereQ andh are conditionally independent givenm be-
cause they are both computed from the model parameters.
The historyh is the sequence of actions and observations
sincepM was last updated. The setQ is the set ofall meta-
queries asked (and the expert’s responses). Each source
poses a different challenge when updating the posterior.

If the agent were to have access to the hidden under-
lying state, then it would be straightforward to compute
pM|h(m|h) ∝ p(h|m)pM (m); we simply need to add
counts to the appropriate Dirichlet distributions. However,
when the state sequence is unknown, the problem becomes
more difficult; the agent must use its belief over the state
sequence to update the posterior. Thus, it is best to perform
the update when it is most likely to be accurate. For ex-
ample, in a robot maze scenario, if the robot is lost, then
estimating its position may be inaccurate. However, once
the robot reaches the end of the maze, it knows both its start
and end position, providing more information to recover its
path. We focus on episodic tasks in this work and update
the belief over models at the completion of a task.

The meta-query information poses a different challenge:
the questions provide information about the policy, but our
priors are over the model parameters. The meta-queries
truncate the original Dirichlet as models inconsistent with
meta-query responses have zero likelihood. We approxi-
mate the posterior with a particle filter.

4.2.1. DURING A TASK: UPDATING PARTICLE WEIGHTS

Recall that sequential Monte Carlo techniques let us repre-
sent a distribution at timet using a set of samples from time
t − 1 using the following procedure (Moral et al., 2002):

mt ∼ K(mt−1, mt), (10)

wt = wt−1
pM,t(mt)

pM,t−1(mt−1)K(mt−1, mt)
, (11)
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whereK(m, m′) is an arbitrary transition kernel andpM is
the probability of the modelm under the true posterior.

Sampling a new model requires solving a POMDP, which
is computationally expensive and thus may be undesirable
while an agent is in the process of completing a task. Thus,
we do not change our set of samples during a task (that is,
K(m, m′) = δm(m′) whereδ() is the Dirac delta func-
tion). We begin at timet − 1 with a set of modelsmi

and weightswi that represent our current belief over mod-
els. If a meta-query occurs at timet, then pM,t(m) ∝
p(Qt|m)pM,t−1(m), and the weight update reduces to

wt = wt−1p(Qt|m). (12)

In theory, thep(Q|m) should be a delta function: either
the modelm produces a policy that is consistent with the
meta-query (p(Q|m) = 1), or it does not (p(Q|m) = 0).
In practice, approximation techniques used to compute the
model’s policy are imperfect (and expert advice can be in-
correct) so we do not want to penalize a model that occa-
sionally acts incorrectly. We model the probability of see-
ing k incorrect responses inn trials as a binomial variable
with parameterpe, wherepe is the probability a model fails
a meta-query due to the approximate solver. This value is
hard to characterize, of course, and is problem-specific; we
usedpe = 0.3 in our tests.

4.2.2. BETWEEN TASKS: RESAMPLING PARTICLES.

Over time, samples taken from the original prior may no
longer represent the posterior well. Moreover, if only a few
high weight samples remain, the Bayes risk may appear
smaller than it really is because most of the samples are in
the wrong part of the space. We also need to update the
models based on the history information, which we have
ignored so far. We do both these steps at the end of a task.

Action-Observation Histories: Dirichlet Update. We
first discuss how to update the posteriorp(m|h) in closed
form. Recall that updating the Dirichlet counts given ac-
tions and observations requires knowing the underlying
state history, and our agent only has access to history of
actions and observations. We therefore update our parame-
ters using an online extension of the standard EM algorithm
(Sato, 1999). In the E-step, we estimate a distribution over
state sequences in the episode. In the M-step, we use this
distribution to update counts on our Dirichlet priors. On-
line EM guarantees convergence to a local optimum.

For the E-step, we first estimate the true state history. Two
sources of uncertainty are present: model stochasticity and
unknown model parameters. To compute the expectation
with respect to model stochasticity, we use the standard
forward-backward algorithm to obtain a distribution over
states for each sample. Next, we combine the distributions
for each sample based on the sample’s weight. For exam-
ple, suppose a sampled model assigns a probabilitypi(s) to
being in states. Then the expected probabilitŷp(s) of be-
ing in states is p̂(s) =

∑n
i wipi(s). The samples represent

our distribution over models, so this sum approximates an
expectation over all models.

Next, we update our Dirichlet counts based on both the
probability that a POMDP assigns to a particular state and
the probability of that POMDP. Given an actiona and ob-
servationo corresponding to timet, we would update our
Dirichlet count forαo,s,a in the following manner:

αo,s,a = αo,s,a + p̂(s) (13)

for each states. This update combines prior knowledge
about the parameters—the original value ofαo,s,a—with
new information from the current episode,p̂(s).

Resampling Models. As is standard in sequential Monte
Carlo techniques, we begin by resampling models accord-
ing to their weightswi. Thus, a model with high weight
may get selected many times for inclusion in the resam-
pled set of models, while a model with low weight may
disappear from the sample set since it is no longer repre-
sentative of the posterior. Once resampled, each model has
equal weight. Before we begin the next task, we perturb
the models with the following transition kernel:

• Draw a samplem′ from pM|h.
• With probabilitypk, replacem with m′

• With probability1 − pk, take the convex combination of
the model parameters ofm andm′ so thatm′ = p ·m′ +
(1 − p) · m with the convexity parameter being chosen
uniformly at random on[0, a].

We reduce the probabilitypk from 0.9 to 0.4 as the inter-
actions continue, encouraging large exploration earlier on
and fine-tuning in later interactions. We seta to 0.2 in
our experiments. Based on this sampling procedure, the
weight (keeping in mind that after resampling, all models
had equal weight) of the transitioned modelm′ is given by:

wt ∝
p(Q|m′)pM|h(m′)

p(Q|m)pM (m)K(m, m′)
, (14)

where,K(m, m′) = pk · pM|h(m′) if we keep the newly-
sampled model and andK(m, m′) = (1−pk)·pM|h(m′)/a
if we perturbm via a convex combination.

4.3. Performance Bounds

Let V ∗ be the value of the optimal policy under the true
model. From our risk criterion, the expected loss at each
action is no more thanξ. However, with probabilityδ, in
the worst case, the agent may choose a bad action that takes
it to an absorbing state in which it receivesRmin forever.

To determine the expected discounted reward, we consider
a two-state Markov chain. In state 1, the “normal” state,
the agent receives a reward ofR − ξ, whereR is the value
the agent would have received under the optimal policy. In
state 2, the agent receivesRmin. Equation 15 describes the
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transitions in this simple chain and the values of the states:
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Solving this system and noting that the agent begins in state
1 with probability1 − δ and state 2 with probabilityδ, the
lower boundV ′ on the expected value is

V ′ = η(V ∗ − ξ

1 − γ
) + (1 − η)

Rmin

1 − γ
, (16)

η = (1 − δ)(1 − γ)(1 − γ(1 − δ))−1. (17)

4.4. Model Convergence

Given the algorithm in Table 1, we would like to know if
the learner will eventually stop asking meta-queries. We
state that the model isconverged if BR(a′) > −ξ for all
histories (whereξ is the cost of a meta-query). Our conver-
gence argument involves two steps. First, let us ignore the
reward model and consider only the observation and tran-
sition models. As long as standard reinforcement learning
conditions—periodic resets to a start state and information
about all states (via visits or meta-queries)—hold, the prior
will peak around some value (perhaps to a local extremum)
in a bounded number of interactions from the properties
of the online EM algorithm (Sato, 1999). We next argue
that once the observation and transition parameters have
converged, we can bound the meta-queries required for the
reward parameters to converge.

Observation and Transition Convergence. To discuss
the convergence of the observation and transition distribu-
tions, we apply a weaker sufficient condition than the con-
vergence of the EM algorithm. We note that the number
of interactions bounds the number of meta-queries, since
we ask at most one meta-query for each normal interac-
tion. We also note that the counts on the Dirichlet pri-
ors increase monotonically. Once the Dirichlet parameters
are sufficiently large, the variance in the sampled models
will be small; even if the mean of the Dirichlet distribution
shifts with time, no additional meta-queries will be asked.

The specific convergence rate of the active learning will de-
pend heavily upon the problem. However, we can check if
k additional interactions are sufficient such that the proba-
bility of asking a meta-query ispq with confidenceδq. To
do so, we will sample random beliefs and test if less than a
pq-proportion have a Bayes risk greater thanξ.

1. Sampling a Sufficient Number of Beliefs.To test ifk
interactions lead to a probabilitypq of additional meta-
queries with confidenceδq, we compute the Bayes risk
for nb beliefs sampled uniformly. If fewer thannq =
pqnb beliefs require meta-queries afterk interactions, we
accept the value ofk. We sample from the posterior
Dirichlet givenk interactions and estimatêpq = nq/nb.

We desirêpq to be withinǫq of p′q = pq − ǫq with prob-

ability δq. Using the Chernoff boundδq = e−nbp′

q
ǫ2

q
/3,

we setǫq to 2/3pq to minimize the samples needed:

nb > −27/4 · (pq)
−3 log δq. (18)

2. Computing Bayes Risk from a Conservative Poste-
rior. We next compute the Bayes risk for each belief
given a hypothesized set ofk interactions. We do not
knowa priori the response to the interactions, so we use
the maximum-entropy Dirichlet posterior to compute the
posterior Bayes risk (that is, assign thek counts to as-
sign an equal number of counts to each variable). We
compute the Bayes risk of each belief from this posterior
and acceptk if p̂q < pq.

3. Correction for Approximate Bayes Risk. Recall that
we approximate the Bayes risk integral with a sum over
sampled POMDP models, and the number of modelsnm

required is given by equation 8. We must correct for the
error induced by this approximation. Section 4.1 tells
us if a beliefb has riskBR(a) < −ξ with confidence
δ. Suppose we samplenb beliefs, and the true fraction
of beliefs in which meta-queries are asked ispq. Due to
misclassifications, however, the expected value we will
observe is only(1 − δ)pq. We can then apply a second
Chernoff bound to determine that with probabilityδ, no
more than2(1 − δ)nb beliefs will be misclassified.4 Let

p′′q = pq(1 − 2(1 − δ)), (19)

be the minimum fraction of beliefs queries we expect to
observe requiring meta-queries if the true fraction ispq.

Thus, to test ifk interactions lead to a probability ofpq

for meta-queries with confidenceδq, we computep′′q from
equation 19, samplenb beliefs uniformly from equation 18,
update the Dirichlet posteriors to be maximum-entropy
posteriors, sample thenm models from equation 8, and fi-
nally compute the posterior Bayes risk for each belief. If
less than apq-proportion of beliefs require meta-queries,
thenk is an upper bound on the number of remaining meta-
queries with probabilitypq and confidenceδq.

Reward Convergence. The cost of a meta-query limits
the reward resolution. Suppose a POMDPP has an opti-
mal policyπ with valueV . If we adjusted all the rewards by
some smallǫr, then the value of the same policyπ will dif-
fer from V by at most ǫr

1−γ (since we will receive at worst
ǫr less reward at each time step). This value is a lower-
bound on the optimal policy in the new POMDP. Thus, a
POMDP with all its rewards within(1−γ)ξ of P will have
a policy of valueV ± ξ. In this way, the valueξ imposes a
minimal level of discretization over the reward space.

The rewards are bounded betweenRmin andRmax. If our
reward space hasd dimensions, then our discretization will

4This bound requiresnb > 3

δ
log 1

δ
, but we will find that our

final bound fornb is greater than this value.
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yield at most(Rmax−Rmin

(1−γ)ξ )d POMDPs. (Intuitively, the dis-
cretization involves limiting the precision of the sampled
rewards.) Since each meta-query invalidates at least one
POMDP, we must eventually stop asking meta-queries.

5. Results

We first solve a discretized model-uncertainty POMDP
solved directly to show the utility of meta-queries. We next
couple the meta-queries with our Bayes-risk criterion for
learning with with continuous-valuedunknown parameters.

5.1. Learning Discrete Parameters

In domains where model uncertainty is limited to a few, dis-
crete parameters, we may be able to solve for the complete
model-uncertainty POMDP using standard POMDP meth-
ods. We consider a simple POMDP-based dialog manage-
ment task (Doshi & Roy, 2007) where the reward is un-
known. We presume the correct reward is one of four (dis-
crete) possible levels and that the meta-query had a fixed
associated cost. Figure 1 compares the performance of the
optimal policy with meta-queries (left column), an opti-
mal policywithout meta-queries (middle column), and our
Bayes risk policywith meta-queries (right column). The
difference in median performance is small, but the variance
reduction from the meta-queries is substantial.5

Unfortunately, discretizing the model space does not scale;
increasing from 4 to 48 possible reward levels, we could no
longer obtain high-quality global solutions using standard
techniques. Next, we present results using our Bayes-risk
action selection criterion when we no longer discretize the
parameter space and instead allow the parameters to take
on continuous values within prespecified ranges.

Figure 1. Boxplot of POMDP learning performance with a dis-
crete set of four possible models. The medians of the policies
are comparable, but the active learner (left) makes fewer mistakes
than the passive learner (center). The Bayes risk action selection
criterion (right) does not cause the performance to suffer.

5Although the Bayes risk approximation appears higher, the
difference in performance in both median and variance is negligi-
ble between the optimal policy and the Bayes risk approximation.

5.2. Learning Continuous Parameters

Table 2 shows our approach applied to several standard
POMDP problems (Littman et al., 1995). For each prob-
lem, between 50-200 POMDP samples were initially taken
from the prior over models. The sampled POMDPs were
solved very approximately, using relatively few belief
points (500) and only 25 partial backups. The policy oracle
used a solution to the true model with many more belief
points (1000-5000) and 250 full backups. We took this so-
lution to be the optimal policy. During a trial, which con-
tinued until either the task was completed or a maximum
number of iterations was reached, the agent had the choice
of either taking a normal action or asking a meta-query and
then taking the supplied optimal action. POMDPs were re-
sampled at the completion of each trial.

The non-learner (control) always used its initial samples to
make decisions, using the Bayes-risk criterion to select an
action from the policies of the sampled models. Its prior
did not change based on the action-observation histories
that it experienced, nor did it ask any meta-queries to gain
additional information. The passive learner resampled its
POMDP set after updating its prior over transitions and ob-
servations using the forward-backward algorithm. The ac-
tive learner used both the action-observation histories and
meta-queries for learning. None of the systems received ex-
plicit reward information, but the active learner used meta-
queries to infer information about the reward model. The
Hallway problem was too large for the agent to learn (af-
ter 50 repetitions, it still queried the oracle at nearly every
step); in these results we provided the agent with possible
successor states. The smarter prior seemed reasonable as
a map and may be easier to obtain for a new environment
than to the robot’s dynamics. Depending on the problem,
tasks required an average of 7 to 32 actions to complete.

Table 2. Mean difference between optimal (under the true model)
and accrued rewards (smaller = better).

Problem States Control Passive Active
Tiger 2 46.5 50.7 33.3
Shuttle 8 10.0 10.0 2.0
Gridworld-5 26 33.1 102 21.4
Hallway 57 1.0 1.0 0.08

Figure 2 shows the performance of the three agents on
the shuttle problem (a medium-sized standard POMDP).
In each case, the agent began with observation and tran-
sition priors with high variance but peaked toward the cor-
rect value (that is, slightly better than uniform). We created
these priors by applying a diffusion filter to the ground-
truth transition and observation distributions and using the
result as our initial Dirichlet parameters. All reward pri-
ors were uniform between the minimum and maximum re-
ward values of the ground-truth model. The active learner
started (and remained) with good performance because it
used meta-queries when initially confused about the model.
Thus, its performance was robust throughout.
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Figure 2. Performance of the non-learner, passive learner, and ac-
tive learner on the shuttle problem.

6. Discussion and Conclusion

One recent approach to MDP model learning, the Beetle al-
gorithm (Poupart et al., 2006), converts a discrete MDP into
a continuous POMDP with state variables for each MDP
parameter. However, their analytic solution does not scale
to handle the entire model as a hidden state in POMDPs.
Also, since the MDP is fully observable, Beetle can easily
adjust its prior over the MDP parameters as it acquires ex-
perience; in our POMDP scenario, we needed to estimate
the possible states that the agent had visited. Recently the
authors have extended Beetle to partially observable do-
mains (Poupart & Vlassis, 2008), providing similar ana-
lytic solutions to the POMDP case. The work outlines effi-
cient approximations but results are not provided.

Prior work in MDP and POMDP learning has also con-
sidered sampling to approximate a distribution over un-
certain models. Dearden et. al. (1999) discusses sev-
eral approaches for representing and updating priors over
MDPs using sampling and value function updates. Strens
(2000) shows that in the MDPs, randomly sampling only
one model from a prior over models, and using that model
to make decisions, is guaranteed to converge to the op-
timal policy if one resamples the MDP sufficiently fre-
quently from an updated prior over models. More recently,
in the case of POMDPs, Medusa (Jaulmes et al., 2005)
avoids the problem of knowing how to update the prior
by occasionally requesting the true state based on model-
uncertainty heuristics. It converges to the true model but
may make several mistakes before convergence. Our risk-
based heuristic and policy queries provide correctness and
convergence guarantees throughout the learning process.

We developed an approach for active learning in POMDPs
that can robustly determine a near-optimal policy. Meta-
queries—questions about actions that the agent is think-
ing of taking—and a risk-averse action selection criterion

allowed our agent to behave robustly even with uncer-
tain knowledge of the POMDP model. We analyzed the
theoretical properties of our algorithm, but also included
several practical approximations that rendered the method
tractable. Finally, we demonstrated the approach on sev-
eral problems from the POMDP literature. In our future
work, we hope to develop more efficient POMDP sampling
schemes—as well as heuristics for allocating more compu-
tation to more promising solutions—to allow our approach
to be deployed on larger, real-time applications.

References
Dearden, R., Friedman, N., & Andre, D. (1999). Model based

Bayesian exploration. .

Doshi, F., & Roy, N. (2007). Efficient model learning for dialog
management.Technical Report SS-07-07. AAAI Press.

Even-Dar, E., Kakade, S. M., & Mansour, Y. (2005). Reinforce-
ment learning in POMDPs without resets.IJCAI.

Jaulmes, R., Pineau, J., & Precup, D. (2005). Learning
in non-stationary partially observable Markov decision pro-
cesses.ECML Workshop on Reinforcement Learning in Non-
Stationary Environments.

Littman, M. L., Cassandra, A. R., & Kaelbling, L. P. (1995).
Learning policies for partially observable environments:scal-
ing up. ICML.

Millet, I. (1998). The variational Bayesian EM algorithm for
incomplete data: with application to scoring graphical model
structures.Journal of Multi-Criteria Decision Analysis, 6.

Moral, P., Doucet, A., & Peters, G. (2002). Sequential Monte
Carlo samplers.

Ng, A., & Russell, S. (2000). Algorithms for inverse reinforce-
ment learning.ICML.

Pineau, J., Gordon, G., & Thrun, S. (2003). Point-based value
iteration: an anytime algorithm for POMDPs.IJCAI.

Poupart, P., & Vlassis, N. (2008). Model-based Bayesian rein-
forcement learning in partially observable domains.ISAIM.

Poupart, P., Vlassis, N., Hoey, J., & Regan, K. (2006). An analytic
solution to discrete Bayesian reinforcement learning.ICML.

Roy, N., Pineau, J., & Thrun, S. (2000). Spoken dialogue man-
agement using probabilistic reasoning.ACL. Hong Kong.

Sato, M. (1999). Fast learning of on-line EM algorithm.TR-H-
281, ATR Human Information Processing Lab.

Shani, G., Brafman, R., & Shimony, S. (2007). Forward search
value iteration for POMDPs.IJCAI.

Strehl, A. L., Li, L., & Littman, M. L. (2006). Incremental model-
based learners with formal learning-time guarantees.UAI.

Strens, M. (2000). A Bayesian framework for reinforcement
learning.ICML.

Watkins, C. (1989).Learning from delayed rewards. Doctoral
dissertation, Cambridge University.

Williams, J., & Young, S. (2005). Scaling up POMDPs for di-
alogue management: The ”summary POMDP” method.Pro-
ceedings of the IEEE ASRU Workshop.

263



Confidence-Weighted Linear Classification

Mark Dredze mdredze@cis.upenn.edu
Koby Crammer crammer@cis.upenn.edu

Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104 USA

Fernando Pereira1 pereira@google.com

Google, Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043 USA

Abstract

We introduce confidence-weighted linear clas-
sifiers, which add parameter confidence infor-
mation to linear classifiers. Online learners
in this setting update both classifier param-
eters and the estimate of their confidence.
The particular online algorithms we study
here maintain a Gaussian distribution over
parameter vectors and update the mean and
covariance of the distribution with each in-
stance. Empirical evaluation on a range of
NLP tasks show that our algorithm improves
over other state of the art online and batch
methods, learns faster in the online setting,
and lends itself to better classifier combina-
tion after parallel training.

1. Introduction

Online learning algorithms operate on a single instance
at a time, allowing for updates that are fast, simple,
make few assumptions about the data, and perform
well in wide range of practical settings. Online learn-
ing algorithms have become especially popular in nat-
ural language processing for tasks including classifica-
tion, tagging, and parsing. In this paper, we revisit
the design of linear classifier learning informed by the
particularities of natural language tasks. Specifically,
feature representations for natural language processing
have very high dimension (millions of features derived
from words and word combinations are common), and
most features are observed on only a small fraction of
instances. Nevertheless, those many rare features are
important in classifying the instances in which they

1Work done at the University of Pennsylvania.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

occur. Therefore, it is worth investigating whether
online learning algorithms for linear classifiers could
be improved to take advantage of these particularities
of natural language data.

We introduce confidence-weighted (CW) learning, a
new class of online learning methods that maintain a
probabilistic measure of confidence in each parameter.
Less confident parameters are updated more aggres-
sively than more confident ones. Parameter confidence
is formalized with a Gaussian distribution over param-
eter vectors, which is updated for each new training in-
stance so that the probability of correct classification
for that instance under the updated distribution meets
a specified confidence. We show superior classification
accuracy over state-of-the-art online and batch base-
lines, faster learning, and new classifier combination
methods after parallel training.

We begin with a discussion of the motivating particu-
larities of natural language data. We then derive our
algorithm and discuss variants. A series of experiments
shows CW learning’s empirical benefits. We conclude
with a discussion of related work.

2. Online Algorithms and NLP

In natural language classification tasks, many differ-
ent features, most of which are binary and are infre-
quently on, can be weakly indicative of a particular
class. Therefore, we have both data sparseness, which
demands large training sets, and very high dimen-
sional parameter vectors. For certain types of prob-
lems, such as structured prediction in tagging or pars-
ing, the size and processing complexity of individual
instances make it difficult to keep more than a small
number of instances in main memory. These particu-
larities make online algorithms, which process a single
instance at a time, a good match for natural-language
tasks. Processing large amounts of data is simple for
online methods, which require observing each instance
once — though in practice several iterations may be
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necessary — and update parameter vectors using a sin-
gle instance at a time. In addition, the simple nature
of most online updates make them very fast.

However, while online algorithms do well with large
numbers of features and instances, they are not de-
signed for the heavy tailed feature distributions char-
acteristic of natural language tasks. This type of
feature distribution can have a detrimental effect on
learning. With typical linear classifier training algo-
rithms, such as the perceptron or passive-aggressive
(PA) algorithms (Rosenblatt, 1958; Crammer et al.,
2006), the parameters of binary features are only up-
dated when the features occur. Therefore, frequent
features typically receive more updates. Similarly, fea-
tures that occur early in the data stream take more re-
sponsibility for correct prediction than those observed
later. The result is a model that could have good pa-
rameter estimates for common features and inaccurate
values for rare features. However, no distinction is
made between these feature types in most online algo-
rithms.

Consider an illustrative example from the problem of
sentiment classification. In this task, a product review
is represented as n-grams and the goal is to label the
review as being positive or negative about the prod-
uct. Consider a positive review that simply read “I
liked this author.” An online update would increase
the weight of both “liked” and “author.” Since both
are common words, over several examples the algo-
rithm would converge to the correct values, a positive
weight for “liked” and zero weight for “author.” Now
consider a slightly modified negative example: “I liked
this author, but found the book dull.” Since “dull”
is a rare feature, the algorithm has a poor estimate
of its weight. An update would decrease the weight of
both “liked” and “dull.” The algorithm does not know
that “dull” is rare and the changed behavior is likely
caused by the poorly estimated feature (“dull”) in-
stead of the common well estimated feature (“liked.”)
This update incorrectly modified “liked” and does not
attribute enough negative weight to “dull,” thereby
decreasing the rate of convergence.

This example demonstrates how a lack of memory for
previous instances — a property that allows online
learning — can hurt learning. A simple solution is
to augment an online algorithm with additional in-
formation, a memory of past examples. Specifically,
the algorithm can maintain a confidence parameter
for each feature weight. For example, assuming bi-
nary features, the algorithm could keep a count of the
number of times each feature has been observed, or,
for general real-valued features, it could keep the cu-

mulative second moment per feature. The larger the
count or second moement, the more confidence in a
feature’s weight. These estimates are then used to
influence parameter updates. Instead of equally up-
dating every feature weight for the features present
in an instance, the update favors changing more low-
confidence weights than high-confidence ones. At each
update, the confidence in all observed features is in-
creased by focusing the update on low confidence fea-
tures. In the example above, the update would de-
crease the weight of “dull” but make only a small
change to “liked” since the algorithm already has a
good estimate of this parameter.

3. Online Learning of Linear Classifiers

Online algorithms operate in rounds. On round i the
algorithm receives an instance xi ∈ Rd to which it
applies its current prediction rule to produce a pre-
diction ŷi ∈ {−1,+1} (for binary classification.) It
then receives the true label yi ∈ {−1,+1} and suffers
a loss `(yi, ŷi), which in this work will be the zero-one
loss `(yi, ŷi) = 1 if yi 6= ŷi and `(yi, ŷi) = 0 other-
wise. The algorithm then updates its prediction rule
and proceeds to the next round.

Just as in many well known algorithms, such as the
perceptron and support vector machines, in this work
our prediction rules are linear classifiers

fw(x) : fw(x) = sign(x ·w) . (1)

If we fix the norm of w, we can identify fw with w,
and we will use w in the rest of this work.

The margin of an example (x, y) with respect to a
specific classifier w is given by y(w · x). The sign
of the margin is positive iff the classifier w predicts
correctly the true label y. The absolute value of the
margin |y(w · x)| = |w · x| is often thought of as the
confidence in the prediction, with larger positive values
corresponding to more confident correct predictions.
We denote the margin at round i by mi = yi(wi · xi).

A variety of linear classifier training algorithms, in-
cluding the perceptron and linear support vector ma-
chines, restrict w to be a linear combination of the
input examples. Online algorithms of that kind typi-
cally have updates of the form

wi+1 = wi + αiyixi , (2)

for some non-negative coefficients αi.

In this paper we focus on PA updates (Crammer et al.,
2006) for linear classifiers. After predicting with wi

on the ith round and receiving the true label yi, the
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algorithm updates the prediction function such that
the example (xi, yi) will be classified correctly with a
fixed margin (which can always be scaled to 1):

wi+1 = min
w

1
2
‖wi −w‖2 (3)

s.t. yi(w · xi) ≥ 1 .

The dual of (3) gives us the round coefficients for (2):

αi = max

{
1− yi (wi · xi)

‖xi‖2 , 0

}
Crammer et al. (2006) provide a theoretical analysis
of algorithms of this form, and they have been shown
to work well in a variety of applications.

4. Distributions over Classifiers

We model parameter confidence for a linear classi-
fier with a diagonal Gaussian distribution with mean
µ ∈ Rd and standard deviation σ ∈ Rd. The values
µj and σj represent our knowledge of and confidence
in the parameter for feature j. The smaller σj , the
more confidence we have in the mean parameter value
µj . For simplicity of presentation, we use a covariance
matrix Σ ∈ Rd×d for the distribution, with diagonal
σ and zero for off-diagonal elements. Note that while
our motivation assumed sparse binary features, the al-
gorithm does not depend on that assumption.

Conceptually, to classify an input instance x, we draw
a parameter vector w ∼ N (µ,Σ) and predict the label
according to the sign of w ·x. This multivariate Gaus-
sian distribution over parameter vectors induces a uni-
variate Gaussian distribution over the margin viewed
as a random variable:

M ∼ N
(
yi(µ · xi) , x>i Σxi

)
.

The mean of the margin is the margin of the averaged
parameter vector and its variance is proportional to
the length of the projection of xi on Σi. Since a pre-
diction is correct iff the margin is non-negative, the
probability of a correct prediction is

Prw∼N (µ,Σ) [M ≥ 0] = Prw∼N (µ,Σ) [yi (w · xi) ≥ 0] .

When possible, we omit the explicit dependency on the
distribution parameters and write Pr [yi (w · xi) ≥ 0].

4.1. Update

On round i, the algorithm adjusts the distribution to
ensure that the probability of a correct prediction for
training instance i is no smaller than the confidence
hyperparameter η ∈ [0, 1]:

Pr [yi (w · xi) ≥ 0] ≥ η . (4)

Following the intuition underlying the PA algo-
rithms (Crammer et al., 2006), our algorithm chooses
the distribution closest in the KL divergence sense to
the current distribution N (µi,Σi). Thus, on round i,
the algorithm sets the parameters of the distribution
by solving the following optimization problem:

(µi+1,Σi+1) = min DKL (N (µ,Σ) ‖N (µi,Σi)) (5)
s.t. Pr [yi (w · xi) ≥ 0] ≥ η . (6)

We now develop both the objective and the constraint
of this optimization problem following Boyd and Van-
denberghe, (2004, page 158). We start with the con-
straint (6). As noted above, under the distribution
N (µ,Σ), the margin for (xi, yi) has a Gaussian dis-
tribution with mean µM = yi (µ · xi) and variance
σ2

M = x>i Σxi. Thus the probability of a wrong classi-
fication is

Pr [M ≤ 0] = Pr
[
M − µM

σM
≤ −µM

σM

]
.

Since (M − µM ) /σM is a normally distributed random
variable, the above probability equals Φ (−µM/σM ),
where Φ is the cumulative function of the normal dis-
tribution. Thus we can rewrite (6) as

−µM

σM
≤ Φ−1 (1− η) = −Φ−1 (η) .

Substituting µM and σM by their definitions and re-
arranging terms we obtain:

yi(µ · xi) ≥ φ
√

x>i Σxi ,

where φ = Φ−1 (η).

Unfortunately, this constraint is not convex in Σ, so
we linearize it by omitting the square root:

yi(µ · xi) ≥ φ
(
x>i Σxi

)
. (7)

Conceptually, this is a large-margin constraint, where
the value of the margin requirement depends on the
example xi via a quadratic form.

We now study the objective (5). The KL divergence
between two Gaussians is given by

DKL (N (µ0,Σ0) ‖N (µ1,Σ1)) =

1
2

(
log

(
det Σ1

det Σ0

)
+ Tr

(
Σ−1

1 Σ0

)
+(µ1 − µ0)

>Σ−1
1 (µ1 − µ0)− d

)
. (8)
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Using the foregoing equations and omitting irrelevant
constants, we obtain the following revised optimization
problem:

(µi+1,Σi+1) = min
1
2

log
(

det Σi

det Σ

)
+

1
2
Tr

(
Σ−1

i Σ
)

+
1
2

(µi − µ)>Σ−1
i (µi − µ)

s.t. yi(µ · xi) ≥ φ
(
x>i Σxi

)
. (9)

The optimization objective is convex in µ and Σ si-
multaneously and the constraint is linear, so any con-
vex optimization solver could be used to solve this
problem. We call the corresponding update Variance-
Exact. However, for efficiency we prefer a closed-form
approximate update that we call Variance. In this ap-
proximation, we allow the solution for Σi+1 in (9) to
produce (implicitly) a full matrix, and then project it
to a diagonal matrix, where the non-zero off-diagonal
entries are dropped. The Lagrangian for this optimiza-
tion is

L =
1
2

log
(

det Σi

det Σ

)
+

1
2
Tr

(
Σ−1

i Σ
)

+
1
2

(µi − µ)>Σ−1
i (µi − µ)

+α
(
−yi (µ · xi) + φ

(
x>i Σxi

))
. (10)

At the optimum, we must have

∂

∂µ
L = Σ−1

i (µ− µi)− αyixi = 0 .

Assuming Σi is non-singular we get,

µi+1 = µi + αyiΣixi . (11)

At the optimum, we must also have

∂

∂Σ
L = −1

2
Σ−1 +

1
2
Σ−1

i + φαxix
>
i = 0 .

Solving for Σ−1 we obtain

Σ−1
i+1 = Σ−1

i + 2αφxix
>
i . (12)

Finally, we compute the inverse of (12) using the
Woodbury identity (Petersen & Pedersen, 2007, Eq.
135) and get,

Σi+1 =
(
Σ−1

i + 2αφxix
>
i

)−1

= Σi − Σixi

(
1

2αφ
+ x>i Σixi

)−1

x>i Σi

= Σi − Σixi
2αφ

1 + 2αφx>i Σixi
x>i Σi . (13)

The KKT conditions for the optimization imply that
the either α = 0, and no update is needed, or the
constraint (7) is an equality after the udpate. Substi-
tuting (11) and (13) into the equality version of (7),
we obtain:

yi (xi · (µi + αyiΣixi)) =

φ

(
x>i

(
Σi − Σixi

2αφ

1 + 2αφx>i Σixi
x>i Σi

)
xi

)
. (14)

Rearranging terms we get,

yi (xi · µi) + αx>i Σixi =

φx>i Σixi − φ
(
x>i Σixi

)2 2αφ

1 + 2αφx>i Σixi
. (15)

For simplicity, let Mi = yi (xi · µi) be the mean mar-
gin and Vi = x>i Σixi be the margin variance before
the update. Substituting these into (15) we get,

Mi + αVi = φVi − φV 2
i

2αφ

1 + 2αφVi
.

It is straightforward to see that this is a quadratic
equation in α. Its smaller root is always negative and
thus is not a valid Lagrange multiplier. Let γi be its
larger root:

γi =
−(1+2φMi)+

√
(1+2φMi)

2−8φ (Mi−φVi)

4φVi
. (16)

The constraint (7) is satisfied before the update if Mi−
φVi ≥ 0. If 1 + 2φMi ≤ 0, then Mi ≤ φVi and from
(16) we have that γi > 0. If, instead, 1 + 2φMi ≥ 0,
then, again by (16), we have

γi > 0

⇔
√

(1 + 2φMi)
2 − 8φ (Mi − φVi) > (1 + 2φMi)

⇔ Mi < φVi .

From the KKT conditions, either αi = 0 or (9) is sat-
isfied as an equality. In the later case, (14) holds, and
thus αi = γi > 0. To summarize, we have proved the
following:

Lemma 1 The optimal value of the Lagrange multi-
plier is given by αi = max {γi, 0}.

The above derivation yields a full covariance matrix.
As noted above, we restrict ourself to diagonal matri-
ces and thus we project the solution into the set of
diagonal matrices to get our approximation. In prac-
tice, it is equivalent to compute αi as above but update
with the following rule instead of (12).

Σ−1
i+1 = Σ−1

i + 2αφdiag (xi) , (17)
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Algorithm 1 Variance Algorithm (Approximate)
Input: confidence parameter φ = Φ−1(η)

initial variance parameter a > 0
Initialize: µ1 = 0 , Σ1 = aI
for i = 1, 2 . . . do

Receive xi ∈ Rd , yi ∈ {+1,−1}
Set the following variables:

αi as in Lemma 1
µi+1 = µi + αiyiΣixi (11)
Σ−1

i+1 = Σ−1
i + 2αiφ diag (xi) (17)

end for

comp comp.sys.ibm.pc.hardware
comp.sys.mac.hardware

sci sci.electronics
sci.med

talk talk.politics.guns
talk.politics.mideast

Table 1. 20 Newsgroups binary decision tasks.

where diag (xi) is a diagonal matrix with the square
of the elements of xi on the diagonal.

The pesudocode of the algorithm appears in Alg. 1.
From the initalization of Σ1 and the update rule
of (12), we conclude that the eigenvalues of Σi are
shirinking, but never set to zero explicltly, and thus
the covariance matrices Σi are not singular.

5. Evaluation

We evaluated our Variance and Variance-Exact algo-
rithms on three popular NLP datasets. Each dataset
contains several binary classification tasks from which
we selected a total of 12 problems, each contains a
balanced mixture of instance labels.

20 Newsgroups The 20 Newsgroups corpus con-
tains approximately 20,000 newsgroup messages, par-
titioned across 20 different newsgroups.2 The dataset
is a popular choice for binary and multi-class text clas-
sification as well as unsupervised clustering. Following
common practice, we created binary problems from
the dataset by creating binary decision problems of
choosing between two similar groups, as shown in Ta-
ble 1. Each message was represented as a binary bag-
of-words. For each problem we selected 1800 instances.

Reuters The Reuters Corpus Volume 1 (RCV1-
v2/LYRL2004) contains over 800,000 manually catego-
rized newswire stories (Lewis et al., 2004). Each article

2
http://people.csail.mit.edu/jrennie/20Newsgroups/

Figure 1. Accuracy on test data after each iteration on the
“talk” dataset.

contains one or more labels describing its general topic,
industry and region. We created the following binary
decision tasks from the labeled documents: Insurance:
Life (I82002) vs. Non-Life (I82003), Business Services:
Banking (I81000) vs. Financial (I83000), and Retail
Distribution: Specialist Stores (I65400) vs. Mixed Re-
tail (I65600). These distinctions involve neighboring
categories so they are fairly hard to make. Details
on document preparation and feature extraction are
given by Lewis et al. (2004). For each problem we
selected 2000 instances using a bag of words represen-
tation with binary features.

Sentiment We obtained a larger version of the sen-
timent multi-domain dataset of Blitzer et al. (2007)
containing product reviews from 6 Amazon domains
(book, dvd, electronics, kitchen, music, video). The
goal in each domain is to classify a product review as
either positive or negative. Feature extraction follows
Blitzer et al. (2007). For each problem we selected
2000 instances using uni/bi-grams with counts.

Each dataset was randomly divided for 10-fold cross
validation experiments. Classifier parameters (φ for
CW and C for PA) were tuned for each classification
task on a single randomized run over the data. Results
are reported for each problem as the average accuracy
over the 10 folds. Statistical significance is computed
using McNemar’s test.

5.1. Results

We start by examining the performance of the Vari-
ance and Variance-Exact versions of our method, dis-
cussed in the preceding section, against a PA algo-
rithm. All three algorithms were run on the datasets
described above and each training phase consisted of
five passes over the training data, which seemed to be
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Task PA Variance Variance-Exact SVM Maxent SGD
20 Newsgroups comp 8.90 †6.33 9.63 ∗7.67 ∗7.62 7.36

sci 4.22 †1.78 3.3 †3.51 †3.55 †4.77
talk 1.57 1.09 2.21 0.91 0.91 1.36

Reuters Business 17.80 17.65 17.70 ?15.64 ?15.10 ?15.85
Insurance 9.76 ∗8.45 9.49 9.19 8.59 9.05
Retail 15.41 †11.05 14.14 ∗12.80 ∗12.30 †14.31

Sentiment books 19.55 ∗17.40 20.45 †20.45 †19.91 ∗19.41
dvds 19.71 19.11 19.91 20.09 19.26 20.20
electronics 17.40 †14.10 17.44 †16.80 †16.21 †16.81
kitchen 15.64 ∗14.24 16.35 15.20 14.94 ∗15.60
music 20.05 ∗18.10 19.66 19.35 19.45 18.81
videos 19.86 ?17.20 19.85 †20.70 †19.45 ?19.65

Table 2. Error on test data using batch training. Statistical significance (McNemar) is measured against PA or the batch
method against Variance. (∗ p=.05, ? p=.01, † p=.001)

enough to yield convergence. The average error on the
test set for the three algorithms on all twelve datasets
is shown in table 2.

Variance-Exact achieved about the same performance
as PA, with each method achieving a lower error on
half of the datasets. In contrast, Variance (approxi-
mate) significantly improves over PA, achieving lower
error on all twelve datasets, with statistically signifi-
cant results on nine of them.

As discussed above, online algorithms are attractive
even for batch learning because of their simplicity and
ability to operate on extremely large datasets. In
the batch setting, these algorithms are run several
times over the training data, which yields slower per-
formance than single pass learning (Carvalho & Co-
hen, 2006). Our algorithm improves on both accuracy
and learning speed by requiring fewer iterations over
the training data. Such behavior can be seen on the
“talk” dataset in Figure 1, which shows accuracy on
test data after each iteration of the PA baseline and
the two variance algorithms. While Variance clearly
improves over PA, it converges very quickly, reaching
near best performance on the first iteration. In con-
trast, PA benefits from multiple iterations over the
data; its performance changes significantly from the
first to fifth iteration. Across the twelve tasks, Vari-
ance yields a 3.7% error reduction while PA gives a
12.4% reduction between the first and fifth iteration,
indicating that multiple iterations help PA more. The
plot also illustrates Variance-Exact’s behavior, which
initially beats PA but does not improve. In fact, on
eleven of the twelve datasets, Variance-Exact beats PA
on the first iteration. The exact update results in ag-
gressive behavior causing the algorithm to converge
very quickly, even more so than Variance. It appears
that the approximate update in Variance reduces over-
training and yields the best accuracy.
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Figure 2. Results for Reuters (800k) and Sentiment
(1000k) averaged over 4 runs. Horizontal lines show the
test accuracy of a model trained on the entire training set.
Vertical bars show the performance of n (10, 50, 100) clas-
sifiers trained on disjoint sections of the data as the average
performance, uniform combination, or weighted combina-
tion. All improvements are statistically significant except
between uniform and weighted for Reuters.

5.2. Batch Learning

While online algorithms are widely used, batch algo-
rithms are still preferred for many tasks. Batch al-
gorithms can make global learning decisions by exam-
ining the entire dataset, an ability beyond online al-
gorithms. In general, when batch algorithms can be
applied they perform better. We compare our new on-
line algorithm (Variance) against two standard batch
algorithms: maxent classification (default configura-
tion of the maxent learner in McCallum (2002)) and
support vector machines (LibSVM (Chang & Lin,
2001)). We also include stochastic gradient descent
(SGD) (Blitzer et al., 2007), which performs well for
NLP tasks. Classifier parameters (Gaussian prior for
maxent, C for SVM and the learning rate for SGD)
were tuned as for the online methods.

Results for batch learning are shown in Table 2. As ex-
pected, the batch methods tend to do better than PA,
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with SVM doing better 9 times and maxent 11 times.
However, in most cases Variance improves over the
batch method, doing better than SVM and maxent 10
out of 12 times (7 statistically significant.) These re-
sults show that in these tasks, the much faster and sim-
pler online algorithm performs better than the slower
more complex batch methods.

We also evaluated the effects of commonly used tech-
niques for online and batch learning, including aver-
aging and TFIDF features, none of which improved
accuracy. Although the above datasets are balanced
with respect to labels and predictive features, we also
evaluated the methods on variant datasets with un-
balanced label or feature distributions, and still saw
similar benefits from the Variance method.

5.3. Large Datasets

Online algorithms are especially attractive in tasks
where training data exceeds available main memory.
However, even a single sequential pass over the data
can be impractical for extremely large training sets,
so we investigate training different models on differ-
ent portions of the data in parallel and combining the
learned classifiers into a single classifier. While this of-
ten does not perform as well as a single model trained
on all of the data, it is a cost effective way of learning
from very large training sets.

Averaging models trained in parallel assumes that each
model has an equally accurate estimate of the model
parameters. However, our model provides a confidence
value for each parameter, allowing for a more intelli-
gent combination of parameters from multiple models.
Specifically, we compute the combined model Gaus-
sian that minimizes the total divergence to the set C
of individually trained classifiers for some divergence
operator D:

min
µ,Σ

∑
c∈C

D((µ,Σ)||(µc,Σc)), (18)

If D is the Euclidean distance, this is just the average
of the individual models. If D is the KL divergence,
the minimization leads to the following weighted com-
bination of individual model means:
µ =

(∑
c∈C Σ−1

c

)−1 ∑
c∈C Σ−1

c µc, Σ−1 =
∑

c∈C Σ−1
c .

We evaluate the single model performance of the PA
baseline and our method. For our method, we evaluate
classifier combination by training n (10, 50, 100) mod-
els by dividing the instance stream into n disjoint parts
and report the average performance of each of the n
classifiers (average), the combined classifier from tak-
ing the average of the n sets of parameters (uniform)
and the combination using the KL distance (weighted)

on the test data across 4 randomized runs.

We evaluated classifier combination on two datasets.
The combined product reviews for all the domains
in Blitzer et al. (2007) yield one million sentiment
instances. While most reviews were from the book do-
main, the reviews are taken from a wide range of Ama-
zon product types and are mostly positive. From the
Reuters corpus, we created a one vs. all classification
task for the Corporate topic label, yielding 804,411 in-
stances of which 381,325 are labeled corporate. For
the two datasets, we created four random splits each
with one million training instances and 10,000 test in-
stances. Parameters were optimized by training on 5K
random instances and testing on 10K.

The two datasets use very different feature representa-
tions. The Reuters data contains 288,062 unique fea-
tures, for a feature to document ratio of 0.36. In con-
trast, the sentiment data contains 13,460,254 unique
features, a feature to document ratio of 13.33. This
means that Reuters features tend to occur several
times during training while many sentiment features
occur only once.

Average accuracy on the test sets are reported in Fig-
ure 2. For Reuters data, the PA single model achieves
higher accuracy than Variance, possibly because of the
low feature to document ratio. However, combining 10
Variance classifiers achieves the best performance. For
sentiment, combining 10 classifiers beats PA but is not
as good as a single Variance model. In every case, com-
bining the classifiers using either uniform or weighted
improves over each model individually. On sentiment
weighted combination improves over uniform combi-
nation and in Reuters the models are equivalent.

Finally, we computed the actual run time of both PA
and Variance on the large datasets to compare the
speed of each model. While Variance is more complex,
requiring more computation per instance, the actual
speed is comparable to PA; in all tests the run time of
the two algorithms was indistinguishable.

6. Related Work

The idea of using parameter-specific variable learn-
ing rates has a long history in neural-network learn-
ing (Sutton, 1992), although we do not know of a previ-
ous model that specifically models confidence in a way
that takes into account the frequency of features. The
second-order perceptron (SOP) (Cesa-Bianchi et al.,
2005) is perhaps the closest to our CW algorithm.
Both are online algorithms that maintain a weight
vector and some statistics about previous examples.
While the SOP models certainty with feature counts,
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CW learning models uncertainty with a Gaussian dis-
tribution. CW algorithms have a probabilistic moti-
vation, while the SOP is based on the geometric idea
of replacing a ball around the input examples with a
refined ellipsoid. Shivaswamy and Jebara (2007) used
this intuition in the context of batch learning.

Gaussian process classification (GPC) maintains a
Gaussian distribution over weight vectors (primal) or
over regressor values (dual). Our algorithm uses a dif-
ferent update criterion than the the standard Bayesian
updates used in GPC (Rasmussen & Williams, 2006,
Ch. 3), avoiding the challenging issues in approximat-
ing posteriors in GPC. Bayes point machines (Herbrich
et al., 2001) maintain a collection of weight vectors
consistent with the training data, and use the sin-
gle linear classifier which best represents the collec-
tion. Conceptually, the collection is a non-parametric
distribution over the weight vectors. Its online ver-
sion (Harrington et al., 2003) maintains a finite num-
ber of weight-vectors updated simultaneously.

Finally, with the growth of available data there is an
increasing need for algorithms that process training
data very efficiently. A similar approach to ours is
to train classifiers incrementally (Bordes & Bottou,
2005). The extreme case is to use each example once,
without repetitions, as in the multiplicative update
method of Carvalho and Cohen (2006).

Conclusion: We have presented confidence-
weighted linear classifiers, a new learning method
designed for NLP problems based on the notion of
parameter confidence. The algorithm maintains a
distribution over parameter vectors; online updates
both improve the parameter estimates and reduce
the distribution’s variance. Our method improves
over both online and batch methods and learns faster
on a dozen NLP datasets. Additionally, our new
algorithms allow more intelligent classifier combi-
nation techniques, yielding improved performance
after parallel learning. We plan to explore theoretical
properties and other aspects of CW classifiers, such
as multi-class and structured prediction tasks, and
other data types.

Acknowledgements: This material is based upon
work supported by the Defense Advanced Research
Projects Agency (DARPA) under Contract No.
FA8750-07-D-0185.

References

Blitzer, J., Dredze, M., & Pereira, F. (2007). Biogra-
phies, bollywood, boom-boxes and blenders: Do-

main adaptation for sentiment classification. As-
sociation of Computational Linguistics (ACL).

Bordes, A., & Bottou, L. (2005). The huller: a simple
and efficient online svm. European Conference on
Machine Learning( ECML ), LNAI 3720.

Boyd, S., & Vandenberghe, L. (2004). Convex opti-
mization. Cambridge University Press.

Carvalho, V. R., & Cohen, W. W. (2006). Single-pass
online learning: Performance, voting schemes and
online feature selection. KDD-2006.

Cesa-Bianchi, N., Conconi, A., & Gentile, C. (2005). A
second-order perceptron algorithm. SIAM Journal
on Computing, 34, 640 – 668.

Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: a library
for support vector machines. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz,
S., & Singer, Y. (2006). Online passive-aggressive
algorithms. JMLR, 7, 551–585.

Harrington, E., Herbrich, R., Kivinen, J., Platt, J.,
& Williamson, R. (2003). Online bayes point ma-
chines. 7th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD).

Herbrich, R., Graepel, T., & C.Campbell (2001).
Bayes point machinesonline passive-aggressive algo-
rithms. JMLR, 1, 245–279.

Lewis, D. D., Yand, Y., Rose, T., & Li., F. (2004).
Rcv1: A new benchmark collection for text catego-
rization research. JMLR, 5, 361–397.

McCallum, A. K. (2002). Mallet: A machine learning
for language toolkit. http://mallet.cs.umass.edu.

Petersen, K. B., & Pedersen, M. S. (2007). The matrix
cookbook.

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaus-
sian processes for machine learning. The MIT Press.

Rosenblatt, F. (1958). The perceptron: A probabilistic
model for information storage and organization in
the brain. Psych. Rev., 68, 386–407.

Shivaswamy, P., & Jebara, T. (2007). Ellipsoidal ker-
nel machines. Artificial Intelligence and Statistics.

Sutton, R. S. (1992). Adapting bias by gradient de-
scent: an incremental version of delta-bar-delta.
Proceedings of the Tenth National Conference on
Artificial Intelligence (pp. 171–176). MIT Press.

271



Efficient Projections onto theℓ1-Ball for Learning in High Dimensions

John Duchi JDUCHI@CS.STANFORD.EDU

Google, Mountain View, CA 94043

Shai Shalev-Shwartz SHAI@TTI-C.ORG

Toyota Technological Institute, Chicago, IL, 60637

Yoram Singer SINGER@GOOGLE.COM

Tushar Chandra TUSHAR@GOOGLE.COM

Google, Mountain View, CA 94043

Abstract

We describe efficient algorithms for projecting a
vector onto theℓ1-ball. We present two methods
for projection. The first performs exact projec-
tion in O(n) expected time, wheren is the di-
mension of the space. The second works on vec-
tors k of whose elements are perturbed outside
theℓ1-ball, projecting inO(k log(n)) time. This
setting is especially useful for online learning in
sparse feature spaces such as text categorization
applications. We demonstrate the merits and ef-
fectiveness of our algorithms in numerous batch
and online learning tasks. We show that vari-
ants of stochastic gradient projection methods
augmented with our efficient projection proce-
dures outperform interior point methods, which
are considered state-of-the-art optimization tech-
niques. We also show that in online settings gra-
dient updates withℓ1 projections outperform the
exponentiated gradient algorithm while obtain-
ing models with high degrees of sparsity.

1. Introduction

A prevalent machine learning approach for decision and
prediction problems is to cast the learning task as penal-
ized convex optimization. In penalized convex optimiza-
tion we seek a set of parameters, gathered together in a
vectorw, which minimizes a convex objective function in
w with an additional penalty term that assesses the com-
plexity of w. Two commonly used penalties are the 1-
norm and the square of the 2-norm ofw. An alternative

Appearing inProceedings of the 25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

but mathematically equivalent approach is to cast the prob-
lem as aconstrained optimization problem. In this setting
we seek a minimizer of the objective function while con-
straining the solution to have a bounded norm. Many re-
cent advances in statistical machine learning and related
fields can be explained as convex optimization subject to
a 1-norm constraint on the vector of parametersw. Im-
posing anℓ1 constraint leads to notable benefits. First, it
encourages sparse solutions,i.e a solution for which many
components ofw are zero. When the original dimension
of w is very high, a sparse solution enables easier inter-
pretation of the problem in a lower dimension space. For
the usage ofℓ1-based approach in statistical machine learn-
ing see for example (Tibshirani, 1996) and the references
therein. Donoho (2006b) provided sufficient conditions for
obtaining an optimalℓ1-norm solution which is sparse. Re-
cent work on compressed sensing (Candes, 2006; Donoho,
2006a) further explores howℓ1 constraints can be used for
recovering a sparse signal sampled below the Nyquist rate.
The second motivation for usingℓ1 constraints in machine
learning problems is that in some cases it leads to improved
generalization bounds. For example, Ng (2004) examined
the task of PAC learning a sparse predictor and analyzed
cases in which anℓ1 constraint results in better solutions
than anℓ2 constraint.

In this paper we re-examine the task of minimizing a con-
vex function subject to anℓ1 constraint on the norm of
the solution. We are particularly interested in cases where
the convex function is the average loss over a training
set ofm examples where each example is represented as
a vector of high dimension. Thus, the solution itself is
a high-dimensional vector as well. Recent work onℓ2
constrained optimization for machine learning indicates
that gradient-related projection algorithms are more effi-
cient in approaching a solution of good generalization than
second-order algorithms when the number of examples and
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the dimension are large. For instance, Shalev-Shwartz
et al. (2007) give recent state-of-the-art methods for solv-
ing large scale support vector machines. Adapting these
recent results to projection methods onto theℓ1 ball poses
algorithmic challenges. While projections ontoℓ2 balls are
straightforward to implement in linear time with the ap-
propriate data structures, projection onto anℓ1 ball is a
more involved task. The main contribution of this paper is
the derivation of gradient projections withℓ1 domain con-
straints that can be performed almost as fast as gradient
projection withℓ2 constraints.

Our starting point is an efficient method for projection onto
the probabilistic simplex. The basic idea is to show that,
after sorting the vector we need to project, it is possible to
calculate the projection exactly in linear time. This idea
was rediscovered multiple times. It was first described in
an abstract and somewhat opaque form in the work of Gafni
and Bertsekas (1984) and Bertsekas (1999). Crammer and
Singer (2002) rediscovered a similar projection algorithm
as a tool for solving the dual of multiclass SVM. Hazan
(2006) essentially reuses the same algorithm in the con-
text of online convex programming. Our starting point is
another derivation of Euclidean projection onto the sim-
plex that paves the way to a few generalizations. First we
show that the same technique can also be used for project-
ing onto theℓ1-ball. This algorithm is based on sorting the
components of the vector to be projected and thus requires
O(n log(n)) time. We next present an improvement of the
algorithm that replaces sorting with a procedure resembling
median-search whose expected time complexity isO(n).

In many applications, however, the dimension of the feature
space is very high yet the number of features which attain
non-zero values for an example may be very small. For in-
stance, in our experiments with text classification in Sec. 7,
the dimension is two million (the bigram dictionary size)
while each example has on average one-thousand non-zero
features (the number of unique tokens in a document). Ap-
plications where the dimensionality is high yet the number
of “on” features in each example is small render our second
algorithm useless in some cases. We therefore shift gears
and describe a more complex algorithm that employs red-
black trees to obtain a linear dependence on the number
of non-zero features in an example and only logarithmic
dependence on the full dimension. The key to our con-
struction lies in the fact that we project vectors that are the
sum of a vector in theℓ1-ball and a sparse vector—they are
“almost” in theℓ1-ball.

In conclusion to the paper we present experimental results
that demonstrate the merits of our algorithms. We compare
our algorithms with several specialized interior point (IP)
methods as well as general methods from the literature for
solving ℓ1-penalized problems on both synthetic and real

data (the MNIST handwritten digit dataset and the Reuters
RCV1 corpus) for batch and online learning. Our projec-
tion based methods outperform competing algorithms in
terms of sparsity, and they exhibit faster convergence and
lower regret than previous methods.

2. Notation and Problem Setting

We start by establishing the notation used throughout the
paper. The set of integers1 throughn is denoted by[n].
Scalars are denoted by lower case letters and vectors by
lower case bold face letters. We use the notationw ≻ b

to designate that all of the components ofw are greater
thanb. We use‖ · ‖ as a shorthand for the Euclidean norm
‖·‖2. The other norm we use throughout the paper is the1-
norm of the vector,‖v‖1 =

∑n
i=1 |vi|. Lastly, we consider

order statistics and sorting vectors frequently throughout
this paper. To that end, we letv(i) denote theith order
statistic ofv, that is,v(1) ≥ v(2) ≥ . . . ≥ v(n) for v ∈ R

n.

In the setting considered in this paper we are provided with
a convex functionL : R

n → R. Our goal is to find the
minimum ofL(w) subject to anℓ1-norm constraint onw.
Formally, the problem we need to solve is

minimize
w

L(w) s.t. ‖w‖1 ≤ z . (1)

Our focus is on variants of the projected subgradient
method for convex optimization (Bertsekas, 1999). Pro-
jected subgradient methods minimize a functionL(w) sub-
ject to the constraint thatw ∈ X, for X convex, by gener-
ating the sequence{w(t)} via

w(t+1) = ΠX

(

w(t) − ηt∇(t)
)

(2)

where∇(t) is (an unbiased estimate of) the (sub)gradient
of L at w(t) and ΠX(x) = argmin y{‖x − y‖ | y ∈
X} is Euclidean projection ofx ontoX. In the rest of the
paper, the main algorithmic focus is on the projection step
(computing an unbiased estimate of the gradient ofL(w) is
straightforward in the applications considered in this paper,
as is the modification ofw(t) by∇(t)).

3. Euclidean Projection onto the Simplex

For clarity, we begin with the task of performing Euclidean
projection onto the positive simplex; our derivation natu-
rally builds to the more efficient algorithms. As such, the
most basic projection task we consider can be formally de-
scribed as the following optimization problem,

minimize
w

1

2
‖w−v‖22 s.t.

n∑

i=1

wi = z , wi ≥ 0 . (3)
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Whenz = 1 the above is projection onto the probabilistic
simplex. The Lagrangian of the problem in Eq. (3) is

L(w, ζ) =
1

2
‖w − v‖2 + θ

(
n∑

i=1

wi − z

)

− ζ ·w ,

whereθ ∈ R is a Lagrange multiplier andζ ∈ R
n
+ is a

vector of non-negative Lagrange multipliers. Differenti-
ating with respect towi and comparing to zero gives the
optimality condition, dL

dwi
= wi − vi + θ − ζi = 0.

The complementary slackness KKT condition implies that
wheneverwi > 0 we must have thatζi = 0. Thus, if
wi > 0 we get that

wi = vi − θ + ζi = vi − θ . (4)

All the non-negative elements of the vectorw are tied via
a single variable, so knowing the indices of these elements
gives a much simpler problem. Upon first inspection, find-
ing these indices seems difficult, but the following lemma
(Shalev-Shwartz & Singer, 2006) provides a key tool in de-
riving our procedure for identifying non-zero elements.

Lemma 1. Let w be the optimal solution to the minimiza-
tion problem in Eq. (3). Let s and j be two indices such
that vs > vj . If ws = 0 then wj must be zero as well.

Denoting byI the set of indices of the non-zero compo-
nents of the sorted optimal solution,I = {i ∈ [n] : v(i) >

0}, we see that Lemma 1 implies thatI = [ρ] for some
1 ≤ ρ ≤ n. Had we knownρ we could have simply used
Eq. (4) to obtain that

n∑

i=1

wi =

n∑

i=1

w(i) =

ρ
∑

i=1

w(i) =

ρ
∑

i=1

(
v(i) − θ

)
= z

and therefore

θ =
1

ρ

(
ρ
∑

i=1

v(i) − z

)

. (5)

Givenθ we can characterize the optimal solution forw as

wi = max {vi − θ , 0} . (6)

We are left with the problem of finding the optimalρ, and
the following lemma (Shalev-Shwartz & Singer, 2006) pro-
vides a simple solution once we sortv in descending order.

Lemma 2. Let w be the optimal solution to the minimiza-
tion problem given in Eq. (3). Let µ denote the vector ob-
tained by sorting v in a descending order. Then, the num-
ber of strictly positive elements in w is

ρ(z,µ) = max

{

j ∈ [n] : µj −
1

j

(
j
∑

r=1

µr − z

)

> 0

}

.

The pseudo-code describing theO(n log n) procedure for
solving Eq. (3) is given in Fig. 1.

INPUT: A vectorv ∈ R
n and a scalarz > 0

Sortv into µ : µ1 ≥ µ2 ≥ . . . ≥ µp

Findρ = max

{

j ∈ [n] : µj − 1
j

(
j
∑

r=1

µr − z

)

> 0

}

Defineθ = 1
ρ

(
ρ
∑

i=1

µi − z

)

OUTPUT: w s.t.wi = max {vi − θ , 0}

Figure 1.Algorithm for projection onto the simplex.

4. Euclidean Projection onto theℓ1-Ball

We next modify the algorithm to handle the more general
ℓ1-norm constraint, which gives the minimization problem

minimize
w∈Rn

‖w − v‖22 s.t. ‖w‖1 ≤ z . (7)

We do so by presenting a reduction to the problem of pro-
jecting onto the simplex given in Eq. (3). First, we note
that if ‖v‖1 ≤ z then the solution of Eq. (7) isw = v.
Therefore, from now on we assume that‖v‖1 > z. In this
case, the optimal solution must be on the boundary of the
constraint set and thus we can replace the inequality con-
straint‖w‖1 ≤ z with an equality constraint‖w‖1 = z.
Having done so, the sole difference between the problem
in Eq. (7) and the one in Eq. (3) is that in the latter we
have an additional set of constraints,w ≥ 0. The follow-
ing lemma indicates that each non-zero component of the
optimal solutionw shares the sign of its counterpart inv.

Lemma 3. Let w be an optimal solution of Eq. (7). Then,
for all i, wi vi ≥ 0.

Proof. Assume by contradiction that the claim does not
hold. Thus, there existsi for which wi vi < 0. Let ŵ

be a vector such that̂wi = 0 and for all j 6= i we have
ŵj = wj . Therefore,‖ŵ‖1 = ‖w‖1 − |wi| ≤ z and hence
ŵ is a feasible solution. In addition,

‖w − v‖22 − ‖ŵ − v‖22 = (wi − vi)
2 − (0− vi)

2

= w2
i − 2wivi > w2

i > 0 .

We thus constructed a feasible solutionŵ which attains an
objective value smaller than that ofw. This leads us to the
desired contradiction.

Based on the above lemma and the symmetry of the ob-
jective, we are ready to present our reduction. Letu be a
vector obtained by taking the absolute value of each com-
ponent ofv, ui = |vi|. We now replace Eq. (7) with

minimize
β∈Rn

‖β − u‖22 s.t. ‖β‖1 ≤ z and β ≥ 0 . (8)

Once we obtain the solution for the problem above we con-
struct the optimal of Eq. (7) by settingwi = sign(vi)βi.
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INPUT A vectorv ∈ R
n and a scalarz > 0

INITIALIZE U = [n] s = 0 ρ = 0
WHILE U 6= φ

PICK k ∈ U at random
PARTITION U :

G = {j ∈ U | vj ≥ vk}
L = {j ∈ U | vj < vk}

CALCULATE ∆ρ = |G| ; ∆s =
∑

j∈G

vj

IF (s + ∆s)− (ρ + ∆ρ)vk < z

s = s + ∆s ; ρ = ρ + ∆ρ ; U ← L

ELSE

U ← G \ {k}
ENDIF

SET θ = (s− z)/ρ

OUTPUT w s.t.vi = max {vi − θ , 0}

Figure 2.Linear time projection onto the simplex.

5. A Linear Time Projection Algorithm

In this section we describe a more efficient algorithm for
performing projections. To keep our presentation simple
and easy to follow, we describe the projection algorithm
onto the simplex. The generalization to theℓ1 ball can
straightforwardly incorporated into the efficient algorithm
by the results from the previous section (we simply work
in the algorithm with a vector of the absolute values ofv,
replacing the solution’s componentswi with sign(vi) ·wi).

For correctness of the following discussion, we add an-
other component tov (the vector to be projected), which
we set to0, thus vn+1 = 0 and v(n+1) = 0. Let us
start by examining again Lemma 2. The lemma implies
that the indexρ is the largest integer that still satisfies
v(ρ) − 1

ρ

(∑ρ
r=1 v(r) − z

)
> 0. After routine algebraic

manipulations the above can be rewritten in the following
somewhat simpler form:

ρ
∑

i=1

(
v(i) − v(ρ)

)
< z and

ρ+1
∑

i=1

(
v(i) − v(ρ+1)

)
≥ z. (9)

Givenρ andv(ρ) we slightly rewrite the valueθ as follows,

θ =
1

ρ




∑

j:vj≥v(ρ)

vj − z



 . (10)

The task of projection can thus be distilled to the task of
findingθ, which in turn reduces to the task of findingρ and
the pivot elementv(ρ). Our problem thus resembles the
task of finding an order statistic with an additional compli-
cating factor stemming from the need to compute summa-
tions (while searching) of the form given by Eq. (9). Our
efficient projection algorithm is based on a modification of
the randomized median finding algorithm (Cormen et al.,

2001). The algorithm computes partial sums just-in-time
and has expected linear time complexity.

The algorithm identifiesρ and the pivot valuev(ρ) without
sorting the vectorv by using a divide and conquer proce-
dure. The procedure works in rounds and on each round
either eliminates elements shown to be strictly smaller than
v(ρ) or updates the partial sum leading to Eq. (9). To do so
the algorithm maintains a set of unprocessed elements of
v. This set contains the components ofv whose relation-
ship tov(ρ) we do not know. We thus initially setU = [n].
On each round of the algorithm we pick at random an in-
dex k from the setU . Next, we partition the setU into
two subsetsG andL. G contains all the indicesj ∈ U

whose componentsvj > vk; L contains thosej ∈ U such
that vj is smaller. We now face two cases related to the
current summation of entries inv greater than the hypoth-
esizedv(ρ) (i.e. vk). If

∑

j:vj≥vk
(vj − vk) < z then by

Eq. (9), vk ≥ v(ρ). In this case we know that all the el-
ements inG participate in the sum definingθ as given by
Eq. (9). We can discardG and setU to beL as we still
need to further identify the remaining elements inL. If
∑

j:vj≥vk
(vj − vk) ≥ z then the same rationale implies

thatvk < v(ρ). Thus, all the elements inL are smaller than
v(ρ) and can be discarded. In this case we can remove the
setL andvk and setU to beG \ {k}. The entire process
ends whenU is empty.

Along the process we also keep track of the sum and the
number of elements inv that we have found thus far to
be no smaller thanv(ρ), which is required in order not to
recalculate partial sums. The pseudo-code describing the
efficient projection algorithm is provided in Fig. 2. We
keep the set of elements found to be greater thanv(ρ) only
implicitly. Formally, at each iteration of the algorithm we
maintain a variables, which is the sum of the elements in
the set{vj : j 6∈ U, vj ≥ v(ρ)}, and overloadρ to des-
ignate the cardinality of the this set throughout the algo-
rithm. Thus, when the algorithms exits its main while loop,
ρ is the maximizer defined in Lemma 1. Once the while
loop terminates, we are left with the task of calculatingθ

using Eq. (10) and performing the actual projection. Since
∑

j:vj≥µρ
vj is readily available to us as the variables, we

simply setθ to be(s− z)/ρ and perform the projection as
prescribed by Eq. (6).

Though omitted here for lack of space, we can also extend
the algorithms to handle the more general constraint that
∑

ai|wi| ≤ z for ai ≥ 0.

6. Efficient Projection for Sparse Gradients

Before we dive into developing a new algorithm, we re-
mind the reader of the iterations the minimization algo-
rithm takes from Eq. (2): we generate a sequence{w(t)}
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INPUT A balanced treeT and a scalarz > 0
INITIALIZE v⋆ =∞, ρ∗ = n + 1, s∗ = z

CALL PIVOTSEARCH(root(T ), 0, 0)
PROCEDUREPIVOTSEARCH(v, ρ, s)

COMPUTE ρ̂ = ρ + r(v) ; ŝ = s + σ(v)
IF ŝ < vρ̂ + z // v ≥ pivot

IF v⋆ > v

v⋆ = v ; ρ⋆ = ρ̂ ; s⋆ = ŝ

ENDIF

IF leaf
T
(v)

RETURN θ = (s⋆ − z)/ρ⋆

ENDIF

CALL PIVOTSEARCH(left
T
(v), ρ̂, ŝ)

ELSE // v < pivot
IF leaf

T
(v)

RETURN θ = (s⋆ − z)/ρ⋆

ENDIF

CALL PIVOTSEARCH
(
right

T

(v), ρ, s
)

ENDIF

ENDPROCEDURE

Figure 3.Efficient search of pivot value for sparse feature spaces.

by iterating

w(t+1) = ΠW

(

w(t) + g(t)
)

whereg(t) = −ηt∇(t), W = {w | ‖w‖1 ≤ z} andΠW is
projection onto this set.

In many applications the dimension of the feature space
is very high yet the number of features which attain a
non-zero value for each example is very small (see for in-
stance our experiments on text documents in Sec. 7). It is
straightforward to implement the gradient-related updates
in time which is proportional to the number of non-zero
features, but the time complexity of the projection algo-
rithm described in the previous section is linear in the di-
mension. Therefore, using the algorithm verbatim could be
prohibitively expensive in applications where the dimen-
sion is high yet the number of features which are “on” in
each example is small. In this section we describe a pro-
jection algorithm that updates the vectorw(t) with g(t) and
scales linearly in the number of non-zero entries ofg(t) and
only logarithmically in the total number of features (i.e.
non-zeros inw(t)).

The first step in facilitating an efficient projection for sparse
feature spaces is to represent the projected vector as a “raw”
vectorv by incorporating a global shift that is applied to
each non-zero component. Specifically, each projection
step amounts to deductingθ from each component ofv
and thresholding the result at zero. Let us denote byθt the
shift value used on thetth iteration of the algorithm and by
Θt the cumulative sum of the shift values,Θt =

∑

s≤t θs.
The representation we employ enables us to perform the

step in which we deductθt from all the elements of the
vectorimplicitly, adhering to the goal of performing a sub-
linear number of operations. As before, we assume that the
goal is to project onto the simplex. Equipped with these
variables, thejth component of the projected vector aftert

projected gradient steps can be written asmax{vj−Θt, 0}.
The second substantial modification to the core algorithm is
to keep only thenon-zero components of the weight vector
in a red-black tree (Cormen et al., 2001). The red-black tree
facilitates an efficient search for the pivot element (v(ρ)) in
time which is logarithmic in the dimension, as we describe
in the sequel. Once the pivot element is found we implic-
itly deductθt from all the non-zero elements in our weight
vector by updatingΘt. We then remove all the components
that are less thanv(ρ) (i.e. less thanΘt); this removal is
efficient and requires only logarithmic time (Tarjan, 1983).

The course of the algorithm is as follows. Aftert projected
gradient iterations we have a vectorv(t) whose non-zero el-
ements are stored in a red-black treeT and a global deduc-
tion valueΘt which is applied to each non-zero component
just-in-time, i.e. when needed. Therefore, each non-zero
weight is accessed asvj −Θt while T does not contain the
zero elements of the vector. When updatingv with a gradi-
ent, we modify the vectorv(t) by adding to it the gradient-
based vectorg(t) with k non-zero components. This update
is done usingk deletions (removingvi from T such that
g
(t)
i 6= 0) followed byk re-insertions ofv′

i = (vi + g
(t)
i )

into T , which takesO(k log(n)) time. Next we find in
O(log(n)) time the value ofθt. Fig. 3 contains the algo-
rithm for this step; it is explained in the sequel. The last
step removes all elements of the new raw vectorv(t) +g(t)

which become zero due to the projection. This step is dis-
cussed at the end of this section.

In contrast to standard tree-based search procedure, to find
θt we need to find a pair of consecutive values inv that
correspond tov(ρ) andv(ρ+1). We do so by keeping track
of the smallest element that satisfies the left hand side of
Eq. (9) while searching based on the condition given on the
right hand side of the same equation.T is keyed on the val-
ues of the un-shifted vectorvt. Thus, all the children in the
left (right) sub-tree of a nodev represent values invt which
are smaller (larger) thanv. In order to efficiently findθt we
keep at each node the following information: (a) The value
of the component, simply denoted asv. (b) The number of
elements in the right sub-tree rooted atv, denotedr(v), in-
cluding the nodev. (c) The sum of the elements in the right
sub-tree rooted atv, denotedσ(v), including the valuev
itself. Our goal is to identify the pivot elementv(ρ) and its
indexρ. In the previous section we described a simple con-
dition for checking whether an element inv is greater or
smaller than the pivot value. We now rewrite this expres-
sion yet one more time. A component with valuev is not
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smaller than the pivot iff the following holds:

∑

j:vj≥v

vj > |{j : vj ≥ v}| · v + z . (11)

The variables in the red-black tree form the infrastructure
for performing efficient recursive computation of Eq. (11).
Note also that the condition expressed in Eq. (11) still holds
when we donot deductΘt from all the elements inv.

The search algorithm maintains recursively the numberρ

and the sums of the elements that have been shown to be
greater or equal to the pivot. We start the search with the
root node ofT , and thus initiallyρ = 0 ands = 0. Upon
entering a new nodev, the algorithm checks whether the
condition given by Eq. (11) holds forv. Sinceρ ands were
computed for the parent ofv, we need to incorporate the
number and the sum of the elements that are larger thanv

itself. By construction, these variables arer(v) andσ(v),
which we store at the nodev itself. We letρ̂ = ρ + r(v)
andŝ = s + σ(v), and with these variables handy, Eq. (11)
distills to the expression̂s < vρ̂+z. If the inequality holds,
we know thatv is either larger than the pivot or it may be
the pivot itself. We thus update our current hypothesis for
µρ andρ (designated asv⋆ andρ⋆ in Fig. 3). We continue
searching the left sub-tree (left

T
(v)) which includes all el-

ements smaller thanv. If inequality ŝ < vρ̂ + z does not
hold, we know thatv < µρ, and we thus search the right
subtree (right

T

(v)) and keepρ ands intact. The process
naturally terminates once we reach a leaf, where we can
also calculate the correct value ofθ using Eq. (10).

Once we findθt (if θt ≥ 0) we update the global shift,
Θt+1 = Θt + θt. We need to discard all the elements in
T smaller thanΘt+1, which we do using Tarjan’s (1983)
algorithm for splitting a red-black tree. This step is log-
arithmic in the total number of non-zero elements ofvt.
Thus, as the additional variables in the tree can be updated
in constant time as a function of a node’s child nodes in
T , each of the operations previously described can be per-
formed in logarthmic time (Cormen et al., 2001), giving us
a total update time ofO(k log(n)).

7. Experiments

We now present experimental results demonstrating the ef-
fectiveness of the projection algorithms. We first report re-
sults for experiments with synthetic data and then move to
experiments with high dimensional natural datasets.

In our experiment with synthetic data, we compared vari-
ants of the projected subgradient algorithm (Eq. (2)) for
ℓ1-regularized least squares andℓ1-regularized logistic re-
gression. We compared our methods to a specialized
coordinate-descent solver for the least squares problem due
to Friedman et al. (2007) and to very fast interior point
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Figure 4.Comparison of methods onℓ1-regularized least squares.
The left has dimensionn = 800, the rightn = 4000

methods for both least squares and logistic regression (Koh
et al., 2007; Kim et al., 2007). The algorithms we use are
batch projected gradient, stochastic projected subgradient,
and batch projected gradient augmented with a backtrack-
ing line search (Koh et al., 2007). The IP and coordinate-
wise methods both solve regularized loss functions of the
form f(w) = L(w) + λ‖w‖1 rather than having anℓ1-
domain constraint, so our objectives are not directly com-
parable. To surmount this difficulty, we first minimize
L(w)+λ‖w‖1 and use the 1-norm of the resulting solution
w∗ as the constraint for our methods.

To generate the data for the least squares problem setting,
we chose aw with entries distributed normally with 0 mean
and unit variance and randomly zeroed 50% of the vector.
The data matrixX ∈ R

m×n was random with entries also
normally distributed. To generate target values for the least
squares problem, we sety = Xw + ν, where the com-
ponents ofν were also distributed normally at random. In
the case of logistic regression, we generated dataX and
the vectorw identically, but the targetsyi were set to be
sign(w · xi) with probability 90% and to−sign(w · xi)
otherwise. We ran two sets of experiments, one each for
n = 800 andn = 4000. We also set the number of ex-
amplesm to be equal ton. For the subgradient methods
in these experiments and throughout the remainder, we set
ηt = η0/

√
t, choosingη0 to give reasonable performance.

(η0 too large will mean that the initial steps of the gradient
method are not descent directions; the noise will quickly
disappear because the step sizes are proportional to1/

√
t).

Fig. 4 and Fig. 5 contain the results of these experiments
and plotf(w) − f(w∗) as a function of the number of
floating point operations. From the figures, we see that the
projected subgradient methods are generally very fast at the
outset, getting us to an accuracy off(w)− f(w∗) ≤ 10−2

quickly, but their rate of convergence slows over time. The
fast projection algorithms we have developed, however, al-
low projected-subgradient methods to be very competitive
with specialized methods, even on these relatively small
problem sizes. On higher-dimension data sets interior point
methods are infeasible or very slow. The rightmost graphs
in Fig. 4 and Fig. 5 plotf(w) − f(w∗) as functions of
floating point operations for least squares and logistic re-
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Figure 5. Comparison of methods onℓ1-regularized logistic re-
gression. The left has dimensionn = 800, the rightn = 4000

gression with dimensionn = 4000. These results indicate
that in high dimensional feature spaces, the asymptotically
faster convergence of IP methods is counteracted by their
quadratic dependence on the dimension of the space.

We also ran a series of experiments on two real datasets
with high dimensionality: the Reuters RCV1 Cor-
pus (Lewis et al., 2004) and the MNIST handwritten digits
database. The Reuters Corpus has 804,414 examples; with
simple stemming and stop-wording, there are 112,919 uni-
gram features and 1,946,684 bigram features. With our pre-
processing, the unigrams have a sparsity of 1.2% and the bi-
grams have sparsity of .26%. We performedℓ1-constrained
binary logistic regression on the CCAT category from
RCV1 (classifying a document as corporate/industrial) us-
ing unigrams in a batch setting and bigrams in an online set-
ting. The MNIST dataset consists of 60,000 training exam-
ples and a 10,000 example test set and has 10-classes; each
image is a gray-scale28×28 image, which we represent as
xi ∈ R

784. Rather than directly use the inputxi, however,
we learned weightswj using the following Kernel-based
“similarity” function for each classj ∈ {1, . . . , 10}:

k(x, j) =
∑

i∈S

wjiσjiK(xi,x), σji =

{
1 if yi = j

−1 otherwise.

In the above,K is a Gaussian kernel function, so that
K(x,y) = exp(−‖x− y‖2/25), andS is a 2766 element
support set. We put anℓ1 constraint on eachwj , giving us
the following multiclass objective with dimension 27,660:

minimizew
1
m

∑m
i=1 log

(

1 +
∑

r 6=yi
ek(xi,r)−k(xi,yi)

)

s.t. ‖wj‖1 ≤ z,wj � 0.
(12)

As a comparison to our projected subgradient methods on
real data, we used a method known in the literature as either
entropic descent, a special case of mirror descent (Beck &
Teboulle, 2003), or exponentiated gradient (EG) (Kivinen
& Warmuth, 1997). EG maintains a weight vectorw sub-
ject to the constraint that

∑

i wi = z andw � 0; it can
easily be extended to work with negative weights under a
1-norm constraint by maintaining two vectorsw+ andw−.
We compare against EG since it works well in very high di-
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Figure 6. EG and projected subgradient methods on RCV1.

mensional spaces, and it very quickly identifies and shrinks
weights for irrelevant features (Kivinen & Warmuth, 1997).
At every step of EG we update

w
(t+1)
i =

w
(t)
i exp

(
−ηt∇if(w(t))

)

Zt
(13)

where Zt normalizes so that
∑

i w
(t+1)
i = z and∇if

denotes theith entry of the gradient off , the function
to be minimized. EG can actually be viewed as a pro-
jected subgradient method using generalized relative en-
tropy (D(x‖y) =

∑

i xi log xi

yi
− xi + yi) as the distance

function for projections (Beck & Teboulle, 2003). We can
replace∇if with ∇̂if in Eq. (13), an unbiased estimator
of the gradient off , to get stochastic EG. A step sizeηt ∝
1/
√

t guarantees a convergence rate ofO(
√

log n/T ). For
each experiment with EG, however, we experimented with
learning rates proportional to1/t, 1/

√
t, and constant, as

well as different initial step-sizes; to make EG as competi-
tive as possible, we chose the step-size and rate for which
EG performed best on each individual test..

Results for our batch experiments learning a logistic classi-
fier for CCAT on the Reuters corpus can be seen in Fig. 6.
The figure plots the binary logistic loss of the different al-
gorithms minus the optimal log loss as a function of CPU
time. On the left side Fig. 6, we used projected gradient
descent and stochastic gradient descent using 25% of the
training data to estimate the gradient, and we used the al-
gorithm of Fig. 2 for the projection steps. We see thatℓ1-
projections outperform EG both in terms of convergence
speed and empirical log-loss. On the right side of the fig-
ure, we performed stochastic descent using only 1 training
example or 100 training examples to estimate the gradient,
using Fig. 3 to project. When the gradient is sparse, up-
dates for EG areO(k) (wherek is the number of non-zeros
in the gradient), so EG has a run-time advantage overℓ1-
projections when the gradient is very sparse. This advan-
tage can be seen in the right side of Fig. 6.

For MNIST, with dense features, we ran a similar series
of tests to those we ran on the Reuters Corpus. We plot
the multiclass logistic loss from Eq. (12) over time (as a
function of the number gradient evaluations) in Fig. 7. The
left side of Fig. 7 compares EG and gradient descent using
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Figure 8. Online learning of bigram classifier on RCV1. Left is
the cumulative loss, right shows sparsity over time.

the true gradient while the right figure compares stochas-
tic EG and stochastic gradient descent using only 1% of
the training set to estimate the gradient. On top of outper-
forming EG in terms of convergence rate and loss, theℓ1-
projection methods also gave sparsity, zeroing out between
10 and 50% of the components of each class vectorwj in
the MNIST experiments, while EG gives no sparsity.

As a last experiment, we ran an online learning test on
the RCV1 dataset using bigram features, comparingℓ1-
projections to using decreasing step sizes given by Zinke-
vich (2003) to exponential gradient updates. Theℓ1-
projections are computationally feasible because of algo-
rithm 3, as the dimension of our feature space is nearly 2
million (using the expected linear-time algorithm of Fig. 2
takes 15 times as long to compute the projection for the
sparse updates in online learning). We selected the bound
on the 1-norm of the weights to give the best online re-
gret of all our experiments (in our case, the bound was
100). The results of this experiment are in Fig. 8. The
left figure plots the cumulative log-loss for the CCAT and
ECAT binary prediction problems as a function of the num-
ber of training examples, while the right hand figure plots
the sparsity of theℓ1-constrained weight vector both as a
function of the dimension and as a function of the number
of features actually seen. Theℓ1-projecting learner main-
tained an active set with only about5% non-zero compo-
nents; the EG updates have no sparsity whatsoever. Our on-
line ℓ1-projections outperform EG updates in terms of the
online regret (cumulative log-loss), and theℓ1-projection
updates also achieve a classification error rate of 11.9%
over all the examples on the CCAT task and 14.9% on

ECAT (versus more than 15% and 20% respectively for
EG).
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Abstract

Cost curves have recently been introduced as
an alternative or complement to ROC curves
in order to visualize binary classifiers perfor-
mance. Of importance to both cost and ROC
curves is the computation of confidence inter-
vals along with the curves themselves so that
the reliability of a classifier’s performance
can be assessed. Computing confidence inter-
vals for the difference in performance between
two classifiers allows the determination of
whether one classifier performs significantly
better than another. A simple procedure to
obtain confidence intervals for costs or the
difference between two costs, under various
operating conditions, is to perform bootstrap
resampling of the test set. In this paper, we
derive exact bootstrap distributions for these
values and use these dstributions to obtain
confidence intervals, under various operating
conditions. Performances of these confidence
intervals are measured in terms of coverage
accuracies. Simulations show excellent re-
sults.

1. Introduction

A cost curve (Drummond & Holte, 2000; Drummond
& Holte, 2006) is a plot of a classifier’s expected cost
as a function of operating conditions, i.e. misclassifi-
cation costs and class probabilities. Performance as-
sessment in terms of expected cost is paramount but
cannot be visualized through ROC analysis although
knowledge of the distribution of a classifier’s total mis-
classification error cost is often among the enduser’s
interests.

Cost curve analysis can be enhanced if dispersion mea-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

sures of the curve are provided along with the curve
itself, thereby allowing the enduser to assess the re-
liability of the estimated performance of the classi-
fier considered for implementation. In order to obtain
confidence intervals from a single test set, resampling
methods such as the bootstrap (Efron & Tibshirani,
1993) technique can be used: from the test set, a cer-
tain number of samples are drawn with remplacement
and from these samples, a distribution of the cost can
be obtained. In certain cases, the bootstrap technique
lends itself to analytic derivations for the limit case
where the number of samples tends to infinity. Distri-
butions thus obtained are referred to as exact bootstrap
distributions. The purpose of this paper is to derive
exact bootstrap distributions for a classifier’s total cost
of misclassification errors as well as the difference be-
tween two classifiers’ total costs, for varying operating
conditions.

Except for Drummond & Holte (2006), little attention
has been given to developing and evaluating the per-
formance of confidence intervals for cost curves. ROC
curves have received much more attention. Arguably,
the recency of cost curves explains in part this situa-
tion. Recent literature on the derivations of confidence
intervals for ROC curves can be segmented in three
categories: parametric, semi-parametric or empirical.
Semi-parametric methods mainly refer to kernel-based
methods (Hall & Hyndman, 2003; Hall et al., 2004;
Lloyds, 1998; Lloyds & Wong, 1999). Bootstrap re-
sampling has been used for ROC curves as an empiri-
cal method but to date, exact bootstrap distributions
for the ROC curve have not been presented.

A technical difficulty arises from the fact that, when
sampling from the entire test set, a procedure we shall
refer to as full sampling, relative proportions of classes
will vary from one sample to another. Mathemati-
cal derivations of exact bootstrap distributions, in the
context of full sampling, are thus more complicated.
In this paper, we first use a procedure referred to as
stratified sampling according to which proportions of
positive and negative instances of each bootstrap sam-
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ple are fixed as equal to those of the original test set.
Here, an instance is an element of the test set. In-
stances of the class for which the event has (not) taken
place are called positive (negative). For example, for
a credit card fraud detection application, fraudulous
transactions would be labelled as positive whereas le-
gitimate transactions would be labelled as negative.
Within the stratified sampling framework, each sample
is obtained from the combination of two independent
bootstrap samples: one drawn from the set of positive
instances and the other drawn from the set of neg-
ative instances. This procedure has previously been
used in the context of ROC (Bandos, 2005) as well
as cost curves (Drummond & Holte, 2006). After ob-
taining results under this simplified stratified sampling
approach, we derive exact bootstrap distributions for
the full sampling approach.

From the user’s perspective, the two sampling pro-
cedures, stratified and full, provide different informa-
tion so that the difference between the two approaches
reaches beyond mere mathematical derivations. Ac-
cording to stratified sampling, the user is provided
with a cost distribution conditional on the operat-
ing conditions that will eventually prevail once the
model is implemented. We refer to these as the de-
ployment conditions. This corresponds to the view
of Drummond & Holte (2006) who argue in favor of
plotting cost curves in terms of all possible values of
the unknown future deployment conditions. Within
the stratified sampling approach, cost dispersion mea-
sures obtained for a specific value of the deployment
conditions make no provision for uncertainty around
expected deployment conditions. On the other hand,
according to the full sampling approach, class pro-
portions are implicitly assumed to be binomially dis-
tributed around those of the test set so that cost dis-
persion measures incorporate uncertainty around class
proportions. Since the two approaches provide differ-
ent information that may both be of interest, both are
treated in this paper.

The rest of the paper is as follows: in section 2,
we briefly review the main aspects of ROC and cost
curves. Then, mathematical derivations are presented
in section 3 for stratified sampling and in section 4 for
full sampling. In section 5, we perform simulations
and measure coverage accuracies of the confidence in-
tervals. Limitations of the proposed approach are dis-
cussed in section 6. Finally, we conclude in section
7.

2. ROC and cost curves

An ROC curve is a plot of the probability of correctly
identifying a positive instance (a true positive) against
the probability of mistakenly identifying a negative in-
stance as positive (a false positive), for various thresh-
old values. Fawcett (2004) provides an excellent in-
troduction to ROC curves along with descriptions of
the essential elements of ROC graph analysis. Classi-
fier performance assessment in terms of expected total
error cost cannot be done using ROC curves and for
this reason (and others (Drummond & Holte, 2006)),
cost curves have been introduced as an alternative (or
a complement) to ROC curves.

The main objective of cost curves is to visualize clas-
sifier performance in terms of expected cost rather
than through a tradeoff between misclassification error
probabilities. Expected cost is plotted against operat-
ing conditions where, as mentionned above, operating
conditions include two factors: class probabilities and
misclassification costs. Once these values are fixed, all
possibly attainable true and false positive rates pairs
are considered. Given class probabilities, misclassifi-
cation costs, and true and false positive rates, a cost
is obtained. The pair that minimizes the cost is se-
lected. It is assumed that given certain operating con-
ditions, the enduser would select the cost minimizing
pair and set the classifier’s threshold accordingly. In
order to obtain a cost curve, this optimization process
is repeated for all possible operating conditions values.
As shown below, a set of operating conditions can be
summarized through a single normalized scalar value
ranging between 0 and 1. Figure 1 illustrates this pro-
cess.

Cost curves are obtained assuming the enduser selects
the threshold that minimizes expected cost, given op-
erating conditions, based on the test set. One approach
to obtain cost distributions is to draw bootstrap sam-
ples from the test set, obtain a cost curve for each of
the samples and derive a distribution for the cost from
these cost curves. Now consider a specific set of values
for the operating conditions. Each of the samples will
lead a possibly different optimal threshold for this set
of operating conditions. This can be viewed in Figure
1 by comparing the left- and right-hand columns.

Thus, averaging cost curves (fixed operating condi-
tions but varying thresholds) in order to obtain an
estimate of the expected cost would correspond to the
enduser being able to select the optimal thresholds, de-
pending on the actually observed sample of instances.
In other words, the enduser would be required to have
knowledge of the test set before deciding on a threshold
value, something that can’t be done in practice. Ob-
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Figure 1. Derivation of ROC and cost curves for two classi-
fiers with relatively low (left) and high (right) discrimina-
tion power. Top: score distributions for negative (solid)
and positive (dashed) instances. Three colored vertical
lines represent possible thresholds, from low (red) to high
(blue). Middle: ROC curves associated to top row distri-
butions. Three true and false positive pairs are identified
with colored dots. Bottom: each dot of the middle row
plotted in ROC space is uniquely associated to a line in
cost curve space. Given specific operating conditions, the
cost minimizing threshold may vary from one curve to an-
other. Here, with w = 0.33, the optimal threshold is the
highest (blue) of the three considered value on the left-
hand side. On the right-hand side, it is the second largest
threshold value (green) that leads to the lowest expected
cost.

viously, thresholds must somehow be selected prior to
test set cost measurements. This can be done through
the standard machine learning process of splitting the
data in three sets: training, validation and test. In
our simulations, we assume the user chooses the opti-
mal theoretical thresholds for all operating conditions,
thus implicitely assuming an infinite sized validation
set. The impact of this assumption is discussed later,
in section 6. Our approach can therefore be consid-
ered as a form of threshold averaging of the costs. But
since both operating conditions (abscissa values) and
thresholds are fixed for each computed distribution,
then the approach could be considered as vertical av-
eraging as well. We now turn to more formal deriva-
tions of the cost curves and associated exact bootstrap
distributions.

3. Stratified sampling

Consider a test set consisting of n instances from which
stratified bootstrap samples are drawn. In this paper,
we shall assume bootstrap samples are of the same size
as the test set itself, a common procedure. Let n+ and
n− be the numbers of positive and negative instances
in the test set. According to the stratified bootstrap
procedure and since we assume sample size equals test
set size, the numbers of sampled positive and negative
instances are fixed for all samples and also equal to
n+ and n−, respectively. Let n+

t denote the number
of instances, among the n+ positive instances of the
test set, with score greater or equal to the threshold
t = t(w) associated to operating conditions w, where
w will be defined shortly. The corresponding value for
a set of sampled positive instances is noted N+

t and
follows binomial distribution with parameters n+

t /n+

and n+ which we note as N+
t ∼ Bin(n+

t /n+, n+). The
random variable for the true positive rate, at threshold
t, is denoted TP+

t = N+
t /n+. Similarly for negative

instances, n−t refers to the number of instances with
score greater or equal to t among the n− negative in-
stances of the test set, N−

t is the random variable for
the corresponding number of sampled instances and
FP−t = N−

t /n− is the false positive rate, at threshold
t, with N−

t ∼ Bin(n−t /n−, n−). Note that, according
to the stratified sampling procedure, samples from pos-
itive and negative instances are drawn independently
so that TP+

t and FP−t are independent as well.

Let us now formalize the above mentionned operat-
ing conditions and define w. Let p+ = n+/n and
p− = n−/n represent class probabilities for positive
and negative instances, respectively. Misclassification
costs are noted c+/− and c−/+ for false positive and
false negative errors, respectively. Total cost is there-
fore given by the following:

CT
t = p+c−/+(1 − TP+

t ) + p−c+/−FP−t . (1)

Drummond & Holte (2006) divide the total cost by its
maximum possible value, in order to obtain a normal-
ized cost with maximum value of one. This maximum
total cost value is reached when 1− TP+

t = FP−t = 1
and the total cost is then equal to p+c−/+ + p−c+/−.
Defining w as

w =
p+ · c−/+

p+ · c−/+ + p− · c+/−
, (2)

the normalized cost is given by

CN
t = w(1 − TP+

t ) + (1 − w)FP−t (3)

with w ∈ [0, 1]. As mentionned above, true and false
positive rates are independent when stratified sam-
pling is used. Thus, the expected value and variance
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of CN
t follow as:

E[CN
t ] = w(1 − n+

t /n+) + (1 − w)n−t /n−. (4)
V [CN

t ] = w2n+
t /n+(1 − n+

t /n+)
+(1 − w)2n−t /n−(1 − n−t /n−). (5)

We use these expectation and variance of the distribu-
tion of CN

t to fit a gaussian distribution from which
confidence intervals are easily obtained.

Now, in order to assess the statistical significance of
the difference in performance of two classifiers, we need
to obtain the distribution of the difference in their nor-
malized costs:

∆CN
t1,t2 = CN

t2 − CN
t1

= w(TP+
t1 − TP+

t2 )

+(1 − w)(FP−t2 − FP−t1 ) (6)

where we use subscripts 1 and 2 to differentiate values
obtained for the two classifiers. The values of CN

t2 and
CN

t1 cannot be assumed independent since it is possi-
ble that the scores assigned by two different classifiers
are correlated: for example, obvious fraudulous trans-
actions will likely obtain high scores on all classifiers.
Also note that only instances that are falsely labelled
by one and only one of the two classifiers will affect the
difference in costs. Errors made by both classifiers will
offset each other when computing cost differences. Let
n+

t1 represent the number of positive test set instances
labelled as positive by the first classifier and negative
by the second classifier, given operating conditions w.
Similarly, let n+

t2 represent the number of positive test
set instances labelled as positive by classifier 2 and neg-
ative by classifier 1. Note that thresholds t1 = t1(w)
and t2 = t2(w) associated to operating conditions w
may differ from one classifier to the other since score
distributions and scales may vary from one classifier
to the other. Values n−t1 and n−t2 are defined similarly
for negative instances, given the same operating con-
ditions value w.

Let N+
t1 , N+

t2 , N−
t1 , and N−

t2 be the associated random
variables for the number of instances in a bootstrap
sample. Values N+

t1 and N+
t2 jointly follow a multino-

mial distribution. This also applies to N−
t1 and N−

t2 .
Accordingly, moments of ∆CN

t1,t2 are easily obtained:

E[∆CN
t1,t2 ] = w

(
n+

t1 − n+
t2

n+

)

+ (1 − w)

(
n−t2 − n−t1

n−

)
(7)

V [∆CN
t1,t2 ] = w2

n+
t1 + n+

t2 −
(n+

t1
−n+

t2
)2

n+

(n+)2



+(1 − w)2

n−t1 + n−t2 −
(n−t1

−n−t2
)2

n−

(n−)2

 . (8)

Let us now evaluate the computational time required
to obtain confidence intervals for the performance of a
single classifier and for the difference between the per-
formances of two classifiers. Here, we assume the num-
ber of different operating conditions considered, i.e.
the number of different values for w is proportional to
n. Also, as explained above, we assume the thresholds
associated to each of these operating conditions have
previously been determined through a validation pro-
cess. For the case of a single classifier performance, we
first need to sort instances with respect to their score,
which requires time O(n lnn). Then, values of n+

t and
n−t are easily obtained in linear time. There remains to
compute expectations and variances, using equations
(4) and (5), and derive confidence intervals using these
values. This is realized in constant time for each value
of w, thus overall linear time. Globally, the entire pro-
cess is therefore dominated by the sorting phase and
total computational time is O(n lnn). Confidence in-
tervals for the difference in performance between two
classifiers can be obtained in O(n lnn) computational
time as well, although less trivially. Naive solutions
lead to quadratic time but, given careful sorting pre-
processing, values n+

t1 , n
+
t2 , n

−
t1 , and n−t2 are computed

in linear time. Then, moments and confidence inter-
vals for ∆CN

t1,t2 are obtained in linear time (for all
values of w) using equations (7) and (8).

4. Full sampling

Within the framework of full sampling, the proportions
of positive and negative instances vary from one sam-
ple to another. Whereas with stratified sampling, the
number of positive and negative instances in each sam-
ple, n+ and n−, were set as equal to those of the test
set, we now consider these numbers as random vari-
ables, and accordingly use capital notation N+ and
N−. Here again, these values follow binomial distri-
butions: N+ ∼ Bin(n+/n, n). Thus, full sampling
implicitly assumes a binomial distribution for the ob-
served class proportions P+ = N+/n and P− = N−/n
but this distribution could easily be replaced.

Equation (1) still holds in the case of full sampling, but
with the difference that P+ and P− are now treated
as random variables. In the previous section the nor-
malized version of the total cost was obtained by
dividing the total cost by the largest possible cost:
p+c−/++p−c+/−, a weighted average between misclas-
sification costs c−/+ and c+/−. Since P+ and P− are
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no longer fixed, we must consider the largest possible
weighted average which simply is the maximum of the
two misclassification costs, cmax = max[c−/+, c+/−].
The case where CT

t = c−/+ is obtained when N+ = n

and TP+
t = 0. Similarly, we have CT

t = c+/− if
N− = n and FP−t = 1. Thus, for full sampling, the
normalized cost can be written as

CN
t =

N+ · c−/+ · (1 − TP+
t ) + N− · c+/− · FP−t

n · cmax
.

Then, expected normalized cost and normalized cost
variance are obtained through iterated expectations:

E[CN
t ] = EN+{E[CN

t |N+]}

=
c−/+(n+ − n+

t ) + c+/− · n−t
n · cmax

(9)

V [CN
t ] = VN+{E[CN

t |N+]} + EN+{V [CN
t |N+]}

=
c2
−/+α+

t + c2
+/−α−t + δ2

t

(n · cmax)2
(10)

where

α+
t = n+

t − (n+
t )2

n+

α−t = n−t − (n−t )2

n−

δ2
t =

(
c−/+

n+ − n+
t

n+
− c+/−

n−t
n−

)2
n+ · n−

n

Here again, equations (9) and (10) can be used to ob-
tain a fitted gaussian distribution from which confi-
dence intervals are easily derived.

Let us now turn to the difference in performance be-
tween two classifiers. In the case of full sampling, this
difference is

∆CN
t1,t2 =

c−/+(N+
t1 − N+

t2 ) + c+/−(N−
t2 − N−

t1 )
n · cmax

(11)

Again, expected normalized cost and normalized cost
variance are obtained through iterated expectations:

E[∆CN
t1,t2 ] = EN+{E[∆CN

t1,t2 |N
+]}

=
c−/+(n+

t1 − n+
t2) + c+/− · (n−t2 − n−t1)
n · cmax

(12)

V [∆CN
t1,t2 ] = VN+{E[∆CN

t1,t2 |N
+]}

+ EN+{V [∆CN
t1,t2 |N

+]}

=
c2
−/+α+

t1,t2 + c2
+/−α−t1,t2 + δ2

t1,t2

(n · cmax)2
(13)
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Figure 2. Effect of spread between distributions on cover-
age. Stratified sampling is used. Confidence intervals are
derived for a classifier’s cost. Location (spread) parame-
ter for positive instances is set equal to 0.75 (up and left),
1.50 (up and right), 3.00 (down and left), and 5.00 (down
and right). Sample size is 1,000. Confidence intervals are
built with significance level α = 10%. Coverage propor-
tion (solid) for 1,000 simulations and target coverage of
90% (dashed) are plotted against operating conditions.

where

α+
t1,t2 = n+

t1 + n+
t2 −

(n+
t1 − n+

t2)
2

n+

α−t1,t2 = n−t1 + n−t2 −
(n−t1 − n−t2)

2

n−

δ2
t1,t2 =

(
c−/+

n+
t1 − n+

t2

n+
− c+/−

n−t2 − n−t1
n−

)2
n+ · n−

n

This completes mathematical derivations. A total of
four distributions have been obtained. For all four
distributions, computation of confidence intervals is
dominated by the need to sort instances so that com-
putational time is O(n lnn) in all cases. Note that
such time efficiency is obtained because we rely on the
gaussian fitting of the variables’ distributions. Com-
puting true exact bootstrap distributions would lead
to higher computational time orders. But as we show
in the next section, results obtained with gaussian fit-
ting are already excellent.

5. Numerical results

In this section, we conduct a series of experiments in
order to assess the performance of the confidence in-
tervals derived in sections 3 and 4. Performance is
measured in terms of coverage accuracy of confidence
intervals.

The first experiment is based on the framework used
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Figure 3. Effect of sample size on coverage. Stratified sam-
pling is used. Confidence intervals are derived for a clas-
sifier’s cost. Sample sizes of 25 (up and left), 250 (up and
right), 2,500 (down and left), and 1,000, (down and right)
are considered. Confidence intervals are built for signif-
icance level α = 10%. Location parameter for positive
instances is set to θ = 3.0. Coverage proportion (solid) for
1,000 simulations and target coverage of 90% (dashed) are
plotted against operating conditions.

by Macskassy et al. (2005) in which four methods
for obtaining pointwise confidence intervals for ROC
curves are compared: threshold averaging, vertical
averaging, kernel smoothing (Hall et al., 2004) and
Working-Hotelling bounds. Positive and negative in-
stance scores follow normal distributions but with var-
ious parameter values. We set the scale parameter to
3.00 for both positive and negative instances scores.
The location parameter θ for positive instances varies
within the set {0.75, 1.5, 3.0, 5.0} and the location pa-
rameter for negative instances is set equal to −θ. Sam-
ple size is set to 1,000, i.e. a set of 1,000 instances is
drawn from the positive instances distribution and an-
other set of 1,000 negative instances is drawn from the
negative instances distribution. The sampling proce-
dure is repeated 1,000 times, i.e. 1,000 simulations
are performed for each value of θ. We shall refer to
this experiment as the spread experiment. Confidence
intervals are obtained for a significance level of 10%.

Figure 2 provides simulation results which clearly show
that better results are obtained when score distribu-
tions of positive and negative instances have few over-
lap, i.e. for high values of θ. Breaks in coverage ac-
curacy appear as w is close to 0 or 1. This recurring
pattern is discussed in section 6.

As a second experiment, we consider the effect of sam-
ple size on coverage accuracy. This experiment is ev-
erywhere similar to the previous one except for two
modifications: (1) the location parameter not longer
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Figure 4. Coverage accuracy of confidence intervals for the
difference in performance between two classifiers. Strati-
fied sampling is used. Sample size is 1000, and significance
level is α = 10%. Location parameter for positive instances
of first classifier is set to θ = 1.0 (left) and θ = 3.0 (right).
Location parameter for the score of positive instances ac-
cording to the second classifier is θ (top), θ+2.00 (middle)
and θ+4.00 (bottom). Within each plot, correlation factor
is equal to 0.3 (dotted), 0.6 (dash-dotted) and 0.9 (solid).
Coverage proportions for 1,000 simulations and target cov-
erage of 90% (dashed) are plotted against operating con-
ditions.

varies: it is set to θ = 3.0 and (2) the sample size takes
values in {25; 250; 2, 500; 10, 000} instead of being fixed
at 1,000. We shall refer to this experiment as the size
experiment. Simulation results appear in Figure 3. As
the sample size increases, the range of operating con-
dition values with good coverage accuracy widens. For
sample sizes of 25, only a very narrow range of oper-
ating condition values lead to a coverage rate that is
on target.

Our third experiment addresses the modeling of the
difference in performance between two classifiers. The
experiment design is similar to the ones used for the
previous two experiments, i.e. the spread and size ex-
periments. Scores are distributed according to a binor-
mal distribution with scale of 3.00. Confidence inter-
vals are obtained for a significance level of α = 10%.
The location parameters are set as follows: for pos-
itive instances of the first classifier, we consider two
values: θ ∈ {1.0, 3.0}. For negative instances of both
classifiers the parameter is set equal to −θ. Finally, for
positive instances of the second classifier we consider
three values: θ, θ + 2.0 and θ + 4.0. The difference
between the location parameters of the two classifiers’
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Figure 5. Effect of spread between distributions on cover-
age. Full sampling is used. Confidence intervals are derived
for a classifier’s cost. Location parameter for positive in-
stances is set equal to 0.75 (up and left), 1.50 (up and
right), 3.00 (down and left), and 5.00 (down and right).
Sample size is 1,000. Confidence intervals are built with
significance level α = 10%. Coverage proportion (solid)
for 1,000 simulations and target coverage of 90% (dashed)
are plotted against operating conditions.

positive instances distributions, either 0.0, 2.0 or 4.0,
is referred to as the shift parameter. In order to in-
clude some form of dependency between the scores of
the two classifiers, three values of a correlation factor
are considered: ρ ∈ {0.3, 0.6, 0.9}. We shall refer to
this experiment as the difference experiment.

Results appear in Figure 4. As in the previous two
experiments, coverage accuracy breaks for very low or
high total positive rates. Comparing curves on the
left of Figure 4 with those on the right, we see the
spread parameter θ has some impact: higher values
of θ cause the range of total positive rate values with
good coverage accuracy to widen. With θ = 1.0, higher
shift parameter values lead to better coverage accuracy
whereas with θ = 3.0, the shift parameter has the op-
posite, but less pronounced, effect. The correlation
coefficient seems to have very little effect on cover-
age accuracy which is a welcome property: the perfor-
mances of the confidence intervals seem independent
of the level of correlation between the scores of two
models.

Figure 5 and 6 repeat the spread (first) and diffrence
(third) experiments described above, but with the use
of full sampling. Looking at Figure 5, it it clear that
full sampling leads to better coverage accuracy than
stratified sampling for low values of the spread param-
eter (θ = 0.75). In fact, the effect of the spread pa-
rameter seems to have reversed although performance
at θ = 5.00 is better than with θ = 3.0. Finally, Figure
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Figure 6. Coverage accuracy of confidence intervals for the
difference in performance between two classifiers. Full sam-
pling is used. Sample size is 1000, and significance level is
α = 10%. Location parameter for positive instances of
first classifier is set to θ = 1.0 (left) and θ = 3.0 (right).
Location parameter for the score of positive instances ac-
cording to the second classifier is θ (top), θ+2.00 (middle)
and θ+4.00 (bottom). Within each plot, correlation factor
is equal to 0.3 (dotted), 0.6 (dash-dotted) and 0.9 (solid).
Coverage proportions for 1,000 simulations and target cov-
erage of 90% (dashed) are plotted against operating con-
ditions.

6 indicates that both stratified and full sampling per-
form equally well for modeling the difference between
two classifiers’ performances.

6. Limitations of the approach

A first consideration is whether actually performing a
certain number of bootstrap resamplings of the test
set instances would allow us to reach coverage ac-
curacy similar to that obtained in the previous ex-
periments, using exact bootstrap distributions. Let b
be the number of empirical bootstrap samples drawn.
Computational time is dominated by the need to sort
instances, as a preprocessing, for each sample and is
thus within O(b n lnn). Obtaining confidence inter-
vals through empirical bootstrap is therefore both an
order of magnitude slower and less precise than using
the exact bootstrap approach. Obviously, coverage ac-
curacies similar to those presented here could be ob-
tained with a large number of resamples but at high
computational cost.

Another issue is the presence of breaks in coverage
accuracy for extreme values of operating conditions.
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When considering operating conditions close to 0 or 1,
optimal thresholds are likely to lie outside the range
of observed scores of the simulated test sets. For
such thresholds and simulations, variances are either
zero (equations 5,8, and 13) in which case coverage
is impossible or very close to zero (equation 10) in
which case coverage is very unlikely. Coverage accu-
racy breaks appear as the probability that the optimal
threshold is outside the range of observed score values
rises. Also, as is apparent from Figure 1, the expected
value of the cost (thus the cost difference as well) drops
to zero as operating conditions reach extreme values.

Finally, we may wonder how the assumption of opti-
mal threshold selection impacts the results presented
in this paper. Instead of assuming optimal threshold
selection, consider selecting the thresholds, for each
simulation of the previous experiments, based on a
randomly generated finite-sized validation set which
leading to suboptimal thresholds. Of course, expected
costs are, by definition, higher for suboptimal thresh-
olds than for optimal thresholds but what is of interest
here is whether we can develop reliable confidence in-
tervals for the cost, at the chosen thresholds, whether
optimal or not. Given certain operating conditions,
the selected suboptimal threshold follows a distribu-
tion centered around the optimal value so that cover-
age accuracy, given these operating conditions, is the
expected coverage accuracy where the expectation is
taken over the distribution of the suboptimal thresh-
old. This results in a smoothing of the coverage accu-
racy breaks observed in the experiments above.

7. Conclusion

In this paper, we have derived exact bootstrap dis-
tributions for the (normalized) cost of the misclassifi-
cation errors of a classifier’s decisions. We have also
derived exact bootstrap distributions for the difference
between the costs of two classifiers. The first and sec-
ond moments of these distributions have been used
to fit gaussian distributions and thus approximate the
true exact bootstrap distributions. From these approx-
imated distributions, we were able to obtain confidence
intervals for the variables of interest. Table 1 sum-
marizes these results. All confidence intervals can be
derived in O(n lnn) time.

Results obtained in this paper are excellent but limited
to a few simulations. In a few cases, severe breaks in
coverage accuracy appear when operating conditions
values close to 0 or 1. These breaks can be avoided if
cost distribution computations are limited to thresh-
olds within the range of sampled scores. Another pos-
sibility is to extrapolate score distributions beyond ob-

Sampling Variable Equations Figures
CN

t (4), (5) 2,3Stratified
∆CN

t1,t2 (7), (8) 4
CN

t (9), (10) 5Full
∆CN

t1,t2 (12), (13) 6

Table 1. Summary of the paper’s main results.

served values, an area for future work.
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Abstract

In this study we introduce a novel algorithm for
learning a polyhedron to describe the target class.
The proposed approach takes advantage of the
limited subclass information made available for
the negative samples and jointly optimizes mul-
tiple hyperplane classifiers each of which is de-
signed to classify positive samples from a sub-
class of the negative samples. The flat faces
of the polyhedron provides robustness whereas
multiple faces contributes to the flexibility re-
quired to deal with complex datasets. Apart from
improving the prediction accuracy of the sys-
tem, the proposed polyhedral classifier also pro-
vides run-time speedups as a by-product when
executed in a cascaded framework in real-time.
We evaluate the performance of the proposed
technique on a real-world Colon dataset both in
terms of prediction accuracy and online execu-
tion speed.

1. Problem Specification

In target detection the objective is to determine whether
or not a given example is from a target class. Obtaining
ground truth for the target class usually involves a tedious
process of manual labeling. If samples belonging to the tar-
get class are labeled as positive, then negative class covers
everything else. Due to the nature of the problem and the
labeling process, the number of samples representing the
target class is usually scarce whereas abundant data is po-
tentially available to represent the negative class. In other
words the data is highly unbalanced between classes favor-

Appearing in Proceedings of the 25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
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ing the negative class.

In this process the actual labels of the counter-examples are
ignored and the negative class is formed by pooling sam-
ples of potentially different characteristics together within
a single class. In other words samples of the negative class
do not cluster well since they can belong to different sub-
classes.

One promising approach that has been heavily explored in
this domain is the one-class classifiers. One-class classi-
fication simply omits the negative class (if it exists) and
aims to learn a model with the positive examples only. Sev-
eral techniques have been proposed in this direction. Sup-
port vector domain description technique aims to fit a tight
hyper-sphere in the feature space to include most of the
positive training samples and reject outliers (Tax & Duin,
1999). In this approach the nonlinearity of the data can
be addressed implicitly through the kernel evaluation of
the technique. One-class SVM generates an artificial point
through kernel transformation for representing the negative
class and then using relaxation parameters it aims to sepa-
rate the image of the one-class from the origin (Scholkopf
et al., 1999). Compression Neural Network constructs a
three-layer feed-forward neural network and trains this net-
work with a standard back-propogation algorithm to learn
the identity function on the positive examples (Manevitz &
Yousef, 2001).

Discriminative techiques such as Support Vector Machines
(Vapnik, 1995), Kernel Fisher Discriminant (Mika et al.,
2000), Relevance Vector Machines (Tipping, 2000) to
name few are also used in this domain. These techniques
deal with the unbalanced nature of the data by assigning
different cost factors to the negative and positive samples
in the objective function. The kernel evaluation of these
techniques yields nonlinear decision boundaries suitable
for classifying multi-mode data from the target class.

In this study we aim to learn a polyhedron in the feature
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space to describe the positive training samples. Polyhedral
decision boundaries such as boundaries that are drawn par-
allel to the axes of the feature space as in decision trees
or skewed decision boundaries (Murth et al., 1994) have
existed for quite some time. Our approach is similar in
some sense to the Support vector domain description tech-
nique but there are two major differences. First instead of
a hypersphere, a polyhedron is used to fit positive training
samples. Second, positive and negative samples are used
together in this process. The target polyhedron is learned
through joint optimization of multiple hyperplane classi-
fiers, each of which is designed to classify positive samples
from a subgroup of negative samples. The number of such
hyperplane classifiers is equivalent to the number of sub-
classes identified in the negative class. The proposed tech-
nique requires labeling of a small portion of the negative
samples to collect training data for the subclasses that exist
in the negative class.

Our approach does not intend to precisely identify each and
every subclass in the dataset. By manual labeling we aim
to identify major subclasses. Subclasses with similar char-
acteristics or with only few labeled samples can be grouped
together. During annotation one may also encounter posi-
tive look alikes, i.e. samples do not appear as negative but
not yet confirmed as positive. A new subclass can be intro-
duced for these samples.

In Figure 1 the proposed algorithm is demonstrated with a
toy example. Positive samples are depicted by the dark cir-
cles in the middle, whereas negative samples are depicted
with the numbers with each number corresponding to a dif-
ferent subclass. All eight classifiers are optimized simulta-
neously and polygon shown with dark lines is obtained as a
decision boundary that classifies positive samples from the
negative ones.

Kernel-based classifiers have the capacity to learn higly
nonlinear decision boundaries allowing great flexibility.
However it is well-known that in real-world applications
where feature noise and redundancy is a problem, too much
capacity usually hurts the generalizability of a classifier by
enabling the classifier to easily overfit the training data.
The proposed approach is capable of addressing nonlinear-
ities by fitting the positive class through a series of linear
hyperplanes, all of which are optimized jointly to form a
polyhedral decision boundary. The flat faces provides ro-
bustness whereas multiple faces contributes to the flexibil-
ity.

The problem described above is commonly encountered in
areas like content-base image retrieval (Chen et al., 2001),
document classification (Manevitz & Yousef, 2001) and
speech recognition (Brew et al., 2007). A similar scheme is
also observed in Computer Aided Detection (CAD). In this
study we explore the proposed idea for a CAD application,
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Figure 1. A Toy example demonstrating the proposed algorithm.
Dark circles depicting positive samples, numbers representing
negative samples. The decision boundary is shown with the solid
lines.

namely Colon CAD.

2. Hyperplane Classifiers

We are given a training dataset {(xi, yi)}
`

i=1, where xi ∈
<d are input variables and yi ∈ {−1, 1} are class labels.
We consider a class of models of the form f(x) = αT x,
with the sign of f(x) predicting the label associated with
the point x. An hyperplane classifier with hinge loss can be
designed by minimizing the following cost function.

J (α) = Φ(α) +
∑̀

i=1

wi

(

1− αT yixi

)

+
(1)

where the function Φ : <(d) ⇒ < is a regulariza-
tion function or regularizer on the hyperplane coefficients
and (k)+ = max(0, k) represents the hinge loss, and
{wi : wi ≥ 0, ∀i} is the weight preassigned to the loss as-
sociated with xi. For balanced data usually wi = w, but for
unbalanced data it is a common practice to weight positive
and negative classes differently, i.e. {wi = w+, ∀i ∈ C+}
and {wi = w−, ∀i ∈ C−} where C+ and C− are the cor-
responding sets of indices for the positive and negative
classes respectively.

The function
(

1− αT yixi

)

+
is a convex function. The

weighted sum of convex functions is also convex. There-
fore for a convex function Φ(α) (1) is also convex. The
problem in (1) can be formulated as a mathematical pro-
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gramming problem as follows:

min
(α,ξ)∈Rd+`

Φ(α) +
∑`

i=1 wiξi

s.t. ξi ≥ 1− αT yixi

ξi ≥ 0, ∀i

(2)

For Φ(α) = ‖α‖22, where ‖.‖2 is the 2-norm, (2) results
in the conventional Quadratic-Programming-SVM, and for
Φ(α) = |α|, where |.| is the 1-norm it yields the sparse
Linear-Programming-SVM.

3. Polyhedral Decision Boundaries

3.1. Training a Classifier with an AND Structure

We aim to optimize the following cost function

J (α1, . . . αK) =

K
∑

k=1

Φk(αk) (3)

+ ν1

K
∑

k=1

∑

i∈C
−

k

(eik)+

+ ν2

∑

i∈C+

max (0, ei1, . . . , eiK)

where eik = 1+αT
k xik and (eik)+ defines the hinge loss of

the i-th training example {(xik , yik)} in subclass-k induced
by classifier k. C−

k is the set of indices of the negative
samples in subclass-k. Note that classifier k is designed to
classify positive examples from the negative examples in
the subclass-k. The first term in (3) is a summation of the
regularizers for each of the classifiers in the cascade and the
second and third terms accounts for the losses induced by
the negative and positive samples respectively. Unlike (1)
the loss function here is different for the positive samples.
The loss induced by a positive sample i, i ∈ C+ is zero
only if ∀k : 1−αT

k xi ≤ 0, which corresponds to the “AND”
operation. The problem (3) can be formulated as follows

min
(α,ξ)∈RKd+`

∑K

k=1 Φk(αk) + ν1

∑K

k=1

∑

i∈C−

k

ξik

+ ν2

∑

i∈C+ ξi

s.t. ξik ≥ 1 + αT
k xik

ξik ≥ 0
ξi ≥ 1− αT

k xi

ξi ≥ 0
(4)

where the first two constraints are imposed for ∀i ∈ C−

k ,
k = 1, ..., K and the last two constraints are imposed for
∀i ∈ C+, k = 1, ..., K. Note that for a convex function
Φ(α) the problem in (4) is convex. In a nutshell we de-
signed K classifiers, one for each of the binary classifica-
tion problems, i.e. positive class vs subclass-k of the nega-
tive class. Then we construct a learning algorithm to jointly

optimize these classifiers such that the cost induced by a
positive sample is zero if and only if all of the K classifiers
classifies this sample correctly, i.e. ∀k : 1 − αT

k xi ≤ 0.
Since each negative sample is only used once for training
the classifier k, the cost induced for a negative sample is
zero as long as it is classified correctly by the correspond-
ing classifier k, i.e. 1+ αT

k xik ≤ 0. Each classifier can use
an arbitrary subset of the original feature set. This provides
run time advantages in real-time when the classification ar-
chitecture is implemented in a cascaded framework. This
will be explained later in the paper. For now to keep the no-
tation clean and tractable we assumed each classifier uses
the entire feature set in the formulation (4) above.

3.2. Training a Classifier with an AND-OR Structure

The AND algorithm is developed with the assumption that
the negative class is fully labeled. That is to say, the sub-
class membership of each of the negative sample is known
apriori. For most real world applications this is not a very
realistic scenario as it is almost impractical to label all of
the negative samples due to the time limitations. However
one can label a small subset of the negative class to discover
different type of subclasses as well as pool the training data
for each subgroup. To accommodate for the unlabeled sam-
ples we modify the equation (3) for the unlabeled negative
samples as follows.

J (α1, . . . αK) =
K

∑

k=1

Φk(αk)

+ ν1

K
∑

k=1

∑

i∈C
−

k

(eik)+

+ ν1

∑

i∈Ć−

K
∏

k=1

(eik)+

+ ν2

∑

i∈C+

max (0, ei1, . . . , eiK)

where Ć− is the set of indices of the unlabeled negative
samples. The first term in (5) requires a labeled sample
from a subclass-k to be correctly classified by the classi-
fier k. In other words if a sample is known to be a mem-
ber of subclass-k, ideally it should be classified as negative
by the corresponding classifier k. On the other hand the
second term requires an unlabeled negative sample to be
correctly classified by any of the classifiers. As long as an
unlabeled sample is classified as negative it does not matter
which classifier does it, i.e. ∃k : 1 − αT

k xik ≤ 0 which
corresponds to a “OR” operation. The third term requires
a positive sample is classified as positive by all of the K
classifiers, i.e. ∀k : 1 − αT

k xi ≤ 0, which corresponds to
the “AND” operation.
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Due to the product operation in the objective function for
unlabeled samples, unlike equation (3), equation (5) can
not be cast as a convex programming problem. In the next
section we propose an efficient alternating optimization al-
gorithm to solve this problem.

4. Cyclic Optimization of AND-OR Algorithm

We develop an iterative algorithm which, at each iteration,
carries out K steps, each aiming to optimize one classifier
at a time. This type of algorithms is usually called alternat-
ing or cyclic optimization approaches. At any iteration, we
fix all of the classifiers but the classifier k. The fixed terms
have no effect on the optimization of the problem once they
are fixed. Hence solving (5) is equivalent to solving the fol-
lowing problem by dropping the fixed terms in (5):

J (αk) = Φk(αk)

+ ν1

∑

i∈C
−

k

(eik)+

+ ν1

∑

i∈Ć−

wi (eik)+

+ ν2

∑

i∈C+

max (0, ei1, . . . , eik, . . . , eiK)

where wi =
∏K

k=1,k 6=k (eik)+. This can be cast into a
constrained problem as follows

min
(αk,ξ)∈Rd+`

k
+`+

Φk(αk) + ν1

∑

i∈C
−

k

ξi

+ ν1

∑

i∈Ć−
wiξi

+ ν2

∑

i∈C+ ξi

s.t. ξi ≥ eik, ∀i

ξi ≥ 0, ∀i ∈ Ć− ∪ C−

k

ξi ≥ γi, ∀i ∈ C+

(5)
where γi = max

(

0, ei1, . . . , ei(k−1), ei(k+1), . . . , eiK

)

and `k is the number of samples in subclass-k. The sub-
problem in (5) is a convex problem and differs from the
problem in (2) by two small changes. First the weight as-
signed to the loss induced by the negative samples is now
adjusted by the term wi =

∏K

k=1,k 6=k (eik)+. This term
multiplies out to zero for negative samples correctly clas-
sified by one of the other classifiers. For these samples
eik < 0 and ξi = 0 making the constraints on ξi in (5) re-
dundant. As a result there is no need to include these sam-
ples when training for the classifier-k, which yields signif-
icant computational advantages. Second the lower bound
for ξ is now max

(

0, ei1, . . . , ei(k−1), ei(k+1), . . . , eiK

)

.
This implies that if any of the classifiers in the cascade
misclassifies xik the lower bound on ξ is no longer zero
relaxing the constraint on xik .

4.1. An Algorithm for AND-OR Learning

(0) Initialize eik in (5) such that all candidates are classi-
fied as positive, i.e. 100% sensitivity, 0% specificity.
Set counter c = 1.

(i) Fix all the classifiers in the cascade except classi-
fier k and solve (5) for αc

k using the training dataset
{(

xk
i , yi

)}`

i=1
. Repeat this for all k = 1, . . . , K.

(ii) Compute Jc(α1, . . . , αK) by replacing αc−1
k by αc

k in
(5), for all k = 1, . . . , K.

(iii) Stop if Jc − Jc−1 is less than some desired tolerance.
Else replace αc−1

k by αc
k for all k = 1, . . . , K, c by

c + 1 and go to step i.

The initial objective function in (5) is neither convex nor
twice differentiable due to the product of the hinge loss
term. Therefore the convergence theorem introduced in
(Bezdek & Hathaway, 2003) for cyclic optimization does
not hold here. On the other hand the subproblem in (5)
is convex and hence at each iteration J c <= Jc−1 holds
and also (5) is bounded below. These guarantee conver-
gence of the algorithm from any initial point to the set of
suboptimal solutions. The solution is suboptimal if the ob-
jective function J can not be further improved following
any directions. For a more detailed discussion on this topic
please see (Dundar & Bi, 2007).

An unseen sample x can be classified as positive if
max(1 − αT

1 x, . . . , 1− αT
Kx) ≤ τ and as negative if vice

versa for a threshold τ . The receiver operating character-
istics (ROC) curve can be plotted by varying the value of
τ .

5. Cascade Design for Run-Time Speedups

In Figure 2 a cascade classification scheme is shown. The
key insight here is to reduce the computation time and
speed-up online learning. This is achieved by designing
simpler classifiers in the earlier stages of the cascade to re-
ject as many negative candidates as possible before calling
upon classifiers with more features to further reduce the
false positive rate. A positive result from the first classifier
activates the second classifier and a positive result from the
second classifier activates the third classifier, and so on (Vi-
ola & Jones., 2004). A negative outcome for a candidate at
any stage in the cascade leads to an immediate rejection
of that candidate. Under this scenario Tk−1 = Tk ∪ Fk

and T0 = TK ∪
⋃K

1 Fk where Tk and Fk are the sets of
candidates labeled as positive and negative respectively by
classifier k.

The proposed algorithm learns a polyhedron through
jointly optimizing a series of sparse linear classifiers. Since
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Figure 2. A general cascade framework used for online classifica-
tion

the order these classifiers are executed in real-time does
not matter in terms of the overall prediction accuracy of
the system, we can arrange the execution sequence of these
classifiers in a way to optimize the run-time. Let Γk be
the set of indices of nonzero coefficients for classifier-k, ti

be the time required to compute feature i for a given candi-
date, i = 1, . . . , d and nk−1 is the number of samples in set
Tk−1, then the total time required for the online execution
of the algorithm is

T =

K
∑

k=1

nk−1

∑

i∈(Γk−1\

S

k−2

i=0
Γi)

ti (6)

The sets Γk are learned during offline training of the poly-
hedral classifier and are fixed for online execution. How-
ever the sets Tk is a function of the classifier 1 through
classifier k-1. Therefore this is a combinatorial optimiza-
tion problem with K! different outcomes, where K! is the
factorial of K. For small K one can try the exhaustive
number of orderings between classifier to find the optimum
sequence. However when K is large we can start with the
most sparse classifier, i.e. the linear classifier with the least
number of nonzero coefficients and choose the next classi-
fier as the one that will require computing least number of
additional features.

6. Computer Aided Detection

The goal of a Computer Aided Detection (CAD) system is
to detect potentially malignant tumors and lesions in med-
ical images (CT scans, X-ray, MRI etc). In an almost uni-
versal paradigm for CAD algorithms, this problem is ad-
dressed by a 3 stage system: A typical CAD system con-
sists of a candidate generation phase, a feature extraction
module and a classifier. The task of the candidate gener-
ation module is to create a list of potential polyps with a
high sensitivity but low specificity. Features are then ex-

tracted for each candidate and eventually passed to a classi-
fier where each candidate is labeled as normal or diseased.

In order to train a CAD system, a set of medical images
(eg CT scans, MRI, X-ray etc) is collected from archives of
community hospitals that routinely screen patients, e.g. for
colon cancer. These medical images are then read by ex-
pert radiologists; the regions that they consider unhealthy
are marked as ground-truth in the images. After the data
collection stage, a CAD algorithm is designed to learn to
diagnose images based on the expert opinions of the radi-
ologists on the database of training images. First, domain
knowledge engineering is employed to (a) identify all po-
tentially suspicious regions in a candidate generation stage,
and (b) to describe each such region quantitatively using a
set of medically relevant features based on for example,
texture, shape, intensity and contrast. Then, a classifier is
trained using the features computed for each candidate in
the training data and the corresponding ground truth.

When training a classifier for a CAD system for detection
of colonic polyps, the only information that is usually avail-
able is the location of polyps, since radiologists only mark
unhealthy regions when they are reading cases. This, of
course, is very important for training a CAD system. But
for all other structures that are picked up during candidate
generation phase that are not pointing to a known lesion
there is no other information available and they all have to
be treated equally as negative examples. This introduces
two complications. First all the negative candidates are
clustered in one group although variation in size and shape
among them is very big and valuable information about
those candidates, e.g. type category, is not used. Second,
radiologists only mark lesions of clinical importance, i.e.
polyps greater than 6mm in colon. It is also possible that
some lesions are overlooked during clinical evaluation. So
potentially there are unidentified lesions in our dataset with
no matching ground truth. If the candidate generation al-
gorithm generates candidates for these lesions then these
candidates are also marked as negative together with all the
other candidates with no corresponding radiologist marks.
In other words negative class may also contain unidentified
samples of the target class.

In the rest of this section we will discuss some motivation
for the proposed algorithm within the scope of a CAD sys-
tem designed to detect colorectal cancer. Colorectal can-
cer is the second leading cause of cancer-related death in
the western world (Jemal et al., 2004). Early detection
of polyps through colorectal screening can help to prevent
colon cancer by removing the polyps before they can turn
malignant.

Typical examples of different polyp morphologies are
given in Figure 3.
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The commonly encountered false positive types in colon
are fold, stool, tagged stool, meniscus, illeocecal valve, rec-
tum etc. Some of these are shown in Figure 4. Ideally we
can label all of the negative candidates in the training data
and use the proposed AND algorithm in (4) to jointly train
classifiers one for each of the subclasses of negative sam-
ples. However an exhaustive annotation of all negative ex-
amples is not feasible. Therefore we first select a very small
subset of the negative candidates and annotate them manu-
ally through visual inspection. Then this set together with
the positive samples and the remaining negative samples,
i.e. unlabeled samples is used in the proposed AND−OR
framework to train the classifiers.

7. Experimental Results

We validate the proposed polyhedral classifier (polyhedral)
with respect to its generalization performance and run-time
efficiency. We compared our algorithm to a Support Vector
Domain Description technique (svdd) (Tax & Duin, 1999),
nonlinear SVM with Radial Basis Function (rbf), and one-
norm SVM (sparse). To achieve sparseness we set the
Φk(αk) = |αk| for the polyhedral classifier.

7.1. Data and Experimental Settings

The database of high-resolution CT images used in this
study were obtained from two different sites across US. The
370 patients were randomly partitioned into two groups:
training (n=167) and test (n=199). The test group was se-
questered and only used to evaluate the performance of the
final system.

Training Data Patient and Polyp Info: There were 167 pa-
tients with 316 volumes. The candidate generation (CG) al-
gorithm identifies a total of 226 polyps at the volume level
across all sizes while generating a total of 64890 candi-
dates or an average of 205 false positives per volume. Test-
ing Data Patient and Polyp Info: There were 199 patients
with 385 volumes. The candidate generation (CG) algo-
rithm identifies a total of 245 polyps at the volume level
across all sizes while generating an average of 75946 sam-
ples or 194 false positives per volume (fp/vol).

A total of 98 features are extracted to capture shape and
intensity characteristics of each candidate. The proposed
algorithm requires a small set of false positives anno-
tated. Rather than labeling false positives randomly across
a dataset with 64890 samples we used the output of the
most recent prototype classifier for labeling. This classi-
fier is trained using a naive SVM and optimized for the 0-5
fp/vol range. This way we only focus on the most challeng-
ing false positives. This classifier marks a total of 1432
candidates as positive. Out of these candidates 1249 are
false positives. A small subset of the volumes from this set

is chosen for labeling and a total of 177 false positives (out
of 1249) are annotated and ten different subcategories are
identified.

7.2. Performance Evaluation

The classifiers are trained with the combination of 1249
false positives generated by the prototype classifier and all
the polyps the candidade generation detects in the training
data. A total of 1560 candidates are used for training. Clas-
sifiers are evaluated on the 1920 candidates the prototype
classifier marked as positive in the testing data. The corre-
sponding Receiver Operating Characteristics (ROC) curves
for each algorithm is plotted in Figure 5.

The classifier parameters are estimated using a 10-fold pa-
tient cross validation from a set of discrete values using the
training data. These are namely the width of the kernel
(γ=[0.01 0.03 0.05 0.1 0.3 0.5 1 5]) for rbf, svdd, the cost
factor (c=[5 10 15 20 25 50 75 100]) for rbf, polyhedral,
sparse and the ν=[0.001 0.005 0.01 0.05 0.1 0.2] parame-
ter for svdd. The desired tolerance value for Algorithm 4.1
is set to 0.001. The algorithm converged in less than 10
iterations.

As shown in Figure 5 the ROC curve corresponding to the
proposed polyhedral classifier is consistently dominating
all the other curves. The curve associated with the sparse
SVM is almost linear implying a random behavior. This is
not surprising to a greater extent as both the training and
testing data sets used in this experiment are derived from
the initial datasets via a linear SVM classifier. In other
words the datasets are composed of samples marked as pos-
itive by the linear SVM, a significant portion of which are
false positives. The one-class SVM is only slightly better
than the sparse SVM. Even though the rbf SVM is the best
of the three competitor algorithms, the difference in sen-
sitivity between the rbf SVM and the proposed polyhedral
classifier can be as high as 5% ( 10 polyps) in favor of the
proposed algorithm.

7.3. Run-time Evaluation

As stated earlier in the paper, run-time speedups can be
achieved as a by-product of the proposed algorithm when
the real-time classification is implemented in a cascaded
framework as in Figure 2. For a more detailed discussion
of cascade classifiers in the CAD domain we refer the in-
terested readers to these recent works (Dundar & Bi, 2007),
(Bi et al., 2006).

To avoid any delays in the workflow of a physician the
CAD results should be ready by the time physician com-
pletes his own review of the case. Therefore there is a run-
time requirement a CAD system needs to satisfy. Among
the stages involved during online processing of a volume,
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Figure 3. Polyp morphologies (from left to right): Sessile, pedunculated, and flat polyp

Figure 4. Negative examples (from left to right): stool, fold, noisy data and rectal tube
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Figure 5. ROC curves obtained by the four classifiers on the test
data.

feature computation is by far the most computational stage
of online processing. A cascaded framework for executing
the classifier in the order of increasing feature complex-
ity may bring significant computational advantages in this
case. In this framework the cascade is designed so as to
execute classifiers with less number of features earlier in
the sequence. This way the additional features required for
the succeeding classifiers will only be computed on the re-
maining candidates, i.e. candidates marked as positive by
all of the previous classifiers.

In this section we evaluate the speedups achieved by the
proposed classifier. We set the operating point at 60%
specificity, around 2.2fp/vol. At this specificity the pro-
posed polyhedral classifier yields 85% sensitivity (see Fig-
ure 5). Assuming each feature takes on the average t sec-
onds per candidate to compute we came up with the table
in 1. This table shows the aggregate number of features

used, feature computation time and number of candidates
rejected at each stage in the sequence.

Feature computation for the proposed approach on average
takes 452t secs per volume. On the other hand for svdd and
rbf, which require computation of all the features at once,
this stage takes 595t secs. This represents a roughly 25%
improvement in run-time execution speed of the system.
For the one-norm SVM sparse, this time is 437t secs. How-
ever the corresponding sensitivity at this operating point for
one-norm SVM is around 40% vs 85% for the proposed
technique.

8. Conclusions

In this study we have presented a methodology to take ad-
vantage of the subclass information information available
in the negative class to achieve a more robust description
of the target class. The subclass information which is ne-
glected in conventional binary classifiers provides a bet-
ter insight of the dataset and when incorporated into the
learning mechanism acts as an implicit regularizer on the
classifier coefficients. We believe this is an important con-
tribution for applications where feature noise is prevalent.
Highly nonlinear kernel classifiers provides flexibility for
modeling complex data but they tend to overfit when there
are too many redundant and irrelevant features in the data.
Linear classifiers on the other hand do not have enough
capacity to model complex data but they are more robust
when there is noise. The polyhedral classifier is proposed
as a midway solution. The linear faces of the polyhedron
achieves robustness whereas multiple faces provides flexi-
bility.

The order in which the classifiers are executed during on-
line execution does not matter. Even though finding the
globally optimum sequence is an open research problem
for a large number of subclasses, the ordering of the clas-
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sequence order 1 2 3 4 5 6 7 8 9
aggregate number 48 67 73 75 76 78 81 84 87
of features
aggregate number 1.08 2.37 2.57 2.82 2.90 2.93 3.06 3.07 3.40
of rejected candidates
(avg. per volume)
aggregate feature 291 386 408 414 418 424 434 443 452
computation time in t
(avg. per volume)

Table 1. Run-time Results obtained for the Polyhedral classifier. The classifiers are executed in the order of increasing number of features
required by each classifier.

sifiers can be arranged in a cascaded manner to reduce the
total run-time of the system.
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Abstract

When the transition probabilities and re-
wards of a Markov Decision Process (MDP)
are known, an agent can obtain the optimal
policy without any interaction with the envi-
ronment. However, exact transition probabil-
ities are difficult for experts to specify. One
option left to an agent is a long and poten-
tially costly exploration of the environment.
In this paper, we propose another alternative:
given initial (possibly inaccurate) specifica-
tion of the MDP, the agent determines the
sensitivity of the optimal policy to changes in
transitions and rewards. It then focuses its
exploration on the regions of space to which
the optimal policy is most sensitive. We show
that the proposed exploration strategy per-
forms well on several control and planning
problems.

1. Introduction

When the transition probabilities and rewards of an
MDP are known, the optimal policy can be computed
offline. However, it is unrealistic to expect a domain
expert to accurately specify thousands of MDP pa-
rameters. The optimal policy computed offline in an
imperfectly modeled world may turn out to be subop-
timal when executed in the actual environment. To
fix this problem in practice, both rewards and transi-
tion probabilities are tweaked by domain experts until
the desired performance is achieved. An alternative
approach is to allow the agent to explore the world
in a model-free fashion using reinforcement learning
(RL). However, reinforcement learning in the actual
environment is time-consuming, expensive, and some-
times dangerous (Abbeel and Ng (2005), for example,

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

describe a helicopter crash which occurred during an
overly aggressive exploration).

In this work, we introduce an approach called active re-
inforcement learning which combines the strengths of
offline planning and online exploration. In particular,
our framework allows domain experts to specify pos-
sibly inaccurate models of the world offline. However,
instead of using this model for planning, our algorithm
uses it as a blueprint for exploration. Our approach
is based on the observation that, while all of the tran-
sition probabilities and rewards in the model may be
misspecified, it is not important to know all of them to
determine the optimal policy. Consider a surveillance
helicopter flying agent. Does it make a difference if it
crashes with probability 0.9 or 0.95 when it flies close
to the ground? It seems unlikely that the optimal pol-
icy would be very sensitive to this value. However,
the probability of the agent taking a good photograph
of its target from a given viewing angle is extremely
important. Therefore, the primary goal of the agent’s
experimentation, given a description of the problem,
should be to determine the probabilities of capturing
a photo of the target as opposed to trying to determine
the exact probability of crashing. Active reinforcement
learning enables this type of exploration. It uses sen-
sitivity analysis to determine how the optimal policy
in the expert-specified MDP is affected by changes in
transition probabilities and rewards of individual ac-
tions. This analysis guides the exploration process by
forcing the agent to sample the most sensitive actions
first. We will present experimental results demonstrat-
ing the effectiveness of active RL. In addition, we will
show that, while our algorithm is approximate, it pro-
duces near-optimal results in polynomial time for a
special class of MDPs.

2. Related Work

Many strategies have been proposed to address the dif-
ficulty of specifying MDPs offline. Givan’s bounded-
parameter MDP framework (Givan et al., 2000) allows
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the designer to specify uncertainty intervals around
MDP’s transition probabilities and rewards. The
agent then finds the best policy in a game against ad-
versarial nature which picks the worst possible world
in which to evaluate it. (Alternative specifications of
prior uncertainty in the same framework are given in
Nilim and Ghaoui (2003).) While intuitively appeal-
ing, this approach may pick an overly conservative pol-
icy which is far from optimal for a given environment.
Moreover, it places an excessive demand on the de-
signer to quantify not only the prior model, but also
his uncertainty about its transition probabilities.

In the online RL setting, there are plenty of reinforce-
ment learning approaches that use optimistic explo-
ration in face of uncertainty, such as E3 (Kearns &
Singh, 2002), R − MAX (Brafman & Tennenholtz,
2002), and model-based interval exploration (Strehl &
Littman, 2005). The main idea of these algorithms is
to explore the actions the agent has experienced the
fewest number of times in the past. This criterion does
not apply to prior knowledge. In this paper, we focus
on the problem of determining which states are worth
exploring based solely on the prior MDP specification.

An approach similar in spirit to ours is Bayesian re-
inforcement learning (Dearden et al., 1999), which
imposes a prior distribution over possible worlds and
updates it based on interactions with the environment.
However, this approach makes use of unrealistic as-
sumptions on the shapes of probability distributions
and approximate sampling to ensure tractability. The
largest problem to which it was applied is two orders of
magnitude smaller than the problems we solve in this
work. In addition, we present an approximate version
of our algorithm which is able to handle much larger
(possibly continuous) state/action spaces.

The idea of using a prior MDP specification to re-
duce the amount of exploration in RL has also been
explored by Abbeel et al. (2006). However, they
only handle deterministic environments and their ex-
ploration is driven by the perceived optimal policy, not
sensitivity analysis.

3. Preliminaries

The Markov decision process is defined by a tuple
(S,A, T,Next,R, α), where S = {1, .., |S|} is a fi-
nite set of states, A is a finite set of actions, R(s, a)
is a reward function, T (s′|s, a) is a transition prob-
ability function, α ∈ (0, 1) is the discount factor.
Next(s, a) = {s′ : T (s′|s, a) > 0} defines a set
of states reachable in one step with nonzero prob-
ability after taking action a ∈ A in a state s ∈

S. Since transition probabilities of all the states in
Next(s, a) are constrained to lie in the probability
simplex ∆(Next(s, a)), T (·|s, a) is a function with
|Next(s, a)| − 1 degrees of freedom. To make this ex-
plicit, let Next(s, a) denote an arbitrary state such
that T (Next(s, a)|s, a) = 1 −∑

s′∈Next(s,a) T (s′|s, a),

where Next(s, a) = Next(s, a)\Next(s, a) is the set of
states in Next(s, a) other than the state Next(s, a),
and let T |s, a denote the restriction of T (·|s, a) to
Next(s, a).

Let π(s) define a deterministic policy which maps
states to actions. Let Tπ(s, s′) = T (s′|s, π(s)) be the
|S| × |S| transition probability matrix and Rπ(s) =
R(s, π(s)) be the |S| × 1 reward vector under π. Then
the value matrix V π(T,R) is given by the Bellman
equation V π = αTπV π +Rπ. V π can be computed ef-
ficiently via iterative application of the Bellman equa-
tion, known as policy evaluation.

The utility of a policy π, Uπ(T,R), is given
by the expected discounted rewards: Uπ(T,R) =
Es0∼DV π(s0;T,R), with initial state s0 drawn from
the distribution D. The utility of a policy explicitly de-
pends on the transition and reward model of the MDP.

We need one more piece of notation to describe the
algorithm. We want to be able to take a tran-
sition probability function T and replace the tran-
sition probabilities T (·|ŝ, â) of a fixed state/action
pair ŝ, â with a given probability distribution X ∈
∆(Next(ŝ, â)), leaving the rest of the probabilities the
same. To do this, we define the replacement function

Wŝ,â[T,X](s′|s, a) ,

{
X(s′), if s, a = ŝ, â

T (s′|s, a), otherwise
.

Similarly, the function Yŝ,â[R, r](s, a) , {r if s, a =
ŝ, â and R(s, a) otherwise} replaces the reward of the
chosen state/action pair with r.

4. Active RL Algorithm

In this section, we give a general overview of the active
reinforcement learning algorithm.

Let T0, R0 be the user-supplied model of transition
probabilities and rewards for an MDP. We can use
Taylor’s approximation to model the local sensitiv-
ity of Uπ(T0, R0) as the transition probabilities X ∈
∆(Next(ŝ, â)) are perturbed around some specified
value T1 for a single state/action pair ŝ, â:

Ûπ
T1

(Wŝ,â[T0,X]) ≈ Uπ(Wŝ,â[T0,T1], R0)+

∇X|ŝ,âUπ(Wŝ,â[T0,T1], R0)(X|ŝ, â−T1|ŝ, â)

Transition probabilities for all the actions other than
the action â in state ŝ are held fixed at the values
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defined by the user-supplied model T0. Similarly, the
rewards of all the actions are held fixed at the user-
supplied values R0. Sensitivity of the utility function
to changes in rewards R(s, a) of individual actions is
modeled in an analogous fashion.

The above approximation fixes the transition probabil-
ities for all the actions except one, and approximates
the utility of the best policy around any specified point
T1 in the transition probability simplex of that one ac-
tion. In this section, we assume that it is possible to
compute this Taylor’s expansion efficiently and explain
the main idea of our algorithm, deferring the details
of computing the gradient to Section 5.

Taylor’s approximation makes it possible to determine
how the payoff from following a fixed policy is affected
by the changes in the MDP parameters. However, even
large changes in payoffs do not necessarily mean that
the agent is acting suboptimally. An extreme illus-
tration of this is a gridworld agent who is rewarded
only upon getting to the goal state. Even if the agent
is wrong about the magnitude of the reward, its op-
timal policy remains the same: always move towards
the goal. Thus, an agent could be completely wrong
about the environment and still act optimally. The key
goal of the sensitivity analysis is to determine how the
optimal policy changes in response to the changes in
the transition probabilities and rewards. One way to
measure this sensitivity is by asking the question: how
much do transition probabilities/rewards of a given ac-
tion have to change before the currently optimal policy
becomes suboptimal?

To make this question precise, let us first focus on
the sensitivity to transition probabilities. We will use
ΠT1;ŝ,â = arg maxπ Uπ(Wŝ,â[T0,T1], R0) to denote the
optimal policy in the MDP in which all transitions ex-
cept for those of action â in state ŝ are held fixed at T0,
and transitions of ŝ, â are given by T1. Let C = {T :
UΠT0;ŝ,â(Wŝ,â[T0,T], R0) ≥ UΠT ;ŝ,â(Wŝ,â[T0,T], R0)}
define a region in the transition probability space in
which the optimal policy ΠT0

for the user-specified
MDP dominates every other policy. The goal of sensi-
tivity analysis is to find the radius of the largest ball
which we can position at T0 and expand without leav-
ing the confines of C along the dimensions T (·|ŝ, â)
corresponding to the transitions for a given action â

in ŝ. The larger the ball, the more robust the optimal
policy is to the changes in the transition probabili-
ties of the given action â. However, it is not obvious
how to compute this quantity exactly. Instead, we
approximate it via a variant of Newton’s root-finding
method which starts out at some point T ′

0 in the tran-
sition probability space outside of C and converges to a

Figure 1. Newton’s method for sensitivity analysis of
MDPs. The X-axis is the probability of transition to s′ for
a single chosen ŝ, â pair that leads to one of two states s′ or
s′′ (the probability of transition to s′′ is 1−X). The utili-
ties of policies are linear functions of X. Function UΠT (X)
is the utility of the policy which is optimal when X = T . It
is given by the upper envelope of the set of all value func-
tions. C is the (blue) region where the optimal policy at
T0 (red line) dominates every other policy. The algorithm
starts at T ′

0 and converges to T ′
2 on the boundary of C.

point on the boundary of C. The method is illustrated
in Figure 1. Each application of the method consists
of starting out at some point T ′

0, replacing the utility

function U
ΠT ′

0
;ŝ,â(Wŝ,â[T0,T

′
0], R0) of the best policy

at T ′
0 with its tangent, finding the “zero” of this tan-

gent, i.e., a point T ′
1 closest to T0 in the intersection

of this tangent and the tangent to the utility function
at T0, replacing the initial estimate T ′

0 with the new
estimate T ′

1, and iterating.

The pseudocode for this algorithm consists of the fol-
lowing steps:

1. Determine the optimal policy ΠT0;ŝ,â for the user-
provided model using any MDP solver.

2. Determine the Taylor approximation of the utility

of this policy Û
ΠT0;ŝ,â

T0
(Wŝ,â[T0,X]) as a function

of transition probabilities X ∈ ∆(Next(ŝ, â)).

3. Select the starting point T ′
0 ∈ ∆(Next(ŝ, â)) and

let i← 0.

4. Using any MDP solver, determine the optimal
policy ΠT ′

i
;ŝ,â for the user-provided model with

transition probabilities of action â in state ŝ re-
placed by T ′

i .

298



Active Reinforcement Learning

5. Determine the Taylor approximation of the utility

of this policy Û
ΠT ′

i
;ŝ,â

T ′

i
(Wŝ,â[T0,X]) as a function

of transition probabilities X ∈ ∆(Next(ŝ, â)).

6. Let T ′
i+1 be the point in the intersection of

Û
ΠT0;ŝ,â

T0
(Wŝ,â[T0,X]) and Û

ΠT ′
i
;ŝ,â

T ′

i
(Wŝ,â[T0,X])

closest to the user-specified model T0. Find T ′
i+1

by solving the following second-order cone pro-
gram1:

T ′
i+1 = arg min

X

∥
∥X|ŝ, â−T0|ŝ, â

∥
∥

s.t.Û
ΠT0;ŝ,â

T0
(Wŝ,â[T0,X]) = Û

ΠT ′
i
;ŝ,â

T ′

i
(Wŝ,â[T0,X])

[X|ŝ, â] � 0; [X|ŝ, â]T e ≤ 1,

where e is a vector of all 1’s

The last set of constraints ensures that T ′
i+1 is a

valid probability distribution.

7. Let i← i+1 and repeat steps 4-7 while ΠTi;ŝ,â 6=
ΠT0;ŝ,â.

8. Return
∥
∥T ′

i |ŝ, â− T0|ŝ, â
∥
∥

The algorithm returns an estimate of the maximum-
radius sensitivity ball about the user-specified transi-
tion model T0. The estimate is the minimum over a
set of restarts of Newton’s method, initializing T ′

0 to
each vertex of the probability simplex ∆(Next(ŝ, â)).
The quality of the estimate is limited both by the finite
number of iterations of Newton’s method and by the
limited number of restarts. The algorithm is executed
for every state/action pair ŝ, â to find which actions
are most sensitive to changes in transition probabilities
of the user-supplied model. We confirmed experimen-
tally that the estimates of the radius of the sensitivity
ball produced by our algorithm are very close to the
true values when the dimensionality of the probability
simplex is small.

An analogous algorithm is used to determine the sen-
sitivity of the MDP to perturbations in individual re-
wards. We have not yet described how to compute the
Taylor approximation of the utility function. We will
do so in the next section.

5. Sensitivity of a Policy

By definition of the gradient and linearity of expec-
tation, the gradient of the utility function is given by
∇X|ŝ,âUπ(Wŝ,â[T0,X], R0) =

1Second-order cone programs (SOCPs) are a special
case of semidefinite programs which can be solved more
efficiently, see (Lobo et al., 1998) for an overview.

[Es0∼D
∂V π(s0;Wŝ,â[T0,X],R0)

∂X(s′

j
) ]

|Next(ŝ,â)|
j=1 ;s′j ∈ Next(ŝ, â).

To compute the gradient of the value function, we need
the following lemma:

Lemma 5.1. For a given policy π, a [state,action,next
state] tuple [ŝ, â, s′] : s′ ∈ Next(ŝ, â), a transition
function for the given [ŝ, â]: X ∈ ∆(Next(s, a)),
reward function R0, let transition function T =

Wŝ,â[T0,X]. Then ∂V π(s0;T,R0)
∂X(s′) , 0 for â 6= π(ŝ). For

â = π(ŝ), let V π be the policy value function which
satisfies the Bellman equation and let an |S|× |S| ma-
trix Lπ define the directional vector for the derivative:

Lπ(si, sj) ,







1, if sj = s′

−1, if sj = Next(ŝ, â)
0, otherwise

. Then the

partial derivative ∂V π(s0;T,R0)
∂X(s′) can be computed from

the recurrence ∂V π(T,R0)
∂X(s′) = αTπ ∂V π(T,R0)

∂X(s′) + αLπV π.

The form of this recurrence is exactly the same as
that of the Bellman equation, with the value function
replaced by its derivative and the reward function re-
placed by αLπV π. Therefore, policy evaluation can be

used to compute ∂V π(s0;T,R0)
∂X(s′) .

Proof. (sketch) A slight modification of the analysis

given in (Cao, 2003) shows that ∂V π(T,R0)
∂X(s′) = α(I −

αTπ)−1LπV π, where I is the |S| × |S| identity ma-
trix. In order to compute the directional derivatives
efficiently, note that this equation can be rewritten as
the above recurrence.

Applying a similar analysis to calculate the derivative
of the utility function with respect to the reward x

for a given state/action pair [ŝ, â], we obtain (letting

the reward function R = Yŝ,â(R0, x)): ∂V π(T0,R)
∂x =

αTπ
0

∂V π(T0,R)
∂x + M where M(si) ,

{
1, if si = ŝ

0, otherwise

for â = π(ŝ) and ∂V π(T,R)
∂x , 0 for â 6= π(ŝ).

6. Convergence and Complexity

In this section, we consider the algorithm’s conver-
gence and complexity. The geometric structure of
our algorithm is similar to policy iteration which has
well-known connections to Newton’s method (Puter-
man, 1994; Madani, 2000). Just like in policy itera-
tion, the known local quadratic convergence of New-
ton’s method does not ensure global polynomial time
complexity. Unlike policy iteration, we cannot rely
on properties of contractions to establish convergence.
However, we can establish convergence for MDPs
whose structures (given by transitions with nonzero
probabilities) are directed acyclic graphs (DAGs). For
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such MDPs, the values Uπ(Wŝ,â[T0,X], R0) are linear
functions of X|ŝ, â for single state/action pairs [ŝ, â].
We have the following result which follows from the
Intermediate Value Theorem:

Theorem 6.1. Suppose that for a given ŝ, â and for
every policy π, Uπ(Wŝ,â[T0,X];R0) is a linear func-
tion of X|ŝ, â. Then, for any initial point T ′

0 ∈
∆(Next(ŝ, â)), the sequence {T ′

i} generated by the ac-
tive RL algorithm converges to the boundary of C in a
finite number of steps.

For DAG-structured MDPs such that the maximum
number of Next states for any state/action pair is two,
much stronger guarantees are available. As pointed
out in (Madani, 2000), any DAG-structured MDP can
be converted in polynomial time into an MDP of this
form by introducing extra states and transitions as
necessary. The significance of these MDPs is that,
since Next(ŝ, â) is a singleton, Uπ(Wŝ,â[T0,X], R0) is
a linear function of a single variable X|ŝ, â. The follow-
ing theorem shows that our algorithm can determine
the radius of the region C in logarithmic time in this
degenerate case:

Theorem 6.2. Define the distance between two
policies π and π′ as maxX|Uπ(Wŝ,â[T0,X], R0) −
Uπ′

(Wŝ,â[T0,X], R0)|. Let γ be the smallest distance
larger than 0 between any policy and ΠT0;ŝ,â. Let the
MDP have bounded rewards: |R0(s, a)| ≤M for ∀s, a.
Then, after t = O(log( M

γǫ(1−α) )) iterations, the iterates

T ′
i≥t of Newton’s method are within ǫ of the limit point

on the boundary of C.

Proof. (sketch) The proof follows from a known
fact that one-dimensional Newton’s method makes
progress in each iteration by either exponentially de-
creasing the height or exponentially increasing the
slope of the function Uπ(Wŝ,â[T0,X], R0). (Madani,
2000).

If the structure of an MDP is not a DAG, then
Uπ(Wŝ,â[T0,X], R0) is not linear in X|ŝ, â and the
above convergence results no longer apply. However,
as the discount factor α → 0, the value function for
any MDP will become approximately linear as the in-
fluence of distant rewards becomes negligible. Thus,
Newton’s method offers a way to find an approximate
solution to our problem which becomes more accurate
as the discount factor decreases. For general root-
finding problems, Newton’s method need not converge
(i.e., it may cycle or diverge to infinity). It is possible
that our variant may also exhibit this undesirable be-
havior when applied to arbitrary MDPs. However, our
experimental results in Section 8 demonstrate that our

Figure 2. Sailboat Domain. Black lines indicate the paths
of the boat for a set of possible initial policies. The boat
is controlled by the rudder and the sail.

method works well in practice on a wide range of prob-
lems even when strong assumptions required to obtain
theoretical guarantees for convergence are significantly
violated.

7. Approximate Active RL

In worlds with very large or continuous state/action
spaces, the exact Active RL algorithm of Section 4
is intractable. Moreover, in continuous state spaces,
sensitivity of individual state/action pairs no longer
applies. Instead, we consider the case where the state
space is partitioned into regions B with the uncertainty
in our transition model for each region generated by a
random variable.

Formally, we assume that the world is governed by the
control model st+1 = f(st, a, d(B(st)). The agent’s
state s at time t + 1 is a (possibly nonlinear) function
f of the agent’s state at time t, its action a, and the
disturbance input d. In every region B̂ ∈ B, the dis-
turbance d(B̂) is a random variable with a probability
distribution T ∈ ∆(Next(B̂)) defined on a discrete set
Next(B̂) = Next(B̂) ∪ Next(B̂). The approximate
active RL procedure determines which regions B̂ ∈ B

affect the optimal policy the most.

Consider, for example, the sailing problem illustrated
in Figure 2. The agent’s goal in this domain is to get
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the sailboat to the finish line. The sailboat is con-
trolled by the rudder and the sail. The problem is
complicated by a probabilistic whirlpool which could
aid the agent by increasing its speed or detain it by
deviating the boat from its course. In this case, the
function f describes the sailboat dynamics given the
boat’s position, the rudder/sail action, the determinis-
tic wind, and the whirlpool current d. The strength of
the current and its direction are given by a distribution
T which depends on the band B̂ inside the whirlpool
in which the agent finds itself. Approximate active
RL helps us find a small number of bands in which the
current determines which one of the policies shown in
Figure 2 is optimal.

The approximate active RL procedure is the same
as its exact variant, except that: 1) local policy
search is used in place of an MDP solver2, 2) the

utility Ũπ(T,R) of any policy π is approximated
by Markov Chain Monte Carlo, and 3) the Tay-
lor approximation of a policy’s utility is given by
Ûπ

T1
(WB̂ [T0,X]) ≈ Ũπ(WB̂ [T0,T1], R0) +

∇
X|B̂

Uπ(WB̂ [T0,T1], R0)(X|B̂ − T1|B̂), where

WB̂ [T0;T1] is a world in which the disturbance

distribution in band B̂ is replaced with T1, and
the gradient of the utility function is approximated
linearly by perturbing the transition probabil-
ities by a small value ǫ in each dimension of
the probability simplex: ∇

X|B̂
Uπ(WB̂ [T0,T1], R0) ≈

1
ǫ [Ũπ(WB̂ [T0,T

j;B̂
1 ], R0)−Ũπ(WB̂ [T0,T1], R0)]

Next(B̂)
j=1

where T
j;B̂
1 denotes the world in which the transitions

in region B̂ are perturbed by ǫ as follows:

T
j;B̂
1 (d′) ,







T1(d′) + ǫ, if d′ = dj

T1(d′)− ǫ, if d′ = Next(B̂)
T1(d′), otherwise

8. Experiments

Exact RL experiments were performed on the following
domains:

• In the mountain-car task (231 states), the prob-
lem is to drive a car up a steep mountain (Sutton
& Barto, 1998). The engine power is a uniform
random variable on the interval [.15, .3].

• The task in the cart-pole problem (5832 states) is
to balance a pole on a moving cart. The power of
the cart is random, uniformly distributed in the

2Any local policy search algorithm, such as policy gra-
dient or dynamic programming, can be used for this pro-
cedure.

interval [20, 75].

• Windy gridworld is a simple 10×7 gridworld with
agent’s movement affected by stochastic wind
(Sutton & Barto, 1998).

• Pizza delivery problem (4769 states) is based on
the racetrack example (Sutton & Barto, 1998).
The agent’s goal is to drive a car to the finish
line, while delivering as many pizzas and avoiding
as many randomly placed potholes as possible.

• The drunkard’s walk problems are two 10 × 10
gridworlds with random rewards and penalties.
When the agent moves in some direction, it is
equally likely to deviate diagonally from it.

In all the setups, α = 0.9 was used. The structure of
the MDPs varies widely from one problem to another
(and none of them are DAGs). In the first set of exper-
iments, the effectiveness of active reinforcement learn-
ing for transition probabilities was evaluated. The sys-
tem was provided with an initial description of the
problem, as given above. It then performed the sen-
sitivity analysis and sorted state/action pairs based
on their sensitivity values. A different problem spec-
ification was then generated by randomly perturbing
all the transition probabilities. This new specification
represented the actual world in which transition prob-
abilities are different from the expert-provided MDP
specification. The agent was allowed to sample one
action at a time in this actual world3, replace user-
specified transition probabilities with their maximum
likelihood estimates (based on 10,000 samples), use an
MDP solver to find the optimal policy in this “cor-
rected” MDP, and evaluate this policy in the actual
world. We tested two different ways of selecting the
order in which actions were tested: 1) the active RL
agent which samples the actions in order of decreas-
ing sensitivity, with sensitivities computed by the al-
gorithm in Section 4, and 2) the random agent which
samples actions randomly. For comparison, we also
tested two agents applying fixed policies: 1) the prior
agent which applies the optimal policy for the expert-
provided MDP specification, and 2) the omniscient
agent which knows the transition probabilities in the
actual test world and selects the optimal policy for this
world. In addition, we tested the Q-learning agent
with ǫ−greedy exploration (ǫ = 0.1) and full back-
ups (full backups means that after taking an action in
a state, the agent gets full information about all the

3This exploration strategy (sampling with resets) as-
sumes that the agent can execute any action in any state
and observe its outcome without having to plan how to get
to that state.
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Figure 3. Evaluation of exploration strategies on perturbed MDPs. Error bars are based on 95% confidence intervals.

transition probabilities for all the possible next states
for that action - this model was used to make the com-
parison between the Q-learning agent and the Active
RL agent fair). The utility of the policy of each of
these five agents appears in the plots in Figure 3-(a)
as a function of the number of actions tested. The
results are averaged over 100 different randomly gen-
erated actual worlds4. In each domain, the active RL
agent outperforms the random sampling agent. The
prior agent which relies solely on the expert’s spec-
ification performs poorly, indicating the need for ex-
ploration. As expected, the Q-learning agent performs
poorly initially since it has no prior knowledge, but im-
proves with experience. It rarely catches up with the
Active RL agent because Q-learning is forced to ex-
plore without resets. These experiments indicate that

4The test worlds were generated by perturbing transi-
tion probabilities of each action uniformly in the proba-
bility simplex within a radius of 0.6 around the expert-
specified values T0. A random variable T ∈ R

n uni-
formly distributed on the n-dimensional probability sim-
plex can be generated from n − 1 random variables
X1, .., Xn−1 ∼ Uniform(0, 1) by sorting them into X(0) ,

0, X(1), .., X(n−1), X(n) , 1, and letting Ti = X(i) − X(i−1)

(Devroye, 1986). Rejection sampling is then used to ensure
that ‖T − T0‖ ≤ 0.6.

integrating Active RL with Q-learning may result in
improvement in the Q-learning agent’s performance.
This is an important future extension of our work.

In the next experiment, the random worlds were gener-
ated by perturbing the rewards rather than transition
probabilities of the MDP5. Performance of the four
exploration strategies on the three domains with non-
trivial reward structure appear in Figure 3-(b). Once
again, the active RL agent significantly outperforms
the random sampling agent.

Finally, we experimented with approximate active RL
in the sailboat simulation, in which the agent must
navigate a whirlpool of water current to reach the fin-
ish line. The whirlpool was modeled by ten concen-
tric bands based on the distance from the center of
the vertex, and the magnitude of the current varied
proportionally to this distance. The expert-specified
world reflected uncertainty about the direction of the
whirlpool current: the direction of the current was
counterclockwise with probability 0.1, clockwise with
probability 0.1, and there was no current with prob-

5The test worlds were generated by perturbing all the
nonzero rewards uniformly in the interval [−70, 70] around
the expert-specified values.
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Figure 4. Evaluation of exploration strategies in the approximation architecture. The legend is the same as in figure 3,
but with Prior strategy not shown (its value is too low to appear on the plots). Error bars are based on 95% confidence
intervals.

ability 0.8. In each iteration of the active RL algo-
rithm, local policy search was performed from each of
the seven policies shown in Figure 2, and the best pol-
icy was selected. Approximate Active RL was tested
in three actual worlds: one with a deterministic clock-
wise current, one with a deterministic counterclock-
wise current, and one with no current. The results
appear in Figure 4. In the two worlds with current,
the algorithm which samples bands according to the
active RL-prescribed order outperforms the algorithm
which samples bands according to a random order. In
the world with no current, the performance of the two
algorithms is similar.

9. Conclusions

In this paper, we presented a new algorithm for com-
bining exploration with prior knowledge in reinforce-
ment learning. We demonstrated that our algorithm
can be implemented efficiently using policy iteration
and a standard SOCP solver. We also introduced an
approximate version of active RL to be applied in do-
mains with large state spaces. In addition to being
useful for exploration, the active RL algorithm can be
used by an MDP designer to determine which regions
of the state space require most precision in specifying
transition probabilities and rewards. An important fu-
ture extension of this work is designing a policy which
explores the sensitive regions of the state space with-
out resets.
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Abstract

While discriminative training (e.g., CRF,
structural SVM) holds much promise for ma-
chine translation, image segmentation, and
clustering, the complex inference these ap-
plications require make exact training in-
tractable. This leads to a need for ap-
proximate training methods. Unfortunately,
knowledge about how to perform efficient and
effective approximate training is limited. Fo-
cusing on structural SVMs, we provide and
explore algorithms for two different classes of
approximate training algorithms, which we
call undergenerating (e.g., greedy) and over-
generating (e.g., relaxations) algorithms. We
provide a theoretical and empirical analysis
of both types of approximate trained struc-
tural SVMs, focusing on fully connected pair-
wise Markov random fields. We find that
models trained with overgenerating methods
have theoretic advantages over undergener-
ating methods, are empirically robust rela-
tive to their undergenerating brethren, and
relaxed trained models favor non-fractional
predictions from relaxed predictors.

1. Introduction

Discriminative training methods like conditional ran-
dom fields (Lafferty et al., 2001), maximum-margin
Markov networks (Taskar et al., 2003), and struc-
tural SVMs (Tsochantaridis et al., 2005) have substan-
tially improved prediction performance on a variety
of structured prediction problems, including part-of-
speech tagging (Altun et al., 2003), natural language
parsing (Tsochantaridis et al., 2005), sequence align-
ment (Yu et al., 2007), and classification under multi-
variate loss functions (Joachims, 2005). In the context

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

of structural SVMs, in all these problems, both the in-
ference problem (i.e., computing a prediction) and the
separation oracle required in the cutting-plane training
algorithm can be solved exactly. This leads to theoret-
ical guarantees of training procedure convergence and
solution quality.

However, in many important problems (e.g., cluster-
ing (Culotta et al., 2007; Finley & Joachims, 2005),
multi-label classification, image segmentation, ma-
chine translation) exact inference and the separation
oracle are computationally intractable. Unfortunately,
use of approximations in these settings abandons many
of the existing theoretical guarantees of structural
SVM training, and relatively little is known about dis-
criminative training using approximations.

This paper explores training structural SVMs on prob-
lems where exact inference is intractable. A pairwise
fully connected Markov random field (MRF) serves
as a representative class of intractable models. This
class includes natural formulations of models for multi-
label classification, image segmentation, and cluster-
ing. We identify two classes of approximation algo-
rithms for the separation oracle in the structural SVM
cutting-plane training algorithm, namely undergener-
ating and overgenerating algorithms, and we adapt
loopy belief propagation (LBP), greedy search, and
linear-programming and graph-cut relaxations to this
problem. We provide a theoretical and empirical anal-
ysis of using these algorithms with structural SVMs.

We find substantial differences between different ap-
proximate algorithms in training and inference. In
particular, much of the existing theory can be ex-
tended to overgenerating though not undergenerat-
ing methods. In experimental results, intriguingly,
our structural SVM formulations using the overgen-
erating linear-programming and graph-cut relaxations
successfully learn models in which relaxed inference is
“easy” (i.e., the relaxed solution is mostly integral),
leading to robust and accurate models. We conclude
that the relaxation formulations are preferable over the
formulations involving LBP and greedy search.
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Algorithm 1 Cutting plane algorithm to solve OP 1.
1: Input: (x1,y1), . . . , (xn,yn), C, ε
2: Si ← ∅ for all i = 1, . . . , n
3: repeat
4: for i = 1, . . . , n do
5: H(y) ≡ ∆(yi,y)+wT Ψ(xi,y)−wT Ψ(xi,yi)
6: compute ŷ = argmaxy∈Y H(y)
7: compute ξi = max{0,maxy∈Si H(y)}
8: if H(ŷ) > ξi + ε then
9: Si ← Si ∪ {ŷ}

10: w← optimize primal over
⋃

i Si

11: end if
12: end for
13: until no Si has changed during iteration

2. Structured Output Prediction

Several discriminative structural learners were pro-
posed in recent years, including conditional ran-
dom fields (CRFs) (Lafferty et al., 2001), Perceptron
HMMs (Collins, 2002), max-margin Markov networks
(M3Ns) (Taskar et al., 2003), and structural SVMs
(SSVMs) (Tsochantaridis et al., 2005). Notational
differences aside, these methods all learn (kernelized)
linear discriminant functions, but differ in how they
choose model parameters.

2.1. Structural SVMs

Structural SVMs minimize a particular trade-off be-
tween model complexity and empirical risk. From a
training set S = ((x1,y1), . . . , (xn,yn)), an SSVM
learns a hypothesis h : X → Y to map inputs
x ∈ X to outputs y ∈ Y. Hypotheses take the form
h(x) = argmaxy∈Y f(x,y) with discriminant function
f : X × Y → R, where f(x,y) = wT Ψ(x,y). The
Ψ combined feature vector function relates inputs and
outputs, and w are model parameters. The loss func-
tion ∆ : Y × Y → R indicates how far h(xi) is from
true output yi. To find w balancing model complex-
ity and empirical risk R∆

S (h) = 1
n

∑n
i=1 ∆(yi, h(xi)),

SSVMs solve this quadratic program (QP) (Tsochan-
taridis et al., 2005):

Optimization Problem 1. (Structural SVM)

min
w,ξ≥0

1
2
‖w‖2 +

C

n

n∑
i=1

ξi (1)

∀i,∀y∈Y\yi: wTΨ(xi,yi) ≥ wTΨ(xi,y)+∆(yi,y)−ξi (2)

Introducing a constraint for every wrong output is typ-
ically intractable. However, OP 1 can be solved by
the cutting plane algorithm in Algorithm 1. This it-
eratively constructs a sufficient subset

⋃
i Si of con-

straints and solves the QP only over this subset (line
10). The algorithm employs a separation oracle to find
the next constraint to include (line 6). It finds the cur-
rently most violated constraint (or, a constraint that
is violated by at least the desired precision ε). If a
polynomial time separation oracle exists, OP 1 and Al-
gorithm 1 have three theoretical guarantees (Tsochan-
taridis et al., 2005):

Polynomial Time Termination: Algorithm 1 ter-
minates in a polynomial number of iterations, and
thus overall polynomial time.

Correctness: Algorithm 1 solves OP 1 accurate to
a desired precision ε, since Algorithm 1 terminates
only when all constraints in OP 1 are respected
within ε (lines 8 and 13).

Empirical Risk Bound: Since each ξi upper
bounds training loss ∆(yi, h(xi)), 1

n

∑n
i=1 ξi upper

bounds empirical risk.

Unfortunately, proofs of these properties rely on the
separation oracle (line 6) being exactly solvable, and
do not necessarily hold with approximations. We will
later analyze which properties are retained.

2.2. Markov Random Fields in SSVMs

A special case of structural SVM that we will examine
throughout this paper is M3N (Taskar et al., 2003). In
this, Ψ(x,y) is constructed from an MRF

f(x,y) =
∑

k∈cliques(G)

φk(y{k}) (3)

with graph structure G = (V,E) and the loss func-
tion is restricted to be linearly decomposable in the
cliques, i.e., ∆(y, ŷ) =

∑
k∈cliques(G) δk(y{k}, ŷ{k}).

Here, y is the value assignment to variables, δk are
sub-component local loss functions, and φk are po-
tential functions representing the fitness of variable
assignment y{k} to clique k. The network potential
f(x,y) serves as a discriminant function representing
the variable assignment y in the structural SVM, and
h(x) = argmaxy∈Y f(x,y) serves as the maximum a
posteriori (MAP) prediction.

OP 1 requires we express (3) in the form
f(x,y) = wT Ψ(x,y). First express potentials
as φk(y{k}) = wTψ(x, y{k}). The feature vec-
tor functions ψk relate x and label assignments
y{k}. Then, f(x,y) = wT Ψ(x,y) where Ψ(x,y) =∑

k∈cliques(G) ψk(x, y{k}).

In the following, we use a particular linearly decom-
posable loss function that simply counts the percent-
age proportion of different labels in y and ŷ, i.e.,
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∆(y, ŷ) = ‖100 · y − ŷ‖0/|V |. Further, in our appli-
cations, labels are binary (i.e., each yu ∈ B = {0, 1}),
and we allow only φu(1) and φuv(1, 1) potentials to
be non-zero. This latter restriction may seem oner-
ous, but any pairwise binary MRF with non-zero
φu(0), φuv(0, 0), φuv(0, 1), φuv(1, 0) has an equivalent
MRF where these potentials are zero.

To use Algorithm 1 for MRF training and prediction,
one must solve two argmax problems:

Prediction: argmaxy∈Y wT Ψ(x,y)

Separation Oracle: argmaxy∈Y wT Ψ(x,y)+∆(yi,y)

The prediction problem is equivalent to MAP infer-
ence. Also, we can state the separation oracle as
MAP inference. Taking the MRF we would use to
solve argmaxy∈Y wT Ψ(x,y), we include ∆(yi,y) in
the argmax by incrementing the node potential φu(y)
by 100

|V | for each wrong value y of u, since each wrong
variable assignment increases loss by 100

|V | . Thus, we
may express the separation oracle as MAP inference.

3. Approximate Inference

Unfortunately, MAP inference is #P -complete for gen-
eral MRFs. Fortunately, a variety of approximate in-
ference methods exist. For prediction and the separa-
tion oracle, we explore two general classes of approxi-
mate inference methods, which we call undergenerat-
ing and overgenerating approximations.

3.1. Undergenerating Approximations

Undergenerating methods approximate argmaxy∈Y by
argmaxy∈Y , where Y ⊆ Y. We consider the following
undergenerating methods in the context of MRFs:

Greedy iteratively changes the single variable value
yu that would increase network potential most.

LBP is loopy belief propagation (Pearl, 1988).

Combine picks the assignment y with the highest
network potential from both greedy and LBP.

We now theoretically characterize undergenerating
learning and prediction. All theorems generalize to
any learning problem, not just MRFs. Due to space
constraints, provided proofs are proof skeletons.

Since undergenerating approximations can be arbi-
trarily poor, we must restrict our consideration to a
subclass of undergenerating approximations to make
meaningful theoretical statements. This analysis fo-
cuses on ρ-approximation algorithms, with ρ ∈ (0, 1].
What is a ρ-approximation? In our case, for predic-
tive inference, if y∗ = argmaxy wT Ψ(x,y) is the true

optimum and y′ the ρ-approximation output, then

ρ ·wT Ψ(x,y∗) ≤ wT Ψ(x,y′) (4)

Similarly, for our separation oracle, for y∗ =
argmaxy wT Ψ(x,y) + ∆(yi,y) as the true optimum,
and if y′ corresponds to the constraint found by our
ρ-approximation, we know

ρ
[
wTΨ(x,y∗)+∆(yi,y∗)

]
≤wTΨ(x,y′)+∆(yi,y′) (5)

For simplicity, this analysis supposes S contains ex-
actly one training example (x0,y0). To generalize, one
may view n training examples as 1 example, where in-
ference consists of n separate processes with combined
outputs, etc. Combined ρ-approximation outputs may
be viewed as a single ρ-approximation output.

Theorem 1. (Polynomial Time Termination) If
R̄ = maxi,y∈Y ‖Ψ(xi,y)‖, ∆̄ = maxi,y∈Y ‖∆(yi,y)‖
are finite, an undergenerating learner terminates after
adding at most ε−2(C∆̄2R̄2 + n∆̄) constraints.

Proof. The original proof holds as it does not depend
upon separation oracle quality (Algorithm 1, l.6).

Lemma 1. After line 6 in Algorithm 1, let w be
the current model, ŷ the constraint found with the
ρ-approximation separation oracle, and ξ̂ = H(ŷ)
the slack associated with ŷ. Then, w and slack
ξ̂ + 1−ρ

ρ

[
wT Ψ(x0, ŷ) + ∆(y0, ŷ)

]
is feasible in OP 1.

Proof. If we knew the true most violated constraint
y∗, we would know the minimum ξ∗ such that w, ξ∗

was feasible in OP 1. The proof upper bounds ξ∗.

Theorem 2. When iteration ceases with the result
w, ξ, if ŷ was the last found most violated constraint,
we know that the optimum objective function value v∗

for OP 1 lies in the interval

1
2‖w‖

2 + Cξ ≤ v∗ ≤
1
2‖w‖

2+C
[
1
ρ

[
wTΨ(x0,ŷ)+∆(y0,ŷ)

]
−wTΨ(x0,y0)

]
Proof. Lemma 1 applied to the last iteration.

So, even with ρ-approximate separation oracles, one
may bound how far off a final solution is from solving
OP 1. Sensibly, the better the approximation, i.e., as
ρ approaches 1, the tighter the solution bound.

The last result concerns empirical risk. The SVM mar-
gin attempts to ensure that high-loss outputs have a
low discriminant function value, and ρ-approximations
produce outputs within a certain factor of optimum.
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Theorem 3. (ρ-Approximate Empirical Risk)
For w, ξ feasible in OP 1 from training with single ex-
ample (x0,y0), the empirical risk using ρ-approximate
prediction has upper bound (1− ρ)wT Ψ(x0,y0) + ξ.

Proof. Take the y′ = h(x0) associated constraint, then
apply known bounds to its wT Ψ(x0,y′) term.

If also using undergenerating ρ-approximate training,
one may employ Theorem 2 to get a feasible ξ.

3.2. Overgenerating Approximations

Overgenerating methods approximate argmaxy∈Y by
argmaxy∈Y , where Y ⊇ Y. We consider the following
overgenerating methods:

LProg is an expression of the inference problem as a
relaxed integer linear program (Boros & Hammer,
2002). We first add yuv ∈ B values indicating if
yu = yv = 1 to linearize the program:

maxy

∑
u∈{1..|V |}

yuφu(1) +
∑

u,v∈{1..|V |}

yuvφuv(1, 1) (6)

s.t. ∀u, v. yu ≥ yuv yv ≥ yuv (7)
yu + yv ≤ 1 + yuv yu, yuv ∈ B(8)

We relax B to [0, 1] to admit fractional solutions.
Importantly, there is always some optimal solution
where all yu, yuv ∈ {0, 1

2 , 1} (Hammer et al., 1984).
Cut is quadratic pseudo-Boolean optimization using

a graph-cut (Kolmogorov & Rother, 2004). This is
a different relaxation where, instead of y ∈ B|V |, we
have y ∈ {0, 1,∅}|V |.

The LProg and Cut approximations share two im-
portant properties (Boros & Hammer, 2002; Hammer
et al., 1984): Equivalence says that maximizing so-
lutions of the Cut and LProg formulations are trans-
mutable. One proof defines this transmutation proce-
dure, where ∅ (in cuts optimization) and 1

2 (in LP
optimization) variable assignments are interchange-
able (Boros & Hammer, 2002). The important practi-
cal implication of equivalence is both approximations
return the same solutions. Persistence says unambigu-
ous labels (i.e., not fractional or ∅) are optimal labels.

As a final detail, in the case of LProg,
∆(y, ŷ) = 1

|V |
∑

u∈{1..|V |} |yu − ŷu| and Ψ(x,y) =∑
u∈{1..|V |} yuψu(1) +

∑
u,v∈{1..|V |} yuvψuv(1, 1).

Cut’s functions have similar formulations.

Theorem 4. (Polynomial Time Termination) If
R̄ = maxi,y∈Y ‖Ψ(xi,y)‖, ∆̄ = maxi,y∈Y ‖∆(yi,y)‖
are finite (Y replacing Y in the overgenerating case),

an overgenerating learner terminates after adding at
most ε−2(C∆̄2R̄2 + n∆̄) constraints.

Proof. The original proof holds as an overgenerating
learner is a straightforward structural learning prob-
lem on a modified output range Y.

Theorem 5. (Correctness) An overgenerating Al-
gorithm 1 terminates with w, ξ feasible in OP 1.

Proof. The learner considers a superset of outputs Y ⊇
Y, so constraints in OP 1 are respected within ε.

With these “extra” constraints from overgenerating
inference, Algorithm 1’s solution may be suboptimal
w.r.t. the original OP 1. Further, for undergenerat-
ing methods correctness does not hold, as Algorithm 1
may not find violated constraints present in OP 1.

Theorem 6. (Empirical Risk Bound) If prediction
and the separation oracle use the same overgenerating
algorithm, Algorithm 1 terminates with 1

n

∑
i ξi upper

bounding empirical risk R∆
S (h).

Proof. Similar to the proof of Theorem 4.

3.3. Related Work

In prior work on discriminative training using approx-
imate inference, structural SVMs have learned mod-
els for correlation clustering, utilizing both greedy and
LP relaxed approximations (Finley & Joachims, 2005).
For M3Ns, Anguelov et al. (Anguelov et al., 2005) pro-
posed to directly fold a linear relaxation into OP 1.
This leads to a very large QP, and is inapplicable to
other inference methods like LBP or cuts. Further-
more, we will see below that the linear-program re-
laxation is the slowest method. With CRFs, likeli-
hood training requires computing the partition func-
tion in addition to MAP inference. Therefore, the par-
tition function is approximated (Culotta et al., 2007;
He et al., 2004; Kumar & Hebert, 2003; Vishwanathan
et al., 2006), or the model is simplified to make the par-
tition function tractable (Sutton & McCallum, 2005),
or CRF max-likelihood training is replaced with Per-
ceptron training (Roth & Yih, 2005).

The closest work to ours is a theoretical analysis of
MRF structural learning with LBP and LP-relaxation
approximations (Kulesza & Pereira, 2007). It defines
the concepts separable (i.e., there exists w such that
∀(xi,yi) ∈ S,y ∈ Y,wT Ψ(xi,yi) ≥ wT Ψ(xi,y)), al-
gorithmically separable (i.e., there exists w so that em-
pirical risk under the inference algorithm is 0), and
learnable (i.e., the learner using the inference method
finds a separating w). The paper illustrates that using
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approximate inference, these concepts are not equiv-
alent. Our work’s major differences are our analy-
sis handles non-zero training error, generalizes to any
structural problem, uses structural SVMs, and we have
an empirical analysis.

4. Experiments: Approximate Inference

Before we move into learning experiments, it helps to
understand the runtime and quality performance char-
acteristics of our MAP inference algorithms.

For runtime, Figure 1 illustrates each approximate in-
ference method’s average time to solve a single pair-
wise fully connected MRF with random potentials
as the number of nodes increases.1 Note that cuts
are substantially faster than LBP, and several orders
of magnitude faster than the linear relaxation while
maintaining equivalence.

For evaluating solution quality, we generate 1000 ran-
dom problems, ran the inference methods, and exhaus-

1Implementation details: The methods
were C-language Python extension mod-
ules. LProg was implemented in GLPK (see
http://www.gnu.org/software/glpk/glpk.html). Cut
was implemented with Maxflow software (Boykov &
Kolmogorov, 2004). Other methods are home-spun.
Experiments were run on a 2.6 GHz P4 Linux box.

tively count how many labelings with higher discrim-
inant value exist. The resulting curve for 10-node
MRFs is shown in Figure 2. For cut, ∅ labels are
randomly assigned to 0 or 1. The lower the curve,
the better the inference method. LBP finds “perfect”
labelings more often than Greedy, but also tends to
fall into horrible local maxima. Combined does much
better than either alone; apparently the strengths of
Greedy and LBP are complimentary.

Finally, note the apparent terrible performance of Cut,
which is due to assigning many ∅ labels. At first
glance, persistence is an attractive property since we
know unambiguous labels are correct, but on the other
hand, classifying only when it is certain leads it to
leave many labels ambiguous.

5. Experiments: Approximate Learning

Our goal in the following experiments is to gain insight
about how different approximate MRF inference meth-
ods perform in SSVM learning and classification. Our
evaluation uses multi-label classification using pairwise
fully connected MRFs as an example application.

Multi-label classification bears similarity to multi-class
classification, except classes are not mutually exclu-
sive, e.g., a news article may be about both “Iraq”
and “oil.” Often, incorporating inter-label dependen-
cies into the model can improve performance (Cesa-
Bianchi et al., 2006; Elisseeff & Weston, 2002).

How do we model this labeling procedure as an MRF?
For each input x, we construct an MRF with a vertex
for each possible label, with values from B = {0, 1} (1
indicates x has the corresponding label), and an edge
for each vertex pair (i.e., complete graph MRF).

What are our potential functions? In these problems,
inputs x ∈ Rm are feature vectors. Each of the `
possible labels u is associated with a weight vector
wu ∈ Rm. The resulting vertex potentials are φu(1) =
wu

T x. Edge potentials φuv(1, 1) come from individual
values in w, one for each label pair. Thus, the overall
parameter vector w ∈ R`m+(`

2) has `m weights for the
` different w1,w2, . . . ,w` sub-component weight vec-
tors, and

(
`
2

)
parameters for edge potentials. In terms

of ψ functions, ψu(x, 1) vectors contain an offset ver-
sion of x to “select out” wu from w, and ψuv(x, 1, 1)
vectors have a single 1 entry to “select” the appropri-
ate element from the end of w.

5.1. Datasets and Model Training Details

We use six multi-label datasets to evaluate perfor-
mance. Table 1 contains statistics on these datasets.
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Table 1. Basic statistics for the datasets, including number
of labels, training and test set sizes, number of features,
and parameter vector w size, and performance on baseline
trained methods and a default model.

Dataset Labels Train Test Feats. w Size Baseline Default
Scene 6 1211 1196 294 1779 11.43±.29 18.10
Yeast 14 1500 917 103 1533 20.91±.55 25.09

Reuters 10 2916 2914 47236 472405 4.96±.09 15.80
Mediamill 10 29415 12168 120 1245 18.60±.14 25.37

Synth1 6 471 5045 6000 36015 8.99±.08 16.34
Synth2 10 1000 10000 40 445 9.80±.09 10.00

Four real datasets, Scene (Boutell et al., 2004),
Yeast (Elisseeff & Weston, 2002), Reuters (the
RCV1 subset 1 data set) (Lewis et al., 2004), and Me-
diamill (Snoek et al., 2006), came from the LIBSVM
multi-label dataset collection (Chang & Lin, 2001).
Synth1 is a synthetic dataset of 6 labels. Labels fol-
low a simple probabilistic pattern: label i is on half the
time label i − 1 is on and never otherwise, and label
1 is always on. Also, each label has 1000 related bi-
nary features (the learner does not know a priori which
feature belong to each label): if i is on, a random 10
of its 1000 are set to 1. This hypothesis is learnable
without edge potentials, but exploiting label depen-
dency structure may result in better models. Synth2
is a synthetic dataset of 10 labels. In this case, each
example has exactly one label on. There are also 40
features. For an example, if label i is on, 4i randomly
chosen features are set to 1. Only models with edge
potentials can learn this concept.

We used 10-fold cross validation to choose C from
14 possible values {1·10−2, 3·10−2, 1·10−1, . . . , 3·104}.
This C was then used when training a model on all
training data. A separate C was chosen for each
dataset and separation oracle.

5.2. Results and Analysis

Table 2 reports loss on the test set followed by stan-
dard error. For each dataset, we present losses for
each combination of separation oracle used in learning
(the rows) and of predictive inference procedure used
in classification (the columns). This lets us distinguish
badly learned models from bad inference procedures as
explanations for inferior performance.

We also employ three additional methods as a point of
comparison. Our Baseline is an MRF with no edge
potentials, and our Default classifier always predicts
the best-performing single labeling; results for these
appear in Table 1. The Exact classifier is one which
exhaustively searches for the argmax; to enable com-
parisons on Reuters and Mediamill, we pruned these
datasets to the 10 most frequent labels.

Cut is omitted from Table 2. Its equivalence to LProg
means the two are interchangeable and always produce

Table 3. Percentage of “ambiguous” labels in relaxed infer-
ence. Columns represent different data sets. Rows repre-
sent different methods used as separation oracles in train-
ing.

Scene Yeast Reuters Mediamill Synth1 Synth2
Greedy 0.43% 17.02% 31.28% 20.81% 0.00% 31.17%

LBP 0.31% 0.00% 0.00% 0.00% 0.00% 0.00%
Combine 2.90% 91.42% 0.44% 4.27% 0.00% 29.11%

Exact 0.95% 84.30% 0.67% 65.58% 0.00% 27.92%
LProg 0.00% 0.43% 0.32% 1.30% 0.00% 1.48%

the same results, excepting Cut’s superior speed.

In all datasets, some edged model always exceeds the
performance of the edgeless model. On Mediamill and
Reuters, selecting only the 10 most frequent labels robs
the dataset of many dependency relationships, which
may explain the relatively lackluster performance.

5.2.1. The Sorry State of LBP, but Relax

Let’s first examine the diagonal entries in Table 2.
Models trained with LBP separation oracles yield gen-
erally poor performance. What causes this? LBP’s
tendency to fall into horrible local maxima (as seen
in Section 4) misled Algorithm 1 to believe its most
violated constraint was not violated, leading it to
early termination, mirroring the result in (Kulesza &
Pereira, 2007). The combined method remedies some
of these problems; however, LProg still gives signifi-
cantly better/worse performance on 3 vs. 1 datasets.

How does LProg training compare against exact train-
ing? Table 2 shows that both methods give similar
performance. Exact-trained models significantly out-
perform relaxed-trained models on two datasets, but
they also lose on two datasets.

5.2.2. Relaxation in Learning and Prediction

Observe that relaxation used in prediction performs
well when applied to models trained with relaxation.
However, on models trained with non-relaxed meth-
ods (i.e., models that do not constrain fractional solu-
tions), relaxed inference often performs quite poorly.
The most ludicrous examples appear in Yeast, Reuters,
Mediamill, and Synth2. Table 3 suggests an explana-
tion for this effect. The table lists the percentage of
ambiguous labels from the relaxed classifier (fractional
in LProg, ∅ in Cut). Ignoring degenerate LBP-trained
models, the relaxed predictor always has the fewest
ambiguous judgments. Apparently, SSVMs with re-
laxed separation oracles produce models that disfavor
non-integer solutions. In retrospect this is unsurpris-
ing: ambiguous labels always incur loss during train-
ing. Minimizing loss during training therefore not only
reduces training error, but also encourages parame-
terizations that favor integral (i.e., exact) solutions.
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Table 2. Multi-labeling loss on six datasets. Results are grouped by dataset. Rows indicate separation oracle method.
Columns indicate classification inference method.

Greedy LBP Combine Exact LProg Greedy LBP Combine Exact LProg
Scene Dataset Mediamill Dataset

Greedy 10.67±.28 10.74±.28 10.67±.28 10.67±.28 10.67±.28 23.39±.16 25.66±.17 24.32±.17 24.92±.17 27.05±.18

LBP 10.45±.27 10.54±.27 10.45±.27 10.42±.27 10.49±.27 22.83±.16 22.83±.16 22.83±.16 22.83±.16 22.83±.16

Combine 10.72±.28 11.78±.30 10.72±.28 10.77±.28 11.20±.29 19.56±.14 20.12±.15 19.72±.14 19.82±.14 20.23±.15

Exact 10.08±.26 10.33±.27 10.08±.26 10.06±.26 10.20±.26 19.07±.14 27.23±.18 19.08±.14 18.75±.14 36.83±.21

LProg 10.55±.27 10.49±.27 10.49±.27 10.49±.27 10.49±.27 18.50±.14 18.26±.14 18.26±.14 18.21±.14 18.29±.14

Yeast Dataset Synth1 Dataset
Greedy 21.62±.56 21.77±.56 21.58±.56 21.62±.56 24.42±.61 8.86±.08 8.86±.08 8.86±.08 8.86±.08 8.86±.08

LBP 24.32±.61 24.32±.61 24.32±.61 24.32±.61 24.32±.61 13.94±.12 13.94±.12 13.94±.12 13.94±.12 13.94±.12

Combine 22.33±.57 37.24±.77 22.32±.57 21.82±.56 42.72±.81 8.86±.08 8.86±.08 8.86±.08 8.86±.08 8.86±.08

Exact 23.38±.59 21.99±.57 21.06±.55 20.23±.53 45.90±.82 6.89±.06 6.86±.06 6.86±.06 6.86±.06 6.86±.06

LProg 20.47±.54 20.45±.54 20.47±.54 20.48±.54 20.49±.54 8.94±.08 8.94±.08 8.94±.08 8.94±.08 8.94±.08

Reuters Dataset Synth2 Dataset
Greedy 5.32±.09 13.38±.21 5.06±.09 5.42±.09 16.98±.26 7.27±.07 27.92±.20 7.27±.07 7.28±.07 19.03±.15

LBP 15.80±.25 15.80±.25 15.80±.25 15.80±.25 15.80±.25 10.00±.09 10.00±.09 10.00±.09 10.00±.09 10.00±.09

Combine 4.90±.09 4.57±.08 4.53±.08 4.49±.08 4.55±.08 7.90±.07 26.39±.19 7.90±.07 7.90±.07 18.11±.15

Exact 6.36±.11 5.54±.10 5.67±.10 5.59±.10 5.62±.10 7.04±.07 25.71±.19 7.04±.07 7.04±.07 17.80±.15

LProg 6.73±.12 6.41±.11 6.38±.11 6.38±.11 6.38±.11 5.83±.05 6.63±.06 5.83±.05 5.83±.05 6.29±.06

Undergenerating and exact training do not control for
this, leading to relaxed inference yielding many am-
biguous labelings.

On the other hand, observe that models trained with
the relaxed separation oracle have relatively consistent
performance, irrespective of the classification inference
procedure; even LBP never shows the catastrophic fail-
ure it does with other training approximations and
even exact training (e.g., Mediamill, Synth2). Why
might this occur? Recall the persistence property from
Section 3: unambiguous labels are optimal labels. In
some respects this property is attractive, but Section 4
revealed its dark side: relaxation predictors are very
conservative, delivering unambiguous labels only when
they are certain. By making things “obvious” for the
relaxed predictors (which are the most conservative
w.r.t. what they label), it appears they simultaneously
make things obvious for all predictors, explaining the
consistent performance of relaxed-trained models re-
gardless of prediction method.

SSVM’s ability to train models to “adapt” to the weak-
ness of overgenerating predictors is an interesting com-
plement with Searn structural learning (Daumé III
et al., 2006), which trains models to adapt to the weak-
nesses of undergenerating search based predictors.

5.2.3. Known Approximations

How robust is SSVM training to an increasingly poor
approximate separation oracle? To evaluate this, we
built an artificial ρ-approximation separation oracle:
for example (xi,yi) we exhaustively find the optimal
y∗ = argmaxy∈Y w

T Ψ(xi,y)+∆(yi,y), but we return
the labeling ŷ such that f(x, ŷ) ≈ ρf(x,y∗). In this
way, we build an approximate undergenerating MRF
inference method with known quality.

Table 4 details these results. The first column indi-
cates the approximation factor used in training each
model for each dataset. The remaining columns show
train and test performance using exact inference.

What is promising is that test performance does not
drop precipitously as we use increasingly worse ap-
proximations. For most problems, the performance
remains reasonable even for ρ = 0.9.

6. Conclusion

This paper theoretically and empirically analyzed two
classes of methods for training structural SVMs on
models where exact inference is intractable. Focus-
ing on completely connected Markov random fields,
we explored how greedy search, loopy belief propa-
gation, a linear-programming relaxation, and graph-
cuts can be used as approximate separation oracles in
structural SVM training. In addition to a theoreti-
cal comparison of the resulting algorithms, we empir-
ically compared performance on multi-label classifica-
tion problems. Relaxation approximations distinguish
themselves as preserving key theoretical properties of
structural SVMs, as well as learning robust predictive
models. Most significantly, structural SVMs appear
to train models to avoid relaxed inference methods’
tendency to yield fractional, ambiguous solutions.
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Abstract

The hierarchical Dirichlet process hidden
Markov model (HDP-HMM) is a flexible,
nonparametric model which allows state
spaces of unknown size to be learned from
data. We demonstrate some limitations of
the original HDP-HMM formulation (Teh
et al., 2006), and propose a sticky exten-
sion which allows more robust learning of
smoothly varying dynamics. Using DP mix-
tures, this formulation also allows learning
of more complex, multimodal emission dis-
tributions. We further develop a sampling
algorithm that employs a truncated approx-
imation of the DP to jointly resample the
full state sequence, greatly improving mixing
rates. Via extensive experiments with syn-
thetic data and the NIST speaker diarization
database, we demonstrate the advantages of
our sticky extension, and the utility of the
HDP-HMM in real-world applications.

1. Introduction

Hidden Markov models (HMMs) have been a major
success story in many applied fields; they provide core
statistical inference procedures in areas as diverse as
speech recognition, genomics, structural biology, ma-
chine translation, cryptanalysis and finance. Even af-
ter four decades of work on HMMs, however, signifi-
cant problems remain. One lingering issue is the choice
of the hidden state space’s cardinality. While standard
parametric model selection methods can be adapted to
the HMM, there is little understanding of the strengths
and weaknesses of such methods in this setting.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

Recently, Teh et al. (2006) presented a nonparamet-
ric Bayesian approach to HMMs in which a stochastic
process, the hierarchical Dirichlet process (HDP), de-
fines a prior distribution on transition matrices over
countably infinite state spaces. The resulting HDP-
HMM leads to data–driven learning algorithms which
infer posterior distributions over the number of states.
This posterior uncertainty can be integrated out when
making predictions, effectively averaging over models
of varying complexity. The HDP-HMM has shown
promise in a variety of applications, including visual
scene recognition (Kivinen et al., 2007) and the mod-
eling of genetic recombination (Xing & Sohn, 2007).

One serious limitation of the standard HDP-HMM
is that it inadequately models the temporal persis-
tence of states. This problem arises in classical finite
HMMs as well, where semi-Markovian models are of-
ten proposed as solutions. However, the problem is
exacerbated in the nonparametric setting, where the
Bayesian bias towards simpler models is insufficient to
prevent the HDP-HMM from learning models with un-
realistically rapid dynamics, as demonstrated in Fig. 1.

To illustrate the seriousness of this issue, let us con-
sider a challenging application that we revisit in Sec. 5.
The problem of speaker diarization involves segment-
ing an audio recording into time intervals associated
with individual speakers. This application seems like
a natural fit for the HDP-HMM, as the number of true
speakers is typically unknown, and may grow as more
data is observed. However, this is not a setting in
which model averaging is the goal; rather, it is critical
to infer the number of speakers as well as the transi-
tions among speakers. As we show in Sec. 5, the HDP-
HMM’s tendency to rapidly switch among redundant
states leads to poor speaker diarization performance.

In contrast, the methods that we develop in this paper
yield a state-of-the-art speaker diarization method, as
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(a) (b) (c) (d)

Figure 1. Sensitivity of the HDP-HMM to within-state variations in the observations. (a) Observation sequence; (b) true
state sequence; estimated state sequence after 100 Gibbs iterations for the (c) original and (d) sticky HDP-HMM, with
errors indicated in red. Without an extra self–transition bias, the HDP-HMM rapidly transitions among redundant states.

well as a general solution to the problem of state persis-
tence in HDP-HMMs. The approach is easily stated—
we simply augment the HDP-HMM to include a pa-
rameter for self-transition bias, and place a separate
prior on this parameter. The challenge is to consis-
tently execute this idea in a nonparametric Bayesian
framework. Earlier papers have also proposed self-
transition parameters for HMMs with infinite state
spaces (Beal et al., 2002; Xing & Sohn, 2007), but
did not formulate general solutions that integrate fully
with nonparametric Bayesian inference.

While the HDP-HMM treats the state transition dis-
tribution nonparametrically, it is also desirable to al-
low more flexible, nonparametric emission distribu-
tions. In classical applications of HMMs, finite Gaus-
sian mixtures are often used to model multimodal ob-
servations. Dirichlet process (DP) mixtures provide
an appealing alternative which avoids fixing the num-
ber of observation modes. Such emission distribu-
tions are not identifiable for the standard HDP-HMM,
due to the tendency to rapidly switch between redun-
dant states. With an additional self-transition bias,
however, we show that a fully nonparametric HMM
leads to effective learning algorithms. In particular,
we develop a blocked Gibbs sampler which leverages
forward–backward recursions to jointly resample the
state and emission assignments for all observations.

In Sec. 2, we begin by presenting background material
on the HDP. Sec. 3 then links these nonparametric
methods with HMMs, and extends them to account
for state persistence. We further augment the model
with multimodal emission distributions in Sec. 4, and
present results using synthetic data and the NIST
speaker diarization database in Sec. 5.

2. Background: Dirichlet Processes

A Dirichlet process (DP), denoted by DP(γ,H), is a
distribution over countably infinite random measures

G0(θ) =

∞∑

k=1

βkδ(θ − θk) θk ∼ H (1)

on a parameter space Θ. The weights are sampled via
a stick-breaking construction (Sethuraman, 1994):

βk = β′
k

k−1∏

ℓ=1

(1 − β′
ℓ) β′

k ∼ Beta(1, γ) (2)

We denote this distribution by β ∼ GEM(γ).

The DP is commonly used as a prior on the parameters
of a mixture model of unknown complexity, resulting
in a DPMM (see Fig. 2(a)). To generate observations,
we choose θ̄i ∼ G0 and yi ∼ F (θ̄i). This sampling
process is often described via a discrete variable zi ∼ β

indicating which component generates yi ∼ F (θzi
).

The hierarchical Dirichlet process (HDP) (Teh et al.,
2006) extends the DP to cases in which groups of data
are produced by related, yet unique, generative pro-
cesses. Taking a hierarchical Bayesian approach, the
HDP places a global Dirichlet process prior DP(α,G0)
on Θ, and then draws group specific distributions
Gj ∼ DP(α,G0). Here, the base measure G0 acts as
an “average” distribution (E[Gj ] = G0) encoding the
frequency of each shared, global parameter:

Gj(θ) =

∞∑

t=1

π̃jtδ(θ − θ̃jt) π̃j ∼ GEM(α) (3)

=

∞∑

k=1

πjkδ(θ − θk) πj ∼ DP(α, β) (4)

Because G0 is discrete, multiple θ̃jt ∼ G0 may take
identical values θk. Eq. (4) aggregates these probabil-
ities, allowing an observation yji to be directly associ-
ated with the unique global parameters via an indica-
tor random variable zji ∼ πj . See Fig. 2(b).

We can alternatively represent this generative process
via indicator variables tji ∼ π̃j and kjt ∼ β, as in
Fig. 2(c). The stick-breaking priors on these mix-
ture weights can be analytically marginalized, yield-
ing simple forms for the predictive distributions of as-
signments. The resulting distribution on partitions is
sometimes described using the metaphor of a Chinese
restaurant franchise (CRF). There are J restaurants
(groups), each with infinitely many tables (clusters) at
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(a) (b) (c)

Figure 2. (a) DPMM in which β ∼ GEM(γ), θk ∼ H(λ),
zi ∼ β, and yi ∼ f(y | θzi

). (b) HDP mixture model
with β ∼ GEM(γ), πj ∼ DP(α, β), θk ∼ H(λ), zji ∼
πj , and yji ∼ f(y | θzji

). (c) CRF with loyal customers.
Customers yji sit at table tji ∼ π̃j which considers dish
k̄jt ∼ β, but override variables wjt ∼ Ber(κ/α + κ) can
force the served dish kjt to be j. The original CRF, as
described in Sec. 2, has κ = 0 so that kjt = k̄jt.

which customers (observations) sit. Upon entering the
jth restaurant, customer yji sits at currently occupied
tables tji with probability proportional to the number
of currently seated customers, or starts a new table t̃
with probability proportional to α. Each table chooses
a dish (parameter) θ̃jt = θkjt

with probability propor-
tional to the number of other tables in the franchise
that ordered that dish, or orders a new dish θk̃ with
probability proportional to γ. Observation yji is then

generated by global parameter θzji
= θ̃jtji

= θkjtji
.

An alternative, non–constructive characterization of
samplesG0 ∼ DP(γ,H) from a Dirichlet process states
that for every finite partition {A1, . . . , AK} of Θ,

(G0(A1), . . . , G0(AK))

∼ Dir(γH(A1), . . . , γH(AK)). (5)

Using this expression, it can be shown that the fol-
lowing finite, hierarchical mixture model converges in
distribution to the HDP as L→ ∞ (Ishwaran & Zare-
pour, 2002; Teh et al., 2006):

β ∼ Dir(γ/L, . . . , γ/L)
πj ∼ Dir(αβ1, . . . , αβL).

(6)

Later sections use this weak limit approximation to
develop efficient, blocked sampling algorithms.

3. The Sticky HDP-HMM

The HDP can be used to develop an HMM with an
unknown, potentially infinite state space (Teh et al.,
2006). For this HDP-HMM, each HDP group-specific
distribution, πj , is a state-specific transition distribu-
tion and, due to the infinite state space, there are in-
finitely many groups. Let zt denote the state of the
Markov chain at time t. For Markov chains zt ∼ πzt−1

,
so that zt−1 indexes the group to which yt is assigned.
The current HMM state zt then indexes the parameter
θzt

used to generate observation yt (see Fig. 3).

Figure 3. Graph of the sticky HDP-HMM. The state
evolves as zt+1 ∼ πzt , where πk ∼ DP(α + κ, (αβ +
κδk)/(α+κ)) and β ∼ GEM(γ), and observations are gen-
erated as yt ∼ F (θzt). The original HDP-HMM has κ = 0.

By sampling πj ∼ DP(α, β), the HDP prior encour-
ages states to have similar transition distributions
(E[πjk] = βk). However, it does not differentiate self–
transitions from moves between states. When model-
ing systems with state persistence, the flexible nature
of the HDP-HMM prior allows for state sequences with
unrealistically fast dynamics to have large posterior
probability. For example, with Gaussian emissions, as
in Fig. 1, a good explanation of the data is to divide an
observation block into two small–variance states with
slightly different means, and then rapidly switch be-
tween them (see Fig. 1). In such cases, many models
with redundant states may have large posterior prob-
ability, thus impeding our ability to identify a single
dynamical model which best explains the observations.
The problem is compounded by the fact that once this
alternating pattern has been instantiated by the sam-
pler, its persistence is then reinforced by the prop-
erties of the Chinese restaurant franchise, thus slow-
ing mixing rates. Furthermore, when observations are
high-dimensional, this fragmentation of data into re-
dundant states may reduce predictive performance. In
many applications, one would thus like to be able to
incorporate prior knowledge that slow, smoothly vary-
ing dynamics are more likely.

To address these issues, we propose to instead sample
transition distributions πj as follows:

πj ∼ DP

(

α+ κ,
αβ + κδj

α+ κ

)

. (7)

Here, (αβ + κδj) indicates that an amount κ > 0 is
added to the jth component of αβ. The measure of πj

over a finite partition (Z1, . . . , ZK) of the positive in-
tegers Z+, as described by Eq. (5), adds an amount κ
only to the arbitrarily small partition containing j, cor-
responding to a self-transition. When κ = 0 the origi-
nal HDP-HMM is recovered. Because positive κ values
increase the prior probabilityE[πjj ] of self–transitions,
we refer to this extension as the sticky HDP-HMM.

In some ways, this κ parameter is reminiscent of the
infinite HMM’s self-transition bias (Beal et al., 2002).
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However, that paper relied on a heuristic, approximate
Gibbs sampler. The full connection between the infi-
nite HMM and an underlying nonparametric Bayesian
prior, as well as the development of a globally con-
sistent inference algorithm, was made in Teh et al.
(2006), but without a treatment of a self-transition
parameter.

3.1. A CRF with Loyal Customers

We further abuse the Chinese restaurant metaphor by
extending it to the sticky HDP-HMM, where our fran-
chise now has restaurants with loyal customers. Each
restaurant has a specialty dish with the same index as
that of the restaurant. Although this dish is served
elsewhere, it is more popular in the dish’s namesake
restaurant. We see this increased popularity from the
fact that a table’s dish is now drawn as

kjt ∼
αβ + κδj

α+ κ
. (8)

We will refer to zt as the parent and zt+1 as the child.
The parent enters a restaurant j determined by its
parent (the grandparent), zt−1 = j. We assume there
is a bijective mapping of indices f : t→ ji. The parent
then chooses a table tji ∼ π̃j and that table is served
a dish indexed by kjtji

. Noting that zt = zji = kjtji
,

the increased popularity of the house specialty dish
implies that children are more likely to eat in the same
restaurant as their parent and, in turn, more likely
to eat the restaurant’s specialty dish. This develops
family loyalty to a given restaurant in the franchise.
However, if the parent chooses a dish other than the
house specialty, the child will then go to the restaurant
where this dish is the specialty and will in turn be more
likely to eat this dish, too. One might say that for the
sticky HDP-HMM, children have similar tastebuds to
their parents and will always go the restaurant that
prepares their parent’s dish best. Often, this keeps
many generations eating in the same restaurant.

The inference algorithm is simplified if we introduce a
set of auxiliary random variables k̄jt andwjt as follows:

k̄jt ∼ β,

wjt ∼ Ber

(
κ

α+ κ

)

,
kjt =

{
k̄jt, wjt = 0;
j, wjt = 1,

(9)

where Ber(p) represents the Bernoulli distribution.
The table first chooses a dish k̄jt without taking the
restaurant’s specialty into consideration (i.e., the origi-
nal CRF.) With some probability, this considered dish
is overridden (perhaps by a waiter’s suggestion) and
the table is served the specialty dish j. Thus, kjt rep-
resents the served dish. We refer to wjt as the override
variable. For the original HDP-HMM, when κ = 0, the
considered dish is always the served dish since wjt = 0
for all tables. See Fig. 2(c).

3.2. Sampling via Direct Assignments

In this section we describe a modified version of the
direct assignment Rao-Blackwellized Gibbs sampler of
Teh et al. (2006) which circumvents the complicated
bookkeeping of the CRF by sampling indicator random
variables directly. Throughout this section, we refer to
the variables in the graph of Fig. 3. For this sampler,
a set of auxiliary variables mjk, m̄jk, and wjt must be
added (as illustrated in Fig. 2(c)).

Sampling zt The posterior distribution factors as:

p(zt = k | z\t, y1:T , β, α, κ, λ) ∝
p(zt = k | z\t, β, α, κ)p(yt | y\t, zt = k, z\t, λ). (10)

The properties of the Dirichlet process dictate that on
the finite partition {1, . . . ,K, k̃} we have the following
form for the group-specific transition distributions:

πj ∼ Dir(αβ1, . . . , αβj + κ, . . . , αβK , αβk̃). (11)

We use the above definition of πj and the Dirichlet dis-
tribution’s conjugacy to the multinomial observations
zt to marginalize πj and derive the following condi-
tional distribution over the states assignments:

p(zt = k | z\t, β, α, κ) ∝ (αβk +n−t
zt−1k +κδ(zt−1, k))

(
αβzt+1

+ n−t
kzt+1

+ κδ(k, zt+1) + δ(zt−1, k)δ(k, zt+1)

α+ n−t
k. + κ+ δ(zt−1, k)

)

.

(12)

This formula is more complex than that of the stan-
dard HDP sampler due to potential dependencies in
the marginalization of πzt−1

and πzt
. For a detailed

derivation, see Fox et al. (2007). The notation njk rep-
resents the number of Markov chain transitions from
state j to k, nj. =

∑

k njk, and n−t
jk the number of

transitions from state j to k not counting the transi-
tion zt−1 to zt or zt to zt+1. Intuitively, this expression
chooses a state k with probability depending on how
many times we have seen other zt−1 to k and k to
zt+1 transitions. Note that there is a dependency on
whether either or both of these transitions correspond
to a self-transition, which is strongest when κ > 0.

As in Teh et al. (2006), by placing a conjugate prior
on the parameter space, there is a closed analytic form
for the likelihood component p(yt | y\t, zt = k, z\t, λ).

Sampling β Assume there are currently K̄ unique
dishes being considered and take a finite partition

{θ1, θ2, . . . , θK̄ , θk̃} of Θ, where θk̃ = Θ\⋃K̄
k=1{θk}.

Since θ̃jt ∼ G0 and m̄.k tables are considering dish
θk, the properties of the Dirichlet distribution dictate:

p((β1, . . . , βK̄ , βk̃) | k̄, γ) ∝ Dir(m̄.1, . . . , m̄.K̄ , γ). (13)

From the above, we see that {m̄.k}K̄
k=1 is a set of suf-

ficient statistics for resampling β on this partition.
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However, this requires sampling two additional vari-
ables, mjk and wjt, corresponding to the number of
tables in restaurant j served dish k and the corre-
sponding overwrite variables. We jointly sample from

p(m,w, m̄ | z1:T , β, α, κ) = p(m̄ |m,w, z1:T , β, α, κ)

p(w |m, z1:T , β, α, κ)p(m | z1:T , β, α, κ). (14)

We start by examining p(m | z1:T , β, α, κ). Having
the state index assignments z1:T effectively partitions
the data (customers) into both restaurants and dishes,
though the table assignments are unknown since mul-
tiple tables can be served the same dish. Thus, sam-
pling mjk is in effect equivalent to sampling table as-
signments for each customer after knowing the dish
assignment. This conditional distribution is given by:

p(tji = t | kjt = k, t−ji,k−jt, y1:T , β, α, κ)

∝
{
ñ
−ji
jt , t ∈ {1, . . . , Tj};
αβk + κδ(k, j), t = t̃j ,

(15)

where ñ−ji
jt is the number of customers at table t in

restaurant j, not counting yji. The form of Eq. (15)
implies that a customer’s table assignment conditioned
on a dish assignment k follows a DP with concentra-
tion parameter αβk +κδ(k, j) and may be sampled by
simulating the associated Chinese restaurant process.

We now derive the conditional distribution for the
override variables wjt. The table counts provide that
mjk tables are serving dish k in restaurant j. If k 6= j,
we automatically have mjk tables with wjt = 0 since
the served dish is not the house specialty. Otherwise,

p(wjt | kjt = j, β, ρ) ∝
{
βj(1 − ρ), wjt = 0;
ρ, wjt = 1,

(16)

where ρ = κ
α+κ is the prior probability that wjt = 1.

Observing served dish kjt = j makes it more likely that
the considered dish k̄jt was overridden than the prior
suggests. We draw mjj samples of wjt from Eq. (16).

Given mjk for all j and k and wjt for each of these
instantiated tables, we can now deterministically com-
pute m̄jk. Any table that was overridden is an unin-
formative observation for the posterior of m̄jk so that

m̄jk =

{
mjk, j 6= k;
mjj − wj., j = k.

(17)

Sampling Hyperparameters Rather than fixing
the sticky HDP-HMM’s hyperparameters, we place
vague gamma priors on γ and (α + κ), and a beta
prior on κ/(α+κ). As detailed in Fox et al. (2007), the
auxiliary variables introduced in the preceding section
then allow tractable resampling of these hyperparam-
eters. This allows the number of occupied states, and
the degree of self–transition bias, to be strongly influ-
enced by the statistics of observed data, as desired.

3.3. Blocked Sampling of State Sequences

The HDP-HMM direct assignment sampler can exhibit
slow mixing rates since global state sequence changes
are forced to occur coordinate by coordinate. This is
explored in Scott (2002) for the finite HMM. Although
the sticky HDP-HMM reduces the posterior uncer-
tainty caused by fast state-switching explanations of
the data, the self-transition bias can cause two con-
tinuous and temporally separated sets of observations
of a given state to be grouped into two states. If this
occurs, the high probability of self-transition makes it
challenging for the sequential sampler to group those
two examples into a single state.

A variant of the HMM forward-backward procedure
(Rabiner, 1989) allows us to harness the Markov struc-
ture and jointly sample the state sequence z1:T given
the observations y1:T , transitions probabilities πj , and
model parameters θk. To take advantage of this pro-
cedure, we now must sample the previously marginal-
ized transition distributions and model parameters. In
practice, this requires approximating the theoretically
countably infinite transition distributions. One ap-
proach is the degree L weak limit approximation to
the DP (Ishwaran & Zarepour, 2002),

GEML(α) , Dir(α/L, . . . , α/L), (18)

where L is a number that exceeds the total number
of expected HMM states. This approximation encour-
ages the learning of models with fewer than L com-
ponents while allowing the generation of new compo-
nents, upper bounded by L, as new data are observed.

The posterior distributions of β and πj are given by:

β ∼ Dir(γ/L+ m̄.1, . . . , γ/L+ m̄.L) (19)

πj ∼ Dir(αβ1 + nj1, . . . , αβj + κ+ njj , . . . , αβL + njL).

Depending on the form of the emission distribution
and base measure on the parameter space Θ, we sam-
ple parameters for each of the currently instantiated
states from the updated posterior distribution:

θj ∼ p(θ | {yt | zt = j}, λ). (20)

Now that we are sampling θj directly, we can use a
non-conjugate base measure.

We block sample z1:T by first computing backward
messages mt,t−1(zt−1) ∝ p(yt:T |zt−1,π,θ) and then
recursively sampling each zt conditioned on zt−1 from

p(zt | zt−1, y1:T ,π,θ) ∝
p(zt | πzt−1

)p(yt | θzt
)mt+1,t(zt). (21)

A similar sampler has been used for learning HDP hid-
den Markov trees (Kivinen et al., 2007). However, this
work did not consider the complications introduced by
multimodal emissions, as we explore next.

316



An HDP-HMM for Systems with State Persistence

Figure 4. Sticky HDP-HMM with DP emissions, where st

indexes the state-specific mixture component generating
observation yt. The DP prior dictates that st ∼ ψzt for
ψk ∼ GEM(σ). The jth Gaussian component of the kth

mixture density is parameterized by θk,j so yt ∼ F (θzt,st).

4. Multimodal Emission Distributions

For many application domains, the data associated
with each hidden state may have a complex, multi-
modal distribution. We propose to approximate such
emission distributions nonparametrically, using an in-
finite DP mixture of Gaussians. This formulation is
related to the nested DP (Rodriguez et al., 2006).
The bias towards self-transitions allow us to distin-
guish between the underlying HDP-HMM states. If
the model were free to both rapidly switch between
HDP-HMM states and associate multiple Gaussians
per state, there would be considerable posterior un-
certainty. Thus, it is only with the sticky HDP-HMM
that we can effectively learn such models.

We augment the HDP-HMM state zt with a term st

indexing the mixture component of the zth
t emission

density. For each HDP-HMM state, there is a unique
stick-breaking distribution ψk ∼ GEM(σ) defining the
mixture weights of the kth emission density so that
st ∼ ψzt

. The observation yt is generated by the Gaus-
sian component with parameter θzt,st

. See Fig. 4.

To implement blocked resampling of (z1:T , s1:T ), we
use weak limit approximations to both the HDP-HMM
and Dirichlet process emissions, approximated to lev-
els L and L′, respectively. The posterior distributions
of β and πk remain unchanged; that of ψk is given by:

ψk ∼ Dir(σ/L′ + n′
k1, . . . , σ/L

′ + n′
kL′), (22)

where n′
kl are the number of observations assigned to

the lth mixture component of the kth HMM state. The
posterior distribution for each Gaussian’s mean and
covariance, θk,j , is determined by the observations as-
signed to this component, namely,

θk,j ∼ p(θ | {yt | (zt = k, st = j)}, λ). (23)

The augmented state (zt, st) is sampled from

p(zt, st | zt−1, y1:T ,π,ψ,θ) ∝
p(zt | πzt−1

)p(st | ψzt
)p(yt | θzt,st

)mt+1,t(zt). (24)

Since the Markov structure is only on the zt compo-

nent of the augmented state, the backward message
mt,t−1(zt−1) from (zt, st) to (zt−1, st−1) is solely a
function of zt−1. These messages are given by:

mt,t−1(zt−1) ∝
∑

zt

∑

st

p(zt | πzt−1
)p(st | ψzt

)

p(yt | θzt,st
)mt+1,t(zt). (25)

5. Results

Synthetic Data We generated test data from a
three-state Gaussian emission HMM with: 0.97 proba-
bility of self-transition; means 50, 0, and -50; and vari-
ances 50, 10, and 50 (see Fig. 1(a).) For the blocked
sampler, we used a truncation level of L = 15.

Fig. 5 shows the clear advantage of considering a sticky
HDP-HMM with blocked sampling. The Hamming
distance error is calculated by greedily mapping the
indices of the estimated state sequence to those max-
imizing overlap with the true sequence. The appar-
ent slow convergence of the sticky HDP-HMM direct
assignment sampler (Fig. 5(b)) can be attributed to
the sampler splitting temporally separated segments
of a true state into multiple, redundant states. Al-
though not depicted due to space constraints, both
sticky HDP-HMM samplers result in estimated mod-
els with significantly larger likelihoods of the true state
sequence than those of the original HDP-HMM.

To test the model of Sec. 4, we generated data from a
two-state HMM, where each state had a two-Gaussian
mixture emission distribution with equally weighted
components defined by means (0, 10) and (−7, 7), and
variances of 10. The probability of self-transition was
set to 0.98. The resulting observation and true state
sequences are shown in Fig. 6(a) and (b).

Fig. 6(e)-(h) compares the performance of the sticky
and original HDP-HMM with single and infinite Gaus-
sian mixture emissions. All results are for the blocked
sampler with truncation levels L = L′ = 15. In-
tuitively, when constrained to single Gaussian emis-
sions, the best explanation of the data is to associate
each true mixture component with a separate state
and then quickly switch between these states, result-
ing in the large Hamming distances of Fig. 6(g)-(h).
Although not the desired effect in this scenario, this
behavior, as depicted in Fig. 6(c), demonstrates the
flexibility of the sticky HDP-HMM: if the best ex-
planation of the data according to the model is fast
state-switching, the sticky HDP-HMM still allows for
this by learning a small bias towards self-transitions.
The sticky HDP-HMM occasionally has more accu-
rate state sequence estimates by grouping a true state’s
Gaussian mixture components into a single Gaussian
with large variance. By far the best performance is
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Figure 5. Hamming distance between true and estimated state sequences over 100 iterations for the sticky HDP-HMM (a)
blocked and (b) direct assignment samplers and the original HDP-HMM (c) blocked and (d) direct assignment samplers.
These plots show the median (solid blue) and 10th and 90th quantiles (dashed red) from 200 initializations.
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Figure 6. Performance of inference on data generated by an HMM with Gaussian mixture emissions. (a) Observation
sequence; (b) true HMM state sequence; estimated HMM state sequence using the sticky HDP-HMM model with (c)
single and (d) infinite Gaussian mixture emissions. Errors are indicated by red markers. The bottom row contains
Hamming distance plots, as in Fig. 5, for infinite Gaussian mixture emissions and the (e) sticky HDP-HMM and (f)
original HDP-HMM, and single Gaussian emissions for the (g) sticky HDP-HMM and (h) original HDP-HMM.

achieved by the sticky HDP-HMM with infinite Gaus-
sian mixture emissions (see Fig. 6(e) and (d)); compar-
ing to Fig. 6(f), we see that the gain can be attributed
to modeling rather than just improved mixing rates.

Speaker Diarization Data The speaker diariza-
tion task involves segmenting an audio recording into
speaker-homogeneous regions, while simultaneously
identifying the number of speakers. We tested the util-
ity of the sticky HDP-HMM for this task on the data
distributed by NIST as part of the Rich Transcrip-
tion 2004-2007 meeting recognition evaluations (NIST,
2007). We use the first 19 Mel Frequency Cepstral
Coefficients (MFCCs), computed over a 30ms window
every 10ms, as our feature vector. When working
with this dataset, we discovered that: (1) the high
frequency content of these features contained little
discriminative information, and (2) without a mini-
mum speaker duration, the sticky HDP-HMM learned
within speaker dynamics in addition to global speaker
changes. To jointly address these issues, we instead

model feature averages computed over 250ms, non–
overlapping blocks. A minimum speaker duration of
500ms is set by associating two average features with
each hidden state. We also tie the covariances of
within–state mixture components. We found single–
Gaussian emission distributions to be less effective.

For each of 21 meetings, we compare 10 initializations
of the original and sticky HDP-HMM blocked sam-
plers. In Fig. 8(a), we report the official NIST di-
arization error rate (DER) of the run with the largest
observation sequence likelihood, given parameters esti-
mated at the 1000th Gibbs iteration. The sticky HDP-
HMM’s temporal smoothing provides substantial per-
formance gains. Fig 8(b) plots the estimated versus
true number of speakers who talk for more than 10%
of the meeting time, and shows our model’s ability
to adapt to a varying number of speakers. As a fur-
ther comparison, the ICSI team’s algorithm (Wooters
& Huijbregts, 2007), by far the best performer at the
2007 competition, has an overall DER of 18.37%, simi-

318



An HDP-HMM for Systems with State Persistence

0 1 2 3 4 5 6

x 10
4

1

2

3

4

T
ru

e 
sp

ea
ke

r 
la

be
l

Time
0 1 2 3 4 5 6

x 10
4

1

2

3

4

E
st

im
at

ed
 s

pe
ak

er
 la

be
l

Time
0 1 2 3 4 5 6

x 10
4

0

1

2

3

4

5

6

7

8

T
ru

e 
sp

ea
ke

r 
la

be
l

Time
0 1 2 3 4 5 6

x 10
4

1

2

3

4

5

6

7

E
st

im
at

ed
 s

pe
ak

er
 la

be
l

Time

(a) (b) (c) (d)

Figure 7. True state sequences for meetings (a) AMI 20041210-1052 and (c) VT 20050304-1300, with the corresponding
most likely state estimates shown in (b) and (d), respectively, with incorrect labels shown in red.
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Figure 8. For the 21 meeting database: (a) plot of sticky
vs. original HDP-HMM most likely sequence DER; and
(b) plot of true vs. estimated number of speakers for sam-
ples drawn from 10 random initializations of each meeting
(larger circles have higher likelihood).

lar to our 19.04%. Our best and worst DER are 1.26%
and 31.42%, respectively, compared to their 4.39% and
32.23%. We use the same non-speech pre-processing,
so that the differences are due to changes in the iden-
tified speakers. As depicted in Fig. 7, a significant
proportion of our errors can be attributed to split-
ting or merging speakers. The ICSI team’s algorithm
uses agglomerative clustering, and requires significant
tuning of parameters on representative training data.
In contrast, our hyperparameters are automatically
set meeting-by-meeting, so that each component’s ex-
pected mean and covariance are that of the entire fea-
ture sequence. Note that the selected runs plotted
in Fig. 8 are not necessarily those with the smallest
DER. For example, the run depicted in Fig. 7(d) had
24.06% DER, while another run on the same meeting
had 4.37% (versus ICSI’s 22.00%.) There is inherent
posterior uncertainty in this task, and our sampler has
the advantage of giving several interpretations. When
considering the best per-meeting DER for the five most
likely samples, our overall DER drops to 15.14%; we
hope to explore automated ways of combining multiple
samples in future work. Regardless, our results demon-
strate that the sticky HDP-HMM provides an elegant
and empirically effective speaker diarization method.

6. Discussion

We have demonstrated the considerable benefits of an
extended HDP-HMM in which a separate parameter

captures state persistence. We have also shown that
this sticky HDP-HMM allows a fully nonparametric
treatment of multimodal emissions, disambiguated by
its bias towards self-transitions, and presented efficient
sampling techniques with mixing rates that improve
on the state-of-the-art. Results on synthetic data, and
a challenging speaker diarization task, clearly demon-
strate the practical importance of our extensions.
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Abstract

We have developed a new Linear Support Vec-
tor Machine (SVM) training algorithm called
OCAS. Its computational effort scales linearly
with the sample size. In an extensive empirical
evaluation OCAS significantly outperforms cur-
rent state of the art SVM solvers, like SVMlight ,
SVMperf and BMRM, achieving speedups of
over 1,000 on some datasets over SVMlight and
20 over SVMperf , while obtaining the same pre-
cise Support Vector solution. OCAS even in the
early optimization steps shows often faster con-
vergence than the so far in this domain prevail-
ing approximative methods SGD and Pegasos.
Effectively parallelizing OCAS we were able to
train on a dataset of size 15 million examples (it-
self about 32GB in size) in just 671 seconds —
a competing string kernel SVM required 97,484
seconds to train on 10 million examples sub-
sampled from this dataset.

1. Introduction
Many applications in e.g. Bioinformatics, IT-Security and
Text-Classification come with huge amounts (e.g. millions)
of data points, which are indeed needed to obtain state-
of-the-art results. They therefore require computation-
ally extremely efficient methods capable of dealing with
ever growing data sizes. Support Vector Machines (SVM)
e.g. (Cortes & Vapnik, 1995; Cristianini & Shwawe-Taylor,
2000) have proven to be powerful tools for a wide range
of different data analysis problems. Given labeled training
examples {(x1, y1), . . . (xm, ym)} ∈ (Rn × {−1,+1})m

and a regularization constant C > 0 they learn a linear
classification rule h(x) = sgn(〈w∗,x〉 + b∗) by solving
the quadratic SVM primal optimization problem (P) or its
dual formulation (D) allowing the use of kernels.

Appearing in Proceedings of the 25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

(P) min
w,ξ,b

1

2
‖w‖2

2 +
C

m

mX
i=1

ξi, for w ∈ Rn, ξ ∈ Rm
+ , b ∈ R

s.t. yi (〈w, xi〉+ b) ≥ 1− ξi, i = 1, . . . , m

(D) max
α∈Rm

∑m
i=1 αi − 1

2

∑m
i=1

∑m
j=1 αiαjyiyj 〈xi,xj〉

s.t. :
∑m

i=1 αiyi = 0, 0 ≤ αi ≤ C
m , i = 1 . . .m

Due to the central importance of SVMs, many techniques
have been proposed to solve the SVM problem. As in prac-
tice only limited precision solutions to (P) and (D) can be
obtained they may be categorized into approximative and
accurate.

Approximative Solvers make use of heuristics
(e.g. learning rate, number of iterations) to obtain
(often crude) approximations to the QP-solution. They
have very low per-iteration cost and low total training time.
Especially for large scale problems, they are claimed to be
sufficiently precise while delivering the best performance
vs. training time trade-off (Bottou & Bousquet, 2008),
which may be attributed to the robust nature of large
margin SVM solutions. However while they are fast in
the beginning they often fail to achieve precise solution.
Among the to-date most efficient solvers are Pegasos
(Shwartz et al., 2007) and SGD (Bottou & Bousquet,
2008), which are based on stochastic (sub-)gradient
descent.

Accurate Solvers In contrast to approximative solvers,
accurate methods solve a QP up to a given precision ε,
where ε commonly denotes the violation of the relaxed
KKT conditions (Joachims, 1999) or the (relative) duality
gap. Accurate methods often have good asymptotic conver-
gence properties, and thus for small ε converge to very pre-
cise solutions being limited only by numerical precision.
Classical examples are off-the-shelf optimizers (e.g. MI-
NOS, CPLEX, LOQO). However it is usually infeasible to
use standard optimization tools for solving the SVM train-
ing problems (D) on datasets containing more than a few
thousand examples. So-called decomposition techniques as
chunking (e.g. used in (Joachims, 1999)), or SMO (used in
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(Chang & Lin, 2001)) overcome this limitation by exploit-
ing the special structure of the SVM problem. The key idea
of decomposition is to freeze all but a small number of op-
timization variables (working set) and to solve a sequence
of constant-size problems (subproblems of the SVM dual).
While decomposition based solvers are very flexible as they
are working in the dual and thus allow the use of kernels
they become computationally intractable with a few hun-
dred thousand examples. This limitation can be explained
as follows: Decomposition methods exploit the fact that
the optimal solution of (P) does not change if inactive con-
straints at the optimum are removed, they are therefore
only efficient if the number of active constraints is reason-
ably small. Unfortunately, the number of active constraints
is lower bound by the portion of misclassified examples,
which is proportional to the number of examples m. Thus
decomposition methods are computationally prohibitive for
large-scale problems (empirically about 10%-30% of the
training points become active constraints).

This poses a challenging task for even current state-of-the-
art SVM solvers such as SVMlight (Joachims, 1999), Gra-
dient Projection-based Decomposition Technique-SVM
(GPDT-SVM) (Zanni et al., 2006), LibSVM (Chang & Lin,
2001). As improving training times using the dual formula-
tion is hard, the research focus has shifted back to the orig-
inal SVM primal problem. The importance of being able
to efficiently solve the primal problem for large datasets is
documented by a number of very recently developed meth-
ods, e.g. SVMLin (Sindhwani & Keerthi, 2007; Chapelle,
2007), LibLinear (Lin et al., 2007), SVMperf (Joachims,
2006) and BMRM (Teo et al., 2007).

In the following we will focus on finding accurate solutions
of the unconstrained linear SVM primal problem1

w∗ = argmin
w

F (w) :=
[

1
2‖w‖

2 + CR(w)
]

, (1)

where R(w) = 1
m

∑m
i=1 max{0, 1− yi〈w,xi〉} (2)

is a convex risk approximating the training error.

Among the up to date most efficient accurate SVM primal
problem (1) solvers are the Cutting Plane Algorithm (CPA)
based methods put forward in (Joachims, 2006; Teo et al.,
2007) and implemented in SVMperf and BMRM. The idea
of CPAs is to approximate the risk R by a piece-wise linear
function defined as the maximum over a set of linear under-
estimators, in CPA terminology called cutting planes. In
(Joachims, 2006; Teo et al., 2007) it was shown that their
number does not depend on the number of training exam-
ples m and that very few such cutting planes are needed in
practice to sufficiently approximate (1).

1Note that we focus on the linear rule without a bias. The
bias can be included by adding a constant feature to each training
example xi.

In this work we propose a new method, called the Opti-
mized Cutting Plane Algorithm for SVMs (OCAS). We
empirically show that OCAS converges on a wide vari-
ety of large-scale datasets even considerably faster than
SVMperf , BMRM and SVMlight , achieving speedups of
several orders of magnitude on some problems. We also
demonstrate that OCAS even in the early optimization steps
shows faster convergence than the so far in this domain
dominating approximative methods. Finally we critically
analyze all solvers w.r.t. classification performance in an
extensive model selection study.

The report is organized as follows. CPA is described in
Section 2. In Section 3, we point out a source of ineffi-
ciency of CPA and propose a new method, OCAS, to allevi-
ate the problem and prove linear convergence. An extensive
empirical evaluation is given in Section 4 and concludes the
paper.

2. Cutting Plane Algorithm
Recently, the Cutting Plane Algorithm (CPA) based large-
scale solvers, SVMperf (Joachims, 2006) and BMRM (Teo
et al., 2007), have been proposed. SVMperf implements
CPA specifically for the linear SVM problem (1). De-
coupling regularizer and loss function, BMRM generalizes
SVMperf to a wide range of losses and regularizers mak-
ing it applicable to many machine learning problems, like
classification, regression, structure learning etc. It should
be noted that BMRM using the two norm regularizer ‖.‖2
and hinge loss (i.e. SVM problem (1)) coincides with
SVMperf . It was shown that SVMperf and BMRM by far
outperform the decomposition methods like SVMlight on
large-scale problems. The rest of this section describes the
idea behind CPA for the standard SVM setting (1) in more
detail.

In CPA terminology, the original problem (1) is called the
master problem. Using the approach of (Teo et al., 2007)
one may define a reduced problem of (1) which reads

wt = argmin
w

Ft(w) :=
[1
2
‖w‖2 + CRt(w)

]
. (3)

Problem (3) is obtained from the master problem (1) by
substituting a piece-wise linear approximation Rt for the
risk R while leaving the regularization term unchanged,
i.e. only the complex part of the objective F is approxi-
mated. The approximation Rt is derived as follows. Since
the risk R is a convex function, it can be approximated at
any point w′ by a linear under estimator

R(w) ≥ R(w′) + 〈a′,w −w′〉 , ∀w ∈ Rn , (4)

where a′ is any subgradient of R at the point w′. We will
use a shortcut b′ = R(w′) − 〈a′,w′〉 to abbreviate (4) as
R(w) ≥ 〈a′,w〉+b′. In CPA terminology, 〈a′,w〉+b′ = 0
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is called a cutting plane. A subgradient a′ of R at the point
w′ can be obtained as

a′ = − 1
m

m∑
i=1

πiyixi, πi =
{

1 if yi〈w′,xi〉 ≤ 1 ,
0 if yi〈w′,xi〉 > 1 .

(5)
To get a better approximation of the risk R than a single
cutting plane, one may use a collection of cutting planes
{〈ai,w〉 + bi = 0 | i = 1, . . . , t} at t distinct points
{w1, . . . ,wt} and take their point-wise maximum

Rt(w) = max
{
0, max

i=1,...,t

(
〈ai,w〉+ bi

)}
. (6)

The zero cutting plane is added to the maximization as the
risk R is always greater or equal to zero. It follows directly
from (4) that the approximation Rt lower bounds R and
thus also Ft lower bounds F .

To select the cutting planes, CPA starts from t = 0 (no
cutting plane) and then it iterates two steps:

1. Compute wt by solving the reduced problem (3),
which can be cast as a standard QP with t variables.

2. Add a new cutting plane (at+1, bt+1) to approximate
the risk R at the current solution wt.

A natural stopping condition for CPA is based on evaluat-
ing the ε-optimality condition F (wt)−Ft(wt) ≤ ε which,
if satisfied, guarantees that F (wt) − F (w∗) ≤ ε holds. 2

(Joachims, 2006) proved that for arbitrary ε > 0 CPA con-
verges to the ε-optimal solution after O( 1

ε2 ) iterations, i.e.
it does not depend on the number of examples m. An im-
proved analysis of the CPA published recently (Teo et al.,
2007) shows that the number of iterations scales only with
O( 1

ε ). More important, in practice CPA usually requires
only tens of iterations to reach a sufficiently precise solu-
tion.

3. Optimized Cutting Plane Algorithm for
SVMs (OCAS)

We first point out a source of inefficiency appearing in CPA
and then propose a new method to alleviate the problem.

CPA selects a new cutting plane such that the reduced prob-
lem objective function Ft(wt) monotonically increases
with w.r.t. the number of iterations t. However, there is no
such guarantee for the master problem objective F (wt).
Even though it will ultimately converge to the minimum
F (w∗), its value can heavily fluctuate between iterations.
The reason for these fluctuations is the following. CPA se-
lects at each iteration t the cutting plane which perfectly

2An alternative stopping condition advocated in (Joachims,
2006) halts the algorithm when R(wt) − Rt(wt) ≤ ε̂. It can
be seen that both the stopping conditions become equivalent if we
set ε = Cε̂.

approximates the master objective F at the current solu-
tion wt. However, there is no guarantee that such cutting
plane will be an active constraint in the vicinity of the op-
timum w∗, nor must the new solution wt+1 of the reduced
problem improve the master objective. In fact it often oc-
curs that F (wt+1) > F (wt).

To speed up the convergence of CPA, we propose a new
method which we call the Optimized Cutting Plane Al-
gorithm for SVMs (OCAS). Unlike standard CPA, OCAS
aims at simultaneously optimizing the master and reduced
problem’s objective functions F and Ft, respectively. In
addition, OCAS tries to select such cutting planes that have
higher chance to actively contribute to the approximation of
the master objective function F around the optimum w∗. In
particular, we propose the following three changes to CPA.

Change 1 We maintain the best so far solution wb
t ob-

tained during the first t iterations, i.e. F (wb
1), . . . , F (wb

t )
forms a monotonically decreasing sequence.

Change 2 The new best so far solution wb
t is found by

searching along a line starting at the previous best solution
wb

t−1 crossing the reduced problem’s solution wt, i.e. ,

wb
t = min

k≥0
F (wb

t−1(1− k) + wtk) , (7)

which can be solved exactly in O(m log m) time (see Ap-
pendix A).

Change 3 The new cutting plane is selected to approxi-
mate the master objective F at a point wc

t which lies in a
vicinity of the best so far solution wb

t . In particular, the
point wc

t is computed as

wc
t = wb

t (1− λ) + wtλ , (8)

where λ ∈ (0, 1] is a prescribed parameter. Having the
point wc, the new cutting plane is computed using Equa-
tion (5) such that F (wc

t) = Ft+1(wc
t). Note that although

the theoretical bound on the number of iterations (see The-
orem 1) does not depend on λ its value has impact on the
convergence speed in practice. We found that the value
λ = 0.1 works consistently well in all experiments.

Algorithm 1 describes the proposed OCAS. Figure 1 shows
the impact of the proposed changes to the convergence.
OCAS generates a monotonically decreasing sequence of
master objective values F (wb

1), . . . , F (wb
t ) and a mono-

tonically strictly increasing sequence of reduced objective
values F1(w1), . . . , Ft(wt). Similar to CPA, a natural
stopping condition for OCAS reads

F (wb
t )− Ft(wt) ≤ ε , (9)

where ε > 0 is a prescribed precision parameter. Satisfying
the condition (9) guarantees that F (wb

t ) − F (w∗) ≤ ε
holds.
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Algorithm 1 Optimized Cutting Plane Algorithm
1: Set t = 0 (i.e. there is no cutting plane at the begin-

ning) and wb
0 = 0.

2: repeat
3: Compute wt by solving the reduced problem (3).
4: Compute a new best so far solution wb

t using the
line-search (7).

5: Add a new cutting plane which approximates the
risk R at the point wc

t given by (8), i.e. ,

at+1 = − 1
m

∑m
i=1 πiyixi ,

bt+1 = R(wc
t)− 〈at+1,w

c
t〉 ,

where πi =
{

1 if yi〈wc
t ,xi〉 ≤ 1 ,

0 if yi〈wc
t ,xi〉 > 1 .

6: t := t + 1
7: until a stopping condition is satisfied

Theorem 1 For any ε > 0, C > 0, λ ∈ (0, 1], and any
training set {(x1, y1), . . . , (xm, ym)}, Algorithm 1 satis-
fies the stopping condition (9) after at most

max
{2C

ε
,
8C3Q2

ε2

}
, (10)

iterations where Q = maxi=1,...,m ‖xi‖.

Proof The proof is along the lines of the convergence
analysis of the standard CPA (Joachims, 2006). First, it can
be shown that violated condition (9) guarantees that adding
a new cutting plane (at, bt) leads to an improvement of
the reduced objective ∆t = Ft+1(wt+1) − Ft(wt) which
is not less than min

{
ε
2 , ε2

8Q2

}
. Second, by exploiting that

0 ≤ Ft(wt) ≤ F (w∗) and F (w∗) ≤ F (0) = C one can
conclude that the sum of improvements

∑t
i=0 ∆t cannot

be greater than C. Combining these two results gives im-
mediately the bound (10). For more details we refer to our
technical report (Franc & Sonnenburg, 2007).

OCAS
F (wbest

t
)

Ft(wt)

Ft(wt)

F (wt)
CPA

iterations t

102

103

104

105

0 10 20 30 40 50

Figure 1. Convergence behaviour of the standard CPA vs. OCAS.

The bound on the maximal number of iterations of OCAS
coincides with the bound for CPA given in (Joachims,
2006). Despite the same theoretical bounds, in practice
OCAS converges significantly faster compared to CPA
(cf. Table 2 in the experiments section).

3.1. Time Complexity and Parallelization

By Theorem 1 the number of iterations of OCAS does not
depend on the number of examples m. Hence the overall
time complexity is given by the effort required per itera-
tion which is O(mn + m log m) ≈ O(mn) (in practice
log(m) � n, where n is the dimensionality of the data).
The per-iteration complexity of the subtasks and the way
how they can be effectively parallelized is detailed below:
Output computation involves computation of the dot
products 〈wt,xi〉, i = 1, . . . ,m, which requires O(s)
time, where s equals the number of non-zero elements
in the training examples. Distributing the computation
equally to p processor leads to O( s

p ) time.
Line-search The dominant part is sorting |K| numbers
(K ≤ m, see Appendix A for details) which can be done
in O(|K| log |K|). A speedup can be achieved by par-
allelizing the sorting function to using p processors, re-
ducing complexity to O

( |K| log |K|
p

)
. Note that our im-

plementation of OCAS uses quicksort, whose worst case
complexity is O(|K|2), although its expected run-time is
O(|K| log |K|).
Cutting plane computation The dominant part requires
computing the sum − 1

m

∑m
i=1 πiyixi which can be done

in O(sπ), where sπ is the number of non-zero elements in
the training examples for which πi is non-zero. Using p
processors leads to O( sπ

p ) time.
Reduced problem The size of the reduced problem (3)
is upper bound by the number of iterations which is invari-
ant against the dataset size, hence it requires O(1) time.
Though solving the reduced problem cannot be easily par-
allelized, it does not constitute the bottleneck as the number
of iterations required in practice is small (cf. Table 2).

4. Experiments
We now compare current state-of-the-art SVM solvers
(SGD, Pegasos, SVMlight , SVMperf , BMRM3 on a va-
riety of datasets with the proposed method (OCAS) using
5 carefully crafted experiments measuring:

1. Training time and objective for optimal C
2. Speed of convergence (time vs. objective)
3. Time to perform a full model selection
4. Scalability w.r.t. dataset size
5. Effects of parallelization

To this end we implemented OCAS and the standard CPA4

in C. We use the very general compressed sparse column

3SGD version 1.1 (svmsgd2) http://leon.
bottou.org/projects/sgd, SVMlight 6.01 and
SVMperf 2.1 http://svmlight.joachims.org, pe-
gasos http://ttic.uchicago.edu/∼shai/code/,
BMRM version 0.01 http://users.rsise.anu.edu.
au/∼chteo/BMRM.html.

4To not measure implementation specific effects (solver, dot-
product computation) etc.
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(CSC) representation to store the data. Here each element
is represented by an index and a value (each 64bit). To
solve the reduced problem (3), we use our implementation
of improved SMO (Fan et al., 2005).

4.1. Experimental Setup

The datasets used throughout the experiments are summa-
rized in Table 1. We augmented the Cov1, CCAT, As-
tro datasets from (Joachims, 2006) by the MNIST, a arti-
ficial dense and two larger bioinformatics splice datasets
for worm and human. The artificial dataset was generated

Dataset Examples Dim Sp Split
MNIST 70,000 784 19 77/09/14

Astro 99,757 62,369 0.08 43/05/52
Artificial 150,000 500 100 33/33/33

Cov1 581,012 54 22 81/09/10
CCAT 804,414 47,236 0.16 87/10/03
Worm 1,026,036 804 25 80/05/15

Human 15,028,326 564 25

Table 1. Datasets used in the experimental evaluation. Sp
denotes the average number of non-zero elements of a dataset
in percent. Split describes the size of the train/validation/test
sets in percent. Datasets are available from the following urls:
MNIST http://yann.lecun.com/exdb/mnist/, Cov1
http://kdd.ics.uci.edu/databases/covertype/
covertype.html, CCAT http://www.daviddlewis.
com/resources/testcollections/rcv1/, Worm
and Human http://www.fml.tuebingen.mpg.de/
raetsch/projects/lsmkl

from two Gaussians with different diagonal covarience ma-
trices of multiple scale. If not otherwise stated experiments
were performed on a 2.4GHz AMD Opteron Linux ma-
chine. We disabled the bias term in the comparison. As
stopping conditions we use the defaults: εlight = εgpdt =
0.001, εperf = 0.1 and εbmrm = 0.001. For OCAS we
used the same stopping condition which is implemented in
SVMperf , i.e., F (w)−Ft(w)

C ≤ εperf

100 = 10−3. Note that
these ε have a very different meaning denoting the maxi-
mum KKT violation for SVMlight , the maximum tolerated
violation of constraints for SVMperf and for the BMRM
the relative duality gap. For SGD we fix the number of it-
erations to 10 and for Pegasos we use 100/λ, as suggested
in (Shwartz et al., 2007). For the regularization parameter
C and λ we use the following relations: λ = 1/C, Cperf =
C/100, Cbmrm = C and Clight = Cm. Throughout ex-
periments we use C as a shortcut for Clight.

5

5The exact cmdlines are: svm perf learn -l 2 -m 0
-t 0 --b 0 -e 0.1 -c Cperf , pegasos -lambda
λ -iter 100/λ -k 1, svm learn -m 0 -t 0 -b 0
-e 1e-3 -c Clight, bmrm-train -r 1 -m 10000 -i
999999 -e 1e-3 -c Cbmrm, svmsgd2 -lambda λ
-epochs 10
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Figure 2. Objective value vs. Training time of CPA (red), SGD
(green) and OCAS (blue) measured for a different number of
training examples.The dashed line shows the time required to run
SGD for 10 iterations. OCAS was stopped when the precision
fell below 10−6 or the training time for CPA was achieved. In
all cases OCAS achieves the minimal objective value and is even
on half of the datasets already in the beginning outperforming all
other methods including SGD.

4.2. Evaluation
In the following paragraphs we run and evaluate the afore-
mentioned experiments 1–5.

Training time and objective for optimal C We trained
all methods on all except the human splice dataset using the
training data and measured training time (in seconds) and
computed the unconstrained objective value F (w)

The obtained results are displayed in Table 2. The pro-
posed method – OCAS – consistently outperforms all its
competitors of the accurate solver category on all bench-
mark datasets in terms of training time while obtaining
a comparable (often the best) objective value. BMRM
and SVMperf implement the same CPA algorithm but due
to implementation specific details results can be different.
Our implementation of CPA gives very similar results (not
shown).6 Note that for SGD, Pegasos (and SVMperf2.0 –

6In contrast to SVMperf , BMRM and our implementation of
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astro ccat cov1 mnist worm artificial
svmlight 2.0939e+03 8.1235e+04 2.5044e+06 6.7118e+05

2972 22 77429 5295 1027310 41531 622391 2719 -
svmperf 2.1180e+03 8.1744e+04 2.5063e+06 6.7245e+05 3.2224e+04 1.3186e+02

38 2 228 228 520 152 1295 228 2029 4436 709 162
bmrm 2.1152e+03 8.1682e+04 2.5060e+06 6.7250e+05

42 2 327 248 678 225 2318 4327 -
ocas 2.1103e+03 8.1462e+04 2.5045e+06 6.7158e+05 3.1920e+04 1.3172e+02

21 1 48 25 80 10 137 10 125 258 76 13
pegasos 2.1090e+03 8.1564e+04 2.5060e+06 Error 4.6212e+04 1.3120e+03

2689K 4 70M 127 470M 460 270M 647 82M 213 25K 1
sgd 2.2377e+03 8.2963e+04 2.6490e+06 1.3254e+06 2.1299e+05 1.8097e+02

10 1 10 4 10 1 10 1 10 9 10 2

Table 2. Comparison of OCAS against other SVM solvers. ”-” means not converged, blank not attempted. Shown in bold is the
unconstrained SVM objective value Eq. (1). The two numbers below the objective value denote the number of iterations (left) and
the training time in seconds (right). Lower timing and objective values mean “better.” All methods solve the unbiased problem. As
convergence criteria the standard settings described in Section 4.1 are used. On MNIST pegasos ran into numerical problems. OCAS
clearly outperforms all of its competitors in the accurate solver category by a large margin achieving similar and often lowest objective
value. The objective value obtained by SGD and Pegasos is often far away from the optimal solution, cf. text for a further discussion.

not shown) the objective value sometimes deviates signifi-
cantly from the true objective. As a result the learned clas-
sifier may differ substantially from the optimal parameter
w∗. However as training times for SGD are significantly
below all others it remains unclear whether SGD achieves
the same precision using less time when run for further it-
erations. An answer to this question is given in the next
paragraph.

Speed of convergence (time vs. objective) To address
this problem we re-ran the best methods CPA, OCAS and
SGD, recording intermediate progress, i.e. while optimiza-
tion record time and objective for several time points.
The results are shown in Figure 2. Ocas was stopped
when reaching the maximum time or a precision of 1 −
F (w∗)/F (w) ≤ 10−6 and was in all cases achieving the
minimum objective. In three of the six datasets OCAS not
only as expected at a later time point achieves the best ob-
jective but already from the very beginning. Further anal-
ysis made clear that OCAS wins over SGD in cases where
large C were used and thus the optimization problem is
more difficult. Still plain SGD outcompetes even CPA. One
may argue that practically the true objective is not the un-
constrained SVM-primal value (1), but the performance on
a validation set, i.e. optimization is stopped when the vali-
dation error won’t change.

One should however note that one in this case does not ob-
tain an SVM but some classifier instead. Then a compar-
ison should not be limited to SVM solvers but should be
open to any other large scale approach, like on-line algo-
rithms (e.g. perceptrons) too. We argue that to compare

CPA did not converge for large C on worm even after 5000 itera-
tions. Most likely the core solver of SVMperf is more robust.

SVM solvers in a fair way one needs to compare objective
values. As it is still interesting to see how the methods
perform w.r.t. classification performance we analyze them
under this criterion in the next paragraph.

Time to perform a full model selection When using
SVMs in practice, their C parameter needs to be tuned in
model selection. We therefore train all methods using dif-
ferent settings7 for C on the training part of all datasets,
evaluate them on the validation set and choose the best
model to do predictions on the test set. As performance
measure we use the area under the receiver operator char-
acteristic curve (auROC) (Fawcett, 2003). Again among
the accurate methods OCAS outperforms its competitors
by a large margin, followed by SVMperf . Note that for all
accurate methods the performance is very similar and has
little variance. Except for the artificial dataset plain SGD
is clearly fastest while achieving a similar accuracy. How-
ever the optimal parameter settings for accurate SVMs and
SGD are different. Accurate SVM solvers use a larger C
constant than SGD. For lower C the objective function is
dominated by the regularization term ‖w‖ . A potential ex-
planation is that SGDs update rule puts more emphasize on
the regularization term and SGD when not run for a large
number of iterations does imply early stopping.

Scalability w.r.t. Dataset Size In this section, we inves-
tigate how computational time of OCAS, CPA and SGD
scales with the number of examples on the worm splice
dataset, for sizes 100 to 1, 026, 036. We again use our im-
plementation of CPA that shares essential sub-routines with
OCAS. Results are shown and discussed in Figure 3.

7For Worm and Artificial we used C =
0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, for CCAT, Astro, Cov1
C = 0.1, 0.5, 1, 5, 10 and for MNIST C = 1, 5, 10, 50, 100.
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astro ccat cov1 mnist worm artificial
avg svm perf 98.15± 0.00 98.51± 0.01 83.92± 0.01 95.86± 0.01 99.45± 0.00 86.38± 0.02

svmlight 1 152 1 124700 10 282703 10 9247 -
svmperf 1 13 1 1750 5 781 10 887 1 22983 0.005 24520

bmrm 1 17 1 2735 10 1562 10 20278 -
ocas 1 4 1 163 50 51 10 35 0.1 1438 0.005 6740

pegasos 98.15 98.51 83.89 95.84 99.27 78.35
1 59 1 2031 5 731 5 2125 5 1438 5 201

sgd 98.13 98.52 83.88 95.71 99.43 80.88
0.5 1 1 20 1 5 1 3 0.005 69 0.005 7

Table 3. Comparison of OCAS against other SVM solvers. ”-” means not converged, blank not attempted. Shown in bold is the area
under the receiver operator characteristic curve (auROC) obtained for the best model obtained via model selection over a wide range of
regularization constants C. In each cell, numbers on the left denote the optimal C, numbers on the right the training time in seconds to
perform the whole model selection. As there is little variance, for accurate SVM solvers only the mean and standard deviation of the
auROC are shown. SGD is clearly fastest achieving similar performance for all except for the artificial dataset. However often a smaller
C than the ones chosen by accurate SVMs is selected — an indication that the learned decision function is only remotely SVM-like.
Among the accurate solvers OCAS clearly outperforms its competitors. It should be noted that training times for all accurate methods
are dominated by training for large C (see Table 2 for training times for the optimal C). For further discussion see the text.
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Figure 3. This figure displays how the methods scale with dataset
size on the worm splice dataset. The slope of the “lines” in this
figure denotes the exponent e in O(me), where the black line de-
notes linear effort O(m). Both OCAS and SGD scale about lin-
early. Note that SGD is much faster (as it runs for a fixed number
of iterations and thus does early stopping).

Effects of Parallelization As OCAS training times are
very low on the above datasets, we also apply OCAS to
the 15 million human splice dataset. Using a 2.4GHz 16-
Core AMD Opteron Linux machine we run OCAS using
C = 0.0001 on 1 to 16 CPUs and show the accumulated
times for each of the subtasks, the total training time and
the achieved speedup w.r.t. the single CPU algorithm in
Table 4. Also shown is the time accumulated for each of
the threads. As can be seen — except for the line search
— computations distribute nicely. Using 8 CPU cores the
speedup saturates at a factor of 4.5, most likely as memory
access becomes the bottleneck (for 8 CPUs output compu-
tation creates a load of 28GB/s just on memory reads).

5. Conclusions
We have developed a new Linear SVM solver called
OCAS, which outperforms current state of the art SVM
solvers by several orders of magnitude. OCAS even in

CPUs 1 2 4 8 16
speedup 1 1.77 3.09 4.5 4.6
line search (s) 238 184 178 139 117
at (s) 270 155 80 49 45
output (s) 2476 1300 640 397 410
total (s) 3087 1742 998 684 671

Table 4. Speedups due to parallelizing OCAS achieved on 15 mil-
lion human splice dataset.

the early optimization steps shows often faster convergence
than the so far in this domain dominating approximative
methods. By parallelizing the subtasks of the algorithm,
OCAS gained additional speedups of factors up to 4.6 on a
multi-core multiprocessor machine. Using OCAS we were
able to train on a dataset of size 15 million examples (it-
self about 32GB in size) in just 671 seconds. As exten-
sions to one and multi-class are straight forward, we plan
to implement them in the near future. Furthermore OCAS
can be extended to work with a bias term. Finally it will
be future work to investigate how the kernel framework
can be incorporated into OCAS and how the O( 1

ε ) result
of (Teo et al., 2007) can be applied to OCAS. An imple-
mentation of OCAS is available within the shogun toolbox
http://www.shogun-toolbox.org and as a sepa-
rate library from http://ida.first.fraunhofer.
de/∼franc/ocas.
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A. Computing Line-search efficiently
The line-search (7) is an essential procedure of OCAS
which is called at every iteration. We show that the line-
search can be solved exactly in O(m log m) time. First,
we introduce a more compact notation for the objective
function of the line-search problem (7) F (wb

t−1(1 − k) +
wtk) by G(k) = g0(k) +

∑m
i=1 gi(k) where g0(k) =

1
2k2A0 + kB0 + C0, gi(k) = max{0, kBi + Ci}, A0 =
‖wb

t−1 − wt‖2, B0 = 〈wb
t−1,wt − wb

t−1〉 , C0 =
1
2
‖wb

t−1‖2 , Bi =
C

m
yi〈xi,w

b
t−1−wt〉 and Ci =

C

m
(1−

yi〈xi,w
b
t−1〉). Hence the line-search (7) involves solving

k∗ = argmink≥0 G(k) and computing wb
t = wb

t−1(1 −
k∗) + wtk

∗. As function G is convex the unconstrained
minimum of G is attained at the point k∗ at which the sub-
differential ∂G(k) contains zero, i.e. 0 ∈ ∂G(k∗). The
subdifferential of G is ∂G(k) = kA0 +B0 +

∑m
i=1 ∂gi(k),

∂gi(k) =

 0 if kBi + Ci < 0 ,
Bi if kBi + Ci > 0 ,

[0, Bi] if kBi + Ci = 0 .

Note that the subdifferential is not a function as there ex-

ki1

ki3
ki2

= k
∗

∂G(k)

|Bi2
|

|Bi1
|

|Bi3
|

0

k

Figure 4. Illustration of the subgradient ∂G(k) of the objective
function G(k) minimized in the line-search.

ist k for which ∂G(k) is an interval. The first term of
the subdifferential ∂G(k) is an ascending linear function
kA0 + B0 since A0 must be greater than zero (A0 is zero
only if the algorithm has converged but then the line-search
is not invoked). The term ∂gi(k) is either constantly zero,
if Bi = 0, or it is a step-like jump whose value changes at
the point ki = −Ci

Bi
. The value of ∂gi(k) w.r.t. k is sum-

marized in Table 5. Hence the subdifferential ∂G(k) is a

k < ki k = ki k > ki

Bi = 0 0 0 0
Bi < 0 Bi [Bi, 0] 0
Bi > 0 0 [0, Bi] Bi

Table 5. The value of ∂gi(k) with respect to k.

monotonically increasing function as is illustrated in Fig-
ure 4. To solve k∗ = argmink≥0 G(k) we proceed as fol-
lows: If max(∂G(0)) is strictly greater than zero then the
unconstrained minimum argmink G(k) is at a point less or
equal to 0. Thus the constrained minimum is attained at the
point k∗ = 0.

If max(∂G(0)) is less then zero then the optimum k∗ cor-
responds to the unconstrained optimum argmink G(k) at-
tained at the intersection between the graph of ∂G(k) and
the x-axis. This point can be found efficiently by sorting
K = {ki | ki > 0, i = 1, . . . ,m} and checking the condi-
tion 0 ∈ G(k) for k ∈ K and for k in the intervals which
split the domain (0,∞) in the points K. These computa-
tion are dominated by sorting the numbers K which takes
O(|K| log |K|).
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Abstract

We propose a new stopping condition for a Sup-
port Vector Machine (SVM) solver which pre-
cisely reflects the objective of the Leave-One-
Out error computation. The stopping condition
guarantees that the output on an intermediate
SVM solution is identical to the output of the op-
timal SVM solution with one data point excluded
from the training set. A simple augmentation
of a general SVM training algorithm allows one
to use a stopping criterion equivalent to the pro-
posed sufficient condition. A comprehensive ex-
perimental evaluation of our method shows con-
sistent speedup of the exact LOO computation by
our method, up to the factor of 13 for the linear
kernel. The new algorithm can be seen as an ex-
ample of constructive guidance of an optimiza-
tion algorithm towards achieving the best attain-
able expected risk at optimal computational cost.

1. Introduction

The interrelation between a computational complexity and
a generalization ability of learning algorithms has seldom
been considered in machine learning. Since the solutions
to a majority of learning problems are obtained by iter-
ative optimization algorithms, solution accuracy plays an
important role in the estimation of expected risk (Bartlett
& Mendelson, 2006). In practice, the available computa-
tional resources necessitate a tradeoff between approxima-
tion accuracy determined by the choice of a class of func-
tions, estimation error determined by a finite set of exam-
ples, and an optimization error determined by the accuracy

Appearing inProceedings of the25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

of a solver attainable within a given time budget (Bottou &
Bousquet, 2008).

The asymptotic analysis in (Bottou & Bousquet, 2008) pro-
vides upper bounds on the time required to reach a cer-
tain expected risk by a given algorithm. From the practi-
cal point of view, it is desirable to haveconstructiveinflu-
ence over a learning algorithms, by choosing its parame-
ters, such as e.g. learning rate or stopping conditions, to
reach the best attainable expected risk. The present contri-
bution provides an example of such a constructive mecha-
nism by developing optimal stopping conditions for SVM
training using a particular estimator of an expected risk –
the leave-one-out (LOO) error. Although exact computa-
tion of a LOO error is hardly used for large-scale learning
due to its computational burden, our method is feasible for
“small-scale” learning with “expensive” data (e.g. in bioin-
formatics or finance), especially when accurate estimation
of expected risk is required.

The LOO is known to provide an unbiased estimator of
the generalization error (Lunts & Brailovskiy, 1967). The
naive computation of the LOO error, i.e. by explicit re-
learning after exclusion of each single example, is in all but
the simplest cases impractical. The problem of speeding up
a computation of a LOO error has received significant at-
tention. The following approaches exist:

• LOO bounds provide an estimate of the LOO error
given an optimal solution of the SVM training prob-
lem ((Joachims, 2000; Vapnik & Chapelle, 2000;
Jaakkola & Haussler, 1999; Zhang, 2001)). These
bounds are computationally efficient but imprecise. In
practice, if an accurate estimate of the classification
accuracy is needed, exact computation of the LOO er-
ror is unavoidable.

• Incremental SVM (Cauwenberghs & Poggio, 2000)
allows one to exactly determine for each candidate
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training point –after obtaining the optimal SVM so-
lution – whether or not it will be a LOO error. This
approach avoids explicit re-training, but incremental
unlearning of points is complicated and requires spe-
cial organization of matrix operations (Laskov et al.,
2007).

• Loose stopping conditions based on theε-KKT allow
one to speed up the LOO computationbeforeobtain-
ing an optimal solution. Such methods, (e.g. (Lee
& Lin, 2000; Martin et al., 2004)) use fairly simple
heuristics, but lack theoretical justification that would
connect theε to a precision of the LOO computation.
As it is illustrated in the examples in Section 2, these
methods can also be imprecise.

In this contribution we propose a new stopping condition
for an SVM solver whichprecisely reflectsthe objective
of the LOO error computation. Our main result, given in
Theorem 1, provides a sufficient condition for which the
output on an intermediate SVM solution is identical to the
output of the optimal SVM solution with one data point ex-
cluded from the training set. Although this sufficient con-
dition cannot be computed in practice, we propose a simple
augmentation of a general SVM training algorithm which
allows one to use a stopping criterion equivalent to the pro-
posed sufficient condition.

2. Leave-One-Out Error Estimate For
Support Vector Machines Classifier

Let X be a set of inputs andY = {−1, +1} a set
of labels of an analyzed object. Let furtherTXY =
{(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m be a finite train-
ing set i.i.d. sampled from unknownP (x, y). The goal is
to learn a classifierf : X → Y minimizing the probability
of misclassificationR[f ] =

∫
V (y, f(x))dP (x, y) where

V (y, y′) = 1 for y 6= y′ andV (y, y′) = 0 otherwise.

The SVMs represent the input states in the Reproducing
Kernel Hilbert Space (RKHS) via a mapΦ : X → H which
is implicitly defined by a kernel functionk : X × X →
R (Schölkopf & Smola, 2002). The classifier is assumed to
be linear, i.e.,f(x; w, b) = 〈w,Φ(x)〉 + b, wherew ∈ H,
b ∈ R are unknown parameters and〈·, ·〉 denotes an inner
product in RKHS. BecauseR[f ] cannot be minimized di-
rectly due to the unknownP (x, y), the SVMs replaceR[f ]
by a regularized risk its minimization leads to

(w∗, b∗) = argmin
w∈H,b∈R

(
1

2
‖w‖2

H+C
∑

i∈I

V̂ (yi, f(xi; w, b))

)

(1)
where C ∈ R

+ is a regularization constant,
V̂ (yi, f(xi; w, )) = max(0, 1 − yif(xi; w, b)) is a convex
piece-wise linear approximation ofV (yi, f(xi; w, b)) and

I = {1, . . . , m}. By the Representer theorem (Schölkopf
& Smola, 2002), the optimal SVM classifierf(x; w∗, b∗)
can be expressed in the form

f(x; α, b) =







+1 if
∑

i∈I

αiyik(x, xi) + b ≥ 0 ,

−1 if
∑

i∈I

αiyik(x, xi) + b < 0 ,

(2)
whereα = (α1, . . . , αm)T ∈ R

m, b ∈ R. Substituting (2)
to (1) allows to find the optimal SVM classifier by solving
a convex QP task

(α∗, b∗, ξ∗) = argmin
(α,b,ξ)∈A

F (α, b, ξ) (3)

where the convex objective function reads

F (α, b, ξ) =
1

2

∑

i∈I

∑

j∈I

αiαjyiyjk(xi, xj) + C
∑

i∈I

ξi ,

and the convex feasible setA contains all(α ∈ R
m, b ∈

R, ξ ∈ R
m) satisfying

yi

(
∑

j∈I

αjyjk(xi, xj) + b

)

≥ 1 − ξi , i ∈ I ,

ξi ≥ 0 , i ∈ I .

Minimizing the regularized risk (1) (or QP task (3) respec-
tively) allows to find parameters(α, b) of the SVM classi-
fier provided the hyper-parameters, i.e., the kernel function
k and the regularization constantC, are known. This is not
the case in practice and the hyper-parameters(C, k) must
be optimized as well. A common approach is to select the
best(C, k) from a given finite setΘ by minimizing some
performance measure. The setΘ is usually created by rea-
sonably discretizing the hyper-parameters space. As the
performance measure, the LOO errorRLOO[f ] is a com-
mon choice.

Let (α∗(r), b∗(r), ξ∗(r)) denote the optimal solution of the
primal QP task (3) withr-th example removed from the
training set which is equivalent to solving the task

(α∗(r), b∗(r), ξ∗(r)) = argmin
(α,b,ξ)∈A(r)

F (α, b, ξ) , (4)

whereA(r) = A ∩ {(α, b, ξ) | αr = 0}, i.e.,A(r) de-
notes the original feasible setA enriched by an additional
constraintαr = 0. The LOO error estimator is defined as

RLOO[f(·; α∗, b∗)] =
1

m

∑

r∈I

V (yr, f(xr; α
∗(r), b∗(r))) .

(5)

The major practical disadvantage of the LOO error is its
high computational cost. A naive approach to compute
LOO requires solvingm different QP tasks (4). In some
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cases, however, the valuef(xr; α
∗(r), b∗(r)) can be im-

mediately derived from the optimal solution(α∗, b∗, ξ∗)
computed from the entire training set. Table 1 summarizes
the known sufficiency checks; the implication 1 is gener-
ally known and the implications 2, 3 are due to (Joachims,
2000).

1. If α∗
r = 0 thenyr = f(xr; α

∗(r), b∗(r)).

2. If yr 6= f(xr; α
∗, b∗) thenyr 6= f(xr; α

∗(r), b∗(r)).

3. Let R2 be an upper bound onk(x, x) − k(x, x′),
∀x, x′ ∈ X , and let(α∗, b∗, ξ∗) be a stable solution
which means that there exist at least onei ∈ I such
that0 < α∗

i < C. In this case, if2α∗
rR

2 + ξ∗r < 1
thenyr = f(xr; α

∗(r), b∗(r)).

Table 1.Sufficiency checks for computingf(xr; α
∗(r), b∗(r))

directly from(α∗, b∗, ξ∗).

A portion of the training examples for which the sufficiency
checks apply depends on the problem at hand (for empirical
study see (Martin et al., 2004)). (Joachims, 2000) proposed
using the sufficiency checks to compute an upper bound on
the LOO error calledξα-estimator. It has been empirically
shown, that in general theξα-estimator is not sufficiently
precise for the hyper-parameter tuning (Duan et al., 2003).
Algorithm 1 shows a standard procedure of computing the
LOO error exactly with the use of the sufficiency checks to
reduced the number of cases when the solution of the QP
task (4) is required.

Algorithm 1 Computation of the LOO Error

1: Solve the QP task (3) to obtain(α∗, b∗, ξ∗).
2: Apply the sufficiency checks from Table 1 to compute

f(xr; α
∗(r), b∗(r)) from (α∗, b∗, ξ∗).

3: For examples unresolved in Step 2 solve the QP
task (4) to obtain(α∗(r), b∗(r)).

4: Compute the LOO error by (5) using
f(xr; α

∗(r), b∗(r)), r ∈ I obtained in Steps 2
and 3.

Algorithm 1 requires the use of an optimization method
solving the QP tasks (3) and (4) exactly, i.e., producing
the optimal solutions. Although such optimization meth-
ods exist, they are applicable only for very small problems.
In practice, the QP tasks are solved only approximately via
their dual representation which is more suitable for opti-
mization due to a simpler feasible set. In particular, the
minimizerα∗ of the primal QP task (3) can be equivalently
computed by solving the dual QP task

α∗ = argmax
α∈B

(
∑

i∈I

αi −
1

2

∑

i∈I

∑

j∈I

αiαjyiyjk(xi, xj)

)

,

(6)

whereB is a convex feasible set which contains allα ∈ R
m

satisfying

∑

i∈I

αiyi = 0 , and 0 ≤ αi ≤ C , i ∈ I .

We will useG(α) to denote the objective function of (6).
Having α∗ computed, the remaining primal variables
(b∗, ξ∗) can be obtained easily from the Karush-Kuhn-
Tucker (KKT) optimality conditions (e.g., (Boyd & Van-
denberghe, 2004)). Similarly, the minimizerα∗(r) of the
QP task (4) is obtained by solving the dual

α∗(r) = argmax
α∈B(r)

G(α) , (7)

whereB(r) = B ∩ {α | αr = 0} and the primal variables
(b∗(r), ξ∗(r)) can be again obtained by the KKT condi-
tions. From the optimization point of view, the QP tasks (6)
and (7) are equivalent since the latter can be converted to
the former simply by excluding ther-th variable. Thus
we now concentrate only on the optimization of the QP
task (6).

Algorithm 2 Commonly used iterative QP solver

1: Initialize t := 0 andα(t) ∈ B.
2: t := t + 1 .
3: Updateα(t−1) → α(t), i.e., findα(t) ∈ B such that

G(α(t−1)) < G(α(t)).
4: If α(t) satisfies theε-KKT conditions (8) halt other-

wise go to 2.

A framework of a commonly used QP solver optimiz-
ing (6) describes Algorithm 2. Among the most popu-
lar methods which fit to the framework of Algorithm 2
belong the Sequential Minimal Optimizer (SMO) (Platt,
1998), SVMlight (Joachims, 1998) and other decomposi-
tion methods (e.g. (Vapnik, 1995; Osuna et al., 1997)). All
these solvers iteratively increase the dual criterionG(α)
until the solution satisfies stopping conditions. A relaxed
version of the KKT optimality conditions is the most fre-
quently used stopping criterion: letε ≥ 0 be a prescribed
number and∇i(α) = 1 − yi

∑

j∈I αjyjk(xi, xj); then a
vectorα ∈ B satisfies the relaxed KKT conditions (e.g.
(Keerthi et al., 2001)) if there existb ∈ R such that

∇i(α) + byi ≤ ε , if αi = 0 ,

−∇i(α) + byi ≤ ε , if αi = C ,

| − ∇i(α) + byi | ≤ ε , if 0 < αi < C .

(8)

The tightness of the stopping conditions (8) is controlled
by ε ≥ 0; hereafter we will refer to (8) as theε-KKT
conditions. An advantage of theε-KKT is their simplic-
ity and a low computational overhead:O(m) operations
since∇i(α) is usually available during the course of the
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QP solver. A disadvantage of theε-KKT conditions is a
tricky choice ofε. Providedε = 0, the solutionα satisfy-
ing theε-KKT conditions is guaranteed to be optimal. The
practically applicable QP solvers, however, are guaranteed
to halt in a finite number of iterations only forε > 0. A
typically used value isε = 0.001, e.g., in software pack-
agesSV M light ((Joachims, 1998)) orsvmlib ((Chang &
Lin, 2001)). To our knowledge, there is no theoretical result
connectingε > 0 to the value ofRLOO[f(·; α∗, b∗)] which
is the only desired outcome of the entire computation.

We will illustrate the impact ofε when the LOO error esti-
mator is used for a model selection. LetΘ be a given finite
set of hyper-parametersθ = (C, k). Let RLOO(θ, ε) de-
note the LOO error estimate computed for givenθ using
Algorithm 1 with a QP solver in Algorithm 2. Thus the
estimated LOO errorRLOO(θ, ε) is a function of both the
hyper-parametersθ andε. For a fixed valueε > 0, the
model selection produces the hyper-parameters

θ(ε) = argmin
θ∈Θ

RLOO(θ, ε) . (9)

Figure 1 plots the behavior ofRLOO(θ(ε), ε) and
RLOO(θ(10−4), ε), as well as the cost of the LOO error
computation as a function ofε for three datasets selected
from the IDA repository (cf. Section 5).

The “golden truth” expected risk is given by the left-most
plots in the graphs (usingε = 10−4 for both model se-
lection and risk estimation). The dashed line representing
RLOO(θ(10−4), ε) shows that the expected risk is slightly
overestimated provided we use high accuracy for model
selection and variable accuracy for risk estimation. The
solid line representingRLOO(θ(ε), ε) shows that a low-
accuracy LOO computation used in model selection even-
tually results in overfitting, as a model is selected that
grossly underestimates the expected risk. Interestingly,
both plots coincide until a certain breakdown point beyond
which the low-accuracy LOO estimation runs aground. The
breakdown point varies between0.001 and 0.1 depend-
ing on a dataset. This suggests that a commonly used
ε = 0.001 is a reasonable setting to obtain an accurate
estimate. It is, however, clear from the timing plots that
knowing the right accuracy could significantly lower the
computational cost.

3. Exact Computation of the LOO Error

In this section we show that a response of the optimal clas-
sifier f(xr; α

∗(r), b∗(r)), required when the LOO error is
being computed, can be obtained without the need to solve
the QP task (4) (or its dual (7)) optimally. Let us define
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Figure 1.Influence of the parameterε of theε-KKT conditions on
the LOO error estimate and the required computational time for
three data sets (Banana, German and Image) selected from IDA
repository.
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three convex sets

A+(r) = A(r) ∩
{

(α, b, ξ) | ∑

i∈I

αiyik(xi, xr) + b > 0
}

,

A0(r) = A(r) ∩
{

(α, b, ξ) | ∑

i∈I

αiyik(xi, xr) + b = 0
}

,

A−(r) = A(r) ∩
{

(α, b, ξ) | ∑

i∈I

αiyik(xi, xr) + b < 0
}

.

(10)
Notice, that to computef(xr ; α

∗(r), b∗(r)) we do not nec-
essarily need to know the optimal(α∗(r), b∗(r), ξ∗(r)) but
it suffices to determine whether(α∗(r), b∗(r), ξ∗(r)) be-
longs toA+(r)∪A0(r) or toA−(r). Our method is based
on a simple observation which can be formally stated by
the following theorem:

Theorem 1 For any(α̂, b̂, ξ̂) ∈ A(r) which satisfy

F (α̂, b̂, ξ̂) < min
(α,b,ξ)∈A0(r)

F (α, b, ξ) , (11)

the equationf(xr; α̂, b̂) = f(xr; α
∗(r), b∗(r)) holds.

Proof 1 We proof Theorem 1 by transposition: we show
that f(xr; α̂, b̂) 6= f(xr; α

∗(r), b∗(r)) implies the as-
sumption (11) is violated. Without loss of generality let
f(xr; α̂, b̂) = +1 andf(xr; α

∗(r), b∗(r)) = −1. Let us
define three vectors

θ̂ =





α̂

b̂

ξ̂



 , θ∗(r) =





α∗(r)
b∗(r)
ξ∗(r)



 , θ0 =





α0

b0

ξ0



 .

With a slight abuse of notation, we will handleF as a func-
tion of a single argumentθ ∈ R

2m+1. Then the assump-
tionsf(xr; α̂, b̂) = +1 andf(xr; α

∗(r), b∗(r)) = −1 is
equivalent toθ̂ ∈ A+(r) ∪ A0(r) and θ∗(r) ∈ A−(r).
From (10) it follows that for anŷθ ∈ A+(r) ∪ A0(r)
and θ∗(r) ∈ A−(r) there existsτ ∈ [0, 1] such that
θ0 = ((1 − τ)θ̂ + τθ∗(r)) ∈ A0(r). SinceF is convex,
τ ∈ [0, 1] andF (θ∗) ≤ F (θ̂) we can write

F (θ0) ≤ (1 − τ)F (θ̂) + τF (θ∗(r))

≤ max
{
F (θ̂), F (θ∗(r))

}
= F (θ̂) ,

which shows that there existθ0 ∈ A0(r) such that
F (θ0) ≤ F (θ̂). Using the original notation, this is equiv-
alent toF (α0, b0, ξ0) ≤ F (α̂, b̂, ξ̂). However, this contra-
dicts the assumption (11) which was to be shown.

By Theorem 1, any triplet(α̂, b̂, ξ̂) ∈ A(r) satisfying the
condition (11) determines a classifierf(x; α̂, b̂) which has
the same response on the inputxr as the optimal classifier
f(x; α∗(r), b∗(r)). From a practical point of view, this re-
sult cannot be used directly due to the unknown value of
the right hand side of the inequality (11), i.e.,

min
(α,b,ξ)∈A0(r)

F (α, b, ξ) . (12)

The problem (12) is a convex QP task its dual reads

β∗(r) = max
β∈B0(r)

(
∑

i∈I

βi−
1

2

∑

i∈I

∑

j∈I

βiβjyiyik
′(xi, xj)

)

,

(13)
wherek′(xi, xj) = k(xi, xj) − k(xr, xi) − k(xr , xj) −
k(xr, xr) andB0(r) is a convex feasible set which contains
all β ∈ R

m satisfying

0 ≤ βi ≤ C , i ∈ I \ {r} , and βr = 0 .

We will useH(β) to denote the objective function of (13).
By the weak duality theorem, the inequalityF (α, b, ξ) ≥
H(β) holds for any(α, b, ξ) ∈ A0(r) andβ ∈ B0(r).
This allows us to derive the following useful corollary:

Corollary 1 For any (α̂, b̂, ξ̂) ∈ A0(r) and β ∈ B0(r)
which satisfy

F (α̂, b̂, ξ̂) < H(β̂) , (14)

the equationf(xr; α̂, b̂) = f(xr; α
∗(r), b∗(r)) holds.

Notice, that the condition (14) is satisfiable except for a
very rare degenerate cases. It is easy to show, that if
the condition (14) is not satisfiable then the error estimate
V (yr; f(xr; α

∗(r), b∗(r)) is unstable anyway since there
exists an optimal classifierf(x; α∗(r), b∗(r)) its separat-
ing hyperplane passes through the tested pointxr.

4. Algorithm

A direct application of Corollary 1 would require solving
a mixed set of one quadratic and many linear inequalities.
We are not aware of any simple and efficient algorithm to
solve such task. Instead, we show how to use Corollary 1
to derive a novel stopping condition for a standard iterative
QP solver (cf. Algorithm 2).

Algorithm 3 Proposed QP solver

1: Initialize t := 0, α(t) ∈ B(r) andβ(t) ∈ B0(r).
2: t := t + 1.
3: Updateα(t−1) → α(t), i.e., findα(t) ∈ A(r) such

thatG(α(t−1)) < G(α(t)).
4: If α(t) satisfies theε-KKT conditions then halt other-

wise continue to Step 5.
5: For fixedα(t) compute feasibleb(t) andξ(t) minimiz-

ing F (α(t), b, ξ).
6: Updateβ(t−1) → β(t), i.e., findβ(t) ∈ B0(r) such

thatH(β(t−1)) < H(β(t)).
7: If F (α(t), b(t), ξ(t)) < H(β(t)) holds then halt other-

wise go to Step 2.

The proposed method is described by Algorithm 3 which,
compared to a standard QP solver, involves three additional
Steps 5, 6 and 7. In Step 5, the algorithm computes the
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primal variables(ξ(t), b(t)) minimizing F (α(t), b(t), ξ(t))
which amounts to a simple optimization problem sinceα(t)

is known. In Step 6, the algorithm maximizes the aux-
iliary criterion H(β(t)) w.r.t. β(t). Finally, in Step 7,
the algorithm checks whetherH(β(t)) has become greater
thanF (α(t), b(t), ξ(t)); as soon as this occurs the algorithm
halts sincef(xr; α

(t), b(t)) = f(xr; α
∗(r), b∗(r)) is guar-

anteed according to Corollary 1. Theε-KKT conditions are
retained in Step 3 of Algorithm 3 since the condition (14)
need not be satisfiable in general.

The proposed Algorithm 3 is intended to be used for com-
putation off(xr ; α

∗(r), b∗(r)), i.e., it is called in Step 4
of Algorithm 1 calculating the LOO error, as a replacement
for the standard QP solver. In terms of accuracy of comput-
ing the LOO error, the proposed algorithm cannot perform
worse than the standard one. If theε-KKT conditions are
satisfied earlier than the proposed stopping condition then
both the solvers find an identical classifier. In the oppo-
site case, however, the response of the classifier found by
the proposed algorithm is guaranteed to be optimal. Albeit
the proposed algorithm provides a theoretical guarantee for
the found solution to be optimal, from the practical point
of view both the algorithms will produce an identical LOO
error estimate for a sufficiently lowε. We will empirically
show, however, that the proposed algorithm is numerically
more efficient though it optimizes two QP tasks simulta-
neously compared to the standard approach. The higher
efficiency is achieved by the proposed stopping condition
which is often satisfied earlier than theε-KKT condition.

To increase the numerical performance we also imple-
mented the following simple efficiency test. The proposed
algorithm is not applied on a single example but rather on
a set of examples which cannot be resolved by the suffi-
ciency checks. We experimentally observed, that the effi-
ciency of the proposed algorithm can be reliably estimated
from a few examples. This allows us to switch to using the
standard QP solver when the efficiency of the proposed al-
gorithm is low. The efficiency test, implemented in Step
4 of Algorithm 1, works as follows: We apply the pro-
posed Algorithm 3 on the firstM examples. LetMPrec

denote the number of examples for which Algorithm 3 halt
in Step 7 (i.e., the proposed stopping condition was ap-
plied). If MPrec/M < 0.5 we switch from using Algo-
rithm 3 to using the standard Algorithm 2. We empirically
foundM = 10 to be a good choice number in all our ex-
periments.

5. Experiments

In this section, we experimentally evaluate the proposed
method for computing the LOO error compared to the stan-
dard approach on the datasets from the IDA benchmark

repository1.

The standard approach computes the LOO error using the
procedure described by Algorithm 1. An iterative QP
solver with theε-KKT conditions (Algorithm 2) is called
whenever the solution of the QP task is required. In partic-
ular, we used the Improved SMO algorithm (Keerthi et al.,
2001) to implement the QP solver. In addition, we imple-
mentedα-seeding approach (DeCoste & Wagstaff, 2000)
which re-uses the solutionα∗ (obtained in Step 1 of Algo-
rithm 1) to efficiently set up the initial solution of the QP
solver (initialization ofα(0) in Step 1 of Algorithm 2).

The proposed approach uses the same procedure for com-
puting the LOO error except for a different QP solver used
in Step 4 of Algorithm 1. As the QP solver, we applied
the proposed Algorithm 3 which involves optimization of
the QP tasksG(α(t)) w.r.t. α(t) ∈ B(r) andH(β(t)) w.r.t.
β(t) ∈ B0(r) required in Step 3 and Step 6, respectively.
We again used the Improved SMO algorithm to optimize
G(α(t)) w.r.t. α(t) ∈ B(r) and its straightforward modifi-
cation to optimizeH(β(t)) w.r.t. β(t) ∈ B0(r) (B0(r) does
not contain the equality constraint thus a single variable can
be updated).

The experiments were carried out in Matlab 6 environment
runnig on the Linux machine with the AMD K8 2.2GHz
processor. Algorithms 1,2 and 3 were implemented in C.

The IDA repository consists of13 artificial and real-world
binary classification problems collected from UCI, DELVE
and STATLOG repositories (c.f. (Rätsch et al., 2001)). For
each dataset, there are100 random realizations of training
and testing set (except for Image and Splice sets, where it
is 20). The training parts of the first5 realizations are used
for model selection. The best hyper-parameters(C, k) were
selected from a finite setΘ by minimizing an average LOO
error R̂LOO. The average LOO error̂RLOO is computed
over the5 realizations.

We considered two separate model selection problems for
the linear and the RBF kernel. In the case of the liner ker-
nel, the model was select fromΘ = {C | C = 10i , i =
−2, . . . , 2}×{k | k(x, x′) = 〈x, x′〉} and, in the case of the
RBF kernelΘ = {C | C = 10

i
7

log(500) , i = 0, . . . , 7}×
{k | k(x, x′) = exp(−2

i
7
11‖x−x′‖2), i = 0, . . . , 7}. Hav-

ing the model selected, the classifier is trained for all100
realizations of the training sets and the testing error is com-
puted on the corresponding testing set. The reported testing
errorsR̂TST are averages accompanied with the standard
deviations computed over the100 realizations.

Table 2 shows the average LOO errorsR̂LOO and the test-
ing errorsR̂TST for the best selected models. We experi-
mentally verified, that both the standard and the proposed

1http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
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approach yielded identical LOO errors since a low value of
ε = 0.001 was used in theε-KKT conditions. Therefore
the errors listed in Table 2 apply for both the approaches.
We also found that the classification errors for the RBF ker-
nel are very similar to the errors reported in (Rätsch et al.,
2001) for the SVM classifier with the RBF kernel tuned
by the5-fold cross-validation. Interestingly, the linear ker-
nel achieves in some cases comparable performance as the
more complex RBF kernel. We can also observe, that the
average LOO errorŝRLOO for the linear kernel are very
good estimators of the testing errorsR̂TST .

Table 3 summarizes the numerical efficiency of the pro-
posed approach and the standard one. The efficiency was
measured in terms of the computational time and the num-
ber of kernel evaluations. The reportedT ime is the overall
computational time spent by a given algorithm to calculate
all the LOO errors needed for the model selection. E.g.,
in the case of the RBF kernel it was necessary to compute
5×64 = 320 LOO error estimates (5 stands for the number
of the training set realizations and64 is the cardinality of
Θ). Similarly, the number of kernel evaluationsKerEval

is the overall value normalized to the number of training
datam, i.e.,KerEval is the number of columns of the ker-
nel matrix. In the case of the standard approach, we listed
the absolute values ofT ime andKerEval. In the case of
the proposed approach, we listed the gained speed up com-
puted as the ratioStandard/Proposed. The last column
of Table 3 contains the valuePrec being the percentage of
the cases when the proposed stopping condition was satis-
fied earlier then theε-KKT conditions, i.e., inPrec cases
the computed LOO error is theoretically guaranteed to be
optimal.

It can be seen, that the proposed method was never slower
(up to the rounding error in computing the speed up) than
the standard algorithm both in terms of the computational
time and the kernel evaluations. A higher performance was
achieved for the linear kernel compared to the RBF ker-
nel. For the linear kernel, the proposed approach was on
average4 times faster than the standard approach. The best
performance was achieved for the Image dataset when the
speed up was nearly13. For RBF kernel, the average speed
up was slightly higher than2, and, in the best case the speed
up was5 for the Banana dataset. It shows that while the ef-
ficiency gained for the RBF kernel is only moderate, in the
case of the linear kernel it is much appealing.

6. Conclusions

The new stopping conditions for an SVM solver proposed
in this contribution allow to determine an optimal solution
accuracy needed for exact computation of a LOO error. Our
new algorithm allows one to significantly reduce complex-
ity of the LOO error computation without a risk of over-

Classification performance
Linear kernel RBF kernel

R̂LOO R̂TST R̂LOO R̂TST

Banana 41.40 47.80 (±4.58) 8.55 10.43 (±0.44)
Breast 27.20 29.00 (±4.83) 23.00 26.06 (±4.91)
Diabetis 22.05 23.44 (±1.70) 21.50 23.27 (±1.65)
Flare 32.85 32.33 (±1.82) 32.31 34.04 (±2.04)
German 24.91 24.06 (±2.22) 23.71 23.61 (±2.23)
Heart 14.24 15.22 (±3.22) 13.53 15.55 (±3.36)
Image 15.48 15.34 (±0.84) 2.94 3.15 (±0.63)
Ring. 23.45 24.59 (±0.67) 1.10 1.60 (±0.11)
Splice 15.36 16.20 (±0.59) 10.60 10.95 (±0.64)
Thyroid 8.43 10.16 (±2.60) 2.29 4.87 (±2.28)
Titanic 21.20 23.01 (±4.62) 15.47 23.99 (±3.47)
Twono. 2.50 2.90 (±0.27) 2.25 2.59 (±0.18)
Wave. 10.90 12.95 (±0.54) 8.85 10.50 (±0.43)

Table 2.Classification performance of the best models selected by
minimizing the LOO error estimate.

fitting due to imprecise optimization. Our experiments on
13 datasets from the IDA repository achieved the average
speedup of 2 to 4 times and the maximal speedup of up to
the factor of 13.

These results demonstrate the importance of investigating
relationships between the optimization accuracy and the
expected risk estimation in machine learning, as suggessed
by recent work (Bartlett & Mendelson, 2006; Bottou &
Bousquet, 2008). To our knowledge, the new algorithm
is the first theoretically justified constructive instrument to
guide an optimization algorithm – for the particular case of
the SVM QP solver and the LOO error – towards achieving
the best attainable expected risk at optimal computational
cost. Future work should explore more general mecha-
nisms of relating parameters of optimization algorthms de-
ployed in machine learning with the estimation of expected
risk.
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Abstract
We consider the task of reinforcement learning in
an environment in which rare significant events
occur independently of the actions selected by
the controlling agent. If these events are sam-
pled according to their natural probability of oc-
curring, convergence of conventional reinforce-
ment learning algorithms is likely to be slow, and
the learning algorithms may exhibit high vari-
ance. In this work, we assume that we have ac-
cess to a simulator, in which the rare event prob-
abilities can be artificially altered. Then, impor-
tance sampling can be used to learn with this sim-
ulation data. We introduce algorithms for pol-
icy evaluation, using both tabular and function
approximation representations of the value func-
tion. We prove that in both cases, the reinforce-
ment learning algorithms converge. In the tabular
case, we also analyze the bias and variance of our
approach compared to TD-learning. We evaluate
empirically the performance of the algorithm on
random Markov Decision Processes, as well as
on a large network planning task.

1. Introduction
We consider a practically important class of control tasks,
in which rare (potentially catastrophic) events might take
place. For example, in a computer network, links and nodes
can fail, causing traffic to be undelivered and large penal-
ties to be incurred. A robot exploring a rugged terrain may
be caught by a sudden gust of wind which rolls it over. An
investment agent may be faced with a market that is in tur-

Appearing in Proceedings of the 25th International Conference on
Machine Learning, Helsinki, Finland, 2008. Copyright 2008 by
the author(s)/owner(s).

moil due to a sudden unforeseen event. In such cases, the
rare events occur independently of the actions of the agent,
with some small probability. However, such rare events can
have a disproportionate effect on the agent’s utility. If such
events are sampled on-line, as is the case in most reinforce-
ment learning (RL) applications, they may not occur often
enough to obtain an accurate estimate of the value function.

In this paper, we formalize this problem and propose solu-
tion algorithms. We assume that learning will be done in a
simulation environment in which the probability of the rare
event can be set to desired levels. In most safety-critical
applications, training in a simulated environment is a com-
mon approach. In this case, we can sample rare events more
often, and use importance sampling corrections similar to
(Precup et al. 2000, 2001) to evaluate a given policy. How-
ever, importance sampling can cause high variance in the
learning updates. We propose to use an adaptive algorithm
in which the sampling rate for the rare event is adjusted in
such a way as to minimize variance. For the case in which
the value function is represented as a table, we show that
the algorithm converges and provide a bias-variance analy-
sis, based on (Mannor et al., 2007) . For the case of linear
function approximation, we prove convergence. We note
that a bias-variance analysis for this case is not even avail-
able for TD-learning without importance sampling. We il-
lustrate the performance of our approach on two domains:
random Markov Decision Processes (MDPs), and a large
network planning task. Our approach proves quite success-
ful when compared to on-line TD-learning.

The literature on simulation of rare events is vast; see
(Bucklew, 2004; Asmussen & Glynn, 2007) for compre-
hensive reviews. There are many Markov (or Markov-like)
models that have been studied in the simulation community
including queues, inventory control problems, call centers,
communication systems, etc. The main objective of these
works is to estimate the probability of a rare event by sim-
ulating the system under an alternative probability mea-
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sure, and then use importance sampling to unbias the re-
sults. The search for the optimal change of measure can be
done in several ways, including the cross-entropy method
(Rubinstein & Kroese, 2004) and stochastic approxima-
tion. Variance reduction has also been studied within the
RL community. In particular, (Baxter & Bartlett, 2001)
considered adaptive control-variates for policy gradient al-
gorithms.

The explicit modeling of rare events in reinforcement
learning-style algorithms was studied in (Bhatnagar et al.,
2006). Their objective is to find an optimal control policy
conditioned on the occurrence of a rare event. A model that
closely resembles our approach is presented in (Ahamed
et al., 2006). However, they assume that the model of
the transition probabilities is known, and can be arbitrar-
ily modified. We make a less restrictive assumption: the
only parameter of the simulator that can be modified is the
rate at which the rare events occur. Also, the bias-variance
analysis and discussion of the function approximation case
are novel.

The rest of the paper is organized as follows. In Section 2
we provide the essential background on RL and MDPs. In
Section 3 we formally describe the rare events model used
in this paper. We review RL algorithms that use importance
sampling in Section 4. The learning algorithm we propose
is described in Section 5. In Section 6 we present bias-
variance results for learning in MDPs with rare events. Sec-
tion 7 presents a learning algorithm with function approx-
imation and a proof of convergence in this case. The em-
pirical results of our approach are presented in Section 8.
Finally, Section 9 presents conclusions and avenues for fu-
ture work.

2. Background
We use the standard RL framework (Sutton & Barto, 1998)
in which an agent interacts with its environment at discrete
time steps t = 0,1,2, . . . . At time t, the agent finds itself
in a state st ∈ S, chooses an available action at ∈ Ast , and
then receives a numerical reward, rt+1 ∈R and observes the
next state st+1. We denote A =

S
s∈S As. If the environment

is modeled as an MDP, its dynamics are characterized by
the stationary transition probability distribution:

p(s′|s,a) = Pr{st+1 = s′|st = s,at = a},

and a bounded, real-valued reward function r(s,a,s′) with
|r(s,a,s′)| ≤ Rmax < ∞,∀s,s′ ∈ S,a ∈ A.

We are concerned with the problem of policy evaluation
in discounted infinite horizon problems with discount fac-
tor γ ∈ (0,1). The agent chooses its actions according to a
stationary policy π(s,a) = Pr{at = a|st = s}. We are inter-
ested in computing the state-value function V π : S→ R for

the given policy π. This value function is the solution to the
well-known Bellman equations

V π(s) = ∑
a∈A

π(s,a) ∑
s′∈S

p(s′|s,a)[r(s,a,s′)+ γV π(s′)]. (1)

In RL, this value function is often estimated on-line using
the well-known TD-learning algorithm (Sutton, 1988). If
the actions are chosen using the desired policy π, after ob-
serving transition (s,a,r,s′), the estimate of the value func-
tion, V , can be updated as:

V (s)←V (s)+α
[
r + γV (s′)−V (s)

]
. (2)

In control tasks, the objective is to find the policy that max-
imizes V π(s) at all states s.

3. Rare Events
We are concerned with problems involving rare, significant
events that occur as a result of environmental factors, and
which are independent of the current action taken by the
agent. We model this using a mixture of two separate tran-
sition probability distributions: f (s′|s,a), which captures
the environment dynamics during “normal” operating con-
ditions, and g(s′|s), which is the “rare event” transition dis-
tribution. We assume that at every state s ∈ S, there is a
small probability, ε(s), that an unusual event might occur
from this state. In this case, the transition to the next state
is determined exclusively by g. If such an event does not
occur, the next state is drawn according to f , and depends
on both the current state and the agent’s action. Hence, the
transition probability in the environment can be re-written
as:

p(s′|s,a) = (1− ε(s)) f (s′|s,a)+ ε(s)g(s′|s). (3)

Without loss of generality, we will assume that the “nor-
mal” states (reachable by f ) and the “rare event” states
(reachable by g) are disjoint. Hence, the transition prob-
ability distribution can be re-written as:

p(s′|s,a) =

{
(1− ε(s)) f (s′|s,a) if s′ 6∈ T ,

ε(s)g(s′|s) if s′ ∈ T ,

where T ⊆ S is the set of “rare event” states.

We are concerned with rare events that have a signifi-
cant impact on the state-value function for a given policy.
Therefore we define the rare events state set as follows.

Definition 3.1. A subset of states T ⊆ S is called a rare
events state set if the following three properties hold:

1. For all s ∈ S, a ∈ A, s′ ∈ T , f (s′|s,a) = 0 (i.e., T is not
reachable from any state s using the agent’s actions).
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2. There exists s ∈ S, s′ ∈ T such that g(s′|s) > 0 (i.e., T
can be forced by the environment)

3. Let V π
f denote the value function obtained by replac-

ing p with f in (1). Then, for the given policy π,

∃s ∈ S s.t. |V π
f (s)−V π(s)| � 0.

The last condition means that the states in the rare event
state set must (collectively) have a large impact on the state-
value function. We define rare events to be transitions into
the rare event state set. For convenience, we will refer to
the states that are not in the rare event state set, S\T , as the
normal states.

We note that we use the term “rare event” loosely from
the point of view of the simulation community (Bucklew,
2004), because our definition is not based solely on the
probability of the event. We deviate from the typical defi-
nition due to the fact that there may be events that occur in-
frequently but do not have a noticeable effect on our value
function estimates, and we are not concerned with these
events.

4. Importance Sampling for Reinforcement
Learning

The TD update (2) is based on the idea that the right-hand
side of the Bellman equations (1) can be approximated us-
ing samples of the next transition, r(s,a,s′)+γV (s′), where
a ∼ π(s, ·) and s′ ∼ p(·|s,a). However, in an environment
with rare events, if ε(s) is very small, a very large number
of samples will be needed in order for the rare events to be
averaged properly in the value function estimates. Instead,
we investigate a sampling distribution which allows these
events to be sampled preferentially, and then we use im-
portance sampling corrections to account for this in the TD
updates.

Importance sampling is a variance-reduction technique
commonly used in statistics, as well as in the simulation
community (Bucklew, 2004). The main idea is that in-
stead of obtaining samples from the true distribution p,
they will be drawn from a different distribution q, called
the proposal distribution, in which events of interest oc-
cur more frequently. If q is devised well, then using these
samples will reduce the variance of the estimator. Pre-
cup, Sutton & Singh (2000) extended this approach to TD-
learning. They studied the case in which a target pol-
icy π is evaluated based on data generated by a differ-
ent behavior policy. In this case, they showed that a TD-
learning algorithm can still be used, in which the TD targets
are adjusted by using the appropriate importance sampling
weights: w(s,a,s′)(r(s,a,s′)+ γV (s′)), where:

w(s,a,s′) =
p(s′|s,a)
q(s′|s,a)

.

In their case, the change of measure is induced by the be-
havior policy, and the importance sampling weights are the
likelihood ratios of the probabilities of action a under the
two policies.

Ahamed, Borkar & Juneja (2004) use the same idea but
with the goal of changing the next-state probabilities in a
discrete-time finite-state Markov chain with positive costs.
They assume that the transition probabilities are known and
can be modified at will, and propose an adaptive impor-
tance sampling algorithm (ASA) which finds an alternative
set of transition probabilities in order to minimize the vari-
ance of the value function estimator. They provide a con-
vergence proof (assuming a tabular representation of the
value function), a discussion of convergence rates, and sim-
ulation results.

5. Learning in the Presence of Rare Events
The ASA algorithm assumes that we have full knowledge
of the transition model, and can completely control the
transition probabilities, so all the transition probabilities
can be tilted towards the zero-variance importance sam-
pling distribution. In this paper, we relax this assumption
because it is difficult to achieve in practical applications.
We assume that the true rare event probability ε is known
(e.g., as the mean of a Poisson process that generates fail-
ures in a network, or the weight of the tail of a distribution
in which rare events occur). We assume that the system
dynamics, f and g are unknown and cannot be modified,
but that the probability with which rare events are gener-
ated can be changed as the simulation proceeds. In general,
with only this parameter at our disposal, we cannot achieve
the zero-variance importance sampling distribution; how-
ever, we can tilt the transition probability distribution p to-
wards the zero-variance distribution, and therefore reduce
the variance of our estimates.

We define ε̂ : S→ [0,1] to be the probability of a rare event
occurring from every state during the simulation. Hence,
the next states will be sampled from a proposal distribution
given by:

q(s′|s,a) = (1− ε̂(s)) f (s′|s,a)+ ε̂(s)g(s′|s), (4)

where f and g remain unchanged. By considering that the
state space S is separated into disjoint normal and rare event
subsets of states, we note that the importance sampling cor-
rections w(s,a,s′) can be computed by:

w(s,a,s′) =
{

ε(s)/ε̂(s) if s ∈ T,
(1− ε(s))/(1− ε̂(s)) if s 6∈ T.

(5)

Following a similar argument as in the development of the
ASA algorithm, we can determine the following optimal
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form for the rare event sampling distribution:

ε
∗(s)=ε(s)∑s′∈T g(s′|s)[(∑a∈Aπ(s,a)r(s,a,s′))+γV π(s′)]

V π(s)
,

(6)
Fortunately, the values ε∗(s) can be estimated on-line using
samples.

Algorithm 1 is our proposed approach for learning in the
presence of rare events. We call this algorithm rare events
adaptive stochastic approximation (REASA). It is based on
the observation that we can rewrite ε∗(s) as follows:

ε
∗(s) =

T ∗(s)
T ∗(s)+U∗(s)

, where

T ∗(s) = ε(s) ∑
s′∈T

g(s′|s)[(∑
a∈A

π(s,a)r(s,a,s′))+ γV π(s′)]

is the contribution to the value of s by the rare event state
set T , and

U∗(s) = (1−ε(s))∑
a∈A

π(s,a)∑
s′ 6∈T

f (s′|s,a)[r(s,a,s′)+γV π(s′)]

is the contribution to V π(s) from the normal states.

In the algorithm, T (s) is an unbiased estimator of T ∗(s) and
U(s) is an unbiased estimator of U∗(s). It follows that as
t→ ∞, from Equation (6),

ε̂(s) =
T (s)

T (s)+U(s)
→ ε

∗(s),

for every state s ∈ S. Since we use importance sampling
to calculate V̂ π(s), we also have that as t → ∞, V̂ π(s)→
V π(s) from standard stochastic approximation arguments
under some mild assumptions on the MDP structure. We
summarize the result in the following proposition.

Proposition 1. Using Algorithm 1 and assuming that the
MDP is unichain for ε = δ 1 we have that:

V̂ π(s)→V π(s) almost surely.

Moreover, ∀s s.t. ε∗(s) ∈ (δ,1− δ) we have that
ε̂(s) → ε∗(s) almost surely.

We note that we guarantee that we have enough persistent
exploration by requiring that ε̂(s) is bounded from below
by δ and from above by 1−δ (step 5h in Algorithm 1).

Although the treatment above is assuming positive rewards
(for ease of notation), our algorithm is actually formulated
for the general case in which rewards can be both positive
and negative, which is an extension of the ASA algorithm.

1The unichain assumption is needed to invoke the stochastic
approximation argument; see (Bertsekas & Tsitsiklis, 1996). Also
note that if the MDP is unichain for one value of ε ∈ (δ,1−δ) it
is unichain for all values.

Algorithm 1 Rare-event Adaptive Importance Sampling
Input: Rare event set T ⊂ S, true rare-event probabilities
ε(s), and parameter δ > 0, used to keep the sampling
distribution non-zero everywhere.

1. Initialize V̂ π arbitrarily.
2. Initialize the rare-event sampling distribution:

ε̂(s)← 1/2,∀s.
3. Initialize the variables T (s), U(s) (which measure

the contribution of T and S\T to V π) to 0.
4. Initialize eligibility traces: e(s) = 0,∀s.
5. Select the initial state s0.
6. Repeat for t = 0,1, . . . :

(a) Update the eligibility trace of the current state

e(st) = e(st)+1.

(b) Select an action at ∼ π(st , ·).
(c) Select whether a rare event happens, according

to ε̂(st), and sample st+1 from f or g accord-
ingly. Observe the reward rt+1.

(d) Compute the importance sampling weight wt
according to Equation (5).

(e) Compute the importance-sampling TD-error:

∆t = wt(rt+1 + γV̂ π(st+1))−V̂ π(st).

(f) Update the value estimates:

V̂ π(s)← V̂ π(s)+αe(s)∆t ,∀s,

where α ∈ [0,1] is a learning rate.
(g) If st+1 ∈ T , then:

T (st)←(1−αT )T (st)

+αT ε(st)(rt+1 + γV̂ π(st+1)),

else

U(st)←(1−αU )U(st)

+αU (1− ε(st))(rt+1 + γV̂ π(st+1)),

where αT ,αU ∈ (0,1) are learning rates. In the
experiments, we use the inverse of the number
of times a transition from st has been observed
to T and S\T respectively.

(h) Update the rare event probabilities:

ε̂(st)←min
(

max
(

δ,
|T (st)|

|T (st)|+ |U(st)|

)
,1−δ

)
.

(i) Update eligibility traces:

e(s)← γλwte(s),∀s.
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6. Bias and Variance of Reinforcement
Learning with Rare Events

For simplicity, let us assume that ε(s) = ε for all states s∈ S
(all the analysis can be done without this assumption, but
becomes more tedious). Let Rπ denote the vector of imme-
diate rewards for every state, with entries:

Rπ
s = ∑

a∈A
∑
s′∈S

π(s,a)p(s′|s,a)r(s,a,s′),

and Pπ be an |S| × |S| transition matrix under π, with en-
tries:

Pπ

ss′ = ∑
a

π(s,a)p(s′|s,a).

From (3), we can re-write Pπ as:

Pπ = (1− ε)Fπ + εG,

where Fπ is the transition matrix corresponding to staying
in the normal states, and G is the matrix corresponding to
transiting into the rare event states. Note that according to
our assumptions, G does not depend on π. Similarly, the
reward vector can be decomposed into two components,
Rπ

F and Rπ
G. We use two sequences, {Xk}∞

k=1 and {Yk}∞

k=1,
of geometrically distributed random variables, with means
(1− ε)−1 and ε−1 respectively, to represent the amount of
time between transitions from the normal states and the rare
event states respectively. We also assume that the initial
state is a normal state. Hence, the simulation starts in some
normal state and stays in the set of normal states for X1 time
steps, at which point it transitions to a state in the rare event
set, where it stays for Y1 time steps, then transitions back to
the normal set for X2 time steps, etc. We make two further
simplifications. First, we assume that after each excursion
into the rare event state set, the system “jumps back” to
the normal state in which it was before entering; that is,
(Fπ)iG j(Fπ)k ≈ (Fπ)i+k. Second, we assume that the re-
wards for transitioning to states in the normal set are similar
regardless of the origin, that is that GRπ

F ≈FπRπ
F . The anal-

ysis can be done without these assumptions, but it becomes
more tedious. These assumptions are reasonable because in
general the rare events model failures in the system, such
as a failed link in a network, and when the failure is no
longer present, the system resumes from the state prior to
the failure. We define τ(k) = ∑

k−1
i=1 Xk and υ(k) = ∑

k−1
i=1 Yk.

The value function estimate, V π, can be re-written as:

V π ≈ E

[
∞

∑
k=1

γ
τ(k)+υ(k)(Fπ)τ(k)−1

·

(
Xk−1

∑
i=0

γ
i(Fπ)iRπ

F + γ
Xk(Fπ)Xk−1

Yi−1

∑
i=0

γ
iGiRπ

G

)]
.

When the value function is estimated from data using TD-
learning, we can analyze the bias and variance of this es-

timate by considering that all the model component esti-
mates are affected by noise components (Mannor et al.,
2007). The estimate of the value function, V̂ π can be bro-
ken up into two components; the first component ignores
rare events, and the second takes rare events into account.
The first component is:

E[V̂ π
F ] =

∞

∑
k=1

E

[
γ

τ(k)+υ(k)(Fπ + F̃π)τ(k)−1

·
∞

∑
i=0

(1− ε)i
εγ

i(Fπ + F̃π)i(Rπ
F + R̃π

F)

]

where R̃π
F , F̃π represent the noise estimates in the normal

part of the model. The bias and variance of this estimate
can be derived directly as in (Mannor et al., 2007), noting
that τ(k) and υ(k) are sums of independent geometrically
distributed variables, and are therefore distributed accord-
ing to a negative binomial distribution.

The second component is:

E[V̂ π
G ] =

∞

∑
k=1

E

[
γ

τ(k+1)+υ(k)(Fπ + F̃π)τ(k+1)−1

·
∞

∑
i=0

(1− ε)εi
γ

i(G+ G̃)i(Rπ
G + R̃π

G)

]

Note that the noise components G̃, F̃π, R̃π
G depend on the

number of transitions observed in the environment. If we
observe N transitions, then the expected number of transi-
tions observed in the normal state set is (1− ε)N and the
expected number of transitions observed in the rare event
state set is εN. Hence, we assume that the noise compo-
nent F̃π is negligible compared to G̃, and R̃π

G. Hence, to
establish bias-variance estimates for V̂ π

G , we need to look at
E
[
(G+ G̃)(Rπ

G + R̃π
G)
]
. Similarly to (Mannor et al., 2007),

we assume that E[G̃] = 0 and E[R̃π
G] = 0. Hence, the re-

maining term which will determine the bias and variance is
E[G̃R̃π

G], which captures the correlations between the tran-
sition and model estimates, due to the fact that they are
estimated from the same samples. This expectation can be
derived directly from the formulas in (Mannor et al., 2007).

We would like to point out that we could also have ap-
plied the analysis of (Mannor et al., 2007) directly to Pπ.
However, this would lead to very loose bounds, because
their results depend on the inverse of the minimum number
of samples obtained for any transition, and we expect that
there will be very few transitions into the rare event set.
In our analysis, only the second term depends on numbers
of transitions into the rare events states, so we can focus
our analysis on the effect of the rare events on the bias and
variance in our estimates.
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Also, note that the purpose of the algorithm is to sample
rare events proportionately to their contribution to the value
function for all states. Hence, intuitively, it will reduce bias
and variance in the second component by oversampling the
rare events, and thus decreasing the noise components G̃
and R̃π

G. Given the same amount of data, the errors in F̃
and R̃π

F , but not by much.

7. Learning with Rare Events and Function
Approximation

If the state space is very large or continuous, function ap-
proximation must be used to estimate the value function.
Here, we are concerned with the case of linear function ap-
proximation, in which the value of a state is estimated as:

V π(s)≈ θφ(s), (7)

where θ is a parameter vector that needs to be estimated
and φ(s) is a set of features corresponding to state s. In this
case, the eligibility traces are also represented as a vector
e of the same size as θ. We now extend the REASA algo-
rithm to deal with this case. First, note that in this case,
we may not be able to have a state-dependent probability
of obtaining a rare event state, because specifying this on
a state-by-state basis would be too expensive. Hence, we
will assume for the moment, without loss of generality, that
the true rare event probability ε is constant over the entire
state space. We discuss possible extension to this in Sec-
tion 9. The algorithm will estimate a parameter ε̂ by taking
the view that, at a high level, the agent switches between
the normal states S \T and the rare-event states T . These
are now treated as two states in a high-level MDP, and ε̂ is
estimated like in REASA, on this 2-state system.

Algorithm 2 presents the approach, which adapts the algo-
rithm of Precup et al. (2001). Unlike in the tabular case,
here importance sampling corrections have to be made to
account for the difference in the distribution of observed
features, as well as for the difference in the TD target. As
explained in Precup et al. (2001), these corrections, which
are collected in the trajectory weight c, can result in high
variance. However, since we assume that the sets of normal
and rare event states are disjoint, we can assume, without
loss of generality, that they are represented by disjoint fea-
tures as well. In this case, step 7i of Algorithm 2 can be
eliminated, and variance will be greatly improved.

Proposition 2. Under standard stochastic approximation
conditions, Algorithm 2 converges in the limit, with proba-
bility 1, to the same estimates as the on-policy TD-learning
algorithm.

Algorithm 2 Rare-event Adaptive Importance Sampling
with Function Approximation

Input: Rare event set T ⊂ S, true rare-event probabil-
ity ε, and parameter δ > 0, used to keep the sampling
distribution non-zero everywhere.

1. Initialize parameter vector θ arbitrarily.
2. Initialize rare-event sampling parameter: ε̂← 1/2.
3. Initialize T̂ ← 0, Û ← 0.
4. Initialize eligibility vector: e← 0.
5. Initialize the total importance sampling trajectory

weight: c← 1.
6. Select the initial state s0.
7. Repeat for t = 0,1, . . . :

(a) Update the eligibility trace of the current state

e = e+ cφ(st).

(b) Select an action at ∼ π(st , ·).
(c) Select whether a rare event happens, according

to ε̂, and sample st+1 from f or g accordingly.
Observe the reward rt+1.

(d) Compute the importance sampling weight wt
according to (5).

(e) Compute the importance-sampling TD-error:

∆t = wt(rt+1 + γV̂ π(st+1))−V̂ π(st),

where V̂ π is computed according to (7).
(f) If st+1 ∈ T , then:

T̂ ← ((1−αT )T̂ +αT ε(rt+1 + γV̂ π(st+1)),

else

Û ← (1−αU)Û +αU(1−ε)(rt+1+γV̂ π(st+1)).

(g) Update the parameter vector: θ← θ + αe∆t ,
where α ∈ [0,1] is a learning rate.

(h) Update the rare event probabilities:

ε̂←min
(

max
(

δ,
|T̂ |

|T̂ |+ |Û |

)
,1−δ

)
.

(i) Update the trajectory weight: c← cwt .
(j) Update eligibility traces:

e← γλwte.

8. Experimental Results
8.1. Random MDPs

We first compare the performance of REASA to on-line
TD(λ) and to ASA on a testbed of randomly generated
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Figure 1. Value function estimate for state 0.

Markov chains. Each environment contains 10 regular
states and one rare event state. Each regular state can tran-
sition to seven other regular states (chosen randomly) with
probabilities drawn from a uniform distribution, and to the
rare event state with probability ε = 0.001. The rewards
for transitioning between the regular states and from the
rare event state to the regular states are drawn from a nor-
mal distribution with mean 1.0 and standard deviation 0.5,
with negative values being discarded (so that we can run
ASA). The rewards for transitioning to the rare event state
are drawn from a normal distribution with mean 10/ε and
standard deviation 1/ε. The initial state is state 0, and the
discount factor is γ = 0.7.

In the following results, a step is considered to be one tran-
sition for both ASA and REASA, but for TD(λ), a “step”
actually consists of 2300 real time steps. We chose this
number of steps so that the probability of observing at least
one rare event transition in each episode is approximately
0.9. Therefore, we put TD(λ) at a significant advantage
in terms of the number of samples that it is provided. In
Figure 1 we plot the estimate for the value function at the
initial state over time, averaged across 70 independent runs.
We use a value of λ = 0.7 and the learning rates are on de-
creasing schedules that have been tuned separately for each
of the algorithms. Figure 2 shows the root mean squared er-
ror for the value function estimate at the initial state, again
averaged across 70 independent runs.

The learning and error curves for REASA and ASA are
nearly indistinguishable, and both outperform TD(λ). We
note that in the case of ASA, the original transition prob-
ability distribution is needed, and the algorithm has full
control over the transition probabilities that are used in
the simulation (an unlikely case in many practical appli-
cations). We observe that despite the fact that REASA can
only know and control the rare event probability, it per-
forms nearly as well as ASA.

0 1000 2000 3000 4000 5000

time (steps)

0

5

10

15

20

25

30

35

40

45

R
M

S
E

TD(λ)

ASA
REASA

Figure 2. Root MSE for value function estimate for state 0.

8.2. Policy Evaluation for Network Planning

In order to demonstrate REASA in a practical setting with a
large state space, we use a network planning task in which
a reinforcement learning agent has to build and maintain
a telecommunications network linking ten North American
cities. Each pair of cities has a certain traffic demand, rang-
ing from 3GBs2 to 60GBs initially, and this demand grows
stochastically at a rate of approximately 3% per year. The
goal is to place links between the cities in order to deliver
this data. Links consist of bundles of fiber optic cables, and
each fiber can carry a specific unit of bandwidth. Build-
ing links between the cities incurs a large one-time cost of
$500k/mile. Once a link has been built, the capacity of
the link can be increased by activating fibers, in units of
25GBs; this incurs a cost of $30k/mile. The revenue from
traffic is generated daily: traffic delivered generates a re-
ward of $1k/GBs/mile, and undelivered traffic is penalized
at a rate of $200k/GBs/mile every hour.

Link failures occur with a small probability, completely
severing a link for a short period of time. Without consider-
ing link failures, a minimum spanning tree (MST) could be
built, with enough activated fibers to carry the traffic. How-
ever, in such a network, any link failure would disconnect
the network, which would lead to undelivered traffic and a
high penalty. Hence, link failures in a network that lacks
robustness are rare events according to our definition. On
each day, each link goes down with probability 1/1460, or
approximately once every four years. When a link fails, it
remains down for a random amount of time that is normally
distributed with a mean of 12 hours and standard deviation
of 2 hours. In a tree network with 9 links, this is equivalent
to seeing at least one link fail with probability of approx-
imately 0.00896 each day during the 10 year simulation
period; this is our rare event probability.

2We use GBs to represent an average sustained traffic rate of
1 gigabyte per second; because the time interval under considera-
tion is always roughly the same, we also use it as a unit of traffic,
with an abuse of notation.
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Figure 3. Value estimate for tree network.

We implemented a network planning agent with a simple
heuristic policy, which first builds a tree network and then
monitors the links, adding capacity when the utilization of
a link reaches 90%. We use REASA and TD(λ) to estimate
the value of this policy. We represent the network state as
a vector of binary features, and use linear function approx-
imation to represent the value function. In order to cope
with the high dimensionality, we use a fairly coarse state
representation, consisting of: indicator variables regarding
whether each of the possible links have been built; indicator
variables for each link, which are true if the link is currently
failing; and the percentage utilization of each link, parti-
tioned into 4 bins: [0], (0,0.6], (0.6,0.9], and (0.9,1.0].
For our 10 node network, this corresponds to 270 binary
features plus an additional bias feature.

We use a discount factor of 0.95 and we set λ = 1.0. We
use a decaying schedule for the learning rate parameter α,
starting with a value of α0 = 2−15 for T = 100 episodes,
then using α0/2 for 2T episodes, α0/4 for 4T episodes, etc.
We note that α0 is extremely small due to the fact that the
rewards often have large magnitude and can vary between
−107 and 105. In the following results, an episode consists
of a simulated 10-year time span.

In Figure 3, we show the value estimate for the initial tree
network state. We see that REASA converges quickly,
while the TD(λ) estimates have high variance and converge
quite slowly. On longer runs, the TD(λ) estimates do con-
verge to the same value as REASA. REASA estimates the
optimal failure probability to be 0.155, which in a tree net-
work with 9 links corresponds to each link going down ap-
proximately every 54 days; this is quite far from the origi-
nal failure probability of once every 1460 days.

The rate of convergence is crucial for applications such as
the network task. Here, each episode corresponds to a sim-
ulated 10 year period, and these simulations are computa-
tionally expensive to run, because on each day, a routing
algorithm has to be run to determine the reward. Hence,
the gains obtained by REASA are significant.

9. Conclusions and Future Work
We presented an approach for reinforcement learning in en-
vironments with rare events, aimed at reducing the variance
of RL algorithms. Our algorithm modifies the sampling
probability of the rare events, and makes minimal assump-
tions on the simulator available to the agent. The empirical
results demonstrate the viability of our approach for solv-
ing large-scale problems. Future work will include mea-
suring empirically the bias and variance of the algorithm.
We would also like to lift the assumption that the rare event
probability is constant for the function approximation case.
Note that Algorithm 2 can be easily adapted to compute T̂
and Û as a function of the features available. Hence, if a
representation of ε(s) as a function of the available features
φ is given, we could estimate ε̂ as a function of features as
well. It is possible also to learn the true rare event proba-
bilities ε from data, but we anticipate that in practice this
may be difficult.
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Abstract

What type of algorithms and statistical tech-
niques support learning from very large datasets
over long stretches of time? We address this
question through a memory bounded version of
a variational EM algorithm that approximates in-
ference in a topic model. The algorithm alter-
nates two phases: “model building” and “model
compression” in order to always satisfy a given
memory constraint. The model building phase
expands its internal representation (the number
of topics) as more data arrives through Bayesian
model selection. Compression is achieved by
merging data-items in clumps and only caching
their sufficient statistics. Empirically, the re-
sulting algorithm is able to handle datasets that
are orders of magnitude larger than the standard
batch version.

1. Introduction
Consider a collection of surveillance cameras monitoring at
an airport. The cameras learn a model of their environment
without supervision. Moreover, they learn for many years
without significant interruption. Gradually, as more data is
captured, the cameras build a joint model of visual object
categories.

This problem is akin to the way children learn to under-
stand the world through the continuous process of mostly
unsupervised learning. As children grow up they build an
increasingly sophisticated internal representation of object
categories that continuously restructures itself.

Appearing in Proceedings of the 25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

In this paper we ask ourselves: What statistical techniques
are suitable for this “lifelong learning task”? First, we need
a class of models that can naturally expand as more data
arrives, i.e. it’s capacity should not be bounded a priori.
Second, these models should allow efficient learning algo-
rithms, both in terms of time and space. For instance, we
should not have to store every single piece of information
that has been captured. Our technique must produce a se-
quence of model estimates that reflect new information as
it arrives, and the time required to produce each model up-
date must scale modestly as more data is acquired. Finally,
we require that the sequence of learned models are suffi-
ciently similar to those that would be produced by a batch
algorithm with access to the entire history of data observed
at the time of each model update.

Nonparametric Bayesian techniques such as the Dirichlet
Process (DP) (Ferguson, 1973) and the Hierarchical Dirich-
let Process (HDP) (Teh et al., 2006) satisfy our first desider-
atum, in that they naturally increase their model complex-
ity with the available data. However, most existing Non-
parametric Bayesian approaches are batch algorithms: they
require every single data-point to be stored and revisited
during learning. A batch algorithm could be naively ap-
plied to the continuous learning scenario, but all data would
need to be cached and a new batch learning process would
be run on the entire dataset to produce each model update.
This would violate our second criterion in that the time and
space requirements would increase unacceptably as the sys-
tem ages.

Here we propose a more flexible setup, where we impose
a bound on the available memory but still allow the model
order to increase with more data. We compress the data
and the internal representation of the model without losing
much in terms of model accuracy. The effect is that time
and space requirements scale much more gradually over the
lifetime of the system. The memory bound does impose a
limit on the total capacity of the model, but this trade-off
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is flexible and can be adjusted online, i.e. as the model is
learned. Experiments with a memory bounded variational
approximation to HDP show that this technique can handle
datasets many times larger than the standard implementa-
tions and results in substantially shorter run-times.

2. A Memory Bounded Variational Topic
Model

At a high level the idea is to use a variational approxi-
mation related to LDA (Blei et al., 2003) and HDP (Teh
et al., 2006). Memory savings are achieved by “clump-
ing” together data-cases. That is, we constrain groups of
datapoints to have equal topic assignment variational dis-
tributions: q(zij) = q(zi′j′) = q(zc) when points xij

and xi′j′ are members of the clump c. This allows us to
achieve memory savings, because variational optimization
performed under this constraint requires only the sufficient
statistics of the data-cases in a clump, and the system can
forget the exact identities of the summarized data points.
Similarly, we will also clump entire documents (or im-
ages) by tying their variational distributions over topics:
q(πj) = q(πj′) = q(πs) if document j and j′ belong to
the same document group s. This tying of variational distri-
butions guarantees that learning optimizes a lower bound to
the exact free energy objective function, where the bound
is increasingly loose with more tying. This idea was also
leveraged in (Verbeek et al., 2003) and (Kurihara et al.,
2006) to accelerate learning of Mixtures of Gaussians and
DP Mixtures of Gaussians by using KD-trees.

In the following we will talk about documents, but we note
that this refers to other structured objects such as images as
well.

2.1. The Variational Topic Model

The following Bayesian topic model is our starting point,

p(x, z,η,π,α) =
∏
ij

p(xij |zij ;η) πj,zij (1)

[∏
k

p(ηk|β)

] ∏
j

D(πj ;α)

[∏
k

p(αk)

]

where xij is word i in document j and zij denotes the topic
that generated xij . πj denotes the mixture of topics that
generated the words in document j, with

∑
k πjk = 1. πj

are distributed according to a Dirichlet distribution with pa-
rameter α. Boldface symbols denote vector valued quanti-
ties. In this expression we will assume that p(x|z,η) is in

the exponential family1,

p(x|z = k,η) = exp

[∑
l

ηkl φl(x)−Ak(ηk)

]
(2)

and p(η|β) is conjugate to p(x|z,η),

p(ηk|β) = exp

[∑
l

βlηkl − β0Ak(ηk)−B(β)

]
(3)

The posterior distributions over π,η, z are approximated
variationally as

q(η) =
∏
k

q(ηk; ξk) (4)

q(π) =
∏
j

D(πj ; ζj) (5)

q(z) =
∏
ij

q(zij) (6)

where we have introduced variational parameters
{ξkl, ζkj , qijk}, the latter subject to

∑
k qijk = 1.

Furthermore, D denotes a Dirichlet distribution while
q(ηk; ξk) is also conjugate to p(x|z = k,η),

q(ηk; ξk) = exp

[∑
l

ξklηkl − ξk0Ak(ηk)−Bk(ξk)

]
(7)

By writing down the variational free energy and minimiz-
ing it over ξ, ζ we find the following intuitive updates,

ξkl = Fkl + βl; Fkl ,
∑
ij

qijk φl(xij) (8)

ξk0 = Nk + β0; Nk ,
∑
ij

qijk (9)

ζkj = Nkj + αk; Nkj ,
∑

i

qijk (10)

and

qijk ←
1
Zij

exp [
∑

l E[ηkl|ξkl] φkl(xij)]
exp [E[Ak(ηk)|ξk0]]

exp [ψ(ζkj)]

(11)

where Zij enforces the constraint
∑

k qijk = 1 and the
expectations are over q(η).

To learn the parameters {αk}we first introduce gamma pri-
ors,

p(α) =
∏
k

G(αk; a, b) (12)

1Strictly speaking, the exponential family includes additional
multiplicative terms h(x) in the expression for p(x|η) and g(η)
in the expression for p(η|β). We have left these terms out to sim-
plify the derivation and because for most well known distributions
they are simply 1. However, it is straightforward to include them.
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Using the bounds in (Minka, 2000) we can derive the fol-
lowing updates if we first insert the updates for ξ and ζ into
the free energy,

αk ←
(a− 1) + αk

∑
j [ψ(ζkj)− ψ(αk)]

b+
∑

j [ψ(ζj)− ψ(α)]
(13)

with ζj =
∑

k ζkj and Nj =
∑

k Nkj .

2.2. Optimizing the Number of Topics K

Our strategy to search for a good value of K is to truncate
the topic distributions as q(zij > K) = 0 (see also (Teh
et al., 2008)). This will have the effect that most terms in
the free energy with k > K will cancel, the exception being
the prior terms p(αk), k > K. For these terms we know
that the value for αk minimizing the free energy is given
by the MAP value of the gamma-prior αk = a−1

b , k >
K. Inserting this back into the free energy we accumulate
Kmax −K terms

Λ = a log b− log Γ(a)+(a−1) log
a− 1
b
− (a−1) (14)

where Kmax is the maximum number of topics.

It is guaranteed that there exists a solution with lower free
energy if we increase K. The reason is that we relax a self-
imposed constraint on variational parameters (that q(zij >
K) = 0). As K increases the relative improvement in free
energy quickly attenuates. The final value forK is obtained
by thresholding this relative improvement.

The nesting property (models with larger K are better) is
the same for variational approximations to the DP in (Kuri-
hara et al., 2006) and HDP (Teh et al., 2008). This raises
the question if we can take the infinite limit for our model
as well. The problem is that (Kmax − K)Λ → ∞ as
Kmax → ∞. This can be traced back to the fact that we
should have added a proper prior p(K) which would have
diminished the contribution at large K. Instead we choose
an improper, constant prior to avoid the need to estimate
likely values for K a priori. However, it is still possible to
work with infinite free energies because we are only inter-
ested in the relative change in free energy after increasing
K, which is a finite quantity.

In our experiments we chose a = 1 and b = 0.5, so that the
MAP prior value of αk is 0.

2.3. Clumping Data-Items and Documents

We will now tie some of the variational distributions {qijk}
across different data-items within and across documents
(images) to a “clump distribution” qck. Similarly, we
will tie some document specific distributions over topics
{q(πj)} into a document group q(πs). Note that since we

impose constraints on the variational distributions this has
the effect of loosening the variational bound.

Define Ds to be the number of documents in a document
group, Nc the number of data-items in a word clump, Ncs

the number of words in document group s and word clump
c and finally Φc

kl ,
∑

ij∈c φkl(xij). In terms of these we
further define,

Nks ,
∑

c

qckNcs (15)

Nk ,
∑

c

qckNc (16)

Fkl ,
∑

c

qck Φc
kl (17)

With these definitions we derive the following “clumped”
update rules for the variational parameters ξkl and ζks,

ξkl = Fkl + βl (18)
ξk0 = Nk + β0 (19)
ζks = Nks

Ds
+ αk (20)

and

qck ←
1
Zc

exp
[∑

l E[ηkl|ξkl]
Φc

kl

Nc

]
exp [E[Ak(ηk)|ξk0]]

exp

[∑
s

Nsc

Nc
ψ(ζks)

]
(21)

The update for α becomes

αk ←
(a− 1) + αk

∑
sDs [ψ(ζks)− ψ(αk)]

b+
∑

sDs [ψ(ζs)− ψ(α)]
(22)

An expression for the free energy, after inserting expres-
sions 18, 19 and 20, is given by eq. 29 in the appendix.

3. Incremental Learning with a Memory
Constraint

Our algorithm processes data in small groups composed of
E documents, which we refer to as epochs. After the ar-
rival of each epoch the algorithm proceeds in two stages: a
model building phase during which a new model estimate
is produced, and a compression phase in which decisions
are made as to which words and documents to clump. The
sufficient statistics of each clump are computed and data
summarized by clumps are purged from memory. The as-
signment distributions q(z) of purged data and topic distri-
butions of merged documents q(π) are discarded as well.
The clump sufficient statistics are retained along with the
current model estimate, which serves as a starting point for
the next round of learning.
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Model Building Phase (Algorithm 3.1)
Input: Previous model {ξkl, ζks, αk,Φc

kl, Ncs, Ds}, and
current epoch of E documents.
Initialize ζjk = αk for j = |S|+ 1, · · · , |S|+ E
Iterate eqs. 21, 18, 19, 20, and 22 until convergence
repeat

Rank splits and merges according to criteria in (Ueda
et al., 1999)
for i = 1 to 10 do

Split i-th ranked candidate topic along principal
component
Restricted iteration of eqs. 21, 18, 19, and 20 until
convergence
Evaluate change in eq. 29 resulting from split

end for
for i = 1 to 10 do

Merge i-th ranked pair of topics
Evaluate change in eq. 29 resulting from merge

end for
Select split or merge that yielded largest change in
eq. 29
Iterate eqs. 21, 18, 19, and 20 until convergence

until Change in eq. 29 is less than threshold

3.1. Model Building Phase

The model building phase optimizes the free energy un-
der the parameter tying constraints induced by the choice
of clumps in previous compression phases. We perform a
split-merge procedure similar to (Ueda et al., 1999) to de-
termine the number of topics, using the heuristics in that
work to rank topic suitability for split or merge. In our ex-
periments we use Gaussian topic distributions, so splits are
proposed along the principal component of the topic. The
split proposals are refined by restricted variational updates.
That is: equations 21, 18, 19, 20, and 22 are iterated
but only for data-points whose highest responsibility is to
the split topic, and the points may be assigned only to the
two descendent topics. Merges are carried out by instanti-
ating a new topic with the data-points with highest respon-
sibility to the merged topics. A total of 10 splits and 10
merges are proposed, and evaluated by the resultant change
in free energy (eq. 29). The top ranked change is then used
to initialize full variational updates (which involve all data
points). The model building phase halts once the change in
free energy divided by its previous value is below a thresh-
old, which was chosen to be 1E − 5 in our experiments.
The procedure is summarized in algorithm 3.1.

3.2. Compression Phase

The goal of the compression phase is to determine groups
of data-points that are to be summarized by clumps, and

to identify documents that are to be merged into document
groups.

Clumps are identified using a greedy top down splitting
procedure. Because datapoints summarized by clumps
are ultimately discarded, the compression process is irre-
versible. Therefore it is of fundamental importance to pre-
dict the locations of future data when deciding which points
to clump. In order to estimate this, we rank cluster splits ac-
cording to a modified free energy (eq. 30) in which the data
sample size is artificially increased by a factor TptsP

c Nc
and

the number of documents is scaled by TdocsP
s Ds

, where Tpts

and Tdocs are the target number of data-points and docu-
ments expected during the lifetime of the system. This is
equivalent to using the data empirical distribution as a pre-
dictive model of future data. If we determine clumps using
the standard free energy, then the algorithm fails to split
large groups of points that are likely to split once more data
has arrived. Instead, it wastes memory by placing “stray”
points in their own clumps.

We initialize the process by hard assigning each clump or
data-point to the cluster with highest responsibility dur-
ing the previous model building phase. We then proceed
through each cluster and split it along the principal compo-
nent, and refine this split by iterating restricted variational
updates equations for the points in the cluster. The updates
are modified by the data magnification factors:

ξkl =
(

Tpts∑
cNc

)
Fkl + βl (23)

ξk0 =
(

Tpts∑
cNc

)
Nk + β0 (24)

αk ←
(a− 1) +

(
TdocsP

s Ds

)
αk

∑
j [ψ(ζks)− ψ(αk)]

b+
(

TdocsP
s Ds

) ∑
s [ψ(ζs)− ψ(α)]

(25)

Updates for qck and ζks are unchanged. After the clusters
are refined, the data-points are then hard assigned to the
sub-cluster with greatest responsibility, and the proposed
split is ranked according to the resultant change in eq. 30.
We then greedily split the cluster with highest rank. The
process repeats itself, with new clusters ranked in the same
way described above. We cache the results of each split
evaluation to avoid redundant computation. After we have
reached a given memory bound we extract the partitions
resulting from this recursive splitting procedure as our new
clumps.

Each clump must store sufficient statistics for full covari-
ance Gaussian components which require d2+3d

2 values,
where d is the dimension of the feature space. In addi-
tion, |S| (the number of document groups) values must be
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Clump Compression (Algorithm 3.2)
Input: Output from model building phase:
{qck,Φc

kl, Ncs, Ds}, current epoch of E documents and
memory bound M .
Hard partition clumps: rc = arg maxk qck

while MC < M (eq. 26) do
for i = 1 to K do

Split i-th cluster along principal component
Iterate data magnified restricted updates until con-
vergence
Hard partition clumps into child clusters
Evaluate change in eq. 30 resulting from split

end for
Select split that yielded largest change in eq. 30
K = K + 1

end while

stored to represent the counts Ncs for each clump. Note
that from this perspective, it only makes sense to create
clumps within a cluster if it contains more than d+3

2 + 1
d

data-points. If not, then it is more efficient to store the indi-
vidual data-points and we refer to them as “singlets”. The
total memory cost of summarizing the data is then

MC =
(
d2 + 3d

2

)
|Nc > 1|+ |S||Nc > 1|+ d|Nc = 1|,

(26)

where |Nc > 1| is the number of clumps with more than
1 data-item in them, and |Nc = 1| is the number of sin-
glets. The clump compression procedure is summarized in
algorithm 3.2.

Document merging provides another way of controlling the
memory cost, by reducing the number of image groups |S|.
We use the following simple heuristic to rank the suitability
of merging document groups s and s′:

DMs,s′ =
∑

k E[πsk]E[πs′k]
||E[πs]||||E[πs′ ]||

(27)

Clumping and document merging enable a number of po-
tential schemes for controlling space and time costs, de-
pending on the application. We note that the time com-
plexity per variational iteration scales as O(K(|Nc > 1|+
|Nc = 1|) + |S|K) and the space required to store q(zc)
distributions is O(K(|Nc > 1|+ |Nc = 1|)).

4. Experiments
We test our approach with two machine vision experiments.
The first is an image segmentation task, and the second is
an object recognition and retrieval task.
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Figure 1. Image Segmentation experiment. Left: Free energy ra-
tio as a function of the number of clumps permitted by the mem-
ory bound. Right: Free energy ratio versus the number of image
groups relative to the total number of images processed.

4.1. Joint Image Segmentation

Our first experient is a joint image segmentation problem.
The dataset is the Faces-Easy category of the Caltech 101
image dataset (Fei-Fei et al., 2004) consisting of 435 im-
ages. Each image contains a face centered in the image,
but the lighting conditions and background vary. In terms
of the vocabulary of the preceding sections, each image is
a document and each pixel in the image is a word. Pixels
are represented as five dimensional vectors of the following
features: X and Y position relative to the center of the im-
age, and three color coordinates in the CIELAB colorspace.
The goal of our experiment is to find similar image regions
across the multiple images, in an unsupervised way. We
emphasize that our main objective is to study the efficiency
of our algorithm, not to produce a state of the art image
segmentation algorithm.

The images were scaled to be 200 by 160 pixels in size.
Thus, the total size of the dataset is 32,000 pixels per im-
age, times 435 images, times 5 features per pixel equals
69,600,000 real numbers. Each pixel requires an assign-
ment distribution. Our baseline implementation (i.e. a
batch algorithm that processes all images in memory at
once and does not use pixel clumping or image merging)
was only able to jointly segment 30 images simultaneously,
before running out of memory. The majority of memory
is used to store the assignment distributions of pixels, and
this is problematic as the number of topics increases during
learning, since the space requirements scale as O(NK),
where N is the total number of pixels and K is the number
of topics.

We first compare the memory bounded approach to the
baseline implementation on a joint segmentation task of 30
images in order to judge the impact of the pixel clumping
approximation. We vary the upper limit on the number of
clumps used to summarize the data during the compression
phase, and compare the free energy bounds produced by
the memory bounded algorithm to those produced by the
baseline implementation. We define the free energy ratio
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Figure 2. Top row: From left to right: an example segmenta-
tion produced by the baseline method, memory bounded algo-
rithm with 30% of total images and 125 clumps, and the memory
bounded algorithm with no images merged and 125 clumps. Row
2: Example clump distributions. Pixels of the same color are sum-
marized in a single clump. Row 3: segmentations corresponding
to clumps in row 2.

as 1 − FEbatch−FEmb

|FEbatch| . This process was repeated for dif-
ferent subsets of 30 images from the dataset. In the mem-
ory bounded approach, images were processed in epochs
of five images at a time. Figure 1 summarizes the results.
We find that performance tends to saturate beyond a certain
number of clumps.

We also note a significant run time advantage of the mem-
ory bounded algorithm over the batch method. The average
run time of the batch method was 3.09 hours versus 0.68
hours for the memory bounded approach.

Next we study the impact of image (document) merges on
the relative performance of the memory bounded algorithm
versus the baseline batch algorithm, while varying the max-
imum number of image (document) groups permitted. The
results are shown in figure 1.

We find little qualitative difference between segmentations
produced by the baseline and memory bounded algorithms.
The possible exception is in the case when the memory
bounded algorithm is run with a large number of image
merges, in which case the algorithm seemed to discover
fewer topics than the batch and memory bounded algorithm
with only word clumping. Example image segmentations
and clump distributions are shown in figure 2.

Finally, we demonstrate the memory bounded algorithm on
the full dataset of 435 images, which is more than an order
of magnitude larger than can be handled with the baseline
algorithm. We process images in epochs of 10 images at

0 100 200 300 400
20

40

60

80

# 
of

 M
od

el
 C

om
po

ne
nt

s

# of images processed
0 10 20 30 40

0

10

20

30

40

50

M
in

ut
es

 p
er

 le
ar

ni
ng

 r
ou

nd

Learning round

Figure 3. Joint segentation of 435 faces. The left plot shows the
number of topics recovered as the system processes images. The
right plot shows the run time for each learning round. This fluctu-
ates with the number of new topics discovered during each round
and tends to increase gradually with the total number of topics.

a time, for a total of 44 learning rounds. The upper limit
on the number of clumps was set to 1000, which was likely
many more than required since there were only 85 inferred
topics. Because the number of documents was relatively
small, we chose not to use document merges. The total
run time of the algorithm was 15 hours. Figure 3 shows
the number of topics as a function of the number of im-
ages processed, and the run time required during each im-
age round. The run time is longer during learning rounds in
which more new topics are discovered, because more split-
merge operations are necessary. The memory required for
the memory bounded algorithm was 22 MB to store the cur-
rent image epoch and clumps, less than 1MB for the current
model estimate, and 235 MB for assignment distributions,
for a total of 257 MB. In contrast, the baseline batch imple-
mentation would have required 531 MB to store all 435 im-
ages, 8.8155 GB to store assignment distributions for each
pixel assuming 85 topics, and less than 1 MB for the model,
for a total of 9.3 GB. (All memory amounts assume double
precision floating point.) The memory bounded implemen-
tation therefore achieved a memory savings factor of about
38 with very little loss in accuracy.

Figure 4 shows example joint segmentations produced by
the memory bounded algorithm. These images were re-
trieved by first computing responsibilities for every image
in the dataset, with respect to the final model estimate pro-
duced by the MB algorithm. Then, the images were sorted
according to those that have the most pixels assigned to
the largest topic. The largest topic indeed corresponds to a
face, and is represented by the olive green segment in the
figure. Other topics shared across images include hair and
certain backgrounds.

4.2. Object Recognition and Retrieval

Our object recognition and retrieval experiment involves all
101 object categories in the Caltech 101 dataset. We ran-
domly select 3000 training images and 1000 test images.
We extract 128-dimensional SIFT (Lowe, 2004) local ap-
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Figure 4. Examples of joint segmentation produced after process-
ing all Caltech Face images. Pixels that are the same color have
highest responsibility to the same topic. These images were re-
trieved by sorting images according to those that have the most
pixels assigned to the largest topic, which is the olive green col-
ored face segment in each image.

pearance descriptors from 500 randomly chosen locations
in each image. The scale of each feature is also chosen ran-
domly. In the language of topic models, each feature de-
scriptor is a word, and the collection of feature descriptors
in an image forms a document. This image representation
is known as ’bag-of-features’, because images are modeled
as unordered collections of feature descriptors whose geo-
metric positions are ignored. This dataset proved too large
to compare directly to the batch algorithm

We train a single topic model on all training images, us-
ing epochs of 60 images at a time. Because hundreds of
topics are discovered we use diagonal covariance Gaus-
sians and adjust equation 26 accordingly. Given a test im-
age x̃, retrieval is performed by ranking each training im-
age’s similarity to the test image. To develop the similarity
measure we begin with log

∏
i p(x̃ij |x), which is the log-

probability that the detections in the test image were gen-
erated by training image j given the training set. Then we
variationally lower bound this quantity to obtain a test free
energy and drop all constant terms not involving the test
image and index j. Finally we lower bound this quantity
by assuming that detections in the test image are hard as-
signed to the topic with highest responsibility (this leads to
an expression that is much faster to evaluate with neglible
impact on retrieval performance.) The retrieval score is:

score(j) =
∑

i

max
k

{ ∑
l

E[ηkl|ξkl] φkl(x̃ij) (28)

− E[Ak(ηk)|ξk0] + ψ(ζkj)

− ψ(
∑

k

ζkj)
}

where the expectations are with respect to q(η) learned dur-
ing training and ξkl and ζkj are from training as well. ζkj
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Figure 5. Object Recognition and Retrieval. Left: Training set
free energy as a function of the memory bound. Right: 1-NN
classification accuracy as a function of memory bound (measured
as the equivalent number of data-points that could be stored in the
same space).

0 0.5 1
−7.085

−7.08

−7.075

−7.07

−7.065

−7.06
x 10

8

F
re

e 
E

ne
rg

y

# of groups/total images processed
0 0.5 1

0.26

0.28

0.3

0.32

0.34

0.36

0.38

# of groups/total images processed

1−
N

N
 A

cc
ur

ac
y

Figure 6. Object Recogniton and Retrieval. Left: Training set free
energy versus the ratio of document groups to the total number of
images processed. Right: 1-NN classification accuracy versus the
ratio of document groups to total number of images processed.

are re-estimated for images that were merged into a docu-
ment group during training. We compute nearest neighbor
(1-NN) classification accuracy by classifying the test im-
age to the class label of the highest scoring image in the
training set.

Figure 5 shows the training set free energy and 1-NN class-
fication accuracy as a function of the memory bound M
(measured as the equivalent number of data points that
could be stored in the same space.) Because we used diag-
onal covariance matrices, there were enough clumps even
at low levels of memory to maintain comparable classifi-
cation performance. We note that the training free energy
increases with memory as expected, and that the 1-NN ac-
curacy tends to saturate as memory increases.

Figure 6 shows the 1-NN accuracy and training free en-
ergy when the percentage of document groups relative to
the number of total images processed is varied (the mem-
ory bound M is held fixed at 10000). We note that the
classification performance suffers substantially when only
small numbers of document groups are permitted. We use
a heuristic for determining documents to merge (eq. 27). It
is possible that a well motivated criterion (perhaps derived
from the free energy) would give better performance.
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5. Conclusion
Machine learning has largely focussed on algorithms that
run for a relatively short period of time, fitting models of
finite capacity on a data-set of fixed size. We believe that
this scenario is unrealistic if we aim at building truly intel-
ligent systems. We have identified nonparametric Bayesian
models as promising candidates that expand their model
complexity in response to new incoming data. The flip-side
is that nonparametric Bayesian algorithms are “example-
based” and as such require one to cache and process repeat-
edly every data-case ever seen. The objectives of infinite,
adaptive model capacity on the one hand and efficiency,
both in time and space on the other therefore seem to be
fundamentally at odds with each other.

In this paper we have made a first step towards resolving
this issue by introducing a class of models that can adapt
their model complexity adaptively but are able to do so at a
fraction of the memory requirements and processing times
necessary for their batch counterparts. There is no magic of
course: with a fixed memory budget there is a limit to how
complex the model can be, but we have shown that one can
learn much larger models reliably with much less memory
than a naive implementation would allow. Moreover, our
learning algorithms allow a flexible tradeoff between mem-
ory requirements and model complexity requirements that
can be adapted online.

Intuitively, our method may be thought of as a two level
clustering process. At the bottom level, data is clustered
into clumps in order to limit time and space costs. At the
top level, clumps are clustered to form topics in order to
ensure good generalization performance.

Potential application areas of the techniques introduced
here are manyfold. For instance, we can imagine learning
topic models from very large text corpora or the world wide
web to understand its structure and facilitate fast searching
algorithms. Another exciting direction is to build a taxon-
omy of visual object categories from a continuous stream
of video data captured by surveillance cameras.
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5.2. Appendix

The following expressions for the free energy are used in
the main text. Note that they are only valid after the updates
for ξ and ζ have been performed.
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Abstract

Recently, instead of selecting a single kernel,
multiple kernel learning (MKL) has been pro-
posed which uses a convex combination of
kernels, where the weight of each kernel is
optimized during training. However, MKL
assigns the same weight to a kernel over the
whole input space. In this paper, we develop
a localized multiple kernel learning (LMKL)
algorithm using a gating model for select-
ing the appropriate kernel function locally.
The localizing gating model and the kernel-
based classifier are coupled and their opti-
mization is done in a joint manner. Empiri-
cal results on ten benchmark and two bioin-
formatics data sets validate the applicability
of our approach. LMKL achieves statistically
similar accuracy results compared with MKL
by storing fewer support vectors. LMKL can
also combine multiple copies of the same ker-
nel function localized in different parts. For
example, LMKL with multiple linear kernels
gives better accuracy results than using a sin-
gle linear kernel on bioinformatics data sets.

1. Introduction

Kernel-based methods such as the support vector ma-
chine (SVM) gained much popularity due to their suc-
cess. For classification tasks, the basic idea is to map
the training instances from the input space to a feature
space (generally a higher dimensional space than the
input space) where they are linearly separable. The
SVM discriminant function obtained after training is:

f(x) = 〈w, Φ(x)〉+ b (1)

where w is the weight coefficients, b is the threshold,
and Φ(x) is the mapping function to the corresponding

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

feature space. We do not need to define the mapping
function explicitly and if we plug w vector from dual
formulation into (1), we obtain the discriminant:

f(x) =
n∑

i=1

αiyi 〈Φ(x),Φ(xi)〉︸ ︷︷ ︸
K(x, xi)

+b

where n is the number of training instances, xi, and
K(x, xi) = 〈Φ(x), Φ(xi)〉 is the corresponding kernel.

Each Φ(x) function has its own characteristics and cor-
responds to a different kernel function and leads to a
different discriminant function in the original space.
Selecting the kernel function (i.e., selecting the map-
ping function) is an important step in SVM training
and is generally performed using cross-validation.

In recent studies (Lanckriet et al., 2004a; Sonnenburg
et al., 2006), it is reported that using multiple different
kernels instead of a single kernel improves the classifi-
cation performance. The simplest way is to use an un-
weighted sum of kernel functions (Pavlidis et al., 2001;
Moguerza et al., 2004). Using an unweighted sum gives
equal preference to all kernels and this may not be
ideal. A better strategy is to learn a weighted sum
(e.g., convex combination); this also allows extract-
ing information from the weights assigned to kernels.
Lanckriet et al. (2004b) formulate this as a semidef-
inite programming problem which allows finding the
combination weights and support vector coefficients
together. Bach et al. (2004) reformulate the prob-
lem and propose an efficient algorithm using sequen-
tial minimal optimization (SMO). Their discriminant
function can be seen as an unweighted summation of
discriminant values (but a weighted summation of ker-
nel functions) in different feature spaces:

f(x) =
p∑

m=1

〈wm,Φm(x)〉+ b (2)

where m indexes kernels, wm is the weight coefficients,
Φm(x) is the mapping function for feature space m,
and p is the number of kernels. By plugging wm de-
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rived from duality conditions into (2), we obtain:

f(x) =
p∑

m=1

ηm

n∑

i=1

αiyi 〈Φm(x), Φm(xi)〉︸ ︷︷ ︸
Km(x,xi)

+b (3)

where the kernel weights satisfy ηm ≥ 0 and∑p
m=1 ηm = 1. The kernels we combine can be the

same kernel with different hyperparameters (e.g., de-
gree in polynomial kernel) or different kernels (e.g., lin-
ear, polynomial, and Gaussian kernels). We can also
combine kernels over different data representations or
different feature subsets.

Using a fixed combination rule (unweighted or
weighted) assigns the same weight to a kernel over the
whole input space. Assigning different weights to a
kernel in different regions of the input space may pro-
duce a better classifier. If data has underlying locali-
ties, we should give higher weights to appropriate ker-
nel functions (i.e., kernels which match the complexity
of data distribution) for each local region. Lewis et al.
(2006) propose to use a nonstationary combination
method derived with a large-margin latent variable
generative method. They use a log-ratio of Gaussian
mixtures as the classifier. Lee et al. (2007) combine
Gaussian kernels with different width parameters to
capture the underlying local distributions, by forming
a compositional kernel matrix from Gaussian kernels
and using it to train a single classifier.

In this paper, we introduce a localized formulation
of the multiple kernel learning (MKL) problem. In
Section 2, we modify the discriminant function of the
MKL framework proposed by Bach et al. (2004) with a
localized one and describe how to optimize the parame-
ters with a two-step optimization procedure. Section 3
explains the key properties of the proposed algorithm.
We then demonstrate the performance of our local-
ized multiple kernel learning (LMKL) method on toy,
benchmark, and bioinformatics data sets in Section 4.
We conclude in Section 5.

2. Localized Multiple Kernel Learning

We describe the LMKL framework for binary classi-
fication SVM but the derivations in this section can
easily be extended to other kernel-based learning algo-
rithms. We propose to rewrite the discriminant func-
tion (2) of Bach et al. (2004) as follows, in order to
allow local combinations of kernels:

f(x) =
p∑

m=1

ηm(x)〈wm, Φm(x)〉+ b (4)

where ηm(x) is the gating function which chooses fea-
ture space m as a function of input x. ηm(x) is de-

fined up to a set of parameters which are also learned
from data, as we will discuss below. By modifying the
original SVM formulation with this new discriminant
function, we get the following optimization problem:

min
1
2

p∑
m=1

‖wm‖2 + C

n∑

i=1

ξi

w.r.t. wm, b, ξ, ηm(x)

s.t. yi

(
p∑

m=1

ηm(xi)〈wm, Φm(xi)〉+ b

)
≥ 1− ξi ∀i

ξi ≥ 0 ∀i (5)

where C is the regularization parameter and ξ is the
slack variables as usual. Note that the optimization
problem in (5) is not convex due to the nonlinearity
introduced in the separation constraints.

Instead of trying to solve (5) directly, we can use a two-
step alternate optimization algorithm inspired from
Rakotomamonjy et al. (2007), to find the parameters
of ηm(x) and the discriminant function. The first step
is to solve (5) with respect to wm, b, and ξ while fixing
ηm(x) and the second step is to update the parame-
ters of ηm(x) using a gradient-descent step calculated
from the objective function in (5). The objective value
obtained for a fixed ηm(x) is an upper bound for (5)
and the parameters of ηm(x) are updated according
to the current solution. The objective value obtained
at the next iteration can not be greater than the cur-
rent one due to the use of gradient-descent procedure
and as iterations progress with a proper step size se-
lection procedure (see Section 3.1), the objective value
of (5) never increases. Note that this does not guaran-
tee convergence to the global optimum and the initial
parameters of ηm(x) may affect the solution quality.

For a fixed ηm(x), we obtain the Lagrangian of the
primal problem in (5) as follows:

LD =
1
2

p∑
m=1

‖wm‖2 +
n∑

i=1

(C − αi − βi)ξi +
n∑

i=1

αi

−
n∑

i=1

αiyi

(
p∑

m=1

ηm(xi)〈wm,Φm(xi)〉+ b

)

and taking the derivatives of LD with respect to the
primal variables gives:

∂LD

∂wm
⇒ wm =

n∑

i=1

αiyiηm(xi)Φm(xi) ∀m

∂LD

∂b
⇒

n∑

i=1

αiyi = 0

∂LD

∂ξi
⇒ C = αi + βi ∀i . (6)
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From (5) and (6), the dual formulation is obtained as:

max
n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

αiαjyiyjKη(xi, xj)

w.r.t. α

s.t.
n∑

i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i (7)

where the locally combined kernel matrix is defined as:

Kη(xi, xj) =
p∑

m=1

ηm(xi) 〈Φm(xi), Φm(xj)〉︸ ︷︷ ︸
Km(xi, xj)

ηm(xj) .

This formulation corresponds to solving a canonical
SVM dual problem with the kernel matrix Kη(xi, xj),
which should be positive semidefinite. We know that
multiplying a kernel function with outputs of a non-
negative function for both input instances, known
as quasi-conformal transformation, gives a positive
semidefinite kernel matrix (Amari & Wu, 1998). So,
the locally combined kernel matrix can be viewed as
applying a quasi-conformal transformation to each ker-
nel function and summing them to construct a com-
bined kernel matrix. The only restriction is to have
nonnegative ηm(x) to get a positive semidefinite ker-
nel matrix.

Choosing among possible kernels can be considered as
a classification problem and we assume that the re-
gions of use of kernels are linearly separable. In this
case, the gating model can be expressed as:

ηm(x) =
exp(〈vm,x〉+ vm0)
p∑

k=1

exp(〈vk, x〉+ vk0)

where vm, vm0 are the parameters of this gating model
and the softmax guarantees nonnegativity. One can
use more complex gating models for ηm(x) or equiva-
lently implement the gating not in the original input
space but in a space defined by a basis function, which
can be one or some combination of the Φm(x) in which
the SVM works (thereby also allowing the use of non-
vectorial data). If we use a gating model which is
constant (not a function of x), our algorithm finds a
fixed combination over the whole input space, similar
to the original MKL formulation.

The proposed method differs from taking subsets of
the training set and training a classifier in each subset
then combining them. For example, Collobert et al.
(2001) define such a procedure which learns an inde-
pendent SVM for each subset and reassigns instances

to subsets by training a gating model with a cost func-
tion. Our approach is different in that LMKL couples
subset selection and combination of local classifiers in
a joint optimization problem. LMKL is similar to but
also different from the mixture of experts framework
(Jacobs et al., 1991) in the sense that the gating model
combines kernel-based experts and is learned together
with experts; the difference is that in the mixture of
experts, experts individually are classifiers whereas in
our formulation, there is no discriminant per kernel.

For a given ηm(x), we can say that the objective value
of (7) is equal to the objective value of (5) due to
strong duality. We can safely use the objective func-
tion of (7) as J(η) function to calculate the gradients
of the primal objective with respect to the parame-
ters of ηm(x). To train the gating model, we take
derivatives of J(η) with respect to vm, vm0 and use
gradient-descent:

∂J(η)
∂vm0

= −1
2

n∑

i=1

n∑

j=1

p∑

k=1

αiαjyiyjηk(xi)Kk(xi, xj)

ηk(xj)
(
δk
m − ηm(xi) + δk

m − ηm(xj)
)

∂J(η)
∂vm

= −1
2

n∑

i=1

n∑

j=1

p∑

k=1

αiαjyiyjηk(xi)Kk(xi, xj)

ηk(xj)
(
xi

[
δk
m − ηm(xi)

]
+ xj

[
δk
m − ηm(xj)

])

where δk
m is 1 if m = k and 0 otherwise. After updating

the parameters of ηm(x), we are required to solve a
single kernel SVM with Kη(xi, xj) at each step.

The complete algorithm of LMKL with the linear gat-
ing model is summarized in Algorithm 1. Convergence
of the algorithm can be determined by observing the
change in α or the parameters of ηm(x).

Algorithm 1 LMKL with the linear gating model
1: Initialize vm and vm0 to small random numbers

for m = 1, . . . , p
2: repeat
3: Calculate Kη(xi,xj) with gating model
4: Solve canonical SVM with Kη(xi, xj)

5: v
(t+1)
m0 ⇐ v

(t)
m0 − µ(t) ∂J(η)

∂vm0
for m = 1, . . . , p

6: v
(t+1)
m ⇐ v

(t)
m − µ(t) ∂J(η)

∂vm
for m = 1, . . . , p

7: until convergence

After determining the final ηm(x) and SVM solution,
the resulting discriminant function is:

f(x) =
n∑

i=1

p∑
m=1

αiyiηm(x)Km(x, xi)ηm(xi) + b . (8)
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3. Discussions

We explain the key properties and possible extensions
of the proposed algorithm in this section.

3.1. Computational Complexity

In each iteration, we are required to solve a canoni-
cal SVM problem with the combined kernel obtained
with the current gating model and to calculate the gra-
dients of J(η). The gradient calculation step has ig-
norable time complexity compared to the SVM solver.
The step size of each iteration, µ(t), should be deter-
mined with a line search method which requires addi-
tional SVM optimizations for better convergence. The
computational complexity of our algorithm mainly de-
pends on the complexity of the canonical SVM solver
used in the main loop, which can be reduced by using
hot-start (i.e., giving previous α as input). The num-
ber of iterations before convergence clearly depends
on the training data and the step size selection proce-
dure. The time complexity for testing is also reduced
as a result of localizing. Km(x,xi) in (8) needs to be
evaluated only if both ηm(x) and ηm(xi) are nonzero.

3.2. Extensions to Other Kernel-Based
Algorithms

LMKL can also be applied to kernel-based algorithms
other than binary classification SVM, such as regres-
sion and one-class SVMs. We need to make two basic
changes: (a) optimization problem and (b) gradient
calculations from the objective value found. Other-
wise, the same algorithm applies.

3.3. Knowledge Extraction

The MKL framework is used to extract knowledge
about the relative contributions of kernel functions
used in combination. If kernel functions are evaluated
over different feature subsets or data representations,
the important ones have higher combination weights.
With our LMKL framework, we can deduce similar in-
formation based on different regions of the input space.

Our proposed method also allows combining multiple
copies of the same kernel to obtain localized discrim-
inants, thanks to the nonlinearity introduced by the
gating model. For example, we can combine linear
kernels with the gating model to obtain nearly piece-
wise linear boundaries.

4. Experiments

We implement the main body of our algorithm in C++
and solve the optimization problems with MOSEK op-

timization software (Mosek, 2008). Our experimental
methodology is as follows: Given a data set, a random
one-third is reserved as the test set and the remaining
two-thirds is resampled using 5× 2 cross-validation to
generate ten training and validation sets, with strat-
ification. The validation sets of all folds are used to
optimize C by trying values 0.01, 0.1, 1, 10, and 100.
The best configuration (the one that has the highest
average accuracy on the validation folds) is used to
train the final SVMs on the training folds and their
performance is measured over the test set. So, for
each data set, we have ten test set results.

We perform simulations with three commonly used
kernels: linear kernel (KL), polynomial kernel (KP ),
and Gaussian kernel (KG):

KL(xi, xj) = 〈xi,xj〉
KP (xi, xj) = (〈xi, xj〉+ 1)q

KG(xi, xj) = exp
(
−‖xi − xj‖2 /s2

)
.

We use the second degree (q = 2) polynomial ker-
nel and estimate s in the Gaussian kernel as the av-
erage nearest neighbor distance between instances of
the training set. All kernel matrices are calculated and
normalized to unit trace before training. The step size
of each iteration, µ(t), is fixed as 0.01 without per-
forming line search and a total of 50 iterations are
performed.

4.1. Toy Data Set

In order to illustrate our proposed algorithm, we create
a toy data set, named Gauss4, which consists of 1200
data instances generated from four Gaussian compo-
nents (two for each class) with the following prior prob-
abilities, mean vectors and covariance matrices:

p11 = 0.25 µ11 =
(−3.0

+1.0

)
Σ11 =

(
0.8 0.0
0.0 2.0

)

p12 = 0.25 µ12 =
(

+1.0
+1.0

)
Σ12 =

(
0.8 0.0
0.0 2.0

)

p21 = 0.25 µ21 =
(−1.0
−2.2

)
Σ21 =

(
0.8 0.0
0.0 4.0

)

p22 = 0.25 µ22 =
(

+3.0
−2.2

)
Σ22 =

(
0.8 0.0
0.0 4.0

)

where data instances from the first two components
are of class 1 (labeled as positive) and others are of
class 2 (labeled as negative)1. We perform two sets of
experiments on Gauss4 data set: (KL-KP ) and (KL-
KL-KL).

1MATLAB implementation of LMKL with an SMO-
based canonical SVM solver and Gauss4 dataset are avail-
able at http://www.cmpe.boun.edu.tr/~gonen/lmkl.
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First, we train both MKL and LMKL for (KL-KP )
combination. Figure 1(a) shows the classification
boundaries calculated and the support vectors stored
by MKL which assigns combination weights 0.30 and
0.70 to KL and KP , respectively. Using the kernel
matrix obtained combining KL and KP with these
weights, we do not achieve a good approximation to
the optimal Bayes’ boundary. As we see in Figure 1(b),
LMKL divides the input space into two regions and
uses the polynomial kernel to separate one component
from two others quadratically and the linear kernel for
the other component. We see that the locally com-
bined kernel matrix obtained from KL and KP with
the linear gating model learns a classification bound-
ary very similar to the optimal Bayes’ boundary. Note
that the softmax function in the gating model achieves
a smooth transition between kernels.

The effect of combining multiple copies of the same
kernel can be seen in Figure 1(c) which shows the
classification and gating model boundaries of LMKL
with (KL-KL-KL) combination. Using linear kernels
in three different regions enables us to approximate the
optimal Bayes’ boundary in a piecewise linear man-
ner. Instead of using complex kernels such as the
Gaussian kernel, local combination of simple kernels
(e.g., linear and polynomial kernels) can produce ac-
curate classifiers and avoid overfitting. For example,
the Gaussian kernel achieves 89.67 per cent average
testing accuracy by storing all training instances as
support vectors. However, LMKL with three linear
kernels achieves 92.00 per cent average testing accu-
racy by storing 23.18 per cent of training instances as
support vectors on the average.

Initially, we assign small random numbers to the gat-
ing model parameters and this gives nearly equal com-
bination weights for each kernel. This is equivalent to
taking an unweighted summation of the original kernel
matrices. The gating model starts to give crisp outputs
as iterations progress and the locally combined kernel
matrix becomes more sparse (see Figure 2). The ker-
nel function values between data instances from differ-
ent regions become 0 due to the multiplication of the
gating model outputs. This localizing characteristics
is also effective for the test instances. If the gating
model gives crisp outputs for a test instance, the dis-
criminant function in (8) is calculated over only the
support vectors having nonzero gating model outputs
for the selected kernels. Hence, discriminant function
value for a data instance is mainly determined by the
neighboring training instances and the active kernel
function in its region.
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(a) MKL with (KL-KP ).
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(b) LMKL with (KL-KP ).

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

L L L

(c) LMKL with (KL-KL-KL).

Figure 1. Separating hyperplanes (black solid lines) and
support vectors (filled points) on Gauss4 data set. Dashed
lines show the Gaussians from which data are sampled and
the optimal Bayes’ discriminant. The gray solid lines shows
the boundaries calculated from the gating models by con-
sidering them as classifiers which select a kernel function.
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(a) First iteration (b) Last iteration

Figure 2. Locally combined kernel matrices, Kη(xi, xj), of
LMKL with (KL-KP ) on Gauss4 data set.

4.2. Benchmark Data Sets

We perform experiments on ten two-class benchmark
data sets from the UCI machine learning repository
and Statlog collection. In the result tables, we report
the average testing accuracies and support vector per-
centages. The average accuracies and support vector
percentages are made bold if the difference between the
two compared classifiers is significant using the 5 × 2
cross-validation paired F test (Alpaydın, 1999).

Figure 3(a)-(b) illustrate the difference between MKL
and LMKL on Banana data set with (KL-KP ) com-
bination. We can see that MKL can not capture the
localities exist in the data by combining linear and
polynomial kernels with fixed combination weights (it
assigns 1.00 to KP ignoring the linear kernel). How-
ever, LMKL finds a more reasonable decision bound-
ary using much fewer support vectors by dividing the
input space into two regions using the linear gating
model. The average testing accuracy increases from
70.52 to 84.46 per cent and the support vector count
is halved (decreases from 82.36 to 41.28 per cent).

The classification and gating model boundaries found
by LMKL with (KL-KL-KL) combination on Banana
data set can be seen in Figure 3(c). The gating model
divides the input space into three regions and in each
region a local and (nearly) linear decision boundary is
induced. Combination of these local boundaries with
softmax gating gives us a more complex boundary.

The results by MKL and LMKL for (KP -KG) and
canonical SVMs with KL, KP , KG are given in Ta-
ble 1. LMKL achieves statistically similar accuracies
compared with MKL on all data sets. LMKL stores
significantly fewer support vectors on Heart, Pima,
and Wdbc data sets. With direct comparison of av-
erage values, the localized variant performs better on
seven and eight out of ten data sets in terms of testing
accuracy and support vector percentage, respectively.
Other kernel combinations behave similarly.
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(a) MKL with (KL-KP ).
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(b) LMKL with (KL-KP ).
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(c) LMKL with (KL-KL-KL).

Figure 3. Separating hyperplanes (black solid lines) and
support vectors (filled points) on Banana data set. The
gray solid lines shows the boundaries calculated from the
gating models by considering them as classifiers which se-
lect a kernel function. Both accuracy increases and support
vector count decreases.
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We also combine p = 2, . . . , 5 linear kernels on bench-
mark data sets with LMKL. Table 1 (to the right)
compares the results of canonical SVM with the lin-
ear kernel and LMKL with three linear kernels. LMKL
uses statistically fewer support vectors on six out of ten
data sets and on three of these (Banana, Pima, and
Spambase), accuracy is significantly improved. With
direct comparison of average values, LMKL performs
better than canonical SVM on seven and eight out of
ten data sets in terms of accuracy and support vec-
tor percentages, respectively. Using localized linear
kernels also improves testing time due to evaluating
linear kernels over only neighboring support vectors,
instead of evaluating it over all support vectors.

Using Wilcoxon’s signed rank test on ten data sets (see
Table 1), when different kernels are combined, LMKL
stores significantly fewer support vectors than MKL;
when multiple copies of the same (linear) kernel are
combined, LMKL achieves significantly higher accu-
racy than canonical SVM using a single kernel.

4.3. Bioinformatics Data Sets

We perform experiments on two bioinformatics data
sets in order to see the applicability of LMKL to real-
life problems. These translation initiation site data
sets are constructed by using the same procedure de-
scribed by Pedersen and Nielsen (1997). Each data in-
stance is represented by a window of 200 nucleotides.
Each nucleotide is encoded by five bits and the posi-
tion of the set bit indicates whether the nucleotide is
A, T, G, C, or N (for unknown).

As in benchmark data sets when combining different
kernels, LMKL achieves statistically similar accuracy
results compared with MKL by storing fewer support
vectors for all combinations (see Table 2). For exam-
ple, using (KP -KG), LMKL needs on the average 24.55
and 22.32 per cent fewer support vectors on Ara-
bidopsis and Vertebrates data sets, respectively.

We combine p = 2, . . . , 5 linear kernels on bioinformat-
ics data sets using LMKL. Table 2 shows that LMKL
with three linear kernels improves the average accu-
racy statistically significantly. LMKL also uses signif-
icantly fewer support vectors (the decrease is almost
one-third) on these data sets.

5. Conclusions

This work introduces a localized multiple kernel learn-
ing framework for kernel-based algorithms. The pro-
posed algorithm consists of: (a) a gating model which
assigns weights to kernels for a data instance, (b) a
kernel-based learning algorithm with the locally com-

bined kernel matrix. The training of these two com-
ponents are coupled and the parameters of both com-
ponents are optimized together by using a two-step
alternate optimization procedure in a joint manner.

For binary classification tasks, the algorithm of the
proposed framework with linear gating is derived and
tested on ten benchmark and two bioinformatics data
sets. LMKL achieves statistically similar accuracy re-
sults compared with MKL by storing fewer support
vectors. Because kernels are evaluated locally (i.e.,
zero weighted kernels for a test instance are not calcu-
lated), the whole testing process is also much faster.
This framework allows using multiple copies of the
same kernel in different regions of the input space, ob-
taining more complex boundaries than what the un-
derlying kernel is capable of. In order to illustrate
this advantage, we combine different number of lin-
ear kernels on all data sets and learn piecewise linear
boundaries. LMKL with three linear kernels gives sig-
nificantly better accuracy results than canonical SVM
with linear kernel on bioinformatics data sets.
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Abstract

Quite a bit is known about minimizing differ-
ent kinds of regret in experts problems, and
how these regret types relate to types of equi-
libria in the multiagent setting of repeated
matrix games. Much less is known about the
possible kinds of regret in online convex pro-
gramming problems (OCPs), or about equi-
libria in the analogous multiagent setting of
repeated convex games. This gap is unfortu-
nate, since convex games are much more ex-
pressive than matrix games, and since many
important machine learning problems can be
expressed as OCPs. In this paper, we work
to close this gap: we analyze a spectrum of
regret types which lie between external and
swap regret, along with their corresponding
equilibria, which lie between coarse correlated
and correlated equilibrium. We also analyze
algorithms for minimizing these regret types.
As examples of our framework, we derive al-
gorithms for learning correlated equilibria in
polyhedral convex games and extensive-form
correlated equilibria in extensive-form games.
The former is exponentially more efficient
than previous algorithms, and the latter is
the first of its type.

1. Introduction

We wish to build agents that can learn to act effec-
tively in multiagent decision problems. We represent
such problems as general-sum games: each agent i is
given a feasible region Ai from which to choose an ac-
tion ai. The payoff to agent i depends not only on
i’s choice, but also on the actions a¬i chosen by other
agents. Since we are modeling learning, we assume

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

that each agent knows only its own feasible region and
observes only its own payoff structure. So, an agent
cannot simply compute an equilibrium of the game
and play it (even leaving aside the complexity of such
a computation and the problem of coordinating with
other agents on an equilibrium). All an agent can do is
learn a preferred course of action by playing the game
repeatedly and observing its own payoffs.

What, then, is an appropriate goal for a learning
agent? Unlike zero-sum games, general-sum games do
not have a well-defined value: even if we had com-
plete knowledge of the game and all players were com-
pletely rational, we would not be able to predict how
much payoff we should receive. Instead, researchers
have defined other goals for learning agents. One
popular one is regret minimization. For example, a
number of previous algorithms have been designed to
minimize external regret (defined in Sec. 2) in convex
games, including Generalized Gradient Descent (Gor-
don, 1999b), GIGA (Zinkevich, 2003), Follow the Per-
turbed Leader (Kalai & Vempala, 2003), Lagrangian
Hedging (Gordon, 2006), and algorithms based on
Fenchel duality (Shalev-Shwartz & Singer, 2006).

However, no external regret may not be a sufficient
goal: a set of agents can all achieve no external re-
gret (which guarantees that the empirical distribution
of joint play converges to the set of coarse correlated
equilibria, defined in Sec. 4) and still have an incentive
to change their play. For example, a no-external-regret
learner can consistently observe that its average pay-
off per trial would have been higher if it had chosen
action a′ every time that it actually played a, and yet
never switch to playing action a′ in these situations.
To avoid such behavior, we seek algorithms that pro-
vide guarantees stronger than no external regret. In
a seminal paper, Foster and Vohra (1997) present an
algorithm that exhibits no internal regret (defined in
Sec. 2) in matrix games, and further, show that if all
players achieve no internal regret, the empirical distri-
bution of joint play converges to the set of correlated
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equilibria (see Sec. 4). This guarantee rules out pre-
cisely the anomalous behavior described above.

Stoltz and Lugosi (2007) generalize these results to
convex games. Extending the framework of Greenwald
and Jafari (2003) for matrix games, they define a con-
tinuum of regret measures called Φ-regret, as well as
corresponding Φ-equilibria, for convex games. Given a
feasible region A, Φ is a collection of action transfor-
mations; that is, each φ ∈ Φ is a function from A to
itself. An agent calculates its Φ-regret by comparing
the losses it obtained during its past history of play to
the losses it would have obtained had it transformed
each action it played according to some φ ∈ Φ.

Different choices of Φ lead to different types of regret
and corresponding equilibria. In matrix games, the
only two regret types known to be of interest are the
above-mentioned external and internal regret. No in-
ternal regret is equivalent to no swap regret, in which
Φ is the set of all transformations from A to itself. In
convex games, by contrast, there is a much richer va-
riety of regret concepts. We identify and analyze two
novel regret types, which we call extensive-form and
finite-element regret. We also analyze linear regret.
Each of these regret types is distinct from the others
and from external and swap regret. In fact, they form
a progression: no swap regret (the strongest property)
implies no finite element regret, which implies no linear
regret, which implies no extensive-form regret, which
implies no external regret (the weakest property).

Different regret types require different regret-
minimization algorithms. For convex games, until re-
cently, most algorithms minimized only external re-
gret. More recently, Stoltz and Lugosi (2007) proved
the existence of a no-swap-regret algorithm, and Hazan
and Kale (2007) derived an algorithm that exhibits no
Φ-regret for any set Φ which is the convex hull of a fi-
nite set of transformations. Simultaneously and inde-
pendently, we developed an algorithm similar to Hazan
and Kale’s: our algorithm handled more-general rep-
resentations of transformation sets, but required exact
fixed-point calculations (Gordon et al., 2007).

Unfortunately, constructing an algorithm according to
Stoltz and Lugosi’s proof would be prohibitively ex-
pensive: both the time and space requirements would
grow exponentially with the number of rounds. And,
Hazan and Kale’s algorithm, which runs in time poly-
nomial in the number of corners of Φ, can also be pro-
hibitively expensive: for example, if A is the unit cube
in Rd and Φ is the set of linear transformations that
map A to itself, then Φ, which is the Cartesian product
of d copies of the unit L1 ball, has (2d)d corners.

In this work, we extend our earlier algorithms and
proofs, unifying them with Hazan and Kale’s. The
result is an algorithm which accommodates more-
efficient representations of Φ. In the example above,
the natural representation of Φ is as a set of d × d
matrices satisfying certain linear constraints. Using
this representation, our algorithm runs in time poly-
nomial in d—an exponential speedup. In general, we
can efficiently achieve no linear regret so long as we
can efficiently optimize over the set of linear mappings
from A to itself.

We also instantiate our algorithm for extensive-form
and finite-element regret. These regret types are im-
portant in practice: extensive-form regret corresponds
to extensive-form correlated equilibrium (Forges & von
Stengel, 2002), arguably the most natural notion of
equilibrium in extensive-form games. And, our no-
finite-element-regret algorithm, with a simple modi-
fication described below, guarantees that the empiri-
cal distribution of joint play converges to a correlated
equilibrium.

For extensive-form regret, our algorithm is polynomial
in the dimension of the action set A; we are not aware
of any prior no-extensive-form-regret algorithms. For
finite-element regret, our algorithm is polynomial in
the dimension of the action set and in the size of a
finite-element mesh that covers Φ. Although the nec-
essary mesh for some choices of Φ is quite large, our
algorithm is still by far the most efficient known that
guarantees convergence to correlated equilibrium.

2. The General Algorithm

When playing a repeated convex game, a single agent’s
learning problem is called an online convex pro-
gram (OCP): in each round t, the agent chooses an
action at ∈ A. At the same time, forces external to the
agent choose a convex loss function lt ∈ L. (A loss is
just a negative payoff.) The agent observes lt and pays
lt(at). The action space A is assumed to be a convex
and compact subset of Rd. The set L includes convex
loss functions with bounded subgradients. The com-
monly studied experts problem is a special case of
an OCP in which the feasible region is the probability
simplex in Rd.

A learning algorithm takes as input a sequence of
loss functions lt and produces as output a sequence of
actions at. Action at may depend on l1 . . . lt−1, but not
on lt or later loss functions. The learner’s objective is
to minimize its cumulative loss, Lt =

∑T
t=1 lt(at).

The minimum achievable loss depends on the specific
sequence lt. To measure how well a learning algorithm
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performs against a given sequence, we calculate its re-
gret. The simplest type of regret is called external
regret, and is defined as follows:

ρEXT
t = sup

a∈A

T∑
t=1

(lt(at)− lt(a))

That is, the external regret is the difference between
the actual loss achieved and the smallest possible loss
that could have been achieved on the sequence lt by
playing a fixed a ∈ A.

We say that an algorithm A exhibits no external re-
gret for feasible region A and set L if we can guarantee
that its average external regret per trial eventually falls
below any ε > 0, regardless of the particular sequence
lt. In other words, A exhibits no external regret if
there is a function f(T,A,L) which is o(T ) for any
fixed A and L, such that for all a ∈ A, t ≥ 1

T∑
t=1

lt(at) ≤
T∑

t=1

lt(a) + f(T,A,L) (1)

The function f can depend on A and L in complicated
ways, but usually depends on properties like the di-
ameter of A under some norm, or the length of ∂l(a)
under some norm for a ∈ A and l ∈ L.

More generally, an agent can consider replacing its se-
quence a1 . . . at with φ(a1) . . . φ(at), where φ is some
action transformation, that is, a measurable func-
tion that maps A into itself. If Φ is a set of such action
transformations, we define an algorithm’s Φ-regret as

ρΦ
t = sup

φ∈Φ

T∑
t=1

(lt(at)− lt(φ(at)))

and we say that it exhibits no Φ-regret if it satisfies
the following analogue of Eq. 1: for all φ ∈ Φ, t ≥ 1

T∑
t=1

lt(at) ≤
T∑

t=1

lt(φ(at)) + g(T,A,L,Φ) (2)

where g(T,A,L,Φ) is o(T ) for any fixed A, L, and Φ.

Note that external regret is just Φ-regret with Φ equal
to the set of constant transformations: i.e., ΦEXT =
{φx | x ∈ A}, where φx(a) = x. By setting Φ to
larger, more flexible transformation sets, we can define
stronger varieties of regret. However, before studying
any specific regret types in detail, we next discuss how
to achieve no Φ-regret for general Φ.

2.1. General Φ

In this section, we develop an algorithm A that ex-
hibits no Φ-regret for any suitable Φ ⊂ A 7→ A. The

algorithm itself is fairly simple, and embodies essen-
tially the same idea that was proposed earlier by Gor-
don et al. (2007) and Hazan and Kale (2007). How-
ever, we develop the idea here so that it applies to a
more general class of transformation sets Φ than con-
sidered previously, and provide a proof that it achieves
no Φ-regret under more general conditions. Our ex-
tra generality is crucial for developing efficient imple-
mentations for important choices of Φ including linear,
extensive-form, and finite-element transformations.1

Our Φ-regret minimizing algorithm A is described in
Fig. 1. It takes as input a sequence of loss functions
lt ∈ L and outputs a sequence of actions at ∈ A, which,
we will show, satisfies Eq. 2.

In designing A, we assume that we have access to sub-
routines A′ and A′′. The subroutine A′ computes ap-
proximate fixed points of transformations φ ∈ Φ. That
is, given any φ ∈ Φ and any ε > 0, A′ returns some
a ∈ A such that ‖a−φ(a)‖A ≤ ε. Here, ‖·‖A is an arbi-
trary norm on Rd. The subroutine A′′ is an external-
regret minimizing algorithm whose feasible region is
Φ; we assume that its regret bound is o(T ) whenever
we can provide a bound (in an appropriate norm) on
the subgradients of the loss functions it encounters.

Since algorithm A accesses the transformation set Φ
only through the subroutines A′ and A′′, it does not
depend on any special properties of Φ beyond the ex-
istence of these subroutines. To state our theorem,
though, we will embed Φ in a vector space, as follows.
Since A ⊂ Rd, we can write φ ∈ Φ as a d-tuple of
“coordinate” functions (ψ1, ψ2, . . . , ψd), ψi : A → R.
For all φ ∈ Φ and i = 1 . . . d, we assume ψi is a mem-
ber of some reproducing-kernel Hilbert space (RKHS)
H ⊂ A 7→ R.2 Finally, we assume that Φ is a convex
and compact subset of Hd.

To make these assumptions concrete, suppose for ex-
ample that Φ is the convex hull of a finite set of trans-
formations {φ1, . . . , φp}: i.e.,

Φ =
{∑p

j=1 αjφ
j | αj ≥ 0,

∑p
j=1 αj = 1

}
(This is the case treated by Hazan and Kale.) If we
take H to be the span of all of the coordinate functions
ψj

i , then Φ is a simplex in Hd with corners φj , for
j = 1 . . . p. (In general, Φ’s shape may be much more

1Hazan and Kale’s algorithm is efficient in the special
case of external transformations. Indeed, this section’s al-
gorithm specializes to their algorithm in this case.

2A Hilbert space is a (possibly infinite-dimensional) vec-
tor space that has an inner product. A reproducing-kernel
Hilbert space is a Hilbert space of real- or complex-valued
functions in which evaluation at the point a is a continuous
linear functional for any a.
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Given feasible region A, transformation set Φ, initial trans-
formation φ1 ∈ Φ, and subroutines A′ and A′′.

For t = 1, . . . , T :

1. Send transformation φt to the fixed-point algorithm
A′, along with accuracy parameter εt = 1/

√
t. Re-

ceive action at satisfying ‖φt(at)− at‖A ≤ εt.

2. Play at; observe loss function lt and incur loss lt(at).

3. Define mt : Φ 7→ R by mt(φ) = lt(φ(at)).

4. Send mt to the no-external-regret algorithm A′′. Re-
ceive transformation φt+1 ∈ Φ.

Figure 1. Algorithm A.

complicated than a simplex, as we will see for example
in the definition of ΦFE below.)

To bound the Φ-regret of algorithm A, we will need
bounds on the actions a and the loss-function subgra-
dients ∂l(a), for all l ∈ L and a ∈ A. In particular, we
will suppose that ‖a‖A ≤ C1 and ‖∂l(a)‖A∗ ≤ C2, for
any a ∈ A, any l ∈ L, and some constants C1, C2 > 0.
Here ‖ · ‖A∗ is the norm that is dual to ‖ · ‖A.

Theorem 1 Fix a convex and compact feasible region
A and a set of loss functions L satisfying the above
norm bounds, as well as a set of transformations Φ ⊂
Hd, where H ⊂ A 7→ R is a RKHS. Assume we are
given an algorithm A′′ which, for any set of possible
loss functions M with bounded subgradients, achieves
no external regret on Φ. Also assume we are given
an algorithm A′ which can compute an approximate
fixed point of any φ ∈ Φ. Then algorithm A, using
subroutines A′ and A′′, achieves no Φ-regret.

Proof: Define the set of functions M ⊂ Φ 7→ R as
M = {l(φ(a)) | l ∈ L, a ∈ A}. Note that each m ∈ M
is convex because each l ∈ L is convex and φ(a) is
linear in φ. Moreover, the norm of the subgradient of
any m ∈ M at any point φ ∈ Φ is bounded by C1C2.
(A proof of this fact, as well as a definition of the
appropriate norm, is given by Gordon et al. (2008).)

Because A′′ exhibits no external regret on Φ with the
bounded-subgradient set of potential loss functions M ,

T∑
t=1

mt(φt) ≤
T∑

t=1

mt(φ) + f(T,Φ,M) ∀φ ∈ Φ

where f is sublinear in T . So, by the definition of mt,
T∑

t=1

lt(φt(at)) ≤
T∑

t=1

lt(φ(at)) + f(T,Φ,M) ∀φ ∈ Φ

But, since ‖φt(at) − at‖A ≤ εt and ‖∂lt(at)‖A∗ ≤
C2, we have by Hölder’s inequality that lt(at) ≤

lt(φt(at)) + εtC2. So,
T∑

t=1

lt(at) ≤
T∑

t=1

(lt(φ(at))+εtC2)+f(T,Φ,M) ∀φ ∈ Φ

Since C2

∑T
t=1 εt = O(

√
T ), this is exactly the desired

no-Φ-regret guarantee. �

Clearly, the run-time of A depends on the run-times
of its subroutines. In particular, since A requires that
A′’s accuracy parameter ε approach 0 as T increases,
it is important that A′ run efficiently even for small ε.
We will discuss run-times in more detail in the con-
text of specific examples below. For now, we note
the following trivial generalization of a result due to
Hazan and Kale: if the fixed-point algorithm A′ is
a FPTAS, and if the no-external-regret algorithm A′′

runs in polynomial time, then A can process T actions
and loss functions in time polynomial in T . Hazan and
Kale allow run-times to be polynomial in the number
of corners of Φ (among other parameters); this ren-
ders their efficiency guarantees meaningless when Φ
has many corners. With our more-efficient represen-
tations of Φ, we can replace the dependence on the
number of corners with parameters like the dimension
of Φ and the norm bounds for a ∈ A and ∂l for l ∈ L;
since these latter parameters can be much smaller, the
result will be a much faster run-time.

As described so far, the algorithm A is deterministic
if its subroutines A′ and A′′ are. Below, we will also
define a randomized variant of A, to strengthen the
connection to game-theoretic equilibria.

2.2. Finite-dimensional Φ

We defined algorithm A in terms of a generic set of
transformations Φ ⊂ Hd, where H is a RKHS, and
each element of H is a real-valued function on A. (So,
each φ ∈ Φ is a d-tuple of real-valued functions on A,
which we interpret as a function from A to Rd.)

Because of the reproducing-kernel property, comput-
ing component ψi(a) of some φ ∈ Hd for a ∈ A is
the same as computing the inner product 〈ψi,K(a)〉.
In other words, each ψi is the composition of a fixed,
possibly-nonlinear functionK(·) with a linear mapping
〈ψi, ·〉. This is the so-called “kernel trick” (Cortes &
Vapnik, 1995): first, K computes a vector of features
of the action a. The inner product with ψi then com-
bines all of these features to produce the final output
ψi(a). To evaluate φ(a) in its entirety, we can compute
K(a) once, and then evaluate the d inner products
〈ψ1,K(a)〉, . . . , 〈ψd,K(a)〉.

In this paper, we are chiefly interested in cases where
the dimension of H is manageable, so that we can di-
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rectly write down and work with the transformations
φ ∈ Hd. So, for the remainder of the paper, we will
assume that H is isomorphic to Rp for some finite p.
We will also restrict our interest to linear loss func-
tions lt(a) = a · ∂lt. This is without loss of generality,
since we can achieve no regret for a sequence of convex
loss functions lt by working with appropriately-chosen
linear lower bounds on each lt (Gordon, 1999a).

With these additional assumptions, the steps of A can
be simplified: each derived loss function mt is linear,
and can be described by its subgradient as follows:

∂mt(φ) = ∂(lt(φ(at))) = ∂(φ(at) · ∂lt) = ∂ltK(at)T

The subgradient ∂mt is a d × p matrix, since ∂lt is
a d-vector and K(at) is a p-vector. Each transforma-
tion φ also corresponds to a d × p matrix (a d-tuple
of p-vectors). To evaluate the loss function mt on a
transformation φ, we take the dot product ∂mt · φ,
which is defined to be tr(∂mt

Tφ) = tr(K(at)∂ltTφ) =
tr(∂ltTφK(at)) = ∂lt

TφK(at).

As we will see in the next section, a number of interest-
ing transformation sets can be represented as d×p ma-
trices. Representing transformations and subgradients
in this way means we can manipulate them efficiently,
and, in turn, design efficient no-regret algorithms.

3. Specific Algorithms

We now instantiate our algorithm with various trans-
formation sets Φ. We define each Φ as a set of d×pma-
trices φ, together with a kernel function K : A 7→ Rp,
with the guarantee that φK(a) ∈ A for all a ∈ A and
φ ∈ Φ. To minimize each ensuing regret type, we go
on to identify efficient subroutines A′ and A′′ for find-
ing fixed points and achieving no external regret. (All
other calculations in our algorithm are O(pd), so these
subroutines will usually be what limits our efficiency.)

For completeness, we also mention ΦEXT, the set of
constant transformations on A, and ΦSWAP, the set
of all measurable transformations on A. ΦEXT is the
weakest form of regret of interest here, and ΦSWAP the
strongest. These are the only two regret types known
to be of interest in matrix games (no swap regret and
no internal regret are equivalent in this setting).

In convex games, however, there is a much richer va-
riety of interesting regret concepts. Below, we analyze
linear, finite-element, and extensive-form regret, corre-
sponding to transformation sets ΦLIN, ΦFE, and ΦEF.
As we will see, in general, ΦEXT ⊂ ΦEF ⊂ ΦLIN ⊂
ΦFE ⊂ ΦSWAP. So, no swap regret implies no finite-
element regret, which implies no linear regret, which
implies no extensive-form regret, which implies no ex-

ternal regret. We show in the long version of this paper
(Gordon et al., 2008) that these five regret varieties are
in fact distinct: it is possible to have, e.g., no ΦLIN-
regret while still having positive ΦFE-regret.

Linear Regret The set ΦLIN includes all linear
transformations that map A into itself. To achieve no
linear regret, we can take K to be the identity. Φ will
then be a set of square d× d matrices. To find a fixed
point of φ ∈ Φ, we choose an appropriate element of
the null space of φ−I, which takes time polynomial in
d. The more expensive task is to achieve no external
regret on Φ: depending on the form of A, Φ may or
may not lend itself to a description in terms of a small
number of simple constraints.

If A is a probability simplex, then Φ is the set
of stochastic matrices, which can be expressed with
O(d2) linear constraints on the entries of φ (this set-
ting yields an algorithm very similar to that of Blum
and Mansour (2005)). If A is a unit Euclidean ball,
then Φ consists of those matrices whose largest singu-
lar value is ≤ 1; this set can be represented using a sin-
gle semidefinite constraint. For general (convex com-
pact) A, the best choice may be to use either GIGA
or lazy projection (Zinkevich, 2003): the difficult step
in these algorithms is a Euclidean projection onto Φ,
which can be achieved via the ellipsoid algorithm.

Finite-Element Regret The finite-element trans-
formations only apply to polyhedral feasible regions
A. For finite-element regret, we will define K as a
mapping from a polyhedral feasible set A to a high-
dimensional space K(A) called the barycentric co-
ordinate space. To constructK(a), we first associate
each of the p corners of A with one dimension of Rp.
We then triangulate A by dividing it into mutually ex-
clusive and exhaustive d-simplices, so that each corner
of A is a corner of one or more simplices.

Now, to calculate K(a), we first determine the sim-
plex in which a lies (or choose one arbitrarily if it is
on a boundary) and calculate the weights of a with
respect to the d + 1 corners of that simplex. That
is, if j(1) . . . j(d + 1) are the indices of the corners
of the simplex containing a, and if cj(1) · · · cj(d+1) are
their coordinates, we find the weights b1 . . . bd+1 by
solving a =

∑
i bicj(i),

∑
i bi = 1. We then set entry

[K(a)]j(i) = bi for each corner j(i), and set all other
entries of K(a) to 0.

For example, if A = [0, 1]2, we can divide A into two
triangles, one with corners (0, 0), (0, 1), and (1, 1),
and the other with corners (0, 0), (1, 0), and (1, 1).
To calculate K( 1

3 ,
2
3 ), note that ( 1

3 ,
2
3 ) is in the first
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Figure 2. Illustration of barycentric coordinates and ΦFE.
A is the outer pentagon, triangulated into three simplices.
K(A) is a subset of the simplex in R5 (not shown). φ(A)
is the distorted pentagon. The × marks a fixed point of φ.

triangle. If we associate corners of A with dimen-
sions of K(A) in the order (0, 0), (0, 1), (1, 0), (1, 1),
then K( 1

3 ,
2
3 ) = ( 1

3 ,
1
3 , 0,

1
3 ), since these weights express

( 1
3 ,

2
3 ) as a convex combination of corners 1, 2, and 4.

Given this definition of K, ΦFE is the set of matrices
φ that map K(A) into A. If A is a simplex, then K
will be a linear mapping and ΦFE = ΦLIN. (In general,
ΦFE ⊃ ΦLIN.) For another example, see Fig. 2.

We note that ΦFE can be factored: it is the Cartesian
product of p copies of A, since it just needs to map
each corner of A to a point inside A. So, to achieve
no external regret in Φ, we can separately run p copies
of any no-external-regret algorithm for A. A typical
cost for doing so might be O(pd3).3 To find a fixed
point of φ, we just need to check each of its linear
pieces separately. Each individual check costs O(d3),
and there is one for each simplex in our mesh.

Extensive-Form Regret Let T be a player’s se-
quence tree, describing all possible sequences of
choices and observations in an extensive-form game
(e.g., Fig. 3 (left)). Suppose that each element of the
feasible region A is a sequence weight vector on
T (Forges & von Stengel, 2002), specifying a behav-
ior strategy for the game. Define an extensive form
transformation as follows: fix a set D of choice nodes
in T , along with pure-strategy sequence weight vec-
tors wb for each b ∈ D. If the original strategy is ever
about to play b ∈ D, the transformed strategy devi-
ates, and instead follows wb. We assume that there

3The precise cost will depend heavily on the shape of
A. For general A, most no-external-regret algorithms
have a step like solving an LP with feasible region A or
projecting onto A by minimum Euclidean distance. These
computations cost O(d3) if we assume that an appropriate
measure of the complexity of A is held constant.

are no b, b′ ∈ D with b′ an ancestor of b (so that all
b ∈ D are reachable), and that each b ∈ D has a
sibling a with wb(a) = 1. Extensive-form transfor-
mations are interesting since they correspond to the
incentive constraints in extensive-form correlated equi-
librium (Forges & von Stengel, 2002).

We show (Gordon et al., 2008) that each extensive
form transformation can be represented by a matrix
φ, whose rows and columns are indexed by choices,
so that any action w ∈ A is transformed into another
action φw ∈ A. The entries of φ are as follows:

φab =

 wb(a) if b � a and b ∈ D
1 if b = a and ∀b′ ∈ D, b 6∈ Tb′

0 otherwise

(Tb′ is the subtree of T rooted at b′, so that b 6∈ Tb′

means b is not a descendent of b′; b � a means b is an
ancestor or a sibling of an ancestor of a in T .) This
equation says that column b of φ is either: a copy of wb

with entries wb(a) replaced by 0s for b 6� a (if b ∈ D,
cases 1, 3); a single 1 on the diagonal (if neither b nor
any of its ancestors is in D, cases 2, 3); or all 0s (if
b 6∈ D, but one of b’s (strict) ancestors is in D, case 3).

Now, if we take ΦEF to be the convex hull of all such
φs, then ΦEF ⊂ ΦLIN, and no ΦEF-regret immediately
implies no regret vs. any extensive form transforma-
tion. (So, no ΦEF-regret is related to extensive-form
correlated equilibrium; see Sec. 4).

For example, if T is as shown in Fig. 3 (left), elements
of A are vectors of 4 sequence weights, one each for
a1 . . . a4. The weight for, e.g., a3 is P (a2 | root)P (a3 |
o2), the product of the conditional probabilities of all
choice nodes along the path from the root to a3. So,
strategy a1, a3 yields weights w = (1, 0, 0, 0)T, while
a2, a3 yields w′ = (0, 1, 1, 0)T.

The set ΦEF for this game is shown in Fig. 3 (right).
The parameters a, d, e, and f determine the probabil-
ity that each choice node is included in D: a ≥ 0 is
P (a1 ∈ D), d ≥ 0 is P (a2 ∈ D), e ≥ 0 is P (a3 ∈ D),
and f ≥ 0 is P (a4 ∈ D). If a1 ∈ D, parameters b and
c specify a strategy for the subtree rooted at a2. (If
a1 6∈ D, the game ends right after we reach D, and so
we need not specify further choices.) The inequalities
listed in Fig. 3 are consistency constraints: e.g., the
events a2 ∈ D and a3 ∈ D are mutually exclusive, so
we must have d+ e ≤ 1.

To represent the transformation “play a2, a3 instead
of a1,” we construct a matrix φ by setting a, b = 1
and c, d, e, f = 0. It is easy to verify that φw = w′

as expected. On the other hand, the transformation
“play a1 instead of a2” corresponds to ψ with d = 1
and a, b, c, e, f = 0; again, it is easy to check ψw′ = w.
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root

a1

o1

a3

a2

o2

a4

 1− a d 0 0
a 1− d 0 0
b 0 1− d− e f
c 0 e 1− d− f


Figure 3. ΦEF example. b + c = a, d + e ≤ 1, d + f ≤ 1,
and 0 ≤ a, b, c, d, e, f ≤ 1.

4. Regret and Equilibria

Algorithm A achieves no Φ-regret in an online convex
program, for any suitable Φ. In this section, we relate
this guarantee back to equilibria in convex games.

A game consists of a set of players N , a set of ac-
tions Ai for each player i ∈ N , and a payoff function
ri : ⊗iAi → R for each player i ∈ N . A matrix game
is one in which each action set is finite. A variant on
a matrix game is an experts game in which each ac-
tion set is a probability simplex. Generalizing experts
games, a convex game is one in which each action set
is a convex and compact subset of Euclidean space and
each payoff function is multi-linear. In experts games
and convex games, players can play interior points;
but, assuming polyhedral action sets (PAS), we can
generate a corresponding corner game by restricting
each player’s actions to the corners of its action sets.

Following Stoltz and Lugosi (2007), who generalize the
definition for matrix games given in Greenwald and
Jafari (2003), we define equilibria in convex games in
terms of transformation sets.

Definition 2 Given a game and a collection of trans-
formation sets, 〈Φi〉i∈N , with each Φi ⊆ ΦSWAP,
a probability distribution q over ⊗iAi is a 〈Φi〉i∈N -
equilibrium iff the expectation over a ∼ q satisfies

E [ri(φ(ai), a¬i)− ri(a)] ≤ 0 ∀i ∈ N, φ ∈ Φi (3)

Intuitively, an equilibrium is a distribution from which
no player prefers to deviate using any transformation
in its set. Taking each Φi to be the set of swap transfor-
mations defines correlated equilibria; taking each
Φi to be the set of external (i.e., constant) transfor-
mations defines coarse correlated equilibria. These
definitions lead to the following propositions, proved
by Marks (2008) and Gordon et al. (2007).

Proposition 3 A correlated equilibrium of the corner
game generated from a PAS convex game is also a cor-
related equilibrium of the convex game itself.

Proposition 4 For every correlated equlibrium in a
PAS convex game, the corresponding corner game has

a payoff-equivalent correlated equilibrium.

4.1. Repeated Games

As described above, we assume the agents play some
game repeatedly and learn by observing the relation-
ship between their actions and their payoffs. In re-
peated matrix games, Greenwald and Jafari (2003)
have shown that if each agent plays according to a no
Φi-regret algorithm, then the empirical distribution of
joint play converges to the set of 〈Φi〉i∈N -equilibria
with probability 1. The empirical distribution of
joint play at step t is the following distribution over
the joint action set, where at ∈ ⊗iAi is the joint action
played at time step t: zt(α) =

∣∣{τ | aτ = α}
∣∣/t. The

analogous result holds for 〈Φi〉i∈N -equilibrium in re-
peated convex games (e.g., Stoltz and Lugosi (2007)).

Because extensive-form games are one class of convex
games (Forges & von Stengel, 2002), this result im-
plies that, if the agents all play extensive-form regret-
minimization algorithms, their play will converge to
the set of extensive-form correlated equilibria. (Marks
(2008) also provides algorithms with this property,
using the less-efficient normal-form representation of
extensive-form games.)

We can also say something about convergence to full-
fledged correlated equilibria in repeated convex games:
define a randomized variant of A as follows. On
a trial where the deterministic algorithm would have
played āt, the randomized algorithm samples its play
at from any distribution D such that

ED(at) = āt ED(K(at)) = K(āt) (4)

(We still use āt, rather than at, in constructing mt.)
With such aD, if loss functions are linear, our Φ-regret
on A and external regret on Φ differ by a zero-mean
random variable; so, we can use standard stochastic
convergence results to prove:

Corollary 5 Under the conditions of Thm. 1, the ad-
ditional assumption (4), and restricting L to include
only linear loss functions, the randomized variant of A
achieves no Φ-regret with probability 1.

For ΦFE-regret, we can always find a D that satisfies
Equation (4); so (Gordon et al., 2007):

Corollary 6 If, in a repeated PAS convex game, each
agent plays only corner points and uses an algorithm
that achieves no internal regret for the corner game
(such as the randomized version of A with Φ = ΦFE),
then the empirical distribution of joint play converges
to the set of correlated equilibria of the convex game
with probability 1.
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To our knowledge, ours is the most efficient algorithm
which can make this claim, by a factor which is expo-
nential in the dimension d.

5. Discussion

We have presented several new forms of regret for on-
line convex programs, analyzed their relationships to
one another and to known regret types, and given the
first efficient algorithms that directly minimize some of
these forms of regret. These algorithms are by far the
most efficient known for several purposes, including
guaranteeing convergence to a correlated equilibrium
in a repeated convex game, and to an extensive-form
correlated equilibrium in an extensive-form game. By
contrast, most previous OCP algorithms only guaran-
tee convergence to coarse correlated equilibrium, an
outcome which may yield much lower payoffs and may
leave incentives for rational agents to deviate.

In the process of designing our algorithms, we derived
efficient representations of the transformation sets for
each of our regret types except ΦSWAP: we wrote each
as a nonlinear kernel mapping followed by a linear
transformation chosen from an appropriate set of ma-
trices. These representations may be of separate inter-
est for designing future algorithms. In this paper, we
were chiefly interested in cases where the dimension of
the kernel mapping was manageable, so that we could
directly work with the transformation matrices. How-
ever, it would be very interesting to try to design “ker-
nelized” no-Φ-regret algorithms. In such algorithms
we would never explicitly write down a transforma-
tion φ, but instead represent it in terms of observed
actions and loss functions, thereby making it feasible
to use very high-dimensional sets of transformations.

Important application areas for OCPs and convex
games include multi-agent planning (in which the fea-
sible region for each player is a set of plans, and inter-
actions include contending for resources) and learning
in extensive-form games such as poker. We are partic-
ularly interested in extensive-form games; this appli-
cation requires further developments such as learning
efficiently from bandit feedback and abstracting large
games into smaller representations which we can work
with in real time.
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Abstract
In real-world machine learning problems, it is

very common that part of the input feature vec-
tor is incomplete: either not available, missing,
or corrupted. In this paper, we present a boost-
ing approach that integrates features with incom-
plete information and those with complete infor-
mation to form a strong classifier. By introduc-
ing hidden variables to model missing informa-
tion, we form loss functions that combine fully
labeled data with partially labeled data to effec-
tively learn normalized and unnormalized mod-
els. The primal problems of the proposed opti-
mization problems with these loss functions are
provided to show their close relationship and the
motivations behind them.We use auxiliary func-
tions to bound the change of the loss functions
and derive explicit parameter update rules for the
learning algorithms. We demonstrate encourag-
ing results on two real-world problems — visual
object recognition in computer vision and named
entity recognition in natural language process-
ing — to show the effectiveness of the proposed
boosting approach.

1. Introduction

Boosting is a general supervised learning technique for in-
crementally building linear combinations of “weak” mod-
els to generate a “strong” predicative model. It is one
of the most successful and practical methods in machine
learning. Over the last decade, it has attracted much atten-
tion in the machine learning community and related areas
such as statistics. It has been widely applied in many real-

∗These authors contributed equally to this work.

Appearing inProceedings of the25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

world problems such as text filtering and routing, ranking,
learning in natural language processing, image retrieval,
medical diagnosis, and customer monitoring and segmen-
tation (Schapire, 2004).

It is very common in real-world machine learning problems
that part of the input feature vector is incomplete: either
not available, missing, or corrupted. In a web-page rank-
ing problem, for example, using click-though data as part
of the features, we find that a small number of valid pages
have click features and most do not. In the case of object
recognition in computer vision, many approaches assume
a part-based model. However, certain parts of the object
are hard to detect reliably due to small support in the im-
age, occlusion or clutter, which also lead to missing infor-
mation. Handling these kinds of classification problems
containing incomplete information is a very important and
realistic task. Excluding popular EM algorithms for gener-
ative models,some methods have been recently proposed
for discriminative models (Chechik et al., 2007; Koo &
Collins, 2005; Quattoni et al., 2005; Shivaswamy et al.,
2006; Bi & Zhang, 2004).

In this paper, we show how to handle incomplete data under
the boosting approach. We first describe the precise prob-
lem we are trying to solve, then we formulate optimization
problems where the loss functions consist of two parts, one
using partially labeled data and the other using fully labeled
data. The primal problems of the proposed optimization
problems with these loss functions are provided to show
their close relationship and shed light on the rationale be-
hind them. We derive explicit parameter update rules of
the learning algorithms by introducing auxiliary functions
to bound the change of loss functions. Finally, we demon-
strate encouraging results on two real-world problems to
show the effectiveness of the proposed boosting approach:
visual object recognition in computer vision and named en-
tity recognition in natural language processing.
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2. Preliminaries

Let X ∈ X be a random variable over data instances to
be labeled, andY be a random variable over corresponding
labels ranging over a finite label alphabetY. The classi-
fication task is to learn a mapping from data instancesX
to labelsY. Assume we have a set of feature functions
F1 :=

{
fk(x, y)

}
where each feature mapsX × Y to R.

Same as in (Collins et al., 2002; Lebanon & Lafferty, 2002)
and without loss of generality, we assume that the range of
all feature functions in this paper is[0, 1]. These feature
functions correspond to weak learners in boosting and suf-
ficient statistics in an exponential family model.

Suppose the target predictorcan be derived from a scor-
ing function written as a linear combination of feature
functionst(x, y) =

∑

fk∈F1
λkfk(x, y). Given a training

dataset
{
(xi, yi)

}
, it has been shown (Lebanon & Lafferty,

2002) that Adaboost (Freund & Schapire, 1997) combines
features to minimize the following exponential loss

X

xi

X

y

qλ(y|xi) (1)

whereqλ(y|x) := exp
∑

fk∈F1
λk

[
fk(x, y) − fk(x, ỹx)

]

is called the unnormalized model, andỹx denotes the label
of instancex over the empirical data. Equivalently, it has
been shown (Lebanon & Lafferty, 2002) that Logitboost
(Friedman et al., 2000) minimizes the following log loss

−
X

xi

log pλ(ỹxi
|xi) (2)

wherepλ(y|x) := qλ(y|x)/Zλ(x) is called the normalized
model. Optimizing the two objective functions above can
be done by either parallel or sequential updates (Collins
et al., 2002; Lebanon & Lafferty, 2002).

Now assume that there is a random variableh ∈ H which
is hiddenin some part of the training dataD1 :=

{
(xi, yi)

}

but has been observed in the rest of the training dataD2 :=
{
(xj , hj , yj)

}
. Consider a second set of feature functions

F2 :=
{
fk(x, h, y)

}
where each feature mapsX ×H×Y

to R. In many real-world applications, the number of fully
observed instances is much smaller than that of partially
observed instances, that is,|D2| ≪ |D1|, since obtain-
ing fully observed instances is either expensive or time-
consuming. To take full advantage of all available training
data, we need to develop new methods, because the infor-
mation cannot be fully exploited by the original boosting
algorithm.

Hereafter we use subscriptsi andj to range over training
data inD1 andD2 respectively. For a datum(x, h, y), we
denote all of itsF1 features by the vectorf1(x, y) and all
of itsF2 features by the vectorf2(x, h, y).

3. Boosting with Hidden Variables

The challenge in this paper is, besides using the feature set
F1 and training setD1, how to use the additional feature
setF2 and training setD2 to obtain a better approximation
for the mapping from instances to labels.

To this end, the main object of focus is a mapping from
X × H to Y, which is modeled by a conditional probabil-
ity distribution pλ(y|x, h). This distribution is called the
normalized model and is defined parametrically as

pλ(y|x, h) ∝ e
λT

1
·[f1(x,y)−f1(x,ỹx)]+λT

2
·[f2(x,h,y)−f2(x,h,ỹx)]

whereλ1 andλ2 are the model’s parameter vectors corre-
sponding to features inF1 andF2, respectively1. To esti-
mate the parameters of the distribution, we can maximize
the conditional likelihood of the training data:

L(λ) :=
X

i

log pλ(yi|xi) + γ
X

j

log pλ(yj |xj , hj)

whereγ is used to balance the influence of the two data
sources on the objective function. Letq0(h|x) be a fixed
distribution representing the prior belief in values of the
hidden variable given an instancex, then pλ(y, h|x) =
q0(h|x)pλ(y|x, h) and the first term inL(λ) can be com-
puted based onpλ(y|x) =

∑

h pλ(y, h|x).
We now turn our attention to model the mapping from
X × H to Y by a linearscoring functionthat is the ba-
sis of our Adaboost type algorithms. Whenh is observed,
the mapping is defined based on

tλ(x, h, y) := λ
T
1 · f 1

(x, y) + λ
T
2 · f 2

(x, h, y)

and whenh is hidden, it is defined astλ(x, y) :=
∑

h q0(h|x)tλ(x, h, y). As before,q0(h|x) is used to in-
ject prior domain knowledge. To learn the parameters, we
pose the minimization of the loss functionE(λ) defined as

E(λ) :=
X

i

X

h

q0(h|x)
X

y

qλ(y|xi, h) + γ
X

j

X

y

qλ(y|xj , hj)

whereqλ(y|xi, h) is called the unnormalized model

qλ(y|x, h) := e
λT

1
·[f1(x,y)−f1(x,ỹx)]+λT

2
·[f2(x,h,y)−f2(x,h,ỹx)]

The second term inE(λ) can be thought of as the loss in-
curred for thejth instance over all possible labels, and the
first term as theexpectedloss for theith instance. Note
that if q0(h|xj) puts a point massγ on the observedhj for
instances inD2, thenE(λ) can be rewritten compactly as

E(λ) =
X

x∈D1∪D2

X

h,y

q0(h|x)qλ(y|x, h)

1It is equivalent to the more familiar formpλ(x, h, y) ∝

eλT
1
·f1(x,y)+λT

2
·f2(x,h,y) by simply removing the constants

eλT
1
·f1(x,ỹx)+λT

2
·f2(x,h,ỹx) from the numerator and denominator.
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In the next section, we will show that there is a close re-
lationship between minimizingE(λ) and maximizing the
lowerbound ℓ(λ) on L(λ), which is derived based on
Jensen’s inequality and defined as

ℓ(λ) :=
X

i,h

q0(h|xi) log pλ(yi|xi, h) + γ
X

j

log pλ(yj |xj , hj)

By extendingq0 to instances inD2 as before, we can write

ℓ(λ) =
X

x∈D1∪D2

X

h

q0(h|x) log pλ(ỹx|x, h)

Furthermore, we will show a close relationship between
maximizing L(λ) and minimizing the following lower-
bound onE(λ) derived by Jensen’s inequality

ε(λ) :=
X

i

X

y

e
tλ(xi,y)−tλ(xi,yi)

+γ
X

j

X

y

e
tλ(xj ,hj ,y)−tλ(xj ,hj ,yj)

In the test time, depending on whetherh is hidden or not,
eitherpλ(y|x) or pλ(y|x, h) can be used to determine the
class label of a given instance if we use the probabilistic
model. Accordingly, for the linear map, eithertλ(x, y) or
tλ(x, h, y) can be used.

Our definitions of both normalized and unnormalized mod-
els are similar to those in (Lebanon & Lafferty, 2002). If we
ignore fully labeled data inL(λ), we get the hidden con-
ditional random field proposed in (Koo & Collins, 2005;
Quattoni et al., 2005) by assumingq0(h|x) to be constant;
however, the second term inL(λ) should exist to take ad-
vantage ofD2. If we ignore the first term inE(λ), we get
the standard boosting algorithm’s loss function; however,
the first term is needed to take advantage of the partially
observed dataD1. In the next section, we will provide the
primal problems for the proposed loss functions to moti-
vate the rationale of optimizing them and show their rela-
tionships. We then give sequential and parallel algorithms
to optimizeE(λ) andL(λ) in section 5.

4. Primal and Dual Programs

It is well known (Lebanon & Lafferty, 2002) that for stan-
dard boosting with no hidden information, the primal op-
timization problems for Adaboost and Logitboost are the
same except for the additional constraints for the latter to
ensure a probabilistic model. For our boosting with incom-
plete information, this relationship does not exist for the
original optimization problems themselves, but rather be-
tweenE(λ) andℓ(λ) which is the lowerbound onL(λ).

Let the set of non-negative measuresM := {m : X ×H×
Y → R+}, andF := F1 ∪ F2. Let r be the reference
measure1; however, it can be any arbitrary measure that
generalizes the objective functions introduced in the previ-
ous section.

Theorem 1. The following optimization program:

max
λ

X

x∈D1∪D2

X

h,y

q0(h|x)qλ(ỹx|x, h) (3)

is the dual ofminp∈S(p̃,q0,F)KL(p||r) where the ex-
tendedKL(p||r) is defined as
X

x,h

p̃(x)q0(h|x)
X

y

p(y|h, x)
h

log
p(y|x, h)

r(x, h, y)
− 1
i

+ r(x, h, y)

and the setS(p̃,q0,F) is defined as
n

p ∈M
˛

˛

˛

X

x

p̃(x)Eq0(h|x)p(y|x,h)

h

f−Ep̃(y|x)[f ]
i

= 0, ∀f ∈ F
o

Proof sketch.The key idea in this theorem is the definition
of the extended KL divergence andS(p̃,q0,F). Construct
the Lagrangian of the dual, which is a constrained opti-
mization problem, take its derivative, and set it to zero.
It will give the form of the optimal solution; plug this
form back into the Lagrangian, and make the data con-
sistency assumption (p̃ is theempirical probability distri-
bution)

∑

y p̃(y|x)f(x, y) = f(x, yx) for f ∈ F1 and
∑

y p̃(y|x)f(x, h, y) = f(x, h, yx) for f ∈ F2, we will
obtain the optimization problem in (3) .

Theorem 2. The following optimization program:

max
λ

X

x∈D1∪D2

X

h

q0(h|x) log pλ(ỹx|x, h) (4)

is the dual ofminp∈S△(p̃,q0,F)KL(p||r) where the ex-
tendedKL(p||r) is defined as in Theorem 1, and

S△(p̃,q0,F) :=
n

p ∈ S(p̃,q0,F)
˛

˛

˛

∀x, h :
X

y

p(y|x, h) = 1
o

The proof of this theorem is similar to that of Theorem 1
and is omitted because of space constraints. As can be seen
from the theorems above, the primal optimization problems
corresponding to the objective functionsE(λ) andℓ(λ) are
the same except for the additional constraints for the later
one to ensure

∑

y p(y|x, h) = 1. The extended KL di-
vergence gives the expected discrepancy betweenp(y|x, h)
and the reference measurer(x, h, y) where the expecta-
tion is taken with respect to the distributioñp(x)q0(h|x).
Hence minimizing the extended KL subject to the con-
straints forcesp(y|x, h) to become similar tor, or in par-
ticular when the reference measure is1 or constant, to have
more entropy.

5. Learning Algorithms

Convergence of boosting algorithms has been studied in
various ways. Much work has been done to prove the con-
vergence in terms of an optimization method, which can
be categorized into two approaches: greedy function opti-
mization and greedy feature induction.

In the first approach, the boosting algorithm is viewed as
a sequential gradient descent algorithm (Breiman, 1999;
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Algorithm 1 Parallel Updates for the Normalized Model
1: repeat
2: for fk ∈ F1 do
3: A

+

k =
X

i

E
+

pλ(y|xi)
[gk(xi, y)]+

γ
X

j

E
+

pλ(y|xj ,hj)
[gk(xj , y)]

4: A
−
k =

X

i

E
+

pλ(y|xi)
[−gk(xi, y)]+

γ
X

j

E
+

pλ(y|xj ,hj)
[−gk(xj , y)]

5: ∆λk =
log A

−

k
−log A

+

k

2C

6: end for
7: for fk ∈ F2 do
8: A

+

k =
X

i

E
+

pλ(y,h|xi)
[gk(xi, h, y)]+

γ
X

j

E
+

pλ(y|xj ,hj)
[gk(xj , hj , y)]

9: A
−
k =

X

i

E
+

pλ(y,h|xi)
[−gk(xi, h, y)]+

γ
X

i

E
+

pλ(y|xj ,hj)
[−gk(xj , hj , y)]

10: ∆λk =
log A

−

k
−log A

+

k

2C

11: end for
12: for fk ∈ F1 ∪ F2 do
13: λk ← ∆λk + λk

14: end for
15: until convergence

Friedman et al., 2000; Mason et al., 2000) in function
space, inspired by numerical optimization and statisticales-
timation. It is a forward stage-wise additive modeling that
approximates the solution by sequentially adding new basis
functions without adjusting the parameters and coefficients
of those that have already been added. At each iteration,
one solves for the optimal basis function and corresponding
coefficients to add to the current expansion. This produces
new expansion, and the process is repeated.

In the second approach (Collins et al., 2002; Lebanon &
Lafferty, 2002), the boosting algorithm is described as a
greedy feature induction algorithm to incrementally build
random fields. The greediness of the algorithm arises in
steps that select the most informative feature. In these steps
each feature in a pool of candidate features is evaluated by
estimating the reduction in the Kullback-Lieber divergence
that would result from adding the feature to the field. This
reduction is approximated as a function of a single param-
eter and is equal to the exponential loss reduction or log
loss increment. This approximation is one of the key ele-
ments that make it practical to evaluate a large number of
candidate features at each stage of the induction algorithm.
Various parameter update rules can be derived By using
an auxiliary function to bound the change of loss function
from above, and thus convergence to the global optimal so-

lution is proved.

In this paper we take the second approach to learn the dis-
criminative model. We construct an auxiliary function to
bound the change of exponential loss,E(λ+∆λ)−E(λ) or
log-lossL(λ)−L(λ+∆λ). Similar to (Collins et al., 2002;
Lebanon & Lafferty, 2002), either parallel or sequential up-
dates can be used. By the same argument as in (Collins
et al., 2002; Lebanon & Lafferty, 2002), we can show the
convergence of these updates to alocal minimumof the
loss function. For simplicity in presenting the results, we
introduce some notation for̃x ∈ D1 ∪ D2:

∀fk ∈ F1, gk(x̃, y) = fk(x̃, y) − fk(x̃, ỹx̃) (5)

∀fk ∈ F2, gk(x̃, h, y) = fk(x̃, h, y) − fk(x̃, h, ỹx̃) (6)

C := max
x̃,y,h

( ∑

fk∈F1

|gk(x̃, y)| +
∑

fk∈F2

|gk(x̃, h, y)|
)

(7)

E
+
p(t)[ψ(t)] :=

∑

t:ψ(t)>0

p(t)ψ(t) (8)

For the normalized model, the learning algorithm with par-
allel updates is summarized in Algorithm 1 and with the
sequential updates in Algorithm 2. For the unnormalized
model, the update rules (parallel or sequential) are exactly
the same; the only difference is that we will useqλ(y|x, h)
rather thanpλ(y|x, h) in all the algorithms’ equations. For
details of the derivation of updating rules in the learning
algorithms, see Appendix A.

For ease of presentation, we have assumed that the poten-
tially missing attributes are always the same. This is an
interesting and nontrivial situation that occurs in many real-
world applications, where the missing attributeh is the in-
formation that requires expensive human labeling (see the
experiments for example applications). However, our ap-
proach can be easily extended to the cases where the data
could have different missing attributes. In this more general
setting, thei-th training datum has the form(xi, yi) with
missing informationhi ∈ Hi, whereHi can vary for dif-
ferenti’s depending on which information is missing. The
contribution of this datum to the log loss in the normalized
model is simply− log pλ(yi|xi). All the arguments in this
paper will go through with some minor changes.

6. Experiments

We evaluate our approach in two real-world problems: vi-
sual object recognition in computer vision and named en-
tity recognition in natural language processing. In both
cases, we use simple and independent features, so when we
calculate the values ofA+

j andA−
j , feature expectations

can be done efficiently. For simplicity, we setγ to be 1. In
practice, this parameter can be set by cross-validation. We
set our prior belief in values of the hidden variable given an

371



Boosting with Incomplete Information

Algorithm 2 Sequential Updates for the Norm. Model
1: repeat
2: for fk ∈ F1 do
3: A

+

k =
X

i

X

y 6=yi

pλ(y|xi)(1 + gk(xi, y))+

γ
X

j

X

y 6=yj

pλ(y|xj , hj)(1 + gk(xj , y))

4: A
−
k =

X

i

X

y 6=yi

pλ(y|xi)(1− gk(xi, y))+

γ
P

j

P

y 6=yj
pλ(y|xj , hj)(1− gk(xj , y))

5: λk ←
log A

−

k
−log A

+

k

2
+ λk

6: end for
7: for fk ∈ F2 do
8: A

+

k =
X

i

X

y 6=yi

X

h

pλ(y, h|xi)(1 + gk(xi, h, y))+

γ
P

j

P

y 6=yj
pλ(y|xj , hj)(1 + gk(xj , hj , y))

9: A
−
k =

X

i

X

y 6=yi

X

h

pλ(y, h|xi)(1− gk(xi, h, y))+

γ
P

j

P

y 6=yj
pλ(y|xj , hj)(1− gk(xj , hj , y))

10: λk ←
log A

−

k
−log A

+

k

2
+ λk

11: end for
12: until convergence

instance,q0(h|x) to be constant. In all the experiments, we
use parallel updates. We have tried sequential updates and
find that they are much slower. Although they can achieve
higher likelihood on the training data, the results on the test
data remain the same.

We compare our proposed boosting approach with three
different baseline algorithms, in both normalized and un-
normalized cases. The first baseline algorithm (BL1) uses
both sets of featuresF1 andF2, but is trained only on the
fully observed training dataD2. The second baseline algo-
rithm (BL2) is trained on all the training dataD1 ∪ D2 but
uses only featuresF1, that is, it ignores featuresF2 that
involve the hidden informationh. Notice that the second
baseline algorithm is identical to the algorithm in (Lebanon
& Lafferty, 2002). The third baseline algorithm (BL3) uses
all the training dataD1 ∪ D2 and both types of features
F1∪F2 but ignoresobservedh on fully observed data; that
is, it assumes all the data are in the form of{(xi, yi)}. No-
tice that the third baseline algorithm is similar to the hidden
conditional random field (Quattoni et al., 2005).

6.1. Visual Object Recognition

We first consider a visual object recognition task where
some of the data have missing features. In this task, we
attempt to classify an image based on the existence of an
object of interest in the image. We test our approach on the
Caltech 4 dataset: airplanes, cars, faces, and motorbikes.

Common approaches to object recognition involve some
form of supervision, which may range from manually seg-

menting the objects (Winn & Shotton, 2006), to specifying
a bounding box of the objects (Viola & Jones, 2001), to
only indicating the existence of the objects (Fergus et al.,
2003). Naturally, there is a trade-off among different levels
of supervisions. Manually segmenting the object of inter-
est in an image obviously provides very accurate informa-
tion for any learning algorithm, but it is very expensive and
time-consuming to annotate a large number of images. On
the other hand, it is relatively easy to label an image based
only on the existence of an object. In our experiment, we
assume we have two sets of training images. The first set
of images has only class labels associated with them; we
represent them as(x, y), wherex refers to the image and
y refers to its class label. The second set of images has
both class label and the contour of the object being man-
ually labeled; we represent them as(x, h, y), whereh is
the information about the contour of the object. Our learn-
ing problem is then in precisely the scenario in which our
proposed method is expected to be effective.

We first run an interest-point detector (Kadir & Brady,
2001) to identity regions of interest on each image. Each
interest point is represented by a SIFT descriptor (Lowe,
2004) as a 128-dimensional vector. The SIFT descriptors
from all the training images are then vector quantized into
K visual words (we chooseK = 200 in our experiment)
by k-means clustering. All the images are then represented
by a bag-of-words representation by counting the occur-
rence of each visual word in an image. We denote an im-
age asx = (x1, x2, ..., xt), wheret is the number of in-
terest points inx, and eachxi is an entry to a visual word.
The informationh about the object contour is represented
ash = (h1, h2, ..., ht), wherehi is a binary value indicat-
ing whetherxi is on the object or not. Since we assume
the “bag-of-words” model, the summation overh required
for calculatingA+

j andA−
j can be solved efficiently by

factoring out the contribution of each interest point. Al-
though bag-of-words representation ignores a lot of posi-
tional information between features, previous work (Sivic
et al., 2005; Fergus et al., 2005) has demonstrated that it to
be quite effective in object recognition tasks.

We define the following three sets of features for our boost-
ing algorithm, based on the bag-of-words representation of
images. (1) featurefjy′(x, y) is calculated as the count of
visual wordsj in an imagex if y = y′, and zero otherwise;
(2) featureojy′(x, h, y) is the count of visual wordsj on
the foreground of imagex if y = y′, and zero otherwise;
(3) featurebjy′(x, h, y) is the count of visual wordsj on
the background of imagex if y = y′, and zero otherwise.
Notice that featuresfjy′ are always observed for a train-
ing image. Featuresojy′ andbjy′ are observed only when
a training image does not have missing information (i.e.,
the manually labeled object contour). We normalize all the
features by the total number of interest points in an image
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accuracy log-likelihood
Our method 97.22% -0.0916

BL1 89.26% -1.1417
BL2 88.01% -0.5698
BL3 90.43% -0.4375

normalized model
accuracy log of loss

Our method 94.83% -0.7412
BL1 82.57% -1.1231
BL2 89.86% -0.7977
BL3 87.64% -0.8068

unnormalized model

Table 1.Results of our approach on visual object recognition,
compared with three baseline algorithms

to make sure their values are between 0 and 1. During test-
ing, we observed the imagex, and we try to infer its label
y based on the learned model. Although we can also in-
fer y assuming bothx andh are observed during testing,
it is actually an unrealistic setting in our application. Itre-
quires a perfect figure/ground segmentation of the imagex.
However, since figure/ground segmentation is itself a very
challenging problem in computer vision, it is not reason-
able to assume we could have this information during the
testing. So we do not investigate this case.

Our dataset contains more than 2000 images. We randomly
split them equally into training and testing sets. We choose
30% of the training images to be fully observed and the rest
to be partially observed. We compare both normalized and
unnormalized models with the three baseline algorithms
defined above, in terms of classification accuracy and the
log-likelihood of the test data. The results are shown in Ta-
ble 1. We also visualize the most discriminative patches in
some sample images in Figure 1. We find that our approach
is significantly superior to the three baseline algorithms,in
term of both accuracy and log-likelihood on the test images.

6.2. Named Entity Recognition

Named entity extraction (NEE) is a subtask of information
extraction in which we try to identify names of persons, lo-
cations, and organizations in a given set of documents. One
approach to this problem is to do first named entity recog-
nition (NER) and then named entity classification (NEC).
In this section we apply our method to the NER problem
and demonstrate its effectiveness compared to the baseline
systems.

We consider NER as a sequence labeling problem, that is,
specifying a sequence of zero and one for a sentence to
classify a word as part of a named entity or not. For each
word w, its surrounding words in a window of length 5,
its part-of-speech tag (when available), and previous pre-

dictions represent its local context, which then used by the
classifier. The part-of-speech tag is a valuable source of in-
formation and is not available in some annotations of the
data sets for this task, so we treat it as the hidden variable
that is not observed for some portion of the training data.
We could use thesequenceof POS tags of the words in the
current window as the hidden variable. In that case, we
may use a finite state automata to characterize the eligible
sequence of POS tags when we want to sum over their val-
ues to speed up the training algorithms. The features that
we used are summarized in Table 6.2; they are described in
more details in (Carreras et al., 2003).

Feature Explanation
Lexical word forms and their positions in the window
Syntactic part-of-speech tags (when available)
Orthographic capitalized, include digits, ...
Affixes the suffixes and prefixes (up to four characters)
Left predict predicted labels for the two previous words

Table 2.Details of the features used for the NER task. Syntactic
features belong toF2 and the rest of features belong toF1.

We use the data set of the CONLL 2003 shared task. To re-
duce the training time, we collapse the original 45 different
POS tags into five tags as done in (McCallum et al., 2003).
After training the model, we do the classification for each
individual position by normalizing the prediction score of
the model using the class mass normalization (CMN) pro-
cedure as introduced in (Zhu et al., 2003).

We compare our approach to the three baseline systems de-
fined before. There are 5K sentences inD1, 6K sentences
in D2, and 1K sentences in the test set. The first set of
experiments show the performance of our model compared
to the baselines when, at the test time, onlyx is available
(see Table 3). In the second set of experiments,(x, h) is
given at the test time (see Table 4); for this setting, BL2
and BL3 cannot be used. Our method outperforms baseline
systems in both sets of experiments in terms of f-measure
and log-likelihood or loss function.

7. Comparison to the Related Work

Originally boosting is considered as a way to boost weak
learners to strong learners by: learning weak hypotheses
to classify hard examples in each round, and finally com-
bining these weak hypotheses. Another view to boosting
is through the statistical perspective which interprets itas:
optimizing some objective function via parallel or sequen-
tial updates to determine the weights of all possible weak
hypotheses (aka features). There is a debate between the
statistic and algorithmic perspective; see (Mease & Wyner,
2008) for more information. Our work takes the statistical
perspective and do not engage in that debate.
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Figure 1.Visualization of the most discriminative patches in each image.

f-measure log-likelihood
Our method 49.45% -0.5784

BL1 46.63% -0.5932
BL2 48.10% -0.5803
BL3 47.80% -0.5880

normalized model
f-measure log of loss

Our method 49.04% -2.6337
BL1 46.24% -2.6458
BL2 47.58% -2.6378
BL3 46.39% -2.6434

unnormalized model

Table 3.Results of our approach on the NER task, compared with
three baseline algorithms when onlyx is given in the test data.

f-measure log-likelihood
Our method 59.60% -0.5759

BL1 56.51% -0.5916
normalized model

f-measure log of loss
Our method 60.17% -0.2586

BL1 55.46% -0.2655
unnormalized model

Table 4.Results of our approach on the NER task, compared with
the baseline algorithm BL1 when(x, h) is given in the test data.
Even by havingh, namely POS tags, the NER task is not easy.

A related algorithm that takes the first perspective to boost-
ing is AdaBoost with confidence-rated predictions in which
a weak learner outputs a real value representing the con-
fidence level (Schapire & Singer, 1999). When provided
with incomplete input, the weak learner’s contribution is
its uncertainty about its vote, which is represented by the
produced real number. The details of the connection be-
tween our approach and confidence-rated AdaBoost will be
an interesting topic to explore for future research.

8. Conclusions and Further Work

In this work we have presented a novel boosting approach
that extends the traditional boosting framework by incor-
porating hidden variables such that fully labeled data can
be integrated with partially labeled data to form a power-
ful strong classifier. Thus, compared with both the original
boosting algorithms and hidden CRF, our model performs
better in two real-world problems by fully exploiting rele-
vant complete information of data resources.

We consider only simple independent features in our
model. In fact, the hidden variables may have complex
dependencies that respect certain cyclic graph structure;
then it may be necessary to use variational methods, such
as loopy belief propagation, to compute feature expecta-
tion for the values ofA+ andA−. As future work, we
would like to incorporate more complex dependent features
in these two applications.
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Appendix A. Deriving Learning Algorithms

Exponential loss

We derive parallel updates for exponential loss. Letλ+∆λ
be the new parameters value. We find an upper-bound to
the change of objective functionE(λ+ ∆λ) − E(λ) by an
auxiliary function, and then minimize the bound.

E(λ + ∆λ)− E(λ) =
X

i,h,y

q0(h|xi)e
λ.G(xi,h,y)

“

e
∆λ.G(xi,h,y) − 1

”

+

γ
X

j,y

e
λ.G(xj ,hj ,y)

“

e
∆λ.G(xj ,hj ,y) − 1

”

≤

X

i,h,y

qλ(h, y|xi)
“

P

k
gke∆λsk(xi,h,y)C

C
+ wxi,h,y − 1

”

+

γ
X

j,y

qλ(y|xj , hj)
“

P

k
gke∆λsk(xj ,hj ,y)C

C
+ wxj ,hj ,y − 1

”

:= A(λ, ∆λ)

wherewx,y,h = 1 − ∑

k
|gk(x,h,y)|

C , G(x, h, y) is a vec-
tor built from gk(x, h, y), and sk(x, h, y) is the sign of
gk(x, h, y). We find the stationary point of the auxil-
iary functionA(λ,∆λ) with respect to∆λk by taking the
derivative and setting it to zero, which gives us the updating
rules. The sequential updates can also be derived similarly.

Log loss

The objective is to minimize the objective function−L(λ+
∆λ)+L(λ). First we find an upper-bound on the objective
function:

L(λ)− L(λ + ∆λ) =
X

i

log
X

y,h

e
λ+∆λ·G(xi,h,y) − log

X

y,h

e
λ·G(xi,h,y) −

γ
X

j

log
X

y

e
λ+∆λ·G(xj ,hj ,y) − log

X

y

e
λ·G(xj ,hj ,y) =

X

i

log
X

y,h

pλ(h, y|x)e∆λ·G(xi,h,y) +

γ
X

j

log
X

y

pλ(y|xj , hj)e
∆λ·G(xj ,hj ,y) ≤

X

i

X

y,h

pλ(h, y|x)e∆λ·G(xi,h,y)

+γ
X

j

X

y

pλ(y|xj , hj)e
∆λ·G(xj ,hj ,y)

The inequality holds becauselog x ≤ x. The last expres-
sion can be upper-bounded again (using a similar technique
used for exponential loss), and the resultant upper-bound
will be the auxiliary function. It can be shown that the up-
date rules are the same to unnormalized model, but the dif-
ference is to usepλ(·) rather thanqλ(·). The update rules
for sequential updates can be derived similarly.
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Abstract

In this paper we propose a discriminant
learning framework for problems in which
data consist of linear subspaces instead of
vectors. By treating subspaces as basic el-
ements, we can make learning algorithms
adapt naturally to the problems with lin-
ear invariant structures. We propose a uni-
fying view on the subspace-based learning
method by formulating the problems on the
Grassmann manifold, which is the set of
fixed-dimensional linear subspaces of a Eu-
clidean space. Previous methods on the prob-
lem typically adopt an inconsistent strategy:
feature extraction is performed in the Eu-
clidean space while non-Euclidean distances
are used. In our approach, we treat each sub-
space as a point in the Grassmann space, and
perform feature extraction and classification
in the same space. We show feasibility of
the approach by using the Grassmann kernel
functions such as the Projection kernel and
the Binet-Cauchy kernel. Experiments with
real image databases show that the proposed
method performs well compared with state-
of-the-art algorithms.

1. Introduction

We often encounter learning problems in which the ba-
sic elements of the data are sets of vectors instead of
vectors. Suppose we want to recognize a person from
multiple pictures of the individual, taken from differ-
ent angles, under different illumination or at different
places. When comparing such sets of image vectors, we
are free to define the similarity between sets based on

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

the similarity between image vectors (Shakhnarovich
et al., 2002; Kondor & Jebara, 2003; Zhou & Chel-
lappa, 2006).

In this paper, we specifically focus on those data that
can be modeled as a collection of linear subspaces. In
the example above, let’s assume that the set of images
of a single person is well approximated by a low di-
mensional subspace (Turk & Pentland, 1991), and the
whole data is the collection of such subspaces. The
benefits of using subspaces are two-fold: 1) compar-
ing two subspaces is cheaper than comparing two sets
directly when those sets are very large, and 2) it is
more robust to missing data since the subspace can
‘fill-in’ the missing pictures. However the advantages
come with the challenge of representing and handling
the subspaces appropriately.

We approach the subspace-based learning problems by
formulating the problems on the Grassmann manifold,
the set of fixed-dimensional linear subspaces of a Eu-
clidean space. With this unifying framework we can
make analytic comparisons of the various distances of
subspaces. In particular, we single out those distances
that are induced from the Grassmann kernels, which
are positive definite kernel functions on the Grassmann
space. The Grassmann kernels allow us to use the
usual kernel-based algorithms on this unconventional
space and to avoid ad hoc approaches to the problem.

We demonstrate the proposed framework by using the
Projection metric and the Binet-Cauchy metric and by
applying kernel Linear Discriminant Analysis to clas-
sification problems with real image databases.

1.1. Contributions of the Paper

Although the Projection metric and the Binet-Cauchy
metric were previously used (Chang et al., 2006; Wolf
& Shashua, 2003), their potential for subspace-based
learning has not been fully explored. In this work, we
provide an analytic exposition of the two metrics as
examples of the Grassmann kernels, and contrast the
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Yi
Yj

θ 2

G(m, D)

u1
v1

θ1 , ..., θm

span( Yi )
span( Yj )

RD

Figure 1. Principal angles and Grassmann distances. Let span(Yi) and span(Yj) be two subspaces in the Euclidean space
RD on the left. The distance between two subspaces span(Yi) and span(Yj) can be measured by the principal angles
θ = [θ1, ... , θm]′ using the usual innerproduct of vectors. In the Grassmann manifold viewpoint, the subspaces span(Yi)
and span(Yj) are considered as two points on the manifold G(m, D), whose Riemannian distance is related to the principal
angles by d(Yi, Yj) = ‖θ‖2. Various distances can be defined based on the principal angles.

two metrics with other metrics used in the literature.

Several subspace-based classification methods have
been previously proposed (Yamaguchi et al., 1998;
Sakano, 2000; Fukui & Yamaguchi, 2003; Kim et al.,
2007). However, these methods adopt an inconsistent
strategy: feature extraction is performed in the Eu-
clidean space when non-Euclidean distances are used.
This inconsistency can result in complications and
weak guarantees. In our approach, the feature ex-
traction and the distance measurement are integrated
around the Grassmann kernel, resulting in a simpler
and better-understood formulation.

The rest of the paper is organized as follows. In Sec. 2
and 3 we introduce the Grassmann manifolds and de-
rive various distances on the space. In Sec. 4 we
present a kernel view of the problem and emphasize the
advantages of using positive definite metrics. In Sec. 5
we propose the Grassmann Discriminant Analysis and
compare it with other subspace-based discrimination
methods. In Sec. 6 we test the proposed algorithm for
face recognition and object categorization tasks. We
conclude in Sec. 7 with a discussion.

2. Grassmann Manifold and Principal
Angles

In this section we briefly review the Grassmann man-
ifold and the principal angles.

Definition 1 The Grassmann manifold G(m,D) is
the set of m-dimensional linear subspaces of the RD.

The G(m,D) is a m(D−m)-dimensional compact Rie-
mannian manifold.1 An element of G(m,D) can be

1G(m, D) can be derived as a quotient space of orthog-
onal groups G(m, D) = O(D)/O(m) × O(D − m), where

represented by an orthonormal matrix Y of size D by
m such that Y ′Y = Im, where Im is the m by m iden-
tity matrix. For example, Y can be the m basis vectors
of a set of pictures in RD. However, the matrix rep-
resentation of a point in G(m,D) is not unique: two
matrices Y1 and Y2 are considered the same if and only
if span(Y1) = span(Y2), where span(Y ) denotes the
subspace spanned by the column vectors of Y . Equiva-
lently, span(Y1) = span(Y2) if and only if Y1R1 = Y2R2

for some R1, R2 ∈ O(m). With this understanding, we
will often use the notation Y when we actually mean
its equivalence class span(Y ), and use Y1 = Y2 when
we mean span(Y1) = span(Y2), for simplicity.

Formally, the Riemannian distance between two sub-
spaces is the length of the shortest geodesic connecting
the two points on the Grassmann manifold. However,
there is a more intuitive and computationally efficient
way of defining the distances using the principal angles
(Golub & Loan, 1996).

Definition 2 Let Y1 and Y2 be two orthonormal
matrices of size D by m. The principal an-
gles 0 ≤ θ1 ≤ · · · ≤ θm ≤ π/2 between two subspaces
span(Y1) and span(Y2), are defined recursively by

cos θk = max
uk∈span(Y1)

max
vk∈span(Y2)

uk
′vk, subject to

uk
′uk = 1, vk

′vk = 1,

uk
′ui = 0, vk

′vi = 0, (i = 1, ..., k − 1).

In other words, the first principal angle θ1 is the small-
est angle between all pairs of unit vectors in the first
and the second subspaces. The rest of the principal

O(m) is the group of m by m orthonormal matrices. We
refer the readers to (Wong, 1967; Absil et al., 2004) for
details on the Riemannian geometry of the space.
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angles are similarly defined. It is known (Wong, 1967;
Edelman et al., 1999) that the principal angles are re-
lated to the geodesic distance by d2

G(Y1, Y2) =
∑

i θ2
i

(refer to Fig. 1.)

The principal angles can be computed from the Singu-
lar Value Decomposition (SVD) of Y ′

1Y2,

Y ′
1Y2 = U(cos Θ)V ′, (1)

where U = [u1 ... um], V = [v1 ... vm], and cos Θ
is the diagonal matrix cos Θ = diag(cos θ1 ... cos θm).
The cosines of the principal angles cos θ1, ... , cos θm

are also known as canonical correlations.

Although the definition can be extended to the cases
where Y1 and Y2 have different number of columns,
we will assume Y1 and Y2 have the same size D by m
throughout this paper. Also, we will occasionally use
G instead of G(m,D) for simplicity.

3. Distances for Subspaces

In this paper we use the term distance as any assign-
ment of nonnegative values for each pair of points in
a space X . A valid metric is, however, a distance that
satisfies the additional axioms:

Definition 3 A real-valued function d : X × X → R
is called a metric if

1. d(x1, x2) ≥ 0,

2. d(x1, x2) = 0 if and only if x1 = x2,

3. d(x1, x2) = d(x2, x1),

4. d(x1, x2) + d(x2, x3) ≤ d(x1, x3),

for all x1, x2, x3 ∈ X .

A distance (or a metric) between subspaces d(Y1, Y2)
has to be invariant under different representations
d(Y1, Y2) = d(Y1R1, Y2R2), ∀R1, R2 ∈ O(m).

In this section we introduce various distances for sub-
spaces derivable from the principal angles.

3.1. Projection Metric and Binet-Cauchy
Metric

We first underline two main distances of this paper.

1. Projection metric

dP (Y1, Y2) =

(
m∑

i=1

sin2 θi

)1/2

=

(
m−

m∑
i=1

cos2 θi

)1/2

.

(2)

The Projection metric is the 2-norm of the sine
of principal angles (Edelman et al., 1999; Wang
et al., 2006).

2. Binet-Cauchy metric

dBC(Y1, Y2) =

(
1−

∏
i

cos2 θi

)1/2

. (3)

The Binet-Cauchy metric is defined with the
product of canonical correlations (Wolf &
Shashua, 2003; Vishwanathan & Smola, 2004).

As the names hint, these two distances are in fact valid
metrics satisfying Def. 3. The proofs are deferred until
Sec. 4.

3.2. Other Distances in the Literature

We describe a few other distances used in the liter-
ature. The principal angles are the keys that relate
these distances.

1. Max Correlation

dMax(Y1, Y2) =
(
1− cos2 θ1

)1/2
= sin θ1. (4)

The max correlation is a distance based on only
the largest canonical correlation cos θ1 (or the
smallest principal angle θ1). This max correla-
tion was used in previous works (Yamaguchi et al.,
1998; Sakano, 2000; Fukui & Yamaguchi, 2003).

2. Min Correlation

dMin(Y1, Y2) =
(
1− cos2 θm

)1/2
= sin θm. (5)

The min correlation is defined similarly to the
max correlation. However, the min correlation
is more closely related to the Projection metric:
we can rewrite the Projection metric as dP =
2−1/2 ‖Y1Y

′
1 − Y2Y

′
2‖F and the min correlation

as dMin = ‖Y1Y
′
1 − Y2Y

′
2‖2.

3. Procrustes metric

dCF (Y1, Y2) = 2

(
m∑

i=1

sin2(θi/2)

)1/2

. (6)

The Procrustes metric is the minimum distance
between different representations of two subspaces
span(Y1) and span(Y2): (Chikuse, 2003)

dCF = min
R1,R2∈O(m)

‖Y1R1−Y2R2‖F = ‖Y1U−Y2V ‖F ,

where U and V are from (1). By definition,
the distance is invariant of the choice of the
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bases of span(Y1) and span(Y2). The Procrustes
metric is also called chordal distance (Edelman
et al., 1999). We can similarly define the mini-
mum distance using other matrix norms such as
dC2(Y1, Y2) = ‖Y1U − Y2V ‖2 = 2 sin(θm/2).

3.3. Which Distance to Use?

The choice of the best distance for a classification task
depends on a few factors. The first factor is the dis-
tribution of data. Since the distances are defined with
particular combinations of the principal angles, the
best distance depends highly on the probability dis-
tribution of the principal angles of the given data.
For example, dMax uses the smallest principal angle θ1

only, and may be robust when the data are noisy. On
the other hand, when all subspaces are sharply concen-
trated on one point, dMax will be close to zero for most
of the data. In this case, dMin may be more discrimi-
native. The Projection metric dP , which uses all the
principal angles, will show intermediate characteristics
between the two distances. Similar arguments can be
made for the Procrustes metrics dCF and dC2, which
use all angles and the largest angle only, respectively.

The second criterion for choosing the distance, is the
degree of structure in the distance. Without any struc-
ture a distance can be used only with a simple K-
Nearest Neighbor (K-NN) algorithm for classification.
When a distance have an extra structure such as tri-
angle inequality, for example, we can speed up the
nearest neighbor searches by estimating lower and up-
per limits of unknown distances (Faragó et al., 1993).
From this point of view, the max correlation is not a
metric and may not be used with more sophisticated
algorithms. On the other hand, the Min Correlation
and the Procrustes metrics are valid metrics2.

The most structured metrics are those which are in-
duced from a positive definite kernel. Among the met-
rics mentioned so far, only the Projection metric and
the Binet-Cauchy metric belong to this class. The
proof and the consequences of positive definiteness are
the main topics of the next section.

4. Kernel Functions for Subspaces

We have defined a valid metric on Grassmann mani-
folds. The next question is whether we can define a
kernel function compatible with the metric. For this
purpose let’s recall a few definitions. Let X be any

2The metric properties follow from the properties of
matrix 2-norm and F-norm. To check the conditions in
Def. 3 for Procrustes we use the equality minR1,R2 ‖Y1R1−
Y2R2‖2,F = minR3 ‖Y1 − Y2R3‖2,F for R1, R2, R3 ∈ O(m).

set, and k : X × X → R be a symmetric real-valued
function k(xi, xj) = k(xj , xi) for all xi, xj ∈ X .

Definition 4 A real symmetric function is a (resp.
conditionally) positive definite kernel function, if∑

i,j cicjk(xi, xj) ≥ 0, for all x1, ..., xn(xi ∈ X ) and
c1, ..., cn(ci ∈ R) for any n ∈ N. (resp. for all
c1, ..., cn(ci ∈ R) such that

∑n
i=1 ci = 0.)

In this paper we are interested in the kernel functions
on the Grassmann space.

Definition 5 A Grassmann kernel function is a pos-
itive definite kernel function on G.

In the following we show that the Projection metric
and the Binet-Cauchy are induced from the Grass-
mann kernels.

4.1. Projection Metric

The Projection metric can be understood by associ-
ating a point span(Y ) ∈ G with its projection matrix
Y Y ′ by an embedding:

ΨP : G(m,D) → RD×D, span(Y ) 7→ Y Y ′. (7)

The image ΨP (G(m,D)) is the set of rank-m or-
thogonal projection matrices. This map is in fact
an isometric embedding (Chikuse, 2003) and the
projection metric is simply a Euclidean distance in
RD×D. The corresponding innerproduct of the space
is tr [(Y1Y

′
1)(Y2Y

′
2)] = ‖Y ′

1Y2‖2F , and therefore

Proposition 1 The Projection kernel

kP (Y1, Y2) = ‖Y ′
1Y2‖2F (8)

is a Grassmann kernel.

Proof The kernel is well-defined because kP (Y1, Y2) =
kP (Y1R1, Y2R2) for any R1, R2 ∈ O(m). The positive
definiteness follows from the properties of the Frobe-
nius norm. For all Y1, ..., Yn(Yi ∈ G) and c1, ..., cn(ci ∈
R) for any n ∈ N, we have∑

ij

cicj‖Y ′
i Yj‖2F =

∑
ij

cicjtr(YiY
′
i YjY

′
j )

= tr(
∑

i

ciYiY
′
i )2 = ‖

∑
i

ciYiY
′
i ‖2F ≥ 0.

We can generate a family of kernels from the Projec-
tion kernel. For example, the square-root ‖Y ′

i Yj‖F is
also a positive definite kernel.
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4.2. Binet-Cauchy Metric

The Binet-Cauchy metric can also be understood from
an embedding. Let s be a subset of {1, ..., D} with
m elements s = {r1, ..., rm}, and Y (s) be the m × m
matrix whose rows are the r1, ... , rm-th rows of Y . If
s1, s2, ..., sn are all such choices of the subset s ordered
lexicographically, then the Binet-Cauchy embedding is
defined as

ΨBC : G(m,D) → Rn, Y 7→
(
det Y (s1), ...,det Y (sn)

)
,

(9)
where n = DCm is the number of choosing m rows out
of D rows. The natural innerproduct in this case is∑n

r=1 det Y
(si)
1 det Y

(si)
2 .

Proposition 2 The Binet-Cauchy kernel

kBC(Y1, Y2) = (det Y ′
1Y2)2 = detY ′

1Y2Y
′
2Y1 (10)

is a Grassmann kernel.

Proof First, the kernel is well-defined because
kBC(Y1, Y2) = kBC(Y1R1, Y2R2) for any R1, R2 ∈
O(m). To show that kBC is positive definite it suffices
to show that k(Y1, Y2) = detY ′

1Y2 is positive definite.
From the Binet-Cauchy identity, we have

det Y ′
1Y2 =

∑
s

det Y
(s)
1 det Y

(s)
2 .

Therefore, for all Y1, ..., Yn(Yi ∈ G) and c1, ..., cn(ci ∈
R) for any n ∈ N, we have∑
ij

cicj det Y ′
i Yj =

∑
ij

cicj

∑
s

det Y
(s)
i det Y

(s)
j

=
∑

s

(∑
i

ci det Y
(s)
i

)2

≥ 0.

We can also generate another family of kernels
from the Binet-Cauchy kernel. Note that although
det Y ′

1Y2 is a Grassmann kernel we prefer using
kBC(Y1, Y2) = det(Y ′

1Y2)2, since it is directly related
to principal angles det(Y ′

1Y2)2 =
∏

cos2 θi, whereas
det Y ′

1Y2 6=
∏

cos θi in general.3 Another variant
arcsin kBC(Y1, Y2) is also a positive definite kernel4

and its induced metric d = (arccos(detY ′
1Y2))

1/2 is
a conditionally positive definite metric.

4.3. Indefinite Kernels from Other Metrics

Since the Projection metric and the Binet-Cauchy
metric are derived from positive definite kernels, all

3det Y ′
1Y2 can be negative whereas

Q
cos θi, the product

of singular values, is nonnegative by definition.
4Theorem 4.18 and 4.19 (Schölkopf & Smola, 2001).

the kernel-based algorithms for Hilbert spaces are at
our disposal. In contrast, other metrics in the previ-
ous sections are not associated with any Grassmann
kernel. To show this we can use the following result
(Schoenberg, 1938; Hein et al., 2005):

Proposition 3 A metric d is induced from a positive
definite kernel if and only if

k̂(x1, x2) = −d2(x1, x2)/2, x1, x2 ∈ X (11)

is conditionally positive definite.

The proposition allows us to show a metric’s non-
positive definiteness by constructing an indefinite ker-
nel matrix from (11) as a counterexample.

There have been efforts to use indefinite kernels for
learning (Ong et al., 2004; Haasdonk, 2005), and sev-
eral heuristics have been proposed to make an in-
definite kernel matrix to a positive definite matrix
(Pekalska et al., 2002). However, we do not advocate
the use of the heuristics since they change the geome-
try of the original data.

5. Grassmann Discriminant Analysis

In this section we give an example of the Discriminant
Analysis on Grassmann space by using kernel LDA
with the Grassmann kernels.

5.1. Linear Discriminant Analysis

The Linear Discriminant Analysis (LDA) (Fukunaga,
1990), followed by a K-NN classifier, has been success-
fully used for classification.

Let {x1, ...,xN} be the data vectors and {y1, ..., yN}
be the class labels yi ∈ {1, ..., C}. Without loss of
generality we assume the data are ordered according
to the class labels: 1 = y1 ≤ y2 ≤ ... ≤ yN = C. Each
class c has Nc number of samples.

Let µc = 1/Nc

∑
{i|yi=c} xi be the mean of class c, and

µ = 1/N
∑

i xi be the overall mean. LDA searches
for the discriminant direction w which maximizes the
Rayleigh quotient L(w) = w′Sbw/w′Sww where Sb

and Sw are the between-class and within-class covari-
ance matrices respectively:

Sb =
1
N

C∑
c=1

Nc(µc − µ)(µc − µ)′

Sw =
1
N

C∑
c=1

∑
{i|yi=c}

(xi − µc)(xi − µc)′

The optimal w is obtained from the largest eigenvec-
tor of S−1

w Sb. Since S−1
w Sb has rank C − 1, there are
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C − 1-number of local optima W = {w1, ...,wC−1}.
By projecting data onto the space spanned by W , we
achieve dimensionality reduction and feature extrac-
tion of data onto the most discriminant subspace.

5.2. Kernel LDA with Grassmann Kernels

Kernel LDA can be formulated by using the kernel
trick as follows. Let φ : G → H be the feature map,
and Φ = [φ1...φN ] be the feature matrix of the train-
ing points. Assuming w is a linear combination of the
those feature vectors, w = Φα, we can rewrite the
Rayleigh quotient in terms of α as

L(α) =
α′Φ′SBΦα

α′Φ′SW Φα
=

α′K(V − 1N1′N/N)Kα

α′(K(IN − V )K + σ2IN )α
,

(12)
where K is the kernel matrix, 1N is a uniform vector
[1 ... 1]′ of length N , V is a block-diagonal matrix
whose c-th block is the uniform matrix 1Nc

1′Nc
/Nc,

and σ2IN is a regularizer for making the computation
stable. Similarly to LDA, the set of optimal α’s are
computed from the eigenvectors.

The procedures for using kernel LDA with the Grass-
mann kernels are summarized below:

Assume the D by m orthonormal bases {Yi} are
already computed from the SVD of sets in the data.

Training:

1. Compute the matrix [Ktrain]ij = kP (Yi, Yj) or
kBC(Yi, Yj) for all Yi, Yj in the training set.

2. Solve maxα L(α) by eigen-decomposition.

3. Compute the (C − 1)-dimensional coefficients
Ftrain = α′Ktrain.

Testing:

1. Compute the matrix [Ktest]ij = kP (Yi, Yj) or
kBC(Yi, Yj) for all Yi in training set and Yj in
the test set.

2. Compute the (C − 1)-dim coefficients Ftest =
α′Ktest.

3. Perform 1-NN classification from the Eu-
clidean distance between Ftrain and Ftest.

Another way of applying LDA to subspaces is to use
the Projection embedding ΨP (7) or the Binet-Cauchy
embedding ΨBC (9) directly. A subspace is repre-
sented by a D by D matrix in the former, or by a
vector of length n = DCm in the latter. However, us-
ing these embeddings to compute Sb or Sw is a waste

of computation and storage resources when D is large.

5.3. Other Subspace-Based Algorithms

5.3.1. Mutual Subspace Method (MSM)

The original MSM (Yamaguchi et al., 1998) performs
simple 1-NN classification with dMax with no feature
extraction. The method can be extended to any dis-
tance described in the paper. There are attempts to
use kernels for MSM (Sakano, 2000). However, the
kernel is used only to represent data in the original
space, and the algorithm is still a 1-NN classification.

5.3.2. Constrained MSM

Constrained MSM (Fukui & Yamaguchi, 2003) is a
technique that applies dimensionality reduction to
bases of the subspaces in the original space. Let
G =

∑
i YiY

′
i be the sum of the projection matrices

and {v1, ...,vD} be the eigenvectors corresponding to
the eigenvalues {λ1 ≤ ... ≤ λD} of G. The authors
claim that the first few eigenvectors v1, ...,vd of G are
more discriminative than the later eigenvectors, and
they suggest projecting the basis vectors of each sub-
space Y1 onto the span(v1, ...,vl), followed by normal-
ization and orthonormalization. However these proce-
dure lack justifications, as well as a clear criterion for
choosing the dimension d, on which the result crucially
depends from our experience.

5.3.3. Discriminant Analysis of Canonical
Correlations (DCC)

DCC (Kim et al., 2007) can be understood as a non-
parametric version of linear discrimination analysis us-
ing the Procrustes metric (6). The algorithm finds the
discriminating direction w which maximize the ratio
L(w) = w′SBw/w′Sww, where Sb and Sw are the
nonparametric between-class and within-class ‘covari-
ance’ matrices:

Sb =
∑

i

∑
j∈Bi

(YiU − YjV )(YiU − YjV )′

Sw =
∑

i

∑
j∈Wi

(YiU − YjV )(YiU − YjV )′,

where U and V are from (1). Recall that tr(YiU −
YjV )(YiU − YjV )′ = ‖YiU − YjV ‖2F is the squared
Procrustes metric. However, unlike our method, Sb

and Sw do not admit a geometric interpretation as
true covariance matrices, and cannot be kernelized ei-
ther. A main disadvantage of the DCC is that the
algorithm iterates the two stages of 1) maximizing the
ratio L(w) and of 2) computing Sb and Sw, which
results in computational overheads and more parame-
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ters to be determined. This reflects the complication
of treating the problem in a Euclidean space with a
non-Euclidean distance.

6. Experiments

In this section we test the Grassmann Discriminant
Analysis for 1) a face recognition task and 2) an object
categorization task with real image databases.

6.1. Algorithms

We use the following six methods for feature extraction
together with an 1-NN classifier.

1) GDA1 (with Projection kernel), 2) GDA2 (with
Binet-Cauchy kernel), 3) Min dist , 4) MSM, 5) cMSM,
and 6) DCC.

For GDA1 and GDA2, the optimal values of σ
are found by scanning through a range of val-
ues. The results do not seem to vary much as
long as σ is small enough. The Min dist is
a simple pairwise distance which is not subspace-
based. If Yi and Yj are two sets of basis vectors:
Yi = {yi1, ...,yimi} and Yj = {yj1, ...,yjmj}, then
dMindist(Yi, Yj) = mink,l ‖yik − yjl‖2. For cMSM and
DCC, the optimal dimension l is found by exhaus-
tive searching. For DCC, we have used two nearest-
neighbors for Bi and Wi in Sec. 5.3.3. Since the Sw

and Sb are likely to be rank deficient, we first reduced
the dimension of the data to N − C using PCA as
recommended. Each optimization is iterated 5 times.

6.2. Testing Illumination-Invariance with Yale
Face Database

The Yale face database and the Extended Yale face
database (Georghiades et al., 2001) together consist of
pictures of 38 subjects with 9 different poses and 45 dif-
ferent lighting conditions. Face regions were cropped
from the original pictures, resized to 24 × 21 pixels
(D = 504), and normalized to have the same variance.
For each subject and each pose, we model the illumi-
nation variations by a subspace of the size m = 1, ..., 5,
spanned by the 1 to 5 largest eigenvectors from SVD.
We evaluate the recognition rate of subjects with nine-
fold cross validation, holding out one pose of all sub-
jects from the training set and using it for test.

The recognition rates are shown in Fig. 2. The GDA1
outperforms the other methods consistently. The
GDA2 also performs well for small m, but performs
worse as m becomes large. The rates of the others
also seem to decrease as m increases. An interpreta-
tion of the observation is that the first few eigenvec-

tors from the data already have enough information
and the smaller eigenvectors are spurious for discrim-
inating the subjects.

6.3. Testing Pose-Invariance with ETH-80
Database

The ETH-80 (Leibe & Schiele, 2003) database con-
sists of pictures of 8 object categories (‘apple’, ‘pear’,
‘tomato’, ‘cow’, ‘dog’, ‘horse’, ‘cup’, ‘car’). Each cat-
egory has 10 objects that belong to the category, and
each object is recorded under 41 different poses. Im-
ages were resized to 32 × 32 pixels (D = 1024) and
normalized to have the same variance. For each cate-
gory and each object, we model the pose variations by
a subspace of the size m = 1, ..., 5, spanned by the 1
to 5 largest eigenvectors from SVD. We evaluate the
classification rate of the categories with ten-fold cross
validation, holding out one object instance of each cat-
egory from the training set and using it for test.

The recognition rates are also summarized in Fig. 2.
The GDA1 also outperforms the other methods most
of the time, but the cMSM performs better than GDA2
as m increases. The rates seem to peak around m =
4 and then decrease as m increases. This results is
consistent with the observation that the eigenvalues
from this database decrease more gradually than the
eigenvalues from the Yale face database.

7. Conclusion

In this paper we have proposed a Grassmann frame-
work for problem in which data consist of subspaces.
By using the Projection metric and the Binet-Cauchy
metric, which are derived from the Grassmann ker-
nels, we were able to apply kernel methods such as
kernel LDA to subspace data. In addition to having
theoretically sound grounds, the proposed method also
outperformed state-of-the-art methods in two experi-
ments with real data. As a future work, we are pur-
suing a better understanding of probabilistic distribu-
tions on the Grassmann manifold.
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Abstract

In this paper we show how common speech
recognition training criteria such as the Mini-
mum Phone Error criterion or the Maximum Mu-
tual Information criterion can be extended to in-
corporate a margin term. Different margin-based
training algorithms have been proposed to refine
existing training algorithms for general machine
learning problems. However, for speech recogni-
tion, some special problems have to be addressed
and all approaches proposed either lack practical
applicability or the inclusion of a margin term
enforces significant changes to the underlying
model, e.g. the optimization algorithm, the loss
function, or the parameterization of the model. In
our approach, the conventional training criteria
are modified to incorporate a margin term. This
allows us to do large-margin training in speech
recognition using the same efficient algorithms
for accumulation and optimization and to use
the same software as for conventional discrimi-
native training. We show that the proposed cri-
teria are equivalent to Support Vector Machines
with suitable smooth loss functions, approximat-
ing the non-smooth hinge loss function or the
hard error (e.g. phone error). Experimental re-
sults are given for two different tasks: the rather
simple digit string recognition task Sietill which
severely suffers from overfitting and the large vo-
cabulary European Parliament Plenary Sessions
English task which is supposed to be dominated
by the risk and the generalization does not seem
to be such an issue.

Appearing in Proceedings of the 25th International Conference on
Machine Learning, Helsinki, Finland, 2008. Copyright 2008 by
the author(s)/owner(s).

1. Introduction

A central issue in machine learning is the robust estima-
tion of the model parameters Λ with good generalization
ability, based on a finite number of observations. An inter-
esting result from information theory is the PAC bound on
the expected risk (Vapnik, 1995). The VC dimension plays
an important role in this inequality and is a direct measure
for the generalization ability. This bound is general in the
sense that it does neither depend on the underlying proba-
bility distribution nor on the specific risk function. Further-
more, the bound implies that in general, the consideration
of the empirical risk alone is suboptimal (Vapnik, 1995),
see Tab. 1. Assuming that the features are in a sphere, the
VC dimension of gap-tolerant classifiers is bounded above
by an expression which is inversely proportional to the mar-
gin, leading to large-margin classifiers (Jebara, 2002).

These theoretical results are the main motivation for Sup-
port Vector Machines (SVMs) (Vapnik, 1995), M-SVMs
(Weston & Watkins, 1999), or Hidden Markov SVMs (Al-
tun et al., 2003) which have been successfully used for
many applications in pattern recognition. The direct appli-
cation of SVMs in Automatic Speech Recognition (ASR)
has not been successful so far. This might be because
they are not sufficiently flexible regarding: 1) the choice of
the loss function, conventional criteria in ASR are Maxi-
mum Mutual Information (MMI), Minimum Classification
Error (MCE), or Minimum Phone Error (MPE) which is
probably the criterion of choice in ASR; 2) they are un-
able to cope with the immense amount of data used to
train state-of-the-art ASR systems, which are commonly
trained on more than 100 hours of speech (>30,000,000
observation vectors). Another problem might be the com-
binatorial number of classes (number of possible word se-
quences). Stimulated by the success of SVMs, different
margin-based training algorithms have been proposed for
ASR, e.g. (Yu et al., 2007; Yin & Jiang, 2007; Sha &
Saul, 2007; Li et al., 2007). Although the reported results
for these approaches are very promising, the approaches
have some shortcomings in particular for large-scale appli-
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Table 1. Relative importance of loss and margin terms under dif-
ferent conditions.

Loss vs. Margin
infinite data ↔ sparse data
many training errors ↔ few training errors

cations. The approach proposed in (Yu et al., 2007) comes
closest to ours but uses MCE on N-best lists without reg-
ularization. In most state-of-the-art large-scale ASR sys-
tems, however, MPE in combination with strong regular-
ization, i.e., i-smoothing has been established to be the cri-
terion of choice (Povey & Woodland, 2002). In (Yin &
Jiang, 2007; Sha & Saul, 2007; Li et al., 2007) not only the
margin term is introduced, but the approaches use differ-
ent optimization algorithms, different loss functions, or dif-
ferent model parameterizations which makes it difficult to
evaluate the effect of the margin term in these approaches.
Furthermore, none of these papers reports experimental re-
sults for competitive large vocabulary systems whose be-
havior in terms of generalization ability and relative im-
provements of performance often is different to systems
using suboptimal models or for ”simple” small vocabulary
tasks (e.g. TIDIGITS and TIMIT). A large amount of train-
ing data and a relatively large number of training errors are
typical of such large vocabulary systems. From this ob-
servation, we expect that the margin term has only little
impact on the performance of such systems, cf. Tab. 1.
In this work, we pursue a similar approach as in (Zhang
et al., 2003) where the standard M-SVM with the hinge loss
function is approximated by modified logistic regression.
To the best of our knowledge, this approach, is computa-
tionally unfeasible in ASR because of the pairwise treat-
ment of the correct and all the competing word sequences.
To avoid the exponential complexity, our approximations
are based on the Hidden Markov SVM proposed in (Altun
et al., 2003). Formally similar results can be found in (Je-
bara, 2002), which are derived from probabilistic reason-
ing. Using the smoothed segment error of MCE in com-
bination with N−best lists and without regularization, the
margin-based MCE criterion proposed in (Yu et al., 2007)
is recovered as a special instance of our approach.

The remainder of this paper is organized as follows: Sec. 2
reviews SVMs in a notation suitable for our discussion.
Approximations to the SVMs with different loss functions,
resembling the MMI and MPE criterion are proposed in
Sec. 3 and extended to ASR in Sec. 4. Experimental results
using these modified criteria are presented for the Sietill
and the European Parliament Plenary Sessions (EPPS) En-
glish ASR tasks, cf. Sec.6. The results of the latter task
give an idea of the importance of the margin in a state-of-
the-art large vocabulary system. Finally, Sec. 5 shows that
the transducer-based implementation of MMI and MPE dif-
fers merely in the choice of the semiring. This section may
be skipped at the first reading.

2. Support Vector Machines (SVMs)

According to (Altun et al., 2003), the optimization problem
of SVMs for C classes, N observation pairs (xn, cn), and
feature functions fi(x, c) can be formulated as follows

Λ̂ = arg min
Λ















1
2 ‖Λ‖

2 +
J
N

N
∑

n=1
l(cn; dn1, . . . , dnC)















(1)

with dnc =
∑

i λi( fi(xn, cn) − fi(xn, c)), or more compactly
in vector notation dnc = λ

> ( f (xn, cn) − f (xn, c)). The em-
pirical constant J > 0 is used to balance the margin and the
loss terms. The typical loss function of SVMs is the hinge
loss function

l (hinge)(cn; dn1, . . . , dnC) = max
c,cn

{max{−dnc + 1, 0}} . (2)

This effectively reduces the multiclass problem to a two-
class problem (”correct” vs. ”recognized”). Ideally, the loss
function is the margin error

l (error)(cn; dn1, . . . , dnC) = E[ĉn|cn], (3)

which in the simplest case counts the errors of the observa-
tions, 1 − δ(ĉn, cn). For ASR, however, we choose string-
based error measures like the phone error. In this loss func-
tion, ĉn is in fact a function of (cn; dn1, . . . , dnC) and denotes
the recognized class (with margin)

ĉn =















arg minc,cn {dnc} if ∃c , cn : dnc < 1
cn otherwise.

(4)

Due to the definition of the loss function and in contrast
to (Altun et al., 2003), this formulation of SVM does not
require the introduction of slack variables ξc

n subject to
dnc ≥ ξ

c
n + 1 and ξc

n ≥ 0 for all c , cn and n. The re-
sulting optimization problem is non-smooth, but it is only
used for theoretical purposes whereas the experiments are
carried out with smoothed loss functions as it is common in
ASR. In contrast to the multiclass SVM proposed by (We-
ston & Watkins, 1999), this definition allows for efficient
calculation of the sum over the classes in ASR (cf. Sec. 5).

In (Taskar et al., 2003), the size of the margin is set to
be proportional to the length of the sequence, e.g. the
number of correct symbols. For ASR, due to the addi-
tional alignment problem, this is extended such that the
margin between two sequences is set to the associated se-
quence/string accuracy. Note that this extension is reason-
able because it guarantees consistency with the above SVM
in case of i.i.d. sequences, see Sec. 4 for further details.

Finally, the task of testing consists of finding the class with
the highest score

ĉ(x) = arg max
c

{

λ> f (x, c)
}

, (5)

which should not be confused with ĉn in Eq. (4).
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3. SVMs with Smooth Loss Functions

This section provides smooth approximations to the SVM
in Eq. (1) for different loss functions. More precisely,
the loss function is replaced with a smoothed loss func-
tion without breaking the large margin nature of the orig-
inal SVM. These approximations are identical to modi-
fied formulations of the well-known training criteria MMI
and MPE for Hidden Conditional Random Fields (HCRFs),
which are introduced in the next two subsections. Anal-
ogously, a similar result can be derived for (lattice-based)
MCE. In contrast to (most) other margin-based approaches,
these approximations have the advantage that the effect of
the margin can be evaluated directly without changing the
parameterization of the model, the loss function, or the op-
timization algorithm.

Keep in mind that the modifications concern only the train-
ing, i.e., the calculation of the probabilities in the search
remains unchanged:

pΛ(c|x) = exp(λ> f (x, c))
∑

c′ exp(λ> f (x, c′)) .

The resulting decision rule is equivalent to the decision rule
in Eq. (5) for SVMs because monotone transformations of
the discriminant function do not change the decision rule.

In the next two subsections, we define modified criteria
based on the conventional MMI and MPE criteria and show
the relationship with SVMs.

3.1. Modified Maximum Mutual Information (MMI)

In ASR, MMI commonly refers to the maximum likelihood
(ML) for the class posteriors. We define a modified MMI
criterion for log-linear HCRFs 1

F (MMI)
γ (Λ) = 1

2 ‖Λ‖
2

−
J
N

N
∑

n=1

1
γ

log
(

exp(γ (λ> f (xn, cn) − 1))
∑

c exp(γ (λ> f (xn, c) − δ(c, cn)))

)

. (6)

See Fig. 1 for a comparison of the hinge loss function,
MMI, and modified MMI. The approximation level γ is an
additional parameter to control the smoothness of the crite-
rion. The regularization constant is proportional to 1

J . The
major difference to the standard MMI formulation (includ-
ing L2-norm regularization) is the additional margin param-
eter which is non-zero only for the correct class cn. This
margin term can be interpreted as an additional observation
dependent prior, weakening the true prior (Jebara, 2002).

It can be shown that the objective function F (MMI)
γ (Λ) con-

verges pointwise to the SVM optimization problem using
1The first order features in (Zhang et al., 2003) are a special

case of the more general feature functions used here.
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Figure 1. Left: comparison of hinge loss, MMI, and modified
MMI, γ = 1. Right: comparison of margin error loss, MPE, and
modified MPE, γ = 3. In either case C = 2, and d = dncn .

the hinge loss function in Eq. (2) for γ → ∞, similar
to (Zhang et al., 2003). In other words, F (MMI)

γ (Λ) is a
smooth approximation to an SVM with hinge loss function,
which can be optimized with standard gradient-based opti-
mization techniques. The proof mainly consists of building
the limit of the logarithm in Eq. (6):

−
1
γ

log
(

exp(γ (λ> f (xn, cn) − 1))
∑

c exp(γ (λ> f (xn, c) − δ(c, cn)))

)

=
1
γ

log
















1 +
∑

c,cn

exp(γ (−dnc + 1))
















γ→∞
→















maxc,cn {−dnc + 1} if ∃c , cn : dnc < 1
0 otherwise.

This function can be identified with the hinge loss function
in Eq. (2).

We feel that the weak point about the hinge loss in pattern
recognition is that it is not the measure used to evaluate the
recognition systems eventually. This means that there is
some guarantee regarding the generalization for the hinge
loss, but not the recognition error. Furthermore, it is often
unclear how these two quantities are related.

3.2. Modified Minimum Phone Error (MPE)

In contrast to the hinge loss, the recognition error is
bounded as illustrated in Fig. 1. Hence, a single observa-
tion cannot dominate the objective function. In particular,
do not mix up a weighted margin with a weighted error.

We shall show that the modified MPE-like objective func-
tion representing a smoothed margin error with L2-norm
regularization,

F (MPE)
γ (Λ) = 1

2 ‖Λ‖
2

+
J
N

N
∑

n=1

∑

c

E[c|cn] exp(γ (λ> f (xn, c) − δ(c, cn)))
∑

c′ exp(γ (λ> f (xn, c′) − δ(c′, cn)))

converges to the above SVM optimization problem with a
hard and weighted loss function E[·|·] as in Eq. (3), e.g. the
phone error. The proof is analogous to the proof for MMI.
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The main step is to show that the ”posterior probabilities”
in F (MPE)

γ (Λ) converge to a Kronecker delta such that only
a single term contributes to the sum of the empirical risk

exp(γ (λ> f (xn, c) − δ(c, cn)))
∑

c′ exp(γ (λ> f (xn, c′) − δ(c′, cn)))

=















1
1+∑c′,cn exp(γ(−dnc′+1)) if c = cn,

exp(γ(−dnc+1))
1+∑c′,cn exp(γ(−dnc′+1)) otherwise

γ→∞
→















δ(c, arg minc,cn {dnc}) if ∃c , cn : dnc < 1
δ(c, cn) if dncn > 1

= δ(c, ĉn).

Note that now we have pointwise convergence almost
surely (i.e., everywhere except for points on the deci-
sion boundary dncn = 1 where the loss function is not
continuous). As before, ĉn denotes the recognized class
with margin defined in Eq. (4). In summary, we have
F

(MPE)
γ (Λ)

γ→∞
→ 1

2 ‖Λ‖
2+ J

N

∑N
n=1 E[ĉn|cn] which is identical

to the SVM optimization problem using the loss function
in Eq. (3).

3.3. Optimization

In general, the resulting optimization problems are no
longer convex and thus, the optimization might get stuck
in local optima. We believe that this problem is inherent
in ASR, e.g. due to the time alignment from HMMs. Al-
though it is possible to make the objective function convex
by keeping the alignment fixed, the best results on large-
scale tasks that are reported in the literature have been ob-
tained by using non-convex objective functions. Finally,
the problem of local optima is alleviated by combining the
suggested approach with stochastic annealing techniques
where the approximation level acts as the temperature.

In fact, the optimization strategy suggested in (Zhang et al.,
2003) can be adopted, i.e., find the optimum for a given ap-
proximation level and carry out this step iteratively for in-
creasingly finer levels. The optimization can be done with
general optimization algorithms, e.g. RProp. The idea of
incrementally regulated discriminative margins suggested
by (Yu et al., 2007) is along the same lines.

In this work, the approximation level and the margin are
chosen beforehand and then kept fixed during the complete
optimization. This single step optimization scheme has the
advantage that the loss function remains unchanged and
that thus, the criterion differs only in the margin term. This
approach is reasonable as long as the changes in the initial
model are small, e.g. if the discriminative training is initial-
ized with a good ML baseline. This is the typical situation
in ASR. Further details and specifics of ASR are discussed
in the next section.

4. Automatic Speech Recognition (ASR)

The smooth variants of SVMs introduced in Sec. 3.1
and 3.2 can directly be incorporated into the ASR frame-
work. In this case, the HMM state sequences sT

1 correspond
to the classes c. Similar to (Taskar et al., 2003) and (Sha
& Saul, 2007), we would like the margin to scale with the
length of the speech segments (cf. discussion in Sec. 2). In
ASR, a reasonable choice is to set the margin of a sentence
to the number of correct phones. More precisely, the sim-
ple accuracy δ(c, cn) used to represent the margin so far is
replaced with the phone accuracy. These approximations
directly combine learning theory, HCRFs, and risk-based
training of HMMs. Note that Gaussian HMMs (GHMMs)
are HCRFs (possibly) with parameter constraints (Heigold
et al., 2007).

Typically, MPE is used in combination with the more re-
fined Gaussian regularization centered around Λ′0 (e.g. the
maximum likelihood estimate of the generative model),
which is comparable with the i-smoothing for GHMMs
(Povey & Woodland, 2002). This regularization is com-
bined with the L2-norm regularization from the SVM

J−1
0 ‖Λ‖

2 + J−1
1 ‖Λ − Λ

′
0‖

2 = J−1‖Λ − Λ0‖
2 + const(Λ)

with J−1 = J−1
0 + J−1

1 and Λ0 =
1

1+ J1
J0

Λ′0. Thus, the Gaus-

sian regularization with a properly scaled center Λ0 (scal-
ing does not change the classification in the maximum ap-
proximation) covers the weaker L2-norm regularization.

Similar to (Heigold et al., 2007), we use n-th order features,
e.g. first order features are defined to be f (1st)

tsd (xT
1 , s

T
1 ) =

δ(s, st)xtd. Zeroth and higher order features are defined in
a similar fashion. This choice of feature function has the
advantage that HCRFs and GHMMs are directly related.

The relationship between SVMs and common training cri-
teria like MMI and MPE allows us to justify some im-
portant heuristics typically employed in discriminatively
trained ASR systems to achieve good performance: the ap-
proximation level γ corresponds to the scaling of the prob-
abilities, i-smoothing is the (refined) regularization term,
and the weak unigram language model might be consid-
ered an approximation of the margin concept as explained
in Sec. 3.1 (”weak prior”). We believe that the frame-based
approach proposed to improve the generalization ability is
also an attempt to approximate the margin by replacing the
context priors (Heigold et al., 2007) by the global relative
frequencies.

To apply the existing efficient algorithms, it is important
that the margins of the different competing hypotheses can
be represented as a weighted transducer sharing the topol-
ogy with the common lattices, and thus can be integrated
into most state-of-the-art systems. This is not always pos-
sible in an efficient way for the exact accuracy. Therefore,
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approximate accuracies are used. For MPE, an intuitive
margin is the approximate phone accuracy (Povey & Wood-
land, 2002), which is basically the same quantity also used
for the loss function2. In this case, no additional quanti-
ties have to be calculated. The combined acoustic and lan-
guage model scores are then augmented with these margins
by composition. The subsequent steps of the accumulation
and estimation remain unchanged. Thus, it is not neces-
sary to modify our transducer-based implementation of the
(discriminative) training because the margin can be incor-
porated by simply configuring an additional composition.
The transducer-based implementation also has the advan-
tage that the quantities used for the MMI and MPE accumu-
lation can be represented in terms of generalized FB prob-
abilities calculated in different semirings. This approach
results in the same recursion formulae as used in (Povey &
Woodland, 2002), but leads to a unified implementation of
the different training criteria. The details on this issue are
worked out in the next section.

5. Covariance & Expectation Semiring

In this section, we present an abstraction and generalization
of the recursion formulae used for MMI and MPE (Povey &
Woodland, 2002). The efficient calculation of the gradient
of the objective function is an issue in ASR (and for HCRFs
as well) because of the combinatorial number of possible
word sequences. The proposed approach unifies these two
recursion formulae and extends the speech-specific recur-
sion formula for MPE to HCRFs. As mentioned above, this
abstraction is not essential for this work. However, this for-
malism might be a nice feature of any (probabilistic) trans-
ducer library. As an example, it might facilitate the devel-
opment of more refined training algorithms, e.g. it provides
an efficient solution to the unified criterion in (He et al.,
2008). The calculation of the gradient under consideration
(as probably several other problems in pattern recognition)
can be reduced to the calculation of the covariance of two
suitably defined random variables, as discussed at the end
of this section.

The expectation of the random variable X w.r.t. the proba-
bilistic transducer P is defined to be

EP[X] :=
∑

π∈P

wP[π]wX[π]

where w·[π] denotes the weight of path π in the respective
transducer. The covariance of two (additive) random vari-
ables X and Y w.r.t. P is defined to be (with EP[·] ≡ E[·])

CovP(X,Y) :=
∑

π∈Y

wP[π] (wX[π] − E[X]) (wY[π] − E[Y]) .

2Assume the distance E[wN
1 , v

M
1 ] between strings wN

1 and vM
1 .

Then, the accuracy of string vM
1 given string wN

1 is A[vM
1 |w

N
1 ] =

N − E[wN
1 , v

M
1 ].

Here, we assume that P, X, and Y can be represented by
acyclic transducers which share the topology, i.e., differ
only in the weights. Using these assumptions, we shall
show that the covariance can be efficiently calculated by
simply exchanging the probability semiring by the expec-
tation semiring in the standard FB algorithm. So, the prob-
ability semiring can be used to compute the first order
statistics whereas the expectation semiring can be used to
compute the second order statistics. It is rather straight-
forward to define a covariance semiring to calculate third
order statistics etc.

We start with introducing the expectation semiring and
the abstract definitions which are needed to formulate the
propositions.

Expectation semiring. The expectation semiring (Eis-
ner, 2001) is a multiplex semiring with weights (p, v) ∈
R
+ × R, and
• (p1, v1) ⊕ (p2, v2) = (p1 + p2, v1 + v2);

• (p1, v1) ⊗ (p2, v2) = (p1 p2, p1v2 + v1 p2);

• 1 = (1, 0), 0 = (0, 0).
In addition, the inverse is defined to be inv(p, v) =
(p−1,−p−2v). Observe that the first component corresponds
to the probability semiring whereas the second component
accounts for the additivity of the random variable. The
(partial) path weight of path π is the ”product” of the cor-
responding arc weights wP[a], wP[π] =

⊗

a∈π wP[a].

FB potentials. The forward potential αq at the state q of
the transducer P is the sum of the weights of all partial
paths π going from the initial state init to the state q

αq :=
⊕

π=(init,q)∈P
wP[π].

These quantities are efficiently calculated by recursion

αinit = 1 αq =
⊕

a=(p,q)∈P
αp ⊗ wP[a].

The ”sum” is over all arcs a of the transducer P connecting
the state p with q. The backward potentials βq are defined
similarly on the transposed P.

Posteriors. The posterior transducer Q(P) associated
with the transducer P has the arc weights

wQ(P)[a] :=
















⊕

π∈P:a∈π
wP[π]

















⊗ inv

















⊕

π∈P

wP[π]
















.

The weight of arc a = (p, q) can be expressed in terms of
the above defined forward and backward potentials

wQ(P)[a] =
(

αp ⊗ wP[a] ⊗ βq

)

⊗ inv(βinit).
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Here, we used the fact that βinit equals the ”normalization
constant” in the case of a unique initial state init. To make
the analogy of the calculation of the expectation and the
covariance more clear, we first state the well-known propo-
sition based on the probability semiring.
Proposition 1. Assume an acyclic transducer P with prob-
ability semiring, and a weighted transducer X with log
semiring. P and X share the topology. Then,

EP[X] =
∑

a∈P

wX[a]wQ(P)[a].

This proposition is then extended to the expectation semir-
ing. Note that for the p-component, we recover the previ-
ous proposition.
Proposition 2. Assume an acyclic transducer P with prob-
ability semiring, and transducers X and Y with log semi-
ring. P, X, Y share the topology. Define the trans-
ducer Z with expectation semiring and assign the weights
wZ[a] = (wP[a],wP[a]wX[a]) to the arcs. Then,

CovP(X,Y) =
∑

a∈Y

wY[a]wQ(Z)[a][v].

We conclude this section by showing how the calculation
of the gradient of the objective function fits into this frame-
work.

Gradient of objective function. To simplify the discus-
sion, we restrict our consideration to objective functions of
the type F (Λ) = f (EP[A]) rather than using the unified
objective function in (He et al., 2008). Here, P stands for
the word lattice with the joint probabilities pΛ(sT

1 , v
M
1 |x

T
1 )

and A denotes some additive risk (e.g. phone error).
In addition, a non-linearity f can be applied to the ex-
pectation. Then, building the derivative of this objective
function leads to ∇F (Λ) = CovP(L,∇ logP) with L :=
f ′(EP[A])A. Examples: A = phone accuracy, f (x) = x
(MPE); A = χspk (characteristic function of spoken se-
quence, i.e., one for the spoken sequence and zero other-
wise), f (x) = log x (MMI); or A = χspk, f (x) =sigmoid
function (MCE).

6. Experimental Results

The presented approaches were evaluated on two different
tasks. First, we tested the proposed criterion on the German
digit string recognition task Sietill (Heigold et al., 2007),
which due to its small size allows for a thorough experi-
mental evaluation. Second, experiments were carried out
on the large vocabulary EPPS English task, which repre-
sents a realistic ASR task. The baseline MPE result was
part of our 2007 TC-STAR evaluation system, which per-
formed best in the restricted and public evaluation condi-
tions for both English and Spanish (Lööf et al., 2007). For
completeness, we provide some description of the speech

Table 2. Corpus statistics.
Task Corpus Data #run. words #frames

[h] [k] [k]
Sietill Train 5.5 43 1,980

Test 5.5 43 1,980
EPPS En Train 92.0 661 33,120

Dev06 3.2 27 1,152
Eval06 3.2 30 1,152
Eval07 2.9 27 1,044

recognition systems. Non-experts, however, can skip these
technical parts, keeping in mind that highly competitive
systems are used for the discriminative training.

Our modified MMI criterion is identical with the recently
proposed boosted MMI (Povey et al., 2008). These re-
sults, however, should be interpreted with some care be-
cause in most experiments, the boosting factor is not the
only change. Probably, there is a single experiment which
is directly comparable with our results on the EPPS task,
i.e., which modifies only the boosting factor and which is
set upon a state-of-the-art baseline. Very much like our re-
sults on the EPPS task, this result supports the hypothesis
that the effect of the margin on such systems is marginal.

6.1. Sietill

The recognition system is based on gender-dependent
whole-word HMMs. For each gender, 214 distinct states
plus one for silence are used. The vocabulary consists of
the 11 German digits (including the pronunciation variant
’zwo’). The observation vectors consist of 12 cepstral fea-
tures without derivatives. The gender-independent Linear
Discriminant Analysis (LDA) is applied to 5 consecutive
frames and projects the resulting feature vector to 25 di-
mensions (Heigold et al., 2007). The corpus statistics is
summarized in Tab. 2. The ML baseline system uses Gaus-
sian mixtures with globally pooled variances and serves as
initialization of the log-linear HMMs. The margin is rep-
resented by the approximate word accuracy and has been
chosen to be the point where the word error rate (WER)
on the training corpus begins to increase rapidly. The final
performance turned out to be rather insensitive to the ex-
act value. The optimization was carried out using RProp.
Fig. 2 shows the progress of the word error rate (WER)
vs. the iteration index on the test corpus. Margin-based
MMI was validated on log-linear mixture models of differ-
ent complexity (16 and 64 densities per HMM state with
first order features only) and on a purely log-linear model
with second and third order features (instead of using only
first order features). The discriminative training was initial-
ized with the respective ML baseline model except for the
experiments including third order features. These were ini-
tialized with the model from frame-based training (Heigold
et al., 2007). The discriminative results were all obtained
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Figure 2. Effect of margin: progress of word error rate (WER)
on Sietill test corpus, MMI (left) vs. modified MMI (right) (16
densities/mixture).

Table 3. Word error rates (WER) for Sietill test corpus.
Dns/Mix Criterion Margin WER [%]
16 ML - 1.98

MMI - 1.88
word 1.72

64 ML - 1.81
MMI - 1.77

word 1.59
1+f2+3 Frame word 1.75

MMI - 1.68
word 1.53

using a regularization term. Tab. 3 summarizes the results.
The results clearly benefit from the additional margin term,
both regarding the performance and the robustness. This
might be because the training data are separable for the
given configurations. For the experiments using second
and third order features (’1+f2+3’) the training was ini-
tialized with the models from frame-based MMI training
which benefits from the margin only slightly (cf. Sec. 4).

6.2. EPPS English

This task contains recordings from the European Parlia-
ment Plenary Sessions (EPPS). The corpus statistics of the
different EPPS corpora can be found in Tab. 2. The acous-
tic front end comprises MFCC features augmented by a
voicing feature. 9 consecutive frames are concatenated and
the resulting vector is projected to 45 dimensions by means
of LDA. The MFCC features are warped using a fast vari-
ant of the Vocal Tract Length Normalization (VTLN). On
top of this, Speaker Adaptive Training (SAT) is applied.
The triphones are clustered using CART, resulting in 4,501
generalized triphone states. The HMM states are modeled
by Gaussian mixtures with globally pooled variances. The
ML baseline system is made up of approximately 900,000
densities. For recognition, a lexicon with 50,000 entries in
combination with a 4-gram language model was used (Lööf
et al., 2007). The development (Dev06) and evaluation
(Eval06) data from the evaluation campaign 2006 as de-
scribed in Tab. 2 were used to tune the different parameters
(e.g. language model scale or the number of MPE itera-
tions). The evaluation data from the evaluation campaign
2007 (Eval07) were used only for testing.

Table 4. Word error rates (WER) for EPPS English corpus, MPE
with different margins.

LM Margin WER [%]
(train) Dev06 Eval06 Eval07
1g - 13.4 10.1 11.5

word 13.4 10.2 11.3
phone 13.3 10.2 11.3

2g - 13.3 10.3 11.6
word 13.2 10.2 11.3
phone 13.2 10.2 11.3

Table 5. Word error rates (WER) for EPPS English corpus, inter-
dependence of weak language model and phone margin.

Crit. Margin LM WER [%]
(train) Dev06 Eval06 Eval07

ML - - 14.4 10.8 12.0
MPE no 1g 13.4 10.1 11.5

2g 13.3 10.3 11.6
yes 1g 13.3 10.2 11.3

2g 13.2 10.2 11.3

The word-conditioned lattices used in MPE training were
generated with the VTLN/voicedness system in combina-
tion with a bigram language model. Since the lattices are
dominated by silence and noise arcs, the lattices were fil-
tered. The idea behind this filtering is to correct the poste-
riors for accumulation of discriminative statistics. For the
acoustic rescoring during discriminative training, the exact
match approach is used, i.e., the word boundary times are
kept fixed.

The margins are tuned on a small fraction of the training
corpus such that the margin-based approach in combination
with a bigram language model and the standard MPE setup
with a unigram language model have the same WER. Inde-
pendent control experiments imply that no further tuning of
the margin parameter is required. In the first experiment we
have tested the impact of different margins on the perfor-
mance, more specifically we have tested the approximate
word and phone accuracies according to (Povey & Wood-
land, 2002). Tab. 4 shows that the differences are marginal.
For convenience we decided to use the approximate phone
accuracy-based margin for the remaining experiments. In
Tab. 5 the interdependence of the weak unigram language
model and the margin was investigated. There is ongoing
work to clarify the interdependence of the language model
used for the optimization and the margin. Using the acous-
tic model from the standard MPE training, the same 4-gram
language model and only each tenth segment, the relative
improvement of WER is 5.6% on the training data. This
probably indicates that the generalization performance on
the test data (Eval07) is not optimal with a relative improve-
ment of 4.2% (and does not appear to be an issue on the de-
velopment data, i.e., Dev06 and Eval06). The experimental
results show the expected tendency, see Tab. 1.
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7. Conclusions

We proposed modified formulations of MMI and MPE to
include a margin term into the discriminative training of
models for ASR. Furthermore, we showed that these modi-
fied criteria can directly be used in existing state-of-the-art
ASR frameworks, since they can be represented as an addi-
tional transducer composition. The modified criteria are di-
rectly related to SVMs using a suitable loss function, which
allows us to justify some important heuristics used in the
discriminative training of acoustic models. The experimen-
tal results are consistent with our expectations. For the Ger-
man digit string recognition task Sietill, where overfitting
is achieved after a few iterations, the margin is essential for
the robust estimation of the model parameters and allows
to achieve significant improvements over the ML baseline.
In contrast, on the large vocabulary EPPS English task the
observed improvements are transferred well to the test data
and the effect under consideration is marginal. So far, we
have investigated the effect of the margin for the discrim-
inative re-estimation based on generatively estimated and
strongly tuned acoustic models. The benefits due to the
margin might be better visible, when the discriminative,
margin-based training builds on top of a suboptimal ML
baseline. However, models building on top of better base-
line models might still have a better absolute performance.
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Abstract

We present a principled Bayesian framework
for modeling partial memberships of data
points to clusters. Unlike a standard mix-
ture model which assumes that each data
point belongs to one and only one mixture
component, or cluster, a partial membership
model allows data points to have fractional
membership in multiple clusters. Algorithms
which assign data points partial memberships
to clusters can be useful for tasks such as clus-
tering genes based on microarray data (Gasch
& Eisen, 2002). Our Bayesian Partial Mem-
bership Model (BPM) uses exponential fam-
ily distributions to model each cluster, and a
product of these distibtutions, with weighted
parameters, to model each datapoint. Here
the weights correspond to the degree to which
the datapoint belongs to each cluster. All
parameters in the BPM are continuous, so
we can use Hybrid Monte Carlo to perform
inference and learning. We discuss relation-
ships between the BPM and Latent Dirichlet
Allocation, Mixed Membership models, Ex-
ponential Family PCA, and fuzzy clustering.
Lastly, we show some experimental results
and discuss nonparametric extensions to our
model.

1. Introduction

The idea of partial membership is quite intuitive and
practically useful. Consider, for example, an individ-
ual with a mixed ethnic background, say, partly Asian
and partly European. It seems sensible to represent
that individual as partly belonging to two different
classes or sets. Such a partial membership represen-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

tation may be relevant to predicting that individual’s
phenotype, or their food preferences. We clearly need
models that can coherently represent partial member-
ship.

Note that partial membership is conceptually very dif-
ferent from uncertain membership. Being certain that
a person is partly Asian and partly European, is very
different than being uncertain about a person’s ethnic
background. More information about the person, such
as DNA tests, could resolve uncertainty, but cannot
make the person change his ethnic membership.

Partial membership is also the cornerstone of fuzzy
set theory. While in traditional set theory, items ei-
ther belong to a set or they don’t, fuzzy set theory
equips sets with a membership function µk(x) where
0 ≤ µk(x) ≤ 1 denotes the degree to which x partially
belongs to set k.

In this paper we describe a fully probabilistic approach
to data modelling with partial membership. Our ap-
proach makes use of a simple way of representing par-
tial membership using continuous latent variables. We
define a model which can cluster data but which fun-
damentally assumes that data points can have par-
tial membership in the clusters. Each cluster is repre-
sented by an exponential family distribution with con-
jugate priors (reviewed in section 3). Our model can
be seen as a continuous latent variable relaxation of
clustering with finite mixture models, and reduces to
mixture modelling under certain settings of the hyper-
parameters. Unlike Latent Dirichlet Allocation (LDA)
(Blei et al., 2003) and Mixed Membership models (Ero-
sheva et al., 2004), which also capture partial mem-
bership in the form of attribute-specific mixtures, our
model does not assume a factorization over attributes
and provides a general way of combining exponential
family distributions with partial membership. The
complete specification of our model is provided in sec-
tion 4. Learning and inference are carried out using
Markov chain Monte Carlo (MCMC) methods. We
show in particular that because all the parameters in
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our model are continuous, it is possible to employ a full
hybrid Monte Carlo (HMC) algorithm, which uses gra-
dients of the log probability, for inference (section 5).

Our Bayesian Partial Membership (BPM) model bears
interesting relationships to several well-known mod-
els in machine learning and statistics, including LDA
(Blei et al., 2003), mixed membership models (Ero-
sheva et al., 2004), exponential family PCA (Collins
et al., 2002), and Discrete Components Analysis (Bun-
tine & Jakulin, 2006). We discuss these relations in
section 6, where we also relate our model to fuzzy k-
means. In section 7, we present both synthetic and
real-world experimental results using image data and
voting patterns of US senators. We conclude with fu-
ture work in section 8.

2. A Partial Membership Model

We can derive our method for modeling partial mem-
berships from a standard finite mixture model. In a
finite mixture model the probability of a data point,
xn given Θ, which contains the parameters for each of
the K mixture components (clusters) is:

p(xn|Θ) =
K∑

k=1

ρkpk(xn|θk) (1)

where pk is the probability distribution of mixture
component k, and ρk is the mixing proportion (frac-
tion of data points belonging to) for component k1.

Equation 1 can be rewritten using indicator variables
πn = [πn1πn2 . . . πnK ] as follows:

p(xn|Θ) =
∑
πn

p(πn)
K∏

k=1

pk(xn|θk)πnk (2)

where πnk ∈ {0, 1} and
∑

k πnk = 1. Here we can
notice that if πnk = 1 this means that data point n
belongs to cluster k (also p(πnk = 1) = ρk). Therefore
the πnk denote memberships of data points to clusters.

In order to obtain a model for partial memberships we
can relax the constraint πnk ∈ {0, 1} to now allow πnk

to take any continuous value in the range [0, 1]. How-
ever, in order to compute the probability of the data
under this continuous relaxation of a finite mixture
model, we need to modify equation 2 as follows:

p(xn|Θ) =
∫

πn

p(πn)
1
c

K∏
k=1

pk(xn|θk)πnkdπn (3)

1This notation differs slightly from standard notation
for mixture models.

Figure 1. Left: A mixture model with two Gaussian mix-
ture components, or clusters, can generate data from the
two distributions shown. Right: Partial membership model
with the same two clusters can generate data from all the
distributions shown (there are actually infinitely many),
which lie between the two original clusters.

The modifications include integrating over all values
of πn instead of summing, and since the product over
clusters K from equation 2 no longer normalizes we
put in a normalizing constant c, which is a function of
πn and Θ. Equation 3 now gives us a model for partial
membership.

We illustrate the difference between our partial mem-
bership model and a standard mixture model in figure
1. Here we can see contours of the Gaussian distri-
butions which can generate data in the mixture model
(left) and the partial membership model (right), where
both models are using the same two Gaussian clusters.
As an example, if one of these clusters represents the
ethnicity “White British” and the other cluster repre-
sents the ethnicity “Pakistani”, then the figure illus-
trates that the partial membership model will be able
to capture someone of mixed ethnicity, whose features
may lie in between those of either ethnic group (for ex-
ample skin color or nose size), better than the mixture
model.

3. Conjugate-Exponential Models

In the previous section we derived a partial member-
ship model, given by equation 3. However we have
not yet discussed the form of the distribution for each
cluster, pk(xn|θk), and we will now focus on the case
when these distributions are in the exponential family.

An exponential family distribution can be written in
the form:

pk(xn|θk) = exp{s(xn)>θk + h(xn) + g(θk)} (4)

where s(xn) is a vector depending on the data known
as the sufficient statistics, θk is a vector of natu-
ral parameters, h(xn) is a function of the data, and
g(θk) is a function of the parameters which ensures
that the probability normalizes to one when integrat-
ing or summing over xn. We will use the short-hand
xn ∼ Expon(θk) to denote that xn is drawn from an
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exponential family distribution with natural parame-
ters θk.

If we plug the exponential family distribution (equa-
tion 4) into our partial membership model (equation
3) it follows that:

xn|πn,Θ ∼ Expon(
∑

k

πnkθk) (5)

where xn comes from the same exponential family dis-
tribution as the original clusters pk, but with new nat-
ural parameters which are a convex combination of
the natural parameters of the original clusters, θk,
weighted by πnk, the partial membership values for
data point xn. Computation of the normalizing con-
stant c is therefore always tractable when pk is in the
exponential family.

A probability distribution p(θk) is said to be conju-
gate to the exponential family distribution p(xn|θk) if
p(θk|xn) has the same functional form as p(θk). In
particular, the conjugate prior to the above exponen-
tial family distribution can be written in the form:

p(θ) ∝ exp{λ>θ + νg(θ)} (6)

where λ and ν are hyperparameters of the prior. We
will use the short-hand, θ ∼ Conj(λ, ν). We now have
the tools to define our Bayesian partial membership
model.

4. Bayesian Partial Membership
Models

Consider a model with K clusters, and a data set
D = {xn : n = 1 . . . N}. Let α be a K-dimensional
vector of positive hyperparameters. We start by draw-
ing mixture weights from a Dirichlet distribution:

ρ ∼ Dir(α) (7)

Here ρ ∼ Dir(α) is shorthand for p(ρ|α) =
c
∏K

k=1 ραk−1
k where c = Γ(

∑
k αk)/

∏
k Γ(αk) is a nor-

malization constant which can be expressed in terms
of the Gamma function2. For each data point, n, we
draw a partial membership vector πn which represents
how much that data point belongs to each of the K
clusters:

πn ∼ Dir(aρ). (8)

The parameter a is a positive scaling constant drawn,
for example, from an exponential distribution p(a) =
be−ba, where b > 0 is a constant. We assume that

2The Gamma function generalizes the factorial to pos-
itive reals: Γ(x) = (x − 1)Γ(x − 1), Γ(n) = (n − 1)! for
integer n

α

ρ

b

a

π
θ

λ

x
N

K

ν

Figure 2. Graphical model for the BPM

each cluster k is characterized by an exponential family
distribution with natural parameters θk and that

θk ∼ Conj(λ, ν). (9)

Given all these latent variables, each data point is
drawn from

xn ∼ Expon(
∑

k

πnkθk) (10)

In order to get an intuition for what the functions of
the parameters we have just defined are, we return to
the ethnicity example. Here, each cluster k is an eth-
nicity (for example, “White British” and “Pakistani”)
and the parameters θk define a distribution over fea-
tures for each of the k ethnic groups (for example,
how likely it is that someone from that ethnic group
likes pizza or marmite or bindi bhaji). The parame-
ter ρ gives the ethnic composition of the population
(for example, 75% “White British” and 25% “Pak-
istani”), while a controls how similar to the popu-
lation an individual is expected to be (Are 100% of
the people themselves 75% “White British” and 25%
“Pakistani”? Or are 75% of the people 100% “White
British” and the rest are 100% “Pakistani”? Or some-
where in between?). For each person n, πn gives their
individual ethnic composition, and finally xn gives
their individual feature values (e.g. how much they
like marmite). The graphical model representing this
generative process is drawn in Figure 2.

Since the Bayesian Partial Membership Model is a gen-
erative model, we tried generating data from it us-
ing full-covariance Gaussian clusters. Figure 3 shows
the results of generating 3000 data points from our
model with K = 3 clusters as the value of parameter
a changes. We can see that as the value of a increases
data points tend to have partial membership in more
clusters. In fact we can prove the following lemmas:

Lemma 1 In the limit that a → 0 the exponential
family BPM is a standard mixture model with K com-
ponents and mixing proportions ρ.
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Figure 3. 3000 BPM generated data points with partial as-
signments to 3 Gaussian clusters shown in red, as param-
eter a varies.

Lemma 2 In the limit that a → ∞ the exponential
family BPM model has a single component with natural
parameters

∑
k ρkθk.

Proofs of these lemmas follow simply from taking the
limits of equation 8 as a goes to 0 and ∞ respectively.

5. BPM Learning

We can represent the observed data set D as an N×D
matrix X with rows corresponding to xn, where D is
the number of input features.3 Let Θ be a K × D
matrix with rows θk and Π be an N ×K matrix with
rows πn. Learning in the BPM consists of inferring
all unknown variables, Ω = {Π,Θ,ρ, a} given X. We
treat the top level variables in the graphical model in
Figure 2, Ψ = {α,λ, ν, b} as fixed hyperparameters,
although these could also be learned from data. Our
goal is to infer p(Ω|X,Ψ), for which we decide to em-
ploy Markov chain Monte Carlo (MCMC).

Our key observation for MCMC is that even though
BPMs contain discrete mixture models as a special
case, all of the unknown variables Ω of the BPM are
continuous. Moreover, it is possible to take deriva-
tives of the log of the joint probability of all variables
with respect to Ω. This makes it possible to do infer-
ence using a full Hybrid Monte Carlo (HMC) algorithm
on all parameters. Hybrid (or Hamiltonian) Monte
Carlo is an MCMC procedure which overcomes the
random walk behaviour of more traditional Metropo-
lis or Gibbs sampling algorithms by making use of the
derivatives of the log probability (Neal, 1993; MacKay,

3We assume that the data is represented in its natural
representation for the exponential family likelihood, so that
s(xn) = xn.

2003). In high dimensions, this derivative information
can lead to a dramatically faster mixing of the Markov
chain, analogous to how optimization using derivatives
is often much faster than using greedy random search.

We start by writing the probability of all parameters
and variables4 in our model:

p(X,Ω|Ψ) = p(X|Π,Θ)p(Θ|λ, ν)p(Π|a, ρ)p(a|b)p(ρ|α)
(11)

We assume that the hyperparameter ν = 1, and omit
it from our derivation. Since the forms of all distri-
butions on the right side of equation (11) are given in
section 4, we can simply plug these in and see that:

log p(X,Ω|Ψ) =

log Γ(
∑

k αk)−
∑

k log Γ(αk) +
∑

k(αk − 1) log ρk

+ log b− ba + N log Γ (
∑

k aρk)−N
∑

k log Γ(aρk)
+

P
n

P
k(aρk − 1) log πnk +

P
k

ˆ
θ>k λ + g(θk) + f(λ)

˜
+

P
n

ˆ
(
P

k πnkθk)>xn + h(xn) + g
`P

k πnkθk

´˜
The Hybrid Monte Carlo algorithm simulates dynam-
ics of a system with continuous state Ω on an en-
ergy function E(Ω) = − log p(X,Ω|Ψ). The deriva-
tives of the energy function ∂E(Ω)

∂Ω) provide forces on
the state variables which encourage the system to find
high probability regions, while maintaining detailed
balance to ensure that the correct equilibrium distri-
bution over states is achieved (Neal, 1993). Since Ω
has constraints, e.g. a > 0 and

∑
k ρk = 1, we use a

tranformation of variables so that the new state vari-
ables are unconstrained, and we perform dynamics in
this unconstrained space. Specifically, we use a = eη,
ρk = erkP

k′ er
k′ , and πnk = epnkP

k′ ep
nk′ . For HMC to be

valid in this new space, the chain rule needs to be ap-
plied to the derivatives of E , and the prior needs to
be transformed through the Jacobian of the change
of variables. For example, p(a)da = p(η)dη implies
p(η) = p(a)(da/dη) = ap(a). We also extended the
HMC procedure to handle missing inputs in a princi-
pled manner, by analytically integrating them out, as
this was required for some of our applications. More
details and general pseudocode for HMC can be found
in (MacKay, 2003).

6. Related Work

The BPM model has interesting relations to several
models that have been proposed in machine learning,
statistics and pattern recognition. We describe these
relationships here.

4A formal distinction between hidden variables, e.g. the
{πn}, and unknown parameters is not necessary as they
are both unknowns.
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Latent Dirichlet Allocation: Using the notation
introduced above, the BPM model and LDA (Blei
et al., 2003) both incorporate a K-dimensional Dirich-
let distributed π variable. In LDA, πn are the mix-
ing proportions of the topic mixture for each docu-
ment n. Each word in document n can then be seen
as having been generated by topic k, with probability
πnk, where the word distribution for topic k is given
by a multinomial distribution with some parameters,
θk. The BPM also combines πnk with some exponen-
tial family parameters θk, but here the way in which
they are combined does not result in a mixture model
from which another variable (e.g. a word) is assumed
to be generated. In contrast, the data points are in-
dexed by n directly, and therefore exist at the doc-
ument level of LDA. Each data point is assumed to
have come from an exponential family distribution pa-
rameterized by a weighted sum of natural parameters
θ, where the weights are given by πn for data point
n. In LDA, data is organized at two levels (e.g. docu-
ments and words). More generally, mixed membership
(MM) models (Erosheva et al., 2004), or admixture
models, assume that each data attribute (e.g. words)
of the data point (e.g. document) is drawn indepen-
dently from a mixture distribution given the member-
ship vector for the data point, xnd ∼

∑
k πnkP (x|θkd).

LDA and mixed membership models do not average
natural parameters of exponential family distributions
like the BPM. LDA or MM models could not generate
the continuous densities in figure 3 from full-covariance
Gaussians. The analagous generative process for MM
models is given in figure 4. Since data attributes are
drawn independently, the original clusters (not explic-
ity shown) are one dimensional and have means at 0,
10 and 20 for both attribute dimensions. We can no-
tice from the plot that this model always generates a
mixture of 9 Gaussians, which is a very different be-
havior than the BPM, and clearly not as suitable for
the general modeling of partial memberships. LDA
only makes sense when the objects (e.g. documents)
being modelled constitute bags of exchangeable sub-
objects (e.g. words). Our model makes no such as-
sumption. Moreover, in LDA and MM models there
is a discrete latent variable for every sub-object corre-
sponding to which mixture component that sub-object
was drawn from. This large number of discrete latent
variables makes MCMC sampling in LDA potentially
much more expensive than in BPM models.

Exponential Family PCA: Our model bears an
interesting relationship to Exponential Family PCA
(Collins et al., 2002). EPCA was originally formu-
lated as the solution to an optimization problem based
on Bregman divergences, while our model is a fully
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Figure 4. Generative plot for MM model with 3 Gaussian
clusters

probabilistic model in which all parameters can be in-
tegrated out via MCMC. However, it is possible to
think of EPCA as the likelihood function of a proba-
bilistic model, which coupled with a prior on the pa-
rameters, would make it possible to do Bayesian in-
ference in EPCA and would render it closer to our
model. However, our model was entirely motivated by
the idea of partial membership in clusters, which is
enforced by forming convex combinations of the nat-
ural parameters of exponential family models, while
EPCA is based on linear combinations of the param-
eters. Therefore: EPCA does not naturally reduce
to clustering, none of the variables can be interpreted
as partial memberships, and the coefficients define a
plane rather than a convex region in parameter space.

The recent work of Buntine and Jakulin (Buntine &
Jakulin, 2006) focusing on the analysis of discrete data
is also closely related to the BPM model. The frame-
work of (Buntine & Jakulin, 2006) section III B ex-
presses a model for discrete data in terms of linear
mixtures of dual exponential family parameters where
MAP inference is performed. Section V B also pro-
vides insights on differences between using dual and
natural parameters.

Fuzzy Clustering: The notion that probabilistic
models are unable to handle partial membership has
been used to argue that probability is a subtheory of
or different in character from fuzzy logic (Zadeh, 1965;
Kosko, 1992). In this paper we described a probabilis-
tic model for partial membership which may be of use
in the many application domains where fuzzy cluster-
ing has been used.

Fuzzy K-means clustering (Bezdek, 1981) itera-
tively minimizes the following objective: J =
N∑

n=1

K∑
k=1

πγ
nkd2(xn, ck), where γ > 1 is an exponent pa-

rameter, πnk represents the degree of membership of

396



Statistical Models for Partial Membership

data point n in cluster k (
∑

k πnk = 1), and d2(xn, ck)
is a measure of squared distance between data point
xn and cluster center ck. By varying γ it is possi-
ble to attain different amounts of partial membership,
where the limiting case γ = 1 is K-means with no
partial membership. Although the π parameters rep-
resent partial membership, none of the variables have
probabilistic interpretations.

IOMM: Lastly, this work is related to the Infi-
nite Overlapping Mixture Model (IOMM) (Heller &
Ghahramani, 2007) in which overlapping clustering is
performed, also by taking products of exponential fam-
ily distributions, much like products of experts (Hin-
ton, 1999). However in the IOMM the memberships
of data points to clusters are restricted to be binary,
which means that it can not model partial member-
ship.

7. Experiments

We generated a synthetic binary data set from the
BPM, and used this to test BPM learning. The syn-
thetic data set had 50 data points which each have
32 dimensions and can hold partial memberships in
3 clusters. We ran our Hybrid Monte Carlo sampler
for 4000 iterations, burning in the first half. In or-
der to compare our learned partial membership assign-
ments for data points (ΠL) to the true ones (ΠT ) for
this synthetic data set, we compute (Û = ΠLΠ>

L ) and
(U∗ = ΠT Π>

T ), which basically give the total amount
of cluster membership shared between each pair of
data points, and is invariant to permutations of clus-
ter labels. Both of these matrices can be seen in figure
5. One can see that the structure of these two ma-
trices is quite similar, and that the BPM is learning
the synthetic data reasonably. For a more quantita-
tive measure table 5c gives statistics on the number of
pairs of data points whose learned shared membership
differs from the true shared membership by more than
a given threshold (the range of this statistic is [0,1]).

We also used the BPM to model two “real-world” data
sets. The first is senate roll call data from the 107th US
congress (2001-2002) (Jakulin, 2004), and the second
is a data set of images of sunsets and towers.

The senate roll call data is a matrix of 99 senators (one
senator died in 2002 and neither he nor his replacement
is included) by 633 votes. It also includes the outcome
of each vote, which is treated as an additional data
point (like a senator who always voted the actual out-
come). The matrix contained binary features for yea
and nay votes, and we used the BPM to cluster this
data set using K = 2 clusters. There are missing val-

ues in this dataset but this can easily be dealt with in
the HMC log probability calculations by explicitly rep-
resenting both 0 and 1 binary values and leaving out
missing values. The results are given in figure 6. The
line in figure 6 represents the amount of membership of
each senator in one of the clusters (we used the “Demo-
crat” cluster, where senators on the far left have partial
memberships very close to 0, and those on the far right
have partial memberships extremely close to 1). Since
there are two clusters, and the amount of member-
ship always sums to 1 across clusters, the figure looks
the same regardless of whether we are looking at the
“Democrat” or “Republican” cluster. We can see that
most Republicans and Democrats are tightly clustered
at the ends of the line (and have partial memberships
very close to 0 and 1), but that there is a fraction
of senators (around 20%) which lies somewhere rea-
sonably in between the extreme partial memberships
of 0 or 1. Interesting properties of this figure include
the location of Senator Jeffords who left the Republi-
can party in 2001 to become an independent who cau-
cused with the Democrats. Also Senator Chafee who is
known as a moderate Republican and who often voted
with the Democrats (for example, he was the only Re-
publican to vote against authorizing the use of force
in Iraq), and Senator Miller a conservative Democrat
who supported George Bush over John Kerry in the
2004 US Presidential elections. Lastly, it is interesting
to note the location of the Outcome data point, which
is very much in the middle. This makes sense since the
107th congress was split 50-50 (with Republican Dick
Cheney breaking ties), until Senator Jeffords became
an Independent at which point the Democrats had a
one seat majority.

We also tried running both fuzzy k-means clustering
and Dirichlet Process Mixture models (DPMs) on this
data set. While fuzzy k-means found roughly simi-
lar rankings of the senators in terms of membership to
the “Democrat” cluster, the exact ranking and, in par-
ticular, the amount of partial membership (πn) each
senator had in the cluster was very sensitive to the
fuzzy exponent parameter, which is typically set by
hand. Figure 7a plots the amount of membership for
the Outcome data point in black, as well as the most
extreme Republican, Senator Ensign, in red, and the
most extreme Democrat, Senator Schumer, in blue, as
a function of the fuzzy exponent parameter. We can
see in this plot that as the assignment of the Outcome
data point begins to reach a value even reasonably
close to 0.5, the most extreme Republican already has
20% membership in the “Democrat” cluster. This re-
duction in range does not make sense semantically, and
presents a trade-off between finding reasonable values
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Statistic Percent

|(Û − U∗)| ≤ 0.1 60.40

|(Û − U∗)| ≤ 0.2 84.28

|(Û − U∗)| ≤ 0.3 95.48

|(Û − U∗)| ≤ 0.4 99.68

|(Û − U∗)| ≤ 0.5 100.00

Figure 5. a) left - matrix U∗ showing the true shared partial memberships for pairs of data points. b) right - matrix Û
showing the learned shared partial memberships. c) Summary statistics for learned Û . Reports the percentage of pairs
in Û whose difference from U∗ in terms of the amount of shared partial memberships is at most the given threshold (0.1
- 0.5).

for πn in the middle of the range, versus at the ex-
tremes. This kind of sensitivity to parameters does
not exist in our BPM model, which models both ex-
treme and middle range values well.

We tried using a DPM to model this data set where
we ran the DPM for 1000 iterations of Gibbs sampling,
sampling both assignments and concentration parame-
ter. The DPM confidently finds 4 clusters: one cluster
consists solely of Democrats, one consists solely of Re-
publicans, the third cluster has 9 of the most moderate
Democrats and Republicans plus the ”vote outcome”
variable, and the last cluster has just one member,
Hollings (D-SC). Figure 7b is a 100x100 matrix show-
ing the overlap of cluster assignments for pairs of sen-
ators, averaged over 500 samples (there are no changes
in relative assignments, the DPM is completely confi-
dent). The interpretation of the data provided by the
DPM is very different from the BPM model’s. The
DPM does not use uncertainty in cluster membership
to model Senators with intermediate views. Rather, it
creates an entirely new cluster to model these Sena-
tors. This makes sense for the data as viewed by the
DPM: there is ample data in the roll calls that these
Senators are moderate — it is not the case that there is
uncertainty about whether they fall in line with hard-
core Democrats or Republicans. This highlights the
fact that the responsibilities in a mixture model (such
as the DPM) cannot and should not be interpreted
as partial membership, they are representations of un-
certainty in full membership. The BPM model, how-
ever, explicitly models the partial membership, and
can, for example, represent the fact that a Senator
might be best characterized as moderate (and quan-
tify how moderate they are). In order to quantify this
comparison we calculated the negative log predictive
probability (in bits) across senators for the BPM and
the DPM (Table 1). We look at a number of different
measures: the mean, median, minimum and maximum
number of bits required to encode a senator’s votes.
We also look at the number of bits needed to encode
the “Outcome” in particular. On all of these measures

Mean Median Min Max “Outcome”

BPM 187 168 93 422 224
DPM 196 178 112 412 245

Table 1. Comparison between the BPM and a DPM in
terms of negative log predictive probability (in bits) across
senators.
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Figure 7. a) left - fuzzy k-means: plot of the partial mem-
bership values for the Outcome data point (in black) and
the most extreme Republican (in red) and Democrat (in
blue) as a function of the fuzzy exponent parameter. b)
right - DPMs: an ordered 100x100 matrix showing the frac-
tion of times each pair of senators was assigned to the same
cluster, averaged over 500 Gibbs sampling iterations.

except for maximum, the BPM performs better than
the DPM, showing that the BPM is a superior model
for this data set.

Lastly, we used the BPM to model images of sunsets
and towers. The dataset consisted of 329 images of
sunsets or towers, each of which was represented by
240 binary simple texture and color features. Partial
assignments to K = 2 clusters were learned, and figure
8 provides the result. The top row of the figure is the
three images with the most membership in the “sun-
set” cluster, the bottom row contains the three images
with the most membership in the “tower” cluster, and
the middle row shows the 3 images which have closest
to 50/50 membership in each cluster (πnk ≈ 0.5). In
this dataset, as well as all the datasets described in
this section, our HMC sampler was very fast, giving
reasonable results within tens of seconds.
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Figure 6. Analysis of the partial membership results on the Senate roll call data from 2001-2002. The line shows amount
of membership in the “Democrat” cluster with the left of the line being the lowest and the right the highest.

Figure 8. Tower and Sunset images. The top row are the
images found to have largest membership in the “sunset”
cluster, the bottom row are images found to have largest
membership in the “tower” cluster, and the middle row are
the images which have the most even membership in both
clusters.

8. Conclusions and Future Work

In summary, we have described a fully probabilistic
approach to data modelling with partial membership
using continuous latent variables, which can be seen as
a relaxation of clustering with finite mixture models.
We employed a full Hybrid Monte Carlo algorithm for
inference, and our experience with HMC has been very
positive. Despite the general reputation of MCMC
methods for being slow, our model using HMC seems
to discover sensible partial membership structure after
surprisingly few samples.

In the future we would like to develop a nonparamet-
ric version of this model. The most obvious way to try
to generalize this model would be with a Hierarchi-
cal Dirichlet Process (Teh et al., 2006). However, this
would involve averaging over infinitely many poten-
tial clusters, which is both computationally infeasible,
and also undesirable from the point of view that each
data point should have non-zero partial membership

in only a few (certainly finite) number of clusters. A
more promising alternative is to use an Indian Buffet
Process (Griffiths & Ghahramani, 2005), where each 1
in a row in an IBP sample matrix would represent a
cluster in which the data point corresponding to that
row has non-zero partial membership, and then draw
the continuous values for those partial memberships
conditioned on that IBP matrix.
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Abstract

Identifying the appropriate kernel func-
tion/matrix for a given dataset is essential to
all kernel-based learning techniques. A num-
ber of kernel learning algorithms have been
proposed to learn kernel functions or matri-
ces from side information (e.g., either labeled
examples or pairwise constraints). However,
most previous studies are limited to “pas-
sive” kernel learning in which side informa-
tion is provided beforehand. In this pa-
per we present a framework of Active Ker-
nel Learning (AKL) that actively identifies
the most informative pairwise constraints for
kernel learning. The key challenge of active
kernel learning is how to measure the infor-
mativeness of an example pair given its class
label is unknown. To this end, we propose a
min-max approach for active kernel learning
that selects the example pair that results in
a large classification margin regardless of its
assigned class label. We furthermore approx-
imate the related optimization problem into
a convex programming problem. We evaluate
the effectiveness of the proposed algorithm by
comparing it to two other implementations of
active kernel learning. Empirical study with
nine datasets on semi-supervised data clus-
tering shows that the proposed algorithm is
more effective than its competitors.

1. Introduction

Kernel methods have attracted more and more atten-
tion of researchers in computer science and engineering
due to their superior performance in data clustering,
classification, and dimensionality reduction (Scholkopf
& Smola, 2002; Vapnik, 1998). Kernel methods have
been applied to many fields, such as data mining, pat-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

tern recognition, information retrieval, computer vi-
sion, and bioinformatics, etc. Since the choice of ker-
nel functions or matrices is often critical to the per-
formance of many kernel-based learning techniques, it
becomes a more and more important research prob-
lem for how to automatically learn a kernel func-
tion/matrix for a given dataset. Recently, a number of
kernel learning algorithms (Chapelle et al., 2003; Cris-
tianini et al., 2002; Hoi et al., 2007; Kondor & Laf-
ferty, 2002; Kulis et al., 2006; Lanckriet et al., 2004;
Zhu et al., 2005) have been proposed to learn kernel
functions or matrices from side information. The side
information can be provided in two different forms: ei-
ther labeled examples or pairwise constraints. In the
latter case, two types of pairwise constraints are exam-
ined in the previous studies: a must-link pair where
two examples should belong to the same class, and
a cannot-link pair where two examples should belong
to different classes. In this study, we focus on kernel
learning with pairwise constraints.

Most kernel learning methods, termed as “passive ker-
nel learning”, assume that labeled data is provided
beforehand. However, given the labeled data may be
expensive to acquire, it is more cost effective if we are
able to identify the most informative example pairs
such that the kernel can be learned efficiently with only
a small number of pairwise constraints. To this end, we
focus on active kernel learning (AKL) whose goal
is to identify the example pairs that are informative
to the target kernels. We extends our previous work
on non-parametric kernel learning (Hoi et al., 2007) to
active kernel learning. As shown in (Hoi et al., 2007),
the parametric approaches for kernel learning are of-
ten limited by their capacity in fitting diverse patterns
of real-world data, and therefore are not as effective as
the non-parametric approach for kernel learning.

The simplest approach toward active kernel learning is
to measure the informativeness of an example pair by
its kernel similarity. Given a pair of examples (xi,xj),
we assume that Ki,j , the kernel similarity between xi

and xj , is a large positive number when xi and xj

are in the same class, and a large negative number
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Figure 1. Examples of active kernel learning: (a) double-spiral artificial data with some given pairwise constraints, (b)
AKL with the least |Ki,j |, (c) the proposed AKL method. The right bars show the resulting clustering accuracies using
kernel k-means clustering methods.

when they are in different classes. Thus, by follow-
ing the uncertainty principle of active learning (Tong
& Koller, 2000; Hoi et al., 2006), the most informa-
tive example pairs should be the ones whose kernel
similarities are closest to zero. In other words, the
criterion is to select the example pair with the least
absolute kernel similarity (i.e., |Ki,j|). Unfortunately,
this simple approach may not always be effective in
obtaining informative pairwise constraints for kernel
learning. Figure 1 illustrates an example of active
kernel learning for data clustering. In this example,
Figure 1(a) shows an artificial dataset of two classes
together with a few pairwise constraints. Figure 1(b)
shows the pairwise constraints with the least |Ki,j |.
We observe that most of them are must-link pairs with
two data points separated by a modest distance. Since
must-link constraints are not informative to the clus-
tering boundary, a relatively small improvement is ob-
served in clustering accuracy (from 51% to 58%) when
using the kernel learned by this simple approach. In
contrast, as shown in Figure 1(c), the proposed ap-
proach for active kernel learning is able to identify
a pool of diverse pairwise constraints, including both
must-links and cannot-links. The clustering accuracy
is increased significantly, from 51% to 86%, by using
the proposed active kernel learning.

The rest of this paper is organized as follows. Sec-
tion 2 presents the min-max framework for our active
kernel learning method, in which the problem is formu-
lated into a convex optimization problem. Section 3
describes the results of the experimental evaluation.
Section 4 concludes this work.

2. Active Kernel Learning

Our work extends the previous work on non-
parametric kernel learning (Hoi et al., 2007) by in-
troducing the component of actively identifying the

example pairs that are most informative to the target
kernel. In this section, we will first briefly review the
non-parametric approach for kernel learning in (Hoi
et al., 2007), followed by the description of the min-
max framework for active kernel learning.

2.1. Non-parametric Kernel Learning

Let the entire data collection be denoted by U =
(x1,x2, . . . ,xN ) where each data point xi ∈ R

d is a
vector of d elements. Let S ∈ R

N×N be a symmetric
matrix where each Si,j ≥ 0 represents the similarity
between xi and xj . Unlike the kernel similarity ma-
trix, S does not have to be positive semi-definite. For
the convenience of presentation, we set Si,i = 0 for all
the examples. Then, according to (Hoi et al., 2007),
a normalized graph Laplacian L is constructed using
the similarity matrix S as follows:

L = (1 + δ)I −D−1/2SD−1/2

where D = diag(d1, d2, . . . , dN ) is a diagonal matrix
with di =

∑N
j=1 f(xi,xj). A small δ > 0 is introduced

to prevent L from being singular. Let’s denote by T
the set of pairwise constraints. We construct a matrix
T ∈ R

N×N to represent the pairwise constraints in T ,
i.e.,

Ti,j =

⎧

⎨

⎩

+1 (xi,xj) is a must-link pair in T
−1 (xi,xj) is a cannot-link pair in T
0 otherwise

Given the similarity matrix S and the pairwise con-
straints in T , the goal of kernel learning is to identify
a kernel matrix Z ∈ R

N×N that is consistent with both
T and S. Following (Hoi et al., 2007), we formulate it

401



Active Kernel Learning

into the following convex optimization problem:

argmin
Z,ε

tr(LZ) +
c

2

∑

(i,j)∈T
ε2

i,j (1)

s. t. ∀(i, j) ∈ T , Zi,jTi,j ≥ 1− εi,j, εi,j ≥ 0
Z � 0

The first term in the above objective function plays a
similar role as the manifold regularization (Belkin &
andd P. Niyogi, 2004), where the graph Laplacian is
used to regularize the classification results. The second
term in the above measures the inconsistency between
the learned kernel matrix Z and the given pairwise
constraints. Note that unlike the formulation in (Hoi
et al., 2007), we change εi,j in the loss function to ε2

i,j .
This modification is specifically designed for active ker-
nel learning, and the reason will be clear later. It is
not difficult to see that the problem in (1) is a semi-
definite programming problem, and therefore can be
solved by the standard software package, such as Se-
DuMi (Sturm, 1999).

2.2. Min-max Framework for Active Kernel
Learning

The simplest approach toward active kernel learning
is to follow the uncertainty principle of active learn-
ing, and to select the example pair (xi,xj) with the
least |Zi,j | 1. However, as already discussed in the in-
troduction section, the key problem with this simple
approach is that the example pairs with the least |Zi,j |
may not necessarily be the the most informative ones,
and therefore may not result in an efficient learning of
the kernel matrix. To address this problem, we pro-
pose a min-max framework for active kernel learning
that measures the informativeness of an example pair
by how significantly the selected example pair will af-
fect the target kernel matrix.

Consider an unlabeled example pair (xk,xl) /∈ T . To
measure how this example will affect the kernel matrix,
we consider the kernel learning problem with the addi-
tional example pair (xk,xl) labeled by y ∈ {−1, +1},
i.e.,

min
Z,ε

tr(LZ) +
c

2

∑

(i,j)∈T
ε2

i,j +
c

2
ε2

k,l (2)

s. t. Ti,jZi,j ≥ 1− εi,j , ∀(i, j) ∈ T
yZk,l ≥ 1− εk,l, Z � 0

Let us denote by ω((k, l), y) the optimal value of the
above optimization problem. Intuitively, ω((k, l), y)

1Here we assume that Zi,j > 0 when xi and xj are likely
to share the same class, and Zi,j < 0 when xi and xj are
likely to be assigned to different classes

measures the overall classification accuracy with the
additional example pair (xk,xl) labeled by y. To
further measure the informativeness of example pair
(xk,xl), we introduce the quantity κ(k, l) as follows

κ(k, l) = max
y∈{−1,+1}

ω((k, l), y) (3)

Clearly, κ(k, l) measures the worst classification error
with the addition of example pair (xk,xl). Overall,
κ(k, l) measures how the example pair (xk,xl) will
affect the overall objective function, which indirectly
measures the impact of the example pair on the tar-
get kernel matrix. To see this, consider an example
pair (xk,xl) that is highly consistent with the current
kernel Z with label y (i.e., Zk,ly ≥ 1). According to
the definition κ(k, l), we would expect a large κ(k, l)
for pair (xk,xl). This is because by assigning a label
−y to example pair (xk,xl), we expect a large clas-
sification error and therefore large κ(k, l). Hence, we
use κ(k, l) to measure the uninformativeness of exam-
ple pairs, i.e., the smaller κ(k, l), the less informative
the example pair is. Therefore, the most informative
example pair is found by minimizing κ(k, l), i.e.,

(k, l)∗ = argmin
(k,l) �∈T

max
t∈{−1,+1}

ω((k, l), t) (4)

Directly solving the min-max optimization problem in
(4) is challenging because function ω((k, l), t) is defined
implicitly by the optimization problem in (2). The
following theorem allows us to significantly simplify
the optimization problem in (4)

Theorem 1. The optimization problem in (4) is
equivalent to the following optimization problem

min
Z,ε,(k,l)/∈T

tr(LZ) +
c

2

∑

(i,j)∈T
ε2

i,j +
c

2
ε2

k,l (5)

s. t. Ti,jZi,j ≥ 1− εi,j , εi,j ≥ 0, ∀(i, j) ∈ T
εk,l ≥ 1 + |Zk,l|, Z � 0

Proof. The above theorem follows the fact that the so-
lution y∗ ∈ {−1, +1} maximizing ω((k, l), y) is y∗ =
−sign(Zk,l). This fact allows us to remove the maxi-
mization within (4) and obtain the result in the theo-
rem.

The following corollary shows that the approach of se-
lecting the example pair with the least |Zk,l| indeed
corresponds to a special solution for the problem in (5).

Corollary 2. The optimal solution to (5) with fixed
kernel matrix Z is the example pair with the least
|Zk,l|, i.e.,

(k, l)∗ = argmin
(k,l)/∈T

|Zk,l|
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Proof. By fixing Z, the problem in (5) is simplified as

min
(k,l)/∈T

ε2
k,l s. t. εk,l ≥ 1 + |Zk,l|

It is easy to see that the optimal solution to the above
problem is the example pair with the least |Zk,l|.

Note that a similar observation is described in the
study (Chen & Jin, 2007) for standard active learn-
ing.

2.3. Algorithm

The straightforward approach toward the optimiza-
tion problem in (5) is to try out every example pair
(xk,xl) /∈ T . Evidently, this approach will not scale
well when the number of example pairs is large.

Our first attempt toward solving the problem (5) is to
turn it into a continuous optimization problem. To this
purpose, we introduce variable pk,l ≥ 0 to represent
the probability of selecting the example pair (k, l) �∈ T .
Using this notation, we have the optimization problem
in (5) rewritten as

min
Z�0,p,ε

tr(LZ) +
c

2

∑

(i,j)∈T
ε2

i,j +
c

2

∑

(k,l) �∈T
pk,lε

2
k,l (6)

s. t. Ti,jZi,j ≥ 1− εi,j , ∀(i, j) ∈ T
εk,l − 1 ≥ Zk,l ≥ 1− εk,l, ∀(k, l) �∈ T
∑

(k,l) �∈T
pk,l ≥ 1, pk,l ≥ 0, ∀(k, l) �∈ T

The following theorem shows the relationship between
(6) and (5).

Theorem 3. Any global optimal solution to (5) is also
a global optimal solution to (6).

The proof of the above theorem can be found in Ap-
pendix A.

Unfortunately, the optimization problem in (6) is non-
convex because of the term pk,lε

2
k,l. It is therefore

difficult to find the global optimal solution for (6). In
order to turn (6) into a convex optimization problem,
we view the constraint

∑

(k,l)/∈T pk,l ≥ 1 as a bound
for the arithmetic mean of pk,l, i.e.,

1
m

∑

(k,l)/∈T
pk,l ≥ 1

m

where m = |{(k, l)|(k, l) /∈ T }|. We then relax this
constraint by the harmonic mean of pk,l, i.e.,

m
∑

(k,l)/∈T p−1
k,l

≥ 1
m

, or
∑

(k,l)/∈T
p−1

k,l ≤ m2

The above relaxation is based on the property that a
harmonic mean is no larger than an arithmetic mean.
By replacing the constraint

∑

(k,l)/∈T pk,l ≤ 1 with (7),
we have (6) relaxed into the following optimization
problem

min
Z�0,p,ε

tr(LZ) +
c

2

∑

(i,j)∈T
ε2

i,j +
c

2

∑

(k,l) �∈T
pk,lε

2
k,l (7)

s. t. Ti,jZi,j ≥ 1− εi,j , εi,j ≥ 0, ∀(i, j) ∈ T
εk,l − 1 ≥ Zk,l ≥ 1− εk,l, ∀(k, l) �∈ T
∑

(k,l) �∈T
p−1

k,l ≤ m2, 0 ≤ pk,l ≤ 1, ∀(k, l) �∈ T

By defining variable hk,l = p−1
k,l , we have

min
Z�0,h,ε

tr(LZ) +
c

2

∑

(i,j)∈T
ε2

i,j +
c

2

∑

(k,l) �∈T

ε2
k,l

hk,l
(8)

s. t. Ti,jZi,j ≥ 1− εi,j, εi,j ≥ 0, ∀(i, j) ∈ T
εk,l − 1 ≥ Zk,l ≥ 1− εk,l, ∀(k, l) �∈ T
∑

(k,l) �∈T
hk,l ≤ m2, hk,l ≥ 1, ∀(k, l) �∈ T

Notice that constraint 0 ≤ pk,l ≤ 1 is transferred into
hk,l ≥ 1. The following theorem shows the property of
the formulation in (8)
Theorem 4. We have the following properties for (8)

• (8) is a semi-definite programming (SDP) prob-
lem.
• Any feasible solution to (8) is also a feasible solu-

tion to (5) with pk,l = h−1
k,l , and the optimal value

for (6) is upper bounded by that for (8).

The proof is provided in Appendix B. Note that us-
ing ε2

i,j instead of εi,j for the loss function is key to
turning (6) into a convex optimization problem. The
second property stated in Theorem 4 indicates that
by minimizing (8), we guarantee a small value for the
objective function in (6).

The following theorem shows the dual problem of (8),
which is the key to the efficient computation.
Theorem 5. The dual problem of (8) is

max
Q,W

∑

(i,j)∈T

(

Qi,j −
Q2

i,j

2c

)

+
∑

(k,l)/∈T

(

|Wk,l| −
W 2

k,l

2c

)

−2(m2 −m)
c

λ (9)

s. t L � Q⊗ T + W ⊗ T̄

∀(i, j) ∈ T , Qi,j ≥ 0, λ ≥W 2
k,l, ∀(k, l) /∈ T

where matrix T̄ is defined as

T̄i,j =
{

0 (i, j) ∈ T
1 otherwise ,
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and ⊗ stands for the element wise product of matrices.

The proof can be found in Appendix C. In the dual
problem, variables Qi,j and Wi,j are the dual variables
that indicate the importance of labeled example pairs
and unlabeled examples, respectively. We thus will se-
lect the unlabeled example pair with the largest |Wi,j |.
To speed up the computation, in our experiment, we
first select a subset of example pairs (fixed 200) with
smallest |Zi,j | using the current kernel matrix Z. We
then set all Wk,l to be zero if the corresponding pair is
not selected. In this way, we significantly reduce the
number of variables in the dual problem in (9), thus
simplifying the computation.

3. Experimental Results

In our experiments, we follow the work (Hoi et al.,
2007), and evaluate the proposed algorithm for active
kernel learning by the experiments of data clustering.
More specifically, we first apply the active kernel learn-
ing algorithm to identify the most informative example
pairs, and then solicit the class labels for the selected
example pairs. A kernel matrix will be learned from
the labeled example pairs, and the learned kernel ma-
trix will be used by the clustering algorithm to find
the right cluster structure.

3.1. Experimental Setup

We use the same datasets as the ones described in (Hoi
et al., 2007). Table 1 summarizes the information
about the nine datasets used in our study. We adopt
the clustering accuracy defined in (Xing et al., 2002)
as the evaluation metric. It is defined as follows

Accuracy =
∑

i>j

1{1{ci = cj} = 1{ĉi = ĉj}}
0.5n(n− 1)

, (10)

where 1{·} is the indicator function that outputs 1
when the input argument is true and 0 otherwise. ci

and ĉi denote the true cluster membership and the
predicted cluster membership of the ith data point, re-
spectively. n is the number of examples in the dataset.
For the graph Laplacian L used by the nonparamet-
ric kernel learning, we apply the standard method for
all experiments, i.e., by calculating the distance ma-
trix by Euclidean distance, then constructing the ad-
jacency matrix with five nearest neighbors, and finally
normalizing the graph to achieve the final Laplacian
matrix.

3.2. Performance Evaluation

To evaluate the quality of the learned kernels, we ex-
tend the proposed kernel learning algorithm to solve

Table 1. The nine datasets used in our experiments. The
first two are the artificial datasets from (Hoi et al., 2007)
and the others are from the UCI machine learning reposi-
tory.

Dataset #Classes #Instances #Features
Chessboard 2 100 2
Double-Spiral 2 100 3
Glass 6 214 9
Heart 2 270 13
Iris 3 150 4
Protein 6 116 20
Sonar 2 208 60
Soybean 4 47 35
Wine 3 178 12

clustering problems with pairwise constraints. In the
experiments, we employ the kernel k-means as the
clustering method, in which the kernel is learned by
the proposed non-parametric kernel learning method.
In addition to the proposed active kernel learning
method, two baseline approaches are implemented to
select informative example pairs for kernel learning.
Totally we have:

• Random: This baseline method randomly sam-
ples example pairs from the pool of unlabeled
pairs.

• AKL-min-|Z|: This baseline method chooses the
pair examples with the least |Zk,l|, where matrix
Z is learned by the non-parametric kernel learning
method. As already discussed in the introduction
section, this approach may not find the most in-
formative example pairs.

• AKL-min-H: This is the proposed AKL algo-
rithm. It selects the example pairs with least Hk,l

that corresponds to the maximal selection proba-
bility Pk,l.

To examine the performance of the proposed AKL al-
gorithm in a full spectrum, we evaluate the clustering
results with respect to different sampling sizes. Specif-
ically, for each experiment, we first randomly sample
Nc pairwise constraints as the initially labeled pair
examples. We then employ the nonparametric kernel
learning method to learn a kernel from the given pair-
wise constraints. This learned kernel is engaged by the
kernel k-means method for data clustering. Next, we
apply the AKL method to sample 20 pair examples
(i.e. 20 pairwise constraints) for labeling in an itera-
tion, and then examine the clustering results based on
the kernel that is learned from the augmented set of
example pairs in each iteration.
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Each experiment is repeated 50 times with multiple
restarts for clustering. Fig. 2 shows the experimen-
tal results on the nine datasets with five active ker-
nel learning iterations. First of all, we observe that
AKL-min-|Z|, i.e., the naive AKL approach that sam-
ples the example pairs with the least |Z|, does not
always outperform the random sampling approach. In
fact, it only outperforms the random sampling ap-
proach on five out of the nine datasets. It performs
noticeably worse than the random approach on dataset
“sonar” and “heart”. Compared with the two baseline
approaches, the proposed AKL algorithm (i.e., AKL-
min-H) achieves considerably better performance for
most datasets. For example, for the “Double-Spiral”
dataset, after 3 active kernel learning iterations, the
proposed algorithm is able to achieve the clustering
accuracy of 99.6%, but the clustering accuracies of the
other two methods are less than 98.8%. These exper-
imental results show the effectiveness of the proposed
algorithm as a promising approach for active kernel
learning.

4. Conclusion

In this paper we proposed a min-max framework for
active kernel learning that specifically addresses the
problem of how to identify the informative pair ex-
amples for efficient kernel learning. A promising al-
gorithm is presented that approximates the original
min-max optimization problem into a convex program-
ming problem. Empirical evaluation based on the per-
formance of data clustering showed that our proposed
algorithm for active kernel learning is effective in iden-
tifying informative example pairs for the learning of
kernel matrix.
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Appendix A: Proof of Theorem 3

Proof. First, for any global optimal solution to (6),
we have

∑

(k,l)/∈T pk,l = 1 though the constraint in (6)
is
∑

(k,l)/∈T pk,l ≥ 1. This is because we can always
scale down pk,l if

∑

(k,l)/∈T pk,l > 1, which guarantees
to reduce the objective function. Second, any extreme
point solution (i.e., pk,l = 1 for one example pair and

zero for other pairs) to (6) is a global optimal solution
to (5). This is because (6) is a relaxed version of (5).
Third, one of the global optimal solutions to (6) is an
extreme point. This is because the first order condi-
tion of optimality requires p∗k,l to be a solution to the
following problem:

min
p

c

2

∑

(k,l) �∈T
pk,l[ε∗k,l]

2 (11)

s. t.
∑

(k,l) �∈T
pk,l ≥ 1, pk,l ≥ 0, ∀(k, l) �∈ T

where ε∗k,l is the optimal solution for εk,l. Since (11)
is a linear optimization problem, it is well known
that one of its global optimal solutions is an extreme
point. Combining the above arguments together, we
prove there exists a global solution to (5), denoted by
((k, l)∗, Z∗, ε∗i,j) that is also a global solution to (6)
with p(k,l)∗ = 1. We extend this conclusion to any
other global solution ((k, l)′, Z ′, ε′i,j) to (5) because
((k, l)′, Z ′, ε′i,j) results in the same value for the prob-
lem in (6) as solution ((k, l)∗, Z∗, ε∗i,j). This completes
our proof.

Appendix B: Proof of Theorem 4

Proof. To show (8) is a SDP problem, we introduce
slack variables for both labeled and unlabeled example
pairs, i.e., ηi,j ≥ ε2

i,j and ηk,l ≥ ε2
k,l/hk,l. We can turn

these two nonlinear constraints into LMI constraints,
i.e.,

(
ηi,j εi,j

εi,j 1

)

� 0,

(
ηk,l εk,l

εk,l hk,l

)

� 0

Using the slack variables, we rewrite (8) as

min
Z�0,h,ε

tr(LZ) +
c

2

∑

(i,j)∈T
ηi,j +

c

2

∑

(k,l) �∈T
ηk,l(12)

s. t. Ti,jZi,j ≥ 1− εi,j , εi,j ≥ 0, ∀(i, j) ∈ T
εk,l − 1 ≥ Zk,l ≥ 1− εk,l, ∀(k, l) �∈ T
∑

(k,l) �∈T
hk,l ≤ m2, hk,l ≥ 1, ∀(k, l) �∈ T

(
ηi,j εi,j

εi,j 1

)

� 0, ∀(i, j) ∈ T
(

ηk,l εk,l

εk,l hk,l

)

� 0, ∀(k, l) �∈ T ,

which is clearly a SDP problem.

To show the second part of theorem, we follow the
inequality that a harmonic mean is upper bounded by
an arithmetic mean, i.e.,

1
m

∑

(k,l)/∈T
pk,l ≥ m

∑

(k,l)/∈T p−1
k,l

=
m

∑

(k,l)/∈T hk,l
≥ 1

m
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Figure 2. The clustering accuracy of different AKL methods for kernel k-means algorithms with nonparametric kernels
learned from pairwise constraints. In each individual diagram, the three curves are respectively the random sampling
method, the active kernel learning method for selecting pair examples with the least |Zk,l| (AKL-min-|Z|), and the active
kernel learning method with minimal H values learned from our proposed algorithm (AKL-min-H). The details of the
datasets are also shown in each diagram. In particular, N , C, D, and Nc respectively denote the dataset size, the number
of classes, the number of features, and the number of initially sampling pairwise constraints. In each of the five iterations,
20 pair examples are sampled for labeling by the compared algorithms.
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Hence, any feasible solution to (8) is also a feasible
solution to (6), and (8) is a restricted version of (8),
which leads to the conclusion that the optimal output
value for (8) provides the upper bound for that of (6).

Appendix C: Proof of Theorem 5

Proof. We first constructe the Lagrangian function for
the above problem

L = tr(L�Z) +
c

2

∑

(i,j)∈T
ηi,j +

c

2

∑

(k,l)/∈T
ηk,l

−
∑

(i,j)∈T
Qi,j(Ti,jZi,j + εi,j − 1)

−
∑

(i,j)∈T
(αi,jηi,j + τi,j/2− 2βi,jεi,j)− tr(MZ)

−
∑

(k,l)/∈T
sk,l(hk,l − 1)− λ

⎛

⎝m2 −
∑

(k,l)/∈T
hk,l

⎞

⎠

−
∑

(k,l)/∈T
(αk,lηk,l + τk,lhk,l/2− 2βk,lεk,l)

−
∑

(k,l)/∈T
Wk,lZk,l + (εk,l − 1)|Wk,l|

In the above, we introduce Lagrangian multiplier
(

αi,j −βi,j

−βi,j τi,j/2

)

for constraints
(

ηi,j εi,j

εi,j 1

)

� 0 and
(

ηk,l εk,l

εk,l hk,l

)

� 0

By setting the derivative to be zero, we have

max
∑

(i,j)∈T

(

Qi,j − τi,j

2

)

+
∑

(k,l)/∈T

(

|Wk,l| − τk,l

2

)

(13)

−(m2 − 1)λ
s. t L � Q⊗ T + W ⊗ T̄

(
c −Qi,j

−Qi,j τi,j

)

� 0, Qi,j ≥ 0, ∀(i, j) ∈ T
0 ≤ τk,l ≤ 2λ, ∀(k, l) /∈ T
(

c −|Wk,l|
−|Wk,l| τk,l

)

� 0, ∀(k, l) /∈ T

The two LMI constraints can be simplified as

τi,j ≥ 2Q2
i,j/c, τk,l ≥ 2Q2

k,l/c

Substituting the above constraints into (13), we have
(9).
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Abstract

In many applications, data appear with a
huge number of instances as well as features.
Linear Support Vector Machines (SVM) is
one of the most popular tools to deal with
such large-scale sparse data. This paper
presents a novel dual coordinate descent
method for linear SVM with L1- and L2-
loss functions. The proposed method is sim-
ple and reaches an ε-accurate solution in
O(log(1/ε)) iterations. Experiments indicate
that our method is much faster than state
of the art solvers such as Pegasos, TRON,
SVMperf , and a recent primal coordinate de-
scent implementation.

1. Introduction

Support vector machines (SVM) (Boser et al., 1992)
are useful for data classification. Given a set of
instance-label pairs (xi, yi), i = 1, . . . , l, xi ∈ Rn, yi ∈
{−1,+1}, SVM requires the solution of the following
unconstrained optimization problem:

min
w

1
2
wTw + C

l∑
i=1

ξ(w;xi, yi), (1)

where ξ(w;xi, yi) is a loss function, and C ≥ 0 is a
penalty parameter. Two common loss functions are:

max(1− yiwTxi, 0) and max(1− yiwTxi, 0)2. (2)

The former is called L1-SVM, while the latter is L2-
SVM. In some applications, an SVM problem appears

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

with a bias term b. One often deal with this term by
appending each instance with an additional dimension:

xTi ← [xTi , 1] wT ← [wT , b]. (3)

Problem (1) is often referred to as the primal form of
SVM. One may instead solve its dual problem:

min
α

f(α) =
1
2
αT Q̄α− eTα

subject to 0 ≤ αi ≤ U,∀i, (4)

where Q̄ = Q+D, D is a diagonal matrix, and Qij =
yiyjx

T
i xj . For L1-SVM, U = C and Dii = 0, ∀i. For

L2-SVM, U =∞ and Dii = 1/(2C), ∀i.

An SVM usually maps training vectors into a high-
dimensional space via a nonlinear function φ(x). Due
to the high dimensionality of the vector variable w,
one solves the dual problem (4) by the kernel trick
(i.e., using a closed form of φ(xi)Tφ(xj)). We call
such a problem as a nonlinear SVM. In some applica-
tions, data appear in a rich dimensional feature space,
the performances are similar with/without nonlinear
mapping. If data are not mapped, we can often train
much larger data sets. We indicate such cases as linear
SVM; these are often encountered in applications such
as document classification. In this paper, we aim at
solving very large linear SVM problems.

Recently, many methods have been proposed for lin-
ear SVM in large-scale scenarios. For L1-SVM, Zhang
(2004), Shalev-Shwartz et al. (2007), Bottou (2007)
propose various stochastic gradient descent methods.
Collins et al. (2008) apply an exponentiated gradi-
ent method. SVMperf (Joachims, 2006) uses a cutting
plane technique. Smola et al. (2008) apply bundle
methods, and view SVMperf as a special case. For
L2-SVM, Keerthi and DeCoste (2005) propose mod-
ified Newton methods. A trust region Newton method
(TRON) (Lin et al., 2008) is proposed for logistic re-
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gression and L2-SVM. These algorithms focus on dif-
ferent aspects of the training speed. Some aim at
quickly obtaining a usable model, but some achieve
fast final convergence of solving the optimization prob-
lem in (1) or (4). Moreover, among these methods,
Joachims (2006), Smola et al. (2008) and Collins et al.
(2008) solve SVM via the dual (4). Others consider the
primal form (1). The decision of using primal or dual
is of course related to the algorithm design.

Very recently, Chang et al. (2007) propose using co-
ordinate descent methods for solving primal L2-SVM.
Experiments show that their approach more quickly
obtains a useful model than some of the above meth-
ods. Coordinate descent, a popular optimization tech-
nique, updates one variable at a time by minimizing a
single-variable sub-problem. If one can efficiently solve
this sub-problem, then it can be a competitive opti-
mization method. Due to the non-differentiability of
the primal L1-SVM, Chang et al’s work is restricted to
L2-SVM. Moreover, as primal L2-SVM is differentiable
but not twice differentiable, certain considerations are
needed in solving the single-variable sub-problem.

While the dual form (4) involves bound constraints
0≤αi≤U , its objective function is twice differentiable
for both L1- and L2-SVM. In this paper, we investi-
gate coordinate descent methods for the dual problem
(4). We prove that an ε-optimal solution is obtained
in O(log(1/ε)) iterations. We propose an implemen-
tation using a random order of sub-problems at each
iteration, which leads to very fast training. Experi-
ments indicate that our method is more efficient than
the primal coordinate descent method. As Chang et al.
(2007) solve the primal, they require the easy access
of a feature’s corresponding data values. However, in
practice one often has an easier access of values per in-
stance. Solving the dual takes this advantage, so our
implementation is simpler than Chang et al. (2007).

Early SVM papers (Mangasarian & Musicant, 1999;
Friess et al., 1998) have discussed coordinate descent
methods for the SVM dual form. However, they do not
focus on large data using the linear kernel. Crammer
and Singer (2003) proposed an online setting for multi-
class SVM without considering large sparse data. Re-
cently, Bordes et al. (2007) applied a coordinate de-
scent method to multi-class SVM, but they focus on
nonlinear kernels. In this paper, we point out that
dual coordinate descent methods make crucial advan-
tage of the linear kernel and outperform other solvers
when the numbers of data and features are both large.

Coordinate descent methods for (4) are related to the
popular decomposition methods for training nonlinear
SVM. In this paper, we show their key differences and

explain why earlier studies on decomposition meth-
ods failed to modify their algorithms in an efficient
way like ours for large-scale linear SVM. We also dis-
cuss the connection to other linear SVM works such as
(Crammer & Singer, 2003; Collins et al., 2008; Shalev-
Shwartz et al., 2007).

This paper is organized as follows. In Section 2, we de-
scribe our proposed algorithm. Implementation issues
are investigated in Section 3. Section 4 discusses the
connection to other methods. In Section 5, we compare
our method with state of the art implementations for
large linear SVM. Results show that the new method
is more efficient. Proofs can be found at http://www.
csie.ntu.edu.tw/~cjlin/papers/cddual.pdf.

2. A Dual Coordinate Descent Method

In this section, we describe our coordinate descent
method for L1- and L2-SVM. The optimization pro-
cess starts from an initial point α0 ∈ Rl and generates
a sequence of vectors {αk}∞k=0. We refer to the process
from αk to αk+1 as an outer iteration. In each outer
iteration we have l inner iterations, so that sequen-
tially α1, α2, . . . , αl are updated. Each outer iteration
thus generates vectors αk,i ∈ Rl, i = 1, . . . , l+ 1, such
that αk,1 = αk, αk,l+1 = αk+1, and

αk,i = [αk+1
1 , . . . , αk+1

i−1 , α
k
i , . . . , α

k
l ]T , ∀i = 2, . . . , l.

For updating αk,i to αk,i+1, we solve the following
one-variable sub-problem:

min
d

f(αk,i + dei) subject to 0 ≤ αki + d ≤ U, (5)

where ei = [0, . . . , 0, 1, 0, . . . , 0]T . The objective func-
tion of (5) is a simple quadratic function of d:

f(αk,i + dei) =
1
2
Q̄iid

2 +∇if(αk,i)d+ constant, (6)

where ∇if is the ith component of the gradient ∇f .
One can easily see that (5) has an optimum at d = 0
(i.e., no need to update αi) if and only if

∇Pi f(αk,i) = 0, (7)

where ∇P f(α) means the projected gradient

∇Pi f(α) =


∇if(α) if 0 < αi < U,

min(0,∇if(α)) if αi = 0,
max(0,∇if(α)) if αi = U.

(8)

If (7) holds, we move to the index i+1 without updat-
ing αk,ii . Otherwise, we must find the optimal solution
of (5). If Q̄ii > 0, easily the solution is:

αk,i+1
i = min

(
max

(
αk,ii −

∇if(αk,i)
Q̄ii

, 0
)
, U

)
. (9)

409



A Dual Coordinate Descent Method for Large-scale Linear SVM

Algorithm 1 A dual coordinate descent method for
Linear SVM
• Given α and the corresponding w =

∑
i yiαixi.

• While α is not optimal
For i = 1, . . . , l

(a) ᾱi ← αi
(b) G = yiw

Txi − 1 +Diiαi
(c)

PG =


min(G, 0) if αi = 0,
max(G, 0) if αi = U,

G if 0 < αi < U

(d) If |PG| 6= 0,
αi ← min(max(αi −G/Q̄ii, 0), U)
w ← w + (αi − ᾱi)yixi

We thus need to calculate Q̄ii and ∇if(αk,i). First,
Q̄ii = xTi xi + Dii can be precomputed and stored in
the memory. Second, to evaluate ∇if(αk,i), we use

∇if(α) = (Q̄α)i − 1 =
∑l

j=1
Q̄ijαj − 1. (10)

Q̄ may be too large to be stored, so one calculates Q̄’s
ith row when doing (10). If n̄ is the average number
of nonzero elements per instance, and O(n̄) is needed
for each kernel evaluation, then calculating the ith row
of the kernel matrix takes O(ln̄). Such operations are
expensive. However, for a linear SVM, we can define

w =
∑l

j=1
yjαjxj , (11)

so (10) becomes

∇if(α) = yiw
Txi − 1 +Diiαi. (12)

To evaluate (12), the main cost is O(n̄) for calculating
wTxi. This is much smaller than O(ln̄). To apply
(12), w must be maintained throughout the coordinate
descent procedure. Calculating w by (11) takes O(ln̄)
operations, which are too expensive. Fortunately, if
ᾱi is the current value and αi is the value after the
updating, we can maintain w by

w ← w + (αi − ᾱi)yixi. (13)

The number of operations is only O(n̄). To have the
first w, one can use α0 = 0 so w = 0. In the end, we
obtain the optimal w of the primal problem (1) as the
primal-dual relationship implies (11).

If Q̄ii = 0, we have Dii = 0, Qii = xTi xi = 0, and
hence xi = 0. This occurs only in L1-SVM without
the bias term by (3). From (12), if xi = 0, then

∇if(αk,i) = −1. As U = C < ∞ for L1-SVM, the
solution of (5) makes the new αk,i+1

i = U . We can
easily include this case in (9) by setting 1/Q̄ii =∞.

Briefly, our algorithm uses (12) to compute ∇if(αk,i),
checks the optimality of the sub-problem (5) by (7),
updates αi by (9), and then maintains w by (13). A
description is in Algorithm 1. The cost per iteration
(i.e., from αk to αk+1) is O(ln̄). The main memory
requirement is on storing x1, . . . ,xl. For the conver-
gence, we prove the following theorem using techniques
in (Luo & Tseng, 1992):

Theorem 1 For L1-SVM and L2-SVM, {αk,i} gen-
erated by Algorithm 1 globally converges to an optimal
solution α∗. The convergence rate is at least linear:
there are 0 < µ < 1 and an iteration k0 such that

f(αk+1)− f(α∗) ≤ µ(f(αk)− f(α∗)),∀k ≥ k0. (14)

The global convergence result is quite remarkable.
Usually for a convex but not strictly convex problem
(e.g., L1-SVM), one can only obtain that any limit
point is optimal. We define an ε-accurate solution α
if f(α) ≤ f(α∗) + ε. By (14), our algorithm obtains
an ε-accurate solution in O(log(1/ε)) iterations.

3. Implementation Issues

3.1. Random Permutation of Sub-problems

In Algorithm 1, the coordinate descent algorithm
solves the one-variable sub-problems in the order of
α1, . . . , αl. Past results such as (Chang et al., 2007)
show that solving sub-problems in an arbitrary order
may give faster convergence. This inspires us to ran-
domly permute the sub-problems at each outer itera-
tion. Formally, at the kth outer iteration, we permute
{1, . . . , l} to {π(1), . . . , π(l)}, and solve sub-problems
in the order of απ(1), απ(2), . . . , απ(l). Similar to Al-
gorithm 1, the algorithm generates a sequence {αk,i}
such that αk,1 = αk, αk,l+1 = αk+1,1 and

αk,it =

{
αk+1
t if π−1

k (t) < i,

αkt if π−1
k (t) ≥ i.

The update from αk,i to αk,i+1 is by

αk,i+1
t =αk,it +arg min

0≤αk,i
t +d≤U

f(αk,i+det) if π−1
k (t) = i.

We prove that Theorem 1 is still valid. Hence, the new
setting obtains an ε-accurate solution inO(log(1/ε)) it-
erations. A simple experiment reveals that this setting
of permuting sub-problems is much faster than Algo-
rithm 1. The improvement is also bigger than that
observed in (Chang et al., 2007) for primal coordinate
descent methods.
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Algorithm 2 Coordinate descent algorithm with ran-
domly selecting one instance at a time
• Given α and the corresponding w =

∑
i yiαixi.

• While α is not optimal
– Randomly choose i ∈ {1, . . . , l}.
– Do steps (a)-(d) of Algorithm 1 to update αi.

3.2. Shrinking

Eq. (4) contains constraints 0 ≤ αi ≤ U . If an
αi is 0 or U for many iterations, it may remain the
same. To speed up decomposition methods for non-
linear SVM (discussed in Section 4.1), the shrinking
technique (Joachims, 1998) reduces the size of the op-
timization problem without considering some bounded
variables. Below we show it is much easier to apply this
technique to linear SVM than the nonlinear case.

If A is the subset after removing some elements and
Ā = {1, . . . , l} \A, then the new problem is

min
αA

1
2
αTAQ̄AAαA + (Q̄AĀαĀ − eA)TαA

subject to 0 ≤ αi ≤ U, i ∈ A, (15)

where Q̄AA, Q̄AĀ are sub-matrices of Q̄, and αĀ is
considered as a constant vector. Solving this smaller
problem consumes less time and memory. Once (15) is
solved, we must check if the vector α is optimal for (4).
This check needs the whole gradient ∇f(α). Since

∇if(α) = Q̄i,AαA + Q̄i,ĀαĀ − 1,

if i ∈ A, and one stores Q̄i,ĀαĀ before solving (15), we
already have ∇if(α). However, for all i /∈ A, we must
calculate the corresponding rows of Q̄. This step, re-
ferred to as the reconstruction of gradients in training
nonlinear SVM, is very time consuming. It may cost
up to O(l2n̄) if each kernel evaluation is O(n̄).

For linear SVM, in solving the smaller problem (15),
we still have the vector

w =
∑

i∈A
yiαixi +

∑
i∈Ā

yiαixi

though only the first part
∑
i∈A yiαixi is updated.

Therefore, using (12), ∇f(α) is easily available. Below
we demonstrate a shrinking implementation so that re-
constructing the whole ∇f(α) is never needed.

Our method is related to what LIBSVM (Chang & Lin,
2001) uses. From the optimality condition of bound-
constrained problems, α is optimal for (4) if and only if
∇P f(α) = 0, where ∇P f(α) is the projected gradient
defined in (8). We then prove the following result:

Theorem 2 Let α∗ be the convergent point of {αk,i}.

1. If α∗i = 0 and ∇if(α∗) > 0, then ∃ki such that
∀k ≥ ki, ∀s, αk,si = 0.

2. If α∗i = U and ∇if(α∗) < 0, then ∃ki such that
∀k ≥ ki, ∀s, αk,si = U .

3. lim
k→∞

max
j
∇Pj f(αk,j)= lim

k→∞
min
j
∇Pj f(αk,j)=0.

During the optimization procedure, ∇P f(αk) 6= 0, so
in general maxj ∇Pj f(αk) > 0 and minj ∇Pj f(αk) < 0.
These two values measure how the current solution vi-
olates the optimality condition. In our iterative proce-
dure, what we have are ∇if(αk,i), i = 1, . . . , l. Hence,
at the (k − 1)st iteration, we obtain

Mk−1 ≡ max
j
∇Pj f(αk−1,j),mk−1 ≡ min

j
∇Pj f(αk−1,j).

Then at each inner step of the kth iteration, before
updating αk,ii to αk,i+1

i , this element is shrunken if
one of the following two conditions holds:

αk,ii = 0 and ∇if(αk,i) > M̄k−1,

αk,ii = U and ∇if(αk,i) < m̄k−1,
(16)

where
M̄k−1 =

{
Mk−1 if Mk−1 > 0,
∞ otherwise,

m̄k−1 =

{
mk−1 if mk−1 < 0
−∞ otherwise.

In (16), M̄k−1 must be strictly positive, so we set it be
∞ if Mk−1 = 0. From Theorem 2, elements satisfying
the “if condition” of properties 1 and 2 meet (16) after
certain iterations, and are then correctly removed for
optimization. To have a more aggressive shrinking,
one may multiply both M̄k−1 and m̄k−1 in (16) by a
threshold smaller than one.

Property 3 of Theorem 2 indicates that with a toler-
ance ε,

Mk −mk < ε (17)
is satisfied after a finite number of iterations. Hence
(17) is a valid stopping condition. We also use it for
smaller problems (15). If at the kth iteration, (17)
for (15) is reached, we enlarge A to {1, . . . , l}, set
M̄k =∞, m̄k = −∞ (so no shrinking at the (k + 1)st
iteration), and continue regular iterations. Thus, we
do shrinking without reconstructing gradients.

3.3. An Online Setting

In some applications, the number of instances is huge,
so going over all α1, . . . , αl causes an expensive outer
iteration. Instead, one can randomly choose an index
ik at a time, and update only αik at the kth outer
iteration. A description is in Algorithm 2. The setting
is related to (Crammer & Singer, 2003; Collins et al.,
2008). See also the discussion in Section 4.2.
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Table 1. A comparison between decomposition methods
(Decomp.) and dual coordinate descent (DCD). For both
methods, we consider that one αi is updated at a time. We
assume Decomp. maintains gradients, but DCD does not.
The average number of nonzeros per instance is n̄.

Nonlinear SVM Linear SVM
Decomp. DCD Decomp. DCD

Update αi O(1) O(ln̄) O(1) O(n̄)
Maintain ∇f(α) O(ln̄) NA O(ln̄) NA

4. Relations with Other Methods

4.1. Decomposition Methods for Nonlinear
SVM

Decomposition methods are one of the most popular
approaches for training nonlinear SVM. As the kernel
matrix is dense and cannot be stored in the computer
memory, decomposition methods solve a sub-problem
of few variables at each iteration. Only a small num-
ber of corresponding kernel columns are needed, so the
memory problem is resolved. If the number of vari-
ables is restricted to one, a decomposition method is
like the online coordinate descent in Section 3.3, but
it differs in the way it selects variables for updating.
It has been shown (Keerthi & DeCoste, 2005) that,
for linear SVM decomposition methods are inefficient.
On the other hand, here we are pointing out that dual
coordinate descent is efficient for linear SVM. There-
fore, it is important to discuss the relationship between
decomposition methods and our method.

In early decomposition methods that were first pro-
posed (Osuna et al., 1997; Platt, 1998), variables min-
imized at an iteration are selected by certain heuristics.
However, subsequent developments (Joachims, 1998;
Chang & Lin, 2001; Keerthi et al., 2001) all use gra-
dient information to conduct the selection. The main
reason is that maintaining the whole gradient does not
introduce extra cost. Here we explain the detail by as-
suming that one variable of α is chosen and updated at
a time1. To set-up and solve the sub-problem (6), one
uses (10) to calculate ∇if(α). If O(n̄) effort is needed
for each kernel evaluation, obtaining the ith row of
the kernel matrix takes O(ln̄) effort. If instead one
maintains the whole gradient, then ∇if(α) is directly
available. After updating αk,ii to αk,i+1

i , we obtain Q̄’s
ith column (same as the ith row due to the symmetry
of Q̄), and calculate the new whole gradient:

∇f(αk,i+1) = ∇f(αk,i) + Q̄:,i(α
k,i+1
i − αk,ii ), (18)

where Q̄:,i is the ith column of Q̄. The cost is O(ln̄)
for Q̄:,i and O(l) for (18). Therefore, maintaining the

1Solvers like LIBSVM update at least two variables due
to a linear constraint in their dual problems. Here (4) has
no such a constraint, so selecting one variable is possible.

whole gradient does not cost more. As using the whole
gradient implies fewer iterations (i.e., faster conver-
gence due to the ability to choose for updating the vari-
able that violates optimality most), one should take
this advantage. However, the situation for linear SVM
is very different. With the different way (12) to calcu-
late ∇if(α), the cost to update one αi is only O(n̄). If
we still maintain the whole gradient, evaluating (12) l
times takes O(ln̄) effort. We gather this comparison of
different situations in Table 1. Clearly, for nonlinear
SVM, one should use decomposition methods by main-
taining the whole gradient. However, for linear SVM,
if l is large, the cost per iteration without maintaining
gradients is much smaller than that with. Hence, the
coordinate descent method can be faster than the de-
composition method by using many cheap iterations.

An earlier attempt to speed up decomposition methods
for linear SVM is (Kao et al., 2004). However, it failed
to derive our method here because it does not give up
maintaining gradients.

4.2. Existing Linear SVM Methods

We discussed in Section 1 and other places the dif-
ference between our method and a primal coordinate
descent method (Chang et al., 2007). Below we de-
scribe the relations with other linear SVM methods.

We mentioned in Section 3.3 that our Algorithm 2 is
related to the online mode in (Collins et al., 2008).
They aim at solving multi-class and structured prob-
lems. At each iteration an instance is used; then a
sub-problem of several variables is solved. They ap-
proximately minimize the sub-problem, but for two-
class case, one can exactly solve it by (9). For the
batch setting, our approach is different from theirs.
The algorithm for multi-class problems in (Crammer &
Singer, 2003) is also similar to our online setting. For
the two-class case, it solves (1) with the loss function
max(−yiwTxi, 0), which is different from (2). They
do not study data with a large number of features.

Next, we discuss the connection to stochastic gradient
descent (Shalev-Shwartz et al., 2007; Bottou, 2007).
The most important step of this method is the follow-
ing update of w:

w ← w − η∇w(yi,xi), (19)

where ∇w(yi,xi) is the sub-gradient of the approxi-
mate objective function:

wTw/2 + C max(1− yiwTxi, 0),

and η is the learning rate (or the step size). While our
method is dual-based, throughout the iterations we
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Table 2. On the right training time for a solver to reduce the primal objective value to within 1% of the optimal value;
see (20). Time is in seconds. The method with the shortest running time is boldfaced. Listed on the left are the statistics
of data sets: l is the number of instances and n is the number of features.

Data set Data statistics Linear L1-SVM Linear L2-SVM
l n # nonzeros DCDL1 Pegasos SVMperf DCDL2 PCD TRON

a9a 32,561 123 451,592 0.2 1.1 6.0 0.4 0.1 0.1
astro-physic 62,369 99,757 4,834,550 0.2 2.8 2.6 0.2 0.5 1.2
real-sim 72,309 20,958 3,709,083 0.2 2.4 2.4 0.1 0.2 0.9
news20 19,996 1,355,191 9,097,916 0.5 10.3 20.0 0.2 2.4 5.2
yahoo-japan 176,203 832,026 23,506,415 1.1 12.7 69.4 1.0 2.9 38.2
rcv1 677,399 47,236 49,556,258 2.6 21.9 72.0 2.7 5.1 18.6
yahoo-korea 460,554 3,052,939 156,436,656 8.3 79.7 656.8 7.1 18.4 286.1

maintain w by (13). Both (13) and (19) use one single
instance xi, but they take different directions yixi and
∇w(yi,xi). The selection of the learning rate η may be
the subtlest thing in stochastic gradient descent, but
for our method this is never a concern. The step size
(αi− ᾱi) in (13) is governed by solving a sub-problem
from the dual.

5. Experiments

In this section, we analyze the performance of our dual
coordinate descent algorithm for L1- and L2-SVM. We
compare our implementation with state of the art lin-
ear SVM solvers. We also investigate how the shrink-
ing technique improves our algorithm.

Table 2 lists the statistics of data sets. Four of them
(a9a, real-sim, news20, rcv1) are at http://www.csie.
ntu.edu.tw/~cjlin/libsvmtools/datasets. The
set astro-physic is available upon request from
Thorsten Joachims. Except a9a, all others are from
document classification. Past results show that lin-
ear SVM performs as well as kernelized ones for such
data. To estimate the testing accuracy, we use a strat-
ified selection to split each set to 4/5 training and 1/5
testing. We briefly describe each set below. Details
can be found in (Joachims, 2006) (astro-physic) and
(Lin et al., 2008) (others). a9a is from the UCI “adult”
data set. real-sim includes Usenet articles. astro-physic
includes documents from Physics Arxiv. news20 is a
collection of news documents. yahoo-japan and yahoo-
korea are obtained from Yahoo!. rcv1 is an archive of
manually categorized newswire stories from Reuters.

We compare six implementations of linear SVM. Three
solve L1-SVM, and three solve L2-SVM.

DCDL1 and DCDL2: the dual coordinate descent
method with sub-problems permuted at each outer it-
eration (see Section 3.1). DCDL1 solves L1-SVM while
DCDL2 solves L2-SVM. We omit the shrinking setting.

Pegasos: the primal estimated sub-gradient solver
(Shalev-Shwartz et al., 2007) for L1-SVM. The source

is at http://ttic.uchicago.edu/~shai/code.
SVMperf (Joachims, 2006): a cutting plane method for
L1-SVM. We use the latest version 2.1. The source is
at http://svmlight.joachims.org/svm_perf.html.
TRON: a trust region Newton method (Lin et al., 2008)
for L2-SVM. We use the software LIBLINEAR version
1.22 with option -s 2 (http://www.csie.ntu.edu.
tw/~cjlin/liblinear).
PCD: a primal coordinate descent method for L2-SVM
(Chang et al., 2007).

Since (Bottou, 2007) is related to Pegasos, we do not
present its results. We do not compare with another
online method Vowpal Wabbit (Langford et al., 2007)
either as it has been made available only very recently.
Though a code for the bundle method (Smola et al.,
2008) is available, we do not include it for comparison
due to its closeness to SVMperf . All sources used for
our comparisons are available at http://csie.ntu.
edu.tw/~cjlin/liblinear/exp.html.

We set the penalty parameter C = 1 for comparison2.
For all data sets, the testing accuracy does not increase
after C ≥ 4. All the above methods are implemented
in C/C++ with double precision. Some implementa-
tions such as (Bottou, 2007) use single precision to
reduce training time, but numerical inaccuracy may
occur. We do not include the bias term by (3).

To compare these solvers, we consider the CPU time
of reducing the relative difference between the primal
objective value and the optimum to within 0.01:

|fP (w)− fP (w∗)|/|fP (w∗)| ≤ 0.01, (20)

where fP is the objective function of (1), and fP (w∗)
is the optimal value. Note that for consistency, we use
primal objective values even for dual solvers. The ref-
erence solutions of L1- and L2-SVM are respectively
obtained by solving DCDL1 and DCDL2 until the du-
ality gaps are less than 10−6. Table 2 lists the re-
sults. Clearly, our dual coordinate descent method

2The equivalent setting for Pegasos is λ = 1/(Cl). For
SVMperf , its penalty parameter is Cperf = 0.01Cl.
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(a) L1-SVM: astro-physic (b) L2-SVM: astro-physic

(c) L1-SVM: news20 (d) L2-SVM: news20

(e) L1-SVM: rcv1 (f) L2-SVM: rcv1

Figure 1. Time versus the relative error (20). DCDL1-S,
DCDL2-S are DCDL1, DCDL2 with shrinking. The dotted
line indicates the relative error 0.01. Time is in seconds.

for both L1- and L2-SVM is significantly faster than
other solvers. To check details, we choose astro-physic,
news20, rcv1, and show the relative error along time
in Figure 1. In Section 3.2, we pointed out that the
shrinking technique is very suitable for DCD. In Fig-
ure 1, we also include them (DCDL1-S and DCDL2-S)
for comparison. Like in Table 2, our solvers are effi-
cient for both L1- and L2-SVM. With shrinking, its
performance is even better.

Another evaluation is to consider how fast a solver ob-
tains a model with reasonable testing accuracy. Using
the optimal solutions from the above experiment, we
generate the reference models for L1- and L2-SVM. We
evaluate the testing accuracy difference between the
current model and the reference model along the train-
ing time. Figure 2 shows the results. Overall, DCDL1
and DCDL2 are more efficient than other solvers. Note
that we omit DCDL1-S and DCDL2-S in Figure 2, as
the performances with/without shrinking are similar.

Among L1-SVM solvers, SVMperf is competitive with
Pegasos for small data. But in the case of a huge num-
ber of instances, Pegasos outperforms SVMperf . How-
ever, Pegasos has slower convergence than DCDL1. As
discussed in Section 4.2, the learning rate of stochas-
tic gradient descent may be the cause, but for DCDL1
we exactly solve sub-problems to obtain the step size

(a) L1-SVM: astro-physic (b) L2-SVM: astro-physic

(c) L1-SVM: news20 (d) L2-SVM: news20

(e) L1-SVM: rcv1 (f) L2-SVM: rcv1

Figure 2. Time versus the difference of testing accuracy be-
tween the current model and the reference model (obtained
using strict stopping conditions). Time is in seconds.

in updating w. Also, Pegasos has a jumpy test set
performance while DCDL1 gives a stable behavior.

In the comparison of L2-SVM solvers, DCDL2 and PCD
are both coordinate descent methods. The former one
is applied to the dual, but the latter one to the pri-
mal. DCDL2 has a closed form solution for each sub-
problem, but PCD has not. The cost per PCD outer
iteration is thus higher than that of DCDL2. There-
fore, while PCD is very competitive (only second to
DCDL1/DCDL2 in Table 2), DCDL2 is even better.
Regarding TRON, as a Newton method, it possesses
fast final convergence. However, since it takes signifi-
cant effort at each iteration, it hardly generates a rea-
sonable model quickly. From the experiment results,
DCDL2 converges as fast as TRON, but also performs
well in early iterations.

Due to the space limitation, we give the following ob-
servations without details. First, Figure 1 indicates
that our coordinate descent method converges faster
for L2-SVM than L1-SVM. As L2-SVM has the diag-
onal matrix D with Dii = 1/(2C), we suspect that
its Q̄ is better conditioned, and hence leads to faster
convergence. Second, all methods have slower conver-
gence when C is large. However, small C’s are usually
enough as the accuracy is stable after a threshold. In
practice, one thus should try from a small C. More-
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over, if n � l and C is too large, then our DCDL2 is
slower than TRON or PCD (see problem a9a in Table
2, where the accuracy does not change after C ≥ 0.25).
If n � l, clearly one should solve the primal, whose
number of variables is just n. Such data are not our fo-
cus. Indeed, with a small number of features, one usu-
ally maps data to a higher space and train a nonlinear
SVM. Third, we have checked the online Algorithm 2.
Its performance is similar to DCDL1 and DCDL2 (i.e.,
batch setting without shrinking). Fourth, we have in-
vestigated real document classification which involves
many two-class problems. Using the proposed method
as the solver is more efficient than using others.

6. Discussion and Conclusions

We can apply the proposed method to solve regular-
ized least square problems, which have the loss func-
tion (1−yiwTxi)2 in (1). The dual is simply (4) with-
out constraints, so the implementation is simpler.

In summary, we present and analyze an efficient dual
coordinate decent method for large linear SVM. It is
very simple to implement, and possesses sound op-
timization properties. Experiments show that our
method is faster than state of the art implementations.
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Abstract
Markov logic networks (MLNs) are an expres-
sive representation for statistical relational learn-
ing that generalizes both first-order logic and
graphical models. Existing methods for learn-
ing the logical structure of an MLN are not dis-
criminative; however, many relational learning
problems involve specific target predicates that
must be inferred from given background infor-
mation. We found that existing MLN methods
perform very poorly on several such ILP bench-
mark problems, and we present improved dis-
criminative methods for learning MLN clauses
and weights that outperform existing MLN and
traditional ILP methods.

1. Introduction
Statistical relational learning (SRL) concerns the induc-
tion of probabilistic knowledge that supports accurate
prediction for multi-relational structured data (Getoor &
Taskar, 2007). Markov Logic Networks (MLNs) are a re-
cently developed SRL model that generalizes both full first-
order logic and Markov networks (Richardson & Domin-
gos, 2006). An MLN is represented as a set of weighted
clauses in first-order logic, and learning an MLN decom-
poses into structure learning, learning the logical clauses,
and parameter learning, setting the weight of each clause.
Existing structure-learning algorithms for MLNs (Kok &
Domingos, 2005; Mihalkova & Mooney, 2007) are non-
discriminative and attempt to learn a set of clauses that is
equally capable of predicting the truth value of all predi-
cates given an arbitrary set of evidence. However, in many
learning problems, there is a specific target predicate that
must be inferred given evidence data about other back-
ground predicates used to describe the input data. Most tra-

Appearing in Proceedings of the 25 th International Conference
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ditional Inductive Logic Programming (ILP) methods fo-
cus on discriminative relational learning (Dzeroski, 2007);
however, they do not address the issue of uncertainty. Dis-
criminative methods have been developed for parameter
learning in MLNs (Singla & Domingos, 2005; Lowd &
Domingos, 2007); however, they do not address structure
learning.

We have found that existing MLN structure learning meth-
ods perform very poorly when tested on several bench-
mark ILP problems on relating the activity of chemical
compounds to their structure (King et al., 1995). This
led us to develop new discriminative structure and param-
eter learning algorithms for MLNs whose performance on
these problems surpasses that of traditional ILP methods.
The overall approach is to use traditional ILP methods to
construct a large number of potentially useful clauses, and
then use discriminative MLN parameter learning methods
to properly weight them, preferring to assign zero weights
to clauses that do not contribute significantly to overall pre-
dictive accuracy, thereby eliminating them. Our structure
learning component utilizes many of the clauses considered
during the search conducted by a specific configuration of
ALEPH (Srinivasan, 2001). Our parameter learning com-
ponent utilizes an exact probabilistic inference algorithm
for MLNs with only non-recursive definite clauses. Our
parameter learner also uses L1-regularization (Lee et al.,
2006) instead of the normal L2 in order to encourage as-
signing zero weights to clauses, thereby simplifying the
theory. We present experimental results that demonstrate
that all three of these enhancements contribute significantly
to improving the performance of our system over existing
MLN and ILP methods.

The remainder of the paper is organized as follows. Section
2 provides some background on MLNs, ALCHEMY (Kok
et al., 2005), and ALEPH. Section 3 presents our new struc-
ture and parameter learning algorithms. Section 4 presents
our experimental evaluation of these methods. Section 5
discusses related work, and section 6 presents our conclu-
sions.
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2. Background
2.1. ILP and Aleph

Traditional ILP systems discriminatively learn logical
Horn-clause rules (logic programs) for inferring a given tar-
get predicate given information provided by a set of back-
ground predicates. These purely logical definitions are in-
duced from Horn-clause background knowledge and a set
of positive and negative tuples of the target predicate.

ALEPH is a popular and effective ILP system primarily
based on PROGOL (Muggleton, 1995). The basic ALEPH
algorithm consists of four steps. First, it selects a positive
example to serve as the “seed” example. Then, it constructs
the most specific clause, the “bottom clause”, that entails
that selected example. The bottom clause is formed by
conjoining all known facts about the seed example. Next,
ALEPH finds generalizations of this bottom clause by per-
forming a general to specific search. These generalized
clauses are scored using a chosen evaluation metric, and
the clause with the best score is added to the final theory.
This process is repeated

until it finds a set of clauses that covers all the positive ex-
amples. ALEPH allows users to customize each of these
steps, and thereby supports a variety of specific algorithms.

2.2. MLNs and Alchemy

An MLN consists of a set of weighted first-order formulae
(also called clauses or rules). It provides a way of softening
first-order logic by making situations in which not all for-
mulae are satisfied less likely but not impossible (Richard-
son & Domingos, 2006). More formally, let X be the set
of all propositions describing a world (i.e. the set of all the
ground atoms1), F be the set of all clauses in the MLN, wi

be the weight associated with clause fi ∈ F, Gfi
be the set

of all possible groundings of clause fi, and Z be the nor-
malizing constant. Then the probability of a particular truth
assignment x to the variables in X is given by the formula
(Richardson & Domingos, 2006):

P (X = x) =
1
Z

exp

 ∑
fi∈F

wi

∑
g∈Gfi

g(x)


=

1
Z

exp

 ∑
fi∈F

wini(x)

 (1)

where g(x) is 1 if g is satisfied and 0 otherwise, and
ni(x) =

∑
g∈Gfi

g(x) is the number of groundings of fi

that are satisfied given the current truth assignments to the
variables in X .

1Ground atoms are predicates without variables, which are
formed by replacing all the variables in predicates by constants.

In order to perform inference for an MLN, L, one needs to
produce its corresponding ground Markov network. As de-
scribed by Richardson and Domingos (2006), this is done
by including a node for every possible grounding of the
predicates in L and an edge between two nodes if they ap-
pear together in a grounding of a clause in L. The nodes
appearing together in a ground clause form a clique. In
general, exact inference in MLNs is intractable, so to cal-
culate the probability that a ground atom or a set of them
has a particular truth assignment given some evidence, one
needs to run an approximate inference algorithm such as
MCMC on this ground Markov network. MC-SAT (Poon
& Domingos, 2006) is currently the best inference method
for MLNs.

As previously mentioned, learning an MLN consists of two
tasks: structure learning and weight learning. The weight
learning component is independent of the structure learn-
ing one. It can learn weights for clauses produced by struc-
ture learning or written by a human expert. There are two
approaches to weight learning: generative and discrimina-
tive. The former is used when there is no specific target
predicate, and the latter when we know which predicate is
to be queried. The current state-of-the-art discriminative
weight learner is preconditioner scaled conjugate gradient
(PSCG) (Lowd & Domingos, 2007). This algorithm uses
samples from MC-SAT to approximate the intractable ex-
pected counts of satisfied clauses w.r.t. the current model.
These counts are needed to compute the gradient and Hes-
sian of the conditional log-likelihood (CLL) of an MLN.
The inverse diagonal Hessian is used as the preconditioner
in this method.

Regarding structure learning, there are currently two al-
gorithms for learning clauses for MLNs. The first algo-
rithm was proposed by Kok and Domingos (2005). This
algorithm uses a top-down approach and can perform ei-
ther beam-search or shortest-first search over the space of
clauses. The candidate clauses are scored using weighted
pseudo log-likelihood (WPLL) (Kok & Domingos, 2005).
In contrast, the second algorithm, BUSL (Mihalkova &
Mooney, 2007) follows a more bottom-up approach. It
first constructs Markov network templates from the data
and then generates candidate clauses from these network
templates. All candidate clauses are also evaluated using
WPLL, and added to the final MLN in a greedy manner.
Both of these algorithms can be constrained to only learn
clauses that contain a given target predicate by setting their
“ne” (non-evidence) parameter to that predicate. However,
they are not designed for discriminative learning since they
try to find a set of clauses which maximizes WPLL, a non-
discriminative measure.

ALCHEMY (Kok et al., 2005) is an open source software
system for MLNs. It has implementations of all the ex-
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isting algorithms for structure learning, generative weight
learning, discriminative weight learning, and inference for
MLNs. It is also a framework for developing new algo-
rithms for MLNs. Our proposed algorithm is implemented
in this framework.

3. Discriminative MLN Algorithms
In this section, we describe our two-step process for dis-
criminatively learning both the structure and parameters of
an MLN. The first step uses ALEPH to learn a large set
of potential clauses. The second step learns the weights
for these clauses, preferring to eliminate useless clauses by
giving them zero weight.

3.1. Discriminative Structure Learning

Ideally, the search for discriminative MLN clauses would
be directly guided by the goal of maximizing their con-
tribution to the predictive accuracy of a complete MLN.
However, this would require evaluating every proposed re-
finement to the existing set of learned clauses by relearn-
ing weights for all of the clauses and performing full prob-
abilistic inference to determine the CLL of each of the
query atoms. This process is computationally expensive
and would have to be repeated for each of the combinatori-
ally large number of potential clause refinements. Evaluat-
ing clauses in standard ILP is quicker since each clause can
be evaluated in isolation based on the accuracy of its logi-
cal inferences about the target predicate. Consequently, we
take the heuristic approach of using a standard ILP method
to generate clauses; however, since the logical accuracy of
a clause is only a rough approximation of its value in a fi-
nal MLN, we generate a large number of candidates whose
accuracy is at least markedly greater than random guessing
and allow subsequent weight learning to determine their
value to an overall MLN.

In order to find a set of potentially good clauses for an
MLN, we use a particular configuration of ALEPH. Specif-
ically, we use the induce cover command and m-estimate
evaluation function. The induce cover command imple-
ments a variant of PROGOL’s MDIE greedy covering al-
gorithm (Muggleton, 1995) which does not remove previ-
ously covered examples when scoring a new clause. The
normal ALEPH induce command scores a clause based
only on its coverage of currently uncovered positive exam-
ples. However, this scoring is not reflective of its use in a
final MLN, and we found that the induce cover approach
produces a larger set of more useful clauses that signif-
icantly increases the accuracy of our final learned MLN.
The m-estimate (Džeroski, 1991) is a Bayesian estimation
of the accuracy of a clause (Cussens, 2007). The m param-
eter defining the underlying prior distribution is automat-
ically set to the maximum likelihood estimate of its best

value. The output of induce cover is a theory, a set of high-
scoring clauses that cover all the positive examples. How-
ever, these clauses were selected based on an m-estimate
of their accuracy under a purely logical interpretation, and
may not be the best ones for an MLN. Therefore, in ad-
dition to these clauses, we also save all generated clauses
whose m-estimate is greater than a predefined threshold (set
to 0.6 in our experiments). This provides a large set of
clauses of potential utility for an MLN. We use the name
ALEPH++ to refer to this version of ALEPH.

3.2. Discriminative Weight Learning

Compared to ALCHEMY’s current discriminative weight
learning method (Lowd & Domingos, 2007), our method
embodies two important modifications: exact inference and
L1-regularization. This section describes these two modi-
fications.

First, given the restricted nature of the clauses constructed
by ALEPH, we can use an efficient exact probabilistic infer-
ence method when learning their weights instead of the ap-
proximate inference algorithm that ALCHEMY uses to han-
dle the general case. Since these clauses are non-recursive
definite clauses in which the target predicate only appears
once, multiple query atoms will not appear together in any
grounding of any clause. For MLNs, this means that the
Markov blanket of a query atom only contains evidence
atoms. Consequently, the query atoms are independent
given the evidence. Let Y be the set of query atoms and
X be the set of evidence atoms, the conditional log likeli-
hood of Y given X in this case is:

logP (Y = y|X = x) = log
n∏

j=1

P (Yj = yj |X = x)

=
n∑

j=1

logP (Yj = yj |X = x)

and,

P (Yj = yj |X = x) =

exp(
∑

i∈FYj
wini(x, y[Yj=yj ]))

exp(
∑

i∈FYj

wini(x, y[Yj=0])) + exp(
∑

i∈FYj

wini(x, y[Yj=1]))

(2)
where FYj is the set of all MLN clauses with at least one

grounding containing the query atom Yj , ni(x, y[Yj=yj ])
is the number groundings of the ith clause that evaluate
to true when all the evidence atoms in X and the query
atom Yj are set to their truth values, and similarly for
ni(x, y[Yj=0]) and ni(x, y[Yj=1]) when Yj is set to 0 and 1
respectively. Then the gradient of the CLL is:
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∂
∂wi

logP (Y = y|X = x) =

n∑
j=1

[ni(x, y[Yj=yj ])− P (Yj = 0|X = x)ni(x, y[Yj=0])

−P (Yj = 1|X = x)ni(x, y[Yj=1])]

Notice that the sum of the last two terms in the gradient is
the expected count of the number of true grounding of the
i’th formula. In general, computing this expected count re-
quires performing approximate inference under the model.
For example, Singla and Domingos (2005) ran MAP in-
ference and used the counts in the MAP state to approxi-
mate the expected counts. However, in our case, using the
standard closed world assumption for evidence predicates,
all the ni’s can be computed without approximate infer-
ence since there is no ground atom whose truth value is un-
known. This is a result of restricting the structure learner to
non-recursive definite clauses. In fact, this result still holds
even when the clauses are not Horn clauses. The only re-
striction is that the target predicate appears only once in
every clause. Note that given a set of weights, computing
the conditional probability P (y|x), the CLL, and its gradi-
ent requires only the ni counts. So, in our case, the con-
ditional probability P (Yj = yj |X = x), the CLL, and its
gradient can be computed exactly. In addition, these counts
only need to be computed once, and ALCHEMY provides
an efficient method for computing them. ALCHEMY also
provides an efficient way to construct the Markov blanket
of a query atom, in particular it ignores all ground formulae
whose truth values are unaffected by the value of the query
atom. In our case, this helps reduce the size of the Markov
blanket of a query atom significantly since many ground
clauses are satisfied by the evidence. As a result, our exact
inference is very fast even when the MLN contains thou-
sands of clauses.

Given a procedure for computing the CLL and its gra-
dient, standard gradient-based optimization methods can
be used to find a set of weights that optimizes the CLL.
However, to prevent overfitting and select only the best
clauses, we follow the approach suggested by Lee et al.
(2006) and introduce a Laplacian prior with zero mean,
P (wi) = (β/2) · exp(−β|wi|), on each weight, and then
optimize the posterior conditional log likehood instead of
the CLL. The final objective function is:

logP (Y |X)P (w) = logP (Y |X) + logP (w)

= logP (Y |X) + log(
∏

i

P (wi))

= CLL+
∑

i

log (
β

2
· exp(−β|wi|))

= CLL− β
∑

i

|wi|+ constant

There is now an additional term β
∑

i |wi| in the objec-
tive function, which penalizes each non-zero weight wi by
β|wi|. So, the larger β is (corresponding to a smaller vari-
ance of the prior distribution), the more we penalize non-
zero weights. Therefore, placing a Laplacian prior with
zero mean on each weight is equivalent to performing an
L1-regularization of the parameters. An important property
of L1-regularization is its tendency to force parameters to
zero by strongly penalizing small terms (Lee et al., 2006).
In order to learn weights that optimize the L1-regularized
CLL, we use the OWL-QN package which implements the
Orthant-Wise Limited-memory Quasi-Newton algorithm
(Andrew & Gao, 2007).

This approach to preventing over-fitting contrasts with the
standard L2-regularization used in previous work on learn-
ing weights for MLNs, which is equivalent to assuming a
Guassian prior with zero mean on each weight and does not
penalize non-zero weights as severely. Since ALEPH++
generates a very large number of potential clauses, L1-
regularization encourages eliminating the less useful ones
by setting their weights to zero. In agreement with prior re-
sults on L1-regularization (Ng, 2004; Dudı́k et al., 2007),
our experiments confirm that it results in simpler and more
accurate learned models compared to L2-regularization.

4. Experimental Evaluation
In this section, we present experiments that were designed
to answer the following questions:

1. How does our method compare to existing methods,
specifically:

(a) Extant discriminative learning for MLNs, viz.
ALCHEMY.

(b) Traditional ILP methods, viz. ALEPH.
(c) “Advanced” ILP methods, viz. kFOIL

(Landwehr et al., 2006), TFOIL (Landwehr
et al., 2007), and RUMBLE (Rückert & Kramer,
2008).

2. How does each of our system’s major novel compo-
nents below contribute to its performance:

(a) Generation of a larger set of potential clauses by
using ALEPH++ instead of ALEPH.

(b) Exact MLN inference for non-recursive definite
clauses instead of general approximate inference.

(c) L1-regularization instead of L2.

4.1. Data

We employed four benchmark data sets previously used
to evaluate a variety of ILP and relational learning algo-
rithms. They concern predicting the relative biochemical
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activity of variants of Tacrine, a drug for Alzheimer’s dis-
ease (King et al., 1995).2 The data contain background
knowledge about the physical and chemical properties of
substituents such as their hydrophobicity and polarity, the
relations between various physical and chemical constants,
and other relevant information. The goal is to compare var-
ious drugs on four important biochemical properties: low
toxicity, high acetyl cholinesterase inhibition, good rever-
sal of scopolamine-induced memory impairment, and inhi-
bition of amine re-uptake. For each property, the positive
and negative examples are pairwise comparisons of drugs.
For example, less toxic(d1, d2) means that drug d1’s tox-
icity is less than d2’s. These ordering relations are transi-
tive but not complete (i.e. for some pairs of drugs it is un-
known which one is better). Therefore, this is a structured
(a.k.a. collective) prediction problem since the output la-
bels should form a partial order. However, previous work
has ignored this structure and just predicted the examples
separately as distinct binary classification problems. In this
work, in addition to treating the problem as independent
classification, we also use an MLN to perform structured
prediction by explicitly imposing the transitive constraint
on the target predicate. Table 1 shows some background
facts and examples from one of the datasets, and Table 2
summarizes information about all four datasets.

Table 2. Summary statistics for Alzheimer’s data sets.
Data set #Examples % Positive # Predicates
Alzheimer acetyl 1326 50% 30
Alzheimer amine 686 50% 30
Alzheimer memory 642 50% 30
Alzheimer toxic 886 50% 30

4.2. Methodology

To answer the above questions, we ran experiments with
the following systems:

ALCHEMY: Uses the structure learning (Kok & Domin-
gos, 2005) in ALCHEMY and the most accurate ex-
isting discriminative weight learning PSCG (Lowd &
Domingos, 2007) with the “ne” (non-evidence) pa-
rameter set to the target predicate.

BUSL: Uses BUSL (Mihalkova & Mooney, 2007) and
PSCG discriminative weight learning with the “ne”
(non-evidence) parameter set to the target predicate.

ALEPH: Uses ALEPH’s standard settings with a few mod-
ifications. The maximum number of literals in an ac-
ceptable clause was set to 5. The minimum number
of positive examples covered by an acceptable clause

2Since the current ALCHEMY does not support real valued
variables, we could not test our approach on the other standard
ILP benchmark data sets in molecular biology.

was set to 2. The upper bound on the number of neg-
ative examples covered by an acceptable clause was
set to 300. The evaluation function was set to auto m,
and the minimum score of an acceptable clause was
set to 0.6. The induce cover command was used to
learn the clauses. We found that this configuration
gave somewhat better overall accuracy compared to
those reported in previous work.

ALEPHPSCG: Uses the discriminative weight learner
PSCG to learn MLN weights for the clauses in the fi-
nal theory returned by ALEPH. Note that PSCG also
uses L2-regularization.

ALEPHExactL2 : Uses the limited-memory BFGS al-
gorithm (Liu & Nocedal, 1989) implemented in
ALCHEMY to learn discriminative MLN weights for
the clauses in the final theory returned by ALEPH. The
objective function is CLL with L2 regularization. The
CLL is computed exactly as described in Section 3.2.

ALEPH++PSCG: Like ALEPHPSCG, but learns weights
for the larger set of clauses returned by ALEPH++.

ALEPH++ExactL2: Like ALEPHExactL2, but learns
weights for the larger set of clauses returned by
ALEPH++.

ALEPH++ExactL1: Our full proposed approach using ex-
act inference and L1-regularization to learn weights
on the clauses returned by ALEPH++.

To force the predictions for the target predicate to prop-
erly constitute a partial ordering, we also tried adding to
the learned MLNs a hard constraint (i.e. a clause with in-
finite weight) stating the transitive property of the target
predicate, and used the MC-SAT algorithm to perform pre-
diction on the test data. This exploits the ability of MLNs
to perform collective classification (structured prediction)
for the complete set of test examples.

In testing, only the background facts are provided as evi-
dence to ensure that all predictions are based on the chem-
ical structure of a drug. For all systems except ALEPH, a
threshold of 0.5 was used to convert predicted probabilities
into boolean values. The predictive accuracy of these algo-
rithms for the target predicate were compared using 10-fold
cross-validation. The significance of the results were eval-
uated using a two-tailed paired t-test test with a 95% confi-
dence level. To compare the quality of the predicted prob-
abilities, we also report the average area under the ROC
curve (AUC-ROC) for all probabilistic systems by using
the AUCCalculator package (Davis & Goadrich, 2006).
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Table 1. Some background evidence and examples from the Alzheimer toxic dataset.
Background evidence Examples

r subst 1(A1,H), r subst 1(B1,H), r subst 1(D1,H), x subst(B1,7,CL), x subst(D1,6,OCH3), polar(CL,POLAR3), less toxic(B1,A1)
polar(OCH3,POLAR2), great polar(POLAR3,POLAR2), size(CL,SIZE1), size(OCH3,SIZE2), alk groups(A1,0), less toxic(A1,D1)

alk groups(B1,0), alk groups(D1,0), great size(SIZE2,SIZE1), flex(CL,FLEX0), flex(OCH3,FLEX1) less toxic(B1,D1)

Table 3. Average predictive accuracies and standard deviations for all systems. Bold numbers indicate the best result on a data set.

Data set ALCHEMY BUSL ALEPH ALEPH ALEPH ALEPH++ ALEPH++ ALEPH++
PSCG ExactL2 PSCG ExactL2 ExactL1

Alzheimer amine 50.1 ± 0.5 51.3 ± 2.5 81.6 ± 5.1 64.6± 4.6 83.5 ± 4.7 72.0± 5.2 86.8± 4.4 89.4 ± 2.7
Alzheimer toxic 54.7 ± 7.4 51.7 ± 5.3 81.7 ± 4.2 74.7± 1.9 87.5 ± 4.8 69.9± 1.2 89.5± 3.0 91.3 ± 2.8
Alzheimer acetyl 48.2 ± 2.9 55.9 ± 8.7 79.6 ± 2.2 78.0± 3.2 79.5 ± 2.0 76.5± 3.7 82.1± 2.1 85.1 ± 2.4
Alzheimer memory 50 ± 0.0 49.8 ± 1.6 76.0 ± 4.9 60.3± 2.1 72.6 ± 3.4 65.6± 5.4 72.9± 5.2 77.6 ± 4.9

Table 6. Average number of clauses learned
Data set ALEPH++ ALEPH++ ALEPH++

ExactL2 ExactL1
Alzheimer amine 7061 5070 3477
Alzheimer toxic 2034 1194 747
Alzheimer acetyl 8662 5427 2433
Alzheimer memory 6524 4250 2471

4.3. Results and Discussion

Tables 3 and 4 show the average accuracy and
AUC-ROC with standard deviation for each system
running on each data set. Our complete system
(ALEPH++ExactL1) achieves significantly higher accu-
racy than both ALCHEMY and BUSL on all 4 data sets and
significantly higher than ALEPH on all except the memory
data set, answering questions 1(a) and 1(b). In turn, ALEPH
has been shown to give higher accuracy on these data sets
than other standard ILP systems like FOIL (Landwehr et al.,
2007). ALCHEMY’s existing non-discriminative structure
learners find only a few (3–5) simple clauses. Two of
them are unit clauses for the target predicate, such as
great ne(a1,a1) and great ne(a1,a2); the others capture the
transitive nature of the target relation. Therefore, even af-
ter they are discriminatively weighted, their predictions are
not significantly better than random guessing.

The ablations that remove components from our over-
all system demonstrate the important contribution of
each component. Regarding question 2(b), the systems
using general approximate inference (ALEPHPSCG
and ALEPH++PSCG) perform much worse than
the corresponding versions that use exact inference
(ALEPHExactL2 and ALEPH++ExactL2). Therefore,
when there is a target predicate that can be accurately
inferred using non-recursive definite clauses, exploiting
this restriction to perform exact inference is a clear win.

Regarding question 2(a), ALEPH++ExactL2 performs sig-
nificantly better than ALEPHExactL2, demonstrating the

advantage of learning a large set of potential clauses and
combining them with learned weights in an overall MLN.
Across the four datasets, ALEPH++ returns an average of
6, 070 clauses compared to only 10 for ALEPH.

Table 5 presents average accuracies with standard devia-
tions for the MLN systems when we include a transitivity
clause for the target predicate. This constraint improves
the accuracies of ALEPHExactL2, ALEPH++ExactL2, and
ALEPH++ExactL1, but sometimes decreases the accuracy
of other systems, such as ALEPHPSCG. This can be ex-
plained as follows. Since most of the predictions of
ALEPH++ExactL1 are correct, enforcing transitivity can
correct some of the wrong ones. However, ALEPHPSCG
produces many wrong predictions, so forcing them to obey
transitivity can produce additional incorrect predictions.
Due to space constraints, we do not report the correspond-
ing AUC-ROC results, which are qualitatively similar.

Regarding question 2(c), using L1-regularization gives sig-
nificantly higher accuracy and AUC-ROC than using stan-
dard L2-regularization. This comparison was only per-
formed for ALEPH++ since this is when the weight-learner
must choose from a large set of candidate clauses by en-
couraging zero weights. Table 6 compares the average
number of clauses learned (after zero-weight clauses are
removed) for L1 and L2 regularization. As expected, the
final learned MLNs are much simpler when using L1-
regularization. On average, L1-regularization reduces the
size of the final set of clauses by 26% compared to L2-
regularization.

Regarding question 1(c), several researchers have tested
“advanced” ILP systems on our datasets. Table 7 compares
our best results to those reported for TFOIL (a combina-
tion of FOIL and tree augmented naive Bayes), kFOIL (a
kernelized version of FOIL), and RUMBLE (a max-margin
approach to learning a weighted rule set). Our results are
competitive with these recent systems. Additionally, unlike
MLNs, these methods do not create “declarative” theories
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Table 4. Average AUC-ROC and standard deviations for all systems. Bold numbers indicate the best result on a data set.
Data set ALCHEMY BUSL ALEPH ALEPH ALEPH++ ALEPH++ ALEPH++

PSCG ExactL2 PSCG ExactL2 ExactL1
Alzheimer amine .483 ± .115 .641 ± .110 .846 ± .041 .904 ± .027 .777 ± .052 .935 ± .032 .954 ± .019
Alzheimer toxic .622 ± .079 .511 ± .079 .904 ± .034 .930 ± .035 .874 ± .041 .937 ± .029 .939 ± .035
Alzheimer acetyl .473 ± .037 .588 ± .108 .850 ± .018 .850 ± .020 .810 ± .040 .899 ± .015 .916 ± .013
Alzheimer memory .452± .088 .426 ± .065 .744 ± .040 .768 ± .032 .737 ± .059 .813 ± .059 .844 ± .052

Table 5. Average predictive accuracies and standard deviations for MLN systems with transitive clause added.
Data set ALCHEMY BUSL ALEPH ALEPH ALEPH++ ALEPH++ ALEPH++

PSCG ExactL2 PSCG ExactL2 ExactL1
Alzheimer amine 50.0 ± 0.0 52.2 ± 5.3 61.4 ± 3.6 87.0 ± 3.3 72.9± 3.5 91.7± 3.5 90.5 ± 3.6
Alzheimer toxic 50.0 ± 0.0 50.1 ± 0.8 73.3 ± 1.8 88.8 ± 4.8 68.4± 1.5 91.4± 3.6 91.9 ± 4.1
Alzheimer acetyl 53.0 ± 6.2 54.1 ± 4.9 80.4 ± 2.7 84.1 ± 3.1 83.3± 2.5 88.7± 2.1 87.6 ± 2.7
Alzheimer memory 50.0 ± 0.0 50.1 ± 0.5 58.9 ± 2.3 76.5 ± 3.5 70.1± 5.2 81.3± 4.8 81.3 ± 4.1

that have a well-defined possible worlds semantics.

5. Related Work
Using an off-the-shelf ILP system to learn clauses for
MLNs is not a new idea. Richardson and Domingos (2006)
used CLAUDIEN, an non-descriminative ILP system that
can learn arbitrary first-order clauses, to learn MLN struc-
ture and to refine the clauses from a knowledge base. Kok
and Domingos (2005) reported experimental results com-
paring their MLN structure learner to learning clauses us-
ing CLAUDIEN, FOIL, and ALEPH. However, since this
previous work used the relatively small set of clauses pro-
duced by these unaltered ILP systems, the performance was
not very good. ILP systems have also been used to learn
structures for other SRL models. The SAYU system (Davis
et al., 2005) used ALEPH to propose candidate features
for a Bayesian network classifier. Muggleton(2000) used
PROGOL, another popular ILP system, to learn clauses for
Stochastic Logic Programs (SLPs).

When restricted to learning non-recursive clauses for clas-
sification, our approach is equivalent to using ALEPH to
construct features for use by L1-regularized logistic re-
gression. Under this view, our approach is closely related
to MACCENT (Dehaspe, 1997), which uses a greedy ap-
proach to induce clausal constraints that are used as fea-
tures for maximum-entropy classification. One difference
between our approach and MACCENT is that we use a two-
step process instead of greedily adding one feature at a
time. In addition, our clauses are induced in a bottom-
up manner while MACCENT uses top-down search; and
our weight learner employs L1-regularization which makes
it less prone to overfitting. Unfortunately, we could not
compare experimentally to MACCENT since “only an im-
plementation of a propositional version of MACCENT is
available, which only handles data in attribute-value (vec-
tor) format” (Landwehr et al., 2007). Additionally, MLNs
are a more expressive formalism that also allows for struc-

tured prediction, as demonstrated by our results that in-
clude a transitivity constraint on the target relation.

6. Conclusions
We have found that existing methods for learning Markov
Logic Networks perform very poorly when tested on sev-
eral benchmark ILP problems in drug design. We have pre-
sented a new approach to constructing MLNs that discrim-
inatively learns both their structure and parameters to opti-
mize predictive accuracy for a stated target predicate when
given evidence specified with a defined set of background
predicates. It uses a variant of an existing ILP system
(ALEPH) to construct a large number of potential clauses
and then effectively learns their parameters by altering ex-
isting discriminative MLN weight-learning methods to uti-
lize exact inference and L1 regularization. Experimental
results show that the resulting system outperforms existing
MLN and ILP methods and gives state-of-the-art results for
the Alzheimer’s-drug benchmarks.
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Table 7. Average predictive accuracies and standard deviations of our best results and other “advanced” ILP systems.
Data set Our best results TFOIL kFOIL RUMBLE
Alzheimer amine 91.7± 3.5 87.5 ± 4.4 88.8 ± 5.0 91.1
Alzheimer toxic 91.9 ± 4.1 92.1 ± 2.6 89.3 ± 3.5 91.2
Alzheimer acetyl 88.7± 2.1 82.8 ± 3.8 87.8 ± 4.2 88.4
Alzheimer memory 81.3 ± 4.1 80.4 ± 5.3 80.2 ± 4.0 83.2
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Abstract

Causal analysis of continuous-valued vari-
ables typically uses either autoregressive
models or linear Gaussian Bayesian networks
with instantaneous effects. Estimation of
Gaussian Bayesian networks poses serious
identifiability problems, which is why it was
recently proposed to use non-Gaussian mod-
els. Here, we show how to combine the non-
Gaussian instantaneous model with autore-
gressive models. We show that such a non-
Gaussian model is identifiable without prior
knowledge of network structure, and we pro-
pose an estimation method shown to be con-
sistent. This approach also points out how
neglecting instantaneous effects can lead to
completely wrong estimates of the autore-
gressive coefficients.

1. Introduction

Analysis of causal influences or effects has become
an important topic in machine learning (Pearl, 2000;
Spirtes et al., 1993), and has numerous applications
in, for example, neuroinformatics (Roebroeck et al.,
2005; Kim et al., 2007) and bioinformatics (Opgen-
Rhein & Strimmer, 2007). For continuous-valued vari-
ables, such an analysis can basically be performed in
two different ways. First, if the time-resolution of the
measurements is higher than the time-scale of causal
influences, one can estimate a classic autoregressive
model with time-lagged variables and interpret the au-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

toregressive coefficients as causal effects. Second, if the
measurements have a lower time resolution than the
causal influences, or if the data has no temporal struc-
ture at all, one can use a model in which the causal
influences are instantaneous, leading to Bayesian net-
works or structural equation models (Bollen, 1989).

While estimation of autoregressive methods can be
solved by classic regression methods, the case of in-
stantaneous effects is much more difficult. Most meth-
ods suffer from lack of identifiability,1 because covari-
ance information alone is not sufficient to uniquely
characterize the model parameters. Prior knowledge of
the structure (fixing some of the connections to zero) of
the Bayesian network is then necessary for most prac-
tical applications. However, a method was recently
proposed which uses the non-Gaussian structure of the
data to overcome the identifiability problem (Shimizu
et al., 2006): If the disturbance variables (external in-
fluences) are non-Gaussian, no prior knowledge on the
network structure (other than the ubiquitous assump-
tion of a directed acyclic graph (DAG)) is needed to
estimate the model.

Here, we consider the general case where causal influ-
ences can occur either instantaneously or with consid-
erable time lags. Such a model is called the structural
vector autoregressive (SVAR) model in econometric
theory, in which numerous attempts have been made
for its estimation, see e.g. (Swanson & Granger, 1997;
Demiralp & Hoover, 2003; Moneta & Spirtes, 2006).
We propose to use non-Gaussianity to estimate the
model. We show that this variant of the model is iden-

1Identifiability is here used in the classic statistical
sense: a model is identifiable if no two different values of
the parameter vector give the same distribution for the
observed data.
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tifiable without any other restrictions than acyclicity.
To our knowledge, no model proposed for this problem
has been shown to be fully identifiable without prior
knowledge of network structure. We further propose a
computational method for estimating the model based
on the theory of independent component analysis or
ICA (Hyvärinen et al., 2001).

The proposed non-Gaussian model not only allows es-
timation of both instantaneous and lagged effects; it
also shows that taking instantaneous influences into
account can change the values of the time-lagged coef-
ficients quite drastically. Thus, we see that neglecting
instantaneous influences can lead to misleading inter-
pretations of causal effects. The framework further
leads to a generalization of the well-known Granger
causality measure.

The paper is structured as follows. We first define the
model and discuss its relation to other models in Sec-
tion 2. In Section 3 we propose an estimation method,
show its consistency, and discuss an intuitive interpre-
tation of the method. Section 4 contains some theoret-
ical examples and a theorem on how including instan-
taneous effects in the model changes the resulting in-
terpretations. The resulting generalization of Granger
causality is discussed in Section 5. The validity of the
estimation method is demonstrated by simulations on
artificial data in Section 6, and experiments on finan-
cial and neuroscientific data in Section 7. Section 8
concludes the paper.

2. Model Combining Lagged and

Instantaneous Effects

2.1. Definition and Assumptions

Let us denote the observed time series by xi(t), i =
1, . . . , n, t = 1, . . . , T where i is the index of the vari-
ables (time series) and t is the time index. All the vari-
ables are collected into a single vector x(t). Denote by
k the number of time-delays used, i.e. the order of the
autoregressive model. Denote by Bτ the n× n matrix
of the causal effects between the variables xi with time
lag τ, τ = 0 . . . k .

The causal dynamics in our model are a combination
of autoregressive and structural-equation models. The
model is defined as

x(t) =

k∑

τ=0

Bτx(t − τ) + e(t) (1)

where the ei(t) are random processes modelling the
external influences or “disturbances”. We make the
following assumptions on the external influences ei(t).

First, they are mutually independent, and temporally
uncorrelated, which are typical assumptions in autore-
gressive models. Second, they are assumed to be non-
Gaussian, which is an important assumption which
distinguishes our model from classic models, whether
autoregressive models, structural-equation models, or
Bayesian networks.

Further, we assume that the matrix modelling instan-
taneous effects, B0, corresponds to an acyclic graph,
as is typical in causal analysis, but this may not be
strictly necessary as will be discussed below. The
acyclicity is equivalent to the existence of a permu-
tation matrix P, which corresponds to an ordering of
the variables xi, such that the matrix PB0P

T is lower-
triangular (i.e. entries above the diagonal are zero).
Acyclicity also implies that the entries on the diago-
nal are zero, even before such a permutation.

2.2. Relation to Other Models

This model is a generalization of the linear non-
Gaussian acyclic model (LiNGAM) proposed in
(Shimizu et al., 2006). If the order of the autore-
gressive part is zero, i.e. k = 0, the model is noth-
ing else than the LiNGAM model, modelling instanta-
neous effects only. As shown in (Shimizu et al., 2006),
the assumption of non-Gaussianity of the ei enables
estimation of the model. This is because the non-
Gaussian structure of the data provides information
not contained in the covariance matrix which is the
only source of information in most methods. In this
sense the model is similar to independent component
analysis, which solves the unidentifiability of factor an-
alytic models using the assumption of non-Gaussianity
of the factors (Comon, 1994; Hyvärinen et al., 2001).
In fact, the estimation method in (Shimizu et al., 2006)
uses an ICA algorithm as an essential part.

On the other hand, if the matrix B0 has all zero en-
tries, the model in Equation (1) is a classic vector
autoregressive model in which future observations are
linearly predicted from preceding ones. If we knew in
advance that B0 is zero, the model could thus be es-
timated by classic regression techniques since we do
not have the same variables on the left and right-hand
sides of Equation (1).

We emphasize that our model is different from classic
autoregressive models two important ways: First, the
external influences ei(t) are non-Gaussian. Second, the
lag variable τ takes the value 0 as well, which brings
instantaneous effects into the model in the form of the
matrix B0. A coefficient B0(i, j) models the instanta-
neous effect of xj(t) on xi(t) as in a linear Bayesian
network, or a structural equation model.
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2.3. Causality vs. Prediction

An autoregressive model can serve two different goals:
prediction and analysis of causality. Our goal here is
the latter: We estimate the parameter matrices Bτ in
order to interpret them as causal effects between the
variables. This goal is distinct from simply predicting
future outcomes when passively observing the time se-
ries, as has been extensively discussed in the literature
on causality (Pearl, 2000; Spirtes et al., 1993). Thus,
we emphasize that our model is not intended to reduce
prediction errors if we want to predict xi(t) using (pas-
sively) observed values of the past x(t−1),x(t−2), . . .;
for such prediction, an ordinary autoregressive model
is likely to be just as good.

Our model is intended to be superior in causal mod-
elling. Causality has an obvious intuitive interpreta-
tion, which is typically formalized as the ability to pre-
dict the effect of possible new interventions on the sys-
tem (Pearl, 2000). Thus, our model should be better
in predicting effects of interventions, which is different
from conventional time series prediction.

3. Estimation of the Model

3.1. Combining Least-Squares Estimation and

LiNGAM

We propose the following method for estimating our
model defined in Section 2.1. The method combines
classic least-squares estimation of an autoregressive
(AR) model with LiNGAM estimation:

1. Estimate a classic autoregressive model for the
data

x(t) =

k∑

τ=1

Mτx(t − τ) + n(t) (2)

using any conventional implementation of a least-
squares method. Note that here τ > 0, so it is re-
ally a classic AR model. Denote the least-squares
estimates of the autoregressive matrices by M̂τ .

2. Compute the residuals, i.e. estimates of innova-
tions n(t)

n̂(t) = x(t) −
k∑

τ=1

M̂τx(t − τ) (3)

3. Perform the LiNGAM analysis (Shimizu et al.,
2006) on the residuals. This gives the estimate of
the matrix B0 as the solution of the instantaneous
causal model

n̂(t) = B0n̂(t) + ẽ(t) (4)

4. Finally, compute the estimates of the causal effect
matrices Bτ for τ > 0 as

B̂τ = (I − B̂0)M̂τ for τ > 0 (5)

This estimation method is consistent,2 as will be
shown in Section 3.3. First, however, we show the
derivation of Equation (5) and discuss its deep mean-
ing.

3.2. Why Autoregressive Matrices Change due

to Instantaneous Influences

Equation (5) shows a remarkable fact already men-
tioned in the Introduction: Consistent estimates of the
Bτ are not obtained by a simple AR model fit even
for τ > 0. Taking instantaneous effects into account
changes the estimation procedure for all the autore-
gressive matrices, if we want consistent estimators as
we usually do. Of course, this is only the case if there
are instantaneous effects, i.e. B0 6= 0; otherwise, the
estimates are not changed.

Why do we have (5)? This is because from (1) we have

(I − B0)x(t) =
k∑

τ=1

Bτx(t − τ) + e(t) (6)

and thus

x(t) =

k∑

τ=1

(I−B0)
−1Bτx(t− τ)+ (I−B0)

−1e(t) (7)

Comparing this with (2), we can equate the autore-
gressive matrices, which gives (I−B0)

−1Bτ = Mτ for
τ ≥ 1, and thus (5) is justified.

While this phenomenon is, in principle, well-known
in econometric literature (Swanson & Granger, 1997;
Demiralp & Hoover, 2003; Moneta & Spirtes, 2006),
Equation (5) is seldom applied because estimation
methods for B0 have not been well developed. To
our knowledge, no estimation method for B0 has been
proposed which is consistent without strong prior as-
sumptions on B0.

3.3. Consistency and Identifiability

The consistency of our method relies on two facts.
First, in the estimation of an AR model as in (2), it
is not necessary that the innovation vector n(t) has
independent or even uncorrelated elements (for fixed

2Consistency means classic statistical consistency, i.e.
the estimator converges in probability to the right param-
eter values when the data follows the model and sample
size grows infinite.
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t); least-squares estimation will still be consistent, as
is well known. Thus, least-squares estimation of (2),
combined with (5), gives consistent estimators of Bτ

for τ ≥ 1, provided we have a consistent estimator
of B0. Second, comparison of (7) with (2) shows
that the residuals n̂(t) are, asymptotically, of the form
(I − B0)

−1e(t). This means

n̂(t) = (I − B0)
−1e(t) ⇔ (I − B0)n̂(t) = e(t)

⇔ n̂(t) = B0n̂(t) + e(t) (8)

which is the LiNGAM model for n̂(t). This shows
that B0 is obtained as the LiNGAM analysis of the
residuals, and the consistency of our estimator of B0

follows from the consistency of LiNGAM estimation
(Shimizu et al., 2006). Thus, our method is consistent
for all the Bτ . This obviously proves, by construction,
the identifiability of the model as well.

We have here assumed that B0 is acyclic, as is typical
in causal analysis. However, this assumption is only
made because we do not know very well how to esti-
mate a linear non-Gaussian Bayesian network in the
cyclic case. Future work may produce methods which
estimate cyclic models, and then we do not need the
assumption of acyclicity in our combined model either.
We could just use such a new method in Step 3 of the
method instead of LiNGAM, and nothing else would
be changed. Recent work in that direction is in (Lac-
erda et al., 2008); see also (Richardson & Spirtes, 1999)
for older methods on Gaussian data.

3.4. Interpretation as ICA of Residuals

Another viewpoint on our model is analysis of the cor-
relations of the innovations after estimating a classic
AR model. Suppose we just estimate an AR model as
in (2), and interpret the coefficients as causal effects.
Such an interpretation more or less presupposes that
the innovations ni are independent of each other, be-
cause otherwise there is some structure in the model
which has not been modelled by the AR model. If the
innovations are not independent, the causal interpre-
tation may not be justified. Thus, it seems necessary
to further analyze the dependencies in the innovations
in cases where they are strongly dependent.

Analysis of the dependency structure in the residu-
als (which are, by definition, estimates of innovations)
is precisely what leads to the present model. As a
first approach, one could consider application of some-
thing like principal component analysis or independent
component analysis on the residuals. The problem
with such an approach is that the interpretation of
the obtained results in the framework of causal anal-
ysis would be quite difficult. Our solution is to fit

a causal model like LiNGAM to the residuals, which
leads to a straightforward causal interpretation of the
analysis of residuals which is logically consistent with
the AR model.

4. Interaction of Instantaneous and

Lagged Effects

Here we present some theoretical examples of how the
instantaneous and lagged effects interact based on the
formula in (5).

An instantaneous effect may seem to be lagged

Consider first the case where the instantaneous and
lagged matrices are as follows:

B0 =

(
0 1
0 0

)

, B1 =

(
0.9 0
0 0.9

)

(9)

That is, there is an instantaneous effect x2 → x1, and
no lagged effects (other than the purely autoregres-
sive xi(t − 1) → xi(t)). Now, if an AR(1) model is
estimated for data coming from this model, without
taking the instantaneous effects into account, we get
the autoregressive matrix

M1 = (I − B0)
−1B1 =

(
0.9 0.9
0 0.9

)

(10)

Thus, the effect x2 → x1 seems to be lagged although
it is, actually, instantaneous.

Spurious effects appear Consider three variables
with the instantaneous effects x1 → x2 and x2 → x3,
and no lagged effects other than xi(t − 1) → xi(t), as
given by

B0 =





0 0 0
1 0 0
0 1 0



 , B1 =





0.9 0 0
0 0.9 0
0 0 0.9



 (11)

If we estimate an AR(1) model for the data coming
from this model, we obtain

M1 = (I − B0)
−1B1 =





0.9 0 0
0.9 0.9 0
0.9 0.9 0.9



 (12)

This means that the estimation of the simple autore-
gressive model leads to the inference of a direct lagged
effect x1 → x3, although no such direct effect exists in
the model generating the data, for any time lag.

Causal ordering is not changed A more reassur-
ing result is the following: if the data follows the same
causal ordering for all time lags, that ordering is not
contradicted by the neglect of instantaneous effect. A
rigorous definition of this property is the following.
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Theorem 1 Assume that there is an ordering
i(j), j = 1 . . . n of the variables such that no effect goes
backward,3 i.e.

Bτ (i(j−δ), i(j)) = 0 for δ > 0, τ ≥ 0, 1 ≤ j ≤ n (13)

Then, the same property applies to the Mτ , τ ≥ 1 as
well. Conversely, if there is an ordering such that (13)
applies to Mτ , τ ≥ 1 and B0, then it applies to Bτ , τ ≥
1 as well.

The proof of the theorem is based on the fact that
when the variables are ordered in this way (as-
suming such an order exists), all the matrices Bτ

are lower-triangular. The same applies to I − B0.
Now, the product of two lower-triangular matrices is
lower-triangular; in particular the Mτ are also lower-
triangular according to (5), which proves the first part
of the theorem. The converse part follows from solv-
ing for Bτ in (5) and the fact that the inverse of a
lower-triangular matrix is lower-triangular.

What this theorem means is that if the variables really
follow a single “causal ordering” for all time lags, that
ordering is preserved even if instantaneous effects are
neglected and a classic AR model is estimated for the
data. Thus, there is some limit to how (5) can change
the causal interpretation of the results.

5. Towards a Generalization of Granger

Causality

The classic interpretation of causality in instantaneous
Bayesian network models would be that xi causes xj

if the (j, i)-th coefficient in B0 is non-zero. In the
time series context, this is related to Granger causal-
ity (Granger, 1969), which formalizes causality as the
ability to reduce prediction error. A simple opera-
tional definition of Granger causality can be based on
the autoregressive coefficients Mτ : If at least one of
the coefficients from xi(t − τ), τ ≥ 1 to xj(t) is (sig-
nificantly) non-zero, then xi Granger-causes xj . This
is because then the variable xi reduces the prediction
error in xj in the mean-square sense if it is included
in the set of predictors, which is the very definition of
Granger causality.

In light of the results in this paper, we propose a
definition which combines the two aspects: A vari-
able xi causes xj if at least one of the coefficients
Bτ (j, i), giving the effect from xi(t − τ) to xj(t), is
(significantly) non-zero for τ ≥ 0. The condition for
τ is different from Granger causality since the value

3In the purely instantaneous case, existence of such an
ordering is equivalent to acyclicity of the effects as noted
in Section 2.1.

τ = 0, corresponding to instantaneous effects, is in-
cluded. Moreover, since estimation of the instanta-
neous effects changes the estimates of the lagged ones,
the lagged effects used in our definition are different
from those usually used with Granger causality.

A more general formulation of this definition, which is
in line with the general formulation of Granger causal-
ity, is that the error in the “prediction” of xj(t) is
reduced when xi(t − 1), xi(t − 2), . . . and xi(t) are in-
cluded in the set of predictors. Here, we use a rather
unconventional definition of the word “prediction” be-
cause we include instantaneous effects.

6. Simulations

To verify the validity of our method, we first performed
experiments with artificial data. In the experiments,
we created data in the following manner using the
LiNGAM code package4:

1. We randomly constructed a strictly lower-
triangular matrix (i.e. zero entries above and on
the diagonal), B0, for the instantaneous causal
model so that the standard deviations of the in-
novations ni owing to parent innovations will be
in the interval [0.5, 1.5]. The number of observed
time-series was n = 10. Both fully connected
(no zeros in the strictly lower triangular part)
and sparse networks (many zeros) were created.
We also randomly selected the standard devia-
tions of the external influences ei from the interval
[0.5, 1.5].

2. Next, we generated data with various lengths of
the time series (300, 500 and 1,000) by indepen-
dently drawing the external influences ei from var-
ious non-Gaussian distributions with zero mean
and unit variance5. The values of the innovations
ni were generated according to the assumed in-
stantaneous recursive process. This is straightfor-
ward because B0 is lower-triangular, so we just
generate the ni in the order n1, n2 . . . as is typical
in acyclic networks, e.g. (Shimizu et al., 2006).

3. We randomly permuted the order of the innova-
tions ni to hide the causal order with which the
data was generated. We also permuted B0 as well

4http://www.cs.helsinki.fi/group/neuroinf/lingam/
5We first generated a gaussian variable z with zero mean

and unit variance and subsequently transformed it to a
non-Gaussian variable by ei = sign(z)|z|q. The nonlinear
exponent q was selected to lie in [0.5, 0.8] or [1.2, 2.0]. The
former gave a sub-gaussian variable, and the latter a super-
gaussian variable. Finally, the transformed variable was
standardized to have zero mean and unit variance.
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Figure 1. Simulations on artificial data. Left column: Scat-
terplots of the estimated elements of B0 versus the gener-
ating values. Center column: Scatterplots of the estimated
elements of B1 versus the generating values. Right column:
Scatterplots of the estimated elements of M1 versus those
of B1.The number of observed signals was 10. Five data
sets were generated for each scatterplot.

as the variances of the external influences ei to
match the new order.

4. We randomly generated a first-order autoregres-
sive matrix M1 so that the spectral norm of the
matrix was less than 0.99 to ensure the stability
of the autoregressive process.

5. The values of the observed signals xi(t) were gen-
erated according to the assumed first-order au-
toregressive process.

6. Finally, we fed the data to our estimation method.
Here we told the method that the generating au-
toregressive order was 1.

Figure 1 gives the scatterplots of the elements of the
estimated parameters versus the generating ones. The
left column is for the scatterplots of the estimated
causal effects in B0 versus the generating values. The
center column is for the scatterplots of the estimated
causal effects in B1 versus the generating values. The
right column is for the scatterplots of the estimated
autoregressive coefficients in M1 versus the generat-
ing values of the causal effects in B1 (here, the esti-
mation was invalid because instantaneous effects were
ignored).

For the scatterplots in the left and center columns,
the estimation worked well when the sample size grew,
as evidenced by the grouping of the data points onto
the main diagonal, although for the small sample size
300 the estimation was often inaccurate. On the other
hand, the scatterplots in the right column confirmed
that the causal effects were not correctly estimated by
the ordinary autoregressive coefficients when instanta-
neous influences existed since the data points were not
very close to the main diagonal.

7. Experiments on Real Data

7.1. Financial Data

As a first illustration of the applicability of the method
on real data, we analyzed a dataset from a time se-
ries repository on the Internet.6 The data consisted
of two observed signals, x1: weekly closing price of
Toyota stock and x2: weekly closing rate of exchange
of Japanese Yen to U.S. Dollar in 2007. The number
of time points was 50. The maximum, minimum and
mean of x1 were 8,230, 5,870 and 7,102 (JPY). Those
of x2 were 123.86, 108.51 and 117.72 (JPY).

We analyzed the data using our method with autore-
gressive order of 1. The estimated first-order autore-
gressive matrix M1 and residual correlation matrix
were as follows:

M1 =

(
0.95 −4.22

0.0008 0.78

)

(14)

corr(n) =

(
1.00 0.66
0.66 1.00

)

The relatively strong correlation between the residu-
als implied that there would be some dependency that
had not been modeled by the AR model. Thus, we fit-
ted the instantaneous causal model to the residuals, as
proposed above. The estimated instantaneous causal
effect matrix B0 and resulting lagged causal effect ma-
trix B1 were as follows:

B0 =

(
0 56.04

0.0027 0

)

(15)

B1 =

(
0.91 −48.01

−0.0018 0.79

)

(16)

The matrix B0 is very close to be upper-triangular,
which implied that the model was really acyclic (be-
cause switching the order of the variables would make
B0 lower-triangular). Further, the instantaneous ef-
fect x2→x1 in B0 was one order of magnitude larger
than the lagged effect in M1 and thus the lagged co-

6Yahoo! Japan Finance: http://quote.yahoo.co.jp/
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efficients in M1 are quite different from those in B1,
due to the formula in (5).

Figure 2 shows a graphical representation of the es-
timated model for financial data. First, it implies
that a higher value of the yen (x2) had a negative
lagged effect (-48.01) on the price of Toyota stock (x1).
This would be reasonable since Toyota sells many cars
abroad, and a higher value of the yen would increase
the cost price and decrease the earning. Interestingly,
it was also implied that a higher value of the yen had
a positive instantaneous effect (56.04) on the price of
Toyota stock. In other words, for weeks where values
of the yen one week before were the (approximately)
same, if the yen got more expensive (due to some rea-
son other than the value of the yen one week before,
perhaps a U.S. recession, for example) then the price
of Toyota stock would get more expensive. It would be
interesting to further study the economic mechanism
with more extensive data.

Figure 2. A graphical representation of the model esti-
mated in Section 7.1. The x1 and x2 denote weekly closing
price of Toyota stock in 2007 and weekly closing rate of
exchange of Japanese Yen to U.S. Dollar in 2007, respec-
tively. The arrow from x1(t−1) to x2(t) was omitted since
the estimated strength was very close to zero (-0.0018).

7.2. Magnetoencephalographic Data

As a second illustration of the applicability of the
method on real data, we applied it on magnetoen-
cephalography (MEG), i.e. measurements of the elec-
tric activity in the brain. The raw data consisted of
the 306 MEG channels measured by the Vectorview
helmet-shaped neuromagnetometer (Neuromag Ltd.,
Helsinki, Finland) in a magnetically shielded room at
the Brain Research Unit, Low Temperature Labora-
tory, Helsinki University of Technology. The sampling
frequency was 600 Hz. The measurements consisted
of 300 seconds of resting state brain activity from the
experiment of (Ramkumar et al., 2007). The subject

was sitting with eyes closed, and did not perform any
specific task nor was there any specific sensory stim-
ulation. The channels were first linearly projected to
the signal space to reduce noise (Uusitalo & Ilmoniemi,
1997). In this illustrative experiment, we only consider
a single (gradiometer) channel in the right occipital
cortex near the midline.

We considered the interaction of about 10 Hz (alpha)
and about 20 Hz (beta) oscillations commonly ob-
served in electromagnetic recordings of spontaneous
brain activity. We first computed the amplitudes of
the oscillations by dividing the data into windows of
length of 0.25 seconds, performing fast Fourier trans-
form inside each of them, and computing the total
Fourier amplitudes (unweighted Euclidean norm of
the Fourier coefficients) in the frequency ranges of
8 . . . 12Hz (alpha range, denoted by x1) and 15 . . . 25Hz
(beta range, denoted by x2). Thus we obtained two
time series of 1,200 points.

We fitted our model, with autoregressive order of 1 to
the data. The obtained matrices are

M1 =

(
0.23381 0.14551
0.10838 0.14314

)

(17)

B0 =

(
0 −0.65768

0.56722 0

)

(18)

B1 =

(
0.30509 0.23965

−0.024244 0.060608

)

(19)

What we see is that the instantaneous model is far
from trivial: the effects in B0 are relatively strong.
This is also reflected in B1 which is now rather differ-
ent from M1. Thus, the interpretation of the autore-
gressive matrices using just the autoregressive model
(i.e. M1) or the combined model (i.e. B1) are quite
different. In the classic autoregressive case (based on
M1), the lagged effect x1 → x2 is relatively strongly
positive whereas in the combined model it is quite
weak. In fact, that effect is now modelled as an in-
stantaneous effect in B0. Even more interesting is that
the instantaneous model has a strong negative effect
x2 → x1 which is not visible at all in the purely au-
toregressive matrix M1. Thus, the results illustrate
how the interpretation of causal effects (and even of
the lagged ones) can change drastically when includ-
ing the instantaneous effects.

Using an autoregressive order of 2 did not change the
results. We also ran the method many times to exclude
the problem of the ICA estimation algorithm (used in
LiNGAM estimation) getting stuck in local minima
(Himberg et al., 2004), and the result was found to be
robust with respect to that manipulation.
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One problem with this experiment is that the causal
model estimated by LiNGAM is far from acyclic.
Here, we can justify the procedure by using the the-
ory of cyclic model estimation proposed by (Lacerda
et al., 2008); the estimation here gives the only“stable”
model according to that theory. Performance of
LiNGAM estimation methods in the case of cyclic
models, and the possible need for new methods for esti-
mating cyclic models are future research topics of great
practical importance. However, as discussed above,
they are separate from the main contribution of our pa-
per in the sense that we can use any such new method
to estimate the instantaneous model in our framework.

8. Conclusion

We showed how non-Gaussianity enables estimation
of a causal discovery model in which the linear effects
can be either instantaneous or time-lagged. Like in
the purely instantaneous case (Shimizu et al., 2006),
non-Gaussianity makes the model identifiable with-
out explicit prior assumptions on existence or non-
existence of given causal effects. The classic assump-
tion of acyclicity is sufficient although probably not
necessary. From the practical viewpoint, an impor-
tant implication is that considering instantaneous ef-
fects changes the coefficient of the time-lagged effects
as well.
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Abstract

Hierarchical decomposition promises to help
scale reinforcement learning algorithms naturally
to real-world problems by exploiting their under-
lying structure. Model-based algorithms, which
provided the first finite-time convergence guaran-
tees for reinforcement learning, may also play an
important role in coping with the relative scarcity
of data in large environments. In this paper, we
introduce an algorithm that fully integrates mod-
ern hierarchical and model-learning methods in
the standard reinforcement learning setting. Our
algorithm, R-MAXQ , inherits the efficient model-
based exploration of the R-MAX algorithm and
the opportunities for abstraction provided by the
MAXQ framework. We analyze the sample com-
plexity of our algorithm, and our experiments in
a standard simulation environment illustrate the
advantages of combining hierarchies and models.

1. Introduction

Reinforcement Learning (RL) algorithms tackle a very
challenging problem: how to find rewarding behaviors in
unknown environments (Sutton & Barto, 1998). An impor-
tant goal of RL research is to generalize these algorithms to
structured representations and to learn from limited experi-
ence. In this paper, we develop an algorithm that integrates
two important branches of RL research that, despite their
popularity, have rarely been studied in tandem.

The first of these two branches is hierarchical RL. Humans
cope with the extraordinary complexity of the real world in
part by thinking hierarchically, and we would like to imbue
our learning algorithms with the same faculty. In the RL
community, this impetus has taken shape as work on tem-
poral abstraction, in which temporally extended abstract
actions allow agents to reason above the level of primi-

Appearing inProceedings of the25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

tive actions (Barto & Mahadevan, 2003). The advantages
of such methods include the ability to incorporate prior
knowledge and the creation of opportunities for state ab-
straction. Recent work in the automatic discovery of hi-
erarchy has focused on the ability to focus exploration in
novel regions of the state space (Şimşek & Barto, 2004).

The second branch is model-based RL, which directly es-
timates a model of the environment and then plans with
this model. Early work demonstrated that summarizing an
agent’s experience into a model could be an efficient way
to reuse data (Moore & Atkeson, 1993), and later work uti-
lized the uncertainty in an agent’s model to guide explo-
ration, yielding the first (probabilistic) finite bounds on the
amount of data required to learn near-optimal behaviors in
the general case (Kearns & Singh, 1998; Kakade, 2003).

Few RL researchers have tried to combine these two ap-
proaches, despite the intuitive appeal of learning hierarchi-
cal models of the world. Prior work includes adaptations
to the average-reward formulation (Seri & Tadepalli, 2002)
and to deterministic domains (Diuk et al., 2006). In this pa-
per, we introduce an algorithm that fully integrates modern
hierarchical-decomposition and model-learning methods in
the standard setting of discounted rewards and stochastic
dynamics. Section 2 details how we decompose high-level
models into lower-level models. Section 3 presents our al-
gorithm, which joins our model decomposition with the R-
MAX approach to learning primitive models. In Section 4,
we formally analyze our algorithm, R-MAXQ . Section 5
describes our empirical results. In Section 6 we discuss
related work more fully, and in Section 7 we conclude.

2. Hierarchies of Models

We begin by describing our recursive action decomposi-
tion, which defines how we plan at the high level given
learned models of primitive actions. Section 3 presents a
complete algorithm obtained by combining this decompo-
sition with a particular way of learning primitive models.

We adopt the standard semi-Markov decision process
(SMDP) formalism for describing temporally extended ac-
tions (Sutton et al., 1999), but we modify the notation to
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better reflect the recursive nature of hierarchical RL. We
define an SMDP as the conjunction〈S,A〉 of a finite state
spaceS and a finite action setA. Each actiona ∈ A is
associated with a transition functionP a and a reward func-
tion Ra. For convenience, we use amulti-timemodel (Sut-
ton et al., 1999), soP a(s, s′) =

∑∞
k=1 γk Pr(k, s′ | s, a),

whereγ ∈ (0, 1) is a discount factor andPr(k, s′ | s, a) is
the probability that executing actiona ∈ A in states ∈ S
will take exactlyk time steps and terminate in states′ ∈ S.
Similarly, Ra(s) = E

[
∑∞

k=0 γkrk

]

, whererk is the one-
step reward earned during thekth time step executinga.

If a ∈ A is aprimitive action, then it will always terminate
after exactly one time step, so

∑

s′ P a(s, s′) = γ for all
s ∈ S. Since we may construe a discount factor ofγ as
equivalent to terminating a trajectory with probability1−γ
after each time step, the “missing” transition probability
corresponds to the probability of termination.

In the RL setting, eachP a andRa is initially unknown, but
for eacha ∈ A that is acomposite action, we assume the
agent is given a set of terminal statesT a ⊂ S, a set of child
actionsAa, and a goal reward functioñRa : T a → R. A
composite actiona may be invoked in any states ∈ S \T a,
and upon reaching a states′ ∈ T a it terminates and earns an
internal reward ofR̃a(s′). It executes by repeatedly choos-
ing child actionsa′ ∈ Aa to invoke. The child actionsa′

may be primitive or composite. Whena′ terminates (and
assuminga does not terminate), thena selects another child
action. (In contrast to the original MAXQ framework, a
composite actiona only tests for termination upon the ter-
mination of a child actiona′.) A composite actiona selects
child actions to maximize the expected sum of the child
action rewardsRa′

and the goal rewards̃Ra.

Given the transition and reward functions for each of the
child actions, the optimal policy for the composite actiona
may be computed using the following system of Bellman
equations, for alls ∈ S anda′ ∈ Aa:

Qa(s, a′) = Ra′

(s) +
∑

s′∈S

P a′

(s, s′)V a(s′) (1)

V a(s) =

{

R̃a(s), if s ∈ T a

maxa′∈Aa(s) Qa(s, a′), otherwise,
(2)

where Aa(s) =
{

a′ ∈ Aa |primitive(a′) ∨ s /∈ T a′

}

.

Then the optimal policyπa : S → Aa is, for all s ∈ S:

πa(s) = argmaxa′∈Aa(s)Q
a(s, a′). (3)

Dietterich’s MAXQ framework computesQa(s, a′) by
decomposing this quantity intoQa(s, a′) = Ra′

(s) +
Ca(s, a′), whereCa is acompletion functionthat estimates
the reward obtained after executinga′ but before complet-
ing a. It recursively queries the child action forRa′

and

learnsCa locally using model-free stochastic approxima-
tion. Using the learnedπa, it simultaneously learns an ex-
ternal version ofCa that doesn’t include the internal goal
rewardsR̃a, so thata can reportRa to its own parents.

The key idea behind our model-based approach is to as-
sume that a composite actiona can query a childa′ for not
just Ra′

but alsoP a′

. Then the only unknown quantity in
Equation 1 isV a, which can be computed using standard
dynamic programming methods and stored locally. To sat-
isfy our assumption, each actiona, whether primitive or
composite, must be able to compute bothRa andP a. Prior
research into option models (Sutton et al., 1999) defined
Bellman-like equations, for alls ∈ S andx ∈ T a:

Ra(s) = Rπa(s)(s) +
∑

s′∈S\T a

Pπa(s)(s, s′)Ra(s′) (4)

P a(s, x) = Pπa(s)(s, x) +
∑

s′∈S\T a

Pπa(s)(s, s′)P a(s′, x), (5)

and for alls ∈ S andx ∈ S \ T a, P a(s, x) = 0. SinceP a

is a multi-time model, note that
∑

s′ P a(s, s′) < γ < 1,
where the “missing” transition probability corresponds to
the cumulative1 − γ probability of terminating (the entire
trajectory, not justa) marginalized over the random dura-
tion of the execution ofa. A key strength of our algorithm
is that it takes advantage of models to solve Equations 4
and 5 directly using dynamic programming, instead of us-
ing these equations to define update rules for stochastic ap-
proximation, as in prior work with option models.

Our decomposition provides a way to compute policies
and therefore high-level transition and reward models given
lower-level transition and reward models. To ground out
this process, models of the primitive actions must be avail-
able. However, ifRa andP a are available for each primi-
tive actiona, note that we could compute the optimal policy
of the system using standard (non-hierarchical) planning
algorithms. Nevertheless, we empirically demonstrate the
benefit of using hierarchies in Section 5. The next section
first presents our learning algorithm.

3. The R-MAXQ Algorithm

Equations 1–5 show how to compute abstract models from
primitive models, but a complete model-based RL algo-
rithm must specify how to estimate the primitive models.
We propose combining our hierarchical model decompo-
sition, inspired by the MAXQ value function decomposi-
tion, with the primitive models defined by the R-MAX al-
gorithm (Brafman & Tennenholtz, 2002), yielding a new
algorithm we call R-MAXQ .

R-MAX defines the transition and reward models for prim-
itive actions as follows. Letn(s, a) denote the number
of times primitive actiona has executed in states. Let
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n(s, a, s′) denote the number of times primitive actiona
transitioned states to states′. Finally, let r(s, a) denote
the cumulative one-step reward earned by each execution
of primitive actiona in states. Then the primitive transi-
tion and reward models are given by:

Ra(s) =

{

r(s,a)
n(s,a) , if n(s, a) ≥ m

V max, otherwise,
(6)

P a(s, s′) =

{

n(s,a,s′)
n(s,a) , if n(s, a) ≥ m

0, otherwise,
(7)

whereV max is an upper bound on the optimal value func-
tion andm is a threshold sample size.1 Given sufficient
data, R-MAX uses the maximum likelihood model, but it
otherwise uses an optimistic model that predicts a high-
reward terminal transition.2 By backing up these optimistic
rewards through the value function, the learned policy ef-
fectively plans to visit insufficiently explored states.

R-MAXQ works in the same way, except it computes a
hierarchical value function using its model decomposi-
tion instead of a monolithic value function using the stan-
dard MDP model. Optimistic rewards propagate not only
through the value functionV a at a given composite action
a but also up the hierarchy, via each action’s computed ab-
stract reward functionRa. Each local policy implicitly ex-
ploits or explores by choosing a child action with high ap-
parent value, which combines the child’s actual value and
possibly some optimistic bonus due to some reachable un-
known states. No explicit reasoning about exploration is
required at any of the composite actions in the hierarchy: as
in R-MAX , the planning algorithm is oblivious to its role in
balancing exploration and exploitation in a learning agent.
A key advantage of R-MAXQ is that its hierarchy allows it
to constrain the agent’s policy in a fashion that may reduce
unnecessary exploratory actions, as illustrated in Section 5.

Algorithms 1–4 give the R-MAXQ algorithm in detail. All
variables are global, except for the argumentsa and s,
which represent the action and state passed to each sub-
routine. All global variables are initialized to 0, except that
Ra(s) is initialized toV max for all primitive actionsa and
statess. Algorithm 1 is the main algorithm, invoked with
the root action in the hierarchy and the initial state of the
system. MAXQ recursively executes an actiona in the cur-

1The original Prioritized Sweeping algorithm (Moore & Atke-
son, 1993) used the same optimistic one-step model, but its
name became identified with its method for propagating changes
throughout the value function. The primary contribution of the
R-MAX algorithm was a derivation of the appropriate value ofm

given the desired error bounds.
2In effect, setting all the transition probabilities to 0 in Equa-

tion 5 gives the “missing” probability all to the implicit terminal
state. This trick works properly with the Bellman equations since
the terminal state has value 0; the optimism is reflected in the re-
ward for transitioning into this state.

rent states, returning the resulting states′ ∈ T a. Primitive
actions execute blindly; composite actions first update their
policy and then choose a child action to execute, until some
child leaves it in a terminal state.

Algorithm 1 R-MAXQ(a, s)

if a is primitive then
Executea, obtain rewardr, observe states′

r(s, a)← r(s, a) + r {record primitive data}
n(s, a)← n(s, a) + 1
n(s, a, s′)← n(s, a, s′) + 1
t← t + 1
Returns′

else {a is composite}
repeat

COMPUTE-POLICY(a, s)
s← R-MAXQ(πa(s), s) {recursive execution}

until s ∈ T a {or episode ends}
Returns

end if

Algorithm 2 updates the policy for composite actiona
given that the agent is in states. It first constructs aplan-
ning envelope: all the states reachable froms (at this node
of the hierarchy) and thus relevant to the value ofs. Once
the planning envelope has been computed and all the child
actions’ models have been updated on the envelope, the
value function and policy could be computed using value
iteration. Note that our implementation actually uses pri-
oritized sweeping (Moore & Atkeson, 1993) and aggres-
sive memoization, not shown in our pseudocode, to ame-
liorate the computational burden of propagating incremen-
tal model changes throughout the hierarchy.

Algorithm 2 COMPUTE-POLICY(a, s)

if timestamp(a) < t then
timestamp(a)← t
envelope(a)← ∅

end if
PREPARE-ENVELOPE(a, s)
while not convergeddo {value iteration}

for all s′ ∈ envelope(a) do
for all a′ ∈ Aa(s′) do

SetQa(s′, a′) using Eq. 1
end for
SetV a(s′) using Eq. 2

end for
end while
πa(s)← argmaxa′∈Aa(s)Q

a(s, a′) {Eq. 3}

Algorithm 3 computes the planning envelope for compos-
ite actiona by examining the given state’s successors under
any applicable child action’s transition model and recur-
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sively adding any new states to the envelope. This compu-
tation requires that these models be updated, if necessary.

Algorithm 3 PREPARE-ENVELOPE(a, s)

if s 6∈ envelope(a) then
envelope(a)← envelope(a) ∪ {s}
for all a′ ∈ Aa(s) do

COMPUTE-MODEL(a′, s)
for all s′ ∈ S |P a′

(s, s′) > 0 do
PREPARE-ENVELOPE(a, s′)

end for
end for

end if

Algorithm 4 updates the model for an actiona at some state
s. For composite actions, this requires recursively comput-
ing the policy and then solving Equations 4 and 5.

Algorithm 4 COMPUTE-MODEL(a, s)

if a is primitive then
if n(s, a) ≥ m then

Ra(s)← r(s,a)
n(s,a) {Eq. 6}

for all s′ ∈ S do
P a(s, s′)← n(s,a,s′)

n(s,a) {Eq. 7}
end for

end if
else {a is composite}

COMPUTE-POLICY(a, s)
while not convergeddo {dynamic programming}

for all s′ ∈ envelope(a) do
SetRa(s′) using Eq. 4
for all x ∈ T a do

SetP a(s′, x) using Eq. 5
end for

end for
end while

end if

4. Analysis of R-MAXQ

We now provide a very rough sketch of our main theoret-
ical result: R-MAXQ probably follows an approximately
optimal policy for all but a finite number of time steps. Un-
fortunately, this number may be exponential in the size of
the hierarchy. This section closes with a brief discussion of
the implications of this result.

The original R-MAX algorithm achieves efficient explo-
ration by using an optimistic model. Its model of any
given state-action pair is optimistic until it samples that
state-actionm times. By computing a value function from
this optimistic model, the resulting policy implicitly trades
off exploration (when the value computed for a given state

includes optimistic rewards) and exploitation (when the
value only includes estimates of the true rewards). Kakade
(2003) bounded the sample complexity of RL by first show-
ing that R-MAX probably only spends a finite number of
time steps attempting to reach optimistic rewards (explor-
ing). For the remaining (unbounded) number of time steps,
the algorithm exploits its learned model, but its exploitation
is near-optimal only if this model is sufficiently accurate.
Kakade then bounded the values ofm necessary to ensure
the accuracy of the model with high probability.

To be precise, let an MDP with finite state spaceS and fi-
nite action spaceA be given. Letε be a desired error bound,
δ the desired probability of failure, andγ the discount fac-
tor. Then R-MAX applied to an arbitrary initial state will

spendO
(

m|S||A|L
ε

log |S||A|
δ

)

time steps exploring, with

probability greater than1 − δ
2 , whereL = O

(

log ε
1−γ

)

. Fur-

thermore, there exists anm ∈ O
(

|S|L2

ε2
log |S||A|

δ

)

such

that when the agent is not exploring,V π∗

(st)− V πt(st) ≤
ε

1−γ
(Rmax − Rmin) with probability greater than1 − δ

2 ,
wherest andπt are the current state and policy at timet,
andRmax andRmin bound the reward function.

The hierarchical decomposition used by R-MAXQ com-
plicates an analysis of its sample complexity, but essen-
tially the same argument that Kakade used provides a loose
bound. We refer the interested reader to the proof of
Kakade (2003) for the gross structure of the argument,
and we merely sketch the necessary extensions here. A
key lemma is Kakade’sε-approximation condition (Lemma
8.5.4). The transition model̂P for an action is anε-
approximation for the true dynamicsP if for all statess ∈

S,
∑

s′∈S

∣

∣

∣
P̂ (s, s′)− P (s, s′)

∣

∣

∣
< ε. Theε-approximation

condition states that if a model has the correct reward func-
tion but only anε-approximation of the transition dynamics
for each action, then for all policiesπ and statess ∈ S,
∣

∣

∣
V̂ π(s)− V π(s)

∣

∣

∣
< εL

1−γ
.

Essentially, this condition relates the error bounds in the
model approximation to the resulting error bounds in the
computed value function. It allows the analysis of R-MAX

to determine a sufficient value ofm to achieve the desired
degree of near optimality. We must extend this condition
in two ways to adapt the overall proof to R-MAXQ . First,
R-MAXQ violates Kakade’s assumption of deterministic re-
ward functions. Define a model reward functionR̂ to be a
λ-approximation of the true reward functionR if for all

statess ∈ S,
∣

∣

∣
R̂(s)−R(s)

∣

∣

∣
< λ. Then it is straightfor-

ward to adjust Kakade’s derivation of theε-approximation
condition to show that the computed value function for any

given policy satisfiess ∈ S,
∣

∣

∣
V̂ π(s)− V π(s)

∣

∣

∣
< εL

1−γ
+ λ.
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Second, for a given composite actiona, we must relate
error bounds in the approximations ofRa′

and P a′

for
each childa′ ∈ Aa to error bounds in the approxima-
tions of Ra and P a. SinceRa is just the value func-
tion for πa but without the goal rewards (Equation 4),
we immediately obtain that the estimatedRa will be an
(

εL
1−γ

+ λ
)

-approximation. Equation 7 illustrates that for

everys′ ∈ T a, P a(·, s′) can be thought of as a value func-
tion estimating the expected cumulative discounted proba-
bility of transitioning intos′. The total error inP a(s, ·) will
be bounded by the sum of the errors for eachs′ ∈ T a, so it

can be shown thatP a is anO
(

|T a|εL
1−γ

)

-approximation.

These results bound the errors that propagate up from the
primitive actions in the hierarchy, but these bounds seem
quite loose. In particular, these bounds can’t rule out the
possibility that each level of the hierarchy might multiply
the approximation error by a factor of|T

a|L
1−δ

. Since the
amount of data required varies as the inverse square ofε, if
R-MAX requiresm samples of each action at each state
to achieve a certain error bound, R-MAXQ may require

m′ = O

(

m
(

TL
1−δ

)2h
)

samples of each primitive action

at each state to achieve the same error bound at the root of
the hierarchy, whereT is the maximum number of reach-
able terminal states for any composite action andh is the
height of the hierarchy: the number of composite tasks on
the longest path from the root of the hierarchy to a primitive
action (not including the root itself).

By adapting the remainder of Kakade’s proof, we can es-
tablish that R-MAXQ will probably converge to a (recur-
sively) near-optimal policy, although this guarantee re-
quires exponentially more data than R-MAX in the worst
case. We note that this guarantee applies to any choice of
hierarchy. It remains to be seen whether it might be pos-
sible to derive tighter bounds for specific classes of action
hierarchies. Furthermore, as Kakade (2003) notes in his
derivation, theε-approximation condition is perhaps unnec-
essarily stringent, since it gives the worst possible degrada-
tion in approximation quality over all possible policies.

In practice, implementations of R-MAX use far smaller val-
ues ofm than would be required to achieve useful theoreti-
cal guarantees. In this vein, we note that running R-MAXQ

will result in no more time spent in exploration than run-
ning R-MAX with the same value form. The hierarchical
decomposition only weakens the guarantees on the near-
optimality of the policy that R-MAXQ exploits. The exper-
iments described in the next section show that a good hier-
archy can even reduce the amount of time spent exploring,
with no appreciable deterioration in solution quality.

GET PUT

ROOT

north south east

pickup putdown

west

TO RED
NAVIGATE

(a) (b)

Figure 1.(a) Taxi domain, and (b) an action hierarchy for Taxi

5. Experiments

This section presents our empirical results, which show that
R-MAXQ outperforms both of its components, R-MAX and
MAXQ-Q. We discuss our findings in detail, to reveal how
precisely our algorithm benefits from combining model-
based learning and hierarchical decomposition.

For our experiments, we use the familiar Taxi domain (Di-
etterich, 2000). This domain consists of a5 × 5 gridworld
with four landmarks, labeledred, blue, green, and
yellow, illustrated in Figure 1a. The agent is a taxi that
must navigate this gridworld to pick up and deliver a pas-
senger. The system has four state variables and six primi-
tive actions. The first two state variables,x andy, give the
coordinates of the taxi in the grid. The third,passenger,
gives the current location of the passenger as one of the four
landmarks or astaxi, if the passenger is inside the taxi.
The final state variable,destination, denotes the land-
mark where the passenger must go. Four primitive actions,
north, south, east, andwest, each move the taxi in
the indicated direction with probability 0.8 and in each per-
pendicular direction with probability 0.1. Thepickup ac-
tion transfers the passenger into the taxi if the taxi is at the
indicated landmark. Theputdown action ends an episode
if the passenger is in the taxi and the taxi is at the desired
destination. Each episode begins with the taxi in a random
location, the passenger at a random landmark, and a des-
tination chosen randomly from the remaining landmarks.
Each action incurs a−1 penalty, except that unsuccessful
pickup andputdown actions cost−10, and a successful
putdown action earns a reward of 20.

The structure of the Taxi domain makes it conducive for
research into hierarchical RL. The optimal policy may be
described abstractly in four steps. First, navigate to the
landmark where the passenger is. Second, pick up the pas-
senger. Third, navigate to the destination landmark. Fi-
nally, put down the passenger. Navigation to each of the
landmarks constitute reuseable subtasks that hierarchical
algorithms can exploit. Dietterich (2000) expressed this do-
main knowledge in the task hierarchy shown in Figure 1b.
This hierarchy defines a navigational composite action for
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Figure 2.(a) Cumulative and (b) asymptotic performance of R-MAXQ , R-MAX , and MAXQ-Q on the Taxi domain, averaged over 100
independent trials. R-MAXQ and MAXQ-Q utilize the hierarchy shown in Figure 1b, but they do not use any explicit state abstraction.

each of the four landmarks. These actions include the four
primitive movement actions as children, and they terminate
upon reaching the coordinates corresponding to the respec-
tive landmark. TheGET andPUT composite actions each
have all four of their navigational composite actions as chil-
dren, as well aspickup or putdown, respectively.GET
terminates when the passenger is in the taxi, andPUT ter-
minates only when the episode does. TheROOT action only
includesGET andPUT as children, and likePUT it defines
no terminal states beyond those intrinsic to the domain. All
goal reward functions give 0 reward; each action simply
minimizes the costs earned before reaching their subgoals.

In our experiments with R-MAX and R-MAXQ we set the
threshold sample size atm = 5. Preliminary experiments
showed that larger values ofm did not signicantly improve
the final policy, although of course they led to more time
spent estimating the model. The only other parameter for
these algorithms is the stopping criterion for the dynamic
programming steps in Algorithms 2 and 4. In all cases, we
ran value iteration until the largest change was smaller than
ε = 0.001. We provided R-MAXQ and the original MAXQ-
Q algorithm with the hierarchy shown in Figure 1b as prior
knowledge. For our implementation of MAXQ-Q, we used
precisely the hand-tuned parameters Dietterich (2000) opti-
mized for the initial value function, learning rates, and tem-
perature decay (for Boltzmann exploration) for each action
in the hierarchy. We conducted 100 independent trials of
each condition of our experiments.

5.1. R-MAXQ versus R-MAX

We begin by comparing the performance of R-MAXQ and
R-MAX on the Taxi task. Our initial hypothesis was that
R-MAXQ would perform no better than R-MAX in the ab-
sence of state abstraction, since the model-based ability to

plan to explore might subsume the exploratory role that
options have played in many model-free RL implementa-
tions (Şimşek & Barto, 2004; Singh et al., 2005). Figure 2
reveals that in fact the two algorithms exhibit very different
learning curves. In particular, although R-MAX requires
many fewer episodes to converge to an optimal policy, R-
MAXQ earns much greater total reward.

We had overlooked the fact that the hierarchy used by R-
MAXQ doesn’t so much guide exploration as it constrains
it. In particular, note that the hierarchical agent can never
attempt theputdown action except at one of the four
landmark locations, since thePUT action only becomes
available when the agent is already at one of these loca-
tions, and the four navigational actions keep the agent in
this reduced set of states. The agent thus only attempts
theputdown action in 12 incorrect states, instead of the
396 explored by R-MAX . In addition, R-MAX attempts the
pickup action in 100 states in which R-MAXQ doesn’t,
when the passenger is already in the car. Since the penalty
for incorrect usage of these actions is -10, R-MAX loses
10(396 − 12 + 100)m = 24200 reward due to its wasted
exploration, accounting for the difference between the two
algorithms in Figure 2a. Furthermore, since theGET action
cannot navigate to an arbitrary location, R-MAXQ can’t at-
tempt thepickup action in a non-landmark location un-
til some episode randomly starts the agent there. In this
case the hierarchy can only postpone, not prevent, wasted
exploration. This effect explains the delayed convergence
relative to R-MAX : in later episodes R-MAXQ spends time
on exploration that R-MAX performed more eagerly.

5.2. R-MAXQ versus MAXQ-Q

Figure 2 also compares R-MAXQ with the original MAXQ-
Q algorithm. Of course, this comparison isn’t very fair,
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Figure 3.Cumulative performance of R-MAXQ , R-MAX , and
MAXQ-Q on the Taxi domain, using state abstraction. (The
asymptotic performance is qualitatively similar to that shown in
Figure 2b, although with faster convergence.)

since a primary goal of the MAXQ framework was to create
opportunities for state abstraction (Dietterich, 2000), which
we did not initially exploit. In fact, Dietterich identifiedthe
condition described in Section 5.1, which he called shield-
ing, as one that permits abstraction. For a more fair com-
parison, we allowed our implementation of MAXQ-Q to
use all the state abstractions in the Taxi domain identified
by Dietterich (2000), along with his optimized parameters.

We applied Dietterich’s notion of max node irrelevance to
allow R-MAXQ also to enjoy an explicit form of state ab-
straction as prior knowledge. Each action in the hierarchy
abstracts away state variables when our domain knowledge
indicates that doing so would not compromise the learned
model. However, whereas in MAXQ-Q an actiona only
reports its abstract reward functionRa to its parents, in R-
MAXQ it must also convey the abstract transition function
P a. Thus we only allow a composite action to ignore a state
variable if all of its children also ignore that state variable.

In the hierarchy shown in Figure 1b, the four primitive
movement actions and the four navigational actions can
abstract away thepassenger anddestination state
variables.GET andpickup ignoredestination, and
PUT andputdown ignorepassenger. However,ROOT
cannot ignore any state variables. When a child’s transition
function was more abstract than a parent’s model, the par-
ent assumed a very simple dynamic Bayes network (DBN)
factorization (Boutilier et al., 1995). For example,P north

setsx andy (each conditional on the previous values of
both variables), butpassenger anddestination re-
main constant. Figure 3 compares the performance of the
resulting algorithms. Both MAXQ-Q and R-MAXQ learn
much faster with state abstraction, with the model-based
nature of R-MAXQ continuing to give it an edge.

It is worthwhile to examine more closely how the hier-
archy interacts with state abstraction in the Taxi domain.
Consider how MAXQ-Q learns theROOT action. The
only values stored locally are the completion functions
Croot(·, GET) and Croot(·, PUT), which have different ab-
stract representations. The latter function is always equal to
0, since afterPUT terminates there is nothing to complete,
since the entire episode has terminated. Meanwhile, to
evaluateCroot(s, GET) the algorithm need only inspect the
passenger anddestination variables ofs, since the
values of these two variables before executingGET com-
pletely determine the remaining cost of completingROOT
afterGET terminates. Hence, MAXQ-Q only learns 16 val-
ues at theROOT node; to compute the value of a state it re-
cursively queriesRa and adds the appropriate completion
function (Dietterich, 2000).

R-MAXQ doesn’t apply any explicit state abstraction to
ROOT, but note that after executing either of its two child
actions, the result must be one of 12 nonterminal states:
with the taxi at one of four landmarks, the passenger in
the taxi, and the destination at one of the other three land-
marks. Hence, the planning envelope computed in Algo-
rithm 2 will always contain some subset of these 12 states
plus the current state. As with MAXQ-Q, the result dis-
tribution irrelevance ofGET allows R-MAXQ to store only
a small number of values locally. To compute the value
of a state, R-MAXQ also queries one-step values from its
children and then adds the appropriate successor state val-
ues. In this sense, these 12 states can be thought of as the
completion setof ROOT.

Figure 3 also shows the performance of standard R-MAX

with the same DBN factorization as R-MAXQ applied to
most of its actions (which are all primitive). Note that in the
absence of shielding,putdown cannot safely ignore the
passenger variable. The ability to abstract the primitive
models does reduce the amount of exploration that R-MAX

must perform, but the improvement is significantly smaller
than that of the other algorithms. This result gives more
support for motivating hierarchical decomposition with op-
portunities for state abstraction.

Some preliminary further experiments support the argu-
ments of Jong et al. (2008), who used model-free hierarchi-
cal algorithms to suggest that composite actions more reli-
ably improve RL performance when they replace instead of
augment primitive actions. We ran R-MAXQ with a hierar-
chy in which the root’s children included all six primitive
actions as well as the four navigational composite actions,
producing learning curves indistinguishable from those of
standard R-MAX in Figure 2. When the root action can ex-
ecute every primitive action, the planning envelope grows
to include too many states. Formalizing the properties of a
composite action’s completion set may help us understand
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how hierarchies can constrain planning envelopes without
sacrificing learning performance.

6. Related Work

Other algorithms have combined hierarchical RL with a
model-based approach, but not in the standard framework
of discounted rewards and stochastic dynamics. Diuk et al.
(2006) developed a model-based MAXQ algorithm for de-
terministic domains, allowing them to quickly sample the
effect of a composite action recursively: every action’s ef-
fect can be represented as a scalar reward and a single
successor state. Their algorithm also uses Dietterich’s ap-
proach to state abstraction, occasionally forcing it to re-
plan, since the effect of a child action may depend on state
variables not visible to the parent, making it seem nonde-
terministic. In contrast, R-MAXQ does not employ explicit
state abstraction, allowing it to save the value functions and
policies computed during one time step for all future time
steps. Our algorithm relies on the choice of hierarchy to
yield small planning envelopes, automatically achieving an
effective reduction in the size of the state space considered
during any one time step.

Seri and Tadepalli (2002) extended the MAXQ framework
to average-reward reinforcement learning, resulting in an
algorithm that learns a model to facilitate the computation
of the bias for each state from the average reward of the
current policy. However, the computation of the average
reward itself relies on stochastic approximation techniques,
and their algorithm does not have any formal guarantees
regarding its sample complexity.

7. Conclusions

The R-MAXQ algorithm combines the efficient model-
based exploration of R-MAX with the hierarchical decom-
position of MAXQ. Although our algorithm does not im-
prove upon the known formal bounds on the sample com-
plexity of RL, it retains a finite-time convergence guar-
antee. An empirical evaluation demonstrates that even a
relatively simple hierarchy can improve the cumulative re-
ward earned by constraining the exploration that the agent
performs, both within individual episodes of learning and
throughout an agent’s experience with its environment.
Even in the absence of explicit state abstraction, the struc-
ture of an action hierarchy can drastically reduce the ef-
fective state space seen by a given composite action dur-
ing a single episode. This implicit concept of a reduced
completion set, mirroring Dietterich’s explicitly abstracted
completion function, suggests future avenues of research,
both for improving the theoretical guarantees on the sam-
ple complexity of R-MAXQ and for guiding the discovery
of more useful hierarchies.
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Abstract

This paper introduces the Banditron, a vari-
ant of the Perceptron [Rosenblatt, 1958], for
the multiclass bandit setting. The multiclass
bandit setting models a wide range of prac-
tical supervised learning applications where
the learner only receives partial feedback (re-
ferred to as “bandit” feedback, in the spirit of
multi-armed bandit models) with respect to
the true label (e.g. in many web applications
users often only provide positive “click” feed-
back which does not necessarily fully disclose
a true label). The Banditron has the abil-
ity to learn in a multiclass classification set-
ting with the “bandit” feedback which only
reveals whether or not the prediction made
by the algorithm was correct or not (but does
not necessarily reveal the true label). We pro-
vide (relative) mistake bounds which show
how the Banditron enjoys favorable perfor-
mance, and our experiments demonstrate the
practicality of the algorithm. Furthermore,
this paper pays close attention to the impor-
tant special case when the data is linearly
separable — a problem which has been ex-
haustively studied in the full information set-
ting yet is novel in the bandit setting.

1. Introduction

In the conventional supervised learning paradigm, the
learner has access to a data set in which the true labels
of the inputs are provided. While attendant learning
algorithms in this paradigm are enjoying wide ranging
success, their effective application to a number of do-
mains, including many web based applications, hinges

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

on being able to learn in settings where the true la-
bels are not fully disclosed, but rather the learning
algorithm only receives some partial feedback. Impor-
tant domains include both the (financially important)
sponsored advertising on webpages and recommender
systems. The typical setting is: first, a user queries
the system; then using the query and other poten-
tially rich knowledge the system has about the user
(e.g. past purchases, their browsing history, etc.) the
system makes a suggestion (e.g. it presents the user
with a few ads they might click on or songs they might
buy); finally, the user either positively or negatively re-
sponds to the suggestion. Crucially, the system does
not learn what would have happened had other sug-
gestions been presented.

We view such problems as naturally being online,
“bandit” versions of multiclass prediction problems,
and, in this paper, we formalize such a model. In
essence, this multiclass bandit problem is as follows:
at each round, the learner receives an input x (say the
users query, profile, and other high dimensional infor-
mation); the learner predicts some class label ŷ (the
suggestion); then the learner receives the limited feed-
back of only whether the chosen label was correct or
not. In the conventional, “full information” supervised
learning model, a true label y (possibly more than one
or none at all) is revealed to the learner at each round
— clearly unrealistic in the aforementioned applica-
tions. In both cases, the learner desires to make as few
mistakes as possible. The bandit version of this prob-
lem is clearly more challenging, since, in addition to
the issues ones faces for supervised learning (e.g. learn-
ing a mapping from a high dimensional input space to
the label space), one also faces balancing exploration
and exploitation.

This paper considers the workhorse of hypothesis
spaces, namely linear predictors, in the bandit setting.
Somewhat surprisingly, while there has been a stag-
gering number of results on (margin based) linear pre-
dictors and much recent work on bandit models, the
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intersection of these two settings is novel and opens a
number of interesting (both theoretical and practical)
questions, which we consider. In particular, we pay
close attention to the important case where the data
are linearly separable, where, in the full information
setting, the (efficient) Perceptron algorithm makes a
number of mistakes that is asymptotically bounded
(so the actual error rate will rapidly converge to 0).

There are a number of related results in the bandit
literature. The Exp4 algorithm (for the “experts” set-
ting) of Auer et al. [1998] and the contextual bandit
setting of Langford and Zhang [2007] are both bandit
settings where the learner has side information (e.g.
the input “x”) when making a decision — in fact, our
setting can be thought of as a special case of the con-
textual bandit setting1. However, these settings con-
sider abstract hypothesis spaces and do not explicitly
consider efficient algorithms. Technically related are
the bandit algorithms for online convex optimization
of Flaxman et al. [2005], Kleinberg [2004], which at-
tempt to estimate a gradient (for optimization) with
only partial feedback. However, these algorithms do
not apply due to the subtleties of using the non-convex
classification loss, which we discuss at the end of Sec-
tion 2.

This paper provides an efficient bandit algorithm,
the Banditron, for multiclass prediction using linear
hypothesis spaces, which enjoys a favorable mistake
bound. We provide empirical results showing our al-
gorithm is quite practical. For the case where the data
is linearly separable, our mistake bound is O(

√
T ) in T

rounds. We also provide results toward characterizing
the optimal achievable mistake bound for the linearly
separable case (ignoring efficiency issues here) and in-
troduce some important open questions regarding this
issue. In the Extensions section, we also discuss up-
date rules which generalize the Winnow algorithm (for
L1 margins) and margin-mistake based algorithms to
the bandit setting. We also discuss how our algorithm
can be extended to ranking and settings where more
than one prediction ŷ can be presented to the user
(e.g. an advertising setting where multiple ads may
be presented).

2. Problem Setting

We now formally define the problem of online multi-
class prediction in the bandit setting. Online learning
is performed in a sequence of consecutive rounds. On

1The contextual bandit setting can be thought of as
a general cost sensitive classification problem with bandit
feedback. While their setting is an i.i.d. one, we make no
statistical assumptions.

round t, the learner is given an instance vector xt ∈ Rd
and is required to predict a label out of a set of k pre-
defined labels which we denote by [k] = {1, . . . , k}.
We denote the predicted label by ŷt. In the full in-
formation case, after predicting the label, the learner
receives the correct label associated with xt, which
we denote by yt ∈ [k]. We consider a bandit set-
ting, in which the feedback received by the learner is
1[ŷt 6= yt], where 1[π] is 1 if predicate π holds and 0
otherwise. That is, the learner knows if it predicted an
incorrect label, but it does not know the identity of the
correct label. The learner’s ultimate goal is to mini-
mize the number of prediction mistakes, M , it makes
along its run, where:

M =
T∑
t=1

1[ŷt 6= yt] .

To make M small, the learner may update its pre-
diction mechanism after each round so as to be more
accurate in later rounds.

The prediction of the algorithm at round t is deter-
mined by a hypothesis, ht : Rd → [k], where ht is
taken from a class of hypotheses H. In this paper we
focus on the class of margin based linear hypotheses.
Formally, each h ∈ H is parameterized by a matrix of
weights W ∈ Rk×d and is defined to be:

h(x) = argmax
j∈[k]

(Wx)j , (1)

where (Wx)j is the jth element of the vector obtained
by multiplying the matrix W with the vector x. Since
each hypothesis is parameterized by a weight matrix,
we refer to a matrix W also as a hypothesis — by
that we mean that the prediction is defined as given
in Eq. (1). To evaluate the performance of a weight
matrix W on an example (x, y) we check whether
W makes a prediction mistake, namely determine if
arg maxj(Wx)j 6= y.

The class of margin based linear hypotheses for mul-
ticlass learning has been extensively studied in the
full information case [Duda and Hart, 1973, Vapnik,
1998, Weston and Watkins, 1999, Elisseeff and We-
ston, 2001, Crammer and Singer, 2003]. Our start-
ing point is a simple adaptation of the Perceptron
algorithm [Rosenblatt, 1958] for multiclass prediction
in the full information case (this adaptation is called
Kesler’s construction in [Duda and Hart, 1973, Cram-
mer and Singer, 2003]). Despite its age and simplicity,
the Perceptron has proven to be quite effective in prac-
tical problems, even when compared to state-of-the-art
large margin algorithms [Freund and Schapire, 1999].
We denote by W t the weight matrix used by the Per-
ceptron at round t. The Perceptron starts with the all
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zero matrix W 1 = 0 and updates it as follows

W t+1 = W t + U t , (2)

where U t ∈ Rk×d is the matrix defined by

U tr,j = xt,j (1[yt = r]− 1[ŷt = r]) . (3)

In other words, if there is no prediction mistake (i.e.
yt = ŷt), then there is no update (i.e. W t+1 = W t),
and if there is a prediction mistake, then xt is added
to the ytth row of the weight matrix and subtracted
from the ŷtth row of the matrix.

A relative mistake bound can be proven for the mul-
ticlass Perceptron algorithm. The difficulty with pro-
viding mistake bounds for any (efficient) algorithm in
this setting stems from the fact that the classification
loss is non-convex. Hence, performance bounds are
commonly evaluated using the multiclass hinge-loss —
what might be thought of as a convex relaxation of the
classification loss. In particular, the hinge-loss of W
on (x, y) is defined as follows:

`(W ; (x, y)) = max
r∈[k]\{y}

[1− (Wx)y + (Wx)r]+ ,

(4)
where [a]+ = max{a, 0} is the hinge function. The
hinge-loss will be zero only if (Wx)y − (Wx)r ≥ 1 for
all r 6= y. The difference (Wx)y − (Wx)r is a gener-
alization of the notion of margin from binary classifi-
cation. Let ŷ = argmaxr(Wx)r be the prediction of
W . Note that if ŷ 6= y then `(W ; (x, y)) ≥ 1. Thus,
the hinge-loss is a convex upper bound on the zero-one
loss function, `(w; (x, y)) ≥ 1[ŷ 6= y].

The Perceptron mistake bound holds for any sequence
of examples and compares the number of mistakes
made by the Perceptron with the cumulative hinge-
loss of any fixed weight matrix W ?, even one defined
with prior knowledge of the sequence. Formally, let
(x1, y1), . . . , (xT , yT ) be a sequence of examples and
assume for simplicity that ‖xt‖ ≤ 1 for all t. Let W ?

be any fixed weight matrix. We denote by

L =
T∑
t=1

`(W ?; (xt, yt)) , (5)

the cumulative hinge-loss of W ? over the sequence of
examples and by

D = 2 ‖W ?‖2F = 2
k∑
r=1

d∑
j=1

(W ?
i,j)

2 , (6)

the complexity of W ?. Here ‖ · ‖2F denotes the Frobe-
nius norm. Then the number of prediction mistakes of
the multiclass Perceptron is at most,

M ≤ L+D +
√
LD . (7)

Algorithm 1 The Banditron
Parameters: γ ∈ (0, 0.5)
Initialize W 1 = 0 ∈ Rk×d
for t = 1, 2, . . . , T do

Receive xt ∈ Rd
Set ŷt = arg maxr∈[k](W txt)r
∀r ∈ [k] define P (r) = (1− γ)1[r = ŷt] + γ

k
Randomly sample ỹt according to P
Predict ỹt and receive feedback 1[ỹt = yt]
Define Ũ t ∈ Rk×d such that:

Ũ tr,j = xt,j

(
1[yt=ỹt]1[ỹt=r]

P (r) − 1[ŷt = r]
)

Update: W t+1 = W t + Ũ t

end for

A proof of the above mistake bound can be found for
example in Fink et al. [2006]. The mistake bound in
Eq. (7) consists of three terms: the loss of W ?, the
complexity of W ?, and a sub-linear term which is often
negligible. In particular, when the data is separable
(i.e. L = 0), the number of mistakes is bounded by D.

Unfortunately, the Perceptron’s update cannot be im-
plemented in the bandit setting as we do not know the
identity of yt. One direction is to work directly with
the hinge-loss (which is convex) and try to use the ban-
dit algorithms for online convex optimization of Flax-
man et al. [2005], Kleinberg [2004]. In this work, they
attempt to find an unbiased estimate of the gradient
using only bandit feedback (i.e. using only the loss re-
ceived as feedback). However, since the only feedback
the learner receives is 1[ŷt 6= yt], one does not neces-
sarily even know the hinge-loss for the chosen decision,
ŷt, due to dependence of the hinge loss on the true la-
bel yt. Hence, the results of Flaxman et al. [2005],
Kleinberg [2004] are not directly applicable.

3. The Banditron

We now present the Banditron in Algorithm 1, which
is an adaptation of the multiclass Perceptron for the
bandit case.

Similar to the Perceptron, at each round we let ŷt be
the best label according to the current weight matrix
W t, i.e. ŷt = argmaxr(W txt)r. Most of the time the
Banditron exploits the quality of the current weight
matrix by predicting the label ŷt. Unlike the Percep-
tron, if ŷt 6= yt, then we can not make an update since
we are blind to the identity of yt. Roughly speaking,
it is difficult to learn when we exploit using W t. For
this reason, on some of the rounds we let the algo-
rithm explore (with probability 1 − γ) and uniformly
predict a random label from [k]. We denote by ỹt the
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predicted label. On rounds in which we explore, (so
ỹt 6= ŷt), if we additionally receive a positive feedback,
i.e. ỹt = yt, then we indirectly obtain the full informa-
tion regarding the identity of yt, and we can therefore
update our weight matrix using this positive instance.
The parameter γ controls the exploration-exploitation
tradeoff.

The above intuitive argument is formalized by defining
the update matrix Ũ t to be a function of the random-
ized prediction ỹt. We emphasize that Ũ t accesses the
correct label yt only through the indicator 1[yt = ỹt]
and is thus adequate for the Bandit setting. As we
show later in Lemma 4, the expected value of the
Banditron’s update matrix Ũ t is exactly the Percep-
tron’s update matrix U t. While there a number of
other variants which also perform unbiased updates,
we have found this one provides the most favorable
performance (empirically speaking).

The following theorem provides a bound on the ex-
pected number of mistakes the Banditron makes.

Theorem 1. (Mistake Bound). Assume that for the
sequence of examples, (x1, y1), . . . , (xT , yT ), we have,
for all t, xt ∈ Rd, ‖xt‖ ≤ 1, and yt ∈ [k]. Let W ? be
any matrix, let L be the cumulative hinge-loss of W ? as
defined in Eq. (5), and let D be the complexity of W ?

(i.e. D = 2||W ?||2F ). Then the number of mistakes M
made by the Banditron satisfies

E[M ] ≤ L+γ T + 3 max
{
kD
γ ,

√
Dγ T

}
+
√

kDL
γ .

where expectation is taken with respect to the random-
ness of the algorithm.

Before turning to the proof of Thm. 1 let us first opti-
mize the exploration-exploitation parameter γ in dif-
ferent scenarios. First, assume that the data is sepa-
rable, that is L = 0. In this case, we can obtain a mis-
take bound of O(

√
T ). In fact the following corollary

shows that an O(
√
T ) bound is achievable whenever

the cumulative hinge-loss of W ? is small enough.

Corollary 2 (Low noise). Assume that the conditions
stated in Thm. 1 hold and that there exists W ? with
fixed complexity D and loss L ≤ O(

√
Dk T ). Then,

by setting γ =
√
kD/T we obtain the bound E[M ] ≤

O(
√
kD T ).

Next, let us consider the case where we have a constant
(average) noise level of ρ, i.e. there exists ρ ∈ (0, 1)
such that L ≤ ρT . In this case,

Corollary 3 (High noise). Assume that the conditions
stated in Thm. 1 hold and that there exists W ? with
fixed complexity D and loss L ≤ ρ T for a constant ρ ∈

(0, 1). Then, by setting γ = ρ (kD/T )1/3 we obtain the
bound E[M ] ≤ ρT (1+ε) where ε = O((kD)1/3 T−1/3).

We note that the bound in the above corollary can
be also written in an additive form as: E[M ] − L ≤
O(T 2/3). However, since we are not giving proper re-
gret bounds as we compare mistakes to hinge-loss we
prefer to directly bound E[M ].

Analysis: To prove Thm. 1 we first show that the
random matrix Ũ t is an unbiased estimator of the up-
date matrix U t used by the Perceptron. Formally,
let Et[Ũ t] be the expected value of Ũ t conditioned on
ỹ1, . . . , ỹt−1. Then:

Lemma 4. Let Ũ t be as defined in Algorithm 1 and
let U t be as defined in Eq. (3). Then, Et[Ũ t] = U t.

Proof. For each r ∈ [k] and j ∈ [d] we have

Et[Ũ tr,j ] =
k∑
i=1

P (i)xt,j
(

1[i=yt]1[i=r]
P (r) − 1[ŷt = r]

)
= xt,j (1[yt = r]− 1[ŷt = r]) = U tr,j ,

which completes the proof.

Next, we bound the expected squared norm of Ũ t.

Lemma 5. Let Ũ t be as defined in Algorithm 1. Then,

Et[ ‖Ũ t‖2F ] ≤ 2 ‖xt‖2
(
k
γ 1[yt 6= ŷt] + γ 1[yt = ŷt]

)
.

Proof. We first observe that

‖Ũ t‖2F =


‖xt‖2

(
1

P (yt)2
+ 1
)

if ỹt = yt 6= ŷt

‖xt‖2
(

1
P (yt)

− 1
)2

if ỹt = yt = ŷt

‖xt‖2 if ỹt 6= yt

Therefore, if yt 6= ŷt then

Et[‖Ũ t‖2F ]
‖xt‖2

= P (yt)
(

1
P (yt)2

+ 1
)

+ (1− P (yt))

= 1 + 1
P (yt)

= 1 + k
γ ≤

2k
γ ,

and if yt = ŷt then

Et[‖Ũ t‖2F ]
‖xt‖2

= P (yt)
(

1
P (yt)

− 1
)2

+ (1− P (yt))

= 1
P (yt)

− 1 ≤ 1
1−γ − 1 ≤ γ

1−γ ≤ 2γ .

Combining the two cases concludes our proof.

Equipped with the above two lemmas, we are ready to
prove Thm. 1.
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Proof of Thm. 1. Throughout the proof we use the
notation 〈W ?,W t〉 :=

∑k
r=1

∑d
j=1W

?
r,jW

t
r,j . We

prove the theorem by bounding E[〈W ?,WT+1〉] from
above and from below starting with a lower bound.
We can first use the fact that W 1 = 0 to rewrite
E[〈W ?,WT+1〉] as

∑T
t=1 ∆t where

∆t := E[〈W ?,W t+1〉]− E[〈W ?,W t〉] .

Expanding the definition of W t+1 and using Lemma 4
we obtain that for all t, ∆t = E[〈W ?, Ũ t〉] =
E[〈W ?, U t〉] . Next, we note that the definition of the
hinge-loss given in Eq. (4) implies that the following
holds regardless of the value of ŷt

`(W ?, (xt, yt)) ≥ 1[ŷt 6= yt]− 〈W ?, U t〉 .

Therefore ∆t ≥ E[ 1[ŷt 6= yt] ]−`(W ?, (xt, yt)) . Sum-
ming over t we obtain the lower bound

E[〈W ?,WT+1〉] =
T∑
t=1

∆t ≥ E[M̂ ]− L , (8)

where M̂ :=
∑T
t=1 1[ŷt 6= yt] and L is as de-

fined in Eq. (5). Next, we show an upper bound
on E[〈W ?,WT+1〉]. Using Cauchy-Schwartz inequal-
ity we have 〈W ?,WT+1〉 ≤ ‖W ?‖F ‖WT+1‖F . To
ease our notation, we use the shorthand ‖ · ‖ for de-
noting the Frobenius norm. Using the definition of D
given in Eq. (6), the concavity of the sqrt function,
and Jensen’s inequality we obtain that

E[〈W ?,WT+1〉] ≤
√

D E[ ‖WT+1‖2 ]
2 . (9)

We therefore need to upper bound the expected value
of ‖WT+1‖2. Expanding the definition of WT+1 we
get that

E[‖WT+1‖2] = E[‖WT ‖2 + 〈WT , ŨT 〉+ ‖ŨT ‖2]

=
T∑
t=1

(
E[〈W t, Ũ t〉] + E[ ‖Ũ t‖2 ]

)
.

Using Lemma 4 we obtain that E[〈W t, Ũ t〉] =
E[〈W t, U t〉] ≤ 0, where the second inequality follows
from the definition of U t and ŷt. Combining this with
Lemma 5 and with the assumption ‖xt‖ ≤ 1 for all t
we obtain that

E[‖WT+1‖2] ≤
T∑
t=1

E
(

2k
γ 1[yt 6= ŷt] + 2γ1[yt = ŷt]

)
≤ 2k

γ E[M̂ ] + 2 γ T .

Plugging the above into Eq. (9) and using the inequal-
ity
√
a+ b ≤

√
a+
√
b we get the upper bound

E[〈W ?,WT+1〉] ≤
√

Dk E[M̂ ]
γ +

√
Dγ T .

Comparing the above upper bound with the lower
bound given in Eq. (8) and rearranging terms yield

E[M̂ ]−
√

Dk E[M̂ ]
γ −

(
L+

√
Dγ T

)
≤ 0 .

Standard algebraic manipulations give the bound

E[M̂ ] ≤ L+
√

DkL
γ + 3 max

{
Dk
γ ,

√
Dγ T

}
.

Finally, our proof is concluded by noting that in ex-
pectation we are exploring no more than γT of the
rounds and thus E[M ] ≤ E[M̂ ] + γT .

4. Mistake Bounds Under Separability

In this section we present results towards characteriz-
ing the optimal achievable rate for the case where the
data is separable. Here, in the full-information set-
ting, the mistake bound of the Perceptron algorithm
is finite and bounded by D. We now present an (inef-
ficient) algorithm showing that the achievable mistake
bound in the bandit setting is also finite — thus the
Banditron’s mistake bound of O(

√
T ) leaves signifi-

cant room for improvement (though the algorithm is
quite simple and has reasonable performance, which
we demonstrate in the next section).

First, as a technical tool, we make the interesting ob-
servation that the halving algorithm (generalized to
the multiclass setting) is also applicable to the bandit
setting. The algorithm is as follows: LetH′ be the cur-
rent set of “active” experts, which is initialized to the
full set, i.e. H = H′ at t = 1. At each round t, we pre-
dict using the majority prediction r (i.e. the prediction
r ∈ [k] which the most hypotheses in H′ predict). If
we are correct, we make no update. If we are incorrect,
we remove from the active set, H′, those h ∈ H′ which
predicted the incorrect label r. Crucially, this (gener-
alized) halving algorithm is implementable with only
the bandit feedback that we receive. This algorithm
enjoys the following mistake bound.

Lemma 6. (Halving Algorithm). The halving algo-
rithm (in the bandit setting) makes at most k ln |H|
mistakes on any sequence in which there exists some
hypothesis in H which makes no mistakes.

Proof. Whenever the algorithm makes a mistake, the
size of active set is reduced by at least a 1 − 1/k
fraction, since majority prediction uses a fraction of
hypothesis (from the active set) that is at least 1/k.
Since the algorithm never removes a perfect hypothesis
from the active set, the maximal number of mistakes,
M , that can occur until H′ consists of only perfect
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hypotheses satisfies (1− 1/k)M |H| ≥ 1. Using the in-
equality (1− 1/k) ≤ e−1/k and solving for M leads to
the claim.

Using this, the following theorem shows that the
achievable bound for the number of mistakes is asymp-
totically finite. Unfortunately, the result has a dimen-
sionality dependence on d. The algorithm essentially
uses the margin condition to construct an appropri-
ately sized cover for H, the set of all linear hypotheses,
and runs the halving algorithm on this cover.

Theorem 7. There exists a deterministic algorithm
(in the bandit setting), taking D as input, which
makes at most O(k2d ln(Dd)) mistakes on any se-
quence (where ‖xt‖ ≤ 1) that is linearly separable at
margin 1 by some W ?, with 2||W ?||2F ≤ D.

Proof. (sketch) Since the margin is 1, it is straightfor-
ward to show that if W is a perturbation of W ? which
satisfies ||W ? −W ||∞ ≤ O( 1√

d
), then the data is still

linearly separable under W . By noting that each co-
ordinate in W ? is (rather crudely) bounded by

√
D,

there exists a discretized grid of H of size O(
√
Dd)kd

which contains a linear separator. The algorithm sim-
ply runs the halving algorithm on this cover.

This result is in stark contrast to the Perceptron mis-
take bound which has no dependence on the dimen-
sion d. We now provide a mistake bound with no de-
pendence on the dimension. Unfortunately, it is not
asymptotically finite, as it is has a rather mild de-
pendence on the time — it is O(D lnT ) (ignoring k
and higher order terms), while the Perceptron mistake
bound is O(D).

Theorem 8. There exists a randomized algorithm (in
the bandit setting), taking as inputs D, T and δ > 0,
such that with probability greater than 1 − δ the algo-
rithm makes at most O(k2D ln T+k

δ (lnD+ ln ln T+k
δ ))

mistakes on any T length sequence (where ‖xt‖ ≤ 1)
that is linearly separable at margin 1 by some W ?, with
2||W ?||2F ≤ D.

The algorithm first constructs a random projection op-
erator which projects any x into a space of dimension
d′ = O(D ln T+k

δ ), and then it runs the previous al-
gorithm in this lower dimensional space. The proof
essentially consists of using the results in Arriaga and
Vempala [2006] to argue that the (multiclass) margin
is preserved under this random projection.

Proof. (sketch) It is simpler to rescale W ? such that
||W ?||F = 1 and the margin is 1/

√
D. Consider the

T+k points x1 to xT and the (row) vectorsW ?
1 , . . .W

?
k ,

whose norms are all bounded by 1. Let P be a matrix
of dimension d′ × d, where each entry of P is inde-
pendently sampled from U(−1, 1). Define the projec-
tion operator Π(v) = 1√

d′Pv. Corollary 2 of Arriaga
and Vempala [2006] (essentially a result from the JL
lemma) shows that if d′ = O(D ln T+k

δ ) then this pro-
jection additively preserves the inner products of these
points up to 1

3
√
D

, i.e. |Π(W ?
r )·Π(xt)−W ?

r ·xt| ≤ 1
3
√
D

.
It follows that, after the projection, the data is lin-
early separable with margin at least 1

3
√
D

. Letting
Π(W ?) denote the matrix where each row of W ? has
been projected, then, also by the JL lemma, the norm
||Π(W ?)||F will (rather crudely) be bounded by 2 (re-
call ||W ?||F = 1). Hence, the projected data is linearly
separable at margin 1/(3

√
D) by a weight matrix that

has norm O(1), which is identical to being separable
at margin 1 with weight vector of complexity O(D).
The algorithm is to first create a random projection
matrix (which can be constructed without knowledge
of the sequence) and then we can run the previous
algorithm on the lower dimensional space d′. Since
we have shown that the margin is preserved (up to a
constant) in the lower dimensional space, the result
follows from the previous Theorem 7, with d′ as the
dimensionality.

We discuss open questions in the Extensions section.

5. Experiments

In this section, we report some experimental results for
the Banditron algorithm on synthetic and real world
data sets. For each data set, we ran Banditron for
a wide range of values of the exploration parameter
γ. For each value of γ, we report the average error
rate, where the averaging is over 10 independent runs
of Banditron.

The results are shown on Fig. 1. Each column corre-
sponds to one data set. The top figures plot the error
rates of Banditron (for the best value of γ) and Per-
ceptron as a function of the number of examples seen.
We show these on a log-log scale to get a better visual
indication of the asymptotics of these algorithms. The
bottom figures plot the final error rates on the com-
plete data set as a function of γ. As expected, setting
γ too low or too high leads to higher error rates.

The first data set, denoted by SynSep, is a 9-class,
400-dimensional synthetic data set of size 106. The
idea is to have a simple simulation of generating a text
document. The coordinates represent different words
in a small vocabulary of size 400. See the caption of
Figure 1 for details. We ensure, by construction, that
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Figure 1. Error rates of Perceptron (dashed) and Banditron (solid) on the SynSep (left), SynNonSep (middle), and
Reuters4 (right) data sets. The 9-class synthetic data sets are generated as follows. We fix 9 bit-vectors v1, . . . , v9 ∈
{0, 1}400 each of which has 20 to 40 bits turned on in its first 120 coordinates. The supports of some of these vectors
overlap. The vectors vi correspond to 9 topics where topic i has “keywords” that correspond to the bits turned on in vi.
To generate an example, we randomly choose a vi and randomly turn off 5 bits in its support. Further, we randomly turn
on 20 additional bits in the last 280 coordinates. The last 280 coordinates thus correspond to common words that can
appear in a document from any topic.

SynSep is linearly separable. The left plots in Figure 1
show the results for this data set. Since this is a sep-
arable data set, Perceptron makes a bounded number
of mistakes and its error rate plot falls at a rate of 1/T
yielding a slope of −1 on a log-log plot. Corollary 2
predicts that error rate for Banditron should decay
faster than 1/

√
T and we indeed see a slope of approx-

imately −0.55 on the log-log plot. The second data
set, denoted by SynNonSep, is constructed in the
same way as SynSep except that we introduce 5% la-
bel noise. This makes the data set non-separable. The
middle plots in Fig. 1 show the results for SynNon-
Sep. The Perceptron error rate decays till it drops to
10% and then becomes constant. Banditron does not
decay appreciably till 104 examples after which it falls
rapidly to its final value of 10−0.89 = 13%.

We construct our third data set Reuters4 from the
Reuters RCV1 collection. Documents in the Reuters
data set can have more than one label. We restrict
ourselves to those documents that have exactly one
label from the following set of labels: {ccat, ecat,
gcat, mcat}. This gives us a 4-class data set of size
673, 768 which includes about 84% of the documents
in the original Reuters data set. We do this because
the model considered in this paper assumes that ev-
ery instance has a single true label. See the Extensions
section for a discussion about dealing with multiple la-
bels. We represent each document using bag-of-words,

which leads to 346, 810 dimensions. The right plots in
Fig. 1 show the results for Reuters4. The final er-
ror rates for Perceptron and Banditron (γ = 0.05) are
5.3% and 16.3% respectively. However, it is clear from
the top plot that as the number of examples grows,
the error rate of Banditron is dropping at a rate com-
parable to that of Perceptron.

6. Extensions and Open Problems

We now discuss a few extensions of the Banditron algo-
rithm and some open problems. These extensions may
possibly improve the performance of the algorithm and
also broaden the set of applications that can be tack-
led by our approach. Due space constraints, we confine
ourselves to a rather high level overview.

Label Ranking: So far we assumed that each in-
stance vector is associated with a single correct label
and we must correctly predict this particular label. In
many applications this binary dichotomy is inadequate
as each label is associated with a degree of relevance,
which reflects to what extent it is relevant to the in-
stance vector in hand. Furthermore, it is sometime
natural to predict a subset of the labels rather than
a single label. For example, consider again the prob-
lem of sponsored advertising on webpages described in
the Introduction. Here, the system presents the user
with a few ads. If the user positively responds to one
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of the suggestions (say by a “click”), this implies that
the user prefers this suggestion over the other sugges-
tions, but it does not necessarily mean that the other
suggestions are completely wrong.

We now briefly discuss a possible extension of the Ban-
ditron algorithm for this case (using techniques from
Crammer et al. [2006]). On each round, we first find
the r top ranked labels (where ranking is according to
〈wr,xt〉). With probability 1− γ we exploit and pre-
dict these labels. With probability γ we explore and
randomly change one of the top ranked labels with
another label which is ranked lower by our model. If
we are exploring and the user chooses the replaced la-
bel, then we obtain a feedback that can be used for
improving our model. The Banditron analysis can be
generalized to this case, leading to bounds on the num-
ber of rounds in which the user negatively responds to
our advertisement system.

Multiplicative Updates and Margin-Based Up-
dates: While deriving the Banditron algorithm, our
starting point was the Perceptron, which is an ex-
tremely simple online learning algorithm for the full
information case. Over the years, many improvements
of the Perceptron were suggested (see for example
Shalev-Shwartz and Singer [2007] and the references
therein). It is therefore interesting to study which al-
gorithms can be adapted to the Bandit setting. We
conjecture that it is relatively straightforward to adapt
the multiplicative update scheme [Littlestone, 1988,
Kivinen and Warmuth, 1997] to the bandit setting
while achieving mistake bounds similar to the mistake
bounds we derived for the Banditron. It is also possi-
ble to adapt margin-based updates (i.e. updating also
when there is no prediction mistake but only a mar-
gin violation) to the bandit setting. Here, however, it
seems that the resulting mistake bounds for the low
noise case are inferior to the bound we obtained for
the Banditron.

Achievable Rates and Open Problems: The im-
mediate question is how to improve our rate of O(T 2/3)
to O(

√
T ) in the general setting with an efficient al-

gorithm. We conjecture this is at least possible by
some (possibly inefficient) algorithm. Important open
questions in the separable case are: What is the opti-
mal mistake bound? In particular, does there exist a
finite mistake bound which has no dimensionality de-
pendence? Furthermore, are there efficient algorithms
which achieve the mistake bound of O(D lnT ), pro-
vided in Theorem 8 (or better)? Practically speaking,
this last question is of the most importance, as then
we would have an algorithm that actually achieves a
very small mistake bound in certain cases.
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Abstract

We show how the regularizer of Transduc-
tive Support Vector Machines (TSVM) can
be trained by stochastic gradient descent for
linear models and multi-layer architectures.
The resulting methods can be trained on-
line, have vastly superior training and test-
ing speed to existing TSVM algorithms, can
encode prior knowledge in the network archi-
tecture, and obtain competitive error rates.
We then go on to propose a natural gen-
eralization of the TSVM loss function that
takes into account neighborhood and mani-
fold information directly, unifying the two-
stage Low Density Separation method into a
single criterion, and leading to state-of-the-
art results.

1. Introduction

Several methods for improving discriminative classi-
fiers using unlabeled data have been developed in the
last few years. Perhaps the two most popular ways of
utilizing the unlabeled data are:

(i) maximizing the margin on the unlabeled data
as in Transductive Support Vector Machines
(TSVM) so that the decision rule lies in a region
of low density; and

(ii) learning the cluster or manifold structure from
the unlabeled data as in cluster kernels (Chapelle
et al., 2003), label propagation (Zhu & Ghahra-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

mani, 2002), and Laplacian SVMs (Belkin et al.,
2006).

Both approaches can be seen as making the same
structure assumption on the data, that the cluster or
manifold structure in the data is correlated with the
class labels of interest.

The Low Density Separation algorithm (LDS)
(Chapelle & Zien, 2005) is a two-stage algorithm that
combines both of these approaches, with improved re-
sults over using only one of the techniques, however
the combination method is somewhat ad-hoc.

A serious problem with all these methods is that they
suffer from an inability to scale to very large datasets,
apart from in the linear case (Sindhwani & Keerthi,
2006). This is ironic because the potential gain of
semi-supervised learning lies in the vast amounts of
readily available unlabeled data. This performance
gain is never attained simply because of the compu-
tational burden of calculating the result. In the con-
clusion of the article describing the LDS algorithm the
authors state:

“We observe that the time (and to some degree, also
space) complexities of all methods investigated here
prohibit the application to really large sets of unla-
beled data, say, more than a few thousand. Thus, work
should also be devoted to improvements of the com-
putational efficiency of algorithms, ideally of LDS.”

In this work we propose a new method for semi-
supervised learning which features the following im-
provements over existing approaches:

• A new regularizer for semi-supervised learning is
proposed, that is a unification of the approaches
in both margin-based and manifold-based regular-
ization. As such it represents a clean version of
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the LDS method in a single objective, rather than
an ad-hoc two-stage approach. Experimental re-
sults show its good performance.

• We train our system using stochastic gradient de-
scent and choose linear or multi-layer architec-
tures rather than kernel methods. This results
in far faster training and testing times than ex-
isting methods, and also allows semi-supervised
learning to be performed online. Our method can
easily scale to millions of examples.

• We show it is also possible to encode domain
knowledge into our multi-layer architecture ap-
proach, resulting in excellent generalization per-
formance. This is demonstrated by training semi-
supervised convolutional networks for image data.

The rest of the article is as follows. Section 2 describes
in detail existing margin and manifold based regular-
ization approaches, and scalability of the resulting al-
gorithms. Section 3 describes our proposed approach,
Section 4 compares it experimentally to existing meth-
ods, and Section 5 concludes.

2. Existing Approaches

As stated in the introduction, two of the most pop-
ular loss functions (regularizers) for using unlabeled
data are margin-based regularization as in TSVMs and
manifold-based regularization. We will discuss each of
these in turn.

2.1. TSVMs

The Transductive Support Vector Machine (TSVM)
is an algorithm originally proposed by Vapnik (1998)
to take advantage of both a labeled training set and
an unlabeled test set during prediction time. It was
named that way because Vapnik proved bounds on
generalization performance given the availability of the
test set that were superior to induction based on using
the labeled training set alone. The idea of the algo-
rithm was:

(i) Choose a nested set of functions F1 ⊂ F2 ⊂ . . .
of increasing capacity.

(ii) For each possible labeling of the test examples,
find the smallest subset Fk that can classify both
training and testing data correctly.

(iii) Choose the labeling which required the smallest
index k.

In terms of actual implementation it is known that the
notion of margin – the distance of examples from the
classifier’s decision rule – is connected to the concept
of capacity (Vapnik, 1998), so a simple algorithm is
the following: choose the decision rule that maximizes
the margin on both labeled and unlabeled examples.

The Support Vector Machine (Vapnik, 1998) for two-
class classification already implements a margin based
capacity control on labeled examples, using an opti-
mization problem of the following form:

min
w,b

γ||w||2 +
L∑

i=1

`(f(xi), yi) (1)

where the family of functions are

f(x) = w · x + b (2)

and {(xi, yi), . . . , (xL, yL)} ⊂ Rd × {±1} are the la-
beled training examples, and the loss function `(·, ·) is
the so-called hinge loss:

`(f(x), y) = max(0, 1− yf(x)). (3)

To implement Transductive SVMs it is (almost) suffi-
cient to take the SVM optimization problem (1) and
add an extra term for the unlabeled examples:

min
w,b

γ||w||2 +
L∑

i=1

`(f(xi), yi) + λ

U∑
i=1

`∗(f(x∗i )) (4)

where the U unlabeled examples use the so-called sym-
metric hinge loss function

`∗(f(x∗)) = max(0, 1− |f(x∗)|) (5)

which, intuitively speaking, pushes the unlabeled ex-
amples far from the margin: the absolute value is
necessary in equation (5) because one does not know
which side of the hyperplane those examples should
lie on, unlike the labeled examples, so effectively the
classifier trains on its own predictions. This notion of
self-learning (Chapelle et al., 2006) can cause disas-
trous consequences in some cases: especially when the
dimensionality d � L one might be able to classify all
unlabeled examples as belonging to one class whilst
still classifying the labeled data correctly, giving a low
value of the objective function, but nonsense results.
This is solved by introducing a so-called balancing con-
straint which attempts to keep some of the unlabeled
examples in each class.

Many researchers seem to be believe that the TSVM
objective function is a good choice for semi-supervised
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learning. However, finding a solution to the non-
convex problem is far from easy, and thus several im-
plementations have been attempted thus far. We will
now describe some of those specific implementations,
and their key differences.

S3VM The authors of (Bennet & Demiriz, 1998)
proposed to use mixed integer programming to find
the labeling with the lowest objective function. The
optimization appears intractable for large datasets, as
“the solver failed due to excessive branching” in those
cases. Only the linear case was considered, and no
balancing constraint was used.

SVMLight-TSVM In (Joachims, 1999) a heuristic
algorithm was proposed that at first fixes the labels of
the unlabeled examples and then iteratively switches
those labels to improve the TSVM objective function,
solving a convex SVM objective function at each step.
The nonlinear case is implemented by solving in the
dual, resulting in a kernel model of the form:

f(x) =
L∑

i=1

αiyiK(xi, x) +
U∑

i=1

α∗
i K(x∗i , x) + b (6)

A balancing constraint enforces that the fraction of
positive and negatives assigned to the unlabeled data
should be the same fraction as found in the labeled
data. According to the proof of convergence, the al-
gorithm at worst case could look at all 2U labelings,
but this is rather unlikely. The algorithm can deal
with a few thousand examples in the nonlinear case in
practice, but is faster in the linear case.

VS3VM In (Fung & Mangasarian, 2001) a concave-
convex minimization approach was proposed that
solves successive convex problems, usually requiring
only 5-7 linear programs, where they chose the L1

norm of w as a regularizer instead of the L2 norm.
They studied the linear case, with no balancing con-
straint. This method will scale like the linear solver
used in each iteration.

∇TSVM More recently, the authors of (Chapelle &
Zien, 2005) proposed to optimize TSVM by gradient
descent in the primal. For the nonlinear case, Ker-
nel PCA has to be performed so that optimization in
the primal is possible. This algorithm is faster than
SVMLight-TSVM at least for small datasets (Col-
lobert et al., 2006), but still has cubic complexity
O((U + L)3). This method also requires one to store
the entire kernel matrix of (U +L)2 elements in mem-
ory, which clearly becomes infeasible for large datasets.

The authors introduced a balancing constraint that is
amenable to gradient descent:

1
U

U∑
i=1

f(x∗i ) =
1
L

L∑
i=1

yi . (7)

CCCP-TSVM The authors of (Collobert et al.,
2006) proposed to apply the Concave-Convex proce-
dure for non-convex problems to TSVMs, which can
be seen as a nonlinear extension of VS3VMs. It uses
the same balancing constraint as ∇TSVM. This im-
plementation is over 100 times faster than SVMLight-
TSVM and 50 times faster than ∇TSVM (for L+U =
2000), and appears to scale better as well. It has em-
pirically quadratic complexity because it relies on the
sparsity of the SVM solution for improved speed and
memory requirements. However, it still takes around
40 hours on a modern machine to solve a problem with
60,000 unlabeled examples in the nonlinear case.

Large Scale Linear TSVMs The authors of (Sind-
hwani & Keerthi, 2006) recently proposed a large scale
TSVM method for the linear case. They focused on
text problems with large sparse feature vectors and
train the model (2) directly in the primal. In particu-
lar, they use a label switching heuristic like SVMLight-
TSVM, but switch multiple labels at once.

In the nonlinear case things are not so easy. One is
restricted in the quest to reduce training time by the
prediction speed of the model (6) . Moreover, compu-
tation grows as the training data grows (Steinwart &
Scovel, 2005). Even if one tries tricks to keep a fixed
number of basis functions these methods are still slow
compared to multi-layer models (Burges, 1996).

2.2. Manifold-based regularization

A separate direction of research in semi-supervised
learning is manifold-learning based regularization.
The main idea in these approaches is to find a rep-
resentation of the data which collapses points lying in
the same manifold so that a classification algorithm
can easily predict that they share the same class label.

These methods can be split into two categories: those
which treat this as a two-stage problem: (i) learn an
embedding and (ii) train a classifier in this new space,
and those which try to do everything in a single step.

To train a two-stage classifier, in the first stage
one employs any manifold-learning algorithm such as
Isomap (Tenenbaum et al., 2000), Laplacian Eigen-
maps (Belkin & Niyogi, 2003) or spectral clustering
(Ng et al., 2002). The authors of (Chapelle et al.,
2003) use such methods to build a kernel for SVMs
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and call these kernels “cluster kernels”. The “graph”-
SVM method proposed in (Chapelle & Zien, 2005) also
builds a kernel for SVM. In this method one embeds
in a space where distances are the shortest paths on
the graph weighted with the original distance mea-
sure, similar to the Isomap algorithm. Thus, points
connected by regions of high density are close to each
other in the new space.

To learn a single stage classifier, one has to introduce
a regularizing term in the objective function which di-
rectly encodes behavior such as that described in the
previous paragraph. The Laplacian Eigenmaps em-
bedding algorithm in particular employs an objective
function that is easily encoded in a classifier:∑

ij

Wij ||f(xi)− f(xj)||2 (8)

Such a regularizer has been used both to generalize a
Parzen-windows (Duda & Hart, 1973) type classifier
resulting in a method called label propagation (Zhu &
Ghahramani, 2002), and in SVMs. The SVM method
is called Laplacian SVMs (LapSVM) (Sindhwani et al.,
2005) and minimizes:

min
w,b

L∑
i=1

`(f(xi), yi)+γ||w||2+λ
U∑

i,j=1

Wij ||f(x∗i )−f(x∗j )||2

(9)

We speculate here that forcing the Euclidean distance
to be small if two points are assumed to be the same
label might be a little stringent as for prediction it is
only the sign of f(x∗) that is important. Moreover, we
also note that the lack of balancing constraint might
mean in high dimensions that all the unlabeled exam-
ples can collapse to a single prediction.

In contrast, the LDS method (Chapelle & Zien, 2005)
proposes to use both TSVM and manifold regularizers
at once in a two-stage method. First, the Isomap-like
embedding method of “graph”-SVM is used whereby
data is clustered. Then, in the new embedding space,
∇TSVM is applied. The authors found that using both
regularizers at once was better than using one type of
regularizer alone.

In summary, we have discussed several algorithms
which use two main types of regularizer: a cluster-
ing or an embedding that takes into account struc-
ture in the unlabeled data. Indeed TSVM is a kind of
large margin clustering as has been exploited in (Xu
et al., 2005) and is strongly related to classical tech-
niques like competitive learning (Duda & Hart, 1973).
In (Chapelle & Zien, 2005) the authors speculate that
manifold-based regularization has a stabilizing effect

on TSVM optimization. Without such neighborhood-
based regularization TSVMs only compare unlabeled
examples to the existing model, and not to each other.
Using both approaches as in LDS is thus a smart idea,
however it suffers from two problems: (i) the two-stage
approach seems ad-hoc and (ii) the method is slow.

In the next Section we propose a new approach which
remedies these problems.

3. Proposed Approach

We propose the following algorithm, named Manifold
Transduction: minimize

1
L

L∑
i=1

`(f(xi), yi) +
λ

U2

U∑
i,j=1

Wij `
(
f(x∗i ), y

∗({i, j})
)

(10)
where

y∗(N) = sign(
∑
k∈N

f(x∗k)) (11)

where the edge weights Wij define pairwise similarity
relationships between unlabeled examples x∗.

This objective, like TSVMs objective, is non-convex
and there is no simple optimization scheme for solv-
ing it even for linear models such as kernel machines.
Because of this fact, and the scalability problems with
nonlinear kernel methods, we propose several novel al-
gorithmic choices in its implementation:

(i) We minimize this function in the primal by
stochastic gradient descent. This makes on-
line semi-supervised learning possible for the first
time.

(ii) In the nonlinear case we employ a multi-layer ar-
chitecture to define f(x). This makes both train-
ing and testing far faster than competing kernel
methods such as TSVM.

(iii) We also make a specific recommendation for the
implementation of an online balancing constraint.

We will now study this algorithm, and explain the rea-
son for these choices in detail.

3.1. Objective function

In (10) we propose a new loss function for unlabeled
examples:

`∗(f(x∗i )) = `
(
f(x∗i ), y

∗(N)
)

(12)

where N is a set of examples that one believes share
the same label, e.g. a set of neighboring examples. The
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function y∗ predicts the label of that set by taking the
mean prediction.

For both labeled and unlabeled training data we use
the hinge loss (3) as in SVMs.

In equation (10) we consider pairs of examples,
weighted by the graph Wij . If Wii = 1 and Wij = 0
for i 6= j then we recover the TSVM loss function:

`∗(f(x∗i )) = `
(
f(x∗i ), sign(f(x∗i ))

)
(13)

because we do not take neighborhood information into
account.

Setting Wij = 1 if x∗i is among the k-nearest neighbors
of x∗j , and zero otherwise, our algorithm becomes a
natural generalization of TSVM that regularizes using
neighborhood information. This is a similar regular-
izer to the neighborhood-based manifold regularizers
of Section 2.2 but based on clustering rather than em-
bedding.

We make the assumption that if two examples are
neighbors then they have the same class label, whereas
manifold-based regularization assumes they are close
in an embedding space. Our constraint is not as strict,
but captures the prior we wish to encode. For exam-
ple, if one class of data has more variance than the
other, then the regularization of (9) might focus on
that class, and ignore the other.

Extensions of our algorithm are also possible.
First, in the multi-class case where f(x∗) outputs
a c-dimensional vector, we can define y∗(N) =
argmax

∑
k∈N f(x∗k). Further, if the set N contains

more than two examples then our algorithm takes into
account a neighborhood in analogy to k-nearest neigh-
bor. This is not easily possible with the approach of
(9) which is limited to pairs.

3.2. Model: Multi-Layer Architecture

As already discussed, the issue that makes all the pre-
viously described algorithms computationally expen-
sive in the nonlinear case is their choice of the kernel
expansion (6). Instead we propose to use a multi-layer
model of the form:

f(x) =
d∑

i=1

w0
i hi(x) + b

where typically one chooses hidden units

hi(x) = S
( ∑

j

wi
j xj + bi

)

Algorithm 1 Online Manifold Transduction
Input: labeled data (xi, yi) and unlabeled data x∗i
repeat

Pick a random labeled example (xi, yi)
Make a gradient step to optimize `(f(xi), yi)
Pick a random unlabeled example x∗i
Pick a random neighbor x∗j of x∗i
Predict label y∗ = y∗({i, j})
if fraction of recent assignments to class y∗ <
pest(y∗) (see Section 3.4) then

Make a gradient step for `(f(x∗i ), y
∗)

end if
until stopping criteria is met.

where S is a non-linear squashing function. We use
the Hard Tanh function:

S(x) =

1 if x ≥ 1

−1 if x ≤ −1

x otherwise.

In the multi-class case we define one output fi(x) for
each class, but each function fi shares the same hidden
units hj , as is often done in neural network models.

The flexibility of using multi-layer architectures also
allows us to encode prior knowledge into our model.
For example, convolutional neural networks (CNNs)
(LeCun et al., 1998) have several layers of image patch
based feature maps applied across the input image.
Such networks have been shown to perform very well
in digit, face and 3D object detection tasks.

3.3. Optimization: Stochastic Gradient

We optimize our objective online, in the primal, using
stochastic gradient descent. Recent experimental com-
parisons show this approach often outperforms sophis-
ticated optimizer schemes (Bottou, 2007). To simplify
the hyperparameters we fix λ = 1 in our experiments,
yielding the method described in Algorithm 1. If the
model is multi-layered then we use backpropagation
(see, e.g. (Duda & Hart, 1973)) during the gradient
step. A typical stopping criteria is to use a validation
set or to measure the objective function value.

3.4. Balancing Constraint

To implement a balancing constraint while learning
online we keep a cache of (arbitrarily) the last 25c pre-
dictions f(x∗i ) where c is the number of classes. This is
dependent on c because if c is large the cache must also
be large or the estimates will be too poor. We then
try to make the next prediction balanced assuming we
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have a fixed estimate pest(y) of the probability of each
class, which without further information, can be esti-
mated from the labeled data: ptrn(y = i) = |{i:yi=i}|

L .
We consider two alternatives:

1. ∇bal Adding the term (7) to the objective func-
tion multiplied by a scaling factor as in ∇TSVMs.
The disadvantage of such an approach is that the
scaling factor is a further hyperparameter.

2. ignore−bal Count how many examples in the
cache have been attributed to each class. If the
next unlabeled example x∗ is given a label y∗ by
the model that already has too many examples
assigned to it, then we simply do not make a gra-
dient step for this example.

We note that the quality of ptrn depends on the ratio
of labeled examples L to the number of classes c, not
the input dimensionality d. Thus it may be a good
estimate in many real datasets. However, because in
some of the small datasets used in (Chapelle & Zien,
2005) it is a poor estimate we consider improving this
estimate by taking into account that we have access
to unlabeled data. We suggest the following simple
method pknn: label the k nearest neighbors of each
labeled example with its label. If k is large enough
some labeled points will label the same examples, and
so when we count the number of points assigned to
each class, we achieve a smoothed version of ptrn.

4. Experiments

4.1. Small Scale Datasets

We first report results on three small-scale datasets,
summarized in Table 1. We follow the methodology
in (Chapelle & Zien, 2005; Collobert et al., 2006) and
report the best mean test error for a fixed set of hyper-
parameters over 10 splits of the data. For our method,
we test standard transduction (our regularizer with no
neighborhood information), called TNN (Transductive
Neural Network), and our method with neighborhood
information, called ManTNN (Manifold Transduction
Neural Network). We also compute a baseline Neural
Network (NN).

For NN, TNN and ManTNN we fixed 50000 iterations
of Algorithm 1 and for ManTNN we chose 10 near-
est neighbors for all datasets. We also choose not to
minimize `(f(x∗i ), y

∗) for the first 10L iterations so
that the classifier first finds a good model with la-
beled data alone before using the unlabeled data. We
thus have two free parameters: the choice of hidden
units {0,50,100,150,200} and the choices of learning
rate { 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005 }.

Table 1. Datasets used in the experiments. The first three
are small-scale datasets using the same experimental setup
as found in (Chapelle & Zien, 2005). Mnist1h and Mnist1k
use the same experimental setup as in (Collobert et al.,
2006). Mnist1k+Invar uses shifted versions of digits to
make an unlabeled set of 630,000 examples.

data set classes dims points labeled
g50c 2 50 500 50
Text 2 7511 1946 50
Uspst 10 256 2007 50
Mnist1h 10 784 70k 100
Mnist1k 10 784 70k 1000
Mnist1k+Invar 10 784 630k 1000

Table 2. Test Error for various methods for enforcing the
balancing constraint, see Section 3.4 for explanation. The
“no bal” method does not use a balancing constraint. ptrn

and ptst balance using the training and testing set distribu-
tions respectively, and pknn estimates the true distribution
using a k-nn based method on the unlabeled data.

Uspst g50c
ptrn pknn ptst ptrn pknn ptst

TNN
no bal 22.3 – – 6.5 – –
∇bal 30.4 29.3 29.4 6.5 6.5 6.5
ignore-bal 19.1 16.1 12.5 6.1 6.3 6.3

ManTNN
ignore-bal 15.6 11.9 8.5 5.9 5.7 5.5

Table 3. Transductive (T-) and Manifold Transduction
(ManT-) versions of Neural Networks (NN) as well as a
baseline NN are compared to existing methods on Small-
Scale Datasets. Following (Chapelle & Zien, 2005) all
methods apart from those marked (*) have test error rates
reported for a fixed set of hyperparameters averaged over
10 splits, where that fixed set is chosen using the test er-
ror itself. All methods have 2 free hyperparameters. In
comparison, the methods marked (*) have parameters op-
timized on each split using 5-fold cross-validation.

g50c Text Uspst

SVM 8.32 18.86 23.18
SVMLight-TSVM 6.87 7.44 26.46
CCCP-TSVM 5.62 7.97 16.57
∇TSVM 5.80 5.71 17.61

LapSVM(∗) 5.4 10.4 12.7

LDS(∗) 5.4 5.1 15.8
Label propagation 17.30 11.71 21.30
graph 8.32 10.48 16.92

NN 8.54 15.87 24.57
TNN 6.34 6.11 16.06
ManTNN 5.66 5.34 11.90
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Balancing constraint comparison We first com-
pare the balancing constraint methods ∇bal and
ignore-bal and three different strategies for computing
the class distribution ptrn, pknn and ptst as described
in Section 3.4. ptrn measures the training set distri-
bution, pknn estimates the unlabeled set distribution
(which is what we are really interested in) by using a
k-nn like method, and ptst is the true distribution of
the unlabeled data, which is inaccessible in a real sit-
uation. A comparison on two of the datasets is given
in Figure 2 (results are similar for “text”).

We could not get ∇bal to work well in an online situa-
tion whereas the simple ignore-bal heuristic gives good
results. Due to the small dataset size the difference
in test error between using ptst and ptrn is actually
quite large. Using pknn seems to be a better estimate
than ptrn. We therefore adopt ignore-bal and the pknn

method in the following experiments.

Comparison with other methods We compare
TNN and ManTNN to several TSVM implementations
as well as label propagation, graph, LapSVM and LDS
on the small scale datasets. The results given in Table
3 show that both TNN and ManTNN are competi-
tive with existing approaches, and ManTNN, which
includes the manifold-based transductive regularizer,
outperforms TNN, which uses transduction alone.

4.2. Large Scale Dataset: MNIST

We then compared our method to SVMs and TSVMs
on a “semi-supervised version” of the MNIST digit
database, following (Collobert et al., 2006), using ei-
ther 100 or 1000 labeled examples and 70000 unlabeled
examples, and a validation set of 1000 examples for
choosing parameters. Error rates are measured on the
MNIST test set.

We used a two-layer neural network as before (baseline
NN, TNN, ManTNN), choosing from the same set of
hidden units and learning rates. We use the validation
set as a stopping criteria for Algorithm 1.

We also applied convolutional networks (CNNs), and
transductive versions of them, to this task. We chose
an architecture similar to (LeCun et al., 1998). There
are 6 layers. The first is six 3x3 spatial convolutions
(outputting 26x26x6 features to the next layer). The
second is six spatial 2x2 spatial subsamplings (out-
putting 13x13x6 features). The third is sixteen 4x4
spatial convolutions (outputting 10x10x16 features).
The fourth is sixteen 2x2 spatial subsamplings (giving
5x5x16 features). The fifth is fifty 5x5 spatial convo-
lutions (giving 1x1x50 features). This is followed by
a standard fully connected layer with n hidden units

Table 4. Results on Large-Scale Datasets: MNIST with
100 or 1000 labels and 70,000 unlabeled examples. Test Er-
ror is reported for Transductive (T-) and Manifold Trans-
duction (ManT-) versions of Neural Networks (NN) and
convolutional networks (CNN), and compared to SVMs
and TSVMs. ManTCNN (ptst) uses the test distribution
as the balancing constraint, which if this information were
available, would give improved performance.

Mnist1h Mnist1k
SVM 23.44 7.77
CCCP-TSVM 16.81 5.38
NN 25.81 10.70
TNN 18.02 6.66
ManTNN 7.30 2.88
CNN 22.98 6.45
TCNN 13.01 3.50
ManTCNN 6.65 2.15
ManTCNN (ptst) 1.96 1.87
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Figure 1. Test error versus training times for the TNN and
ManTNN algorithms on Mnist (100 or 1000 labeled exam-
ples, 70000 unlabeled examples). These results compare
favourably with the time to train the fastest TSVM algo-
rithm (Collobert et al., 2006) which took 41.9 hours on the
same machine.

(chosen as in the two-layer net), followed by a linear
layer yielding the final 10 outputs (class predictions).
CNNs encode prior knowledge about spatial features
within the image, which should give improved accu-
racy over a standard NN.

The results are given in Table 4. The baseline NN
performs slightly worse than SVM, but CNNs per-
form slightly better. Applying transduction, TNN
is slightly worse than TSVMs, but TCNN is slightly
better. Manifold Transduction outperforms all these
methods, with ManTNN and ManTCNN performing
almost as well as each other. The last row in the ta-
ble shows ManTCNN trained with the true balancing
constraint (knowing the test distribution). It appears
that for only 100 labeled examples knowing this distri-
bution could make results even better, although with
1000 labeled examples this is less important.
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Training time for TNNs and ManTNNs are given in
Figure 1. The results are shown for the best choice of
hidden units and learning rate as chosen on the valida-
tion set. TNNs take around one hour to reach conver-
gence, and ManTNNs (omitting the time to compute
neighbors for ManTNN) take slightly longer. These
times should be compared to the fastest TSVM imple-
mentation, CCCP-TSVMs, which took 41.9 hours on
the same machine. Our code is not particularly op-
timized and is written in a scripting language with a
C++ back-end. On MNIST, a nonlinear TNN with
200 hidden units can process 1 million unlabeled ex-
amples in an online fashion in 12.5 minutes.

Mnist1k+Invar We also performed experiments on
MNIST1k with a larger unlabeled set of 630,000 exam-
ples by translating the original set by at most one pixel
in each direction. TNN achieves a test error of 5.23%
on the original test set, when choosing the training it-
eration that gives the minimum validation error, and
ManTNN achieves a test error of 2.43%. Both methods
outperform their counterparts trained with less unla-
beled data using MNIST1k. Training time took 4.47
hours and 3.96 hours respectively for the two algo-
rithms, including the computation time for generating
the invariances.

5. Conclusions

In this article we introduced a large scale non-
linear method that elegantly combines the two
main regularization principles for discriminative semi-
supervised learning: transduction and neighborhood-
based (manifold-based) regularization. Our future
work will be to apply this approach to real large-scale
nonlinear problems e.g. applications in vision and nat-
ural language processing.
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Abstract

Policy gradient approaches are a powerful in-
strument for learning how to interact with
the environment. Existing approaches have
focused on propositional and continuous do-
mains only. Without extensive feature engi-
neering, it is difficult – if not impossible –
to apply them within structured domains, in
which e.g. there is a varying number of ob-
jects and relations among them. In this pa-
per, we describe a non-parametric policy gra-
dient approach – called NPPG – that over-
comes this limitation. The key idea is to
apply Friedmann’s gradient boosting: poli-
cies are represented as a weighted sum of re-
gression models grown in an stage-wise opti-
mization. Employing off-the-shelf regression
learners, NPPG can deal with propositional,
continuous, and relational domains in a uni-
fied way. Our experimental results show that
it can even improve on established results.

1. Introduction

Acting optimally under uncertainty is a central prob-
lem of artificial intelligence. If an agents learns to act
solely on the basis of the rewards associated with ac-
tions taken, this is called reinforcement learning (Sut-
ton & Barto, 1998). More precisely, the agent’s learn-
ing task is to find a policy for action selection that
maximizes its reward over the long run.

The dominant reinforcement learning (RL) approach
for the last decade has been the value-function ap-
proach. An agent uses the reward it occasionally re-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

ceives to estimate a value-function indicating the ex-
pected value of being in a state or of taking an action
in a state. The policy is represented only implicitly,
for instance as the policy that selects in each state the
action with highest estimated value. As Sutton et al.
(2000) point out, the value function approach, how-
ever, has several limitations. First, it seeks to find de-
terministic policies, whereas in real world applications
the optimal policy is often stochastic, selecting differ-
ent actions with specific probabilities. Second, a small
change in the value-function parameter can push the
value of one action over that of another, causing a dis-
continuous change in the policy, the states visited, and
overall performance. Such discontinuous changes have
been identified as a key obstacle to establishing con-
vergence assurances for algorithms following the value-
function approach (Bertsekas & Tsitsiklis, 1996). Fi-
nally, value-functions can often be much more complex
to represent than the corresponding policy as they en-
code information about both the size and distance to
the appropriate rewards. Therefore, it is not surprising
that so called policy gradient methods have been de-
veloped that attempt to avoid learning a value function
explicitly (Williams, 1992; Baxter et al., 2001; Konda
& Tsitsiklis, 2003). Given a space of parameterized
policies, they compute the gradient of the expected
reward with respect to the policy’s parameters, move
the parameters into the direction of the gradient, and
repeat this until they reach a local optimum. This
direct approximation of the policy overcomes the lim-
itations of the value function approach stated above.
For instance, Sutton et al. (2000) show convergence
even when using function approximation.

Current policy gradient methods have focused on
propositional and continuous domains assuming the
environment of the learning agent to be representable
as a vector-space. Nowadays, the role of structure
and relations in the data, however, becomes more and
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more important (Getoor & Taskar, 2007): information
about one object can help the agent to reach conclu-
sions about other objects. Such domains are hard to
represent meaningfully using a fixed set of features.
Therefore, relational RL approaches have been devel-
oped (Džeroski et al., 2001), which seek to avoid ex-
plicit state and action enumeration as – in principle
– traditionally done in RL through a symbolic repre-
sentation of states and actions. Existing relational RL
approaches, however, have focused on value functions
and, hence, suffer from the same problems as their
propositional counterparts as listed above.

In this paper, we present the first model-free pol-
icy gradient approach that deals with relational and
propositional domains. Specifically, we present a
non-parametric approach to policy gradients, called
NPPG. Triggered by the observation that finding
many rough rules of thumb of how to change the way
to act can be a lot easier than finding a single, highly
accurate policy, we apply Friedmann’s (2001) gradient
boosting. That is, we represent policies as weighted
sums of regression models grown in a stage-wise op-
timization. Such a functional gradient approach has
recently been used to efficiently train conditional ran-
dom fields for labeling (relational) sequences using
boosting (Dietterich et al., 2004; Gutmann & Ker-
sting, 2006) and for policy search in continuous do-
mains (Bagnell & Schneider, 2003). In contrast to
the supervised learning setting of the sequence labeling
task, feedback on the performance is received only at
the end of an action sequence in the policy search set-
ting. The benefits of a boosting approach to functional
policy gradients are twofold. First, interactions among
states and actions are introduced only as needed, so
that the potentially infinite search space is not explic-
itly considered. Second, existing off-the-shelf regres-
sion learners can be used to deal with propositional
and relational domains in a unified way. To the best of
the authors’ knowledge, this is the first time that such
a unified treatment is established. As our experimen-
tal results show, NPPG can even significantly improve
upon established results in relational domains.

We proceed as follows. We will start off by reviewing
policy gradients and their mathematical background.
Afterwards, we will develop NPPG in Section 3. In
Section 4, we will present our experimental results.
Before concluding, we will touch upon related work.

2. Policy Gradients

Policy gradient algorithms find a locally optimal policy
starting from an arbitrary initial policy using a gra-
dient ascent search through an explicit policy space.

Consider the standard RL framework (Sutton & Barto,
1998), where an agent interacts with a Markov Deci-
sion Process (MDP). The MDP is defined by a number
of states s ∈ S, a number of actions a ∈ A, state-
transition probabilities δ(s, a, s′) : S × A × S → [0, 1]
that represent the probability that taking action a in
state s will result in a transition to state s′ and a re-
ward function r(s, a) : S × A 7→ IR. When the reward
function is nondeterministic, we will use the expected
rewards R(s, a) = Es,a [r(s, a)], where Es,a denotes the
expectation over all states s and actions a. The state,
action, and reward at time t are denoted as st ∈ S,
at ∈ A and rt(or Rt) ∈ IR.

The agent selects which action to execute in a state
following a policy function π(s, a) : S × A → [0, 1].
Current policy gradient approaches assume that the
policy function π is parameterized by a (weight) vector
θ ∈ IRn and that this policy function is differentiable
with respect to its parameters, i.e., that ∂π(s,a,θ)

∂θ ex-
ists. A common choice is a Gibbs distribution based
on a linear combination of features:

π(s, a) = eΨ(s,a)/
(∑

b
eΨ(s,b)

)
, (1)

where the potential function Ψ(s, a) = θT φsa with φsa

the feature vector describing state s and action a. This
representation guarantees that the policy specifies a
probability distribution independent of the exact form
of the function Ψ. Choosing a parameterization, cre-
ates an explicit policy space IRn with n equal to size
of the parameter vector θ. This space can be traversed
by an appropriate search algorithm.

Policy gradients are computed w.r.t. a func-
tion ρ that expresses the value of a policy in
an environment, ρ(π) =

∑
s∈S dπ(s)

∑
a∈A π(s, a) ·

Qπ(s, a) , where Qπ is the usual (possibly dis-
counted) state-action value function, e.g., Qπ(s, a) =
Eπ

[∑∞
i=0 γiRt+i|st = s, at = a

]
, and dπ(s) is the (pos-

sibly discounted) stationary distribution of states un-
der policy π. We assume a fully ergodic environment
so that dπ(s) exists and is independent of any starting
state s0 for all policies.

A property of ρ for both average reward reinforcement
learning and episodic tasks with a fixed starting state
s0 is that (Sutton et al., 2000, Theorem 1)

∂ρ

∂θ
=

∑
s
dπ(s)

∑
a

∂π(s, a)
∂θ

·Qπ(s, a) . (2)

Important to note is that this gradient does not in-
clude the term ∂dπ(s)

∂θ . Eq. (2) allows the computation
of an approximate policy gradient through exploration.
By sampling states s through exploration of the envi-
ronment following policy π, the distribution dπ(s) is
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automatically represented in the generated sample of
encountered states. The sum

∑
a

∂π(s,a)
∂θ Qπ(s, a) then

becomes an unbiased estimate of ∂ρ
∂θ and can be used

in a gradient ascent algorithm.

Of course, the value Qπ is unknown and must be esti-
mated for each visited state-action pair either by us-
ing a Monte Carlo approach or by building an explicit
representation of Q, although in this latter case care
must be taken when choosing the parameterization of
the Q-function (Sutton et al., 2000).

3. Non-Parametric Policy Gradients

A drawback of a fixed, finite parameterization of a
policy such as in Eq. (1) is that it assumes each feature
makes an independent contribution to the policy. Of
course it is possible to define more features to capture
combinations of the basic features, but this leads to
a combinatorial explosion in the number of features,
and hence, in the dimensionality of the optimization
problem. Moreover, in continuous and in relational
environments it is not clear at all which features to
choose as there are infinitely many possibilities.

To overcome these problems, we introduce a different
policy gradient approach based on Friedmann’s (2001)
gradient boosting. In our case, the potential function
Ψ in the Gibbs distribution1 of Eq. (1) is represented
as a weighted sum of regression models grown in an
stage-wise optimization. Each regression model can be
viewed as defining several new feature combinations.
The resulting policy is still a linear combination of fea-
tures, but the features can be quite complex. Formally,
gradient boosting is based on the idea of functional
gradient ascent, which we will now describe.

3.1. Functional Gradient Ascent

Traditional gradient ascent estimates the parameters
θ of a policy iteratively as follows. Starting with some
initial parameters θ0, the parameters θm in the next
iteration are set to the current parameters plus the
gradient of ρ w.r.t. to θ, i.e., θm = θ0 + δ1 + . . . + δm

where δm = ηm · ∂ρ/∂θm−1 is the gradient multiplied
by a constant ηm, which is obtained by doing a line
search along the gradient. Functional gradient ascent
is a more general approach, see e.g. (Friedman, 2001;
Dietterich et al., 2004). Instead of assuming a lin-
ear parameterization for Ψ, it just assumes that Ψ
will be represented by a linear combination of func-

1Other distributions are possible but are subject to fu-
ture research. For instance, it would be interesting to in-
vestigate modeling joint actions of multiple agents in rela-
tioanl domains a long the lines of Guestrin et al. (2002).

tions. Specifically, one starts with some initial func-
tion Ψ0, e.g. based on the zero potential, and itera-
tively adds corrections Ψm = Ψ0 + ∆1 + . . . + ∆m.
In contrast to the standard gradient approach, ∆m

here denotes the so-called functional gradient, i.e.,
∆m = ηm · Es,a [∂ρ/∂Ψm−1]. Interestingly, this func-
tional gradient coincides with what traditional policy
gradient approach estimate, namely (2), as the follow-
ing theorem says.

Theorem 3.1 (Functional Policy Gradient) For
any MDP, in either the average-reward or start-state
formulation,

Es,a

[
∂ρ

∂Ψ

]
=

∑
s,a

dπ(s) · ∂π(s, a)
∂Ψ

·Q(s, a) . (3)

This is a straightforward adaptation of Theorem 1 in
(Sutton et al., 2000) and is also quite intuitive: the
functional policy gradient indicates how we would like
the policy to change in all states and actions in order
to increase the performance measure ρ.

Unfortunately, we do not know the distribution dπ(s)
of how often we visit each state s under policy π. This
is, however, easy to approximate from the empirical
distribution of states visited when following π:

Es,a

[
∂ρ

∂Ψ

]
≈ Es∼π

∑
a

∂π(s, a)
∂Ψ

·Q(s, a)︸ ︷︷ ︸
=:fm(s,a)

 , (4)

where the state s is sampled according to π, denoted
as s ∼ π. We now have a set of traning examples
from the distribution dπ(s), so we can compute the
value fm(s, a) of the functional gradient at each of the
training data points for all2 actions a applicable in s.
We can then use these point-wise functional gradients
to define a set of training examples {(s, a), fm(s, a)}
and then train a function fm : S × A 7→ IR so that it
minimizes the squared error over the training exam-
ples. Although the fitted function fm is not exactly
the same as the desired functional gradient in Eq. (3),
it will point in the same general direction assuming
there are enough training examples. So, taking a step
∆m = ηm · fm will approximate the true functional
policy gradient ascent.

2Here, an update is made for all actions possible in each
state encountered irrespective of which action was actually
taken. Alternatively, we can only make an update for the
one action actually taken (Baxter et al., 2001). To com-
pensate for the fact that some actions are selected more fre-
quently than others, we divide by the probability of choos-
ing the action, i.e., we use fm(s, a)/π(s, a) as functional
gradient training examples and do not run over all actions.
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As an example, we will now derive the point-wise func-
tional gradient of a policy parameterized as a Gibbs
distribution (1). For the sake of readability, we denote
Ψ(s, a) as Ψa and Ψ(s, b) as Ψb.

Proposition 3.1 The point-wise functional gradient
of ρ with respect to a policy parameterized as a Gibbs
distribution (1) equals to Q(s, a) · ∂π(s,a)

∂Ψ with

∂π(s, a)
∂Ψ(s′, a′)

=


π(s, a)(1− π(s, a)) if s = s′ ∧ a = a′,

−π(s, a)π(s, a′) if s = s′ ∧ a 6= a′ .

0 otherwise,

To see this, consider the first case; the other cases
can be derived in a similar way. Due to the Gibbs
distribution, we can write (∂π(s, a))/(∂Ψ(s, a)) =

∂

∂Ψa

eΨa∑
b eΨb

=
eΨa ·

∑
b eΨb − eΨa ·

∑
b ∂eΨb/∂Ψa

[
∑

b eΨb ]2
.

Assuming (∂Ψb)/(∂Ψa) = 0, i.e., Ψa and Ψb are in-
dependent, it holds

∑
b ∂eΨb/∂Ψa = eΨa and we can

rewrite the state-action gradient as

= eΨa

(∑
b eΨb − eΨa ·

P
b eΨbP
b eΨb

)
[
∑

b eΨb ]2
= eΨa

(
1− eΨaP

b eΨb

)
∑

b eΨb

which simplifies – due to the definition of π(s, a) – to

∂π(s, a)
∂Ψ(s, a)

= π(s, a)(1− π(s, a)) .

The key point is the assumption (∂Ψb)/(∂Ψa) = 0.
This actually means that we model Ψ with k func-
tions fk, one for each action a, i.e., Ψ(s, a) = fa(s). In
turn, we estimate k regression models fa

m. In the ex-
periments, however, learning a single regression model
fm did not decrease performance so that we stick here
to the conceptually easier variant of learning a single
regression model fm.

We call policy gradient methods that follow the out-
lined functional gradient approach non-parametric pol-
icy gradients, or NPPG for short. They are non-
parametric because the number of parameters can
grow with the number of episodes.

3.2. Gradient Tree Boosting

NPPG as summarized in Alg. 1 describes actually a
family of approaches. In the following, we will develop
a particular instance, called TreeNPPG, which uses
regression tree learners to estimate fm in line 6.

In TreeNPPG, the policy is represented by sums of
regression trees. Each regression tree can be viewed

Algorithm 1: Non-Parametric Policy Gradient
Let Ψ0 be the zero potential (the empty tree)1

for m = 1 to N do2

Choose a starting state s3

Generate episodes Em starting in s following4

the policy πm−1 with
πm−1(s, a) = eΨm−1(s,a)/

(∑
b eΨm−1(s,b)

)
Generate functional gradient examples5

Rm = {(si, aij), fm(si, aij)} based on Em

Induce regression model fm based on Rm6

Set potential to Ψm = Ψm−1 + ∆m where7

∆m = ηm · fm with local step size ηm

return final potential Ψ = Ψ0 + ∆1 + . . . + ∆m8

as defining several new feature combinations, one cor-
responding to each path in the tree from the root to
a leaf. The resulting policies still have the form of
a linear combination of features, but the features can
be quite complex. The trees are grown using a regres-
sion tree learner such as CART (Breiman et al., 1984),
which in principle runs as follows. It starts with the
empty tree and repeatedly searches for the best test
for a node according to some splitting criterion such as
weighted variance. Next, the examples R in the node
are split into Rs (success) and Rf (failure) according
to the test. For each split, the procedure is recursively
applied, obtaining subtrees for the respective splits.
As splitting criterion, we use the weighted variance on
Rs and Rf . We stop splitting if the variance in one
node is small enough or a depth limit was reached. In
leaves, the average regression value is predicted.

We propose to use regression tree learners because a
rich variety of variants exists that can deal with finite,
continuous and even relational data. Depending on
the type of the problem domain at hand, one can in-
stantiate the TreeNPPG algorithm by choosing the
appropriate regression tree learner. We will give sev-
eral examples in the following experimental section.

4. Experimental Evaluation

Our intention is to investigate how well NPPG works.
To this aim, we implemented it and investigated the
following questions:

(Q1) Does TreeNPPG work and, if so, are there
cases where it yields better results than current state-
of-the-art methods? (Q2) Is TreeNPPG applicable
across finite, continuous, and relational domains?

In the following, we will describe the experiments car-
ried out to investigate the questions and their results.
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(Q1) Blocks World: A Relational Domain

As a complex domain for empirical evaluation of
TreeNPPG , we consider the well-known blocks world
(Slaney & Thiébaux, 2001). To be able to compare
the performance of TreeNPPG to other relational
RL (RRL) systems, we adopt the same experimental
environment as used for RRL by e.g. Driessens and
Džeroski (2005). We learn in a world with 10 blocks
and try to accomplish the on(A,B) goal. This goal
is parameterized and appropriate values for A and B
are chosen at same the time as a starting state is gen-
erated. Thus, the reinforcement learn learns a single
policy that stacks any two blocks. Although this is a
relatively simple goal in a planning context, both RRL
and our TreeNPPG algorithm use a model free ap-
proach and only learn from interactions with the envi-
ronment. For the given setup this means that there are
approximately 55.7 million reachable states3 of which
1.44 million are goal states. The minimal number of
steps to the goal is 3.9 on average. The percentage
of states for other minimal solution sizes are given in
Fig. 2. The agent only receives a reward of 1 if it
reaches the goal in the minimal number of steps. The
probability of receiving a reward using a random strat-
egy is approximately 1.3%. To counter this difficulty
of reaching any reward, we adopted the active guid-
ance approach as proposed by Driessens and Dzeroski
(2004), presenting the RL agent with 10% of expert
traces during exploration in all experiments.

We apply TreeNPPG to this relational domain by
simply employing the relational regression tree learner
Tilde (Blockeel & De Raedt, 1998). Rather than
using attribute-value or threshold tests in node of the
tree, Tilde employs logical queries. Furthermore, a
placeholder for domain elements (such as blocks) can
occur in different nodes meaning that all occurrences
denote the same domain element. Indeed, this slightly
complicates the induction process, for example when
generating the possible tests to be placed in a node.
To this aim, it employs a classical refinement operator
under θ-subsumption. The operator basically adds a
literal, unifies variables, and grounds variables. When
a node is to be splitted, the set of all refinements
are computed and evaluated according to the chosen
heuristic. Except for the representational differences,
Tilde uses the same approach to tree-building as the
generic tree learner. Because single episodes are too
short and thus generate too few examples for Tilde

3We do not consider states in which the goal has already
been satisfied as starting states. Therefore, a number of
states where the goal is satisfied are not reachable, i.e.,
the states where on(A, B) is satisfied and there are extra
blocks on top of A.
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Figure 1. Comparison of the learning curves for Non-
Parametric Policy Gradient and various RRL implemen-
tations on the on(A,B) task in a world with 10 blocks.

to learn meaningful trees, we postpone calling Tilde
until an episode brings the cumulated number of ex-
amples over 100. As a language bias for Tilde we
employ the same language bias as used in published
RRL experiments, including predicates such as clear,
on, above and compheight4. Each learned model ∆m,
updates the potential function Ψ using a step-size
ηm = 1. We count on the self-correcting property of
tree boosting to correct over- or under-stepping the
target on the next iteration.

We ran experiments using three versions of the RRL
system, i.e, TG (Driessens et al., 2001), RIB (Driessens
& Ramon, 2003), and Trendi (Driessens & Džeroski,
2005), which represent the current state-of-the-art of
RRL systems, and our TreeNPPG algorithm. Af-
ter every 50 learning episodes, we fixed the strategy
learned by RRL and tested the performance on 1000
randomly generated starting states. For TreeNPPG
fixing the strategy is not required as it uses the learned
strategy for exploration directly. Fig. 1 shows the re-
sulting learning curves averaged over 10 test-runs as
well as the standard deviations of these curves. As
shown, TreeNPPG outperforms all tested versions of
the RRL system. After approximately 2000 learning
episodes, TreeNPPG solves 99% of all presented test-
cases in the minimal number of steps. With less than
4 steps per learning episode on average, this means
that TreeNPPG generalizes the knowledge it col-
lected by visiting less than 8000 states to solve 99%
of 54.3 million states. Around this time, TreeNPPG
has generated a list of 500 trees on average. One ob-
servation that can not be made directly on the shown
graph is the stability of the TreeNPPG algorithm.
Where the performance of the RRL system using TG

4For a full overview and the semantics of these predi-
cates, we refer to (Driessens & Džeroski, 2005).
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Figure 2. Detailed view of the learning performance of
TreeNPPG showing the percentage of solved test-cases
with respect to the minimal solution size for varying
amounts of learning experience. The graph also shows the
percentage of test-cases for each solution length.

for regression can vary substantially between experi-
ments, TreeNPPG follows an extremely similar path
in each iteration of the experiment. The only variation
between experiments is the exact time-frame of the
phase transition in the results, as shown by the peak in
TreeNPPG’s standard deviation curve. Fig. 2 shows
the results in more detail, plotting the percentage of
solved test-cases with respect to the minimal solution
length. As one can see, TreeNPPG gradually learns
to solve problems with growing solution sizes. The
graph also shows the percentage of test-cases for each
solution size.

To summarize, the results clearly show that question
Q1 can be answered affirmatively.

(Q2) Corridor World: A Continuous Domain

To qualitatively test whether TreeNPPG is also ap-
plicable in continuous domains, we considered a sim-
ple continuous corridor domain. The task is to navi-
gate a robot from any position pos0 ∈ [0, 10] in a one-
dimensional corridor [0, 10] to one of the exists at both
ends (0 and 10). At each time t = 0, 1, 2, . . ., the robot
can go either one step to the left (a = −1) or one step
to the right (a = 1); the outcome, however, is uncertain
with post+1 = post + a +N (1, 1). The robot is given a
reward after each step equal to −1 if pos ∈ (0, 10) and
equal to 20 otherwise, i.e., it reaches one of the exists.

Fig. 3 shows how the stochastic policy evolves with
the number of iterations, i.e., calls to the tree learner.
These results are averaged over 30 reruns. In each run,
we selected a random starting position pos0 uniformly
in (0, 10), gathered learning examples from 30 episodes
in each iteration, and used a step size ηm = 0.7. As

Figure 3. Learning performance of TreeNPPG on the
continuous corridor task. Shown is how the probability of
going left at all corridor positions evolves with the number
of iterations. The shading indicates the standard deviation
over the 30 runs of the experiment.

one can see, the robot gradually learns to go left in
the left section of the corridor and right in the right
section. Quite intuitively, the uncertainty is highest in
the middle part of the corridor.

We also ran experiments in a grid-world version of this
problem. We do not report on the successful results
here because finite domains are a special case of the re-
lational and continuous cases. To summarize, question
Q2 can also be answered affirmatively.

5. Related Work

Within reinforcement learning (RL), there are two
main classes of solution methods: value-function meth-
ods seek to estimate the value of states and actions
whereas policy-based methods search for a good pol-
icy within some class of policies.

Within policy-based methods, policy gradients have
received increased attention, see e.g. (Williams, 1992;
Baxter et al., 2001; Guestrin et al., 2002; Konda &
Tsitsiklis, 2003; Munos, 2006) as a non-exhausting list.
Most closely related to NPPG is the work of Bagnell
and Schneider (2003), see also (Bagnell, 2004). They
proposed a functional gradient policy algorithms in
reproducing kernel hilbert spaces for continuous do-
mains. So far, however, this line of work has not
considered (relationally) structured domains and the
connection to gradient boosting was not employed.

Within value function approaches, the situation is
slightly different. NPPG can be viewed as automat-
ically generating a “variable” propositionalization or
discretization of the domain at hand. In this sense,
it is akin to tree-based state discretization RL ap-
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proaches such as (Chapman & Kaelbling, 1991; Mc-
Callum, 1996; Uther & Veloso, 1998) and related ap-
proaches. Within this line of research, there have been
some boosting methods proposed. Ernst et al. (2005)
showed how to estimate Q functions with ensemble
methods based on regression trees. Riedmiller (2005)
keeps all regression examples and re-weights them ac-
cording to some heuristic. Both neither consider policy
gradients nor relational domains.

Recently, there have been some exciting new develop-
ments in combining the rich relational representations
of classical knowledge representation with RL. While
traditional RL requires (in principle) explicit state
and action enumeration, these symbolic approaches
seek to avoid explicit state and action enumeration
through a symbolic representation of states and ac-
tions. Most work in this context, however, has fo-
cused on value function approaches. Basically, a num-
ber of relational regression algorithms have been de-
veloped for use in this RL system that employ rela-
tional regression trees (Driessens et al., 2001), rela-
tional instance based regression (Driessens & Ramon,
2003), graph kernels and Gaussian processes (Gärtner
et al., 2003) and relational model-trees (Driessens &
Džeroski, 2005). Finally, there is an increasing num-
ber of dynamic programming approaches for solv-
ing relational MDPs (Kersting et al., 2004; Sanner
& Boutilier, 2005; Wang et al., 2007). In contrast
to NPPG, they assume a model of the domain. It
would be interesting, however, to combine NPPG with
these approaches along the line of (Wang & Dietterich,
2003). A parametric step into this direction has been
already taken by Aberdeen (2006).

6. Conclusions

We have introduced the framework of non-parametric
policy gradient (NPPG) methods. It seeks to leverage
the policy selection problem by approaching it from
a gradient boosting perspective. NPPG is fast and
straightforward to implement, combines the expressive
power of relational RL with the benefits of policy gra-
dient methods, and can deal with finite, continuous,
and relational domains in a unified way. Moreover, the
experimental results show a significant improvement
over established results; for the first time, a (model-
free) relational RL approach learns to solve on(A,B)
in a world with 10 blocks.

NPPG suggests several interesting directions for fu-
ture research such as using more advanced regression
models, developing actor-critic versions of NPPG es-
timating a value function in parallel to reduce the vari-
ance of the gradient estimates, and exploiting NPPG’s

ability to learn in hybrid domains with both discrete
and continuous variables within real-world domains
such as as robotics and network routing. Most interest-
ing, however, is to address the more general problem
of learning how to interact with (relationally) struc-
tured environments in the presence observation noise.
NPPG is naturally applicable in this case and, hence,
paves the way towards (model-free) solutions of what
can be called relational POMDPs. This is a topic
of high current interest since it combines the expres-
sive representations of classical AI with the decision-
theoretic emphasis of modern AI.
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Driessens, K., & Džeroski, S. (2005). Combining
model-based and instance-based learning for first
order regression. Proceedings of the 22nd Interna-
tional Conference on Machine Learning (pp. 193–
200) Bonn, Germany.

Driessens, K., & Dzeroski, S. (2004). Integrating guid-
ance into relational reinforcement learning. Machine
Learning, 57, 271–304.

Driessens, K., & Ramon, J. (2003). Relational instance
based regression for relational reinforcement learn-
ing. Proceedings of the 20th International Confer-
ence on Machine Learning (pp. 123–130) Washing-
ton, DC, USA.

Driessens, K., Ramon, J., & Blockeel, H. (2001).
Speeding up relational reinforcement learning
through the use of an incremental first order de-
cision tree learner. Proceedings of the 12th Euro-
pean Conference on Machine Learning (pp. 97–108),
Freiburg, Germany.
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Abstract

We propose a new algorithm for independent
component and independent subspace anal-
ysis problems. This algorithm uses a con-
trast based on the Schweizer-Wolff measure
of pairwise dependence (Schweizer & Wolff,
1981), a non-parametric measure computed
on pairwise ranks of the variables. Our al-
gorithm frequently outperforms state of the
art ICA methods in the normal setting, is
significantly more robust to outliers in the
mixed signals, and performs well even in the
presence of noise. Our method can also be
used to solve independent subspace analysis
(ISA) problems by grouping signals recovered
by ICA methods. We provide an extensive
empirical evaluation using simulated, sound,
and image data.

1. Introduction

Independent component analysis (ICA) (Comon,
1994) deals with a problem of a blind source sep-
aration under the assumptions that the sources are
independent and that they are linearly mixed. ICA
has been used in the context of blind source separa-
tion and deconvolution, feature extraction, denoising,
and successfully applied to many domains including
finances, neurobiology, and processing of fMRI, EEG,
and MEG data. For a review on ICA, see Hyvärinen
et al. (2001).

Independent subspace analysis (ISA) (also called
multi-dimensional ICA and group ICA) is a generaliza-
tion of ICA that assumes that certain sources depend
on each other, but the dependent groups of sources
are still independent of each other, i.e., the indepen-
dent groups are multidimensional. The ISA task has

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

been the subject of extensive research (e.g., Cardoso,
1998; Theis, 2005; Bach & Jordan, 2003; Hyvärinen
& Köster, 2006; Póczos & Lőrincz, 2005) and applied,
for instance, to EEG-fMRI data.

Our contribution, SWICA, is a new ICA algorithm
based on Schweizer-Wolff (SW) non-parametric depen-
dence measure. SWICA has the following properties:

• SWICA performs comparably to other state of the
art ICA methods, outperforming them in a large
number of test cases.

• SWICA is extremely robust to outliers as it uses
rank values of the signals rather than their actual
values.

• SWICA suffers less from the presence of noise
than other algorithms.

• SW measure can be used as the cost function to
solve ISA problems by grouping sources recovered
by ICA methods.

• SWICA is simple to implement, and the Mat-
lab/C++ code is available for public use.

• On a negative side, SWICA is slower than other
methods, limiting its use to sources of moderate
dimensions, and it requires more samples to demix
sources with near-Gaussian distributions.

The paper is organized as follows. An overview
of the ICA and ISA problems and methods is pre-
sented in Section 2. Section 3 motivates and describes
Schweizer-Wolf dependence measure. Section 4 de-
scribes a 2-source version of SWICA, extends it to a
d-source problem, describes an application to ISA, and
mentions possible approaches for accelerating SWICA.
Section 5 provides a thorough empirical evaluation of
SWICA to other ICA algorithms under different set-
tings and data types. The paper is concluded with a
summary in Section 6.
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2. ICA and ISA

We consider the following problem. Assume we have
d independent 1-dimensional sources (random vari-
ables) denoted by S1, . . . , Sd. We assume each source
emits N i.i.d. samples denoted by

(
si
1, . . . , s

i
N

)
. Let

S =
{

sj
i

}
∈ Rd×N be a matrix of these samples. We

assume that these sources are hidden, and that only a
matrix X of mixed samples can be observed:

X = AS

where A ∈ Rd×d. (We further assume that A has full
rank d.) The task is to recover the sample matrix S of
the hidden sources by finding a demixing matrix W

Y = WX = (WA)S,

and the estimated sources Y 1, . . . , Y d are mutually in-
dependent. The solution can be recovered only up to
a scale and a permutation of the components; thus
we assume that the data has been pre-whitened, and
it is sufficient to search for an orthogonal matrix W
(e.g., Hyvärinen et al., 2001). Additionally, since
jointly Gaussian sources are not identifiable under lin-
ear transformations, we assume that no more than one
source is normally distributed.

There are many approaches to solving the ICA prob-
lem, differing both in the objective function designed
to measure the independence between the unmixed
sources (sometimes referred to as a contrast function)
and the optimization methods for that function. Most
commonly used objective function is the mutual infor-
mation (MI)

J (W) = I
(
Y 1, . . . , Y d

)
=

d∑
i=1

h
(
Y i
)
−h
(
Y 1, . . . , Y d

)
(1)

where h is the differential entropy. Alternatively, one
can minimize the sum

∑d
i=1 h

(
Y i
)

of the univari-
ate entropies as the joint entropy is constant (e.g.,
Hyvärinen et al., 2001). Neither of these quantities
can be evaluated directly, so approximations are used
instead. Among effective methods falling in the former
category is KernelICA (Bach & Jordan, 2002); RAD-
ICAL (Learned-Miller & Fisher, 2003) and FastICA
(Hyvärinen, 1999) approximate the sum of the univari-
ate entropies. There are other possible cost functions
including maximum likelihood, moment-based meth-
ods, and correlation-based methods.

While ICA problems has been well-studied in the
above formulation, there are a number of variations

of it that are subject of active research. One such
formulation is a noisy version of ICA

X = AS + ε (2)

where multivariate noise ε is often assumed normally
distributed. Another related problem occurs when the
mixed samples X are corrupted by a presence of out-
liers. There are many other possibilities that go be-
yond the scope of this paper.

Of a special note is a generalization of ICA where
some of the sources are dependent, independent sub-
space analysis (ISA). For this case, the mutual in-
formation and Shannon entropies from Equation 1
would involve multivariate random vectors instead of
scalars. Resulting multidimensional entropies are ex-
ponentially more difficult to estimate than their scalar
counterparts, making ISA problem more difficult than
ICA. However, Cardoso (1998) conjectured that the
ISA problem can be solved by first preprocessing the
mixtures X by an ICA algorithm and then grouping
the estimated components with highest dependence.
While the extent of this conjecture is still on open is-
sue, it has been rigorously proven for some distribution
types (Szabó et al., 2007). Even without a proof for the
general case, a number of algorithms apply this heuris-
tics with success (Cardoso, 1998; Theis, 2007; Bach &
Jordan, 2003). There are ISA methods not relying on
Cardoso’s conjecture (e.g., Hyvärinen & Köster, 2006)
although they are susceptible to getting trapped in lo-
cal minima.

3. Non-parametric Rank-Based
Approach

Most of the ICA algorithms use an approximation
to mutual information (MI) as their objective func-
tions, and the quality of the solution thus depends on
how accurate is the corresponding approximation. The
problem with using MI is that without a parametric
assumption on the functional form of the joint distri-
bution, MI cannot be evaluated exactly, and numerical
estimation can be both inaccurate and computation-
ally expensive. In this section, we explore other mea-
sures of pairwise association as possible ICA contrasts.
To note, most commonly used measure of correlation,
Pearson’s linear correlation coefficient, cannot be used
as it is invariant under rotations (once the data has
been centered and whitened)

Instead, we are focusing on measures of dependence
of the ranks. Ranks have a number of desirable proper-
ties – they are invariant under monotonic transforma-
tions of the individual variables, insensitive to outliers,
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Figure 1. Absolute values of sample versions for Pearson’s
ρp (solid thin, brown), Kendall’s τ (dashed, red), Spear-
man’s ρ (dash-dotted, blue), and Schweizer-Wolff σ (solid
thick, black) as a function of rotation angle

[
0, π

2

]
. Data

was obtained by rotating by π
4

1000 samples from a uni-
form distribution on I2 (left), with added outliers (center),
and with added noise (right).

and not very sensitive to small amounts of noise. We
found that a dependence measure defined on copulas
(e.g., Nelsen, 2006), probability distributions on con-
tinuous ranks, has the right properties to be used as a
contrast for ICA demixing.

3.1. Ranks and Copulas

Let a pair of random variables (X, Y ) ∈ R2 be dis-
tributed according to a bivariate probability distribu-
tion P . Assume we are given N samples of (X, Y ),
D = {(x1, y1) , . . . , (xN , yN )}. Let the rank rx (x) be
the number of xi, i = 1, . . . , N such that x > xi, and
let ry (y) be defined similarly.

Many non-linear dependence measures are based on
ranks. Among most commonly used are Kendall’s
τ and Spearman’s ρ rank correlation coefficients.
Kendall’s τ measures the difference between propor-
tions of concordant pairs ((xi, yi) and (xj , yj) such that
(xi − xj) (yi − yj) > 0) and discordant pairs. Spear-
man’s ρ measures a linear correlation between ranks of
rx (x) and ry (y). Both τ and ρ have a range of [−1, 1]
and are equal to 0 (in the limit) if the X and Y are
independent. However, the converse is not true, and
both τ and ρ can be 0 even if X and Y are not inde-
pendent. While they are robust to outliers, neither ρ
nor τ make for a good ICA contrast as they provide a
noisy estimate for dependence from moderately-sized
data sets when the dependence is weak (See Figure 1
for an illustration).

Rank correlations can be extended from samples to
distributions with the help of copulas, distributions
over continuous multivariate ranks. We will devise
an effective robust contrast for ICA using a measure
of dependence for copulas which is closely related to

Spearman’s ρ.

Let I denote a unit interval [0, 1]. A bivariate cop-
ula C is probability function (cdf) defined on a unit
square, C : I2 → I such that its univariate marginals
are uniform, i.e., C (u, 1) = u, C (1, v) = v, ∀u, v,∈ I.1

Let U = Px (X) and V = Py (Y ) denote the corre-
sponding cdfs for previously defined random variables
X and Y . Variables X = P−1

x (U) and Y = P−1
y (V )

can be defined in terms of the inverse of marginal cdfs.
Then, for (u, v) ∈ I2, define C as

C (u, v) = P
(
P−1

x (u) , P−1
y (v)

)
.

It is easy to verify that C is a copula. Sklar’s theorem
(Sklar, 1959) states that such copula exists for any
distribution P , and that it is unique on the range of
values of the marginal distributions. A copula can be
thought of as binding univariate marginals Px and Py

to make a distribution P .

Copulas can also be viewed as a canonical form of
multivariate distributions as they preserve multivari-
ate dependence properties of the corresponding fami-
lies of distributions. For example, the mutual informa-
tion of the joint distribution is equal to the negentropy
of its copula restricted to the region on which the cop-
ula density function (denoted in this paper by c (u, v))
is defined:

c (u, v) =
∂2C (u, v)

∂u∂v
=

p (x, y)
px (x) py (y)

;

I (X, Y ) =
∫
I2

c (u, v) ln c (u, v) dudv.

Such negentropy is minimized when C (u, v) =
Π (u, v) = uv. Copula Π is referred to as the product
copula and is equivalent to variables U and V (and the
original variables X and Y ) being mutually indepen-
dent. This copula will play a central part in definition
of contrasts in the next subsection.

Copulas can also be viewed as a joint distribution
over univariate ranks, and therefore, preserve all of the
rank statistics of the corresponding multivariate dis-
tributions; rank based statistics can be expressed in
terms of the copula alone. For example, Spearman’s ρ
has a convenient functional form in terms of the cor-
responding copulas (e.g., Nelsen, 2006):

ρ = 12
∫
I2

(C (u, v)−Π (u, v)) dudv. (3)

1While we restrict our attention to bivariate copulas,
many of the definitions and properties described in this
section can be extended to a d-variate case.
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As the true distribution P and its copula C are
not known, the rank statistics can be estimated from
the available samples using an empirical copula (De-
heuvels, 1979). For a data set {(x1, y1) , . . . , (xN , yN )},
an empirical copula CN is given by

CN

(
i

N
,

j

N

)
=

# of (xk, yk) s.t. xk ≤ xi and yk ≤ yj

N
.

(4)
Well-known sample versions of several non-linear de-
pendence measures can be obtained using an empirical
copula (e.g., Nelsen, 2006). For example, sample ver-
sion r of Spearman’s ρ appears to be a grid integration
evaluation of its expression in terms of a copula (Equa-
tion 3):

r =
12

N2 − 1

N∑
i=1

N∑
j=1

(
CN

(
i

N
,

j

N

)
− i

N
× j

N

)
. (5)

3.2. Schweizer-Wolff σ and κ

Part of the problem with Kendall’s τ and Spear-
man’s ρ as a contrast for ICA is a property that their
value may be 0 even though the corresponding vari-
ables X and Y are not independent. Instead, we sug-
gest using Schweizer-Wolff σ, a measure of dependence
between two continuous random variables (Schweizer
& Wolff, 1981):

σ = 12
∫
I2
|C (u, v)− uv|dudv. (6)

σ can be viewed as an L1 norm between a copula for
the distribution and a product copula. It has a range
of [0, 1], with an important property that σ = 0 if and
only if the corresponding variables are mutually inde-
pendent, i.e., C = Π. The latter property suggests an
ICA algorithm for a pair of variables: pick a rotation
angle such that the corresponding demixed data set
has its σ minimized. A sample version of σ is similar
to that of ρ (Equation 5):

s =
12

N2 − 1

N∑
i=1

N∑
j=1

∣∣∣∣CN

(
i

N
,

j

N

)
− i

N
× j

N

∣∣∣∣ . (7)

We note that other measures of dependence can
be potentially used as an ICA contrast. We
also experimented with an L∞ version of σ, κ =
4 supI2 |C (u, v)− uv| , a dependence measure similar
to Kolmorogov-Smirnov univariate statistic (Schweizer
& Wolff, 1981), with results similar to σ.

4. SWICA: A New Algorithm for ICA
and ISA

In this section, we present a new algorithm for ICA
and ISA demixing. The algorithm uses Schweizer-
Wolff σ estimates as a contrast in demixing pairs of
variables; we named this algorithm Schweizer-Wolff
contrast for ICA, or SWICA for short.

4.1. 2-dimensional Case

First, we tackle the case of a two-dimensional signal
S mixed with a 2 × 2 matrix A. We, further assume
A is orthogonal (otherwise achievable by whitening).
The problem is then reduced to finding a demixing

rotation matrix W =
[

cos (θ) sin (θ)
− sin (θ) cos (θ)

]
.

For the objective function, we use s (Equation 7)
computed on 2×N matrix Y = WX of rotated sam-
ples. Given an angle θ, s (Y (θ)) can be computed by
first sorting each of the rows of Y (θ) and computing
row ranks for each entry of Y (θ), then computing an
empirical copula CN (Equation 4) for ranks of Y, and
finally computing s (Y (θ)) (Equation 7). The solution
is then found by finding angle θ minimizing s (Y (θ)).
Similar to RADICAL (Learned-Miller & Fisher, 2003),
we find such solution by searching over K values of θ
in the interval

[
0, π

2

)
. This algorithm is outlined in

Figure 2.

4.2. d-dimensional Case

A d-dimensional linear transformation described by
a d×d orthogonal matrix W is equivalent to a composi-
tion of 2-dimensional rotations (called Jacobi or Givens
rotations) (e.g., Comon, 1994). The transformation
matrix itself can be written as a product of correspond-
ing rotation matrices, W = WL × . . . × W1 where
each matrix Wl, l = 1, . . . , L is a rotation matrix (by
angle θl) for some pair of dimensions (i, j). Thus a
d-dimensional ICA problem can be solved by solving
2-dimensional ICA problems in succession. Given a
current demixing matrix Wc = Wl × . . .×W1 and a
current version of the signal Xc = WcX, we find an
angle θ corresponding to SWICA

(
X(i,j)

c ,K
)
. Taking

an approach similar to RADICAL, we perform a fixed
number of successive sweeps through all possible pairs
of dimensions (i, j).

We should note that while d-dimensional SWICA is
not guaranteed to converge, it converges in practice
a vast majority of the time. A likely explanation is
that each 2-dimensional optimization finds a transfor-
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Algorithm SWICA(X,K)
Inputs: X, a 2×N matrix where rows are mixed
signals (centered and whitened), K equispaced
evaluation angles in the [0, π/2) interval

For each of K angles θ in the interval [0, π/2)
(θ = πk

2K , k = 0, . . . ,K − 1.)

• Compute rotation matrix

W (θ) =
[

cos (θ) sin (θ)
− sin (θ) cos (θ)

]
• Compute rotated signals Y (θ) = W (θ)X.

• Compute s (Y (θ)), a sample estimate of σ
(Equation 7)

Find best angle θm = arg minθ s (Y (θ))

Output: Rotation matrix W = W (θm), demixed
signal Y = Y (θm), and estimated dependence
measure s = s (Y (θm))

Figure 2. Outline of SWICA algorithm (2-d case).

mation that reduces the sum of entropies for the corre-
sponding dimensions, reducing the overall sum of en-
tropies. In addition to this, Learned-Miller and Fisher
(2003) suggest that the minimization of the overall
sum of entropies in this fashion (by changing only two
terms in the sum) may make it easier to escape local
minima.

4.3. Complexity Analysis and Acceleration
Tricks

2-dimensional SWICA requires a search over K an-
gles. For each angle, we first sort the data to com-
pute the ranks of each data point (O (N log N)), and
then use these ranks to compute s by computing the
empirical copula and summing over the N × N grid
(Equation 7), requiring O

(
N2
)

additions. Therefore,
running time complexity of 2-d SWICA is O

(
KN2

)
.

Each sweep of a d-dimensional ICA problem solves a
2-dimensional ICA problem for each pair of variables,
O
(
d2
)

of them; S sweeps would have O
(
Sd2KN2

)
complexity. In our experiments, we employed K =
180, S = 1 for d = 2, and K = 90, S = d for d > 2.

The most expensive computation in SWICA is
O
(
N2
)

needed to compute s (Y (θ)). Reducing this
complexity, either by approximation, or perhaps, by
an efficient rearrangement of the sum, is left to fu-

ture research. We used several other tricks to speed
up the computation. One, for large N (N > 2500) we
estimated s using only N2

s (Ns = b N
d N

2500 e
c) terms in

the sum corresponding to equispaced gridpoints on I2.
Two, when searching for θ minimizing s (Y (θ)), it is
unnecessary to sum over all N2 terms when evaluat-
ing a candidate θ if a partial sum already results in a
value of s (Y (θ)) larger than the current best. This
optimization translates into a 2-fold speed increase in
practice. Three, it is unnecessary to complete all S
sweeps if the algorithm already converged. One possi-
ble measure of convergence is the Amari error (Equa-
tion 8) measured for the cumulative rotation matrix
for the most recent sweep.

4.4. Using Schweizer-Wolff σ for ISA

Following Cardoso’s conjecture, ISA problems can
be solved by first finding a solution to an ICA prob-
lem, and then by grouping resulting sources that are
not independent (Cardoso, 1998). We propose em-
ploying Schweizer-Wolff σ to measure dependence of
sources for an ICA solution as it provides a compu-
tationally effective alternative to mutual information,
commonly used measure of source dependence. Note
that ICA solution, the first step, can be obtained using
any approach, e.g., FastICA due to its computational
speed for large d. One commonly used trick for group-
ing the variables is to use a non-linear transformation
of the variables to “amplify” their dependence as in-
dependent variables remain independent under such
transformations.2

5. Experiments

For the experimental evaluation of SWICA, we con-
sidered several settings. For the evaluation of the
quality of demixing solution matrix W, we computed
the Amari error (Amari et al., 1996) for the resulting
transformation matrix B = WA. Amari error r (B)
measures how different matrix B is from a permuta-
tion matrix, and is defined as

α
d∑

i=1

(∑d
j=1 |bij |

maxj |bij |
− 1

)
+ α

d∑
j=1

(∑d
i=1 |bij |

maxi |bij |
− 1

)
.

(8)
where α = 1/(2d(d− 1)). r (B) ∈ [0, 1], and r (B) = 0
if and only if B is a permutation matrix. We compared
SWICA to FastICA (Hyvärinen, 1999), KernelICA-
KGV (Bach & Jordan, 2002), RADICAL (Learned-
Miller & Fisher, 2003), and JADE (Cardoso, 1999).

2Such transformations are at the core of the KernelICA
and JADE ICA algorithms.
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For the simulated data experiments, we used 18 dif-
ferent one-dimensional densities to simulate sources.
These test-bed densities (and some of the experiments
below) were proposed by Bach and Jordan (2002)
to test KernelICA and by Learned-Miller and Fisher
(2003) to evaluate RADICAL; we omit the description
of these densities due to lack of space as they can be
looked up in the above papers.

Table 1 summarizes the medians of the Amari er-
rors for 2-dimensional problems where both sources
had the same distribution. Samples from these sources
were then transformed by a random rotation, and then
demixed using competing ICA algorithms. SWICA
outperforms its competitors in 8 out of 18 cases, and
performs comparably in several other cases. However,
it performs poorly when the joint distribution for the
sources is close to a Gaussian (e.g., (d) t-distribution
with 5 degrees of freedom). One possible explana-
tion for why SWICA performs worse than its com-
petitors for these cases is that by using ranks instead
of the actual values, SWICA is discarding some of
the information that may be essential to separating
such sources. However, given larger number of sam-
ples, SWICA is able to separate near-Gaussian sources
(data not shown due to space constraints). SWICA
also outperformed other methods when sources were
not restricted to come from the same distribution (Ta-
ble 2) and proved effective for multi-dimensional prob-
lems (d = 4, 8, 16).

Figure 3 summarizes the performance of ICA algo-
rithms in the presence of outliers for the d-source case
(d = 2, 4, 8). Distributions for the sources were cho-
sen at random from the 18 distributions from the ex-
periment in Table 1. The sources were mixed using a
random rotation matrix. The mixed sources were then
corrupted by adding +5 or −5 to a single component
for a small number of samples. SWICA significantly
outperforms the rest of the algorithms as the contrast
used by SWICA is insensitive to minor changes in the
sample ranks introduced by a small number of outliers.
For d = 2, we tested SWICA further by significantly
increasing the number of outliers; the performance was
virtually unaffected when the proportion of the out-
liers was below 20%. SWICA is also less sensitive to
noise than other ICA methods (Figure 4).

We further tested SWICA on sound and image data.
We mixed N = 1000 samples from 8 sound pieces of
an ICA benchmark3 by a random orthogonal 8 × 8
matrix. Then we added 20 outliers to this mixture

3http://www.cis.hut.fi/projects/ica/cocktail/cocktail en.cgi

Table 1. The Amari errors (multiplied by 100) for two-
component ICA with 1000 samples. Each entry is the me-
dian of 100 replicates for each pdf, (a) to (r). The lowest
(best) entry in each row is boldfaced.

pdf SWICA FastICA RADICAL KernelICA JADE

a 3.74 3.01 2.18 2.09 2.67
b 2.39 4.87 2.31 2.50 3.47
c 0.79 1.91 1.60 1.54 1.63
d 10.10 5.63 4.10 5.05 3.94
e 0.47 4.75 1.43 1.21 3.27
f 0.78 2.85 1.39 1.34 2.77
g 0.74 1.49 1.19 1.11 1.19
h 3.66 5.32 4.01 3.54 3.36
i 10.21 7.38 6.95 7.70 6.41
j 0.86 4.64 1.29 1.21 3.38
k 2.10 5.58 2.65 2.38 3.53
l 4.09 7.68 3.61 3.65 5.21
m 1.11 3.41 1.43 1.23 2.58
n 2.08 4.05 2.10 1.56 4.07
o 5.07 3.81 2.86 2.92 2.78
p 1.24 2.92 1.81 1.53 2.70
q 3.01 12.84 2.30 1.67 10.78
r 3.32 4.30 3.06 2.65 3.32

Table 2. The Amari errors (multiplied by 100) for d-
component ICA with N samples. Each entry is the median
of 1000 replicates for d = 2 and 100 for d = 4, 8, 16. Source
densities were chosen uniformly at random from (a)-(r).
The lowest (best) entry in each row is boldfaced.

d N SWICA FastICA RADICAL KernelICA JADE

2 1000 1.53 4.31 2.13 1.97 3.47
4 2000 1.31 3.74 1.72 1.66 2.83
8 5000 1.20 2.58 1.31 1.25 2.25
16 10000 1.16 1.92 0.93 6.69 1.76

in the same way as in the previously described outlier
experiment and demixed them using ICA algorithms.
Figure 5 shows that SWICA outperforms other meth-
ods on this task. For the image experiment, we used
4 natural images4 of size 128× 256. The pixel intensi-
ties we normalized in the [0, 255] interval. Each image
was considered as a realization of a stochastic variable
with 32768 sample points. We mixed these 4 images
by a 4×4 random orthogonal mixing matrix, resulting
in a mixture matrix of size 4× 32768. Then we added
large +2000 or −2000 outliers to 3% randomly selected
points of these mixture, and then selected at random
2000 samples from the 32768 vectors. We estimated
the demixing matrix W using only these 2000 points,

4http://www.cis.hut.fi/projects/ica/data/images/
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Figure 3. Amari errors (multiplied by 100) for 2-d (left), 4-
d (center), and 8-dimensional (right) ICA problem in the
presence of outliers. The plot shows the median values over
R = 1000, 100, 100 replicas of N = 1000, 2000, 5000 sam-
ples for d = 2, 4, 8, respectively. Legend: Swica – red dots
(thick), RADICAL – blue x’s, KernelICA – green pluses,
FastICA – cyan circles, JADE – magenta triangles. The
x-axis shows the number of outliers.
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Figure 4. Amari errors (multiplied by 100) for 2-d (left),
4-d (center), and 8-dimensional (right) ICA problems in
the presence of independent Gaussian noise applied to
mixed sources. The plot shows the median values of R =
1000, 100, 100 replicas of N = 1000, 2000, 5000 samples for
d = 2, 4, 8, respectively. The abscissa shows the variance
of the Gaussian noise, σ2 = (0, 0.3, 0.6, 0.9, 1.2, 1.5). The
legend is the same as in Figure 3.

and then recovered the hidden sources for all 32768
samples using this matrix. SWICA significantly out-
performed other methods. Figure 7 shows an example
of the demixing achieved by different ICA algorithms.

Finally, we applied Schweizer-Wolff σ in an ISA set-
ting. We used 6 3-dimensional sources where each
variable was sampled from a geometric shape (Figure
6a), resulting in 18 univariate hidden sources. These
sources (N = 1000 samples) were then mixed with a
random 18×18 orthogonal matrix (Figure 6b). Apply-
ing Cardoso’s conjecture, we first processed the mixed
sources using FastICA, and then clustered the recov-
ered sources using σ computed on their absolute values
(a non-linear transformation) (Figure 6c). The hidden
subspaces were recovered with high precision as indi-
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Figure 5. Box plot of Amari errors (multiplied by 100) for
the mixed sounds with outliers. Plot was computed over
R = 100 replicas.
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Figure 6. ISA experiment for 6 3-dimensional sources.

cated by the Hinton diagram of WA (Figure 6d).

6. Conclusion

We proposed a new ICA and ISA method, SWICA,
based on a non-parametric rank-based estimate of the
dependence between pairs of variables. Our method
frequently outperforms other state of the art ICA al-
gorithms, is very robust to outliers, and only moder-
ately sensitive to noise. On the other hand, it is some-
what slower than other ICA methods, and requires
more samples to separate near-Gaussian sources. In
the future, we plan to investigate possible accelera-
tions to the algorithm, and statistical characteristics
of the source distributions that affect the contrast.
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(a) Original (b) Mixed (c) SWICA (d) FastICA (e) RADICAL

Figure 7. Separation of outlier-corrupted mixed images. (a) The original images. (b) the mixed images corrupted with
outliers. (c)-(e) The separated images using SWICA, FastICA, and RADICAL algorithms, respectively. The Amari error
of the SWICA, FastICA, Radical was 0.10, 0.30, 0.29 respectively. The quality of the KernelICA and JADE was similar
to that of FastICA and RADICAL.
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Abstract

The need to meaningfully combine sets of
rankings often comes up when one deals with
ranked data. Although a number of heuris-
tic and supervised learning approaches to
rank aggregation exist, they require domain
knowledge or supervised ranked data, both
of which are expensive to acquire. In or-
der to address these limitations, we propose a
mathematical and algorithmic framework for
learning to aggregate (partial) rankings with-
out supervision. We instantiate the frame-
work for the cases of combining permuta-
tions and combining top-k lists, and propose
a novel metric for the latter. Experiments in
both scenarios demonstrate the effectiveness
of the proposed formalism.

1. Introduction

Consider the scenario where each member of a panel
of judges independently generates a (partial) ranking
over a set of items while attempting to reproduce a
true underlying ranking according to their level of ex-
pertise. This setting motivates a fundamental machine
learning and information retrieval (IR) problem - the
necessity to meaningfully aggregate preference rank-
ings into a joint ranking. The IR community refers to
this as data fusion, where a joint ranking is derived
from the outputs of multiple retrieval systems. For
example, in meta-search the aim is to aggregate Web
search query results from several engines into a more
accurate ranking. In many natural language process-
ing applications, such as machine translation, there
has been an increased interest in combining the results
of multiple systems built on different principles in an
effort to improve performance (Rosti et al., 2007).

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

One impediment to solving rank aggregation tasks is
the high cost associated with acquiring full or partial
preference information, making supervised approaches
of limited utility. For data fusion, efforts to over-
come this difficulty include applying domain specific
heuristics (Shaw & Fox, 1994) or collecting such pref-
erence information indirectly (e.g. using clickthrough
data (Joachims, 2002)). In order to address this lim-
itation, we propose a general unsupervised learning
framework for (partial) rank aggregation.

Analyzing ranked data is an extensively studied prob-
lem in statistics, information retrieval, and machine
learning literature. (Mallows, 1957) introduced a
distance-based model for fully ranked data and inves-
tigated its use with Kendall’s and Spearman’s met-
rics. The model was later generalized to other dis-
tance functions and for use with partially ranked
data (Critchlow, 1985). (Lebanon & Lafferty, 2002)
proposed a multi-parameter extension, where multi-
ple modal rankings (e.g. expert opinions) are avail-
able and use their formalism for supervised ensemble
learning; they also analyzed their model for partially
ranked data (Lebanon & Lafferty, 2003).

The first key contribution of our work is the derivation
of an EM-based algorithm for learning the parameters
of the extended Mallows model without supervision.
We instantiate the model with appropriate distance
functions for two important scenarios: combining per-
mutations and combining top-k lists. In the context of
defining distances between rankings, various metrics
have been proposed and analyzed (Critchlow, 1985;
Estivill-Castro et al., 1993). Distances over top-k lists,
i.e. rankings over the k most preferable objects, re-
ceive particular attention in the IR community (Fagin
et al., 2003). (Fligner & Verducci, 1986) show that a
class of distance functions between full rankings, such
as Kendall’s and Cayley’s metrics, decompose into a
sum of independent components allowing for efficient
parameter estimation of the standard Mallows model.

A second key contribution of our work is the derivation
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of a novel decomposable distance function for top-k
lists. We show it to be a generalization of the Kendall
metric and demonstrate that it can be decomposed,
enabling us to estimate the parameters of the extended
Mallows model efficiently.

Among recent work, (Busse et al., 2007) propose a
method for clustering heterogeneous rank data based
on the standard Mallows model. More directly related,
many heuristics as well as a number of supervised
learning approaches (Liu et al., 2007) exist for rank
aggregation, although few learn to combine rankings
without any supervision. (Klementiev et al., 2007)
frame unsupervised rank aggregation as an optimiza-
tion problem specifically for top-k lists, which relies on
user-tuned parameters, a form of implicit supervision,
whereas we describe a general unsupervised framework
that can be instantiated to top-k lists in addition to
other settings.

The remainder of the paper is organized as follows:
section 2 formalizes distance-based ranking models
and introduces relevant notation. Section 3 derives
our EM-based algorithm for learning model parame-
ters and specifies the requirements for efficient learn-
ing and inference. Section 4 instantiates the frame-
work for two common scenarios: permutations (full
rankings) and top-k lists. Section 5 experimentally
demonstrates the model’s effectiveness in both cases.
Finally, section 6 concludes the work and gives ideas
for future directions.

2. Distance-Based Ranking Models

2.1. Notation and Definitions

Let {x1, . . . , xn} be a set of objects to be ranked, i.e.
assigned rank-positions 1, . . . , n, by a judge. We de-
note the resulting permutation π = (π(1), . . . , π(n)),
where π(i) is the rank assigned to object xi. Corre-
spondingly, we use π−1(j) to denote the index of the
object assigned to rank j.

Let Sn be the set of all n! permutations over n items,
and let d : Sn × Sn → R be a distance function be-
tween two permutations. We will require d(·, ·) to be
a right-invariant metric (Diaconis & Graham, 1977):
in addition to the usual properties of a metric, we will
also require that the value of d(·, ·) does not depend
on how the set of objects is indexed. In other words,
d(π, σ) = d(πτ, στ) ∀π, σ, τ ∈ Sn, where πτ is defined
by πτ(i) = π(τ(i)).

In particular, note that d(π, σ) = d(ππ−1, σπ−1) =
d(e, σπ−1), where e = (1, . . . , n) is the identity permu-
tation. That is, the value of d does not change if we

re-index the objects such that one of the permutations
becomes e and the other ν = σπ−1. Borrowing the no-
tation from (Fligner & Verducci, 1986) we abbreviate
d(e, ν) as D(ν). In a later section, when we define ν as
a random variable, we may treat D(ν) = D as a ran-
dom variable as well: whether it is a distance function
or a r.v. will be clear from the context.

2.2. Mallows Models

While a large body of work on ranking models ex-
ists in statistics literature, of particular interest to us
are the distance based conditional models first intro-
duced in (Mallows, 1957). Let us give a brief review of
the formalism and elucidate some of the its properties
relevant to our work. The model generates a judge’s
rankings according to:

p(π|θ, σ) =
1

Z(θ, σ)
exp(θ d(π, σ)) (1)

where Z(θ, σ) =
∑
π∈Sn

exp(θ d(π, σ)) is a normaliz-
ing constant. The parameters of the model are θ ∈ R,
θ ≤ 0 and σ ∈ Sn, referred to as the dispersion and the
location parameters, respectively. The distribution’s
single mode is the modal ranking σ; the probability of
ranking π decreases exponentially with distance from
σ. When θ = 0, the distribution is uniform, and it
becomes more concentrated at σ as θ decreases.

One property of (1) is that the normalizing constant
Z(θ, σ) does not depend on σ due to the right invari-
ance of the distance function:

Z(θ, σ) = Z(θ) (2)

Let us denote the moment generating function of D
under (1) as MD,θ(t), and as MD,0(t) under the uni-
form distribution (θ = 0). Since (1) is an exponential
family,

MD,θ(t) =
MD,0(t+ θ)
MD,0(θ)

Therefore,

Eθ(D) =
1

MD,0(θ)
dMD,0(t+ θ)

dt

∣∣∣∣
t=0

=
d ln(MD,0(t))

dt

∣∣∣∣
t=θ

(3)

(Fligner & Verducci, 1986) note that if a distance func-
tion can be expressed as D(π) =

∑m
i=1 Vi(π), where
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Vi(π) are independent (with π uniformly distributed)
with m.-g.f. Mi(t), then MD,0(t) =

∏m
i=1Mi(t). Con-

sequently, (3) gives:

Eθ(D) =
d

dt

m∑
i=1

lnMi(t)

∣∣∣∣∣
t=θ

(4)

We will call such distance functions decomposable and
will later use (4) in section 4 in order to estimate θ
efficiently.

2.3. Extended Mallows Models

(Lebanon & Lafferty, 2002) propose a natural gener-
alization of the Mallows model to the following condi-
tional model:

p(π|θ,σ) =
1

Z(θ,σ)
p(π) exp

(
K∑
i=1

θi d(π, σi)

)
(5)

where σ = (σ1, . . . , σK) ∈ SKn , θ = (θ1, . . . , θK) ∈
RK , θ ≤ 0, p(π) is a prior, and normalizing constant
Z(θ,σ) =

∑
π∈Sn

p(π) exp(
∑K
i=1 θi d(π, σi)).

The rankings σi may be thought of as votes of K
individual judges, e.g. rankings returned by multi-
ple search engines for a particular query in the meta-
search setting. The free parameters θi represent the
degree of expertise of the individual judges: the closer
the value of θi to zero, the less the vote of the i-th
judge affects the assignment of probability.

Under the right-invariance assumption on d, we can
use property (2) to derive the following generative
story underlying the extended Mallows model:

p(π,σ|θ) = p(π)
K∏
i=1

p(σi|θi, π) (6)

That is, π is first drawn from prior p(π). σ is then
made up by drawing σ1 . . . σK independently from K
Mallows models p(σi|θi, π) with the same location pa-
rameter π.

It is straightforward to generalize both Mallows models
(Critchlow, 1985), and the extended Mallows models
to partial rankings by constructing appropriate dis-
tance functions. We will assume this more general
setting in the following section.

3. Learning and Inference

In this section, we derive the general formulation of
Expectation Maximization algorithm for parameter es-
timation of the extended Mallows models (5), and sug-
gest a class of distance functions for which learning can
be done efficiently. We then describe an inference pro-
cedure for the model.

3.1. EM Background and Notation

Let us start with a brief overview of Expectation-
Maximization (Dempster et al., 1977) mostly to in-
troduce some notation. EM is a general method of
finding maximum likelihood estimate of parameters of
models which depend on unobserved variables. The
EM procedure iterates between:

E step: estimate the expected value of complete data
log-likelihood with respect to unknown data Y, ob-
served data X , and current parameter estimates θ′:

T (θ, θ′) = E[log p(X ,Y|θ)|X , θ′]

M step: choose parameters that maximize the expec-
tation computed in the E step:

θ′ ← argmax
θ

T (θ, θ′)

In our setting, the K > 2 experts generate votes σ
corresponding to the unobserved true ranking π. We
will see multiple instances of σ so the observed data we
get are ranking vectors X = {σ(j)}Qj=1 with the corre-
sponding true (unobserved) rankings Y = {π(j)}Qj=1.

In the meta-search example, σ(j)
i is the ranking of the

i-th (of the total of K) search engine for the j-th (of
the total of Q) query. The (unknown) true ranking
corresponding to the j-th query is denoted as π(j).

3.2. EM Derivation

We now use the generative story (6) to derive the fol-
lowing propositions (proofs omitted due to space con-
straints):

Proposition 1. The expected value of the complete
data log-likelihood under (5) is:

T (θ,θ′) =
∑

(π(1),...,π(Q))∈SQ
n

Lθ Uθ′ (7)
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where the complete data log-likelihood Lθ is:

Lθ =
Q∑
j=1

log p(π(j))−

Q

K∑
i=1

logZ(θi) +
Q∑
j=1

K∑
i=1

θi d(π(j), σ
(j)
i )

and the marginal distribution of the unobserved data
Uθ′ is:

Uθ′ =
Q∏
j=1

p
(
π(j)|θ′,σ(j)

)
Proposition 2. T (θ,θ′) is maximized by θ =
(θ1, . . . , θK) such that:

Eθi(D) =
∑

(π(1),...,π(Q))

∈SQ
n

(
1
Q

Q∑
q=1

d(π(q), σ
(q)
i )

)
Uθ′ (8)

That is, on each iteration of EM, we need to evaluate
the right-hand side (RHS) of (8) and solve the LHS
for θi for each of the K components.

3.3. Model Learning and Inference

At first, both evaluating the RHS of (8) and solving
the LHS for θi seem quite expensive (> n!). While
true in general, we can make the learning tractable for
a certain type of distance functions.

In particular, if a distance function can be decomposed
into a sum of independent components under the uni-
form distribution of π (see section 2.2), property (4)
may enable us to make the estimation of the LHS ef-
ficient. In Section 4, we show two examples of such
distance functions (for permutations and top-k lists).

In order to estimate the RHS, we use the Metropo-
lis algorithm (Hastings, 1970) to sample from (5).
The chain proceeds as follows: denoting the most
recent value sampled as πt, two indices i, j ∈
{1, . . . , n} are chosen at random and the objects
π−1
t (i) and π−1

t (j) are transposed forming π′t. If
a = p(π′t|θ,σ)/p(πt|θ,σ) ≥ 1 the chain moves to π′t.
If a < 1, the chain moves to π′t with probability a;
otherwise, it stays at πt. (Diaconis & Saloff-Coste,
1998) show quick convergence for Mallows model with
Cayley’s distance. While no convergence results are
known for the extended Mallows model with arbitrary
distance, we found experimentally that the MC chain
converges rapidly with the two distance functions used
in this work (10n steps in experiments of Section 5).

As the chain proceeds, we update the distance value
with the incremental change due to a single transposi-
tion, instead of recomputing it from scratch, resulting
in substantial savings in computation.

Alternatively, we also found (Section 5.1) that a combi-
nation of rankings σi weighted by exp(−θi) provides a
reasonable and quick estimate for evaluating the RHS.

Sampling or the suggested alternative RHS estimation
used during training is also used for model inference.

4. Model Application

Overcoming the remaining hurdle (the LHS estima-
tion) in learning the model efficiently depends on the
definition of a distance function. We now consider two
particular types of (partial) rankings: permutations,
and top-k lists. The latter is the case when each judge
specifies a ranking over k most preferable objects out
of n. For instance, a top-10 list may be associated
with the 10 items on the first page of results returned
by a web search engine. For both permutations and
top-k lists, we show distance functions which satisfy
the decomposability property (Section 2.2), which, in
turn, allows us to estimate the LHS of (8) efficiently.

4.1. Combining Permutations

Kendall’s tau distance (Kendall, 1938) between per-
mutations π and σ is a right-invariant metric defined
as the minimum number of pairwise adjacent transpo-
sitions needed to turn one permutation into the other.
Assuming that one of the permutations, say σ, is the
identity permutation e (we can always turn one of the
permutations into e by re-indexing the objects without
changing the value of the distance, see Section 2.1), it
can be written as:

DK(π) =
n−1∑
i=1

Vi(π)

where1 Vi(π) =
∑
j>i I(π−1(i) − π−1(j)). Vi are in-

dependent and uniform over integers [0, n− i] (Feller,
1968) with m.-g.f. Mi(t) = 1

n−i+1

∑n−i
k=0 e

tk. Following
(Fligner & Verducci, 1986), equation (4) gives:

Eθ(DK) =
neθ

1− eθ
−

n∑
j=1

jeθj

1− eθj
(9)

Eθ(DK) is monotone decreasing, so line search for θ
will converge quickly.

1I(x) = 1 if x > 0, and 0 otherwise.
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4.2. Combining Top-k Lists

We now propose an extension of the Kendall’s tau dis-
tance to top-k lists, i.e. the case where π and σ indi-
cate preferences over different (possibly, overlapping)
subsets of k ≤ n objects.

Let us denote by Fπ and Fσ the elements in π and σ
respectively, noting that |Fπ| = |Fσ| = k. We define
Z = Fπ ∩ Fσ, |Z| = z, P = Fπ \ Fσ, and S = Fσ \
Fπ (note that |P | = |S| = k − z = r). We treat π
and σ as rankings, which for us will mean that the
smallest index will indicate the top, i.e. contain the
most preferred object. For notational convenience, let
us now define the augmented ranking π̃ as π augmented
with the elements of S assigned the same index (k +
1), one past the bottom of the ranking as shown on
Figure 1 (σ̃ is defined similarly). We will slightly abuse
our notation and denote π̃−1(k + 1) to be the set of
elements in position (k + 1).

Kendall’s tau distance DK is naturally extended from
permutations to augmented rankings.

Definition 1. Distance D̃K(π̃, σ̃) between augmented
rankings π̃ and σ̃ is the minimum number of adjacent
transpositions needed to turn π̃ into σ̃.

It can be shown that D̃K(π̃, σ̃) is a right-invariant met-
ric, thus we will again simplify the notation denoting
it as D̃K(π̃). This distance can be decomposed as:

D̃K(π̃) =
k∑
i=1

π̃−1(i)∈Z

Ṽi(π̃) +
k∑
i=1

π̃−1(i)/∈Z

Ũi(π̃) +
r(r + 1)

2

where

Ṽi(π̃) =
k∑
j=i

π̃−1(j)∈Z

I(π̃−1(i)− π̃−1(j)) +

∑
j∈π̃−1(k+1)

I(π̃−1(i)− j)

Ũi(π̃) =
k∑
j=i

π̃−1(j)∈Z

1

Decomposing D̃K(π̃), the second term is the minimum
number of adjacent transpositions necessary to bring
the r elements not in Z (grey boxes on Figure 1) to the
bottom of the ranking. The third term is the minimum
number of adjacent transpositions needed to switch
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Figure 1. An example of augmented permutations π̃ (left)
and identity augmented permutation σ̃ (right, in natural
order). Grey boxes are objects in π but not in σ. D̃K(π̃)
is the minimum number of adjacent transpositions needed
to turn π̃ into σ̃: namely, bring all grey boxes into the
position k + 1 and put the remaining k objects in their
natural order.

them with the elements in π̃−1(k + 1), which would
then appear in the correct order in the bottom r po-
sitions. Finally, the first term is the adjacent transpo-
sitions necessary to put the k elements now in the list
in the natural order.

It can be shown that the random variable sum-
mands comprising D̃K(π̃) are independent when π̃
is uniformly distributed. Furthermore, Ṽi and Ũj
are uniform over integers [0, k − i] and [0, z], with
moment generating functions 1

k−i+1

∑k−i
j=0 e

tj and
1
z+1

∑z
j=0 e

tj , respectively. Assuming z > 0, and r > 0
equation (4) gives:

Eθ(D̃K) =
keθ

1− eθ
−

k∑
j=r+1

jejθ

1− ejθ
+

r(r + 1)
2

− r(z + 1)
eθ(z+1)

1− eθ(z+1)
(10)

If r = 0 (i.e. the augmented rankings are over the same
objects), both the distance and the expected value re-
duce to the Kendall distance results. Also, if z = 0 (i.e.
the augmented rankings have no objects in common),
D̃K = Eθ(D̃K) = k(k + 1)/2, which is the smallest
number of adjacent transpositions needed to move the
r = k objects in π̃−1(k + 1) into the top k positions.

Eθ(D̃K) is decreasing monotonically, so we can again
use line search to find the value of θ. Notice that the
expected value depends on the value of z (the number
of common elements between the two permutations).
We will compute the average value of z as we estimate
the RHS of (8) and use it to solve the LHS for θ.
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5. Experimental Evaluation

We demonstrate the effectiveness of our approach for
permutations and top-k lists considered in Section 4.

5.1. Permutations

We first consider the scenario of aggregating permuta-
tions. For this set of experiments, the votes of K = 10
individual experts were produced by sampling stan-
dard Mallows models (1), with the same location pa-
rameter σ∗ = e (an identity permutation over n = 30
objects), and concentration parameters θ∗1,2 = −1.0,
θ∗3,..,9 = −0.05, and θ∗10 = 0 (the latter generating all
permutations uniformly randomly). The models were
sampled 10 times, resulting in Q = 10 lists of permu-
tations (one for each “query”), which constituted the
training data.

In addition to the sampling procedure described in
Section 3.3 to estimate the RHS of (8), we also tried
the following weighted Borda count approximation.
For each “query” q, we took the K votes and mixed
them into a single permutation σ̂q as follows: a score
for each of the n objects is computed as a weighted
combination of ranks assigned to that object by indi-
vidual judges. The aggregate permutation σ̂q is ob-
tained by sorting the objects according to their re-
sulting scores. The weights are computed using the
current values of the model parameters as exp(−θi).
The rationale is that the smaller the absolute value
of θi, the lower the relative quality of the ranker, and
the less it should contribute to the aggregate vote. Fi-
nally, the RHS for the i-th component is computed as
the distance from its vote to σ̂q averaged over all Q
queries.

We also tried using the true permutation σ∗ in place
of σ̂q to see how well the learning procedure can do.

At the end of each EM iteration, we sampled the
current model (5), and computed the Kendall’s tau
distance between the generated permutation to the
true σ∗. Figure 2 shows the model performance when
sampling and the proposed approximation are used
to estimate the RHS. Although the convergence is
much faster with the approximation, the model trained
with the sampling method achieves better performance
approaching the case when the true permutation is
known.

5.2. Top-k lists

In order to estimate the model’s performance in the
top-k list combination scenario, we performed data
fusion experiments using the data from the ad-hoc re-
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Figure 2. Permutations: learning performance of the
model (averaged over 5 runs) when RHS is estimated using
sampling (Sampling), the proposed weighted Borda count
approximation (Weighted), or the true permutation (True).
Although the convergence is much faster with the approxi-
mation, model trained with the sampling method achieves
better performance.

trieval shared task of the TREC-3 conference (Har-
man, 1994). Our goal here is to examine the behav-
ior of our approach as we introduce poor judges into
the constituent ranker pool. In this shared task, 40
participants submitted top-1000 ranking over a large
document collection for each of the 50 queries. For
our experiments, we used top-100 (k = 100) rank-
ings from K = 38 of the participants (two of the par-
ticipants generated shorter rankings for some of the
queries and were not used) for all Q = 50 queries. We
replaced a specific number Kr ∈ [0,K] of the partici-
pants with random rankers (drawing permutations of k
documents from the set of documents returned by all
participants for a given query uniformly randomly).
We then used our algorithm to combine top-k lists
from Kr random rankers and (K − Kr) participants
chosen at random.

We measure performance using the precision in top-
{10, 30} documents as computed by trec eval2 from
the TREC conference series. As a baseline, we
use CombMNZrank suggested in (Klementiev et al.,
2007). It is a variant of a commonly used CombMNZ
(Shaw & Fox, 1994). Given a query q for each doc-
ument x in the collection it computes a score Nx ×∑K
i=1(k − ri(x, q)), where ri(x, q) is the rank of the

document x in the ranking returned by participant i
for the query q, and Nx is the number of participants
which place x in their top-k rankings. The aggregate

2Available at http://trec.nist.gov/
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Figure 3. Top-k lists: precision of the aggregate ranker as
a function of the number of random component rankers
Kr in top 10 and top 30 documents. Our algorithm learns
to discount the random components without supervision
substantially improving over CombMNZrank.

ranking is obtained by sorting documents according to
their scores. Intuitively, the more component rankers
rank a document highly the higher it appears in the
aggregate ranking.

Figure 3 shows that our algorithm learns to discount
the random components without supervision substan-
tially improving over the baseline as Kr → K.

We also compared our results with the ULARA algo-
rithm (Klementiev et al., 2007). These results were
not included since we found ULARA to be too sen-
sitive to user-defined parameters (an implicit form of
supervision) with results varying between competitive
with our model to comparable with CombMNZrank.

5.3. Model Dispersion Parameters

In order to demonstrate the relationship between the
learned dispersion parameters of the model, θ, and
the relative performance of the constituent rankers,
we also conducted a meta-search experiment. First,
we generated Q = 50 queries which result in an unam-
biguous most relevant document and submitted them
to K = 4 commercial search engines. For each engine,
we kept the 100 highest ranked documents (10 pages
of 10 documents each) after removing duplicates, and
unified URL formatting differences between engines.
We measure performance with Mean Reciprocal Page
Rank (MRPR), which we define as mean reciprocal
rank of the page number on which the correct docu-
ment appears.

Table 1 shows MRPR of the four search engines and

Table 1. MRPR of the four search engines and their cor-
responding model parameters; the results suggest a corre-
lation between the magnitude of the dispersion parameters
and the relative system performance.

S1 S2 S3 S4

θ -0.065 0.0 -0.066 -0.049
MRPR 0.86 0.43 0.82 0.78

their corresponding model parameters. As expected,
the results suggest a correlation between the magni-
tude of the dispersion parameters and the relative sys-
tem performance, implying that their values may also
be used for unsupervised search engine evaluation. Fi-
nally, our model achieves MRPR = 0.92 beating all
of the constituent rankers.

6. Conclusions and Future Work

We propose a formal mathematical and algorithmic
framework for aggregating (partial) rankings without
supervision. We derive an EM-based algorithm for the
extended Mallows model and show that it can be made
efficient for the right-invariant decomposable distance
functions. We instantiate the framework and experi-
mentally demonstrate its effectiveness for the impor-
tant cases of combining permutations and combining
top-k lists. In the latter case, we introduce the notion
of augmented permutation and a novel decomposable
distance function for efficient learning.

A natural extension of the current work is to instanti-
ate our framework for other types of partial rankings,
as well as to cases where ranking data is not of the
same type. The latter is of practical significance since
often preference information available is expressed dif-
ferently by different judges (e.g. top-k rankings of dif-
ferent lengths).

Another direction for future work is to extend the
rank aggregation model to accommodate position de-
pendence. In IR, more importance is generally given
to results appearing higher in the rankings. Within
our framework one may be able to design a distance
function reflecting this requirement. Additionally, the
quality of votes produced by individual components
may depend on the rank, e.g. in the top-k scenario
some rankers may be better at choosing few most rel-
evant objects, while others may tend to have more rel-
evant objects in the k selected but may not rank them
well relative to one another. This case may be mod-
eled by adding a dependency on rank to the dispersion
parameters of the model.
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In addition, this framework appears promising for a
number of applications. Besides the NLP problems
mentioned before, such as learning to combine out-
put from multiple machine translation systems, one
interesting setting may be domain adaptation. Here,
the task is to adapt a hypothesis trained with ample
labeled data from one input distribution to a second
distribution where minimal training data is available.
When the hypothesis is a trained aggregate ranker,
we expect the relative expertise of its components to
change and can use our approach to reweigh them ac-
cordingly.
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Abstract
We consider the problem of optimizing multi-
label MRFs, which is in general NP-hard and
ubiquitous in low-level computer vision. One
approach for its solution is to formulate it
as an integer linear programming and relax
the integrality constraints. The approach we
consider in this paper is to first convert the
multi-label MRF into an equivalent binary-
label MRF and then to relax it. The result-
ing relaxation can be efficiently solved using
a maximum flow algorithm. Its solution pro-
vides us with a partially optimal labelling of
the binary variables. This partial labelling
is then easily transferred to the multi-label
problem. We study the theoretical properties
of the new relaxation and compare it with the
standard one. Specifically, we compare tight-
ness, and characterize a subclass of problems
where the two relaxations coincide. We pro-
pose several combined algorithms based on
the technique and demonstrate their perfor-
mance on challenging computer vision prob-
lems.

1. Introduction

One of the major advances in computer vision in the
past few years has been the development of efficient
deterministic algorithms for solving discrete labeling
problems. Labeling problems occur in many places
from dense stereo and image segmentation (Boykov
et al., 2001; Szeliski et al., 2006) to the use of picto-
rial structures for object recognition (Felzenszwalb &
Huttenlocher, 2000). They can be shown to be equiv-
alent to the problem of estimating the maximum a

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

posterior (map) solution in graphical models such as
Markov Random Fields (mrf) and Conditional Ran-
dom Fields (crf), which is also often referred to as
energy minimization.
A number of powerful algorithms are present in the
literature which deal with the problem. For cer-
tain subclasses of the problem, it is possible to com-
pute the exact solution in polynomial time: MRFs of
bounded tree-width, e.g . (Lauritzen, 1998); with con-
vex pairwise potentials (Ishikawa, 2003); with submod-
ular potentials of binary (Hammer, 1965; Kolmogorov
& Zabih, 2004) or multi-label (Schlesinger & Flach,
2000; Kovtun, 2004) variables; with permuted sub-
modular potentials (Schlesinger, 2007). However, the
problem of minimizing a general energy function is NP-
hard. Nevertheless it is just these sorts of general en-
ergies that occur in many vision problems and making
progress towards their solution is of paramount impor-
tance.

Energy Minimization as a Linear Program
General discrete energy minimization can be seen as
an integer programming problem. Dropping inte-
grality constraints leads to an attractive linear pro-
gramming relaxation (LP-1). Unfortunately, linear
programs arising from this scheme in vision applica-
tions are of very large scale, and are not practical
to solve with general methods. A number of algo-
rithms have been developed (Schlesinger, 1976; Ko-
val & Schlesinger, 1976; Wainwright et al., 2003; Kol-
mogorov, 2006; Werner, 2007) which attempt to solve
this relaxation by exploiting the special structure of
the problem. However, their common drawback is that
they may converge to a suboptimal point. Other de-
veloped methods for energy minimization include local
search algorithms (Boykov et al., 2001), primal-dual
method (Komodakis & Tziritas, 2005), subgradient
methods (Schlesinger & Giginyak, 2007; Komodakis
et al., 2007). Some local search algorithms provide
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approximation ratio guarantee for (semi-)metric en-
ergies (Boykov et al., 2001; Komodakis & Tziritas,
2005). Finally, there are methods which output a
partial assignment of labels with guaranteed opti-
mality certificate for binary (Hammer et al., 1984;
Boros et al., 1991; Boros et al., 2006; Rother et al.,
2007) and multi-label (Kovtun, 2003; Kovtun, 2004)
problems. Dead-end elimination is another related
method for identifying non-optimal assignments based
on local sufficient conditions, it was originally pro-
posed (Desmet et al., 1992) for predicting and design-
ing the structures of proteins. In this paper we develop
a novel method for obtaining partial optimal solutions
of functions of multi-label variables.
Our method works by first transforming the multi-
label energy function to a function involving binary
variables (Schlesinger & Flach, 2006). This binary en-
ergy is then minimized by applying the roof dual relax-
ation (Boros & Hammer, 2002; Hammer et al., 1984),
which can be solved efficiently using a single graph
cut. More importantly, solving the roof dual relax-
ation results in an assignment of a subset of the vari-
ables which is guaranteed to be valid for any optimal
solution. This partially optimal solution can be used
to constrain the state space of the original multi-label
problem. As we show, this approach may be viewed
as a different LP-relaxation of the multi-label energy
minimization problem (LP-2).

Comparing LP-1 with LP-2 We present a num-
ber of theoretical results studying properties of LP-2
and relating LP-2 with LP-1. Our first result is that
LP-1 is a tighter relaxation of the energy minimization
problem compared to LP-2. We show in the paper that
solutions of LP-1 necessarily satisfy the constraints de-
rived by LP-2, so additional guarantees for methods
based on LP-1 may follow. We also identify a sub-
class of problems for which LP-2 is as tight as LP-1.
Thus, for problems of this subclass LP-1 can be solved
exactly and efficiently using combinatorial methods.
It was recently demonstrated that the roof dual re-
laxation performs well for a number of computer vi-
sion applications (Kolmogorov & Rother, 2007; Rother
et al., 2007) which are naturally formulated as a binary
energy minimization. However, it turns out that when
multi-label problems are formulated as binary energy
minimization the roof dual relaxation leaves many
variables unassigned. We therefore use recently pro-
posed enhancements of the roof dual technique called
“probing” (Boros et al., 2006; Rother et al., 2007)
which can often help resolve these ambiguities. Our
last contribution is providing an alternative formula-
tion of LP-2: we prove that it is equivalent to com-
puting a decomposition of the energy into submodular

and supermodular parts so that the sum of the lower
bounds for each part is maximized. Precise details of
this theoretical result are given in (Shekhovtsov et al.,
2008, section 10).
Although this is primarily a theoretical paper, we
have performed a number of experiments with vari-
ous energy models arising in vision applications, in-
cluding image restoration, object-based segmentation,
and image stitching. Our experiments show that the
proposed method outperforms the competing method
of (Kovtun, 2003) by labelling many more random
variables. We also demonstrate that it may help solv-
ing difficult problems by reducing their state space and
applying other methods to the reduced problem.

2. Energy Minimization

Let L = {1 . . .K} be a set of labels. Let G = (V, E) be
a graph, where the set of edges E ⊆ V × V is antisym-
metric and antireflexive, i.e. (s, t) ∈ E ⇒ (t, s) /∈ E .
We denote an ordered pair (s, t) ∈ E simply by st. Let
each graph node s ∈ V be assigned a label xs ∈ L
and let a labeling (or configuration) be defined as x =
{xs | s ∈ V}1. Let {θs(i) ∈ R | i ∈ L, s ∈ V} be uni-
variate potentials and {θst(i, j) ∈ R | i, j ∈ L, st ∈ E}
be pairwise potentials of a random field. Let in addi-
tion θconst be a constant term, and let a concatenated
vector of potentials, including the constant term, be
denoted as θ = (θ, θconst) ∈ Ω = RI∪{const}, where set
of indices

I = {(s, i) | s ∈ V, i ∈ L} ∪ {(st, ij) | st ∈ E , i, j ∈ L}
(1)

corresponds to all univariate and pairwise terms. No-
tation θI will thus refer to all components of θ but the
constant term. The energy of a configuration x of the
random field is defined as:

E(x|θ) =
∑
s∈V

θs(xs) +
∑
st∈E

θst(xs, xt) + θconst. (2)

2.1. LP-relaxation
We will study two different relaxations of minimization
of (2). Both relaxations can be written using the same
formulation but will differ in the graph, number of
labels and potential vector involved.
Energy function (2) can be conveniently written using
a scalar product in Ω as E(x|θ) = 〈µ(x), θ〉, where
µ(x) ∈ {0, 1}I∪{const} is defined by µ(x)s(i) = δ{xs=i},
µ(x)st(i, j) = δ{xs=i}δ{xt=j} and µ(x)const = 1. In this
notation minimization of E is expressed as:

min
x∈LV

〈µ(x), θ〉. (3)

1Notation {xs|s ∈ S} (bold brackets), where S is a
finite set, will stand for the concatenated vector of variables
xs, rather than the set of their values.
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The LP-relaxation of (3) reviewed in, e.g ., (Werner,
2007) is constructed as follows. For each variable xs,
a set of relaxed variables µs(i) ∈ [0, 1], i ∈ L is in-
troduced. These variables are required to satisfy the
normalization constraints∑

i∈L
µs(i) = 1, ∀s ∈ V. (4)

Further, for each pair (xs, xt), st ∈ E the relaxed vari-
ables µst(i, j) ∈ [0, 1], i, j ∈ L are introduced which
must satisfy the marginalization constraints:∑

j′∈L
µst(i, j′) = µs(i), ∀st ∈ E , ∀i ∈ L,∑

i′∈L
µst(i′, j) = µt(j), ∀st ∈ E , ∀j ∈ L.

(5)

The concatenated vector µ ∈ Ω satisfying these con-
straints will be called a relaxed labeling. Indeed, a
vector µ with all integral components uniquely repre-
sents a labeling x. When the integrality constraints
are dropped we get the following relaxation of (3):

min
µ∈ΛG,L

〈µ, θ〉, (6)

where ΛG,L =
{
µ ∈ Ω+ |AµI = 0, BµI = 1, µconst =

1
}

is called the local (Wainwright et al., 2003) poly-
tope of graph G. Here set Ω+ denotes vectors from Ω
with all nonnegative components, equalities AµI = 0
express marginalization constraints (5), and equalities
BµI = 1 express normalization constraints (4).

2.2. Binary Energy Minimization
Energy minimization problems with 2 labels (|L| =
2) are conveniently described in terms of binary (or
Boolean) variables, i.e. with set of labels being B =
{0, 1}. For clarity we will denote binary configurations
by z. Univariate and pairwise terms of (2) can be
written as:

θs(zs) = θs(1)zs + θs(0)(1− zs),
θst(zs, zt) = θst(1, 1)zszt + θst(0, 1)(1− zs)zt

+θst(1, 0)zs(1− zt) + θst(0, 0)(1− zs)(1− zt).
(7)

Expanding brackets in (7) it is clear that (2) can be
transformed to the form:

E(z|η) =
∑

s

ηszs +
∑
st

ηstzszt + ηconst, (8)

which is a quadratic function of binary variables.
Functions of the form BV 7→ R are called pseudo-
Boolean (Boros & Hammer, 2002) and minimization
(or maximization) of (8) is called quadratic Pseudo-
boolean optimization.
Calculating coefficients η from θ is equivalent to choos-
ing the reparametrization θ̂ ≡ θ with non-zero ele-
ments being only θ̂s(1), θ̂st(1, 1) and θ̂const.

It is easy to see that pseudo-Boolean optimization, en-
ergy minimization with 2 labels and the MIN-CUT
problem are all equivalent problems, and can be sim-
ply converted one into another. It is also known that
polynomially solvable MIN-CUT problems (those hav-
ing weights of all edges in the graph non-negative) cor-
respond to quadratic pseudo-Boolean problems with
all weights ηst being non-positive, which is equivalent
to the condition of submodularity of E(·|η).

2.3. LP-relaxation of Binary Problems
As shown in (Hammer et al., 1984), the LP relaxation
(6) for the case of binary variables has special prop-
erties, which in general do not hold in the multi-label
case. First, there exists a half-integral optimal relaxed
labeling µ∗, i.e. all components are 0, 1

2 or 1. Second,
if µ∗ is integral for some node s (i.e. µ∗s(α) = 0), then
there exists a global minimum z of the original func-
tion in which zs = α. In other words, by solving the
LP relaxation we can obtain constraints on the global
minima of the binary energy. These constraints can be
expressed as

zmin ≤ z ≤ zmax, (9)

where zmin, zmax ∈ BV and inequalities are component-
wise. For instance, 0 ≤ zs ≤ 1 implies no constraints
on zs, while 0 ≤ zs ≤ 0 implies that zs is constrained
to be 0.
If (9) holds for all optimal solutions z, then the pair
(zmin, zmax) is said to define strong persistency; if (9)
holds for some optimal solution z then (zmin, zmax) de-
fines weak persistency (Boros & Hammer, 2002). It is
important to note that the LP relaxation can be solved
very efficiently by computing minimum cut/maximum
flow in an appropriately constructed graph. The tech-
nique in (Boros et al., 1991) is perhaps the most ef-
ficient; we will refer to it as the Qudratic Pseudo-
Boolean Optimization (QPBO) method2. It yields a
pair (zmin, zmax) defining strong persistency.
Recently, two techniques were introduced which ex-
tend the QPBO method. The first one is Prob-
ing (Boros et al., 2006), or QPBO-P. It fixes a cer-
tain node s to a particular label α, runs QPBO thus
obtaining some information about global minimizers
of the energy. This information is incorporated into
the energy (e.g. if we learn that zs = zt for all opti-
mal solutions then we contract nodes s and t), and the
“probing” is performed for other nodes until conver-
gence. An efficient implementation of QPBO-P was
described in (Rother et al., 2007). The second method

2Following (Rother et al., 2007) we use the abbreviation
QPBO to denote the max-flow algorithm for computing the
roof-dual (Boros et al., 1991) rather then the optimization
problem itself.
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is Improve, or QPBO-I (Rother et al., 2007). It takes
an input labeling z and tries to improve its energy by
fixing a subset of nodes to labels specified by z and
running QPBO. These operations guarantee not to in-
crease the energy, and in practice do often decrease
it.

3. Solving Multi-label Problems

We now address the problem of minimizing energy
functions involving multi-label variables.

3.1. Converting Multi-label Problems Into
Binary Ones

As was discussed in Sec. 2.2, there are simple tran-
sitions between energy minimization with two labels,
MIN-CUT problem and the quadratic pseudo-Boolean
optimization. Thus, it is not essentially important to
which of those forms a multi-label problem will be
reduced. The construction (Ishikawa, 2003; Kovtun,
2004; Schlesinger & Flach, 2006) adopted to our nota-
tion of binary energies is as follows.
We start the transformation procedure by obtaining a
reparametrization θ̂ ≡ θ which satisfies the following:

θ̂st(1, j) = θ̂st(i, 1) = 0 st ∈ E , i, j ∈ L
θ̂s(1) = 0 s ∈ V.

(10)

This reparametrization is easy to construct. For ex-
ample, to achieve θ̂st(i, 1) = 0 one needs to subtract
the value γc(i) = θst(i, 1) from θst(i, j) and add it to
θs(i), which does not change the energy, and so on,
see (Shekhovtsov et al., 2008) for details. Note that in
the case of two labels, this reparametrization θ̂ imme-
diately provides coefficients for writing a binary energy
in the form (8).
Let the tuple (L, G, θ) define a multi-label energy min-
imization problem. Let L̃ to refer to the set of the last
K − 1 labels of L, i.e. L̃ = {2 . . .K}. The components
of the equivalent binary energy minimization problem
are given as follows (Fig 1):

• Graph N = (V,A), where V = V × L̃ and A =
AE ∪ AV . AE =

{
((s, i), (t, j)) | st ∈ E , i, j ∈ L̃

}
.

AV =
{
((s, i), (s, i− 1)) | s ∈ V, i = 3 . . .K

}
.

• Binary configuration z ∈ BV . For a configuration
x ∈ LV the corresponding binary configuration
z(x) is defined by

z(x)(s,i) = δ{i≤xs}, (s, i) ∈ V. (11)

• For a binary configuration z, the corresponding
multi-label configuration x (denoted as x(z)) is
found as:

xs = 1 +
∑
i∈L̃

z(s,i). (12)

s t

xs

xt

1

2

3

(s,2)

(s,3)

(s,4)

4

(t,2)

(t,3)

(t,4)

x z

∞

∞

∞

∞

 

Figure 1. Converting multi-label problems into binary
ones. Left: an interaction pair st ∈ E of the multi-label
energy function; a labeling x is shown by black circles; low-
est labels are dashed since all weights in θ̂ associated with
them are 0. Right: binary variables z(s,i), z(t,j) used for
encoding the multi-label problem; labeling z(x) is shown
by black. Note that if the link (xs = 2, xt = 3) is ac-
tive (left) then two links [(s, 2), (t, 2)] and [(s, 2), (t, 3)] are
active (right) .

• Binary energy function

E(z|η) = H(z)+
∑
u∈V

ηuzu+
∑

uv∈AE

ηuvzuzv+ηconst,

(13)
where weights η are set such that

E(z(x)|η) = E(x|θ̂) = E(x|θ), ∀x ∈ LV . (14)

In particular pairwise terms ηuv are assigned as

η(s,i),(t,j) = Dij θ̂st st ∈ E , i, j ∈ L̃, (15)

where Dijθst = θst(i, j)+θst(i−1, j−1)−θst(i, j−
1)−θst(i−1, j). Hard constraints H are as follows:

H(z) =
∑

uv∈AV

h(zu, zv), (16)

where h(z(s,i), z(s,i−1)) = 0 if z(s,i) ≤ z(s,i−1) and
∞ otherwise (see Fig. 1). Hard constraints ensure
that any z with finite energy is in the form (11).

It is already known that the above defined transforma-
tion can be used together with st-mincut algorithms to
efficiently and exactly solve lattice-submodular multi-
label problems. In this paper, we broaden its appli-
cability by showing how it can be used in conjunc-
tion with roof-duality to obtain partial optimal solu-
tions for general problems. An important aspect of
the transformation is that (11) depends on the order-
ing of L. This will lead to certain limitations in the
sequel. An interesting question raised by reviewers
is whether it is possible to use a different reduction
to binary variables which does not depend on the or-
der. This does not look straightforward. For exam-
ple, a rather natural reduction suggested by review-
ers is to use binary indicator variables z(s,i) = δ{xs=i}
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and enforce constraint
∑

i z(s,i) ≤ 1 via K(K − 1)/2
hard pairwise terms and constraints

∑
i z(s,i) ≥ 1 by

adding sufficiently large negative value to all unary
terms. Unfortunately, the LP relaxation of the result-
ing binary problem can be shown to be degenerate
(see (Shekhovtsov et al., 2008)).

3.2. Multi-label QPBO
Let (G, K, θ) define a multi-label energy minimization
problem, and (N, B, η) define the corresponding binary
energy minimization problem. The LP-relaxation of
the multi-label problem is defined as:

min
µ∈ΛG,L

〈µ, θ〉 (LP-1)

while that of the binary problem defined as:

min
ν∈ΛN,B

〈ν, η〉. (LP-2)

We attempt minimization of E(x|θ) by applying
QPBO and its extensions -P, -I (Boros et al., 2006;
Rother et al., 2007) to the binary energy E(·|η). We
call the new methods multi-label QPBO (-P,-I), or
short MQPBO (-P,-I). As the original QPBO methods
efficiently solves LP-2, it is important to see how LP-2
is related to the original problem minx E(x|θ) and to
its relaxation LP-1. The following results apply.

Statement 1. Let (zmin, zmax) define strong per-
sistency for E(·|η) such that E(zmin) < ∞ and
E(zmax) < ∞. Then any optimal configuration x ∈
argminLV E(·|θ) must satisfy

xmin ≤ x ≤ xmax, (17)

where xmin = x(zmin), xmax = x(zmax).

The proof (Shekhovtsov et al., 2008) is simply by using
the relation (12).
Thus for each variable s there is an interval of labels
[xmin

s , xmax
s ] outside of which no label may be selected

in an optimal solution. All labels outside the inter-
val may therefore be safely discarded. As is seen, the
ordering of L turns to be very important. While in
many practical application there is a natural ordering
defined, generally, constraints in the form of intervals
derived from arbitrary ordering may be very weak.
A pairwise term θst is called submodular (resp. super-
modular) if

Dijθst ≤ 0 (resp. ≥ 0 ), i, j = 2 . . .K. (18)

Theorem 1. If the term θst is either submodular or
supermodular for each edge st ∈ E, the relaxations
LP-1 and LP-2 coincide, and there exist a mapping
between their optimal solutions.

Proof sketch. We have already used the mapping (11)
to relate integral solutions of the two problems such
that the energy is preserved. It is quite straightforward
to extend it to an injective mapping Π of relaxed label-
ings µ to relaxed labelings ν, preserving the associated
primal costs of LP-1 and LP-2. However, inverting this
mapping is not always possible, so there might be a so-
lution ν of LP-2, for which there is no corresponding
solution µ of LP-1. Under conditions of the theorem
a correction to a solution ν can be applied such that
it remains optimal and has a preimage in the mapping
Π feasible to LP-1. See details in (Shekhovtsov et al.,
2008).

Corollary 1. It is known that LP-2 can be solved us-
ing a network flow algorithm (Hammer et al., 1984).
This implies that for a subclass of problems (defined by
conditions of the above theorem) there exist efficient
fully combinatorial algorithms to solve LP-1, which
is an improvement over, e.g ., message passing algo-
rithms such as TRW-S. But currently, we do not see
applications for the case where a part of interactions
is submodular and the other part is supermodular.

The next result shows that strong persistency con-
straints (17) can be also extended to relaxed labelings:

Theorem 2. Let xmin = x(zmin), xmax = x(zmax) be
the output of MQPBO, and let µ ∈ ΛG,L be an optimal
solution of LP-1. Then µs;i = 0 for labels i outside the
interval [xmin

s , xmax
s ] for all s ∈ V.

Proof sketch. Assume µ violates constraints of the the-
orem. Let then ν = Πµ. For the binary problem it fol-
lows from the roof duality that a “truncated” solution,
ν̄ may be constructed, which has non-zero weights
ν̄u(a) only for labels a ∈ B such that zmin

u ≤ a ≤ zmax
u ,

u ∈ V and such that the primal cost is decreased:
〈ν̄, η〉 < 〈ν, η〉. It can then be mapped back to a so-
lution µ̄ = Π−1ν̄ of LP-1 of a strictly lower cost than
µ. This contradicts to the optimality of µ. See details
in (Shekhovtsov et al., 2008).

The theorem shows that LP-1 never selects nodes
which are rejected by LP-2, this may be useful in the
analysis of the algorithms related to LP-1.

4. Enhanced Algorithms

In this section we discuss in more detail the “probing”
and “improve” versions of MQPBO and show how they
could be used in combination with other algorithms for
minimization of multi-label energy functions.
MQPBO-P. This enhancement applies the probing
technique (Boros et al., 2006; Rother et al., 2007) to
binarized energy functions. It computes stronger con-
straints of the form (17) on the set of optimal config-
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Figure 2. The number of labelled variables in the partially
optimal solutions obtained by using MQPBO-P and the
algorithm (Kovtun, 2003) (denoted by A-K). Results are
shown for energy functions involving variables taking 3, 5
and 7 labels.

urations. Our results show that these constraints al-
low us to isolate the optimal labels for many random
variables of the original energy function. In fact for
certain energy functions we obtained the global mini-
mum configuration. If latter is not the case then con-
straints (17) lead to a simplified minimization problem
with a smaller or restricted solution space, which can
be further approached by any other minimization al-
gorithms.
As was mentioned above, MQPBO, and hence the
probing extension, is not invariant to permutations
of labels. While we are using a fixed ordering in all
our experiments, the method could be potentially run
under different orderings thus extracting multiple con-
straints.
MQPBO-P + X. Similar to QPBO+X (Rother
et al., 2007), restriction of the energy function ob-
tained by MQPBO(-P) is then minimized using any
other minimization algorithm X. In our experiments
we used max-product BP (Pearl, 1988), TRW-S (Kol-
mogorov, 2006) and α-expansion algorithm (Boykov
et al., 2001).
MQPBO-I. By using QPBO-I (Rother et al., 2007)
on the binarized problem any complete labelling of the
multi-label MRF can be updated such that its energy
never increases. This procedure can be seen as a local
search algorithm.

5. Experimental Results

We now provide the results of using our method to
minimize energy functions encountered in computer
vision problems. To get a good understanding of the
performance of our method we also tested it on syn-

Figure 3. Effect of non-convexity: the number of unla-
belled variables in the MQPBO-P solution for different val-
ues of pairwise strength λ and truncation T .

thetic energy functions.
Synthetic Problems. The energy functions corre-
sponding to the synthetic problems contained 50×50
multi-label variables which interacted under a 4-
connected neighborhood. We used different numbers
of labels and strengths of pairwise potentials in our ex-
periments. Unary potentials θs(xs) are sampled uni-
formly in {0,1. . . 100}. The pairwise potentials had
the form of a linear truncated model θst(xs, xt) =
λ
T min(|xs − xt|, T ), where T is the truncation and λ
is the pairwise strength. Fig. 2 shows comparison of
MQPBO-P to (Kovtun, 2003), truncation T is fixed
to 1. It is seen that the proposed method labels more
variables for a range of parameters. To study the effect
of non-convexity, we varied truncation T and strength
λ of the pairwise terms (Fig. 3). The number of la-
bels in this case is fixed to 7. Our experiments show

Original Noisy Image MQPBO-P
(E=65382)

BP (E=65424) TRW-S
(E=65398)

Expansion
(E=65386)

Figure 4. Image Denoising: results obtained by different
energy minimization algorithms. The energy used for this
experiment has |LI | = 7, γ = 14 and T = 4. Results
are annotated with their respective energy costs. All algo-
rithms were run untill convergence. Observe that MQPBO-
P labels all variables and thus obtains the globally optimal
solution for this energy.
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Figure 5. Object Segmentation and Recognition us-
ing (Shotton et al., 2006). The first row contains an image
from the MSRC (Shotton et al., 2006) dataset and the
results of running BP and TRW-S on the full energy. Dif-
ferent levels of gray denote different object classes such as
“sky” and “road”. The partially optimal solution obtained
by running MQPBO-P and A-K (Kovtun, 2003) is shown
in the bottom row, left image. Unlabeled pixels are shown
in green. This solution is used to obtain a restricted en-
ergy. Running BP (bottom, middle) and TRW-S (bottom,
right) on the restricted energy gives solutions with lower
energy. Hence running A-K + MQPBO-P + “X” is better
than running “X” alone. In all cases BP and TRW-S were
run for 50 iterations.

that MQPBO-P finds the globally optimal solution of
energy functions where the pairwise term is small in
magnitude or is nearly convex. As expected, the num-
ber of variables labelled by the algorithm decrease with
increase in the strength and non-convexity of the pair-
wise terms (Fig. 3).
Image Denoising. We now test the MQPBO-P algo-
rithm on the problem of image denoising and restora-
tion. There is a random variable for each pixel in the
image. The label set for the problem is the set of
intensities LI the pixels can take. The unary cost
for taking a particular label (intensity) is defined as
θs(xs) = |Is − φ(xs)| where Is is the intensity of the
pixel s in the image, and the function φ maps the la-
bels to their corresponding intensity levels. The pair-
wise terms of the energy are defined as: θst(xs, xt) =
γ min(|xs−xt|, T ) where γ is a model parameter and T
is the truncation used. Our experiments showed that
the MQPBO-P algorithm performed quite well on the
energy function and in some cases obtained the glob-
ally optimal solution which was not achieved by other
energy minimization algorithms (see Fig. 4).
Object based Segmentation. We now show the
results of using the MQPBO-P method for restricting
the energy functions. Our results show that the restric-
tion significantly reduces the number of variables and
makes them amenable for minimization using other
algorithms. We test the algorithm on the problem of

Figure 6. In this application we are stitching together four
images (already rectified) to a panoramic image. Running
alpha expansion gives result (a) and a zoom-in (dashed
rectangle) is shown in (b). The red arrow indicates a visible
cut. Image (c) shows the number of possible labels for
this image area, where white means all four images overlap
and very dark means only one image is possible for those
pixels. When applying MQPBO and MQPBO-P to this
image portion we obtain labelling (d) and (e) respectively,
where green means unlabeled and the different gray scales
represent different labels. We see that MQPBO-P is able
to label more pixels than MQPBO. It is also worth noting
that the visible cut in (b) is indeed the global minimum
which can be seen from labelling (e).

object segmentation and recognition. We use the en-
ergy function formulated in (Shotton et al., 2006). The
binarized energy function corresponding to this prob-
lem has around 107 variables and running MQPBO-P
on it directly is quite time consuming. To reduce the
size of the problem we first run the partial optimality
algorithm described in (Kovtun, 2003), referred to as
A-K. MQPBO-P is run on the restriction obtained us-
ing A-K. This combined procedure leaves 694 variables
unlabelled. The results are shown in Fig. 5.
Image Stitching. Finally, we investigated an appli-
cation where MQPBO-P shows its limitations. For
panoramic stitching the unary terms are either zero or
infinity, depending on the presence or absence of an
image, and consequently the pairwise terms dominate
the energy. We use the panoramic stitching formula-
tion from (Agarwala et al., 2004) where pairwise terms
model the visibility of a transition, different for each
pair of images. The results are discussed in fig 6.

6. Conclusions

This paper addressed the problem of minimizing non-
submodular multi-label energy functions. These are
used extensively in computer vision and are generally
NP-hard to minimize. We present a method for ob-
taining partially optimal solutions of such energies de-
rived from roof-dual based methods for binary energy
functions. We give new theoretical insights in the un-
derlying LP relaxation, being efficiently solved by the
method. Although this work is mainly theoretical in
nature we hope to inspire people to use these ideas
to develop better optimization algorithms. We also
believe that this approach is useful for other impor-
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tant problems in computer vision such as MRF/CRF
learning.
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Abstract

We consider the task of learning to accu-
rately follow a trajectory in a vehicle such
as a car or helicopter. A number of dynamic
programming algorithms such as Differential
Dynamic Programming (DDP) and Policy
Search by Dynamic Programming (PSDP),
can efficiently compute non-stationary poli-
cies for these tasks — such policies in general
are well-suited to trajectory following since
they can easily generate different control ac-
tions at different times in order to follow the
trajectory. However, a weakness of these
algorithms is that their policies are time-
indexed, in that they apply different policies
depending on the current time. This is prob-
lematic since 1) the current time may not
correspond well to where we are along the
trajectory and 2) the uncertainty over states
can prevent these algorithms from finding
any good policies at all. In this paper we
propose a method for space-indexed dynamic
programming that overcomes both these diffi-
culties. We begin by showing how a dynam-
ical system can be rewritten in terms of a
spatial index variable (i.e., how far along the
trajectory we are) rather than as a function
of time. We then use these space-indexed dy-
namical systems to derive space-indexed ver-
sion of the DDP and PSDP algorithms. Fi-
nally, we show that these algorithms perform
well on a variety of control tasks, both in sim-
ulation and on real systems.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

1. Introduction

We consider the task of learning to accurately follow
a trajectory, for example in a car or helicopter. This
is one of the most basic and fundamental problems in
reinforcement learning and control. One class of ap-
proaches to this problem uses dynamic programming.
These algorithms typically start at the last time-step
T of a control task, and compute a simple (say, lin-
ear) controller for that time-step. Then, they use dy-
namic programming to compute controllers for time-
steps T − 1, T − 2 and so on down to time-step 1.
Some examples of algorithms in this family include
(Jacobson & Mayne, 1970; Bagnell et al., 2004; Atke-
son & Morimoto, 2003; Lagoudakis & Parr, 2003), and
all of them output time-varying/non-stationary poli-
cies that choose the control action as a function of
time. Given that following a trajectory requires one to
choose very different control actions at different parts
of the trajectory — for example, the controls while
driving a car on a straight part of the trajectory are
very different from the controls needed during a turn –
these dynamic programming algorithms therefore ini-
tially seem well-suited for trajectory following.

However, a weakness in the naive dynamic program-
ming approach is that the control policies are time-
indexed. That is, these algorithms output a sequence
of controllers π1, π2, . . . , πT and execute controller πt

at time t. However, as time passes, the uncertainty
over the state increases, and this can greatly degrade
controller performance. For example, suppose we are
driving a car around a track with both straight and
curved portions, and suppose that the controller at
time t assumed the car was on a curved portion. If,
due to the natural stochasticity of the environment,
the car was actually on a straight portion of the track
at this time, the resulting controller would perform
very poorly, and this problem increases over time. This
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problem can be alleviated slightly be “re-indexing” the
controllers by state during execution. That is, at time
t we do not necessarily execute controller πt, but in-
stead we examine all the controllers π1, . . . , πT , and
execute the controller whose corresponding state is
closest to the current state — several variations on
this approach exist, and we will discuss them further
in Section 5. However, there are two fundamental lim-
itations of this general method. First, because we are
executing a different policy from the one learned by
dynamic programming, it is difficult to provide any
of the performance guarantees that often accompany
the purely time-indexed dynamic programming algo-
rithms. Second, and more fundamentally, the uncer-
tainty over states in the distant future often make it
extremely difficult to learn any good policy using the
time-indexed algorithms. This means that regardless
of how we re-index the controllers during execution,
we are unlikely to obtain good performance.

In this paper we propose a method for space-indexed
dynamic programming that addresses both these con-
cerns. More precisely, we will define a spatial index
variable d that measures how far we have traveled
along the target trajectory. Then, we will use policies
πd that depend on d — where we are along the trajec-
tory — rather than the current time t. In order to learn
such policies, we define the notion of a space-indexed
dynamical system, and show how various dynamical
systems can be rewritten such that their dynamics are
indexed by d instead of by time t. This then allows us
to extend various dynamic programming algorithms
to produce space-indexed policies — in particular, we
develop a space-indexed versions of the Differential
Dynamic Programming (DDP) (Jacobson & Mayne,
1970) and Policy Search by Dynamic Programming
(PSDP) algorithms (Bagnell et al., 2004). Finally, we
successfully apply this method to several control tasks,
both in simulation and in the real world.

The remainder of this paper is organized as follows.
In Section 2 we show how to transform a standard
(time-indexed) dynamical system into a space-indexed
dynamical system. Using this transformation, in Sec-
tion 3 we develop space-indexed versions of the DDP
and PSDP algorithms. In Section 4 we present ex-
perimental results on several control tasks. Finally, in
Sections 5 and 6 we discuss related work and conclude
the paper.

2. Space-indexed Dynamical Systems

Standard dynamic programming algorithms are very
efficient because they know in advance that the policies
π1, . . . , πT will be executed in a certain sequence (and
that each policy will be executed only once), and can

thus solve for them in reverse order. The key difficulty
of generalizing a dynamic programming algorithm to
the space-indexed setting is that it is difficult to know
in advance where in space (i.e., how far along the tra-
jectory) the vehicle will be at each step, and thus which
space-indexed policy will be executed when. For ex-
ample, if the vehicle is currently at space-index d, then
there is no guarantee that executing policy πd for one
time-step will put the vehicle in space-index d+1. But
if πd might be executed multiple times before switch-
ing to πd+1, then in general its parameters cannot be
solved for in closed form during the dynamic program-
ming backup step, and require some complex policy
search instead. In this section we discuss a method for
addressing this problem. Specifically, we will rewrite
the dynamics of a system so that the states and transi-
tions are indexed by the spatial-index variable d rather
than by the time t.

Suppose we are given a general non-linear dynamics
model in the form of a (possibly stochastic) differen-
tial equation ṡ = f(s, u), where s ∈ R

n denotes the
state vector u ∈ R

m denotes the control input, and ṡ

denotes the derivative of the state vector with respect
to time. While some classical control algorithms op-
erate directly on this differential equation, a common
technique in reinforcement learning and control is to
create a discrete-time model of the system

st+1 = F (st, ut) + wt

by numerical integration, where st and ut denote the
state and input at time t respectively, and wt is a zero-
mean IID noise term (typically taken to be Gaussian
with some prespecified covariance, for example). A
simple but very common method for achieving this
discretization is by Euler integration. In this case the
state evolves as

st+∆t = st + f(st, ut)∆t + wt

where ∆t is the integration time constant (the vari-
ance of wt will scale linearly with the time constant
as well). Note that even though the system evolves in
continuous time, by making the decision to model it
as a discrete-time system, we have made a decision to
explicitly represent the state only at certain instants
in time (t = ∆t, t = 2∆t, . . .).

When transitioning to a space-indexed dynamical sys-
tem, we instead will explicitly represent the state
only when it is at certain points along the trajectory.
We begin by representing the time-indexed state as
st = [xt, θt]

T
, where x ∈ R

p represents what we refer
to as the spatial portions of the state (in this paper
we typically consider the spatial portions of the state
to be the 2D or 3D position). Now, assume we are
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Figure 1. Figure illustrating space-indexed dynamics.

given a target trajectory in the space of x, such as the
curved path shown in Figure 1. We choose a total of
D discrete points along the trajectory, and designate
the target state at these points as x⋆

1, x
⋆
2, . . . , x

⋆
D. In

the space-indexed dynamical system, we will explicitly
represent the state only when the state lies on a hy-
perplane which is orthogonal to the target direction of
travel and which passes through the one of the target
points x⋆

d. More formally, we let ẋ⋆
d be the instanta-

neous direction of motion (along the target trajectory)
at point d. We will then explicitly represent the state
only when (x−x⋆

d)
T ẋ⋆

d = 0. This situation is depicted
in Figure 1.

Because we constrain the state in this manner, our
space-indexed state will have a different set of variables
as our time-indexed state. In particular, we represent
the space-indexed state as s̃d = [td, ℓd, θd]

T
where td ∈

R denotes the time of the system, ℓd ∈ R
p−1 denotes

the lateral deviation from the target trajectory — for
x ∈ R

p a point satisfying the constraint that (x −
x⋆

d)
T ẋ⋆

d = 0 can be represented using p− 1 dimensions
and this gives the lateral deviation term — and θd

denotes the non-spatial portions of the state as before.
The time variable td is kept for completeness, but it
can be ignored if the policies do not depend on time.

Now we can rewrite the dynamics so that they are in-
dexed by space rather than time; this will give us an
equation for computing s̃d+1 from s̃d. For simplicity,
we develop an Euler integration-like method, but the
technique could also be extended to higher-order nu-
merical integration methods. Rather than simulating
the system forward by a fixed time step, we solve for
∆t such that the next state will lie exactly on the d+1
plane. Temporarily ignoring the noise term, we solve

(ẋ⋆
d+1)

T (x + ẋ∆t − x⋆
d+1) = 0

for ∆t. Note that a positive solution for ∆t may not
always exist, but it typically does except in degener-
ate cases, when the vehicle starts moving perpendic-
ular or backward with respect to the desired direc-

tion, and this is unlikely given any reasonable con-
troller. When ∆t > 0 does exist, we can compute
st+∆t = st + f(st, ut)∆t and use this to find the next
space-indexed state

s̃d+1 = [td + ∆t, ℓd+1, θt+∆t]
T

where ℓd+1 is xt+∆t −x⋆
d+1 expressed in the R

p−1 sub-
space defined by the plane through x⋆

d+1. This gives
us our final space-indexed simulator in the form

s̃d+1 = F̃ (s̃d, ud) + w̃d (1)

where w̃d is a noise term. Although the distribution
of w̃d is in general quite complex, we can apply meth-
ods from stochastic calculus to efficiently draw sam-
ples from this distribution. However, in practice we
find that a simpler approximate approach works just as
well: we compute st+∆t as above, assuming no noise,
then add noise as in the time-indexed model. This will
result in a point that may no longer lie exactly on the
space-index plane, so lastly we form the line between
the states st and st+∆t and let s̃d+1 be the point where
this line intersects the d + 1 plane.

3. Space-indexed Dynamic

Programming

In this section we use the techniques presented in the
previous section to develop space-indexed versions of
the Differential Dynamic Programming (DDP) and
Policy Search by Dynamic Programming (PSDP) al-
gorithms. We begin by defining notation. Let S be
the state space and A be the action space (so that in
the context of the dynamical system above, S = R

n

and A = R
m). Since, as described above, there ex-

ists a one-to-one mapping from time-indexed states to
space-indexed states, all the quantities below can be
equivalently expressed in terms of the space-indexed
state. A reward function is a mapping R : S → R

and a policy is a mapping π : S → A. Given a non-
stationary sequence of policies (πt, . . . , πT ) we define
the value function

Vπt,...πT
(s) = 1

T E[
∑T

i=t R(si)|st = s; (πt, . . . , πT )].

3.1. Space-indexed DDP

We first review (time-indexed) DDP briefly. DDP ap-
proximates the dynamics and cost function of a system
along a specific sequence of states. Given an initial
controller πinit, DDP simulates the system to gener-
ate a sequence of states s1, . . . , sT . It then linearizes
the dynamics around these points to obtain a time-
varying linear dynamical system, and forms a second-
order (quadratic) approximation to the reward func-
tion. This system can then be solved by the Linear
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Quadratic Regulator (LQR) algorithm (Anderson &
Moore, 1989), which results in a new controller and a
new sequence of states. This process is repeated until
convergence.

Space-indexed DDP proceeds in the same manner.
Given some initial controller πinit and space-indexed
dynamical system of the form (1)1, we simulate the
system forward for D space-indexes, resulting in a set
of states s̃1, . . . , s̃D. Using our dynamics model, we
form the first order Taylor expansion of the dynamics
at each point along the trajectory, which results in the
(space-indexed) linearized dynamics:

s̃d+1 = Ads̃d + Bdud.

As in standard DDP, we form a quadratic approxima-
tion of the reward function Rd(s̃) = −s̃T Qds̃, where
Qd is some (usually PSD) matrix. This reduces the
problem to an LQR problem, which can be solved ef-
ficiently using a backward recursion.

3.2. Space-indexed PSDP

We now briefly review PSDP. As input, PSDP takes a
time horizon T , a restricted policy class Π, and a se-
quence of baseline distributions over the states space
µ1, . . . , µT , where we can informally think of µt as
providing a distribution over which states would be
visited at time t by a “good” policy. Given policies
πt+1, . . . , πT , PSDP computes (or approximates via
Monte-Carlo sampling and parameter search)

πt = arg maxπ∈Π Es∼µt
[Vπ,πt+1...πT

(s)]. (2)

By starting with t = T and proceeding down to t = 1,
the algorithm is able to generate a sequence of policies
that can perform well on the desired task. The space-
indexed version of PSDP proceeds exactly as above,
replacing the time t with the space index d and using
the space-indexed simulator to generate the Monte-
Carlo samples.

Just as in the time-indexed version, the space-indexed
version of PSDP comes with nontrivial performance
guarantees, formalized by the theorem below. The
theorem follows immediately from the equivalent the-
orem for the time-indexed version of PSDP, and from
the fact that the space-indexed dynamics and reward
function do not depend on time.

Theorem 3.1 [following (Bagnell et al., 2004)] Sup-
pose π = (π1, . . . , πD) is a policy returned by an ǫ-
approximate version of state-indexed PSDP where on

1For the DDP algorithm, we ignore the noise term w̃d

because by the principle of certainty equivalence, the op-
timal controller for LQR does not depend on the vari-
ance/magnitude of the noise (Anderson & Moore, 1989).

each step the algorithm obtains πd such that

Es∼µd
[Vπd,πd+1,...,πD

(s)] ≥
arg max

π∈Π
Es∼µd

[Vπ,πd+1...πD
(s)] − ǫ

Then for all πref ∈ ΠD,

Vπ(s0) ≥ Vπref
(s0) − Dǫ − Ddvar(µ, µπref

)

where µ is the baseline distribution over space-index
states (without the time component) provided to
SI-PSDP, dvar denotes the average variational dis-
tance, and µπref

is the state distribution induced by
πref .

This bound not only provides a performance guarantee
for the space-indexed PSDP algorithm, it also helps to
elucidate the advantage of space-indexing over time-
indexing. The bound implies that to make PSDP and
SI-PSDP perform as well as possible, it would be best
to provide them with µπ⋆ , the baseline distribution
of the optimal controller, as the baseline distribution.
But for time-indexed PSDP, the natural stochasticity
of the environment can cause this distribution to be
highly spread out over the state space, even for the
optimal policy. Therefore, when performing the maxi-
mization (2), it is likely that no policy in the class will
perform very well, since this would require a policy
that could operate well over many different regions of
the state space. Thus, regardless of whether or not we
re-index the resulting controllers by state during exe-
cution, the time-indexed version of PSDP would fail to
find a good policy. In contrast, if we are doing a good
job following the trajectory, then we would expect that
the distribution over states at each space-index would
be much tighter, allowing the space-indexed PSDP to
perform much better.

4. Experiments

4.1. Autonomous Driving

We begin by considering the problem of autonomously
and accurately following a trajectory with a car, such
as that shown in Figure 4. Our first set of experiments
were carried out in a simulator of the vehicle, built
following (Rossetter & Gerdes, 2002) (with model pa-
rameters such as the vehicle dimensions, total weight,
etc). To follow the desired trajectory, we applied the
space-indexed DDP algorithm described above.

Prior to the work presented in this paper, significant
engineering effort went into a hand-designed trajec-
tory following controller; this was an initial version
of the controller described in (Hoffmann et al., 2007),
which was a hand-optimized, linear, regulation con-
troller that computes its actions as a function of state
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Figure 2. Comparison of the regulation controller and
space-indexed controller. The figure below is a magnifi-
cation of one of the turns.
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Figure 3. Two example trajectories where a time-indexed
controller (above) performs significantly worse than the
space-indexed controller (below).

features such as lateral error, orientation error, and
so on. We used this controller to generate an initial
trajectory for our space-indexed DDP algorithm; how-
ever, the results of space-indexed DDP were actually
very insensitive to the choice of this initial controller.

Figure 2 shows the performance of the space-indexed
DDP algorithm and the hand-tuned controller in sim-
ulation, when following an oval-like track at 30mph,
along with a magnified view of the show the perfor-
mance on one of the turns. We see that space-indexed
DDP outperforms the hand-tuned controller; our con-
troller has an RMS lateral error 0.26m, whereas the
hand-tuned controller’s RMS error is 1.18m.

Figure 3 shows a comparison between the performance
of space-indexed and time-indexed dynamic program-
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Figure 4. Picture of the vehicle used for experiments (left),
and trajectory from a run on the actual car (right).

Figure 5. Autonomous RC car.

ming. Due to the stochasticity of the simulator, the
actual state st, for large t, is increasingly unlikely to
be close to where the t-th step of the linearization oc-
curred. Therefore the linearized approximation is less
likely to be an accurate approximation of the “local”
dynamics at time t. This is reflected in the figures:
the time-indexed controllers initially perform well, but
as time passes the controllers start to be executed at
incorrect points along the trajectory, eventually lead-
ing the vehicle to veer off course. Using the space-
indexed controller, however, the vehicle is able to ac-
curately track the trajectory even for an arbitrarily
long amount of time. For this relatively simple tra-
jectory following task, re-indexing the time-indexed
controllers by their spatial state, as described in the
introduction, does perform well. However, as we will
demonstrate in the next section, for more complex con-
trol tasks this is not the case.

We also tested our method on the actual vehicle; the
vehicle itself is described further in (Thrun & al.,
2006). Figure 4 shown a typical result from an ac-
tual run on the vehicle moving at 10mph. The RMS
error on the actual vehicle was about 0.17m, and the
target and actual trajectories are indistinguishable in
the figure.

4.2. Autonomous Driving with Obstacles

We next consider the more challenging control task
of following a trajectory in the presence of obsta-
cles. For this task we evaluated our methods on an
RC car, shown in Figure 5. Since we want to learn
a single controller that is capable of avoiding obsta-
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Figure 6. Trajectories taken by the real RC car on a course with obstacles, using space-indexed PSDP (left), time-indexed
PSDP (middle), and time-indexed PSDP with re-indexing by space (right).

cles placed at arbitrary points along the trajectory,
DDP is a poor algorithm (DDP learns a controller
for a single fixed trajectory, but in this task we need
to follow different trajectories depending on the lo-
cation of the obstacles). Therefore, we apply the
space-indexed version of PSDP to this task. Videos of
the resulting controllers for this task are available at:
http://cs.stanford.edu/∼kolter/icml08videos.

In greater detail, we applied the space-indexed PSDP
algorithm as follows. The native action space for the
car domain is a two-dimensional input specifying the
velocity and steering angle (between -28 degrees and
28 degrees), but for our task we kept the velocity fixed
at 1.5 m/s and discretized the commanded steering
angle into five equally spaced angles. To generate the
initial distribution for PSDP, µ1, . . . , µD, we sampled
2000 different trials in a simulator of the car, using a
PD controller. Then, for each space index from D − 1
down to 1, we (approximately) solved the optimization
problem (2) by first trying each possible action for each
of the 2000 sampled states, then executing the learned
controller for all subsequent space-indices to compute
the resulting cost of the policy.2 We then tried to
learn the optimal action as a linear function of vari-
ous state features; in particular, each controller was
of the form: usteer = arg maxi wT

i φ(s) where wi ∈ R
n

is a weight vector learned by a multi-class SVM-like
algorithm3, and φ(s) ∈ R

n is a feature vector. In our

2We used a cost function (i.e., negative reward), of

C(sd) = θ1ℓ
2 + θ2(1 − dist/θ3)1{dist < θ3}

where dist denotes the distance to the nearest obstacle, 1 is
the indicator function, and θ1, . . . , θ3 are parameters that
trade off the relative cost of deviating from the trajectory
and getting close to obstacles. For our experiments, we
used θ1 = 1000, θ2 = 500 and θ3 = 0.5.

3Algorithmic details: the PSDP algorithm with discrete
actions leads to a cost-sensitive, k-class learning problem
with examples form {φ(s(i)) ∈ R

n, c(i) ∈ R
k}, i = 1, . . . m

where φ(s(i)) are the features, and c
(i)

j represents the cost
of classifying example i as belonging to class j. We approx-
imately solve this problem with a support vector machine-
like algorithm, which bears some similarly to previous work

Table 1. Average costs and collision counts for the simu-
lated RC car with obstacles, averaged over 1000 runs.

Algorithm Cost Collisions

SI-PSDP 56.17 ± 0.43 51

TI-PSDP 58.39 ± 0.40 181
TI-PSDP w/
re-indexing

58.19 ± 0.37 212

Hand-tuned
PD Controller

58.35 ± 0.34 231

setting the features comprised of 1) the x and y loca-
tion of the car, 2) the sine and cosine of the current car
orientation, 3) 16 exponential RBF functions, spaced
uniformly around the car, indicating the presence of
an obstacle, and 4) a constant term. In addition to
the space-indexed version, we also evaluated the per-
formance of a pure time-indexed version, and a time-
indexed version where we re-index the controllers as
follows: at time t rather than execute the controller
πt, we examine all the controllers π1, . . . , πT and ex-
ecute the controller πt′ with minimum distance from
the current state to the mean of the distribution µt′ .

Table 1 shows the average cost incurred and total num-
ber of collisions for the different controllers in 1000
simulated trials, where each trial had three randomly
placed obstacles on the trajectory. As can be seen,
the space-indexed version outperforms all the other
variants of the algorithm as well as a hand-tuned PD
controller that we previously spent a good deal of time
trying to tune. The performance benefits of the space-
indexed controller become even more pronounced on
the real system. Figure 6 shows typical resulting tra-
jectories from the space-indexed controller, the pure
time-indexed controller, and the time-indexed con-
troller with re-indexing. Due to the stochasticity of

in cost-sensitive SVM earning (Geibel et al., 2004). The
algorithm finds the solution to the optimization problem:

min
w,ξ≥0

Pk

j=1

1

2
‖wj‖

2 + C
Pm

i=1

Pk

j,l=1
(c

(i)

j − c
(i)

l )+ξi,j,l

s.t. (wl − wj)
T φ(s(i)) ≥ 1 − ξi,j,l ∀i, j, k.
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Figure 7. Tempest autonomous helicopter.

the real domain, the pure time-indexed approach per-
forms very poorly. Re-indexing the controllers helps
significantly, but the space-indexed version still per-
forms substantially better (an incurred cost of 49.32
for space-indexed versus 59.74 for time-indexed with
re-indexing, and the latter controller will nearly always
hit at least one of the obstacles on the track). As seen
in the figure, the space indexed version is able to track
the trajectory well, while reliably avoiding obstacles.

4.3. Autonomous Helicopter Flight

We also apply these ideas to a simulated autonomous
helicopter. This work used a stochastic simulator of
the autonomous helicopter shown in Figure 7, and we
considered the problem of making accurate, high-speed
(5m/s) turns on this helicopter. We applied the space-
indexed PSDP algorithm to this task due to the fact
that the policy search setting allowed us to greatly
restrict the class of control policies πd under consid-
eration (the space of all control policies for helicopter
flight is very large, so we wanted to limit the risk of un-
expected behavior). In particular, the “actions” of the
controllers corresponded to picking a location of set
point x⋆ which is then fed into a regulation controller,
such as those described in (Bagnell & Schneider, 2001;
Ng et al., 2004). Space constraints preclude a full de-
scription of the environment and algorithm, but the
overall algorithm proceeds as in the previous section.

Figure 8 shows a typical result of applying the space-
indexed PSDP algorithm to this task, along with the
trajectory taken by a simple linear regulation con-
troller. By varying the set point differently at different
points along the trajectory, the space-indexed PSDP
algorithm follows the trajectory much more accurately.

5. Related Work

The idea that a control policy should be dependent on
the system’s spatial state is by no means a new idea in
the reinforcement learning and control literature. In
the Markov Decision Process (MDP) formalism (Put-
erman, 1994), a policy is a mapping from states (which
typically describe the spatial state of the system) to
actions. In light of this observation, many classical
dynamic programming algorithms such as value iter-
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Figure 8. Comparison of the regulation controller and
space-indexed controller in the helicopter simulation. The
figure below shows the trajectories in three dimensions.

ation or policy iteration can be viewed as perform-
ing dynamic programming on spatial states. However,
in high-dimensional, continuous state spaces, the well-
known “curse of dimensionality” renders a naive appli-
cation of these algorithms intractable. Indeed, it is this
reality that often motivates the jump to the trajectory
following approach, where we want to find polices that
perform well along the trajectory in particular.

There are also a number of methods for trajectory fol-
lowing. A common approach is to design a “regulation
controller” that can keep the vehicle stable at a spec-
ified position x⋆. By smoothly moving x⋆ along the
target trajectory, we can cause the vehicle to move
along this path (Franklin et al., 1995; Dorf & Bishop,
2000). This approach works well when the regulation
controller has very high bandwidth – i.e., if it can track
x⋆ almost exactly as it varies — and is successful in
application areas such as control of robot arms. But
in more general settings in which the actual state x of
the vehicle tends to lag well behind changes to x⋆, one
often ends up manually and laboriously adjusting the
regulation controller to try to obtain proper trajectory
following performance. There are methods for com-
pensating for this lag such as feedback linearization
(Sastry, 1999), and there have also been many meth-
ods devised for trajectory following on specific systems
(Egerstedt & Hu, 2000; Johnson & Calise, 2002). How-
ever, we know of no method for trajectory following in
the general case of the nonholonomic, underaccuated
vehicles that we consider.

The idea of partitioning the state space into regions,
and using different controllers in the different regions,
is a common practice in control, and often is referred
to as gain-scheduling (Leith & Leithead, 2000). Taken
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in the general sense, the algorithm we present in this
paper can be viewed as a method for gain-scheduling,
though more often the term is used for a particular
application of this approach to the contexts of lin-
ear parameter varying systems. Such methods typ-
ically linearize the dynamical system around certain
operating points, learn controllers at each point, and
smoothly interpolate between controllers at various lo-
cations. However, the focus of this work is often to
prove stability of such controllers using Lyapunov the-
ory, and the overall approach is substantially different
from what we consider here.

Model predictive control (MPC) (Garcia et al., 1989)
(indirectly) addresses the issue of state uncertainty in-
creasing over time, by explicitly computing new con-
trollers at every time step in an online manner. How-
ever, MPC is generally orthogonal to the ideas we
present here, since one could just as easily use a space-
indexed dynamic programming method for the local
controller in MPC. Furthermore, MPC can often times
be computationally impractical to run real-time. An
alternative approach is to use a local control method,
such as DDP, in order to estimate the value function
along several trajectories, and use these local estimates
to build an approximate global model of the value
function (Atkeson, 1994; Tassa et al., 2007). How-
ever, since these methods employ DDP, which is a
time-indexed algorithm, they can potentially suffer the
same problems as time-indexed methods in general.

6. Conclusions

In this paper we presented a space-indexed dynamic
programming method for trajectory following. We
showed how to convert standard time-indexed dynam-
ical systems into equivalent space-indexed dynamical
systems, and used this formulation to derive space-
indexed versions of two well-known dynamic program-
ming algorithms, DDP and PSDP. Finally, we success-
fully applied these methods to several control tasks,
and demonstrated superior performance compared to
their time-indexed counterparts.
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Abstract

The central issue in representing graph-
structured data instances in learning algo-
rithms is designing features which are invari-
ant to permuting the numbering of the ver-
tices. We present a new system of invari-
ant graph features which we call the skew
spectrum of graphs. The skew spectrum is
based on mapping the adjacency matrix of
any (weigted, directed, unlabeled) graph to a
function on the symmetric group and com-
puting bispectral invariants. The reduced
form of the skew spectrum is computable in
O(n3) time, and experiments show that on
several benchmark datasets it can outper-
form state of the art graph kernels.

1. Introduction

After real valued vectors and strings, the third most
fundamental type of data instance in machine learning
are graphs. In addition to application domains such
as bioinformatics (Sharan & Ideker, 2006), chemoin-
formatics (Bonchev & Rouvray, 1991), social networks
(Kumar et al., 2006), etc., where information is pre-
sented as a graph from the start, graphs are also used
to capture the relationships between the different parts
of segmented images in computer vision (Harchaoui
& Bach, 2007), and to capture grammatical structure
in language (Collins & Duffy, 2002). Graphs may be
directed or undirected, weighted or unweighted, and
their vertices may be labeled, partially labeled or un-
labeled. In each of these cases, the challenge is to rep-
resent graphs in a way that preserves their structure,
but is insensitive to spurious transformations, such as
changing the (arbitrary) numbering of their vertices.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

Given a graph G, the two main lines of research that
have emerged to address the above problem focus re-
spectively on (a) designing an explicit feature map-
ping G 7→ (q1, q2, . . . , qk); and (b) designing a kernel
k(G1,G2). Proponents of the first approach exploit
global invariant properties of G, such as the eigenvalues
of its graph Laplacian, or local invariant properties,
such as the number of occurrences in G of a library
of small subgraphs. In contrast, proponents of the
kernel approach use various intuitions about simulta-
neous random walks and diffusion on product graphs
(Gärtner, 2003).

The new method that we present in this paper belongs
in the first of the above two categories, but is distin-
guished from prior work (with the exception of (Shawe-
Taylor, 1993)) by its algebraic character. In this re-
gard, it is related to the recent line of papers (Kondor
et al., 2007; Huang et al., 2008; Kondor, 2007a) in-
troducing concepts from non-commutative harmonic
analysis to machine learning. The mathematical foun-
dations of our work are Kakarala’s seminal results on
the bispectra of functions on compact groups (Kakar-
ala, 1993; Kakarala, 1992), and the recent discovery
of a unitarily equivalent, but computationally more
attractive set of invariants called the skew spectrum
(Kondor, 2007b). We show how these general theories
can be harnessed to construct graph invariants, and
examine in detail their computational properties.

Experiments on standard datasets of chemical com-
pounds show that the skew spectrum of graphs is com-
petitive with the state of the art in graph features, and
in some cases outperforms all other methods. A ma-
jor advantage of the skew spectrum is that since it
is an explicit feature mapping, it can be applied as a
preprocessing step, and hence scales linearly with the
number of examples. The computational complexity
of computing the (reduced) skew spectrum of a single
graph of n nodes scales with n3. Uniquely amongst the
graph invariants used in machine learning, the skew
spectrum has a fixed number of scalar components (85
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for the complete skew spectrum and 49 for its reduced
version), resulting in a very compact representation.
This does not stop the skew spectrum form remaining
competitive both in speed and representational accu-
racy up to about n = 300.

For those technical details of the skew spectrum which
could not be squeezed into this conference paper we
refer the reader to the accompanying report (Kondor,
2008).

2. Graph Invariants

In this paper G will be a directed weighted graph of n

vertices. We represent G by its adjacency matrix A ∈
R

n×n, where [A]i,j ∈ R is the weight of the edge from
vertex i to vertex j. Unweighted graphs are special
cases satisfying [A]i,j ∈ {0, 1}, while undirected graphs
are special cases satisfying A⊤ = A. We assume that
A has no self-loops, i.e., [A]i,i = 0 for i = 1, 2, . . . , n.

Recall that a permutation of n objects is a bijec-
tive map π : {1, 2, . . . , n} → {1, 2, . . . , n}. Permuting
the labels on the vertices of G by π results in a new
adjacency matrix Aπ with entries

[Aπ]π(i),π(j) = [A]i,j , (1)

but A and Aπ both represent the same graph G. A
function q(A) is called a graph invariant if it is in-
variant to relabelings of this kind, i.e., if q(A) = q(Aπ)
for any permutation π. Our objective is to construct a
system (q1, q2, . . . , qk) of graph invariants which cap-
ture as much information about G as possible, yet can
be computed economically.

2.1. Reduction to Left-translation Invariance

Our approach is based on the fact that permutations
form a group. This means that if for a pair of permu-
tations σ1 and σ2, we define their product σ3 = σ2σ1

by composition of maps, i.e., σ3(i) = σ2(σ1(i)), then
the following axioms are satisfied:

1. for any two permutations σ1 and σ2, the product
σ2σ1 is also a permutation;

2. for any three permutations σ1, σ2 and σ3,
σ1(σ2σ3) = (σ1σ2)σ3;

3. The identity e(i) = i is a permutation;

4. For any permutation σ, there is an inverse permu-
tation σ−1 satisfying σσ−1 = σ−1σ = e.

The group of permutations of n objects is called the
symmetric group over n letters and is denoted Sn.

To find graph invariants we begin by mapping A to a
function f : Sn → R, defined as

f(σ) = Aσ(n),σ(n−1). (2)

Note that this is a very special type of function on Sn

in that it is constant on each block of permutations

Si,j = { σ ∈ Sn | σ(n) = i, σ(n − 1) = j } . (3)

For k < n, identifying Sk with the subgroup of per-
mutations permuting 1, 2, . . . , k amongst themselves
and leaving k + 1, . . . , n fixed, the above blocks, of
which there are n(n − 1) in total, each have the form
σ Sn−2 = { στ | τ ∈ Sn−2 }, and are called left Sn−2–
cosets.

Defining f as in (2) ensures that under relabeling it
transforms in a transparent fashion. Specifically, if f ′

is the function corresponding to Aπ, then

f ′(πσ) = Aπ
(πσ)(n),(πσ)(n−1) = Aσ(n),σ(n−1) = f(σ).

(4)
In general, a function g : Sn → R related to f by
g(σ) = f(π−1σ) is called the left-translate of f by π,
and is denoted fπ. Equation 4 tells us that f ′ = fπ,
reducing the problem of constructing graph invariants
to finding left-translation invariant features of func-
tions on Sn.

2.2. Invariant Matrices

Now consider the weighted sum of matrices

f̂ρ =
∑

σ∈Sn

f(σ) ρ(σ), (5)

where ρ(σ) is a system of complex valued matrices
satisfying

ρ(σ2 σ1) = ρ(σ2) ρ(σ1) σ1, σ2 ∈ Sn,

as well as the unitarity condition ρ(σ−1) = (ρ(σ))−1 =
ρ(σ)†. Such systems of matrices are called unitary

matrix representations of Sn. Changing variables
from σ to σ′ = π−1σ shows that

f̂π
ρ =

∑

σ∈Sn

f(π−1σ) ρ(σ) =
∑

σ′∈Sn

f(σ′) ρ(πσ′)

=
∑

σ′∈Sn

f(σ′) ρ(π) ρ(σ′) = ρ(π) f̂ρ,

which suggests that (5) is a good starting point for
constructing left-translation invariants of f . For ex-
ample, the matrix âρ = f̂†

ρ · f̂ρ is invariant because

âπ
ρ = f̂π

ρ
† · f̂π

ρ = (ρ(π)f̂ρ)
†(ρ(π)f̂ρ) =

f̂†
ρ ρ(π)† ρ̂(π) f̂ρ = f̂†

ρ · f̂ρ = âρ. (6)

The question we face is how to construct such invari-
ants in a systematic way with minimum redundancy,
yet maximum representational power.
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3. Irreps and the Fourier Transform

It is easy to see that if ρ1 : Sn → C
d×d is a unitary rep-

resentation of Sn, and T is any d × d unitary matrix,
then ρ2(σ) = T ρ1(σ)T † is also a unitary represen-
tation. Such pairs of representations are said to be
equivalent. Once we have computed (5) with ρ = ρ1,
computing it again with ρ = ρ2 will not lead to addi-
tional invariants, since f̂ρ2

= T f̂ρ1
T †.

Another potential source of redundancy is reducibility.
A representation ρ is said to be reducible if for some
unitary T it splits in the form

ρ(σ) = T

(
ρ1(σ)

ρ2(σ)

)

T † σ ∈ Sn

into a direct sum of smaller representations ρ1 and ρ2.
Once again, f̂ρ does not supply any information on top

of f̂ρ1
and f̂ρ2

because f̂ρ = T (f̂ρ1
⊕ f̂ρ2

)T †.

To avoid these redundancies we will use a complete
set of inequivalent irreducible unitary representations
(irreps for short). Such a set we denote by R. The
corresponding set of matrices

f̂ρ =
∑

σ∈Sn

f(σ) ρ(σ), ρ ∈ R, (7)

is called the Fourier transform of f , and it pro-
vides the basis for generalizing harmonic analysis
to non-commutative groups (Diaconis, 1988; Rock-
more, 1997). Just as the classical Fourier trans-

forms, F : f → (f̂ρ)ρ∈R satisfies a generalized form
of the translation and convolution theorems. What
is most crucial for our present purposes, however, is
that (given the appropriate inner products) F is uni-
tary, and therefore one–to–one: hence, no information
is lost in going from f to the set of matrices (f̂ρ)ρ∈R.

Several different systems of irreps for Sn are described
in the literature (James & Kerber, 1981). In the in-
terests of saving space, we only describe their general
scheme, without going into the details of how to com-
pute the actual representation matrices. In all the ma-
jor representation schemes the individual irreps ρ ∈ R
are indexed by Young diagrams, which are n boxes
arranged in consecutive left-aligned rows satisfying the
condition that no row overhangs the row above it. For
example,

(8)

is a valid Young diagram for n = 8. We will use the
letter λ to refer to Young diagrams and write λ ⊢ n

to denote that λ is a Young diagram with n boxes.
To simplify notation somewhat we write f̂λ for f̂ρλ

.

λ dλ

(n) 1

(n − 1, 1) n − 1

(n − 2, 2) n(n−3)
2

(n − 2, 1, 1) (n−1)(n−2)
2

(n − 3, 3) n(n−1)(n−5)
6

(n − 3, 2, 1) n(n−2)(n−4)
3

Table 1. The dimensionalities of some representations of
Sn. The diagrams are drawn as if n = 8, but the formulae
hold for general n.

Young diagrams can also be described by listing the
number of boxes in each row, for example, the above
diagram is λ = (5, 2, 1). For concreteness, when we
need to draw Young diagrams we will always depict
them as if n = 8.

Bijectively filling the boxes of a Young diagram with
the numbers 1, 2, . . . , n gives a Young tableau, and
if a tableau satisfies the condition that in each row
the numbers increase from left to right and in each
column they increase from top to bottom it is called a
standard tableau. For example,

1 3 4 5 8

2 6

7

is a standard tableau of shape (5, 2, 1). The signifi-
cance of standard tableaux is that they label the in-
dividual dimensions of the irrep of the same shape.
Hence, we can find the dimensionality of ρλ by count-
ing the number of possible standard tableaux of shape
λ (Figure 1). An interesting special property of the
symmetric group is that all the irreps can be chosen
to be real valued. For generality, we retain the com-
plex notation, but note that the actual system of irreps
used in our experiments is real, so we could substitute
“orthogonal” for “unitary” and ⊤ for † throughout.

4. The Bispectrum and the Skew

Spectrum

Armed with the irreps and non-commutative Fourier
transforms, we can now undertake a more systematic
study of left-translation invariant features of functions
on the symmetric group. For example, (6) leads to the
set of invariant matrices

âλ = f̂
†
λ · f̂λ, λ ⊢ n,

which, by analogy with the analogous quantity in clas-
sical signal processing, is called the power spectrum
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of f . The problem with the power spectrum is that
it is very lossy. To see this, one need only con-
sider f̂ ′

λ = Mλf̂λ for any sequence of unitary matri-
ces (Mλ)λ⊢n. The functions f and f ′ corresponding
to these two Fourier transforms may be very different,
yet their power spectrum will be the same.

4.1. The Bispectrum

Kakarala realized that the lossiness of the power spec-
trum can be addressed by forming tensor products of
the various Fourier components, and proposed the al-
ternative system of invariant matrices

b̂λ1,λ2
= (f̂λ1

⊗ f̂λ2
)† Cλ1,λ2

[⊕

λ

f̂λ

]

λ1, λ2 ⊢ n (9)

called the bispectrum (Kakarala, 1993)1. The bis-

pectrum is based on the observation that f̂λ1
⊗ f̂λ2

transforms according to

f̂π
λ1

⊗ f̂π
λ2

= (ρλ1
(π)⊗ρλ2

(π)) · (f̂λ1
⊗ f̂λ2

),

and that ρλ1
(π)⊗ ρλ2

(π) is also a representation, al-
though in general not irreducible. The general formula

ρλ1
(σ)⊗ρλ2

(σ) = Cλ1,λ2

[⊕

λ

ρλ(σ)
]

C
†
λ1,λ2

(10)

telling us how to reduce it into a direct sum of irreps
is called the Clebsch-Gordan decomposition, and the
Cλ1,λ2

unitary matrices appearing in (10) and (9) are
called Clebsch-Gordan matrices.

By plugging (10) into (9) it is easy to see that the bis-
pectrum is indeed invariant to left-translation. A much
more remarkable fact, proved in (Kakarala, 1992),
is that provided the technical condition that each
f̂λ is invertible is satisfied, the bispectrum is also
complete (or lossless) in the sense that the matrices

(̂bλ1,λ2
)λ1,λ2⊢n uniquely determine f up to translation.

4.2. The Skew Spectrum

Some of the drawbacks of using the bispectrum in
practical applications are that (a) computing (9) may
involve multiplying together very large matrices; (b)
that the Clebsch-Gordan matrices, despite being uni-
versal constants, are not generally available in tabu-
ated form; and (c) that for large n they are extremely
difficult to compute. To address these concerns, Kon-
dor (2007b) proposed an alternative set of invariants,
called the skew spectrum, which are unitarily equiv-
alent to the bispectrum, but much more straightfor-
ward to compute. The skew spectrum of f : Sn → C

1The exact definition of the bispectrum varies somewhat
between authors. However, the various definitions are all
unitarily equivalent to each other.

is defined as the collection of matrices

q̂ν,λ = r̂
†
ν,λ · f̂λ, λ ⊢ n, ν ∈ Sn, (11)

where (r̂ν,λ)λ⊢n is the Fourier transform of the function
rν(σ) = f(σν) f(σ). In (Kondor, 2007b) it is shown
that if for some subgroup H, f is constant on left σH-
cosets (as the function defined in (2) is constant on left
Sn−2-cosets), then it is sufficient to let ν take on just
one value from each

HσH = { h1σh2 | h1, h2 ∈ H }

double-coset, since every other component of q̂ will
be linearly dependent on these.

5. The Skew Spectrum of Graphs

By the results of Sections 2 and 4, plugging (2) into
(11) will give a relabeling invariant representation of
any weighted graph G. As it stands, however, this
seems of only academic interest, since ν must extend
over n! different values for any one of which the com-
bined size of the (q̂ν,λ)λ⊢n matrices is itself n!. More-
over, computing each (q̂ν,λ)λ⊢n requires a separate
Fourier transform.

The first clue to how these problems may be reme-
died is provided by the comment at the end of the last
section that if we are only interested in linearly inde-
pendent invariants, then due to the special structure
of f , we need only let ν take on one value from each
Sn−2 σ Sn−2 double coset. It is easy to see that there
are only 7 such double cosets in Sn, namely

S n7→n
n−1 7→n−1 = { σ ∈ Sn | σ(n) = n, σ(n−1) = n−1 }

S n7→n−1

n−1 7→n = { σ ∈ Sn | σ(n) = n−1, σ(n−1) = n }

S n7→n
n−1 7→∗ = { σ ∈ Sn | σ(n) = n, σ(n−1) ∈ [n−2] }

S n7→n−1

n−1 7→∗ = { σ ∈ Sn | σ(n) = n−1, σ(n−1) ∈ [n−2] }

S n7→∗
n−1 7→n−1 = { σ ∈ Sn | σ(n) ∈ [n−2], σ(n−1) = n−1 }

S n7→∗
n−1 7→n = { σ ∈ Sn | σ(n) ∈ [n−2], σ(n−1) = n }

S n7→∗
n−1 7→∗ = { σ ∈ Sn | σ(n), σ(n−1) ∈ [n−2] } ,

(12)

where [n−2] = {1, 2, . . . , n−2}.

Definition 1 Given a graph G of n vertices and ad-
jacency matrix A, the skew spectrum of G is defined
as the collection of matrices

q̂ν,λ = r̂
†
ν,λ · f̂λ, λ ⊢ n, (13)

where rν(σ) = f(σν) f(σ); f is defined as in (2); and
ν takes on one value from each of the double cosets
listed in (12).

The second important consequence of the form of (2)

is that using the right system of irreps, f̂ becomes very
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sparse. To be specific, we use Young’s orthonormal

representation (YOR), which has the special prop-
erty that if σ is restricted to Sn−1, then the ρλ(σ)
matrices block-diagonalize in the form

ρλ(σ) =
⊕

λ−

ρλ−(σ), σ ∈ Sn−1,

where λ− extends over all valid Young diagrams deriv-
able from λ by the removal of a single box. If the pair
of standard tableaux t and t′ feature n at the same
box, then

[ρλ(σ)]t,t′ = [ρλ−(σ)]t↓n−1,t′↓n−1

where t↓n−1 is the standard tableau that we get from
t by removing the box containing n and λ− is the cor-
responding Young diagram. If t and t′ feature n at
different locations, then [ρλ(σ)]t,t′ = 0. Applying this
relation recursively gives that for σ ∈ Sk,

[ρλ(σ)]t,t′ =

{

[ρλ−(σ)]t↓k,t′↓k
or

0
(14)

depending on whether k+1, . . . , n are each in the same
boxes in t and t′ or not.

Now letting Sn/Sn−2 be a set of n(n−1) permutations,
one from each σSn−2 coset, and defining hσ : Sn−2 →
C as hσ(τ) = f(στ), the Fourier transform may be
written as

f̂λ =
∑

σ∈Sn/Sn−2

∑

τ∈Sn−2

f(στ) ρλ(σ) ρλ(τ) =

∑

σ∈Sn/Sn−2

ρλ(σ)
∑

τ∈Sn−2

hσ(τ) ρλ(τ).

Plugging in the appropriate decomposition of ρλ into
a direct sum of irreps of Sn−2 gives

f̂λ =
∑

σ∈Sn/Sn−2

ρλ(σ)
∑

τ∈Sn−2

hσ(τ)
⊕

λ−

ρλ−(τ) =

∑

σ∈Sn/Sn−2

ρλ(σ)
⊕

λ−

[
ĥσ

]

λ−
, (15)

showing that the Fourier transform over Sn may be
broken down into n(n − 1) Fourier transforms over
Sn−2. This relationship is at the heart of the Clausen-
type fast Fourier transforms for Sn (Clausen, 1989).

For f defined by (2), each hσ is a constant function,
and hence its Fourier transform has a very special
form: since in YOR the irrep corresponding to λ = (n)
is the constant representation ρ(n)(σ) = (1), the cor-

responding
[
ĥσ

]

λ
component will be non-zero, but by

unitarity all other components of ĥσ vanish. Plugging
this result into (15) and using (14) shows that only

those columns of f̂ may be non-zero which are indexed
by standard tableau derivable from by adding
a box containing n − 1 and another box containing
n. Here and in the following, when drawing standard
tableau, we only indicate the positions of those num-
bers in them that are not determined by the “numbers
increase from left to right and top to bottom” rule. In
addition, we use the symbol � to denote n and • to
denote n−1. We summarize the above in the following
theorem.

Theorem 1 If f is defined as in (2), then the only

non-zero entries of f̂ in YOR are:

1. the single scalar component f̂(n);

2. the � column of f̂(n−1,1);

3. the • column of f̂(n−1,1);

4. the •� column of f̂(n−2,2);

5. the
•
� column of f̂(n−2,1,1).

This remarkable sparsity is the key to computing the
skew spectrum of graphs efficiently. At the same time
it is rather disappointing, since it manifestly destroys
the invertibility of the f̂λ matrices required for Kakar-
ala’s completeness result. The r̂ν,λ matrices are also
column sparse, but their sparsity pattern is somewhat
more complicated, so we leave describing it to (Kon-
dor, 2008).

Equation (13) only yields non-zero elements in q̂ν,λ

where a non-zero row of r̂
†
ν,λ meets a non-zero column

of f̂λ. By the above, this happens at only a constant
number of row/column combinations. The exact re-
sult, derived in (Kondor, 2008), is the following.

Theorem 2 Using YOR and an appropriate choice of
{ν} double coset representatives, the skew spectrum of
G has at most 85 non-zero scalar components.

6. Computational Considerations

The computational properties of the skew spectrum
are closely related to the structural results of the previ-
ous section. In particular, it is repeated applications of
Clausen decompositions similar to (15) together with
the sparsity of YOR that yields an efficient algorithm
to compute q̂. In contrast to the previous section, we
now employ a two-level factorization σ = σ1σ2τ , where
τ ∈ Sn−2, σ2 ∈ Sn−1/Sn−2, and σ1 ∈ Sn/Sn−1. As
before, we have n(n − 1) functions hσ1σ2

: Sn−2 → C

defined hσ1σ2
(τ) = f(σ1σ2τ), and by (2) each of these
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is a constant function equal to [A]σ1σ2(n), σ1σ2(n−1).
However, now we will also have intermediate functions
gσ1

: Sn−1 → C defined gσ1
(τ) = f(σ1τ). We then

have the following results.

Lemma 1 Each ĝσ1
can be computed from A in O(n2)

scalar operations.

Proof. Similarly to (15), we can relate the Fourier
transform of gσ1

to the Fourier transforms of (hσ1σ2
)σ2

by

[ĝσ1
]λ =

∑

σ2∈Sn−1/Sn−2

ρλ(σ2)
⊕

λ−

[
ĥσ1σ2

]

λ−
.

Since each ĥλ1λ2
is confined to the one dimensional

component [ĥσ1σ2
](n−2), the only non-zero columns of

ĝσ1
will be the ones indexed by standard tableaux

derivable from by addition of the single box
•, namely • and • . The first one of these
is trivial to compute, since ρ(n−1)(σ2) ≡ (1), collapsing
the above sum to

[ĝσ1
](n−1) =

∑

σ2∈Sn−1/Sn−2

[
ĥσ1σ2

]

(n−2)
.

This is a sum of n − 1 scalars, so it can be computed
in O(n) time. Computing the second component in-

volves taking the direct sum Mσ1σ2
=

⊕

λ−

[
ĥσ1σ2

]

λ−
,

where λ− extends over the two diagrams (n − 2) and
(n − 3, 1) derivable from by removing a box.

However,
[
ĥσ1σ2

]

(n−3,1)
= 0, so Mσ1σ2

has only one

non-zero entry. For given σ2, multiplying ρ(n−2,1)(σ2)
with Mσ1σ2

thus requires n − 2 operations. We are
summing over (n − 1) possible values of σ2, so the to-
tal time complexity is (n − 1)(n − 2). �

Lemma 2 f̂ can be computed from the intermediate
transforms (ĝσ1

)σ1∈Sn/Sn−1
in O(n3) operations.

The proof of Lemma 2 is similar to that of Lemma 1,
but also involves considerations of the sparsity of the
YOR matrices. Unfortunately, space limitations pre-
vent us from providing a proof of this result. Putting
the two lemmas together gives the following theorem.

Theorem 3 The Fourier transform of f as defined in
(2) can be computed in O(n3) operations.

Proof. Each of the n different ĝ transforms can be
computed in O(n2) operations, followed by the single

O(n3) step of computing f̂ from the ĝ’s. �

Computing r̂ν is unfortunately more costly than com-
puting f̂ . An extended version of this paper, which

is in preparation, will show that the time complexity
of this is O(n6). While for n less than about 20 this
might still be feasible, for the type of experiments on
which we wish to validate the skew spectrum it is not
a viable option. The following subsection shows that
most of the components of q̂ can still be computed in
O(n3) operations.

6.1. The Reduced Skew Spectrum

The expensive part of computing r̂ν is computing those
columns outside the five listed in Theorem 1. This
leads to the idea of simply forcing these columns to be
zero.

Definition 2 Given a graph G of n vertices and ad-
jacency matrix A, the reduced skew spectrum of G
is the collection of matrices

q̂∗ν,λ = r̂∗ν,λ
† · f̂λ, λ ⊢ n, (16)

where f ,r, and ν are as in Definition 1, and r̂∗ν denotes
the projection of r̂ν to its columns labeled by

, � , • , •� ,
•
� . (17)

Since r̂∗ν is identical to r̂ν except for zeroing out certain
columns, (q̂∗ν)ν will yield a subset of the 85 scalar in-
variants in (q̂ν)ν . For each value of ν, for λ = (n)

we have one row of r̂∗
†

ν meeting one column of f̂ν

giving one component; for λ = (n − 1, 1) we have
two rows meeting two columns, giving four compo-
nents, etc. In total the reduced skew spectrum has
7 (1 + 4 + 1 + 1) = 49 non-zero scalar components.

The space of functions the Fourier transform of which
has the sparsity pattern (16) is exactly the space of
functions which are invariant on σSn−2 cosets. This
means that for each r̂∗ν there must be a corresponding
matrix Bν related to it the same way that f is related
to the adjacency matrix A. These matrices are given
by the following theorem, the proof of which we again
relegate to a longer publication.

Theorem 4 For r̂∗ν as defined in Definition 2,

r∗ν(σ) = [Bν ]σ(n),σ(n−1),

where the seven possible Bν matrices corresponding to
the seven double cosets listed in (12) are

[B1]i,j = Ai,j Ai,j

[B2]i,j = Ai,j Aj,i

[B3]i,j = 1
nAi,j

∑n
i′=1 Ai′,j

[B4]i,j = 1
nAi,j

∑n
j′=1 Ai,j′
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[B5]i,j = 1
nAj,i

∑n
i′=1 Ai′,j

[B6]i,j = 1
nAj,i

∑n
j′=1 Ai,j′

[B7]i,j = 1
n(n−1)Ai,j

∑n
i′=1

∑n
j′=1 Ai′,j′

Theorem 4 tells us that the reduced skew spectrum
is very simple to compute: simply form the matrices
B1, . . . , B7, compute the corresponding r̂∗ν the same

way as f̂ is computed from A and form the products
(16). In total this takes 8 partial Fourier transforms,
each of which takes O(n3) time.

7. Experiments

In our experiments we evaluate the performance of the
skew spectrum features on four benchmark datasets
of chemical structures of molecules: MUTAG, EN-
ZYMES, NCI1, and NCI109. MUTAG (Debnath
et al., 1991) is a dataset of 188 mutagenic aromatic
and heteroaromatic nitro compounds. The classifi-
cation task is to predict for each molecule whether
it exerts a mutagenic effect on the Gram-negative
bacterium Salmonella typhimurium. ENZYMES is a
dataset which we obtained from (Borgwardt et al.,
2005), and which consists of 600 enzymes from the
BRENDA enzyme database (Schomburg et al., 2004).
In this case the task is to correctly assign each en-
zyme to one of the 6 EC top level classes. The av-
erage number of nodes of the graphs in this dataset
is 32.6 and the average number of edges is 124.3.
Finally, we also conducted experiments on two bal-
anced subsets of NCI1 and NCI109, which classify
compounds based on whether or not they are active
in an anti-cancer screen ((Wale & Karypis, 2006) and
http://pubchem.ncbi.nlm.nih.gov).

Since in these datasets the number of vertices varies
from graph to graph, we set n to be the maximum over
the entire dataset and augment each of the smaller
graphs with the appropriate number of unconnected
“phantom” nodes. The experiments consisted of run-
ning SVMs on the above data using the reduced skew
spectrum features (linear kernel on these features), the
random walk kernel (Gärtner et al., 2003), (with λ set
to 10−3 on MUTAG/ENZYMES, and 10−4 on the NCI
datasets for optimal performance), and an equal length
shortest-path kernel (Borgwardt & Kriegel, 2005).

Our experimental procedure was as follows. We split
each dataset into 10 folds of identical sizes. We then
split 9 of these folds again into 10 parts, trained a
C-SVM (implemented by LIBSVM (Chang & Lin,
2001)) on 9 parts, and predicted on the 10th part.
We repeated this training and prediction procedure
for C ∈ {10−7, 10−6, . . . , 107}, and determined the C

reaching maximum prediction accuracy on the 10th
part. We then trained an SVM with this best C on all
9 folds (= 10 parts), and predicted on the 10th fold,
which acts as an independent evaluation set. We re-
peated the whole procedure 10 times so that each fold
acts as independent evaluation set exactly once. For
each dataset and each method, we repeat the whole
experiment 10 times and report mean accuracy levels
and standard errors in Table 2. In three out of four ex-
periments the skew spectrum beats the other methods,
including the shortest-path kernel, which is considered
state of the art for graphs of this type. Using a Gaus-
sian RBF kernel instead of the linear kernel yields very
similar results.

8. Conclusions

We have presented a new system of graph invariants,
called the skew spectrum of graphs, based on a purely
algebraic technique. From a mathematical point of
view the skew spectrum is interesting because it brings
a fundamentally new technique to constructing graph
invariants. From a practical machine learning point
of view the skew spectrum is interesting because it
provides a powerful, yet efficiently computable repre-
sentation for graph structured data instances.
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Abstract

In inductive logic programming, θ-
subsumption is a widely used coverage
test. Unfortunately, testing θ-subsumption
is NP-complete, which represents a crucial
efficiency bottleneck for many relational
learners. In this paper, we present a
probabilistic estimator of clause coverage,
based on a randomized restarted search
strategy. Under a distribution assumption,
our algorithm can estimate clause coverage
without having to decide subsumption for
all examples. We implement this algorithm
in program ReCovEr. On generated graph
data and real-world datasets, we show that
ReCovEr provides reasonably accurate
estimates while achieving dramatic runtimes
improvements compared to a state-of-the-art
algorithm.

1. Introduction

In most inductive logic programming (ILP) algo-
rithms, learned hypothesis are (sets of) first-order
clauses. Usually, θ-subsumption is used to test
whether a clause entails an example. Since ILP sys-
tems need to evaluate large numbers of clauses during
hypothesis search, efficiency of the subsumption pro-
cedure is one of the crucial factors for performance of
learning. Unfortunately, deciding θ-subsumption is an
NP-complete problem.

One line of research has focused on developing al-
gorithms for this problem using sophisticated heuris-
tics from the field of constraint satisfaction problems
(CSP). Maloberti et Sebag (2004) exploited the cor-
respondence of θ-subsumption with CSP to develop

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

the algorithm Django. Django is currently considered
the fastest subsumption checker, outperforming tra-
ditional techniques (based on the Prolog unification
mechanism) by orders of magnitude. Therefore we
employ Django in comparative experiments later in
this paper. Another stream of research dealt with in-
complete heuristic algorithms for θ-subsumption. Se-
bag et al. (1997) presented a tractable approximation
of θ-subsumption called stochastic matching. Arias
et al. (2007) implemented a randomized table-based
method.

Unlike the mentioned incomplete heuristic algorithms,
our approach uses a complete, albeit randomized, sub-
sumption procedure that correctly decides both sub-
sumption and non-subsumption if given sufficient fi-
nite time. Our ultimate estimation of the clause cov-
erage (i.e. the number of subsumed examples) is how-
ever an approximation, rapidly achieved by restarting
the subsumption procedure each time with a bounded
runtime. Subsequent restarts generate an integer se-
quence, from which the coverage is estimated by max-
imum likelihood.

Randomized restarted strategies, exploited in our
work, have been extensively studied in the past decade
(Gomes et al., 2000). They have been demonstrated
to be extremely useful for solving many hard com-
binatorial problems such as satisfiability of boolean
formulas or for solving constraint satisfaction prob-
lems. Reported reduction in runtimes are often in or-
ders of magnitude. Randomized restarted strategies
have been also used in inductive logic programming
(Železný et al., 2006), however, not for subsumption
checking. Rather, restarts were applied on the clause-
search procedure.

This paper is organized as follows. In Section 2 we for-
malize subsumption and expose the basic algorithms
employed as building blocks in our estimation ap-
proach. In Section 3 we conduct a preliminary moti-
vating study of runtime distribution. The estimation
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Algorithm 1 SubsumptionCheck(C, e): A simple
subsumption check algorithm

Input: Clause C, example e;
if C ⊆ e then

return YES
else

Choose variable V from C using a heuristic function
for ∀S ∈ PossibleSubs(V, C, e) do

C′ ← Substitute V with S
if ∀W ∈ Adjacency(V ) : PossibleSubs(W, C′, e) 6= ∅ then

SearchedNodes← SearchedNodes + 1
if SubsumptionCheck(C′, e) = YES then

return YES
end if

end if
end for
return NO

end if

algorithm is then developed in Section 4. In Section 5,
we compare our algorithm with Django on synthetic
and on real-life data. Section 6 concludes the paper.

2. Preliminaries

2.1. Language

In the rest of the paper we assume for simplicity
that hypotheses C are clauses without function and
constant symbols and examples e are ground clauses.
When needed, clauses will be treated as atom sets, e.g.
for two clauses C and D, C ⊆ D will denote that C
contains all literals contained by D. θ-subsumption is
defined as follows

Definition We say that clause C θ-subsumes clause
D (denote C ¹θ D) iff there exists a substitution θ
such that Cθ ⊆ D.

2.2. Subsumption Algorithm

We consider a simple heuristic algorithm (Algorithm
1) for verifying whether a clause C subsumes an ex-
ample e. Similarly to Django (Maloberti & Sebag,
2004) this algorithm is inspired by the CSP frame-
work. It is a backtracking search algorithm with for-
ward checking, a variable selection heuristic and ran-
domization. The heuristic function aims at choosing
variables whose substitution makes it likely that an
inconsistency, if one exists, is detected soon. For a
variable V , the function computes the sum of occur-
rences of variables in clause C that have already been
grounded and that share at least one literal with V .
This sum is then multiplied by 1 + 1

D , where D is an
upper bound on the size of the domain of V computed
in the initialisation phase of the algorithm’s run. The
variable which maximizes this function is selected; in
case of a tie, a random choice is made with uniform
probability among the highest scoring variables. Func-

tion PossibleSubs(V, C, e) returns all terms S (in a
random order), which can be substituted for V satis-
fying that all literals l ∈ C remain consistent with e.
The function prunes away a subset of possible ground-
ings for V whose inclusion in θ would imply Cθ * e. In
general though, not all such groundings are detected
by the function.

3. Subsumption Test Runtimes

We first aimed at obtaining a domain-independent
runtime distribution of the subsumption algorithm
and thus conducted preliminary experiments with ran-
domly generated hypotheses and examples from the
domain of oriented colored graphs. In the clausal rep-
resentation, each graph acquires the form of a definite
clause

h← l1 ∧ l2 ∧ . . .

where h is a fixed head and li are first-order atoms,
each being one of edge(t1, t2), black(t3), red(t4). In
hypotheses, ti are variables, in examples these are con-
stants.

For generality, we devised two different graph gener-
ators. The first generator generates Erdos-Rényi ran-
dom graphs where any two vertices are connected with
a pre-set probability c (by an edge of a random orienta-
tion). The second produces scale-free (“small world”)
graphs. Here, the graph grows until some desired size
is reached; at any step a vertex is added and connected
to k vertices already present in the graph. An edge is
attached to a vertex with probability increasing with
the number of edges already connected to the vertex.
In both algorithms, all vertices are colored as black
with probability 0.5 and red otherwise. We will refer to
the parameter c (k, respectively) of a random uniform
(scale-free, respectively) graph as the connectivity of
the graph.

We subjected Algorithm 1 to experiments with ran-
dom sets of hypotheses and examples, under various
settings of n and c (n and k, respectively), where n
denotes number of vertices in the underlying graph
and c and k are parameters of the random graphs ex-
plained above. Here, we review our principal findings
about the respective runtime distributions, since they
motivate the design of the estimation algorithm in the
next section.

Our first objective was to verify the presence of heavy
tails in the runtime distributions F (t). For t > 0,
the number F (t) is the probability that the tested al-
gorithm resolves a random subsumption instance in
no more than t units of time, corresponding to the
number of explored search nodes. Informally, a heavy-
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Figure 1. Top: The runtime distributions for satisfiable in-
stances with hypotheses built using the Erdos-Rényi ran-
dom graph generator with n = 15 vertices and connectivity
consecutively c ∈ {0.1, 0.15, 0.2, 0.25}. The graphs corre-
sponding to examples had n = 50 vertices and connectivity
p = 0.3. Bottom: The subsumption test runtime distribu-
tions for unsatisfiable instances with hypotheses with con-
nectivity consecutively c ∈ {0.15, 0.2, 0.25, 0.3, 0.35, 0.4}.

tailed distribution indicates the non-negligible proba-
bility of subsumption instances on which the checking
algorithm gets stuck for an extremely long runtime.
For example, a heavy tail is exhibited if 1−F (t) decays
at a power-law rate, i.e. slower than standard distri-
butions which decay exponentially. The presence of a
heavy tail in an empirically obtained runtime distri-
bution F (t) is usually checked graphically, by plotting
1 − F (t) against t on a log-log scale. In the case of a
power-law distribution, this plot then acquires a linear
shape (Gomes et al., 2000).

A series of experiments in the phase transition frame-
work (Giordana & Saitta, 2000), which we have per-
formed, revealed a systematic progression from heavy-
tailed regimes corresponding to configurations located
in the YES region of the phase transition spectrum
to non-heavy-tailed regimes corresponding to config-
urations located in the NO region. This observation
agrees with the previous study (Gomes et al., 2005).
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Figure 2. Effect of the restarted strategy for satisfiable
(top) and unsatisfiable instances (bottom). The random
graphs corresponding to hypotheses had n = 15 vertices
and connectivity c = 0.15. In both cases, the random
graphs corresponding to examples had n = 50 vertices and
connectivity c = 0.3. Both hypotheses and examples were
randomly generated by the Erdos-Rényi generator.

This progression is shown in Fig. 1 for the Erdos-Rényi
graph data. The same trends were observed for the
small-world graph data. The plotted runtime distribu-
tions refer to subsumption checks between hypotheses
with fixed numbers of vertices and connectivity chang-
ing among particular distributions, and examples with
fixed numbers of vertices and with fixed connectivity.
The runtime distributions plotted in the top panel of
Fig. 1 refer to satisfiable problem instances, i.e. those
where the hypotheses θ-subsume the examples. The
distributions in the bottom panel of Fig. 1 refer to
unsatisfiable problem instances.

Due to the observed presence of heavy tails in a range
of parameters, we next assessed the impact of restarts.
For this sake we designed a complete restarted ran-
domized subsumption algorithm, which repeatedly ex-
ecutes Algorithm 1. At each execution n = 1, 2, . . . ,
the number of search nodes in the Algorithm 1 is
bounded by some pre-defined number R(n). This loop
is terminated once answer YES or NO is obtained from
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Algorithm 1. Completeness of this restarted approach
is guaranteed by the assumption that R(n) → ∞ as
n → ∞. Recall that randomization is facilitated by
tie-breaking in the heuristic function used in Algo-
rithm 1 and by randomization of the value ordering.

The basic trends we observed for all tested param-
eter values are represented by Fig. 2: (i) restarts
significantly reduce runtime expectation for both sat-
isfiable and unsatisfiable instances, (ii) unsatisfiable
instances take much longer to prove in the restarted
approach. Observation (i) alone motivates to use the
restarted variant of Algorithm 1 as a fast complete
method for subsumption testing. We explore this idea
elsewhere (Kuželka & Železný, 2009), whereas this pa-
per addresses observation (ii). This observation is eas-
ily explained: while satisfiability can in principle be
shown in any single restart, unsatisfiability can only be
shown after n restarts making R(n) sufficiently high.
We would like to avoid the runtime components corre-
sponding to R(n) series growing to excessive values.

4. ReCovEr: A Restarted Coverage
Estimator

We first explain the intuition underlying ReCovEr.
We are given a clause C, and example set E and we
would like to estimate the coverage cov(C,E) = |{e ∈
E |C ¹θ e}|. Let us run Algorithm 1 on C and e,
successively for all e ∈ E. For each e, we however stop
the algorithm if no decision has been made in R steps.
Let E ⊆ E be the subset of examples proven to be
subsumed by C in this experiment. Denote s1 = |E|.
We now remove all examples in E from E and re-
peat this experiment, obtaining analogical number s2.
Further such iterations generate numbers s3, s4, etc.
Clearly, for the desired value cov(C, E), we have that
cov(C,E) = limj→∞ Sj where Sj =

∑j
i=1 si. Under a

certain assumption, the series Sj is geometrical rather
than arbitrary. The main idea of ReCovEr is that the
limit of Sj for j →∞ can thus be estimated by extrap-
olating the series from its first few elements S1, S2, . . . .
Thus we achieve a coverage estimate without excessive
effort to refute subsumption for the examples not sub-
sumed by C.

In order to precisely derive an estimation algorithm
following the above idea, we first need to make the
following assumption.

Assumption 4.1 Given a clause C and a set of ex-
amples E, the probability p that Algorithm 1 finds a
solution (i.e. returns YES as its answer) before it ex-
plores more than R nodes of the search tree, is the
same for all e ∈ E such that C subsumes e.

Algorithm 2 ReCovEr(C, E, R,M, ∆): Algorithm
for coverage estimation

Input: Clause C and set of examples E, Integers R (‘cutoff’),
M , ∆;

tries← 0
Unknown← Examples
CoveredInIthTry ← []
repeat

tries← tries + 1
CoveredInThisTry ← 0
for ∀E ∈ Unknown do

Answer ← Run SubsumptionCheck(C, E) with number of
searched nodes limited to R
if Answer = PositiveMatching then

CoveredInThisTry ← CoveredInThisTry + 1
Unknown← Unknown\E

end if
end for
CoveredInIthTry[tries]← CoveredInThisTry

until TerminationCondition

return LikelihoodEstimate(tries)

In other words, we assume that properties of particular
examples such as their size are not dramatically differ-
ent. The assumption will be empirically validated in
the next section.

We assume a given clause C and we fix a constant
cutoff value R. In the first step, for each e ∈ E we run
SubsumptionCheck(P, e) (Algorithm 1), stopping it
as soon as the number of searched nodes has reached R.
Then, after |E| restarts (each time with a different e ∈
E), we can derive the probability that the algorithm
has produced exactly m1 ‘YES’ responses in this first
step. In particular, this probability P (m1) is

P (m1) =
(

A
m1

)
pm1(1− p)A−m1 (1)

where A = |{e ∈ E|C ¹θ e}|. In the next step, all m1

examples shown to be subsumed in the first step are
removed from E and the procedure is repeated with
the remaining examples. In general, we can derive the
probability that exactly mi YES answers are generated
in the i-th step. Thus for i = 2, we obtain

P (m2|m1) =
(

A−m1
m2

)
pm2(1− p)A−m1−m2 (2)

and similarly for an arbitrary i ≥ 1, we have

P (mi|mi−1, . . . , m1) =

„
A−Pi−1

j=1 mj

mi

«
p

mi (1− p)
A−Pi

j=1 mj

(3)

The probability of a sequence (m1, . . . , mk), where mi

is the number of examples for which YES was produced
in the i-th step, is given by
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P (m1, . . . , mk) =
k∏

i=1

P (mi|mi−1, . . . , m1) (4)

Substituting for P (mi|mi−1, . . . ,m1) from Eq. 3 and
taking the logarithm Eq. 4 results in

ln (P (m1, . . . ,mk)) =
k∑

i=1

(α + mi ln p + β) (5)

where

α = ln
(

A−∑i−1
j=1 mj

mi

)

and

β =


A−

i∑

j=1

mj


 ln(1− p)

To find the parameters A and p for which
P (m1, . . . , mk) is maximized, we take the partial
derivative of Eq. 5 with respect to p and then find
its roots, yielding

p =
∑k

i=1 mi∑k
i=1 mi +

∑k
i=1

(
A−∑i

j=1 mj

) (6)

Finding the global maximum of P (m1, . . . , mk) from
Eq. 4 on the set

D = {(A, p)|A ∈ {1, 2, . . . , |E|} ∧ p ∈ [0; 1]} (7)

is now straightforward, since using (6) we can find the
maximum on every line

Li = {(i, p)|p ∈ [0; 1]} (8)

The maximum on line Li is located either at the value
of p given by (6) or at one of the borders of Li. It
then suffices to evaluate (4) at these three points of
Li for every i (1 ≤ i ≤ |E|). The estimate of A then
equals the index i of the Li on which the maximum is
located.

The described estimator is used in ReCovEr (Algo-
rithm 2). The question how to choose k, i.e. how
long a sequence (m1, . . . ,mk) should be generated as
the input to the estimator, is tackled iteratively: the
sequence is being extended until a termination condi-
tion is met. We have considered several termination
conditions, of which two turned out to be quite useful.

The first termination condition stops generating the
sequence when two subsequent estimates differ by less
than some ∆e, specified as a parameter. The second
termination condition stops generating the sequence
when estimate and number of examples already shown
to be covered by the clause differ again by less than
some ∆c, which ensures that the estimator will never
overestimate the actual coverage by more than ∆c. A
minimum length M of the sequence is however imposed
in both previous cases, to avoid premature estimates
coinciding by chance.

Another degree of freedom in Algorithm 2 is the cutoff
R, which may significantly affect the performance of
the restarted algorithm. A heuristic method suggests
itself that first tries to find a suitable cutoff. Unlike
Algorithm 2 it starts with a base cutoff value, and
then doubles it after every single restart. If at any
restart Algorithm 1 with cutoff set to R covers fewer
examples than the same algorithm at previous restart
with cutoff set to R

2 , then we can accept cutoff R
2 .

5. Experiments

In this section, we first investigate the sensitivity of
ReCovEr to a violation of Assumption 4.1. Then
we evaluate its performance and precision on graph
data generated by the two random graph generators
described in Section 2 and on real-world data from
organic chemistry and from engineering. We compare
performance of ReCovEr with that of the state-of-
the-art θ-subsumption algorithm Django.

5.1. Sensitivity Analysis

Here we address Assumption 4.1. Informally, we first
want to verify (i) how the assumption deviates from
the empirical ‘truth’, and subsequently, (ii) how much
these deviations influence ReCovEr’s precision.

(i) According to Assumption 4.1, probability p ∈ [0; 1]
would be a constant. Dismissing this assumption, we
treat p as a random variable with some distribution
on [0; 1], which we would like to estimate. A standard
approach to this task is to parameterize a Beta dis-
tribution on [0; 1] from empirical data. To obtain the
data, we experimented with the settings from Section
3 with parameters of generated hypotheses c = 0.35,
n = 10, parameters of generated examples c = 0.3,
n = 50 and ReCovEr’s cutoff R = 75. This resulted
in Beta distributions with standard deviation extend-
ing up to about 0.25 (i.e. 25% of the p’s range). These
distributions are plotted in dashed lines in Fig. 3.

(ii) Now we investigate ReCovEr’s sensitivity to the
modeled deviations. We assume to have n = 100 ex-
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Figure 3. Top: Beta distributions with mean µ = 0.5 and
variance consecutively 0, 0.005, . . . , 0.06, which model the
distribution of p (solid lines). Beta distributions fitted to
actual probabilities are shown in dashed lines. Bottom:
Dependence of root mean square error of ReCovEr’s es-
timates on the variance of p.

amples, of which 50 were covered by a clause C. Fur-
ther, probabilities pi that Algorithm 1 finds a solu-
tion for a covered example ei in time less than R were
sampled from the Beta distribution with given mean
µ = 0.5 and variance consecutively 0, 0.005, . . . , 0.06
(i.e. growing up to the 25% standard deviation).
Then, we simulated ReCovEr’s estimation procedure
on these data. The top panel of Fig. 3 displays the
beta distributions (solid lines) from which probabili-
ties pi were sampled. We used the stopping condition
based on difference of estimate and lower bound, the
parameters were M = 3, ∆ = 1.

The bottom panel of Fig. 3 displays the dependence
of root mean square error on the variance of the beta
distributions in the top panel. It is encouraging to
see that the root mean square error grows roughly lin-
early with growing variance in p’s distribution, indi-
cating ReCovEr’s robustness towards this variance.
Of course, the ultimate judge of whether this depen-
dence is acceptable is the extent to which a learning
algorithm based on ReCovEr would be affected by
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Figure 4. Precision of ReCovEr (Algorithm 2) presented
as 1000 points with coordinates (estimated coverage, actual
coverage). Hypotheses and examples were generated by
the Erdos-Rényi random graph generator with c = 0.3,
n = 15 for hypotheses and c = 0.3, n = 100 for examples.
The 1000 estimates correspond to 1000 different hypotheses
tested on a pre-fixed set of 100 examples. Top: Base value
for cutoff is R = 100. Bottom: Base value for cutoff is
R = 200.

the estimation imprecision caused by the estimation.
This is studied further.

5.2. Experiments with Generated Graph Data

Figure 4 demonstrates the precision of ReCovEr on
the graph data generated by the Erdos-Rényi genera-
tor by showing 1000 pairs (estimated coverage, actual
coverage). Hypotheses and examples were generated
with c = 0.3 for hypotheses and c = 0.3 for examples.
The graphs corresponding to hypotheses had 15 ver-
tices, and the graphs corresponding to examples had
100 vertices. The top panel refers to estimates ob-
tained by Algorithm 2 enhanced by cutoff selection
with base cutoff R = 100, while the bottom panel
refers to estimates obtained by the same algorithm
with base cutoff R = 200. A bias towards coverage
under-estimation can be observed, as well as a positive
effect of the higher base cutoff on estimation precision.
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Table 1 shows average runtimes of ReCovEr and
Django. Table 2 shows average runtimes of Django
and ReCovEr on artificial graph data with small-
world topology generated by Algorithm 5. In this case,
the graphs underlying the hypotheses had 15 vertices
and their connectivity was k = 4. The graphs under-
lying the examples had 100 vertices and connectivity
k = 20. A dramatic speedup from Django’s runtime is
exhibited in both cases.

Note that there is no immediate reason to avoid
the under-estimation bias because coverage is usually
tested on two example sets (positive and negative).
The two results are usually subtracted thus (mostly)
canceling the bias. Whether the observed estimation
variance is tolerable for the task of clause ranking usual
in inductive logic programming is the subject of the
experiments in the next section.

Algorithm Avg. Time [s]
ReCovEr, R = 100 6.7
ReCovEr, R = 200 12.5

Django 483.2

Table 1. Average coverage test runtimes for the configura-
tion from Fig. 4.

Algorithm Avg. Time [s]
ReCovEr, R = 100 8.9
ReCovEr, R = 200 16.3

Django 519.8

Table 2. Average coverage test runtimes for the configura-
tion with small world graph data.

5.3. Experiments with Real-World Data

In order to assess performance in conditions of a real-
life learning setting, we decided not to generate clauses
entirely randomly. Our intention was to simulate gen-
eral principles of clause production in an inductive
logic programming system, while avoiding an overfit
to a specific clause search strategy (which would e.g.
be a result of adhering to a specific heuristic function
for selecting literals). Thus we developed a simple re-
lational learner, which we use for further experiments
with ReCovEr. The learner (Algorithm 3) is a ran-
domized variation of a specific-to-general beam search.
It starts with the most specific clause ⊥ and at each
search step, it generates at least n · |Beam| new hy-
potheses by removing random subsets of literals from
the hypotheses already present in Beam. The output
of the algorithm is one best clause, which is why we
assess its quality through precision and recall.

Algorithm 3 Learner(⊥, p, BeamSize, Tries): A
Clause Learner

Input: Most specific clause ⊥, Real numbers p, Integers
BeamSize, MaxSearched

Beam← {⊥}
BestClause← ⊥
repeat

Candidates← Beam
for ∀hi ∈ Beam do

for i = 1 . . . BeamSize do
GenerateClause(hi)
C ← connected components of c
Evaluate each ci ∈ C
Candidates← candidates ∪ C

end for
end for
for ∀h ∈ Candidates such that h is estimated to be better
than BestClause do

if h is shown to be better than BestClause by a determin-
istic subsumption algorithm then

BestClause← h
end if

end for
Choose BeamSize best hypotheses from Candidates and add
them to Beam
Explored← Explored + 1

until Beam = {} or Explored = Tries

The first set of experiments, which we have con-
ducted with Algorithm 3, deals with the Mutagenesis
dataset (Srinivasan et al., 1996). This dataset con-
sists of descriptions of 188 organic molecules, which
are marked according to their mutagenicity. In our ex-
periments, we used only the information about atom-
bond relationships and about types of atoms. We
did not consider numerical parameters such as lumo
or logp. Our relational-logic representation of these
molecules consisted of ternary literals for atomic bonds
bond(at1, at2, bondType), unary literals representing
types of particular bonds and unary literals for atom
types. We have considered three variants of rela-
tional logic description of the molecules, with grow-
ing complexity (size of examples). The first ver-
sion Muta-v1 uses a naive representation. Here,
each molecular bond is represented by a single literal
bond(at1, at2, bondType), thus imposing a bond orien-
tation (atom order) chosen at random. The second
source of imprecision of this representation is that two
variables in a clause may represent the same (chemi-
cal) atom, which does not make intuitive sense. The
second version Muta-v2 deals with the first source
of imprecision, as it represents every atomic bond
with a pair of literals bond(at1, at2, bondType) and
bond(at2, at1, bondType). The third version Muta-
v3 solves the second source of imprecision by adding
literals different(a, b) for all pairs of atom-representing
constants a, b.

The second set of experiments pertains to class-labeled
CAD data (product structures) described in (Žáková
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et al., 2007), consisting of 96 CAD examples each con-
taining several hundreds of first-order literals.

The main observation provided by the experiments is
that ReCovEr becomes quickly superior to Django
as the example size grows, whereas the two algorithms
do not significantly differ in terms of the training-set1

accuracy of the discovered clauses. It is interesting
to note that Django’s poor runtime performance on
the learning tasks with large examples (CAD data
and Muta-v2) was often due to occasional subsump-
tion cases. Clearly, this is a manifestation of heavy
tails present in Django’s runtime distribution. Un-
like Django, ReCovEr was exhibiting steady perfor-
mance.

Dataset ReCovEr [s] Django [s]
Muta-v1 42 29
Muta-v2 513 1627
Muta-v3 1695 >5h

CAD 121 >2h

Table 3. Average runtimes of the learner (Algorithm 3, p =
0.75, Tries = 10) for real-world datasets.

Dataset Avg. Precision Avg. Recall
Muta-v1 0.84 0.61
Muta-v2 0.81 0.65
Muta-v3 0.83 0.84

CAD 0.92 0.7

Table 4. Quality of learned hypotheses for ReCovEr

Dataset Avg. Precision Avg. Recall
Muta-v1 0.86 0.6
Muta-v2 0.82 0.65
Muta-v3 n.a. n.a.

CAD n.a. n.a.

Table 5. Quality of learned hypotheses for Django

6. Conclusions

In this paper, we have introduced ReCovEr, an al-
gorithm exploiting restarts for a maximum-likelihood
based estimation of clause coverage. ReCovEr avoids
heavy tails as well as laborious proving of certain un-
satisfiable subsumption instances. We have shown
that ReCovEr provides favorable runtimes while
achieving reasonable precision, which is illustrated by

1As this paper is not concerned with improving gener-
alization performance, we did not measure accuracies on
hold-out test sets.

experiments on synthetic graph data and on real-
life data from organic chemistry and engineering. In
future work we mainly want to develop theoretical
bounds for ReCovEr’s estimation precision.
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Abstract

This paper is concerned with the generaliza-
tion ability of learning to rank algorithms for
information retrieval (IR). We point out that
the key for addressing the learning problem is
to look at it from the viewpoint of query. We
define a number of new concepts, including
query-level loss, query-level risk, and query-
level stability. We then analyze the general-
ization ability of learning to rank algorithms
by giving query-level generalization bounds
to them using query-level stability as a tool.
Such an analysis is very helpful for us to de-
rive more advanced algorithms for IR. We ap-
ply the proposed theory to the existing algo-
rithms of Ranking SVM and IRSVM. Exper-
imental results on the two algorithms verify
the correctness of the theoretical analysis.

1. Introduction

Recently, learning to rank has gained increasing at-
tention in machine learning and information retrieval
(IR). When applied to IR, learning to rank is a task
as follows. Given a set of training queries, their as-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).
*The work was performed when the first and the third au-
thors were interns at Microsoft Research Asia.

sociated documents, and the corresponding relevance
judgments, a ranking model is created which best rep-
resents the relevance of documents with respect to
queries. When a user submits a query to the IR sys-
tem, the trained model assigns a score to each docu-
ment associated with the query, sorts the documents
based on their scores, and presents the top ranked doc-
uments to the user. Average ranking accuracy over a
large number of queries is usually used to evaluate the
effectiveness of a ranking model. Therefore, from the
application’s perspective, both training and evaluation
should be conducted at query level.

Many learning to rank algorithms have been proposed
in recent years. Examples include the pointwise rank-
ing algorithms like MCRank (Li et al., 2007), the pair-
wise ranking algorithms like Ranking SVM (Herbrich
et al., 1999) and RankBoost (Freund et al., 2003), and
the listwise ranking algorithms like ListNet (Cao et al.,
2007). Analysis on the algorithms in the light of sta-
tistical learning theory, however, was not sufficient,
particularly that on the generalization ability of the
proposed algorithms. The pointwise and pairwise ap-
proaches transform the ranking problem to classifica-
tion or regression, and thus existing theory on clas-
sification and regression can be applied. However, it
deviates from the direction of enhancing ranking accu-
racy at query level. Furthermore, the listwise approach
lacks of analysis on generalization ability.

In this paper, we investigate the generalization ability
of learning to rank algorithms, in particular from the
viewpoint of query-level training and evaluation.
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We propose a new probabilistic formulation of learning
to rank for IR. The formulation can naturally repre-
sent the pointwise, pairwise and listwise approaches
in a unified framework. Within the framework, we
introduce the concepts of query-level loss, query-level
risk, and particularly query-level stability. Query-level
stability measures whether the output of a learning
algorithm changes largely with small changes in the
training queries. With query-level stability as a tool
we can conduct analysis on query-level generalization
bounds of learning algorithms. A query-level gener-
alization bound indicates how well one can enhance
the expected ranking accuracy (corresponding to the
expected risk) by enhancing the average ranking accu-
racy in training (corresponding to the empirical risk).

We take the algorithms of Ranking SVM (Joachims,
2002; Herbrich et al., 1999) and IRSVM (Cao et al.,
2006; Qin et al., 2007) as examples, and apply the pro-
posed theory to them. Our theoretical result shows
that the query-level generalization bound of Ranking
SVM is not reasonably good, mainly because Rank-
ing SVM is trained at document pair level, not query
level. Furthermore, IRSVM does have a better gener-
alization bound than Ranking SVM, due to its stronger
query-level stability. We also conducted experiments
and our experimental results agree with the theoretical
findings.

The contributions of this paper are listed as follows.
(1) A proposal on conducting analysis on learning to
rank algorithms at query level is made. (2) A new
probabilistic formulation of learning to rank is pro-
posed. (3) A new methodology for analyzing gener-
alization ability of learning to rank algorithms on the
basis of query-level stability is proposed. (4) The pro-
posed theory is applied to learning to rank algorithms
of Ranking SVM and IRSVM. The correctness of the
theory has been verified by experiments.

2. Previous Work

2.1. Ranking in IR

Ranking is a central issue for IR. Many methods for
creating ranking models have been proposed, including
heuristics and learning based methods, (Baeza-Yates
& Ribeiro-Neto, 1999; Herbrich et al., 1999; Joachims,
2002; Freund et al., 2003; Burges et al., 2005; Cao
et al., 2007). Typically a ranking model is defined as
a function of features based on query-document pair,
and is learned with training data containing a num-
ber of queries, associated documents, and correspond-
ing relevance judgments. Measures for evaluating the
performance of a ranking model, such as Precision,

MAP (Baeza-Yates & Ribeiro-Neto, 1999), and NDCG
(Järvelin & Kekäläinen, 2002) have been defined and
used. All the measures are query-based; if the evalu-
ation measure for a query q is EV (q), then the aver-
aged EV (q) on a number of queries is used. From the
application’s perspective, both training and testing in
learning to rank should be conducted at query level.

2.2. Learning to Rank

So far learning to rank has been addressed by the
pointwise, pairwise, and listwise approaches. In the
pointwise approach (Li et al., 2007), ranking is trans-
formed to regression or classification, and the loss func-
tion in learning is defined as a function of a single docu-
ment. In the pairwise approach (Herbrich et al., 1999;
Joachims, 2002; Freund et al., 2003; Cao et al., 2006),
ranking is transformed to pairwise classification, and
the loss function is defined on a document pair. In the
listwise approach (Cao et al., 2007; Qin et al., 2007),
document lists are viewed as learning instances and
the loss function is defined on that basis.

Although many learning methods have been proposed,
theoretical investigations on them were not sufficient.
Since training and testing should be conducted at
query level, studies on query-level generalization abil-
ity of learning algorithms are really needed. Unfortu-
nately, it was missing in the previous work.

2.3. Stability Theory

The notion of stability (Devroye & Wagner, 1979) has
been proposed for analyzing the generalization bounds
of learning algorithms.

Bousquet et al. (Bousquet & Elisseeff, 2002) propose
the theory of uniform leave-one-out stability. Based
on it, the generalization bounds of classification algo-
rithms such as Support Vector Machines (SVM) can
be derived. Agarwal et al. (Agarwal & Niyogi, 2005)
apply the stability tool to bipartite ranking.

We can apply the existing stability theory to get doc-
ument level and document pair level generalization
bounds. However, they may be not suitable for the
task of IR. In this paper, we propose query-level sta-
bility and reveal the relation between query-level sta-
bility and query-level generalization bound.

3. Probabilistic Formulation for
Ranking

As explained in Section 2, ranking in IR is evaluated at
query level. Therefore, to design and evaluate a learn-
ing to rank algorithm, we should also look at it from
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the query perspective. To this end, we give a novel
probabilistic formulation of ranking for IR, which con-
tains queries and their associates (documents, docu-
ment pairs, or document sets) in two layers. We then
introduce the notions of query-level loss and query-
level risk.

Assume that query q is a random sample from the
query space Q according to a probability distribution
PQ. For query q, an associate ω(q) and its ground-
truth g(ω(q)) are sampled from space Ω × G accord-
ing to a joint probability distribution Dq, where Ω is
the space of associates and G is the space of ground
truth. Here the associate ω(q) can be a single doc-
ument, a pair of documents, or a set of documents,
and correspondingly the ground truth g(ω(q)) can be
a relevance score (or class label), an order on a pair
of documents, or a permutation (list) of documents.
Let l(f ; ω(q), g(ω(q))) denote a loss (referred to as
associate-level loss) defined on (ω(q), g(ω(q))) and a
ranking function f .

Expected query-level loss is defined as:

L(f ; q) =

∫
Ω×G

l(f ; ω(q), g(ω(q))) Dq(dω(q), dg(ω(q))).

Empirical query-level loss is defined as:

L̂(f ; q) =
1

nq

nq∑
j=1

l(f ; ω
(q)
j , g(ω

(q)
j )),

where (ω(q)
j , g(ω(q)

j )), j = 1 · · · , nq stands for nq asso-
ciates of q, which are sampled i.i.d. according to Dq.
The empirical query-level loss can be an estimate of
the expected query-level loss. It can be proven that
the estimation is consistent.

The goal of learning to rank is to select the ranking
function f which can minimize the expected query-level
risk defined as:

Rl(f) = EQL(f ; q) =

∫
Q

L(f ; q) PQ(dq). (1)

In practice, PQ is unknown. What we have are
the training samples (q1, S1), · · · , (qr, Sr), where Si =
{(ω(i)

1 , g(ω(i)
1 )), · · · , (ω(i)

ni , g(ω(i)
ni ))}, i = 1, · · · , r, and

ni is the number of associates for query qi. Here
q1, · · · , qr can be viewed as data sampled i.i.d. ac-
cording to PQ, and (ω(i)

j , g(ω(i)
j )) as data sampled i.i.d.

according to Dqi , j = 1, · · · , ni, i = 1, · · · , r.

Empirical query-level risk is defined as:

R̂l(f) =
1

r

r∑
i=1

L̂(f ; qi). (2)

The empirical query-level risk is an estimate of the
expected query-level risk. It can be proven that the
estimation is consistent.

This probabilistic formulation can cover most of exist-
ing learning to rank algorithms. If we let the associate
to be a single document, a document pair, or a doc-
ument set, we can respectively define pointwise, pair-
wise, or listwise losses, and develop pointwise, pair-
wise, or listwise approaches to learning to rank.

(a) Pointwise Case

Let D denote the document space. We use a feature
mapping function φ : Q × D → X (= Rd) to create a
d-dimensional feature vector for each query-document
pair. For each query q, suppose that the feature vec-
tor of a document is x(q) and its relevance score (or
class label) is y(q), then (x(q), y(q)) can be viewed as a
random sample from X ×R according to a probability
distribution Dq. If l(f ; x(q), y(q)) is a pointwise loss
(square loss for example), then the expected query-
level loss becomes:

L(f ; q) =

∫
X×R

l
(
f ; x(q), y(q)

)
Dq

(
dx(q), dy(q)

)
.

Given training samples (q1, S1), · · · , (qr, Sr), where
Si = {(x(i)

1 , y
(i)
1 ), · · · , (x(i)

ni , y
(i)
ni )}, i = 1, · · · , r, the em-

pirical query-level loss of query qi, (i = 1, · · · , r) turns
out to be:

L̂(f ; qi) =
1

ni

ni∑
j=1

l(f ; x
(i)
j , y

(i)
j ).

(b) Pairwise Case

For each query q, z(q) = (x(q)
1 , x

(q)
2 ) stands for a doc-

ument pair associated with it. Moreover, y(q) = 1 if
x

(q)
1 is ranked above x

(q)
2 , y(q) = −1 otherwise. Let

Y = {1,−1}. (x(q)
1 , x

(q)
2 , y(q)) can be viewed as a ran-

dom sample from X 2×Y according to a probability dis-
tribution Dq. If l(f ; z(q), y(q)) is a pairwise loss (hinge
loss for example, (Herbrich et al., 1999)), then the ex-
pected query-level loss becomes:

L(q) =

∫
X2×Y

l
(
f ; z(q), y(q)

)
Dq

(
dz(q), dy(q)

)
.

Given training samples (q1, S1), · · · , (qr, Sr), where
Si = {(z(i)

1 , y
(i)
1 ), · · · , (z(i)

ni , y
(i)
ni )}, i = 1, · · · , r, the em-

pirical query-level loss of query qi, (i = 1, · · · , r) turns
out to be:

L̂(f ; qi) =
1

ni

ni∑
j=1

l(f ; z
(i)
j , y

(i)
j ).

(c) Listwise Case

For each query q, let s(q) denote a set of m documents
associated with it, π(s(q)) ∈ Π denote a permutation of
documents in s(q) according to their relevance degrees
to the query, where Π is the space of all permutations
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on m documents. (s(q), π(s(q))) can be viewed as a
random sample from Xm×Π according to a probability
distribution Dq. If l(f ; s(q), π(s(q))) is a listwise loss
(cross entropy loss for example, (Cao et al., 2007)),
then the expected query-level loss becomes:

L(q) =

∫
Xm×Π

l
(
f ; s(q), π

(
s(q)

))
Dq

(
ds(q), dπ

(
s(q)

))
.

Given training samples (q1, S1), · · · , (qr, Sr), where
Si = {(s(i)

1 , π(s(i)
1 )), · · · , (s(i)

ni , π(s(i)
ni ))}, i = 1, · · · , r,

the empirical query-level loss of query qi, (i = 1, · · · , r)
turns out to be:

L̂(f, qi) =
1

ni

ni∑
j=1

l(f ; s
(i)
j , π(s

(i)
j )).

4. Stability Theory For Query-level
Generalization Bound Analysis

Based on the probabilistic formulation, we propose a
novel concept named query-level stability. We further
discuss how to use query-level stability to analyze the
generalization ability of a learning to rank algorithm.

First, we give a definition to uniform leave-one-query-
out associate-level loss stability. The stability of a
learning algorithm represents the degree of change in
the loss of prediction when randomly removing a query
and its associates from the training data.
Definition 1. Let A be a learning to rank algorithm,
{(qi, Si), i = 1, · · · , r} be the training set, l be the
associate-level loss function, and τ be a function map-
ping an integer to a real number. We say that A has
uniform leave-one-query-out associate-level loss stabil-
ity with coefficient τ with respect to l, if ∀qj ∈ Q, Sj ∈
(Ω × G)nj , j = 1, · · · , r, q ∈ Q, (ω(q), g(ω(q))) ∈ Ω × G,
the following inequality holds:∣∣∣l(f{(qi,Si)}r

i=1
, ω(q), g(ω(q)))

−l(f{(qi,Si)}r
i=1,i6=j

, ω(q), g(ω(q)))
∣∣∣ ≤ τ(r).

Here {(qi, Si)}r
i=1,i6=j stands for the samples

(q1, S1), · · · , (qj−1, Sj−1), (qj+1, Sj+1), · · · , (qr, Sr),
where (qj , Sj) is deleted. f{(qi,Si)}r

i=1
stands for the

ranking function learned from {(qi, Si)}r
i=1. We will

use the notations hereafter.

With the definition, we can obtain the following
lemma. It states that, if an algorithm has uniform
leave-one-query-out associate-level loss stability, it will
be stable in terms of expected query-level loss and em-
pirical query-level loss. For ease of explanation, we
simply call the uniform leave-one-query-out associate-
level loss stability query-level stability.

Lemma 1. Let A be a learning to rank algorithm,
{(qi, Si), i = 1, · · · , r} be the training set, and l be the
associate-level loss function. If A has leave-one-query-
out associate-level loss stability with coefficient τ with
respect to l, then the following inequalities hold:∣∣∣L(f{(qi,Si)}r

i=1
, q) − L(f{(qi,Si)}r

i=1,i6=j
, q)

∣∣∣ ≤ τ(r),∣∣∣L̂(f{(qi,Si)}r
i=1

, q) − L̂(f{(qi,Si)}r
i=1,i 6=j

, q)
∣∣∣ ≤ τ(r).

Based on the concept of query-level stability, we can
derive a query-level generalization bound, as shown in
Theorem 1. The theorem states that if an algorithm
has query-level stability, then with high probability
over the samples, the expected query-level risk can
be bounded by the empirical risk and a term which
depends on the query number and parameters of the
algorithm. Furthermore, the theorem quantifies the
expected loss on new queries, which is exactly what
we mean by query-level generalization.
Theorem 1. Let A be a learning to rank algo-
rithm, (q1, S1), · · · , (qr, Sr) be r training samples,
and let l be the associate-level loss function. If
(1) ∀(q1, S1), · · · , (qr, Sr), q ∈ Q, (ω(q), g

(
ω(q)

)
∈

Ω × G,
∣∣l (f(qi,Si)

r
i=1

, ω(q), g
(
ω(q)

))∣∣ ≤ B, (2) A
has query-level stability with coefficient τ , then
∀δ ∈ (0, 1) with probability at least 1 − δ over
the samples of {(qi, Si)}r

i=1 in the product space∏r
i=1 {Q × (Ω × G)∞}, the following inequality holds:

Rl

(
f{(qi,Si)}r

i=1

)
≤ R̂l

(
f{(qi,Si)}r

i=1

)
+ 2τ(r) + (4rτ(r) + B)

√
ln 1

δ

2r
.

Proof. For clarity of the proof, we first give the follow-
ing definitions:

ρ({(qi, Si)}r
i=1)

∆
= Rl

(
f{(qi,Si)}r

i=1

)
− R̂l

(
f{(qi,Si)}r

i=1

)
,∫

Ω1

∆
=

∫
Q

∫
(Ω×G)n1

· · ·
∫
Q

∫
(Ω×G)nr

,

∫
Ω2

∆
=

∫
Q

∫
Ω×G

,

P1(dω)
∆
= Dnr

qr
(dSr)PQ(dqr) · · ·Dn1

q1 (dS1)PQ(dq1),

P2(dω
′
)

∆
= Dq(dω(q), dg(w(q)))PQ(dq).

We then prove the theorem in two steps.

1) Get the bound of∣∣∣∣ρ({(qi, Si)}r
i=1) −

∫
Ω1

ρ({(qi, Si)}r
i=1) P1(dω)

∣∣∣∣ .

For this purpose, we get the upper bound of the fol-
lowing term first:∣∣∣∣ρ({(qi, Si)}r

i=1) − ρ({(qi, Si)}
r,j,q′j
i=1 )

∣∣∣∣
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where {(qi, Si)}
r,j,q′

j

i=1 means that query (qj , Sj) is
changed for another query (q′j , S

′
j), where S′

j refers to

(w(j′)
1 , g(w(j′)

1 )), · · · , (wn′
j
, g(w(j′)

n′
j

)).

To utilize the query-level stability, we divide ρ into
two terms: ρ = ρ1 − ρ2, and discuss either of them
separately, as follows.

ρ1({(qi, Si)}r
i=1)

∆
= Rl

(
f{(qi,Si)}r

i=1

)
=

∫
Ω2

l(f{(qi,Si)}r
i=1

; ω(q), g(ω(q)))P2(dω
′
).

ρ2({(qi, Si)}r
i=1)

∆
= R̂l

(
f{(qi,Si)}r

i=1

)
=

1

r

r∑
i=1

1

ni

ni∑
j=1

l(f{(qi,Si)}r
i=1

; ω
(i)
j , g(ω

(i)
j )).

Based on query-level stability, we can obtain that
∀qj ∈ Q, Sj ∈ (Ω × G)nj , j = 1, · · · , r, q, q′j ∈ Q, S′

j ∈
{Q× (Π×G)n′

j}, (ω(q), g(ω(q))) ∈ Ω×G, the following
inequality holds: ∣∣∣l(f{(qi,Si)}r

i=1
, ω(q), g(ω(q)))

−l(f
{(qi,Si)}

r,j,q′
j

i=1

, ω(q), g(ω(q)))

∣∣∣∣ ≤ 2τ(r). (3)

With (3), as ρ1 is an integral function, the following
inequality holds:

|ρ1({(qi, Si)}r
i=1) − ρ1({(qi, Si)}

r,j,q′j
i=1 )| ≤ 2τ(r). (4)

As for ρ2, we have

|ρ2({(qi, Si)}r
i=1) − ρ2({(qi, Si)}

r,j,q′j
i=1 )|

≤ 1

r

r∑
i=1,i6=j

1

ni

ni∑
j=1

|l(f{(qi,Si)}r
i=1

; ω
(i)
j , g(ω

(i)
j ))

− l(f
{(qi,Si)}

r,j,q′
j

i=1

; ω
(i)
j , g(ω

(i)
j ))|

+
1

r
| 1

nj

nj∑
s=1

l(f{(qi,Si)}
nj
i=1

; ω(j)
s , g(ω(j)

s ))

− 1

n′
j

n′
j∑

s=1

l(f
{(qi,Si)}

r,j,q′
j

i=1

; ω(j′)
s , g(ω(j′)

s ))|

≤ 2τ(r) +
B

r
. (5)

By jointly considering (4) and (5), we obtain:

|ρ({(qi, Si)}r
i=1) − ρ({(qi, Si)}

r,j,q′j
i=1 )| ≤ 4τ(r) +

B

r
.

Based on McDiarmid’s inequality(McDiarmid,
1989), with probability at least 1 − δ over the
samples of {(qi, Si)}r

i=1 in the product space∏r
i=1 {Q × (Ω × G)∞}, we have

ρ({(qi, Si)}r
i=1) ≤

∫
Ω1

ρ({(qi, Si)}r
i=1) P1(dω).

+ (4rτ(r) + B)

√
ln 1

δ

2r
. (6)

2) Get the bound of
∣∣∣∫Ω1

ρ({(qi, Si)}r
i=1)P1(dω)

∣∣∣∫
Ω1

ρ[{(qi, Si)}r
i=1]P1(dω)

=

∫
Ω1

∫
Ω2

[l(f{(qi,Si)}r
i=1

; ω(q), g(ω(q)))] P2(dω
′
) P1(dω)

−
∫

Ω1

l(f{(qi,Si)}r
i=1

; ω
(i)
j , g(ω

(i)
j )) P1(dω)

=

∫
Ω

∫
Ω2

[l(f{(qi,Si)}r
i=1

; ω(q), g(ω(q)))

− l(f{(qi,Si)}r
i=1

; ω
(i)
j , g(ω

(i)
j ))] P2(dω

′
) P1(dω).

=

∫
Ω1

∫
Ω2

[l(f{(qi,Si)}r
i=1

; ω(q), g(ω(q)))

− l(f{(qi,Si)}
r,i,q
i=1

; ω
(q)
j , g(ω

(q)
j ))] P2(dω

′
) P1(dω).

The reason that the last equality holds is as follows.
Because the integral is conducted over all of the sam-
ples, and the samples are i.i.d., we can change the ith
query in the training set for (q, ω(q), g(ω(q))). Then by
further using (3), we have:∣∣∣∣∫

Ω1

ρ[{(qi, Si)}r
i=1]P1(dω)

∣∣∣∣ ≤ 2τ(r). (7)

Merging Eq. (6) and (7) yields the inequality in the
theorem.

5. Case Study

Without loss of generality, we take existing algorithms
of Ranking SVM (Joachims, 2002; Herbrich et al.,
1999) and IRSVM (Cao et al., 2006; Qin et al., 2007)
as examples to show how to analyze the query-level
generalization bound of an algorithm, using the tool
of query-level stability. Both of the two algorithms be-
long to the pariwise case of our probabilistic formula-
tion. It should be noted that the framework is neither
limited to these two algorithms nor to the pair-wise
case, we leave the discussions on other algorithms or
other approaches to our future work.

5.1. Generalization Bound of Ranking SVM

Ranking SVM is widely used in ranking for IR, which
views document pair as associate of the query and min-
imizes:

min
f∈F

1

n

n∑
i=1

lh(f ; zi, yi) + λ‖f‖2
K , (8)

where lh(f ; zi, yi) is the hinge loss, and K is a ker-
nel function in the Reproducing Kernel Hilbert Space
(RKHS).

Using the conventional stability theory (Bousquet &
Elisseeff, 2002), we can get the following lemma which
shows the query-level stability of Ranking SVM.
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Lemma 2. If ∀x ∈ X ,K(x, x) ≤ κ2 < ∞, then
Ranking SVM has query-level stability with coefficient
τ(r) = 4κ2

λr × max∀ni,Si

ni
1
r

∑ r
i=1 ni

.

As for this lemma, we have the following discussions.
(1) When r approaches infinity, suppose the mean and
variance of the distribution of nq are µ and σ2 re-
spectively. Then by the Law of Large Numbers and
Chebyshev’s inequality, ∀0 < δ < 1,∀ε > 0,∃R(ε), if
r > R(ε), with probability at least 1− δ, the following
inequality holds:

max∀ni,Si

ni
1
r

∑r
i=1 ni

≤
1 + σ

µ
√

δ
r

1 − ε
µ

.

Therefore, τ(r) ≤ 4κ2

λr

1+ σ

µ

√
δ
r

1− ε
µ

. That is, τ(r) will ap-

proach zero, with a convergence rate of O( 1√
r
), when

r goes to infinity.

(2) When r is finite (which is the case in practice), we
have no reasonable statistical estimation of the term
max∀ni,Si

ni
1
r

∑ r
i=1 ni

. As a result, we can only get a

loose bound for τ(r) as 4κ2

λ . That is, when r increases
but is still finite, τ(r) does not necessarily decrease.

Based on the above lemma, we can further derive the
generalization bound of Ranking SVM. In particular,
as the function f{(qi,Si)}r

i=1
is learned from the train-

ing samples (q1, S1), · · · , (qr, Sr), there is a constant
C, such that, ∀(q1, S1), · · · , (qr, Sr),

∥∥f{(qi,Si)}r
i=1

∥∥
K

≤
C. Then, ∀(q1, S1), · · · , (qr, Sr), z ∈ Z, y ∈ Y,
lh

(
f{(qi,Si)}r

i=1
, z, y

)
≤ 1 + 2Cκ. By further consid-

ering Theorem 1, we obtain the following theorems.
Theorem 2. If ∀x ∈ X ,K(x, x) ≤ κ2 < ∞,
then for Ranking SVM, ∀δ ∈ (0, 1),∀ε > 0,∃R(ε),
if r > R(ε), then with probability at least 1 − 2δ
over the samples of {(qi, Si)}r

i=1 in the product space∏r
i=1 {Q × (X × X × Y)∞}, we have:

Rl

(
f{(qi,Si)}r

i=1

)
≤ R̂l

(
f{(qi,Si)}r

i=1

)

+
8κ2

λr

1 + σ

µ
√

δ
r

1 − ε
µ

+

 16κ2
1+ σ

µ
√

δ
r

1− ε
µ

+ λ(1 + 2Cκ)

λ


√

ln 1
δ

2r
.

Theorem 3. If ∀x ∈ X , K(x, x) ≤ κ2 < ∞
and we have no constraint on r, then for Ranking
SVM, ∀δ ∈ (0, 1), with probability at least 1 − δ
over the samples of {(qi, Si)}r

i=1 in the product space∏r
i=1 {Q × (X × X × Y)∞}, we only have:

Rl

(
f{(qi,Si)}r

i=1

)
≤ R̂l

(
f{(qi,Si)}r

i=1

)
+

8κ2

λ
+

(
16rκ2 + λ(1 + 2Cκ)

λ

) √
ln 1

δ

2r
.

Theorem 2 states that when the number of training
queries tends to be infinity, with high probability the
empirical query-level risk of Ranking SVM will con-
verge to its expected query-level risk. However, when
the number of training queries is finite, the expected
query-level risk and empirical query-level risk are not
necessarily close to each other, and the bound in The-
orem 3 quantifies the difference, which is an increasing
function of the number of training queries.

5.2. Generalization Bound of IRSVM

In IR application, the numbers of document pairs asso-
ciated with different queries vary largely (See LETOR
or other public dataset). In consideration of this,
IRSVM, studied in (Cao et al., 2006) and (Qin et al.,
2007), is an adaptive version of Ranking SVM to the
IR applications, which minimizes:

min
f∈F

1

r

r∑
i=1

1

ni

ni∑
j=1

lh(f ; z
(i)
j , y

(i)
j )+ ‖ f ‖2

K . (9)

We can prove the query-level stability of IRSVM as
shown in Lemma 3. Due to space limitations, we omit
the proof.

Lemma 3. If ∀x ∈ X ,K(x, x) ≤ κ2 < ∞, then
IRSVM has query-level stability τ(r) = 4κ2

λr .

With a similar analysis to that for Ranking SVM, we
obtain the following theorem.

Theorem 4. If ∀x ∈ X ,K(x, x) ≤ κ2 < ∞, then
for IRSVM, ∀δ ∈ (0, 1), with probability at least 1 − δ
over the samples of {(qi, Si)}r

i=1 in the product space∏r
i=1 {Q × (X × X × Y)∞}, we have:

Rl

(
f{(qi,Si)}r

i=1

)
≤ R̂lh

(
f{(qi,Si)}r

i=1

)
+

8κ2

λr
+

16κ2 + λ(1 + 2Cκ)

λ

√
ln 1

δ

2r
.

The theorem states that when the number of train-
ing queries tends to be infinity, with high probability
the empirical query-level risk of IRSVM will converge
to its expected query-level risk. When the number of
queries is finite, the bound in the theorem quantifies
the difference between the two risks, which is a de-
creasing function of the number of training queries.

Remark 1. By comparing Theorem 2 and Theorem 4,
we can find that the convergence rates of the empiri-
cal query-level risk to the expected query-level risk for
Ranking SVM and IRSVM are the same, i.e. O( 1√

r
).

However, by comparing Theorem 3 to Theorem 4, we
can see that for the case of finite r, the bound of
IRSVM is much tighter than that of Ranking SVM.
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6. Experiments and Discussion

We conducted experiments on Ranking SVM and
IRSVM to verify our theoretical results.

6.1. Query-level Stability

First, we conducted an experiment to compare the
stabilities of Ranking SVM and IRSVM. We ran-
domly sampled 1,200 queries from a search engine’s
data repository, each query associated with hundreds
of documents and their relevance labels. There are
five labels: “perfect”, “excellent”, “good”, “fair”, and
“bad”. We split the queries into three sets: a training
set with 200 queries, a validation set with 500 queries,
and a test set with 500 queries (we denote the test set
as T ). The validation set was used to select the regu-
larization parameter λ for Ranking SVM and IRSVM.

We first trained two ranking models with Ranking
SVM and IRSVM, denoted as f0 and f

′

0 respectively.
Then we randomly deleted one query from the training
set, and trained two new models with Ranking SVM
and IRSVM, denoted as f1 and f

′

1 respectively. We
repeated this process 30 times, and created the mod-
els f1, f2, · · · , f30 an f

′

1, f
′

2, · · · , f
′

30. Then on the test
set, we compared the associate-level loss for f0 with
that for fi, and obtained the difference ∆i for Rank-
ing SVM. Similarly, we computed ∆

′

i for IRSVM.

∆i = max
q∈T

max
z∈Sq

|lh(f0, z
(q), y(q)) − lh(fi, z

(q), y(q))|,

∆
′
i = max

q∈T
max
z∈Sq

|lh(f
′
0, z

(q), y(q)) − lh(f
′
i , z

(q), y(q))|.

According to Definition 1, ∆i can bound from be-
low the query-level stability τ(r)(r = 200) of Ranking
SVM. Similarly, ∆

′

i can bound from below the query-
level stability τ(r)(r = 200) of IRSVM. In this re-
gard, we can compare stabilities of Ranking SVM and
IRSVM by comparing ∆i and ∆

′

i.

We list all the 30 values of ∆i and ∆
′

i in Table 1. From
it, we can see that ∆i is always much larger than ∆

′

i.
The mean (or maximum) value of ∆i over the 30 trials
is 1.23 (or 4.53). It is about more than ten times higher
than the mean (or maximum) value of ∆

′

i, which is
only 0.12 (or 0.27). Furthermore, the variance of ∆i

(i.e. 0.72) is also larger than that of ∆
′

i (i.e. 0.003).
These results indicate that the query-level stability of
RankSVM is not so good as that of IRSVM. (Note
that Lemmas 2 and 3 hold for any r, the number of
training queries. We simply set r = 200.)

6.2. Query-level Generalization Bounds

Next, we compared the performances of Ranking SVM
and IRSVM, to verify the theoretical results on their
query-level generalization bounds.

From Theorems 3 and 4 we can see that the bound for
Ranking SVM is much looser than that for IRSVM,
especially when the number of training queries r is
large but finite. We interpret the result as follow.

The actual empirical risk and expected risk with re-
spect to Ranking SVM are as follows.

R̂lh(f) =
1

n

n∑
i=1

lh(f ; z(i), y(i))), n =

r∑
i=1

ni.

Rlh(f) =

∫
X2×Y

lh(f ; z, y)P (dz, dy).

In the definitions, only document pair but no query
appears, and thus we call them the pair-level risks.
For comparison, we also list the query-level risks for
the learning to rank problem (See also Section 3) where
hinge loss is used as associate-level loss.

R̂lh(f) =
1

r

r∑
i=1

1

ni

ni∑
j=1

lh(f ; z(i), y(i)).

Rlh(f) =

∫
Q

∫
X2×Y

lh(f ; z(q), y(q)) Dq(dz(q), dy(q)) PQ(dq).

By comparing the above formulas, we can clearly see
that what is optimized in Ranking SVM (i.e. the pair-
level risk) is not equal to what should be optimized
(i.e. the query-level risks), unless every training query
has the same number of document pairs, which is not
true in practice. In contrast, it is easy to verify that
what is optimized in IRSVM is exactly the query-level
risk. Therefore, no surprisingly IRSVM has a better
query-level generalization bound.

In summary, the theoretical results indicate that the
performance of Ranking SVM on the test set in terms
of a query-level measure should not be so good as that
of IRSVM. We have verified this through experiments.
We tested the ranking performances of Ranking SVM
(RankSVM for short) and IRSVM on the test set, in
terms of Precision and NDCG. The results are shown
in Figure 1. Furthermore, MAP 1 for Ranking SVM is
0.39 and MAP for IRSVM is 0.41. From the results,
we can see that IRSVM achieves better ranking perfor-
mance than RankSVM, in terms of all the query-level
measures. This is also consistent with the results re-
ported in (Cao et al., 2006) and (Qin et al., 2007).

7. Conclusions

In this paper, we have studied the generalization abil-
ity of learning to rank algorithms for IR. A probabilis-
tic formulation for ranking has been proposed, which
covers ranking algorithms belonging to the pointwise,

1To compute MAP, we treated “perfect”, “excellent”
and “good” as relevant, and “fair” and “bad” as irrelevant.
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Table 1. Comparison of Query-level Stability

i 1 2 3 4 5 6
∆i 3.59 1.14 0.88 0.81 1.84 1.15

∆
′
i 0.07 0.07 0.06 0.06 0.05 0.24

7 8 9 10 11 12
0.89 1.30 0.90 1.42 1.38 1.39
0.18 0.06 0.09 0.08 0.11 0.15

13 14 15 16 17 18
0.56 1.43 1.42 1.01 1.13 1.34
0.11 0.13 0.14 0.11 0.06 0.11

19 20 21 22 23 24
1.04 0.86 0.43 0.51 0.64 0.92
0.08 0.05 0.09 0.20 0.27 0.14

25 26 27 28 29 30
0.50 0.88 4.53 0.99 1.13 0.62
0.18 0.08 0.12 0.09 0.21 0.14

pairwise and listwise approaches. The tool of query-
level stability has been developed, which has been fur-
ther used to analyze the generalization bound of a
ranking algorithm. We have applied the tool to two ex-
isting ranking algorithms (Ranking SVM and IRSVM)
and obtained theoretical results. We have also verified
the correctness of the results by experiments.

As far as we know, this is the first work on query-level
generalization bound of learning to rank algorithms.
There are still many issues to investigate. (1) We have
taken SVM based ranking algorithms as examples. We
will try to obtain similar results for other algorithms,
such as RankBoost. (2) We have focused on the pair-
wise approach. The proposed formulation for ranking
and the tool of query-level stability can also be used
to analyze other approaches. (3) It is worth check-
ing whether new learning to rank algorithms can be
derived under the guide of the theoretical study.

References

Agarwal, S., & Niyogi, P. (2005). Stability and generaliza-
tion of bipartite ranking algorithms. Proc. of COLT’05
(pp. 32–47).

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern in-
formation retrieval. Addison Wesley.

Bousquet, O., & Elisseeff, A. (2002). Stability and gen-
eralization. Journal of Machine Learning Research, 2,
499–526.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds,
M., Hamilton, N., & Hullender, G. (2005). Learning to
rank using gradient descent. ICML ’05 (pp. 89–96).

Cao, Y., Xu, J., Liu, T.-Y., Li, H., Huang, Y., & Hon, H.-
W. (2006). Adapting ranking svm to document retrieval.
SIGIR ’06 (pp. 186–193).

0.66

0.68

0.7

RankSVM
IRSVM

0.6

0.62

0.64

1 2 3 4 5
NDCG@

(a) NDCG@1-5

0.36

0.37

0.38

0.39

0.4

RankSVM
IRSVM

0.32

0.33

0.34

0.35

0.36

1 2 3 4 5
Precision@

(b) Precision@1-5

Figure 1. Accuracies of Ranking SVM and IRSVM

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., & Li, H. (2007).
Learning to rank: from pairwise approach to listwise
approach. ICML ’07 (pp. 129–136).

Devroye, L., & Wagner, T. (1979). Distribution-free perfor-
mance bounds for potential function rules. IEEE Trans-
actions on Information Theory, 25, 601–604.

Freund, Y., Iyer, R., Schapire, R. E., & Singer, Y. (2003).
An efficient boosting algorithm for combining prefer-
ences. J. Mach. Learn. Res., 4, 933–969.

Herbrich, R., Obermayer, K., & Graepel, T. (1999). Large
margin rank boundaries for ordinal regression. Advances
in Large Margin Classifiers. (pp. 115–132).
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Abstract

Hidden Markov models assume that obser-
vations in time series data stem from some
hidden process that can be compactly repre-
sented as a Markov chain. We generalize this
model by assuming that the observed data
stems from multiple hidden processes, whose
outputs interleave to form the sequence of ob-
servations. Exact inference in this model is
NP-hard. However, a tractable and effective
inference algorithm is obtained by extend-
ing structured approximate inference meth-
ods used in factorial hidden Markov mod-
els. The proposed model is evaluated in an
activity recognition domain, where multiple
activities interleave and together generate a
stream of sensor observations. It is shown
to be more accurate than a standard hidden
Markov model in this domain.

1. Introduction

Hidden Markov models (HMMs) are among the most
popular approaches for modeling time series data, and
have seen widespread application in areas such as
speech recognition, bioinformatics, or robotics. They
assume that observed data stems from a hidden pro-
cess which is stationary and Markov. However, in some
application domains this single-process model is not
appropriate. Consider for instance a log of web server
requests, and assume we have no definite knowledge
about which request has been issued by which user
(e.g. because of proxy use). Clearly, there is no single
hidden Markov process that accounts for the sequence
of observed requests. Instead, there are multiple pro-
cesses, one per user, which interleave to generate the
sequence of observations. Another example, and the
main motivation for the work presented in this paper,
is activity recognition: the task of inferring a user’s

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

current activity from a stream of dense sensor data. In
many situations, users switch back and forth between
multiple activities, which causes sensor observations
associated with the individual activities to interleave
in time. The specific scenario considered in this pa-
per is that objects used in activities of daily living are
equipped with small RFID tags, which are picked up
by a wearable RFID reader whenever a user interacts
with the object. The task is to infer the sequence of
activities carried out given the observed object inter-
actions. In the light of recent advances in RFID tech-
nology, which allow tags to be cheaply mass-produced
and readers to be made wearable, such application sce-
narios are attracting increasing research interest from
both academia and industry (Wang et al., 2007).

HMMs have been widely used in activity recognition:
activities are modeled as hidden states that emit the
object tags observed by the RFID reader (Patterson
et al., 2005). This is an appropriate model if activi-
ties are atomic and carried out sequentially. In many
domains, however, activities are hierarchically struc-
tured, as sets of basic activities can be grouped into
high-level activities. High-level activities typically in-
terleave in time as a user is switching between them,
as illustrated in Figure 1. In this example, a user is
having breakfast, which consists of high-level activities
makeToast, makeJuice, and getNews with correspond-
ing basic activities. The domain could be modeled
with a standard HMM by “flattening” the three activ-
ities into one process with 7 states, but in this case part
of the problem structure would be lost. Alternatively,
we can model the activities as three different processes
which interleave in time. This has the advantage of de-
coupling transition dynamics within one high-level ac-
tivity from the interleaving behavior, yielding a more
concise representation with fewer parameters.

In this paper, we present a probabilistic model in
which observations are generated by multiple, inter-
leaved hidden processes. The hidden processes are sta-
tionary Markov chains, and the switching mechanism
by which they interleave is again Markov. Although
there exists a large body of related work, to the best
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Figure 1. Interleaving in an activity recognition domain. Three high-level activities (makeToast, makeJuice, getNews)
with corresponding basic activities are interleaved in time as a user switches between them. Different activities can produce
identical sensor observations, and therefore neither the interleaving nor the actual activities are directly observable from
the sensor data.

of our knowledge this interleaved setting has not been
addressed before. A simplified version has been dis-
cussed in (Batu et al., 2004); however, tractable infer-
ence algorithms are not explored in this work. Simpli-
cial mixtures of Markov chains, which employ a gener-
ative semantics similar to latent Dirichlet allocation,
also address a similar problem (Girolami & Kabán,
2003). However, they restrict the constituent pro-
cesses to be Markov rather than hidden Markov. A fur-
ther class of models assumes several hidden processes
that run in parallel, and that observations stem from
their joint state. Examples include factorial hidden
Markov models (Ghahramani & Jordan, 1997), hidden
Markov decision trees (Jordan et al., 1996), coupled
hidden Markov models (Brand, 1997) and mixed hid-
den Markov models (Altman, 2007). In contrast to
our approach, these models focus on factorizing com-
plex state spaces into cross-products of simpler com-
ponents, rather than modeling interleaved processes.
Another related technique are switching state-space
models (SSSMs) (Ghahramani & Hinton, 1998), in
which several processes run in parallel and an addi-
tional switch variable selects one active process from
which the current observation is generated. SSSMs are
different in that processes run concurrently, while an
interleaving of processes is characterized by the fact
that an inactive process is stopped and only resumes
when it becomes active again. This creates additional
dependencies between processes which cannot be mod-
eled in a SSSM. Finally, hierarchical hidden Markov
models model hierarchical structure within the hidden
process that generates the observations (Fine et al.,
1998). However, the component processes cannot in-
terleave, and thus the model is not appropriate in our
domain.

The next section introduces the proposed model more
formally. Afterwards, we discuss the key problem of
hidden state inference: given a sequence of observa-

tions, find the most likely configuration of hidden pro-
cesses to have generated the data. Unfortunately, ex-
act inference can be shown to be NP-hard; however,
efficient structured approximate inference techniques
can be applied (Section 3). Finally, the proposed tech-
nique is evaluated in an activity recognition domain,
and shown to outperform standard HMM-based ap-
proaches (Section 4).

2. The Model

Let Y1, ..., YT denote a sequence of observations, where
the Yt take on one of D discrete values. A hid-
den Markov model µ (Rabiner, 1989) defines a se-
quence X1, ..., XT of hidden state variables, with Xt ∈
{1, ...,K} and K the number of different states the
hidden process can take on. To simplify notation,
assume that there is a special start state 0 the pro-
cess is in at time t = 0, that is, X0 = 0. The first
transition is from X0 to X1 ∈ {1, ...,K}, and af-
terwards the first output Y1 is emitted. The HMM
is characterized by initial state probabilities a0i =
P (X1 = i | X0 = 0), state transition probabilities
aij = P (Xt = j | Xt−1 = i) for t ≥ 2 and emission
probabilities bil = P (Yt = l | Xt = i) for t ≥ 1. The
joint distribution of observations Y = Y1, ...YT and
hidden states X = X1, ..., XT is given by

P (X,Y) =
T∏

t=1

P (Xt | Xt−1)P (Yt | Xt).

We will also refer to X as the hidden process that
generated the observations Y.

We propose a model for multiple, interleaved hidden
processes. Intuitively, an additional switching process
controls a token that is handed from process to pro-
cess, and determines which of the processes is active at
a particular point t in time. The active process tran-
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Figure 2. Interleaved mixture of hidden Markov models (left) and factorial hidden Markov model (right) in dynamic
Bayesian network notation (for M = 3).

sitions to a new state and outputs the observation Yt,
while all other processes remain “frozen” in time.

More formally, let µ1, ..., µM be hidden Markov models
with initial state probabilities a

(m)
0i , transition proba-

bilities a
(m)
ij and emission probabilities b

(m)
il . For ease

of notation, we assume the number of states K is iden-
tical for all µm, but the model trivially generalizes to
processes with state spaces of different size. Let fur-
thermore µ̄ be a Markov process with states {1, ...,M},
initial state probabilities d0i and transition probabil-
ities dij . Let Zt denote a random variable represent-
ing the state of µ̄ at time t, and S

(m)
t denote ran-

dom variables representing the state of process µm at
time t for 1 ≤ m ≤ M . Zt ∈ {1, ...,M} determines
the active process at time t, and we will refer to µ̄
as the switching process. At every step t in time, a
new active process is sampled from µ̄ with probability
P (Zt = j | Zt−1 = i) = dij . Afterwards, the states of
µ1, ..., µM are updated according to

P (S(m)
t = j | S(m)

t−1 = i, Zt = k) =
{

a
(m)
ij k = m;

δij k 6= m,
(1)

where δii = 1 and δij = 0 for i 6= j. In other words, a
process µm transitions to a new state with probability
given by its transition matrix if it is active at time t,
and stays in its old state otherwise.

Finally, the probability of emitting symbol Yt is

P (Yt = l | S(1)
t = i1, ..., S

(M)
t = iM , Zt = k) = b

(k)
ikl

(2)

That is, it is given by the emission probability of the
process that is active at time t. Let St = S

(1)
t , ..., S

(M)
t ,

Z = Z1, ..., ZT and S = S1, ...,ST . Then

P (Z,S,Y) =
T∏

t=1

P (Zt | Zt−1)P (Yt | St, Zt)
M∏

m=1

P (S(m)
t | S(m)

t−1 , Zt)

(3)

We will refer to this model as an interleaved mixture
of hidden Markov models. It is represented by the dy-
namic Bayesian network structure given in Figure 2
(left). The model is structurally related to a factorial
hidden Markov model (Ghahramani & Jordan, 1997),
shown in Figure 2 (right). However, the structure is
extended by the additional chain of Zt nodes that de-
termine the currently active process. Although the
structure is densely connected, the set of parameters
is simply the union of the parameter sets of the con-
stituent HMMs µ1, ..., µM and the switching process µ̄.

The following alternative interpretation of the model
can be given. Let z denote an interleaving1 and let
tm1 , ..., tmT m denote the sequence positions for which
zt = m. That is, Y↓µm

= Ytm
1

, ..., Ytm
T m

is the projec-
tion of Y to elements generated by µm, and S↓µm =
S

(m)
tm
1

, ..., S
(m)
tm
T m

the corresponding hidden state vari-
ables. It is easily verified that

P (Z,S,Y) = P (Z)
M∏

m=1

Pµm(Y↓µm ,S↓µm),

where Pµm(Y↓µm ,S↓µm) is the joint distribution of
hidden states S↓µm and observations Y↓µm in the orig-
inal HMM µm. This reformulation gives rise to an in-
tuitive approach for sampling from Y: first sample an
interleaving pattern z from µ̄, and afterwards Y↓µm

from µm for 1 ≤ m ≤ M .
1In general, we denote random variables with upper-

case letters, and their instantiations with lower-case letters.
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3. Inference and Parameter Estimation

A key task in the activity recognition domains we have
in mind is hidden state inference: find

(z∗, s∗) = argmax
z,s

P (z, s | y) (4)

for a given sequence y of observations. This involves
simultaneously finding a segmentation of y into sub-
sequences y↓µm generated by µm (the z∗), and most
likely hidden states for y↓µm in µm (the s∗).

3.1. Exact Inference

Two special cases of the problem are trivial. For
M = 1, the model coincides with a hidden Markov
model, and the Viterbi algorithm returns the most
likely hidden states in time O(K2T ). Moreover, if the
output symbol sets of µ1, ..., µM are disjoint, the inter-
leaving z is directly observable, and s can be obtained
by running M instances of Viterbi in time O(MK2T ).

The more interesting case of M ≥ 2 and non-disjoint
output symbol sets is inherently more difficult due to
its combinatorial nature—the M constituent chains
are coupled via the switching process and observa-
tions, and thus cannot be handled independently. Ac-
cordingly, exact graphical model inference (e.g. with
the junction tree algorithm) applied to the model in
Figure 2 (left) has costs exponential in M , because
the cliques at Yt are of size O(M). In fact, for gen-
eral graphical model structures of this form there is
no tractable inference algorithm available. However,
the conditional distributions P (Yt | St, Zt) have a par-
ticularly simple form, which could make the problem
easier. Unfortunately, this is not the case:

Theorem. Exact inference for interleaved mixtures of
hidden Markov models is NP-hard.

The theorem is proved by reduction from the strongly
NP-hard 3-partition problem (Garey & Johnson,
1975):

Problem (3-partition problem). Let S be a multiset
of M = 3N positive integers. Is there a partition of S
into subsets S1, ..., SN of size 3 each such that the sum
over the integers in each subset is the same?

A detailed proof is omitted for lack of space. In-
tuitively, the relationship is that an interleaving of
µ1, ..., µM “partitions” a given sequence into the parts
generated by the different processes (cf. Figure 1).
Note that a key issue is the strong NP-hardness of 3-
partition: the problem is NP-hard even if numbers in
the input are given in unary notation (or, equivalently,
if integers in S are polynomially bounded in M).

3.2. Approximate Inference

Approximate inference in graphical models has re-
ceived much attention, and a variety of techniques
are available. The most simple class of methods
are Markov chain Monte Carlo (MCMC) approaches.
In Gibbs sampling, for instance, iterative conditional
resampling of random variables defines a Markov
process whose stationary distribution—under certain
conditions—will be the conditional distribution in
Equation (4). However, MCMC is not an effective in-
ference method in our case, because the Markov pro-
cess defined by the Gibbs sampler is not ergodic. There
can be two state configurations with positive proba-
bility that cannot be transformed into each other by
single-variable changes without passing through an in-
valid (probability zero) configuration, such as any con-
figuration with S

(m)
t−1 6= S

(m)
t but Zt 6= m. This effec-

tively traps the Gibbs sampler in a subspace of all
configurations and prevents MCMC convergence.

The problem is that Gibbs sampling, by updating only
one variable at a time, ignores the specific model struc-
ture. Instead, we have to resort to approximate in-
ference methods that better exploit model structure.
Examples include structured variational approxima-
tions (Ghahramani & Jordan, 1997) and an iterative
approximate inference method known as the chainwise
Viterbi algorithm (Saul & Jordan, 1999). These algo-
rithms are used in factorial HMMs for computing EM
statistics and hidden state inference. In the rest of the
Section, we present an extension of chainwise Viterbi
for solving the problem given by Equation (4).

The idea behind chainwise Viterbi is to repeatedly
solve tractable sub-problems of the (intractable) global
optimization problem. For factorial hidden Markov
models, the natural sub-problem to solve is to opti-
mize hidden states in one chain S(m) = S

(m)
1 , ..., S

(m)
T

conditioned on the current states of the other chains:

s(m)
new =argmax

s(m)
P (s(m) | {s(l) : l 6= m},y)

= argmax
s(m)

P (s(1), ..., s(M),y).

In the dynamic Bayesian network representing an in-
terleaved mixture of HMMs (Figure 2, left), there
are two different types of hidden chains: the chains
S(1), ...,S(M) representing the constituent processes
µ1, ..., µM and the chain Z representing the switch-
ing process µ̄. Assume first that Z is kept fix, and the
goal is to conditionally optimize a chain S(m). This is
straightforward: for a given interleaving pattern, the
chains S(1), ...,S(M) become independent given Z and
Y due to the special form of the conditional distribu-
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Algorithm 1 Chainwise Viterbi for interleaved mix-
tures of hidden Markov models

Input: model M, observations Y
(S,Z) := consistent-configuration(M)
while not converged do

choose m,n ∈ {1, ...,M},m 6= n
let (S(m),S(n),Z) := argmax

S(m),S(n),Z

P (S,Z,Y)

end while
return S,Z

tions P (Yt | St, Zt), cf. Equation (2). They can thus
be optimized independently with standard Viterbi.

We therefore focus on the task of optimizing Z given
S(1), ...,S(M). A straightforward update

znew = argmax
z

P (z, s(1), ..., s(M),y)

is not very effective: as a process µm can only change
state at time t if it is active, we know from S

(m)
t 6= S

(m)
t−1

that Zt = m. Thus, the joint state of S(1), ...,S(M)

essentially determines Z. To change the state of Zt

from m to n, it is necessary to also update S
(m)
t and

S
(n)
t to reflect that µn is now active at time t. The

solution is to jointly optimize two constituent chains
S(m), S(n) and the switching chain Z by

(s(m)
new, s(n)

new, znew) = argmax
s(m),s(n),z

P (s,y, z). (5)

Intuitively speaking, this update allows to re-assign
observations that have so far been attributed to
process µm to process µn, by changing some Zt

from m to n and updating S(m) and S(n) accord-
ingly. If it is repeatedly applied with different
process indices m,n, the interleaving can be arbi-
trarily revised. Algorithm 1 describes this chain-
wise update scheme in pseudocode. The method
consistent-configuration(M) initializes the states of
the hidden variables to some positive-probability con-
figuration2. When choosing m,n ∈ {1, ...,M} differ-
ent strategies are possible; we assume the algorithm
repeatedly cycles through all pairs n 6= m. If the up-
date step (5) is implemented exactly, P (s, z,y) will
increase unless the hidden state configuration is left
unchanged. Thus, the algorithm will always converge
(though not necessarily to the true global optimum).

An efficient implementation of the update step (5) is
crucial for fast inference. This can be achieved by
dynamic programming in the spirit of the Viterbi al-
gorithm (Rabiner, 1989). Moreover, the particularly

2This is trivial if observation probabilities are always
non-zero, as e.g. in Laplace-smoothed models.

restrictive form of the model (basically, that only the
active chain changes state at any point in time) can
be exploited. This allows much faster inference than
for general graphical models with the DAG structure
given in Figure 2 (left), as will be briefly outlined now.

To simplify notation, assume that n = 1 and m = 2.
In analogy to the Viterbi algorithm, define

δijk[t] =

max
D

P (D, S
(1)
t = i, S

(2)
t = j, Zt = k,Y,S(3), ...,S(M))

with

D = {S(1)
1 , ..., S

(1)
t−1, S

(2)
1 , ..., S

(2)
t−1, Z1, ..., Zt−1}.

Initialization of δijk[1] is straightforward. For the re-
cursive definition of δijk[t], let

C[k] =
M∏

m=3

P (S(m)
t = s

(m)
t | S(m)

t−1 = s
(m)
t−1, Zt = k),

where s
(m)
t−1, s

(m)
t for m ≥ 3 denote the current values of

the fixed chains µ3, ..., µM . Now two cases have to be
considered. If k ≥ 3, chains 1, 2 cannot have changed
state, and

δijk[t] = max
k′=1,...,M

δijk′ [t− 1]dk′kb(k)
sy C[k]

with s = S
(k)
t and y = Yt. This quantity can be com-

puted in time O(M). If k ∈ {1, 2}, we have to take
into account state changes on the chains being opti-
mized. Assume without loss of generality that k = 1.
Now

δij1[t] = max
k′=1,...,M

max
i′=1,...,K

δi′jk′ [t− 1]dk′1a
(1)
i′i b

(1)
iy C[1],

with y = Yt. This quantity can be computed in time
O(KM). There are O(K2MT ) values of the form
δijk[t] to compute. However, time for computing all
values is bounded by O(K2M(M + K)T ), as the case
k ∈ {1, 2} only appears O(K2T ) times.

The maximum probability of a hidden state configu-
ration is

max
s(1),s(2),z

P (s, z,y) = max
ijk

δijk[T ],

and a maximizing configuration is found by keeping
track of where maxima occur in backtrace variables.

It is instructive to compare the complexity of the out-
lined chainwise Viterbi algorithm to inference in an
HMM where hidden states are ”flattened” into a sin-
gle process. This HMM has a state space of size KM ,
and standard Viterbi has thus complexity O(K2M2T ),
similar to the O(K2M(M + K)T ) for a single update
step in chainwise Viterbi. However, several such up-
date steps will be needed before convergence.

524



Modeling Interleaved Hidden Processes

3.3. Parameter Estimation

There are different possible settings for learning the
proposed model from data. In the activity recognition
setting discussed in Section 4, both sensor observa-
tions and activities are given for the training set. In
this fully observable case maximum-likelihood model
parameters can essentially be determined by count-
ing. More generally, if the interleaving is known for
the training data (that is, we know which part of each
sequence has been generated by which process), the
problem reduces to independently estimating the pa-
rameters of µ1, ..., µM with the standard Baum-Welch
algorithm (Rabiner, 1989). In an unsupervised learn-
ing setting, expectation-maximization including the
unknown interleaving Z is a natural choice. However,
for the same reasons as discussed in Section 3, exact
computation of the expectation step will be infeasi-
ble. In factorial hidden Markov models, this prob-
lem is solved elegantly by a structured variational ap-
proximation, and exploring variational inference meth-
ods for the interleaved mixture model presented in
this paper is an interesting direction for future work.
A simple alternative is to employ hard EM : instead
of computing exact expectations, hidden states are
set to their max-likelihood values given the observa-
tions, and expectations determined by counting. To-
gether with the chainwise Viterbi algorithm discussed
in Section 3.2 this yields a tractable method which is
straightforward to implement.

4. Experimental Evaluation

The proposed model has been evaluated in an activity
of daily living (ADL) recognition domain, where the
goal is to infer a user’s activity from a stream of dense
RFID sensor data. The dataset has been collected
in a real RFID environment at Intel Research Seat-
tle (Landwehr et al., 2007). Objects are equipped with
small RFID tags, and the user is wearing a lightweight
RFID reader in a bracelet around the wrist. Whenever
the reader comes close (10–15 centimeters) to a tagged
object, the object tag is recorded. The sequence of ob-
served tags thus indicates the objects a user has been
interacting with while performing the activity.

We recorded activities involved in making breakfast at
home, as this domain showcases the kind of interleav-
ing behavior we are interested in (cf. Figure 1). The
dataset consists of 20 sequences of RFID tag observa-
tions collected from 5 different persons having break-
fast. Sequences are hand-labeled with the true current
activity based on a human observer. There are 18 ba-
sic activities organized into 6 high-level activities, 24
different classes of tagged objects (including nil if no

object was observed), and a total of 4597 timepoints
to be classified. Timepoints at which no activity is
taking place and activities with a coverage of less than
1% were removed, leaving 14 activities and 3545 time-
points in the dataset. The average number of segments
into which a high-level activity is broken up because
of interleaving is 3.95. There is significant overlap be-
tween observations associated with different activities,
either because the same object is used in different ac-
tivities or noise in the sensor data. More specifically,
the average overlap in the set of observations associ-
ated with two different activities is 40.6%.

A standard approach in ADL recognition is based on
HMMs: each basic activity corresponds to a hidden
state, and sensor data to observations. In the de-
scribed domain this means that all activities are “flat-
tened” into one hidden process, and their hierarchical
structure is lost. This approach will serve as a baseline,
denoted by HMM. Alternatively, high-level activities
can be modeled as separate hidden processes using the
model described in Section 2. Here we consider a slight
extension of this model: state transition probabilities
in the active hidden process µZt

depend not only on
the previous state but also on whether or not the pro-
cess has just become active; that is, Zt 6= Zt−1. The
motivation for this extension is that high-level activi-
ties are typically interrupted at a point where the basic
activity changes as well. It is straightforward to gener-
alize the model and algorithms discussed in Section 2
and Section 3 to include this dependency.

Each high-level activity A is represented as a process
µA, and the state space of µA are the basic activi-
ties associated with A. Note that the method, when
applied to a given observation sequence, will auto-
matically chose the (approximately) most likely subset
of high-level activities that explains the observations.
This model, together with the approximate inference
technique discussed in Section 3.2 will be denoted as
HMMmix. In the chainwise Viterbi algorithm, hid-
den states are initialized to the most likely activity
given the current sensor observation (as observed in
the training data). Furthermore, a version with exact
inference (denoted HMMmix*) is run for comparison.

The experimental study seeks to answer the following
two questions:

(Q1) Does reconstruction accuracy increase if high-
level activities are modeled as separate processes?

(Q2) Does the approximate inference algorithm for
HMMmix yield results similar to exact inference?

The rationale behind (Q1) is that modeling high-level
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Table 1. Average cross-validated accuracy for Majority,
Majority/Observation, HMM, HMMmix and HMM-
mix* on the ADL dataset. • indicates that result for HM-
Mmix is significantly better than result for other method
(paired two-sided t-test, p = 0.05).

Method Accuracy
Majority 21.2± 25.4•
Majority/Observation 71.4± 10.3•
HMM 84.0± 9.8•
HMMmix 86.0± 8.6
HMMmix* 86.0± 8.6

activities as separate processes will capture transition
dynamics more concisely, as it decouples dynamics
within a high-level activity from the switching dy-
namics. This is reflected in the number of model pa-
rameters: The “flattened” HMM representation re-
quires O((MK)2) = O(M2K2) parameters to spec-
ify transition dynamics, while HMMmix only requires
O(M2 + MK2) parameters.

To evaluate the different approaches, we performed
a leave-one-sequence-out cross-validation. On the
respective training set, models are estimated from
fully observable training data, i.e., information on
both sensor observations and activities is available.
Given a test sequence, the most likely joint state of
hidden variables in the model is determined, yield-
ing a prediction of the current basic activity at ev-
ery point in time. This is compared against the
known true activity, and average prediction accu-
racy is computed. Table 1 shows reconstruction ac-
curacy for HMM, HMMmix and HMMmix*. Ad-
ditionally, accuracy for always predicting the most
frequent activity (Majority), and the most fre-
quent activity given a particular sensor observation
(Majority/Observation) are shown. HMMmix
significantly outperforms HMM (paired two-sided t-
test, p = 0.05), and predictions made by HMMmix
and HMMmix* are identical in this experiment. This
affirmatively answers questions Q1 and Q2. Figure 3
shows the convergence behavior of chainwise Viterbi.
The normalized log-likelihood of the current configura-
tion of hidden states and the reconstruction accuracy
given by this configuration are plotted as a function of
the algorithm iteration. As expected, both likelihood
and accuracy increase as the algorithm repeatedly re-
vises the current interleaving. Furthermore, conver-
gence occurs after a small number of iterations.

There are two sources of information for predicting
the activity at a point t in time: the current sen-
sor observation, and transition dynamics for activities
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(which capture the influence of past and future ob-
servations on the current prediction). The Major-
ity/Observation approach already performs well;
this indicates that much information is obtained sim-
ply from the current sensor observation. To further
investigate the influence of transition dynamics on re-
construction accuracy, the following experiment was
carried out. When estimating a model from data,
only a randomly selected fraction γ of the training
sequences is used to estimate transition probabilities,
while all available data is used to estimate emission
probabilities. Figure 4 shows reconstruction accuracy
as a function of γ. The experiment confirms that
HMMmix outperforms HMM, and that approximate
inference gives solutions very close to those of exact
inference (solutions differ slightly, but the curves for
HMMmix and HMMmix* in Figure 4 are indistin-
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guishable). Moreover, the difference between HMM
and HMMmix is most pronounced if only 20% to 40%
of training sequences are used to estimate transition
parameters. This supports the hypothesis that the
more concise representation of transition dynamics in
HMMmix (with fewer model parameters) explains its
superior performance, as a concise representation mat-
ters most if training data is sparse.

5. Conclusions and Related Work

We have introduced a model for interleaved mixtures
of hidden processes, which was shown to be superior
to a single-process model in an activity recognition
domain. The model should be generally applicable in
situations where only the interleaved output of several
independent processes can be observed. Related work
includes several extensions of hidden Markov models
(as discussed in Section 1), and activity recognition
approaches based on HMMs such as (Patterson et al.,
2005) and (Zhang et al., 2007) or dynamic Bayesian
networks (Wang et al., 2007). The proposed method
not only labels sequence positions but returns a struc-
tured parse of the sequence in terms of a set of hid-
den processes. Thus, it is also related to segmentation
models, grammar-based approaches, and more gener-
ally models for predicting structured data (see (Bakir
et al., 2007) for an overview). Directions for future
work include semi- and unsupervised learning settings,
and testing the model in different domains and on
larger activity recognition datasets.
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Abstract

We examine the problem of evaluating a pol-
icy in the contextual bandit setting using
only observations collected during the exe-
cution of another policy. We show that pol-
icy evaluation can be impossible if the ex-
ploration policy chooses actions based on the
side information provided at each time step.
We then propose and prove the correctness
of a principled method for policy evaluation
which works when this is not the case, even
when the exploration policy is deterministic,
as long as each action is explored sufficiently
often. We apply this general technique to the
problem of offline evaluation of internet ad-
vertising policies. Although our theoretical
results hold only when the exploration policy
chooses ads independent of side information,
an assumption that is typically violated by
commercial systems, we show how clever uses
of the theory provide non-trivial and realis-
tic applications. We also provide an empiri-
cal demonstration of the effectiveness of our
techniques on real ad placement data.

1. Introduction

The k-armed bandit problem (Lai & Robbins, 1985;
Berry & Fristedt, 1985; Auer et al., 2002; Even-Dar
et al., 2006) has been studied in great detail, primar-
ily because it can be viewed as a minimal formalization
of the exploration problem faced by any autonomous
agent. Unfortunately, while its minimalism admits
tractability and insight, it misses details that are nec-
essary for application to many realistic problems. For

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

instance, the problem of internet advertising can be
viewed as a type of bandit problem in which choosing
an ad or set of ads to display corresponds to choos-
ing an arm to pull. However, this formalization is in-
adequate in practice, as vital information is ignored.
In particular, a successful ad placement policy might
choose ads based on the content of the web page on
which the ads are displayed. The standard k-armed
bandit formulation ignores this useful information.

This shortcoming can be rectified by modeling the
problem as an instance of the contextual bandit prob-
lem (Langford & Zhang, 2007), a generalization of the
k-armed bandit problem that allows an agent to first
observe an input or side information before choosing
an arm. This problem has been studied under differ-
ent names, including associative reinforcement learn-
ing (Kaelbling, 1994), bandits with side information
(Wang et al., 2005), and bandits with experts (Auer
et al., 1995), yet its analysis is far from complete.

In this paper, we study policy evaluation in the contex-
tual bandit setting. Policy evaluation is the problem
of evaluating a new strategy for behavior, or policy,
using only observations collected during the execution
of another policy. The difficulty of this problem stems
from the lack of control over available data. Given
complete freedom, an algorithm could evaluate a pol-
icy simply by executing it for a sufficient number of
trials. However, in real-world applications, we often
do not have the luxury of executing arbitrary policies,
or we may want to distinguish or search among many
more policies than we could evaluate independently.

We begin by providing impossibility results character-
izing situations in which policy evaluation is not possi-
ble. In particular, we show that policy evaluation can
be impossible when the exploration policy depends on
the current input. We then provide and prove the cor-
rectness of a principled method for policy evaluation
when this is not the case. This technique, which we
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call “exploration scavenging,” can be used to accu-
rately estimate the value of any new policy as long as
the exploration policy does not depend on the current
input and chooses each action sufficiently often, even if
the exploration policy is deterministic. The ability to
depend on deterministic policies makes this approach
more applicable than previous techniques based upon
known and controlled randomization in the exploring
policy. We also show that exploration scavenging can
be applied if we wish to choose between multiple poli-
cies, even when these policies depend on the input,
which is a property shared by most real ad-serving
policies. This trick allows exploration scavenging to
be applied to a broader set of real-life problems.

The motivating application for our work is internet
advertising. Each time a user visits a web page, an
advertising engine places a limited number of ads in a
slate on the page. The ad company receives a payment
for every ad clicked by the user. Exploration scaveng-
ing is well-suited for this application for a few reasons.
First, an advertising company may want to evaluate a
new method for placing ads without incurring the risk
and cost of actually using the new method. Second,
there exist logs containing huge amounts of historical
click data resulting from the execution of existing ad-
serving policies. It is economically sensible to use this
data, if possible, when evaluating new policies.

In Section 4, we discuss the application of our meth-
ods to the ad display problem, and present empirical
results on data provided by Yahoo!, a web search com-
pany. Although this application actually violates the
requirement that the exploration policy be indepen-
dent of the current input, the techniques show promise,
leading us to believe that exploration scavenging can
be useful in practice even when the strong assumptions
necessary for the theoretical results do not hold.

To our knowledge, the only similar application work
that has been published is that of Dupret et al. (2007)
who tackle a similar problem from a Bayesian perspec-
tive using different assumptions which lead to different
solution techniques. Our approach has the advantage
that the estimated value is the output of a simple func-
tion rather than an EM optimization, facilitating in-
terpretation of the evaluation method.

2. The Contextual Bandit Setting

Let X be an arbitrary input space, and A = {1, · · · , k}
be a set of actions. An instance of the contextual ban-
dit problem is specified by a distribution D over tuples
(x,~r) where x ∈ X is an input and ~r ∈ [0, 1]k is a vec-
tor of rewards. Events occur on a round by round basis

where on each round t:

1. The world draws (xt, ~rt) ∼ D and announces xt.
2. The algorithm chooses an action at ∈ A, possibly

as a function of xt and historical information.
3. The world announces the reward rt,at

of action at.

The algorithm does not learn what reward it would
have received if it had chosen an action a 6= at.

The standard goal in this setting is to maximize the
sum of rewards rt,at

over the rounds of interaction. An
important subgoal, which is the focus of this paper, is
policy evaluation. Here, we assume that we are given
a data set S ∈ (X ×A× [0, 1])T , which is generated by
following some fixed policy π for T steps. Now, given
a different policy h : X → A, we would like to estimate
the value of policy h, that is,

VD(h) := E(x,~r)∼D[rh(x)].

The standard k-armed bandit is a special case of the
contextual bandit setting in which |X | = 1.

3. Evaluating Policies

In this section, we characterize situations in which pol-
icy evaluation may not be possible, and provide tech-
niques for estimating the value of a policy when it
is. To start, we show that when the exploration pol-
icy π depends on the input x, policy evaluation can
be impossible. Later, we show that when the explo-
ration policy π has no dependence on the current in-
put, there exists a technique for accurately estimating
the value of a new policy h as long as the exploration
policy chooses each action sufficiently often. Finally,
we show that exploration scavenging can be applied in
the situation in which we are choosing between mul-
tiple exploration policies, even when the exploration
policies themselves depend on the current input.

3.1. Impossibility Results

First, note that policy evaluation is not possible when
the exploration policy π chooses some action a with
zero probability. This is true even in the standard k-
armed bandit setting. If the exploration policy always
chooses action 1, and the policy to evaluate always
chooses action 2, then policy evaluation is hopeless.

It is natural to ask if it is possible to build a policy
evaluation procedure that is guaranteed to accurately
evaluate a new policy given data collected using an ar-
bitrary exploration policy π as long as π chooses each
action sufficiently often. The following theorem shows
that this goal is unachievable. In particular, it shows
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that if the exploration policy π depends on the current
input, then there are cases in which new policies h can-
not be evaluated using observations gathered under π,
even if π chooses each action frequently. Specifically,
there can exist two contextual bandit distributions D
and D′ that result in indistinguishable observation se-
quences even though VD(h) and VD′(h) are far apart.
Later we show that in the same context, if we disal-
low input-dependent exploration policies, policy eval-
uation becomes possible

Theorem 1 There exist contextual bandit problems D
and D′ with k = 2 actions, a hypothesis h, and a policy
π dependent on the current observation xt with each
action visited with probability 1/2, such that observa-
tions of π on D are statistically indistinguishable from
observations of π on D′, yet |VD(h)− VD′(h)| = 1.

Proof: The proof is by construction. Suppose xt

takes on the values 0 and 1, each with probability 0.5
under both D and D′. Let π(x) = x be the exploration
policy, and let h(x) = 1 − x be the policy we wish to
evaluate. Suppose that rewards are deterministic given
xt, as summarized in the following table.

Under D Under D
′

rt,0 rt,1 rt,0 rt,1

xt = 0 0 0 0 1
xt = 1 0 1 1 1

Then VD(h) = 0, while VD′(h) = 1, but observations
collected using exploration policy π are indistinguish-
able for D and D′.

3.2. Techniques for Policy Evaluation

We have seen that policy evaluation can be impossible
in general if the exploration policy π depends on the
current input or fails to choose each action sufficiently
often. We now discuss techniques for policy evaluation
when this is not the case. Theorem 2 shows that in
some very special circumstances, it is possible to create
an unbiased estimator for the value of a policy h using
exploration data from another policy. The main result
of this section, Theorem 3, shows that this estimator
is often close to the value of the policy, even when the
stringent conditions in the Theorem 2 are not satisfied.

Theorem 2 For any contextual bandit distribution D
over (x,~r), any policy h, any exploration policy π such
that (1) for each action a, there is a constant Ta > 0
for which |{t : at = a}| = Ta with probability 1, and
(2) π chooses at independent of xt,

VD(h) = E{xt,~rt}∼DT

[

T
∑

t=1

rt,at
I(h(xt) = at)

Tat

]

.

Proof:

E{xt,~rt}∼DT

[

T
∑

t=1

rt,at
I(h(xt) = at)

Tat

]

= E{xt,~rt}∼DT





k
∑

a=1

∑

{t:at=a}

rt,aI(h(xt) = a)

Ta





=

k
∑

a=1

E{xt,~rt}∼DT





∑

{t:at=a}

rt,aI(h(xt) = a)

Ta





=

k
∑

a=1

E(x,~r)∼D

[

Ta

raI(h(x) = a)

Ta

]

= Ex,~r∼D

[

k
∑

a=1

raI(h(x) = a)

]

= VD(h).

The first equality is a reordering of the sum. The sec-
ond and fourth follow from linearity of expectation.

The third equality is more subtle. Consider a fixed
action a. The term

∑

{t:at=a} rt,aI(h(xt) = a)/Ta in-

volves drawing T bandit samples (xt, ~rt) and summing
the term rt,aI(h(xt) = a)/Ta over only the times t for
which the exploration policy chose action a. There
are precisely Ta such trials. The equality then follows
from the fact that the quantity rt,aI(h(xt) = a)/Ta is
identically distributed for all t such that at = a. It is
critical that the exploration policy π chooses at inde-
pendent of xt (to make the numerator identical) and
that Ta is fixed (to make the denominator identical).
If at depends on xt, then these values are no longer
identically distributed and the equality does not hold.
This is important, as we have seen that evaluation is
not possible in general if at can depend on xt.

Conditions (1) and (2) in the theorem are satisfied,
for example, by any policy which visits each action
and chooses actions independent of observations. This
theorem represents the limit of what we know how
to achieve with a strict equality. It can replace the
sample selection bias (Heckman, 1979) lemma used in
the analysis of the Epoch-Greedy algorithm (Langford
& Zhang, 2007), but cannot replace the analysis used
in EXP4 (Auer et al., 1995) without weakening their
theorem statement to hold only in IID settings.

The next theorem, which is the main theoretical re-
sult of this paper, shows that in a much broader set
of circumstances, the estimator in the previous lemma
is useful for estimating VD(h). Specifically, as long as
the exploration does not depend on the current input
and chooses each action sufficiently frequently, the es-
timator can be used for policy evaluation.
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Theorem 3 For every contextual bandits distribution
D over (x,~r) with rewards ra ∈ [0, 1], for every se-
quence of T actions at chosen by an exploration policy
π that may be a function of history but does not depend
on xt, for every hypothesis h, then for any δ ∈ (0, 1),
with probability 1− δ,

∣

∣

∣

∣

∣

VD(h)−

T
∑

t=1

rt,at
I(h(xt) = at)

Tat

∣

∣

∣

∣

∣

≤

k
∑

a=1

√

2 ln(2kT/δ)

Ta

where Ta = |{t : at = a}|.

Proof: First notice that

VD(h) =

k
∑

a=1

Ex,~r∼D [raI(h(x) = a)] . (1)

Fix an action a. Let ti denote the ith time step that
action a was chosen, with ti = 0 if i > Ta. Note that
ti is a random variable. For i = 1, . . . , T define

Zi =











rti,aI(h(xti
) = a)

−Ex,~r∼D[raI(h(x) = a)] if i ≤ Ta,

0 otherwise.

Note that Zi ∈ [−1, 1] and E[Zi] = 0 for all i. Now fix
a positive integer t ∈ {1, . . . , T}. We apply Azuma’s
inequality (see, for example, Alon and Spencer (2000))
to show that for any δ′ ∈ (0, 1), with probability 1−δ′,

1

t

∣

∣

∣

∣

∣

t
∑

i=1

Zi

∣

∣

∣

∣

∣

≤

√

2 ln(2/δ′)

t
, (2)

and so if t ≤ Ta,

∣

∣

∣

∣

∣

Ex,~r∼D[raI(h(x) = a)]−
1

t

t
∑

i=1

rti,aI(h(xti
) = a)

∣

∣

∣

∣

∣

is upper bounded by
√

2 ln(2/δ′)/t. Applying the
union bound with δ′ = δ/(Tk), we see that Equa-
tion 2 holds for all t ∈ {1, . . . , T} and thus for t = Ta

with probability δ/k. Applying the union bound again
yields a bound that holds for all actions. Sum-
ming over actions and applying Equation 1 yields the
lemma.

Note that the counter-example given in Theorem 1
satisfies all conditions of Theorem 3 except for the
assumption on π. Thus, we cannot solve the policy
exploration problem, in general, unless we make as-
sumptions that limit π’s dependence on input.

Corollary 4 For every contextual bandit distribution
D over (x,~r), for every exploration policy π choosing

action at independent of the current input, for every
policy h, if every action a ∈ {1, · · · , k} is guaranteed
to be chosen by π at least a constant fraction of the
time, then as T →∞, the estimator

V̂D(h) =

T
∑

t=1

rt,at
I(h(xt) = at)

Tat

grows arbitrarily close to VD(h) with probability 1.

These observations can be utilized in practice in a sim-
ple way. Given a data set S of observations (xt, at, rat

)
for t = {1, · · · , T}, we can calculate V̂D(h) as above
and use this as an estimator of VD(h). For sufficiently
large data sets S, as long as each action is chosen suf-
ficiently often, this estimator is accurate.

3.3. Tighter Bounds in Special Cases

In some special cases when there is sufficient random-
ization in the exploration policy or the policy h, it
is possible to achieve tighter bounds using a slightly
modified estimator. Theorem 5 shows that the depen-
dence on the number of actions k can be improved in
the special case in which Pr(h(x) = at) = 1/k inde-
pendent of x. This is true, for instance, when either
the exploration policy π or the policy h chooses actions
uniformly at random. We suspect that tighter bounds
can be achieved in other special cases as well.

Theorem 5 For every contextual bandits distribution
D over x,~r with rewards ra ∈ [0, 1], for every sequence
of actions at chosen by an exploration policy π that
may be a function of history but does not depend on
xt and every hypothesis h, if Pr(h(x) = at) = 1/k
independent of x and if |{t : at = a}| > 0 for all a,
then for any δ ∈ (0, 1), with probability 1− δ,

∣

∣

∣

∣

∣

VD(h)−

T
∑

t=1

krt,at
I(h(xt) = at)

T

∣

∣

∣

∣

∣

≤ k

√

2 ln(2k/δ)

T
.

Proof: Since we have assumed that Pr(h(xt) = at) =
1/k independent of xt,

VD(h) = Ex,~r∼D[krh(x)I(h(x) = at)]

= Ex,~r∼D[krat
I(h(x) = at)] .

For all t, define

Zt = krt,at
I(h(xt) = at)− Ex,~r∼D[krat

I(h(x) = at)] .

Zt ∈ [−k, k] and E[Zt,a] = 0. Applying Azuma’s in-
equality and the union bound yields the lemma.
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3.4. Multiple Exploration Policies

So far, all of our positive theoretical results have re-
quired that the exploration policy choose actions in-
dependent of the current input. There do exist special
cases in which exploration data is provably useful for
policy evaluation even when the exploration policy de-
pends on context. We briefly describe one such case.

Suppose we have collected data from a system that
has rotated through K known exploration policies
π1, π2, · · · , πK over time. For example, we may have
logs of historical ad display data from a company that
has used K different ad display policies. Each individ-
ual exploration policy πi may depend on context, but
we assume that the choice of which policy was used by
the system at any given time does not.

We can redefine the action of the bandit problem as a
choice of one of the K base policies to follow; action ai

now corresponds to choosing the ad chosen by policy
πi. Since historically the decision about which policy
to use was made independent of the context x, we can
view the exploration policy as oblivious with respect to
x. Theorem 3 then implies that we can accurately esti-
mate the value of any policy π which chooses from the
set of actions chosen by the K base policies. This can
be more powerful than competing with each historic
policy, because π can make context-dependent choices
about which policy to follow, potentially achieving bet-
ter performance than any single policy.

4. Application to Internet Advertising

Technology companies are interested in finding bet-
ter ways to search both over the myriad pages of the
internet and over the increasingly large selection of
potential ads to display. However, given a candidate
algorithm (or ad-serving policy in the case of online
advertising), a company faces a real-life “exploration-
exploitation” dilemma. The new algorithm could be
better than existing ones, but it could be worse. To
evaluate the performance of an algorithm, the com-
pany might decide to adopt it for a short time on a
subset of web traffic. This method produces accurate
estimates of performance, but the evaluation phase can
be costly in terms of lost revenue if the candidate algo-
rithm performs poorly, and this cost grows linearly in
the number of candidate algorithms that the company
would like to evaluate. Clearly, a method of deter-
mining the strengths or weaknesses of an algorithm
without adopting it would be highly useful.

In this section, we tackle the problem of evaluating a
new ad-serving policy using data logged from an exist-
ing system. We state our results in terms of the online

advertising problem, but everything we discuss can be
applied to web search with little or no modification.

We begin by showing how to directly apply exploration
scavenging techniques to the problem, and discuss the
primary drawbacks of this simple approach. Instead,
we consider a standard simplifying assumption whose
adoption leads to a more realistic method for policy
evaluation. This assumption, that click-through rates
are factorable, leads to another interesting theoretical
problem, estimating the attention decay coefficients
of the click-through rates, which can also be accom-
plished using techniques from Section 3.

4.1. The Direct Approach

The online advertising problem can be directly
mapped to the contextual bandit problem, allowing
us to apply results from Section 3. Here the input
space is the universe of all possible web pages and the
action space contains all slates of ads. The reward is a
bit vector that identifies whether or not each returned
ad was clicked.1 This bit vector can be converted to
a single real-valued reward r in a number of ways, for
instance, by simply summing the components, yielding
the total number of clicks received, and normalizing.
The example would then be used to compute a num-
ber r · I(h(x) = s)/Count(s), where Count(s) is the
number of times the slate s was displayed during all
trials. According to Theorem 3, summing this quan-
tity over all trials yields a good estimator of the value
of the new policy h.

There is a significant drawback to this approach. Due
to the indicator variable, the contribution to the sum
for a single example is zero unless h(x) = s, which
means that the slate chosen by the candidate algo-
rithm h is exactly the same as the slate produced by
the current system π. With a large set of ads and a
large slate size, it is very unlikely that the same slate
is chosen many times, and thus the resulting estimator
for the value of h has an extremely high variance and
may not exist for most slates. In the next section, we
show how a standard assumption in the online adver-
tising community can be used to reduce the variance.

4.2. The Factoring Assumption

The problem described above can be avoided by mak-
ing a factoring assumption. Specifically, we assume
that the probability of clicking an ad can be decom-
posed or factored into two terms, an intrinsic click-
through rate (CTR) that depends only on the web

1The reward function can be modified easily to reflect
the actual revenue generated by each click.

532



Exploration Scavenging

page x and the ad a, and a position-dependent mul-
tiplier Ci for position i, called the attention decay co-
efficient (ADC). This assumption is commonly used
in the sponsored search literature (Borgs et al., 2007;
Lahaie & Pennock, 2007).

Formally, let P(x, a, i) be the probability that ad a is
clicked when placed in position i on web page x. We
assume that P(x, a, i) = Ci · P(x, a), where P(x, a) is
the intrinsic (position independent) click-through rate
for ad a given input x, and Ci is a position-dependent
constant. Here C1 = 1, so P(x, a) = P(x, a, 1).

A key observation is that this assumption allows us
to transition from dealing directly with slates of ads
to focusing on single ads. Let ` be the number of
ads shown in a slate. Given an example (x, s, ~r), we
can form ` transformed examples of the form (x, ai, r

′
i)

where ai is the ith ad in the slate and r′i = ri/Ci. In
other words, r′i is 1/Ci if the ith ad was clicked, and 0
otherwise; the division by the ADC puts the rewards
on the same scale, so the expected value of the reward
for a fixed pair (x, ai) is P(x, ai).

Let σ(a, x) be the slot in which the evaluation policy h
places ad a on input x; if h does not display a on input
x, then σ(a, x) = 0. For convenience, define C0 = 0.
We define a new estimator of the value of h as

V̂D(h) =

T
∑

t=1

∑̀

i=1

r′iCσ(ai,x)

Tai

, (3)

where Ta is the total number of impressions received
by a (i.e., the total number of times add a is displayed).
Here Ci takes the place of the indicator function used
in the estimates in Section 3, giving higher weights to
the rewards of ads that h places in better slots.

Using the results from Section 3, it is straight-forward
to show that this estimator is consistent as long as the
current ad-serving policy does not depend on the input
webpage x and every ad is displayed. However, to
apply this transformation, we require knowledge of the
ADCs. In the next section we show how to estimate
them, again using nonrandom exploration.

4.3. Estimating Attention Decay Coefficients

Assume that a data set S is available from the execu-
tion of an ad-serving policy π that chooses the tth slate
of ads to display independent of the input xt (though
possibly dependent on history). As before, S includes
observations (xt,~at, ~rt,at

) for t = {1, · · · , T}, where ~at

is the slate of ads displayed at time t and ~rt,at
is the

reward vector. Our goal is to use this data to estimate
the attention decay coefficients C2, . . . , C`.

We first discuss a naive ADC estimator, and then go

on to show how it can be improved. In the following
sections, let C(a, i) be the number of clicks on ad a
observed during rounds in which ad a is displayed in
position i. Let M(a, i) be the number of impressions
of ad a in slot i, i.e., the number of times that the ex-
ploration policy chooses to place ad a in slot i. Finally,
let CTR(a, i) = C(a, i)/M(a, i) be the observed click-
through rate of ad a in slot i, with CTR(a, i) defined
to be 0 when M(a, i) = 0.

4.3.1. The Naive Estimator

Initially, one might think that the ADCs can be calcu-
lated by taking the ratio between the global empirical
click-through rate for each position i and the global
empirical click-through rate for position 1. Formally,

Estnaive(i) :=

∑

a C(a, i)/
∑

a M(a, i)
∑

a C(a, 1)/
∑

a M(a, 1)
.

Unfortunately, as we will see in Section 4.4, this
method has a bias which is often quite large in prac-
tice. In particular, it often underestimates the ratios
Ci due to the fact that existing ad-serving policies gen-
erally already place better ads (with higher P(x, a)) in
the better slots. To overcome this bias, we must design
a new estimator.

4.3.2. A New Estimator

Consider a fixed ad a and a fixed position i > 1.
Clearly if a is placed in position i sufficiently many
times, it is possible to estimate the probability of
a being clicked in position i fairly accurately. If
we also estimate the corresponding click-through rate
for ad a in position 1, we may estimate Ci using
a ratio of these two click-through rates, since Ci =
Ex∼D[P(x, a, i)]/Ex∼D[P(x, a, 1)]. If we perform this
procedure for all ads, we can average the resulting es-
timates to form a single, typically very accurate, esti-
mate. Formally, we propose an estimator of the form

Est~α(i) =

∑

a αaCTR(a, i)
∑

a αaCTR(a, 1)
, (4)

where ~α is a vector of nonnegative constants αa for
each ad a ∈ A.

Theorem 6 If the ad-display policy chooses slates in-
dependent of input and ~α has all positive entries, then
the estimator Est~α in Equation 4 is consistent.

Proof: Consider any fixed ad a and position i, and
suppose that we are only interested in revenue gener-
ated by position i. Let h be the constant hypothesis
that always places ad a in position i. VD(h) is then
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Ex∼DP(x, a, i). From Corollary 4, it is clear that

V̂D(h) =

T
∑

t=1

(rtI(h(xt) = at))

|{t′ : at′ = at}|

converges to VD(h). Here V̂D(h) is precisely CTR(a, i),
so CTR(a, i) converges to Ex∼DP(x, a, i) for all a and
i. This implies that Est~α(p) converges to

∑

a αaEx∼DP(x, a, i)
∑

a αaEx∼DP(x, a, 1)

=

∑

a αaEx∼DCiP(x, a)
∑

a αaEx∼DC1P(x, a)
=

Ci

C1
= Ci .

Theorem 6 leaves open the question of how to choose
~α. If every component of ~α is set to the same value,
then the estimate for Ci can be viewed as the mean
of all estimates of Ci for each ad a. However, it may
be the case that the estimates for certain ads are more
accurate than others, in which case we’d like to weight
those more heavily. In particular, we may want to
pick ~α to minimize the variance of our final estimator.
Since it is difficult to analytically compute the variance
of a quotient, we approximate it by the variance of the
sum of the numerator and denominator, as this tends
to reduce the variance of the quotient. The proof of
the following theorem is omitted due to lack of space.

Theorem 7 The variance of the expression

∑

a

αaCTR(a, i) +
∑

a

αaCTR(a, 1)

subject to
∑

a αa = 1 is minimized when

αa :=
2M(a, i) ·M(a, 1)

M(a, i)σ2
a,1 + M(a, 1)σ2

a,i

,

where σ2
a,i is the variance of the indicator random vari-

able that is 1 when ad a is clicked given that ad a is
placed in position i.

It is undesirable that π is required to have no depen-
dence on the current web page xt when choosing the
slate of ads to display, since most current ad-serving
algorithms violate this assumption. However, as we
have seen in Section 3.1, when this assumption is vio-
lated, exploration scavenging is no longer guaranteed
to work. In the worst case, we cannot trust our esti-
mated ADCs from data generated by an x-dependent
π. Luckily, in practice, it is generally not the case
that extreme scenarios like the counterexample in the
proof of Theorem 1 arise. It is more likely that the
existing ad-serving algorithm and the new algorithm

choose among the same small set of ads to display for
any given context (for example, the set of ads for which
advertisers have placed bids for the current search term
in the sponsored search setting) and the primary dif-
ference between policies is the order in which these
ads are displayed. In such settings it is also the case
that additional opportunities for exploration arise nat-
urally. For example, sometimes ads run out of budget,
removing them from consideration and forcing the ad-
serving algorithm to display an alternate slate of ads.

4.4. Empirical comparison

We are interested in comparing the methods developed
in this work to standard methods used in practice.
A common technique for estimating ADCs borrowed
from the information retrieval literature is discounted
cumulative gain (Järvelin & Kekäläinen, 2002). In re-
lation to our work, discounted cumulative gain (DCG)
can be viewed as a particular way to specify the
ADCs that is not data-dependent. In particular,
given a parameter b, DCG would suggest defining
Ci = 1/logb(b + i) for all i. As shown next, when
we estimated the ADCs using our new method on a
large set of data we get values that are very close to
those calculated using DCG with b = 2.

We present coefficients that were computed from train-
ing on about 20 million examples obtained from the
logs of “Content Match”, Yahoo!’s online advertise-
ment engine. Since we don’t know the true variances
σ2

a,p for the distributions over clicks, we heuristically
assume they are all equal and use the estimator defined
by αa = M(a, p) · M(a, 1)/(M(a, p) + M(a, 1)). The
following table summarizes the coefficients computed
for the first four slots using the naive estimator and
the new estimator, along with the DCG coefficients.
As suspected, the coefficients for the new estimator
are larger than the old, suggesting a reduction in bias.

C1 C2 C3 C4

Naive 1.0 0.512090 0.369638 0.271847
New 1.0 0.613387 0.527310 0.432521
DCG 1.0 0.630930 0.5 0.430677

4.5. Toward A Realistic Application

To reduce the high variance of the direct application
of exploration scavenging to internet advertising, we
made use of the factoring assumption and derived the
estimator given in Equation 3. Unfortunately this new
estimator may still have an unacceptably large vari-
ance. By examining Equation 3, we observe that the
method only benefits from examples in which the ex-
ploration policy and the new policy h choose overlap-
ping sets of ads to display. When ads are drawn from
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a large database, this may be too rare of an event.

Instead of considering policies which rank from the set
of all ads, we can consider policies hπ reordering the
ads which π chooses to display. A good reordering
policy plausibly provides useful information to guide
the choice of a new ranking policy.

We define an alternate estimator

V̂D(hπ) =

T
∑

t=1

∑̀

i=1

r′iCσ′(ai,x) ,

where σ′(ai, x) is the slot that hπ would assign to ad
ai in this new model. This method gives us an (un-
normalized) estimate of the value of first using π to
choose k ads to display in a slate and then using hπ to
reorder them. This approach has small variance and
quickly converges.

To illustrate our method we used a training set of 20
million examples gathered using Yahoo!’s current ad-
serving algorithm π. We let the policy hπ be the pol-
icy that reorders ads to display those with the highest
empirical click-through rate first, ignoring the context
x. We used r = Cj′/Ci, (with coefficients given by
the new unbiased method) to compute the number of
clicks we expect the new policy (using hπ to reorder
π’s slate) to receive per click of the old policy π. Here
j′ is the relative position of ad ai when the ads in the
slate shown by π are reordered (in descending order)
by hπ. This number, which was computed using a test
set of about two million examples, turned out to be
1.086. When we computed the same quantity for the
policy h′π that reorders ads at random, we obtained
1.016. Thus, exploration scavenging strongly suggests
using policy hπ over h′π, matching our intuition.

5. Conclusion

We study the process of “exploration scavenging,”
reusing information from one policy to evaluate a new
policy, and provide procedures that work without ran-
domized exploration, as is commonly required. This
new ability opens up the possibility of using machine
learning techniques in new domains which were previ-
ously inaccessible.

Using the derandomized exploration techniques de-
scribed here, we show how to estimate the value of
a policy reordering displayed ads on logged data with-
out any information about random choices made in
the past. There are several caveats to this approach,
but the results appear to be quite reasonable.

Note that this methodology is simply impossible with-
out considering methods for derandomized explo-

ration, so the techniques discussed here open up new
possibilities for solving problem.

Acknowledgments

We are grateful to Michael Kearns for a useful discus-
sion of the theoretical results, and to our anonymous
reviewers for their thought-provoking questions.

References

Alon, N., & Spencer, J. (2000). The probabilistic method.
Interscience Series in Discrete Mathematics and Opti-
mization. John Wiley. Second edition.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite
time analysis of the multi-armed bandit problem. Ma-
chine Learning, 47, 235–256.

Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire, R. E.
(1995). Gambling in a rigged casino: The adversarial
multi-armed bandit problem. 36th Annual IEEE Sym-
posium on Foundations of Computer Science.

Berry, D. A., & Fristedt, B. (1985). Bandit problems: Se-
quential allocation of experiments. London, UK: Chap-
man and Hall.

Borgs, C., Chayes, J., Etesami, O., Immorlica, N., Jain, K.,
& Mahdian, M. (2007). Dynamics of bid optimization in
online advertisement auctions. 16th International World
Wide Web Conference.

Dupret, G., Murdock, V., & Piwowarski, B. (2007). Web
search engine evaluation using clickthrough data and a
user model. 16th Intl. World Wide Web Conference.

Even-Dar, E., Mannor, S., & Mansour, Y. (2006). Action
elimination and stopping conditions for the multi-armed
bandit and reinforcement learning problems. Journal of
Machine Learning Research, 7, 1079–1105.

Heckman, J. (1979). Sample selection bias as a specification
error. Econometrica, 47, 153–161.
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Abstract

Recently, many applications for Restricted
Boltzmann Machines (RBMs) have been de-
veloped for a large variety of learning prob-
lems. However, RBMs are usually used as
feature extractors for another learning al-
gorithm or to provide a good initialization
for deep feed-forward neural network clas-
sifiers, and are not considered as a stand-
alone solution to classification problems. In
this paper, we argue that RBMs provide a
self-contained framework for deriving com-
petitive non-linear classifiers. We present an
evaluation of different learning algorithms for
RBMs which aim at introducing a discrimi-
native component to RBM training and im-
prove their performance as classifiers. This
approach is simple in that RBMs are used
directly to build a classifier, rather than as a
stepping stone. Finally, we demonstrate how
discriminative RBMs can also be successfully
employed in a semi-supervised setting.

1. Introduction

Restricted Boltzmann Machines (RBMs) (Smolensky,
1986) are generative models based on latent (usually
binary) variables to model an input distribution, and
have seen their applicability grow to a large variety
of problems and settings in the past few years. From
binary inputs, they have been extended to model var-
ious types of input distributions (Welling et al., 2005;
Hinton et al., 2006). Conditional versions of RBMs
have also been developed for collaborative filtering
(Salakhutdinov et al., 2007) and to model motion cap-
ture data (Taylor et al., 2006) and video sequences
(Sutskever & Hinton, 2007).

RBMs have been particularly successful in classifica-
tion problems either as feature extractors for text and

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

image data (Gehler et al., 2006) or as a good initial
training phase for deep neural network classifiers (Hin-
ton, 2007). However, in both cases, the RBMs are
merely the first step of another learning algorithm, ei-
ther providing a preprocessing of the data or an initial-
ization for the parameters of a neural network. When
trained in an unsupervised fashion, RBMs provide no
guarantees that the features implemented by their hid-
den layer will ultimately be useful for the supervised
task that needs to be solved. More practically, model
selection can also become problematic, as we need to
explore jointly the space of hyper-parameters of both
the RBM (size of the hidden layer, learning rate, num-
ber of training iterations) and the supervised learning
algorithm that is fed the learned features. In partic-
ular, having two separate learning phases (feature ex-
traction, followed by classifier training) can be prob-
lematic in an online learning setting.

In this paper, we argue that RBMs can be used suc-
cessfully as stand-alone non-linear classifiers along-
side other standard classifiers like neural networks
and Support Vector Machines, and not only as fea-
ture extractors. We investigate training objectives for
RBMs that are more appropriate for training clas-
sifiers than the common generative objective. We
describe Discriminative Restricted Boltzmann Ma-
chines (DRBMs), i.e. RBMs that are trained more
specifically to be good classification models, and Hy-
brid Discriminative Restricted Boltzmann Machines
(HDRBMs) which explore the space between discrim-
inative and generative learning and can combine their
advantages. We also demonstrate that RBMs can be
successfully adapted to the common semi-supervised
learning setting (Chapelle et al., 2006) for classifica-
tion problems. Finally, the algorithms investigated in
this paper are well suited for online learning on large
datasets.

2. Restricted Boltzmann Machines

Restricted Boltzmann Machines are undirected gener-
ative models that use a layer of hidden variables to
model a distribution over visible variables. Though
they are most often trained to only model the inputs
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of a classification task, they can also model the joint
distribution of the inputs and associated target classes
(e.g. in the last layer of a Deep Belief Network in Hin-
ton et al. (2006)). In this section, we will focus on
such joint models.

We assume given a training set Dtrain = {(xi, yi)},
comprising for the i-th example an input vector xi and
a target class yi ∈ {1, . . . , C}. To train a generative
model on such data we consider minimization of the
negative log-likelihood

Lgen(Dtrain) = −
|Dtrain|∑

i=1

log p(yi,xi). (1)

An RBM with n hidden units is a parametric model
of the joint distribution between a layer of hidden
variables (referred to as neurons or features) h =
(h1, . . . , hn) and the observed variables made of x =
(x1, . . . , xd) and y, that takes the form

p(y,x,h) ∝ e−E(y,x,h)

where

E(y,x,h) = −hT Wx− bT x− cT h− dT ~y − hT U~y

with parameters Θ = (W,b, c,d,U) and ~y =
(1y=i)

C
i=1 for C classes. This model is illustrated in

Figure 2. For now, we consider for simplicity binary
input variables, but the model can be easily gener-
alized to non-binary categories, integer-valued, and
continuous-valued inputs (Welling et al., 2005; Hinton
et al., 2006). It is straightforward to show that

p(x|h) =
∏

i

p(xi|h)

p(xi = 1|h) = sigm(bi +
∑

j

Wjihj) (2)

p(y|h) =
edy+

P
j Ujyhj∑

y∗ edy∗+
P

j Ujy∗hj
(3)

where sigm is the logistic sigmoid. Equations 2 and 3
illustrate that the hidden units are meant to capture
predictive information about the input vector as well
as the target class. p(h|y,x) also has a similar form:

p(h|y,x) =
∏
j

p(hj |y,x)

p(hj = 1|y,x) = sigm(cj + Ujy +
∑

i

Wjixi).

When the number of hidden variables is fixed, an RBM
can be considered a parametric model, but when it
is allowed to vary with the data, it becomes a non-
parametric model. In particular, Freund and Haus-
sler (1994); Le Roux and Bengio (2008) showed that

  0   0   0  1

y

x

h

U W

y

Figure 1. Restricted Boltzmann Machine modeling the
joint distribution of inputs and target classes

an RBM with enough hidden units can represent any
distribution over binary vectors, and that adding hid-
den units guarantees that a better likelihood can be
achieved, unless the generated distribution already
equals the training distribution.

In order to minimize the negative log-likelihood (eq. 1),
we would like an estimator of its gradient with respect
to the model parameters. The exact gradient, for any
parameter θ ∈ Θ can be written as follows:

∂ log p(yi,xi)
∂θ

= −EEh|yi,xi

[
∂

∂θ
E(yi,xi,h)

]
+EEy,x,h

[
∂

∂θ
E(y,x,h)

]
.

Though the first expectation is tractable, the second
one is not. Fortunately, there exists a good stochastic
approximation of this gradient, called the contrastive
divergence gradient (Hinton, 2002). This approxima-
tion replaces the expectation by a sample generated
after a limited number of Gibbs sampling iterations,
with the sampler’s initial state for the visible variables
initialized at the training sample (yi,xi). Even when
using only one Gibbs sampling iteration, contrastive
divergence has been shown to produce only a small
bias for a large speed-up in training time (Carreira-
Perpiñan & Hinton, 2005).

Online training of an RBM thus consists in cy-
cling through the training examples and updating the
RBM’s parameters according to Algorithm 1, where
the learning rate is controlled by λ.

Computing p(y,x) is intractable, but it is possible
to compute p(y|x), sample from it, or choose the
most probable class under this model. As shown in
Salakhutdinov et al. (2007), for reasonable numbers of
classes C (over which we must sum), this conditional
distribution can be computed exactly and efficiently,
by writing it as follows:

p(y|x) =
edy

∏n
j=1

(
1 + ecj+Ujy+

P
i Wjixi

)∑
y∗ edy∗

∏n
j=1

(
1 + ecj+Ujy∗+

P
i Wjixi

) .
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Algorithm 1 Training update for RBM over (y,x)
using Contrastive Divergence

Input: training pair (yi,xi) and learning rate λ
% Notation: a← b means a is set to value b
% a ∼ p means a is sampled from p

% Positive phase

y0 ← yi, x0 ← xi, bh0 ← sigm(c + Wx0 + U ~y0)

% Negative phase
h0 ∼ p(h|y0,x0), y1 ∼ p(y|h0), x1 ∼ p(x|h0)bh1 ← sigm(c + Wx1 + U ~y1)

% Update
for θ ∈ Θ do

θ ← θ − λ
“

∂
∂θ

E(y0,x0, bh0)− ∂
∂θ

E(y1,x1, bh1)
”

end for

Precomputing the terms cj +
∑

i Wjixi and reusing
them when computing

∏n
j=1

(
1 + ecj+Ujy∗+

P
i Wjixi

)
for all classes y∗ permits to compute this conditional
distribution in time O(nd + nC).

3. Discriminative Restricted Boltzmann
Machines

In a classification setting, one is ultimately only inter-
ested in correct classification, not necessarily to have
a good p(x). Because our model’s p(x) can be in-
appropriate, it can then be advantageous to optimize
directly p(y|x) instead of p(y,x):

Ldisc(Dtrain) = −
|Dtrain|∑

i=1

log p(yi|xi). (4)

We refer to RBMs trained according to Ldisc as Dis-
criminative RBMs (DRBMs). Since RBMs (with
enough hidden units) are universal approximators for
binary inputs, it follows also that DRBMs are uni-
versal approximators of conditional distributions with
binary inputs.

A DRBM can be trained by contrastive divergence,
as has been done in conditional RBMs (Taylor et al.,
2006), but since p(y|x) can be computed exactly, we
can compute the exact gradient:

∂ log p(yi|xi)
∂θ

=
∑

j

sigm(oyj(xi))
∂oyj(xi)

∂θ

−
∑
j,y∗

sigm(oy∗j(xi))p(y∗|xi)
∂oy∗j(xi)

∂θ

where oyj(x) = cj +
∑

k Wjkxk + Ujy. This gradient
can be computed efficiently and then used in a stochas-
tic gradient descent optimization. This discriminative

approach has been used previously for fine-tuning the
top RBM of a Deep Belief Network (Hinton, 2007).

4. Hybrid Discriminative Restricted
Boltzmann Machines

The advantage brought by discriminative training usu-
ally depends on the amount of available training data.
Smaller training sets tend to favor generative learn-
ing and bigger ones favor discriminative learning (Ng
& Jordan, 2001). However, instead of solely rely-
ing on one or the other perspective, one can adopt a
hybrid discriminative/generative approach simply by
combining the respective training criteria. Though
this method cannot be interpreted as a maximum like-
lihood approach for a particular generative model as
in Lasserre et al. (2006), it proved useful here and
elsewhere (Bouchard & Triggs, 2004). In this paper,
we used the following criterion:

Lhybrid(Dtrain) = Ldisc(Dtrain) + αLgen(Dtrain) (5)

where the weight α of the generative criterion can be
optimized (e.g., based on the validation set classifica-
tion error). Here, the generative criterion can also be
seen as a data-dependent regularizer for a DRBM. We
will refer to RBMs trained using the criterion of equa-
tion 5 as Hybrid DRBMs (HDRBMs).

To train an HDRBM, we can use stochastic gradient
descent and add for each example the gradient contri-
bution due to Ldisc with α times the stochastic gradi-
ent estimator associated with Lgen for that example.

5. Semi-supervised Learning

A frequent classification setting is where there are few
labeled training data but many unlabeled examples of
inputs. Semi-supervised learning algorithms (Chapelle
et al., 2006) address this situation by using the un-
labeled data to introduce constraints on the trained
model. For example, for purely discriminative models,
these constraints are often imposed on the decision sur-
face of the model. In the RBM framework, a natural
constraint is to ask that the model be a good gener-
ative model of the unlabeled data, which corresponds
to the following objective:

Lunsup(Dunlab) = −
|Dunlab|∑

i=1

log p(xi) (6)

where Dunlab = {(xi)}|Dunlab|
i=1 contains unlabeled ex-

amples of inputs. To train on this objective, we can
once again use a contrastive divergence approximation
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of the log-likelihood gradient:

∂ log p(xi)
∂θ

= −EEy,h|xi

[
∂

∂θ
E(yi,xi,h)

]
+EEy,x,h

[
∂

∂θ
E(y,x,h)

]
The contrastive divergence approximation is slightly
different here. The first term can be computed in time
O(Cn + nd), by noticing that it is equal to

EEy|xi

[
EEh|y,xi

[
∂

∂θ
E(yi,xi,h)

]]
.
One could either average the usual RBM gradient
∂
∂θE(yi,xi,h) for each class y (weighted by p(y|xi)), or
sample a y from p(y|xi) and only collect the gradient
for that value of y. In the sampling version, the online
training update for this objective can be described by
replacing the statement y0 ← yi with y0 ∼ p(y|xi) in
Algorithm 1. We used this version in our experiments.

In order to perform semi-supervised learning, we can
weight and combine the objective of equation 6 with
those of equations 1, 4 or 5

Lsemi−sup(Dtrain,Dunlab) = LTYPE(Dtrain) (7)
+βLunsup(Dunlab)

where TYPE ∈ {gen, disc, hybrid}. Online training
according to this objective simply consists in apply-
ing the appropriate update for each training example,
based on whether it is labeled or not.

6. Related Work

As mentioned earlier, RBMs (sometimes also referred
to as harmoniums (Welling et al., 2005)) have already
been used successfully in the past to extract useful fea-
tures for another supervised learning algorithm. One
of the main contributions of this paper lies in the
demonstration that RBMs can be used on their own
without relying on another learning algorithm, and
provide a self-contained framework for deriving com-
petitive classifiers. In addition to ensuring that the
features learned by the RBM’s hidden layer are dis-
criminative, this approach facilitates model selection
since the discriminative power of the hidden layer units
(or features) can be tracked during learning by observ-
ing the progression of classification error on a valida-
tion set. It also makes it easier to tackle online learning
problems relatively to approaches where learning fea-
tures (hidden representation) and learning to classify
are done in two separate phases (Hinton et al., 2006;
Bengio et al., 2007).

Gehler et al. (2006); Xing et al. (2005) have shown
that the features learned by an RBM trained by ig-
noring the labeled targets can be useful for retriev-
ing documents or classifying images of objects. How-
ever, in both these cases, the extracted features were
linear in the input, were not trained discriminatively
and had to be fed to another learning algorithm which
ultimately performed classification. McCallum et al.
(2006) presented Multi-Conditional Learning (MCL)1

for harmoniums in order to introduce a discriminative
component to harmoniums’ training, but the learned
features still had to be fed to another learning algo-
rithm.

RBMs can also provide a good initialization for the pa-
rameters of neural network classifiers (Hinton, 2007),
however model selection issues arise, for instance when
considering the appropriate number of learning up-
dates and the magnitude of learning rates of each
training phase. It has also been argued that the gen-
erative learning aspect of RBM training was a key ele-
ment to their success as good starting points for neural
network training (Bengio et al., 2007), but the extent
to which the final solution for the parameters of the
neural network is influenced by generative learning is
not well controlled. HDRBMs can be seen as a way of
addressing this issue.

Finally, though semi-supervised learning was never
reported for RBMs before, Druck et al. (2007) in-
troduced semi-supervised learning in hybrid genera-
tive/discriminative models using a similar approach to
the one presented in section 5. However, they worked
with log-linear models, whereas the RBMs used here
can perform non-linear classification. Log-linear mod-
els depend much more on the discriminative quality of
the features that are fed as input, whereas an RBM
can learn useful features using their hidden variables,
at the price of non-convex optimization.

7. Experiments

We present experiments on two classification problems:
character recognition and text classification. In all ex-
periments, we performed model selection on a valida-
tion set before testing. For the different RBM models,
model selection2 consisted in finding good values for

1We experimented with a version of MCL for the RBMs
considered in this paper, however the results did not im-
prove on those of HDRBMs.

2Model selection was done with a grid-like search over
λ (between 0.0005 and 0.1, on a log scale), n (50 to 6000),
α for HDRBMs (0 to 0.5, on a log scale) and β for semi-
supervised learning (0, 0.01 or 0.1). In general, bigger val-
ues of n were found to be more appropriate with more
generative learning. If no local minima was apparent, the
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the learning rate λ, the size of the hidden layer n and
good weights for the different types of learning (gener-
ative and semi-supervised weights). Also, the number
of iterations over the training set was determined using
early stopping according to the validation set classifi-
cation error, with a look ahead of 15 iterations.

7.1. Character Recognition

We evaluated the different RBM models on the prob-
lem of classifying images of digits. The images were
taken from the MNIST dataset, where we separated
the original training set into training and validation
sets of 50000 and 10000 examples and used the stan-
dard test set of 10000 examples. The results are
given in Table 1. The ordinary RBM model is trained
generatively (to model (x, y)), whereas RBM+NNet
is an unsupervised RBM used to initialize a one-
hidden layer supervised neural net (as in (Bengio et al.,
2007)). We give as a comparison the results of a Gaus-
sian kernel SVM and of a regular neural network (ran-
dom initialization, one hidden layer, hyperbolic tan-
gent hidden activation functions).

First, we observe that a DRBM outperforms a genera-
tive RBM. However, an HDRBM appears able to make
the best out of discriminative and generative learning
and outperforms the other models.

We also experimented with a sparse version of the
HDRBM model, since sparsity is known to be a good
characteristic for features of images. Sparse RBMs
were developed by Lee et al. (2008) in the context
of deep neural networks. To introduce sparsity in the
hidden layer of an RBM in Lee et al. (2008), after each
iteration through the whole training set, the biases c
in the hidden layer are set to a value that maintains
the average of the conditional expected value of these
neurons to an arbitrarily small value. This procedure
tends to make the biases negative and large. We fol-
low a different approach by simply subtracting a small
constant δ value, considered as an hyper-parameter3,
from the biases after each update, which is more ap-
propriate in an online setting or for large datasets.

This sparse version of HDRBMs outperforms all the
other RBM models, and yields significantly lower clas-

grid was extended. The biases b, c and d were initialized
to 0 and the initial values for the elements of the weight
matrices U and W were each taken from uniform samples
in

ˆ
−m−0.5, m−0.5

˜
, where m is the maximum between the

number of rows and columns of the matrix.
3To chose δ, given the selected values for λ and α for

the “non sparse” HDRBM, we performed a second grid-
search over δ (10−5 and 0.1, on a log scale) and the hidden
layer size, testing bigger hidden layer sizes then previously
selected.

Figure 2. Filters learned by the HDRBM on the MNIST
dataset. The top row shows filters that act as spatially lo-
calized stroke detectors, and the bottom shows filters more
specific to a particular shape of digit.

Table 1. Comparison of the classification performances on
the MNIST dataset. SVM results for MNIST were
taken from http://yann.lecun.com/exdb/mnist/. On this
dataset, differences of 0.2% in classification error is statis-
tically significant.

Model Error

RBM (λ = 0.005, n = 6000) 3.39%
DRBM (λ = 0.05, n = 500) 1.81%
RBM+NNet 1.41%
HDRBM (α = 0.01, λ = 0.05, n = 1500 ) 1.28%
Sparse HDRBM (idem + n = 3000, δ = 10−4) 1.16%

SVM 1.40%
NNet 1.93%

sification error then the SVM and the standard neural
network classifiers. The performance achieved by the
sparse HDRBM is particularly impressive when com-
pared to reported performances for Deep Belief Net-
works (1.25% in Hinton et al. (2006)) or of a deep
neural network initialized using RBMs (around 1.2%
in Bengio et al. (2007) and Hinton (2007)) for the
MNIST dataset with 50000 training examples.

The discriminative power of the HDRBM can be better
understood by looking a the rows of the weight matrix
W, which act as filter features. Figure 2 displays some
of these learned filters. Some of them are spatially
localized stroke detectors which can possibly be active
for a wide variety of digit images, and others are much
more specific to a particular shape of digit.

7.2. Document Classification

We also evaluated the RBM models on the problem of
classifying documents into their corresponding news-
group topic. We used a version of the 20-newsgroup
dataset4 for which the training and test sets contain
documents collected at different times, a setting that
is more reflective of a practical application. The orig-
inal training set was divided into a smaller training

4This dataset is available in Matlab format here:
http://people.csail.mit.edu/jrennie/20Newsgroups/20news-
bydate-matlab.tgz
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set and a validation set, with 9578 and 1691 examples
respectively. The test set contains 7505 examples. We
used the 5000 most frequent words for the binary input
features. The results are given in Figure 3(a). We also
provide the results of a Gaussian kernel SVM5 and of
a regular neural network for comparison.

Once again, HDRBM outperforms the other RBM
models. However, here the generatively trained RBM
performs better then the DRBMs. The HDRBM also
outperforms the SVM and neural network classifiers.

In order to get a better understanding of how the
HDRBM solves this classification problem, we first
looked at the weights connecting each of the classes to
the hidden neurons. This corresponds to the columns
U·y of the weight matrix U. Figure 3(b) shows a sim-
ilarity matrix M(U) for the weights of the different
newsgroups, where M(U)y1y2 = sigm(UT

·y1
U·y2). We

see that the HDRBM does not use different neurons for
different newsgroups, but shares some of those neurons
for newsgroups that are semantically related. Another
interesting visualization of this characteristic is given
in Figure 3(c), where the columns of U were projected
on their two principal components. In both cases, we
see that the HDRBM tends to share neurons for simi-
lar topics, such as computer (comp.*), science (sci.*)
and politics (talk.politics.*), or secondary topics
such as sports (rec.sports.*) and other recreational
activities (rec.autos and rec.motorcycles).

Table 2 also gives the set of words used by the HDRBM
to recognize some of the newsgroups. To obtain this
table we proceeded as follows: for each newsgroup y,
we looked at the 20 neurons with the largest weight
among U·y, aggregated (by summing) the associated
input-to-hidden weight vectors, sorted the words in de-
creasing order of their associated aggregated weights
and picked the first words according to that order.
This procedure attempts to approximate the positive
contribution of the words to the conditional probabil-
ity of each newsgroup.

7.3. Semi-supervised Learning

We evaluated our semi-supervised learning algorithm
for the HDRBM on both the digit recognition and doc-
ument classification problems. We also experimented
with a version (noted MNIST-BI) of the MNIST
dataset proposed by Larochelle et al. (2007) where
background images have been added to MNIST digit
images. This version corresponds to a much harder
problem, but it will help to illustrate the advantage
brought by semi-supervised learning in HDRBMs. The

5We used libSVM v2.85 to train the SVM model

HDRBM trained on this data used truncated exponen-
tial input units (see (Bengio et al., 2007)).

In this semi-supervised setting, we reduced the size
of the labeled training set to 800 examples, and used
some of the remaining data to form an unlabeled
dataset Dunlab. The validation set was also reduced
to 200 labeled examples. Model selection6 covered all
the parameters of the HDRBM as well as the unsuper-
vised objective weight β of equation 7. For compar-
ison purposes, we also provide the performance of a
standard non-parametric semi-supervised learning al-
gorithm based on function induction (Bengio et al.,
2006b), which includes as a particular case or is very
similar to other non-parametric semi-supervised learn-
ing algorithms such as Zhu et al. (2003). We provide
results for the use of a Gaussian kernel (NP-Gauss)
and a data-dependent truncated Gaussian kernel (NP-
Trunc-Gauss) used in Bengio et al. (2006b), which es-
sentially outputs zero for pairs of inputs that are not
near neighbors. The experiments on the MNIST and
MNIST-BI (with background images) datasets used
5000 unlabeled examples and the experiment on 20-
newsgroup used 8778. The results are given in Table 3,
where we observe that semi-supervised learning consis-
tently improves the performance of the HDRBM.

The usefulness of non-parametric semi-supervised
learning algorithms has been demonstrated many
times in the past, but usually so on problems where the
dimensionality of the inputs is low or the data lies on
a much lower dimensional manifold. This is reflected
in the result on MNIST for the non-parametric meth-
ods. However, for high dimensional data with many
factors of variation, these methods can quickly suffer
from the curse of dimensionality, as argued by Bengio
et al. (2006a). This is also reflected in the results for
the MNIST-BI dataset which contains many factors of
variation, and for the 20-newsgroup dataset where the
input is very high dimensional.

Finally, it is important to notice that semi-supervised
learning in HDRBMs proceeds in an online fashion and
hence could scale to very large datasets, unlike more
standard non-parametric methods.

7.4. Relationship with Feed-forward Neural
Networks

There are several similarities between discriminative
RBMs and neural networks. In particular, the com-
putation of p(y|x) could be implemented by a single
layer neural network with softplus and softmax acti-

6β = 0.1 for MNIST and 20-newsgroup and β = 0.01
for MNIST-BI was found to perform best.
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Model Error

RBM (λ = 0.0005, n = 1000) 24.9%
DRBM (λ = 0.0005, n = 50) 27.6%
RBM+NNet 26.8%
HDRBM (α = 0.005, λ = 0.1, n = 1000 ) 23.8%

SVM 32.8%
NNet 28.2%

(a) Classification performances

(b) Similarity matrix
(c) PCA embedding

Figure 3. Experiment on 20-newsgroup dataset. (Top left) Classification performance for the different models. The error
differences between HDRBM and other models is statistically significant. (Bottom left) Similarity matrix of the newsgroup
weights vectors U·y. (Right) Two dimensional PCA embedding of the newsgroup weights.

Table 2. Most influential words in the HDRBM for predicting some of the document classes

Class Words Class Words
alt.atheism bible, atheists, benedikt, atheism, religion comp.graphics tiff, ftp, window, gif, images, pixel
misc.forsale sell, condition, floppy, week, am, obo rec.autos cars, ford, autos, sho, toyota, roads
sci.crypt sternlight, bontchev, nsa, escrow, hamburg talk.politics.guns firearms, handgun, firearm, gun, rkba

Table 3. Comparison of the classification errors in semi-
supervised learning setting. The errors in bold are statis-
tically significantly better.

Model MNIST MNIST-BI 20-news

HDRBM 9.73% 42.4% 40.5%
Semi-sup HDRBM 8.04% 37.5% 31.8%

NP-Gauss 10.60% 66.5% 85.0%
NP-Trunc-Gauss 7.49% 61.3% 82.6%

vation functions in its hidden and output layers re-
spectively, with a special structure in the output and
hidden weights where the value of the output weights is
fixed and many of the hidden layer weights are shared.

The advantage of working in the framework of RBMs
is that it provides a natural way to introduce gener-
ative learning, which we used here to derive a semi-
supervised learning algorithm. As mentioned earlier, a
form of generative learning can be introduced in stan-

dard neural networks simply by using RBMs to ini-
tialize the hidden layer weights. However the extent
to which the final solution for the parameters of the
neural network is influenced by generative learning is
not well controlled. This might explain the superior
performance obtained by a HDRBM compared to a
single hidden layer neural network initialized with an
RBM (RBM+NNet in the tables).

8. Conclusion and Future Work

We argued that RBMs can and should be used as
stand-alone non-linear classifiers alongside other stan-
dard and more popular classifiers, instead of merely
being considered as simple feature extractors. We eval-
uated different training objectives that are more ap-
propriate to train an RBM in a classification setting.
These discriminative versions of RBMs integrate the
process of discovering features of inputs with their use
in classification, without relying on a separate classi-
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fier. This insures that the learned features are dis-
criminative and facilitates model selection. We also
presented a novel but straightforward semi-supervised
learning algorithm for RBMs and demonstrated its
usefulness for complex or high dimensional data.

For future work, we would like to investigate the use
of discriminative versions of RBMs in more challeng-
ing settings such as in multi-task or structured out-
put problems. The analysis of the target weights
for the 20-newsgroup dataset seem to indicate that
RBMs would be good at capturing the conditional sta-
tistical relationship between multiple tasks or in the
components in a complex target space. Exact com-
putation of the conditional distribution for the tar-
get is not tractable anymore, but there exists promis-
ing techniques such as mean-field approximations that
could estimate that distribution. Moreover, in the 20-
newsgroup experiment, we only used 5000 words in
input because generative training using Algorithm 1
does not exploit the sparsity of the input, unlike an
SVM or a DRBM (since in that case the sparsity of the
input makes the discriminative gradient sparse too).
Motivated by this observation, we intend to explore
ways to introduce generative learning in RBMs and
HDRBMs which would be less computationally expen-
sive when the input vectors are large but sparse.
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Abstract

The main objective of transfer in reinforce-
ment learning is to reduce the complexity of
learning the solution of a target task by ef-
fectively reusing the knowledge retained from
solving a set of source tasks. In this paper,
we introduce a novel algorithm that transfers
samples (i.e., tuples 〈s, a, s′, r〉) from source
to target tasks. Under the assumption that
tasks have similar transition models and re-
ward functions, we propose a method to se-
lect samples from the source tasks that are
mostly similar to the target task, and, then,
to use them as input for batch reinforcement-
learning algorithms. As a result, the number
of samples an agent needs to collect from the
target task to learn its solution is reduced.
We empirically show that, following the pro-
posed approach, the transfer of samples is ef-
fective in reducing the learning complexity,
even when some source tasks are significantly
different from the target task.

1. Introduction

The main objective of transfer in Reinforcement
Learning (RL) is to reduce the learning time. In fact,
the solution of a set of source tasks can provide useful
information about how to solve a related target task,
thus reducing the amount of experience needed to solve
it. In order to design an effective transfer algorithm,
two aspects must be taken into account: what to trans-
fer, that is the knowledge retained from the source
tasks, and when to transfer, that is the identification
of tasks from which transfer is likely to be effective.

There exists a much empirical evidence about the ef-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

fectiveness of techniques such as task decomposition,
options, shaping rewards, exploration strategies, in im-
proving the learning speed of RL algorithms in single-
task problems. Many studies focus on extending such
techniques to the transfer scenario. In particular, hier-
archical solutions are often used (Şimşek et al., 2005;
Mehta et al., 2005) to augment the action space with
policies suitable for the solution of a wide range of
tasks sharing the same dynamics, but with different
goals. In (Konidaris & Barto, 2007), a set of options
is learned in an agent space defined by a set of fea-
tures shared across the tasks, thus making the options
reusable even in tasks with different state spaces. The
improvement of learning speed can also be obtained
through direct transfer of solutions from source to tar-
get task. In this scenario, the main issue is to map the
solution learned in a source task to the state-action
space of the target task, thus initializing the learning
algorithm to a convenient solution. Different aspects
of a learning algorithm can be initialized, such as value
functions, policies, and approximator structure (Tay-
lor et al., 2007, and references therein).

Although these approaches study how the transfer of
different elements from source to target tasks can im-
pact on the performance of an RL algorithm, they of-
ten rely on the assumption that the tasks are strictly
related and they do not address the problem of nega-
tive transfer (Rosenstein et al., 2005). In fact, transfer
may bias the learning process towards solutions that
are completely different from the optimal one, thus
worsening the learning performance. Some works fo-
cus on the definition of measures of relatedness be-
tween tasks that can be used to select from which
source tasks transfer is actually convenient. An ex-
perimental analysis of measures that estimate the ex-
pected speed-up on the basis of information such as
policy overlapping, Q-values, and reward structure is
reported in (Carroll & Seppi, 2005). Unfortunately,
it is often difficult to compute these measures before
actually solving the target task, and, thus, they can
be used only to analyze the effectiveness of a transfer
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method. In (Ferns et al., 2004), different metrics for
the distance between tasks are proposed and theoreti-
cal bounds on the difference between the correspond-
ing optimal value functions are derived.

In this paper, we focus on a perspective that received
little attention so far, the transfer of samples. We pro-
pose a mechanism that selectively transfers samples
from source to target tasks on the basis of the simi-
larity of source tasks with the samples collected in the
target task. We introduce a criterion to select from
which sources transfer should occur, and, within each
task, which samples are more likely to speed-up the
learning process. As a result, through selective trans-
fer of samples, it is possible to reduce the number of
samples needed to solve the target task.

The paper is organized as follows. In Section 2 we
introduce notation and we briefly review batch RL.
In Section 3 we propose a novel mechanism for trans-
fer of samples in batch RL algorithms. In Section 4
we report the experimental results of sample transfer.
In Section 5 we relate our work with other transfer-
learning approaches. Finally, in Section 6 we draw con-
clusions, and we propose directions for future works.

2. Batch Reinforcement Learning

In RL, the interaction between the agent and the
environment is modeled as a discrete-time Markov
Decision Process (MDP). An MDP is a tuple
〈S,A,P,R, γ〉, where S is the state space, A is the ac-
tion space, P : S × A → Π(S) is the transition model
that assigns to each state-action pair a probability dis-
tribution over S, R : S×A → Π(R) is the reward func-
tion that assigns to each state-action pair a probability
distribution over R, γ ∈ [0, 1) is the discount factor.
At each time step, the agent chooses an action accord-
ing to its current policy π : S → Π(A), which maps
each state to a probability distribution over actions.
The goal of an RL agent is to maximize the expected
sum of discounted rewards, that is to learn an opti-
mal policy π∗ that leads to the maximization of the
value function in each state. The optimal action-value
function Q∗(s, a) is defined by the Bellman equations

Q∗(s, a) =
∑

s′

P(s′|s, a)
[

R(s, a) + γ max
a′

Q∗(s′, a′)
]

,

where R(s, a) = E[R(s, a)] is the expected reward.

One of the main drawbacks of online RL algorithms
(e.g., Q-learning) when applied to real-world problems
is the large amount of experience needed to solve a
task. In order to overcome this drawback, batch ap-
proaches have been proposed. The main idea is to

distinguish between the exploration strategy that col-
lects samples of the form 〈s, a, s′, r〉 (sampling phase),
and the offline learning algorithm that, on the basis
of the samples, computes the approximation of the
action-value function (learning phase). In this paper,
we focus on fitted algorithms, although the proposed
transfer mechanism can be applied to any batch RL
algorithm. The idea underlying fitted solutions (Ernst
et al., 2005, and references therein) is to reformulate
the learning of the value function as a sequence of re-
gression problems. Given a set of samples, Fitted Q-
Iteration (FQI)(Ernst et al., 2005) estimates the opti-
mal action-value function by iteratively extending the
optimization horizon. At the first iteration, the algo-
rithm defines a regression problem for a 1-step prob-
lem, in which the action-value function is equal to the
reward function. An approximation is computed run-
ning a chosen regression algorithm on the available
samples. Thereafter, at each iteration k, correspond-
ing to a k-step horizon, a new regression problem is
stated, in which the training samples are computed
exploiting the approximation of the action-value func-
tion at the previous iteration.

3. Transfer of Samples in Batch

Reinforcement Learning

We formulate the transfer problem as the problem of
solving a target task given a set of source tasks drawn
according to a given probability distribution defined
on a set of tasks which differ in either the transition
model or the reward function, or both, but share the
same state-action space.

Definition 1 A task T is an MDP defined by the tu-
ple 〈S,A,PT ,RT , γ〉, in which the transition model PT

defines the dynamics, and the reward function RT de-
fines the goal.

Definition 2 An environment E is defined by the tu-
ple 〈T ,Ω〉, where T is the task space and Ω is the
task distribution that provides the probability of a task
T ∈ T to occur.

In batch RL algorithms, the element that mainly af-
fects the learning performance is the set of samples
used to feed the learning algorithm, the more infor-
mative the samples the better the approximation. We
focus on the way this set of samples can be augmented
by the inclusion of samples drawn from a set of source
tasks. The basic intuition underlying this idea is that,
since tasks are related through the task distribution Ω,
some of the source tasks are likely to contain samples
similar to those in the target task. Therefore, we ex-
pect the transfer of samples to improve performance of
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batch RL algorithms even when a very limited number
of samples have been actually collected from the tar-
get task. This improvement is particularly important
in domains where sampling is slow and expensive (e.g.,
robotic applications).

More formally, we consider the scenario in which a set
of n source tasks {Sk}, with Sk ∈ T and k ∈ Nn, drawn
from Ω are available. From each source task m sam-
ples have been collected, while only t � m samples are
available from the target task T . Let {Ŝk} and T̂ be
the sample sets for the source and target tasks respec-
tively. The transfer algorithm selects a set of samples
from the source tasks that are used to augment T̂ , thus
building a new set of samples T̃ . Finally, samples in
T̃ are used as input for the learning algorithm.

3.1. Task Compliance

The main problem of transferring samples across tasks
is to avoid negative transfer, that is the transfer of
samples from source tasks that are significantly differ-
ent from the target task. Therefore, we need to iden-
tify which source tasks are more likely to have samples
similar to those in the target task. Alternatively, this
problem can be stated as a model identification prob-
lem. Let us consider the following scenario: The task
space T contains n tasks, and m samples have been
already collected from each task. Let T be a new task
drawn according to Ω and T̂ the set of samples col-
lected from it, with |T̂ | = t � m. Since the transfer
of samples from all the tasks in T may worsen the
performance in T , we need to identify which of the
previously solved tasks is actually T according to the
available samples. Starting from a uniform prior over
the tasks in T , we compute the posterior distribution
as the probability of a task to be the model from which
samples in T̂ are drawn. As the number of samples t

increases, the posterior distribution is updated accord-
ingly until the total probability mass concentrates on
the task equal to T . Then, the m samples previously
collected in the task equal to T can be added to T̂ and
used to feed the batch RL algorithm, thus improving
its learning performance.

In the general case in which T is infinite or contains
many tasks, the probability to have one source task
identical to the target task is negligible. Thus, instead
of the probability of a source task to generate all the
samples collected in the target task, we compute its
compliance with T as the average probability of gen-
erating the samples in T̂ . Then, we transfer samples
from source tasks proportionally to their compliance
with the target task.

Let us consider a source task S and the set of target

samples T̂ . Given a state-action pair 〈s, a〉, the prob-
ability of S to be the model from which the target
samples in 〈s, a〉 are extracted, that is the likelihood
of the model in 〈s, a〉, can be simply computed by ap-
plying the Bayes theorem as 1

P
“

S|bT〈s,a〉

”

∝ P
“

bT〈s,a〉|S
”

P (S)

=
Y

τi∈ bT〈s,a〉

P (τi|S) P (S)

=
Y

τi∈ bT〈s,a〉

PS(s′i|si, ai)RS(ri|si, ai)P (S) ,(1)

where T̂〈s,a〉 = {τi ∈ T̂ |si = s, ai = a}, P (S) is the

prior on the source task S, and P (S|T̂〈s,a〉) is the pos-
terior distribution over the source tasks in 〈s, a〉.
Unfortunately, the posterior probability cannot be im-
mediately computed without the exact model of S. On
the other hand, we have a set of m samples Ŝ previ-
ously collected in S, from which an approximation of
the continuous model can be computed. In the follow-
ing, with an abuse of notation, with T̂ and Ŝ we denote
both the sets of samples and the model approximations
built on them. Let τi = 〈si, ai, s

′
i, ri〉 be a sample in

T̂ , the probability of this sample to be generated by S

given the set of source samples Ŝ is

P (τi|Ŝ) = P
bS(s′i|si, ai)R

bS(ri|si, ai),

where P
bS and R

bS are the approximated transition and
reward models respectively. Since in continuous spaces
the probability to have samples in the same state-
action pair is negligible, it is necessary to use an ap-
proximation that generalizes over all the samples close
to 〈si, ai〉. In particular, we follow the kernel-based
approximation proposed in (Jong & Stone, 2007).

Let ϕ(·) be a kernel function (e.g., a Gaussian ker-
nel ϕ(x) = exp(−x2/δ) with bandwidth δ) applied to
a given distance metric d (e.g., Euclidean or Maha-
lanobis distance). First of all, we define the similarity
(compliance in the following) between the experience

tuple τi and the experience tuples σj ∈ Ŝ in terms of
dynamics and reward. We define the compliance of τi

with respect to σj for the transition model as

λPij = wij · ϕ
(

d(s′i, si + (s′j − sj))

δs′

)

,

where

wij =
ϕ
(

d(〈si,ai〉,〈sj ,aj〉)
δsa

)

∑m
l=1 ϕ

(
d(〈si,ai〉,〈sl,al〉)

δsa

) .

1We assume that samples are mutually independent.
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While the first term (wij) of λPij is a weight that
takes into consideration the relative closeness of the
two samples in the state-action space, the second term
measures the similarity of the outcome. In particu-
lar, under the assumption that the transition model is
continuous in the state-action space, it measures the
distance between s′i and the state obtained by applying
the state transition (s′j −sj) of σj to state si (see Jong
& Stone, 2007). Therefore, the dynamics of τi is highly
compliant with that of σj when they are close and their
state transitions are similar.
Similarly, the compliance of the reward in τi with re-
spect to that of σj is defined as

λRij = wijϕ

( |ri − rj |
δr

)

.

The approximated transition and reward models are
the average of the compliance between τi and all the
samples in Ŝ

P
bS
(s′i|si, ai) =

1

ZP

m
X

j=1

λ
P
ij ; R

bS
(ri|si, ai) =

1

ZR

m
X

j=1

λ
R
ij ,

where ZP and ZR are normalization terms. Finally,
we define the compliance of τi to S approximated using
samples in Ŝ as

λi = P (τi|Ŝ) =
1

ZPZR





m∑

j=1

λPij









m∑

j=1

λRij



 .

Recalling Equation 1, given the compliance of samples
in 〈s, a〉, the probability of the model in 〈s, a〉 becomes

P
(

S|T̂〈s,a〉

)

∝
∏

τi∈bT〈s,a〉

λiP (S) . (2)

Starting from the probability in each state-action pair,
we compute a global measure of the probability for the
task to contain samples similar to target samples. We
define the compliance of a task S as the average likeli-
hood computed over each state-action pair experienced
in the target task.

Definition 3 Given the target samples T̂ and the
source samples Ŝ, the task compliance of S is

Λ =
1

|Û |
∑

〈s,a〉∈bU

P
(

S|T̂〈s,a〉

)

, (3)

where Û contains all the distinct state-action pairs in
the samples of T̂ .

Since the probability to have two samples in the very
same state-action pair is negligible, it follows that

|Û | = |T̂ | = t and the previous definition reduces to

Λ =
1

t

t∑

i=1

λiP (S), (4)

where P (S) is a prior on the source task. When n

source tasks with m samples each are available, and t

samples are collected from T , the computation of the
task compliance has a time complexity of Θ(nmt).

3.2. Sample Relevance

Although the measure of compliance is effective in
identifying which sources, in average, are more con-
venient to transfer samples from, it does not provide
any suggestion about which samples in Ŝ are actually
better to transfer. In the following, we introduce the
concept of relevance of each sample σj ∈ Ŝ. The idea
is to use the compliance of σj with the target task.
Unfortunately, in this case, the measure of compliance
is often unreliable because of a poor approximation of
the target task. In fact, while each source task contains
m samples, only t � m samples are available for the
target task. As a result, it may happen that the com-
pliance of σj is computed according to samples τi that
are significantly far in the state-action space. There-
fore, we need a formulation of relevance strictly related
to the compliance whenever the number of samples in
T̂ close to σj is sufficient, while tending to a default
value when the compliance is not reliable. Given the
definition of compliance λPji and λRji of σj with a sam-
ple τi, the compliance of σj with the approximated

model of the target task T̂ is

λj = P (σj |T̂ ) =
1

ZPZR

(
t∑

i=1

λPji

)(
t∑

i=1

λRji

)

. (5)

Let the samples τi be sorted in ascending order accord-
ing to wji. We compute the average distance between

σj and the samples τi ∈ T̂ as

dj =
1

hj

hj∑

i=1

d(〈sj , aj〉, 〈si, ai〉), (6)

where hj is such that
∑hj

i=1 wji < µ, where µ ∈ (0; 1]
determines the fraction of the total number of samples
considered in the computation of the average distance.

Definition 4 Given the compliance λj and the aver-
age distance dj, the relevance of σj is defined as

ρj = ρ(λj , dj) = e
−

„

λj−1

dj

«

2

, (7)

where λj is the compliance normalized over all the

samples in Ŝ.
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Figure 1. Relevance function for different values of dj .

The relevance function is shown in Figure 1 for differ-
ent values of distance dj . As it can be noticed, sample
σj may have high relevance in two distinct cases: (i)
where there is a number of close samples τi which it is
compliant with, (ii) where there are no close samples
and, independently from the compliance, we assume
a high relevance value. The assumption underlying
this definition is that, whenever there is no evidence
against the transfer of a sample, it is convenient to
transfer it. In fact, in transfer problems the learner
often needs to infer knowledge about unexplored re-
gions of the target task. In these regions, the algo-
rithm selects samples from the most compliant source
tasks. The assumption is that samples far from target
samples, but drawn from highly compliant tasks, are
worth transferring, since they provide information in
regions that have not been actually experienced.

3.3. Transfer of Samples

The actual transfer process is based on the compliance
of the source tasks with the target samples and on the
relevance of samples within each source task. For sake
of simplicity, we bound the number of samples used by
the learning algorithm to m. Since |T̂ | = t samples are
already available, m − t samples need to be extracted
and transferred from the source tasks. For each source
task Sk, the number of samples transferred to the sam-
ple set T̃ of the new target task is proportional to its
normalized compliance Λk = Λk

P

n

l=1
Λl

. Then, for each

source task, samples are drawn according to their rele-
vance, thus avoiding to transfer samples that are quite
dissimilar from those in the target task. The whole
sample-transfer process is summarized in Algorithm 1.

4. Experiments

In order to evaluate the performance of the sample-
transfer algorithm we consider a variant of the boat

Algorithm 1 The sample transfer algorithm
Input: source tasks {Sk}k∈Nn

, target task T
Parameters: δsa, δ

s′
, δr , t, m

Output: transferred sample set eT
for k = 1 to n do

bSk ← sampling(Sk, m)
end for

bT ← sampling(T, t)
for k = 1 to n do

Λk ← compliance(bSk, bT )

for σj ∈ bSk do

ρj ← relevance(σj , bT )
end for

Draw (m− t)Λk samples from bSk proportionally to ρj

end for

Put the additional samples in bT and form the sample set eT

problem proposed in (Lazaric et al., 2007). The prob-
lem is to learn a controller to drive a boat from the
left bank to the right-bank quay of a river, in pres-
ence of a non-linear current. The boat’s bow coor-
dinates, x and y, are defined in the range [0, 200]
and the controller sets the desired direction a ∈
[−90◦,−45◦, 0◦, 45◦, 90◦]. The chosen action is per-
turbed by a uniform noise in the range [−5◦; 5◦]. The
control frequency is set to 1Hz. For the lack of space,
we refer the reader to (Lazaric et al., 2007) for the
equations of the dynamics. In addition, we introduce
sandbanks, i.e., regions of the river in which the speed
is reduced by 20%. The reward function is defined as:

R(x, y) =

8

>

>

>

>

>

<

>

>

>

>

>

:

+10 x = 200 and y ∈ Zs

D(x,y) x = 200 and y ∈ Zv

-10 x = 200 and y ∈ Zf

-2 (x, y) ∈ sandbank
-2 y ≤ 0 or y ≥ 200
0 elsewhere

(8)

where D is a function that gives a reward decreasing
linearly from 10 to -10 relative to the distance from
the quay, Zs is the quay zone, Zv is the viability zone
around the quay, and Zf is the failure zone in all the
other bank points. The dynamics and learning param-
eters are summarized in Tab. 1. In the following ex-
periments, we use Gaussian kernels and Mahalanobis
distance (see Section 3.1). The results are obtained by
averaging 100 runs. In FQI, we use extra-randomized
trees (Ernst et al., 2005) with 50 trees, 2 random splits,
and 2 minimum sample size for each node, trained on
25 iterations. Samples are obtained through random
sampling run on independent episodes of maximum 50
steps each. Each episode restarts the boat at the left
bank in a random position. Testing is performed on
1,000 episodes with the initial position drawn at ran-
dom from 20 evenly spaced positions at the left bank.

The first experiment is meant to illustrate the effec-
tiveness of the relevance in identifying which samples
are worth transferring. We consider a transfer prob-
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Parameter Value

I/p 0.1 / 0.9
sMAX/sD 2.5 / 1.75

Zs / Zv width 10.0 / 10.0

Parameter Value

m 2000
µ 0.8

δsa 0.1
δr 0.5
δ

s′
0.1

Table 1. The dynamics and
transfer parameters.

 0

 50

 100

 150

 200

 0  50  100  150  200

sandbank1

sandbank2

G1

π*1
π*2
π*

 0

 50

 100

 150

 200

 0  50  100  150  200

G2
fc=-0.5

Figure 2. (left) Sandbanks and goal of the target task and trajectories of the optimal policies
of S1, S2, and T tested in T . (right) Sandbanks and goal of S2.

lem with three tasks in which S1 and S2 are the source
tasks and T is the target task. In T the quay is G1

and there are two sandbanks as illustrated in Figure 2-
(left). In task S1 there are two quays G1 and G2, and
there is only one sandbank corresponding to the re-
gion labeled as sandbank1 in Figure 2-(left). Task S2

has the quay G2 and the sandbanks illustrated in Fig-
ure 2-(left). While T and S1 have the same current
force (fc = 0.5), the current in S2 is in the opposite
direction (fc = −0.5). The source task S2 has a com-
pletely different dynamics and reward function from
those in T because of different sandbanks and current.
Therefore, samples transferred from S2 are likely to
induce negative effects on the learning performance of
T . Furthermore, as it can be noticed from the trajec-
tories shown in Figure 2-(left), the optimal policy π∗2
of S2 obtains very poor performance when tested on
T . On the other hand, S1 has the same dynamics as
T in large regions of the state-action space and shares
one goal with T . Although its optimal policy π∗1 is
significantly different from π∗, it is possible to choose
samples from Ŝ1 to improve the performance in T .

Figure 3-(left) shows the performance obtained by FQI
with four different configurations: No Transfer, Ran-
dom, Compliance, and Relevance Transfer. In the first
configuration FQI is run with samples directly col-
lected from T . The other three configurations are run
on the sample set T̃ obtained by transferring samples
chosen at random, according to the compliance, and
according to the relevance respectively. Furthermore,
we also report the performance obtained by transfer-
ring policies π∗1 and π∗2 as baselines. The augmentation

of T̂ with samples drawn from S1 and S2 at random
does not lead to any significant improvement of the
performance with respect to learning directly on sam-
ples in T̂ . In fact, the only advantage achieved with the
transferred samples is that the agent avoids to go out-
side of the boundaries, but she learns neither to avoid

sandbanks nor to achieve the goal. The main reason
for this poor performance is that samples drawn from
S2 do not provide any information about the actual
dynamics and rewards of T and, thus, may lead to
learning very bad policies. On the other hand, the
compliance-based transfer successfully excludes sam-
ples of S2 from the transfer process (the normalized
compliance of S1 for t = 200 is Λ1 = 0.93 ± 0.09),

thus augmenting T̂ with samples mainly coming from
S1. Since S1 shares with T the dynamics and the
rewards in all the state space but at sandbank2 and
in the quay G2, the transfer is positive and leads to
a significant improvement in the performance of the
learning process. Nonetheless, there are still many
trajectories leading to the quay G2 and crossing the
sandbank because of the negative effect of transferring
samples from regions with dynamics and reward differ-
ent from T . In Figure 3-(right) we report the relevance

of the samples in Ŝ1 (averaged on all the actions). As
it can be noticed, the relevance identifies the regions
where samples are actually similar in source and tar-
get tasks, excluding samples coming from sandbank2
and the lower quay G2. As a result, the performance
of the relevance-based transfer is further improved.

In order to evaluate the relative improvement of trans-
fer, we compute the area ratio (Taylor et al., 2007) of
the three transfer configurations, defined as the differ-
ence between the accumulated reward with and with-
out transfer divided by the reward accumulated with-
out transfer. Figure 3-(center) shows the area ratio
for the three transfer configurations. As it can be no-
ticed, random transfer does not lead to any significant
improvement, while relevance-based transfer improves
the performance by 75.3% ± 13.2. All the differences
are statistically significant (p < 0.01).

In the previous experiment, source and target tasks
have been designed to show how the algorithm works.
Now, we consider the general case in which tasks are
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Figure 3. (left-center) Total reward and area ratio. (right) Relevance of samples in bS1 at convergence.

drawn from an infinite task space T . For sake of sim-
plicity, we consider the same target task of the previ-
ous experiment, while source tasks have current fc=0.5
and one sandbank. Source tasks are drawn from a
distribution Ω such that the coordinates of the cen-
ter, height, and width of the sandbank are uniformly
drawn from the space [20.0; 180.0] × [20.0; 180.0] ×
[40.0; 100.0] × [40.0; 100.0], while the quay position is
drawn uniformly in [20.0; 180.0]. In Figure 4, we report
the results of relevance-based transfer obtained by av-
eraging the result with 10 different sets of five source
tasks. Although the source tasks are different from the
target in large regions, the transfer algorithm is able to
identify which samples are worth transferring from the
source tasks and it successfully improves the learning
performance with an area ratio of 59.5% ± 15.4.

Since the algorithms of transfer in RL proposed so far
rely on temporal-difference or model-based learning
algorithms, an empirical comparison with the perfor-
mance of sample transfer would not be fair. Nonethe-
less, in the next section, we discuss its similarities and
differences with other transfer approaches.

5. Related Works

In (Sunmola & Wyatt, 2006) a Bayesian approach is
used for transfer of MDPs, where source task models
are pre-posteriors for the distributions of the parame-
ters of the target model and model-based RL is used
to compute the solution. Although we similarly adopt
a Bayesian argument in the compliance, we directly
transfer samples and we use a model-free learning algo-
rithm. Furthermore, instead of a parametric approx-
imation of the model of the source tasks, we follow a
non-parametric solution.

The task compliance can be interpreted as a sort of
distance metric between tasks. In (Ferns et al., 2004),
distance metrics for MDP similarity are introduced in
the context of bisimulation to aggregate states with
similar dynamics and reward. Under a transfer per-

spective, these metrics can be used to measure the dif-
ference between states in distinct tasks and to bound
the performance loss of using the optimal policy of
a source task in the target task. Unfortunately, this
technique cannot be directly applied to our scenario for
different reasons. The computation of the Kantorovich
distance between different states is very expensive, be-
cause it requires the solution of a complex optimiza-
tion problem. Furthermore, the proposed algorithm
needs either the exact models of tasks or accurate ap-
proximations. On the other hand, we adopt a solution
with low computational complexity, linearly depend-
ing on the number of samples of the source tasks. Fi-
nally, empirical analysis (Phillips, 2006) showed that
the theoretical bounds on the performance loss are too
loose and they do not provide useful directions about
the actual performance of the transferred policy.

The transfer of samples is also related to works about
transfer of solutions in the RL context (Taylor et al.,
2007). Although the transfer of samples or solutions
(e.g., policies) from only one source task obtains simi-
lar results, there are situations in which sample trans-
fer can obtain better results than solution transfer.
Even when the difference between source and target
tasks is limited to few state-action pairs, the optimal
policies of the two tasks can be significantly different
and the transfer may achieve very poor performance.
On the other hand, the transfer of samples can still be
effective. In fact, since most of the samples in the two
tasks are identical, the learning algorithm can bene-
fit from samples coming from the source task inde-
pendently from the actual difference of their optimal
policies. Furthermore, the transfer of samples does
not require to actually solve the source tasks, and it
can be used even when the samples are not enough to
solve source tasks. In (Mehta et al., 2005) a solution
in which the model-based hierarchical task decomposi-
tion allows for transfer at multiple levels of the hierar-
chy is proposed. This approach relies on the assump-
tion that rewards are a linear combination of basis re-
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Figure 4. Performance with five random source tasks.

ward functions and it can be applied only to prob-
lems of goal transfer, with a fixed transition model.
On the other hand, sample transfer can be applied to
any transfer scenario. Finally, a method for mapping
samples from a source to a target task with different
state-action space is proposed in (Taylor et al., 2008).

6. Conclusions

In this paper, we introduced a mechanism for the
transfer of samples with the aim of improving the
learning performance. The main advantages of the
proposed solution are: (i) it is independent from the
similarity of the policies and action-value functions of
the tasks at hand and, thus, can be applied to a wide
range of problems, (ii) it is independent from the batch
RL algorithm, (iii) it can be applied to any transfer
problem in which either reward or transition or both
models change. Experimental results show the effec-
tiveness of the method in improving the learning per-
formance and in avoiding negative transfer when the
source tasks are significantly different from the target.

Some aspects of the algorithm can be improved in fu-
ture works. In case of tasks that either share exactly
the same transition or reward model, it is possible to
transfer only the part of the samples common to all
the tasks. For instance, if two tasks share the same
transition model, but have different goals, it is possi-
ble to transfer the 〈s, a, s′〉 part of the samples and to
“complete” the sample using an approximation of the
reward function of the target task (e.g., using the first
iteration of FQI). Furthermore, the sample-transfer al-
gorithm could be integrated with the model proposed
in (Taylor et al., 2008) in order to deal with problems
with tasks defined on different state-action spaces.
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Abstract

Temporal text data is often generated by a
time-changing process or distribution. Such a
drift in the underlying distribution cannot be
captured by stationary likelihood techniques.
We consider the application of local likeli-
hood methods to generative and conditional
modeling of temporal document sequences.
We examine the asymptotic bias and vari-
ance and present an experimental study us-
ing the RCV1 dataset containing a temporal
sequence of Reuters news stories.

1. Introduction

Time stamped documents such as news stories often
cannot be accurately modeled by a single time invari-
ant distribution. An alternative is to assume that the
concepts underlying the distribution generating the
data drift with time. In other words, the data is gen-
erated by a time dependent process z(t) ∼ pt(z), t ∈
I ⊂ R whose approximation {p̂t : t ∈ I} becomes
the main objective of the learning task. We assume
that the time t is a continuous quantity, even in cases
where the realized time points form a discrete sample.
For example, assuming that the time stamps repre-
sent the days of the year when the documents were
authored, we assume that the set {1, . . . , 365} is a
discrete sample from a underlying continuous interval
[1, 365]. We further assume that the data samples z(t),
sampled from pt, correspond to pairs z(t) = (x, y) con-
stituting a document x and a categorial-valued label y.
Such pairs (x, y) appear often in practice, for example
with y corresponding to the document topic (Lewis
et al., 2004), sentiment (Pang & Lee, 2005), author
(Mosteller & Wallace, 1964) or Email spam/no-spam
(Mulligan, 1999).

Assuming that our data is a set of time stamped doc-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

uments and labels (t, (x, y)), the drift pt(x, y) can be
characterized by considering the temporal transition of
the joint distribution pt(x, y), the conditionals pt(y|x),
pt(x|y), or the marginals pt(x), pt(y). The choice of
which of the distributions above to model depends
on the application at hand. For example, modeling
pt(y|x) is usually sufficient for document classification
purposes while modeling pt(x|y) is necessary for lan-
guage modeling which is an important component in
speech recognition, machine translation, and IR.

We demonstrate the presence of concept drift in prac-
tice by considering the Reuters RCV1 dataset (Lewis
et al., 2004) which contains over 800,000 news sto-
ries gathered in a period spanning 365 consecutive
days and categorized according to topic. Figure 1 dis-
plays the temporal change in the relative frequency
(number of appearance in a document divided by
document length) of three words: million, common,
and Handelsgesellschaft (German trade unions) for
documents in the most popular RCV1 category titled
CCAT. It is obvious from these plots that the relative
frequency of these words vary substantially in time.
For example, the word Handelsgesellschaft appear
in 8 distinct time regions, representing time points
in which German trade unions were featured in the
Reuters news archive.

The temporal variation in relative frequencies illus-
trated by Figure 1 corresponds to a drift in the dis-
tribution generating the data. Since the drift is rather
pronounced, standard estimation methods based on
maximum likelihood are not likely to accurately model
the data. In this paper, we consider instead estimat-
ing {pt(x, y) : t ∈ I} based on the the local likelihood
principle. Local likelihood is a locally weighted ver-
sion of the loglikelihood with the weights determined
by the difference between the time points associated
with the sampled data and a the time at which the
inference takes place.

After presenting a more formal discussion of concept
drift in Section 3 and the definition of local likelihood
in Section 4 we turn to examine in detail the case of
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Figure 1. Estimated relative frequency (number of appearances in a document divided by document length) of three words
from the most popular category in RCV1 as a function of time. The three panels correspond to the words million, common,
and Handelsgesellschaft (German trade unions). The displayed curves were smoothed to remove sampling noise.

modeling pt(x|y) with local likelihood for n-grams and
modeling pt(y|x) with local likelihood for logistic re-
gression. In the case of 1-grams or the naive Bayes
model, we provide a precise as well as asymptotic de-
scription of the bias and variance which illuminates
certain facts concerning the selection of weights and
the difference between the online and offline scenarios.
Experiments conducted on the RCV1 dataset demon-
strates the local likelihood estimation in practice and
contrasts it with more standard non-local alternatives.

2. Related Work

Concept drift or similar phenomena under different
names have been studied in a number of communi-
ties. It has recently gained interest primarily due to
an increase in the need to model large scale temporal
data streams.

Early machine learning literature on the concept drift
problem involved mostly computational learning the-
ory tools (Helmbold & Long, 1994; Kuh et al., 1990).
Hulten et al. (2001) studied the problem in the context
of datamining large scale streams whose distribution
change in time. More recently, Forman (2006) studied
the concept drift phenomenon in the context of infor-
mation retrieval in large textual databases. Sharan
and Neville (2007) consider the modeling of temporal
changes in relational databases and its application to
text classification.

Overall, the prevailing techniques have been to train
standard methods on examples obtained by filtering
the data through a sliding window. Tibshirani and
Hastie (1987) developed the local likelihood idea in
the statistics community within the context of non-
parametric smoothing and regression. More details on
local likelihood can be found in (Loader, 1999).

3. The Concept Drift Phenomenon and

its Estimation

Formally, the concept drift phenomenon may be
thought of as a smooth flow or transition of the joint
distribution of a random vector. We will focus on the
case of a joint distribution of a random vector X and
a random variable Y representing predictor and re-
sponse variables. We will also restrict our attention to
temporal or one dimensional drifts.

Definition 1. Let X and Y be two discrete random
vectors taking values in X and Y. A smooth temporal
drift of X, Y is a smooth mapping from I ⊂ R to a
family of joint distributions

t 7→ pt(x, y)
def

= pt(X = x, Y = y).

By restricting ourselves to discrete random variables
we can obtain a simple geometrical interpretation of
concept drift. Denoting the simplex of all distributions
over the set S by

PS
def

=






r ∈ R

|S| : ∀i ri ≥ 0,

|S|
∑

i=1

ri = 1






(1)

we have that Definition 1 is equivalent to a smooth
parameterized curve in the simplex PX×Y .

The drift in the joint distribution can be decomposed
in several ways. The first decomposition pt(x, y) =
pt(x|y)pt(y) is useful for generative modeling and the
second decomposition pt(x, y) = pt(y|x)pt(x) is useful
for conditional modeling. In the generative case we will
focus on modeling pt(x|y) since modeling pt(y) is typi-
cally an easier problem due to its lower dimensionality
(in most cases involving text documents |Y| ≪ |X |).
In the case of conditional modeling, we focus on mod-
eling pt(y|x) and we ignore the drift in the marginal
pt(x) since it is irrelevant for discriminative tasks.
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In both cases we assume that our data is a set of time-
stamped labeled documents sampled from pt(x, y)
where the time points t are sampled from a distribu-
tion g(t). If g is a continuous density, the number of
samples at time t, denoted by Nt, is no greater than
1 with probability 1. In practice, however, we allow
Nt to be larger than 1 in order to account for the dis-
cretization of time. We thus have the data

D = {(xtj , ytj) : t ∈ I ⊂ R, j = 1, . . . , Nt} (2)

where the time points are sampled from g(t) and
(xtj , ytj) ∼ pt(x, y).

To illustrate these concepts in the context of the RCV1
dataset, we display in Figure 2 the total number of
words per day (left) and the total number of docu-
ments per day (right) corresponding to the most pop-
ular category in RCV1. As is evident from the right
panel, g(t) is a highly non-uniform density correspond-
ing to varying amount of news content in different
dates.

It is easy to come up with two simple solutions to
the problem of concept drift modeling. The first so-
lution, called the extreme global model, is to simply
ignore the temporal drift and use all of the samples
in D regardless of their time stamp. This approach
results in a single global model p̂ which serves as an
estimate for the entire flow {pt, t ∈ I} effectively mod-
eling the concept drift as a degenerate curve equiva-
lent to a stationary point in the simplex. The second
simple alternative, called the extreme local model, is
to model pt using only data sampled from time t i.e.
{(xtj , ytj) : j = 1, . . . , Nt}. This alternative decom-
poses the concept drift estimation into a sequence of
disconnected estimation problems.

The extreme local model has the benefit that if the
individual estimation problems are unbiased, the esti-
mation of the concept drift is unbiased as well. The
main drawback of this method is the high estimation
variance resulting from the relatively small number of
daily samples Nt used to estimate the individual mod-
els. Furthermore, assuming D is finite we can only
estimate the drift in the finite number of time points
appearing in the dataset D (since we have no train-
ing data for the remaining time points). On the other
hand, the extreme global model enjoys low variance
since it uses all data points to estimate pt. Its main
drawback is that it is almost always heavily biased due
to the fact that samples from one distribution pt1 are
used to estimate a different distribution pt2 .

It is a well known fact that the optimal solution in
terms of minimizing the mean squared estimation er-
ror usually lies between the extreme local and extreme

global models. An intermediate solution can trade-
off increased bias for reduced variance and can signif-
icantly improve the estimation accuracy. Motivated
by this principle, we employ local smoothing in form-
ing a local version of the maximum likelihood principle
which includes as special cases the two extreme models
mentioned above. The intuition behind local smooth-
ing in the present context is that due to the similar-
ity between pt and pt+ǫ, it makes sense to estimate
pt using samples from neighboring time points t + ǫ.
However, in contrast to the global model the contribu-
tion of points sampled from pt+ǫ towards estimating
pt should decrease as ǫ increases.

4. Local Likelihood and Concept Drift

The local likelihood principle extends the ideas of non-
parametric regression smoothing and density estima-
tion to likelihood-based inference. We concentrate
on using the local likelihood principle for estimating
pt(x|y) and pt(y|x) which are described next.

4.1. Local Likelihood for n-Gram Estimation

We apply local likelihood to the problem of estimating
pt(x|y) by assuming the naive Bayes assumption i.e.
that x|y is generated by a multinomial distribution or
its n-gram extensions. Assuming documents contain
words belonging to a finite dictionary of size V , the
naive Bayes assumption may be stated as

pt(x|y) ∝
∏

w∈V

θc(w,x)
w , θ ∈ PV (3)

where c(w, x) represents the number of times word w

appears in document x. Similarly, the n-gram model
extends naive Bayes (3) by considering n-order Markov
dependency. The naive Bayes and n-gram are a main-
stay of statistical text processing (Manning & Schutze,
1999) and usually lead to accurate language modeling,
especially when appropriate smoothing is used (Chen
& Goodman, 1998). For notational simplicity we con-
sider the problem of estimating pt(x) rather than the
equivalent pt(x|y) and we concentrate on naive Bayes
i.e. 1-gram. Extending the discussion to n-grams with
n > 1 is relatively straightforward and is omitted due
to lack of space.

Applied to the concept drift problem, the local log-
likelihood at time t is a smoothed or weighted ver-
sion of the loglikelihood of the data D in (2) with the
amount of smoothing determined by a non-negative
smoothing kernel Kh : R → R

ℓt(η|D)
def

=
∑

τ∈I′

Kh(t − τ)

Nτ∑

j=1

log p(xτj ; η). (4)
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Figure 2. Total number of words per day (left) and documents per day (right) for the most popular category in RCV1.
The displayed curves were smoothed to remove sampling noise.

We assume that the kernel function is a normalized
density concentrated around 0 and parameterized by
a scale parameter h > 0 reflecting its spread and
satisfying the relation Kh(r) = h−1K(r/h) for some
K : R → R referred to as the base kernel form.
We further assume that K has bounded support and
∫

urK(u) du < ∞ for r ≤ 2. Wand and Jones (1995)
provide more details on the formal requirements of a
smoothing kernel.

Three popular kernel choices are the tricube, tri-
angular and uniform kernels, defined as Kh(r) =
h−1K(r/h) where the K(·) functions are respectively

K(r) = (1 − |r|3)3 · 1{|r|<1} (5)

K(r) = (1 − |r|) · 1{|r|<1} (6)

K(r) = 2−1 · 1{|r|<1}. (7)

The uniform kernel is the simplest choice and leads to
a local likelihood (4) equivalent to filtering the data

by a sliding window i.e. θ̂t is computed based on data
from adjacent time points with uniform weights. Un-
fortunately, it can be shown that the uniform kernel is
suboptimal in terms of its statistical efficiency or rate
of convergence to the underlying distribution (Wand
& Jones, 1995). Surprisingly, the triangular kernel has
a higher statistical efficiency than the Gaussian kernel
and is the focus of our experiments in this subsection.
We use the tricube kernel in the next subsection.

The scale parameter h is central to the bias-variance
tradeoff. Large h represents more uniform kernels
achieving higher bias and lower variance. Small h rep-
resents a higher degree of locality or lower bias but
higher variance. Since limh→0 Kh approaches Dirac’s
delta function and limh→∞ Kh approaches a constant
function the local log-likelihood (4) interpolates be-

tween the loglikelihoods of the extreme local model
and the extreme global model mentioned in Section 3
as h ranges from 0 to +∞.

Solving the maximum local likelihood problem for each
t provides an estimation of the entire drift {θ̂t : t ∈
R} with θ̂t = argmaxη∈Θ ℓt(η|D). In the case of the
naive Bayes or n-gram model we obtain a closed form
expression for the local likelihood maximizer θ̂t as well
as convenient expressions for its bias and variance. In
general, however, there is no closed form maximizer
and iterative optimization algorithms are needed in
order to obtain θ̂t = argmaxη∈Θ ℓt(η|D) for all t.

We denote the length of a document in (2) by

|xtj | def

=
∑

v∈V c(xtj , v) and the total number of

words in day t in (2) by |xt| def

=
∑Nt

j=1 |xtj | =
∑

v∈V

∑Nt

j=1 c(v, xtj). We assume that the length of
documents xtj is independent of t and is drawn from
a distribution with expectation λ.

Under the above assumptions, the local likelihood (4)
of the naive Bayes model becomes

ℓt(η|D) =
∑

τ∈I′

Kh(t − τ)

Nτ∑

j=1

∑

w∈V

c(w, xτj) log ηw

where η ∈ PV . The local likelihood has a single global
maximum whose closed form is obtained by setting to
0 the gradient of the Lagrangian

0 =
1

[θ̂t]w

∑

τ∈I

Kh(t − τ)

Nτ∑

j=1

c(w, xτj) + λw
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to obtain

[θ̂t]w =

∑

τ∈I Kh(t − τ)
∑Nτ

j=1 c(w, xτj)
∑

τ∈I Kh(t − τ)|xτ |
. (8)

The estimator θ̂t is a normalized linear combination
of word counts where the combination coefficients are
determined by the kernel function and normalized by
the number of words in different days. We note that
θ̂t in (8) is different from a weighted averaging of the
relative frequencies c(w, xτj)/

∑

w′ c(w′, xτj).

We distinguish between two fundamental scenarios for
predicting the drift θt.

Offline scenario: The goal is to estimate the drift
{θt : t ∈ R} given the entire dataset D. In this
case we will consider symmetric kernels K(r) =
K(−r) which will achieve an increased conver-

gence rate of θ̂t → θt as indicated by Proposi-
tion 2.

Online scenario: The goal is estimate a model for
the present distribution θt using training data
from the past i.e. a dataset whose time stamps
are strictly smaller than t. This corresponds to
situations where the data arrives sequentially as a
temporal stream and at each time point a model
for the present is estimated using the available
stream at that time. We realize this restriction
by constraining K to satisfy K(r) = 0, r ≤ 0.

As with other statistical estimators, the accuracy of θ̂t

may be measured in terms of its mean squared error
E (θ̂t−θt)

2 which decomposes as the sum of the squared

bias and variance of θ̂t. Examining these quantities
allow us to study the convergence rate of θ̂t → θ and
its leading coefficient .

Proposition 1. The bias vector bias (θ̂t)
def
= E θ̂t − θt

and variance matrix of θ̂t in (8) are

bias (θ̂t) =

∑

τ∈I Kh(t − τ)|xτ | (θτ − θt)
∑

τ∈I Kh(t − τ)|xτ |
(9)

Var (θ̂t) =

∑

τ∈I K2
h(t − τ)|xτ | (diag(θτ ) − θτθ⊤τ )
(∑

τ∈I Kh(t − τ)|xτ |
)2

(10)

where diag(z) is the diagonal matrix [diag(z)]ij =
δijzi.

Proof. The random variable (RV) c(w, xτj) is dis-
tributed as a sum of multivariate Bernoulli RVs, or sin-
gle draws from multinomial distribution. The expec-
tation and variance of the estimator are that of a lin-
ear combination of iid multinomial RVs. To conclude

the proof we note that for Y ∼ Mult(1, θ), E Y = θ,
Var (θ) = diag(θ) − θθ⊤.

Examining Equations (9)-(10) reveals the expected de-
pendency of the bias on h and θt. The contribution to
the bias of the terms (θτ − θt), for large |τ − t|, will
decrease as h decreases since the kernel becomes more
localized and will reduce to 0 as h → 0. Similarly, for
slower drifts, ‖θτ − θt‖, t ≈ τ will decrease and reduce
the bias.

Despite the relative simplicity of Equations (9)-(10),
it is difficult to quantitatively capture the relationship
between the bias and variance, the sample size, h, λ,
and the smoothness of θt, g. Towards this goal we de-
rive the following asymptotic expansions.

Proposition 2. Assuming (i) θ, g are smooth in t,
(ii) h → 0, hn → ∞, (iii) g > 0 in a neighborhood of
t, and (iv) document lengths do not depend on t and
have expectation λ, we have in the offline case

bias (θ̂t|I) = h2µ21(K)

(

θ̇t
g′(t)

g(t)
+

1

2
θ̈t

)

+ oP (h2)

(11)

Var (θ̂t|I) =
µ02(K)

(nh)g(t)λ
(diag(θt) − θtθ

⊤
t ) + oP ((nh)−1)

and in the online case

bias (θ̂t|I) = hµ11(K)θ̇t + oP (h) (12)

Var (θ̂t|I) =

(
µ02(K)

nhg(t)λ
+

µ12(K)g′(t)

ng2(t)λ

)

(diag(θt) − θtθ
⊤
t )

+
µ12(K)

nλg(t)
(diag(θ̇t) − θ̇tθ

⊤
t − θtθ̇

⊤) + oP ((nh)−1)

where µkl(K)
def

=
∫

ukK l(u) du is assumed to be finite

and θ̇t is the vector [θ̇t]i = d
dt [θt]i.

The proof is somewhat similar to the derivation of the
asymptotic bias and variance of the Nadaraya-Watson
local regression (Wand & Jones, 1995) and is omit-

ted due to space limitations. The notation gn
p→ f

represents convergence in probability of gn to f i.e.
∀ǫ > 0, P (|gn − f | > ǫ) → 0, and gn = oP (fn) repre-

sents gn/fn
p→ 0.

Corollary 1. Under the assumptions in Proposi-
tion 2, and in particular h → 0, nh → ∞, the esti-
mator θ̂t is consistent i.e. θ̂t

p→ θt in both the offline
and online settings.

Proposition 2 specifies the conditions for consistency
as well as the rate of convergence. In particular, the
bias of online kernels converges at a linear rather than
quadratic rate. In either cases, the estimator is biased
and inconsistent unless h → 0, n → ∞ and nh−1 →
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∞. Expressions (11)-(12) reveal the performance gain
associated with a slower drift and sampling density g

indicated by θ̇t and g′(t) and with more (represented
by n) and longer (represented by λ) documents.

Figure 3 displays the RCV1 per-word test set loglikeli-
hood for the online and offline scenarios as a function
of the (triangular) kernel’s bandwidth. As expected,
offline kernels performs better than online kernels with
both achieving the best performance for a bandwidth
approximately 25 which corresponds to a support of 25
days in the online scenario and 50 days in the offline
scenario. Note that in addition to obtaining higher ac-
curacy than the global model corresponding to h → ∞,
the local model enjoys computational efficiency as it
ignores a large portion of the training data.

A central issue in local likelihood modeling is select-
ing the appropriate bandwidth h. A practical solu-
tion is to use cross validation or some other automatic
bandwidth selection mechanism. On RCV1 data, the
performance of such cross validation schemes is very
good and the estimated bandwidth possesses test set
loglikelihood that is almost identical to the optimal
bandwidth (see Figure 4, left).

Allowing the kernel scale to vary over time results in a
higher modeling accuracy than using fixed bandwidth
for all dates (see Figure 4, right). A time-dependent
cross validation procedure may be used to approx-
imate the time-dependent optimal bandwidth which
performs slightly better than the fixed-date cross val-
idation estimator. Note that the accuracy with which
the cross validation estimator approximates the opti-
mal bandwidth is lower in the time-dependent or vary-
ing bandwidth situation due the fact that much less
data is available in each of the daily cross validation
problems.

From a theoretical perspective, the asymptotic bias
and variance can be used to characterize the optimal
bandwidth and study its properties. Minimizing the
(offline) leading term of sum of component-wise MSE
with respect to h we obtain the bandwidth estimator

ĥ5
t = (13)

µ02(K)tr(diag(θt) − θtθ
⊤
t )

4nλµ2
21(K)

∑

j

(

[θ̇t]j g′(t)/
√

g(t) +
√

g(t)[θ̈t]j /2
)2 .

As expected, the optimal bandwidth decreases as
n, λ, ‖θ̇t‖, ‖θ̈‖ increases. Intuitively this makes sense
since in these cases the variance decreases and bias
either increases or stays constant. In practice, θ̇t, θ̈t

may vary significantly with time which leads to the
conclusion that a single bandwidth selection for all t

may not perform adequately. These changes are illus-

trated in Figure 5 (left) which demonstrates the tem-
poral change in the gradient norm.

Perhaps more interesting than the dependency of the
optimal bandwidth on n, λ, θ̇t, θ̈t is its dependency on
the time sampling distribution g(t). Equation (13)
reveals an un-expected non-monotonic dependency of
the optimal bandwidth in g(t). The dependency, ex-

pressed by ĥt ∝ (
∑V

j=1(c1j/
√

g(t)+c2j

√

g(t))2)−1/5 is
illustrated in Figure 6 (left) where we assume for sim-
plicity that c1j , c2j do not change with j resulting in

(ĥt)
−1 ∝ (c1/

√

g(t) + c2

√

g(t))2/5. The key to under-
standing this relationship is the increased asymptotic
bias due to the presence of the term g′(t)/g(t) in Equa-
tion (11). Intuitively, the variations in g(t) expressed
by g′(t) introduce a bias component which alters the
otherwise monotonic role of the optimal bandwidth
and bias-variance tradeoff. Since g(t) is highly non-
uniform (as illustrated in Figure 2), this dependency

of ĥt on g(t) is likely to play a significant role.

We finally point out that different words w have dif-
ferent parameters [θt]w and parameter derivatives [θ̇t]w
which indicates that it is unlikely that a single band-
width will work best for all words. Frequent words are
likely to benefit more from narrow kernel smoothing
than rare words which almost never appear. As a re-
sult, a lower bandwidth should be used for frequent
words while a high bandwidth should be used for rare
words. A systematic investigation of these topics is
beyond the scope of this paper.

4.2. Local Likelihood for Logistic Regression

Often, the primary goal behind modeling the drift is
conditional modeling i.e. predicting the value of y

given x. In this case, drift modeling should focus on
estimating the conditional pt(y|x) since modeling the
marginal pt(x) becomes irrelevant. In contrast to the
modeling of the conditional by Bayes rule pt(y|x) ∝
pt(x|y)pt(y) described in the previous section, we ex-
plore here direct modeling of {pt(y|x) : t ∈ I} using
local likelihood for logistic regression.

By direct analogy to Equation (4) the conditional local
likelihood estimator pt(y|x) is the maximizer of the
locally weighted conditional loglikelihood

ℓt(η|D) =

n∑

τ∈I

Kh(t − τ)

Nτ∑

j=1

log p(yτj|xτj ; η) η ∈ Θ.

As in the generative case, the kernel parameter h bal-
ances the degree of the kernel’s locality and controls
the bias-variance tradeoff.

Denoting by f(x) the vector of relative frequencies
in the document x, the logistic regression model
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Figure 3. Per-word log-likelihood of held out test set as a function of the triangular kernel’s bandwidth for the two largest
RCV1 categories (CCAT (left) and GCAT (right)). In all four cases, the optimal bandwidth seems to be approximately
25 which indicates a support of 25 days for the online kernels and 50 days for the offline kernels.
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Figure 4. Per-word log-likelihood over held-out test set for various bandwidths as a function of the daily training set size.
Left: The extreme global model corresponding to h → ∞ performs worst. Selecting the bandwidth by cross validation
results in an accurate estimate and test-set loglikelihood almost identical to that of the optimal slope. Right: Allowing
the kernel scale to vary over time results in a higher modeling accuracy than using fixed bandwidth for all dates.

50 100 150 200 250 300 350
0

0.002

0.004

0.006

0.008

0.01

20 40 60 80 100 120 140 160 180 200
0.058

0.06

0.062

0.064

0.066

0.068

0.07

0.072

0.074

0.076

0.078

 

 

h=opt online
h=inf online
h=opt offline
h=inf offline

Figure 5. Left: Estimated gradient norm for the most popular category in RCV1 as a function of t. The derivatives were
estimated using local smoothing. To avoid running into boundary effects we ignore the first and last 50 days. Right:
Classification error rate over a held-out test set for the local logistic regression model as a function of the train set size.
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log p(1|x ;θt)
1−p(1|x ;θt)

= 〈θt, f(x)〉, θ ∈ R
V leads to the fol-

lowing local conditional likelihood

ℓt(η|D) = −
n∑

τ∈I

Kh(t − τ)

Nτ∑

j=1

log
(

1 + e−yτj〈xτj ,η〉
)

.

In contrast to the naive Bayes model in the previous
section, the local likelihood does not have a close form
maximizer. However, it can be shown that under mild
conditions it is a concave problem exhibiting a single
global maximum (for each t) (Loader, 1999). Most
of the standard iterative algorithms for training logis-
tic regression can be modified to account for the local
weighting introduced by the smoothing kernel. More-
over, recently popularized regularization techniques
such as the penalty c‖η‖q, q = 1, 2 may be added to
the local likelihood to obtain a local regularized ver-
sion equivalent to maximum posterior estimation.

Figure 5 (right) displays classification error rate over a
held-out test set for local logistic regression as a func-
tion of the train set size. The classification task was
predicting the most popular class vs the second most
popular class in RCV1. The plots in the figure con-
trast the performance of the online and offline tricube
kernels with optimal and infinite bandwidths, using L2

regularization. The local model achieved a relative re-
duction of error rate over the global model by about
8%. As expected, the online kernel generally achieve
worse error rates than the offline kernels. In all the
experiments mentioned above we averaged over mul-
tiple random samplings of the training set to remove
sampling noise.

5. Discussion

A large number of textual datasets such as emails,
webpages, news stories, etc. contain time stamped
documents. For such datasets, considering a drifting
rather than a stationary distribution is often appropri-
ate. The local likelihood framework provides a natu-
ral extension for many standard likelihood models to
the concept drift scenario. As the drift becomes more
noticeable and the data size increases the potential
benefits of local likelihood methods over their extreme
global or local counterparts increase.

In this paper we illustrate the drift phenomenon and
examine the properties of the local likelihood estima-
tor including the asymptotic bias and variance tradeoff
and optimal bandwidth. Experiments conducted on
the RCV1 dataset demonstrate the validity of the lo-
cal likelihood estimators in practice and contrast them
with more standard non-local alternatives.
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Figure 6. Inverse of the optimal bandwidth derived from
Equation (13) as a function of g(t): (ĥt)

−1 ∝ (c1/
√

g(t) +

c2

√

g(t))2/5 (we take c1 = c2 = 1). The graph show the

non-monotonic dependency between ĥopt and g(t).
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Abstract

Residual gradient (RG) was proposed as an
alternative to TD(0) for policy evaluation
when function approximation is used, but
there exists little formal analysis comparing
them except in very limited cases. This pa-
per employs techniques from online learning
of linear functions and provides a worst-case
(non-probabilistic) analysis to compare these
two types of algorithms when linear func-
tion approximation is used. No statistical
assumptions are made on the sequence of
observations, so the analysis applies to non-
Markovian and even adversarial domains as
well. In particular, our results suggest that
RG may result in smaller temporal differ-
ences, while TD(0) is more likely to yield
smaller prediction errors. These phenomena
can be observed even in two simple Markov
chain examples that are non-adversarial.

1. Introduction

Reinforcement learning (RL) is a learning paradigm
for optimal sequential decision making (Bertsekas &
Tsitsiklis, 1996; Sutton & Barto, 1998) and has been
successfully applied to a number of challenging prob-
lems. In the RL framework, the agent interacts with
the environment in discrete timesteps by repeatedly
observing its current state, taking an action, receiving
a real-valued reward, and transitioning to a next state.
A policy is a function that maps states to actions; se-
mantically, it specifies what action to take given the
current state. The goal of an agent is to optimize its
policy in order to maximize the expected long-term re-
turn, namely, the discounted sum of rewards it receives
by following the policy.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

An important step in this optimization process is pol-
icy evaluation—the problem of evaluating expected
returns of a fixed policy. This problem is often the
most challenging step in approximate policy-iteration
algorithms (Bertsekas & Tsitsiklis, 1996; Lagoudakis
& Parr, 2003). Temporal difference (TD) is a fam-
ily of algorithms for policy evaluation (Sutton, 1988)
and has received a lot of attention from the commu-
nity. Unfortunately, it is observed (e.g., Baird (1995))
that TD methods may diverge when they are combined
with function approximation. An alternative algo-
rithm known as residual gradient (RG) was proposed
by Baird (1995) and enjoys guaranteed convergence to
a local optimum. Since RG is similar to TD(0), a par-
ticular instance of the TD family, we will focus on RG,
TD(0), and a variant of TD(0) in this paper.

Despite convergence issues, little is known that com-
pares RG and TD(0). Building on previous work
on online learning of linear functions (Cesa-Bianchi
et al., 1996) and a similar analysis by Schapire
and Warmuth (1996), we provide a worst-case (non-
probabilistic) analysis of these algorithms and focus
on two evaluation metrics: (i) total squared prediction
error, and (ii) total squared temporal difference. The
former measures accuracy of the predictions, while the
latter measures consistency and is closely related to
the Bellman error (Sutton & Barto, 1998).

Either metric may be preferred over the other in
different situations. For instance, Lagoudakis and
Parr (2003) argue that TD solutions tend to preserve
the shape of the value function and is more suitable for
approximate policy iteration, while there is evidence
that minimizing squared Bellman errors is more robust
in general (Munos, 2003). Our analysis suggests that
TD can make more accurate predictions, while RG can
result in smaller temporal differences. All terms will be
made precise in the next section. Although our theory
focuses on worst-case upper bounds, we also provide
numerical evidence and expect the resulting insights
to give useful guidance to RL practitioners in deciding
which algorithm best suits their purposes.
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2. Preliminaries

Fully observable environments in RL are often mod-
elled as Markov decision processes (Puterman, 1994),
which are equivalent to induced Markov chains when
controlled by a fixed policy. Here, however, we con-
sider a different model that is suitable for worst-case
analysis, as introduced in the next subsection. This
model makes no statistical assumption about the ob-
servations, and thus our results apply to much more
general situations including partially observable or ad-
versarial environments that subsume Markov chains.

Some notation is in order. We use bold-face, lower-case
letters to denote real-valued column vectors such as v.
Their components are denoted by the corresponding
letter with subscripts such as vt. We use ‖·‖ to denote
the Euclidean, or �2-norm: ‖v‖ =

√
v�v where v� is

the transpose of v. For a square matrix M , the set
of eigenvalues of M , known as the spectrum of M , is
denoted σ(M). If M is symmetric, its eigenvalues must
be real, and its largest eigenvalue is denoted ρ(M).

2.1. The Sequential Online Learning Model

Our learning model is adopted from Schapire and War-
muth (1996) and is an extension of the online-learning
model to sequential prediction problems. Let k be the
dimension of input vectors. The agent maintains a
weight vector of the same dimension and uses it to
make predictions. In RL, input vectors are often fea-
ture vectors of states or state–action pairs, and are
used to approximate value functions (Sutton & Barto,
1998). Learning proceeds in discrete timesteps and
terminates after T steps. The agent starts with an ini-
tial input vector x1 ∈ R

k and an initial weight vector
w1 ∈ R

k. At timestep t ∈ {1, 2, 3, · · · , T}:
• The agent makes a prediction ŷt = w�

t xt ∈ R,
where wt is the weight vector at time t. Through-
out the paper, assume ‖xt‖ ≤ X for some known
constant X > 0.

• The agent then observes an immediate reward
rt ∈ R and the next input vector xt+1. Based
on this information, it updates its weight vector
whose new value is denoted wt+1. The change in
weight is ∆wt = wt+1 −wt.

By convention, rt = 0 and xt = 0 for t > T . Define
the return at time t by yt =

∑∞
τ=t γτ−trτ , where γ ∈

[0, 1) is the discount factor. Since γ < 1, it effectively
diminishes future rewards exponentially fast. A quick
observation is that yt = rt +γyt+1, which is analogous
to the Bellman equation for Markov chains (Sutton &
Barto, 1998). The agent attempts to mimic yt by its

prediction ŷt, and the prediction error is et = yt −
ŷt. Our first evaluation metric is the total squared
prediction error : �P =

∑T
t=1 e2

t = ‖e‖2.
Another useful metric in RL is the temporal differences
(also known as TD errors), which measures how con-
sistent the predictions are. In particular, the temporal
difference at time t is dt = rt + γw�

t xt+1 − w�
t xt,

and the total squared temporal difference is �T D =
∑T

t=1 d2
t = ‖d‖2.

2.2. Previous Work

Previous convergence results of TD and RG often rely
heavily on certain stochastic assumptions of the en-
vironment such as the assumption that the sequence
of observations, [(xt, rt)]t∈N

, are generated by an ir-
reducible and aperiodic Markov chain. Tsitsiklis and
Van Roy (1997) first proved convergence of TD with
linear function approximation, while they also pointed
out the potential divergence risk when nonlinear ap-
proximation is used.

To resolve the instability issue of TD(0), Baird (1995)
proposed the RG algorithm, but also noted that
RG may converge more slowly than TD(0) in some
problems. Such an observation was later proved
by Schoknecht and Merke (2003), who used spectral
analysis to compare the asymptotic convergence rates
of the two algorithms. Although their results are in-
teresting, they only apply to quite limited cases where,
for example, a certain matrix associated with TD up-
dates has real eigenvalues only (which does not hold
in general). More importantly, they study synchronous
updates while TD and RG are often applied asynchro-
nously in practice. Furthermore, their results assume
that the value function is represented by a lookup ta-
ble, but the initial motivation of studying RG was to
develop a provably convergent algorithm when func-
tion approximation is used.

Schapire and Warmuth (1996) were also concerned
with similar worst-case behavior of TD-like algorithms
within the model described in Subsection 2.1. They
defined a new class of algorithms called TD∗(λ),
which is very similar to the TD(λ) algorithms of Sut-
ton (1988). They developed worst-case bounds for the
total squared prediction error of TD∗(λ), but not the
total squared temporal difference.

2.3. Algorithms

The algorithms we consider all update the weight vec-
tor incrementally and differ only in the update rules.
TD(0) uses the following rule:

∆wt = ηdtxt, (1)
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where η ∈ (0, 1) is the step-size parameter control-
ling aggressiveness of the update. Although TD(0) is
widely used in practice, analysis turns out to be easier
with a close relative of it, TD∗(0). This algorithm dif-
fers from TD(0) in that it adapts the step-size based
on the input vectors (Schapire and Warmuth (1996)
defined TD∗(0) in a different, but equivalent, form):

∆wt =
ηdtxt

1− γηx�
t xt+1

. (2)

Due to space limitation, we only provide results for
TD∗(0), but similar results hold for TD(0). It is ex-
pected, and also supported by the numerical evidence
in Section 4, that TD(0) and TD∗(0) have similar be-
havior and performance in practice. For this reason,
we refer to both algorithms as TD in the rest of the
paper if there is no risk of confusion. In contrast, RG
uses the following update rule:

∆wt = ηdt (xt − γxt+1) . (3)

3. Main Results

This section contains the main theoretical results. We
will first describe how to evaluate an algorithm in the
worst-case scenario. For completeness, we also sum-
marize the squared prediction error bounds for TD∗(0)
due to Schapire and Warmuth (1996). Then, we ana-
lyze total squared temporal difference bounds and RG.

Our analysis makes a few uses of matrix theory (see,
e.g., Horn and Johnson (1986)), and several tech-
nical lemmas are found in the appendix. Two ba-
sic facts about ρ(M) will be used repeatedly: (i) if
M is negative-definite, then ρ(M) < 0; and (ii) the
Rayleigh-Ritz theorem (Horn & Johnson, 1986, Theo-
rem 4.2.2) states that ρ(M) = maxv �=0

v�Mv
v�v

.

3.1. Evaluation Criterion

Analogous to other online-learning analysis, we treat
�P and �T D as total losses, and compare the total loss
of an algorithm to that of an arbitrary weight vector,
u. We wish to prove that this difference is small for
all u, including the optimal (in any well-defined sense)
but unknown vector u∗.

The prediction using vector u at time t is yu
t =

u�xt. Accordingly, the prediction error and tem-
poral difference at time t are eu

t = yt − yu
t and

du
t = rt + γu�xt+1 − u�xt, respectively. The total

squared prediction error and total squared temporal
difference of u are �uP = ‖eu‖2 =

∑T
t=1

(
yt − u�xt

)2

and �uT D = ‖du‖2 =
∑T

t=1

(
rt + γu�xt+1 − u�xt

)2,
respectively.

3.2. Squared Prediction Errors of TD∗(0)

Using step-size η = 1
X2+1 , Schapire and War-

muth (1996) showed a worst-case upper bound:

�P ≤
(
1 + X2

) (

�uP + ‖w1 − u‖22
)

1− γ2
.

Furthermore, if E and W are known beforehand such
that �uP ≤ E and ‖w1 − u‖ ≤ W , then the step-size
η can be optimized by η = W

X
√

E+X2W
to yield an

asymptotically better bound:

�P ≤ �uP + 2WX
√

E + X2W 2

1− γ2
. (4)

3.3. Squared Temporal Differences of TD∗(0)

We will extend the analysis of Schapire and War-
muth (1996) to the new loss function �T D by exam-
ining how the potential function, ‖wt − u‖2, evolves
when a single update is made at time t. It can
be shown (Schapire & Warmuth, 1996, Eqn 8) that
−‖w1 − u‖2 ≤ η2X2e�D�De + 2ηe�D� (eu − e),
where

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −γ 0 · · · 0 0
0 1 −γ · · · 0 0

. . .
0 0 · · · 1 −γ 0
0 0 · · · 0 1 −γ
0 0 · · · 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5)

Define f = De. According to Lemma A.1(1), du =
Deu, and hence the inequality above is rewritten as:

−‖w1 − u‖2 ≤ η2X2f�f − 2ηf�D−1f + 2ηf�D−1du.

Using the fact that 2p�q ≤ ‖p‖2 + ‖q‖2 for p =
η√
b
D−�f , q =

√
bdu, and arbitrary b > 0, the inequal-

ity becomes −‖w1 − u‖2 ≤ f�M1f + b�uT D, where

M1 = η2X2I +
η2

b
D−1D−� − η(D−1 + D−�) (6)

is a symmetric matrix. Since ρ(M1) is the largest
eigenvalue of M1, we have f�M1f ≤ ρ(M1) ‖f‖2, and
hence, −‖w1 − u‖2 ≤ ‖f‖2 ρ(M1) + b�uT D. Combining
this with Lemma A.4, we have that ‖f‖2 is at most

(1 + γ)2
(

X2 +
1

b(1− γ)2

)(

b�uT D + ‖w1 − b‖2
)

,

when the step-size is

η =
1

(1 + γ)
(

X2 + 1
b(1−γ)2

) . (7)
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Due to Lemma A.1 (2), we have

d2
t =

(
1− γηx�

t xt+1

)2
f2

t

≤ (
1 + γηX2

)2
f2

t ≤
(1 + 2γ)2

(1 + γ)2
f2

t .

Therefore, �T D is at most

(1 + 2γ)2
(

X2 +
1

b(1− γ)2

)(

b�uT D + ‖w1 − u‖2
)

.

Using b = 1, we have thus proved the first main result.

Theorem 3.1. Let η be given by Eqn 7 using b = 1,
then the following holds for TD∗(0):

�T D ≤ (1+2γ)2
(

X2 +
1

(1− γ)2

)(

�uT D + ‖w1 − u‖2
)

.

Theorem 3.2. If E and W are known beforehand
such that �uT D ≤ E and ‖w1 − u‖ ≤ W , then η can
be optimized in TD∗(0) so that

�T D ≤ (1 + 2γ)2
(

�uT D
(1− γ)2

+
2XW

√
E

1− γ
+ X2 ‖w1 − u‖2

)

.(8)

Proof. Previous analysis for Theorem 3.1 yields

�T D ≤ (1 + 2γ)2
((

bX2�uT D +
‖w1 − u‖2
b(1− γ)2

)

+

(
�uT D

(1− γ)2
+ X2 ‖w1 − u‖2

))

≤ (1 + 2γ)2
((

bX2E +
W 2

b(1− γ)2

)

+
(

�uT D
(1− γ)2

+ X2 ‖w1 − u‖2
))

for any b > 0. We may simply choose b = W
X(1−γ)

√
E

,
and the step-size in Eqn 7 becomes

η =
1

(1 + γ)
(

X2 + X
√

E
W (1−γ)

) .

3.4. Squared Prediction Errors of RG

By the update rule in Eqn 3 and simple algebra,

∆w�
t (wt − u) = ηdt(xt − γxt+1)�(wt − u)

= ηdt

((
w�

t xt − γw�
t xt+1 − rt

)

− (u�xt − γu�xt+1 − rt

))

= ηdt(du
t − dt),

‖∆wt‖2 = η2d2
t ‖xt − γxt+1‖22

≤ η2d2
t X

2(1 + γ)2.

Similar to the previous section, we use the potential
function ‖wt − u‖2 to measure progress of learning:

−‖w1 − u‖2 ≤
T∑

t=1

(

‖wt+1 − u‖2 − ‖wt − u‖2
)

=
T∑

t=1

(
2∆w�

t (wt − u) + ∆w�
t ∆wt

)

≤
T∑

t=1

(
2ηdt(du

t − dt) + η2d2
t X

2(1 + γ)2
)

= 2ηd�du − 2ηd�d + η2X2(1 + γ)2d�d.

According to Lemma A.1 (1) and using the fact that
2p�q ≤ ‖p‖2 + ‖q‖2 for p = η√

b
D�d, q =

√
beu, and

arbitrary b > 0, the inequality above is written as:

−‖w1 − u‖2 ≤ b ‖eu‖2 +
η2

b
d�DD�d +

(
η2X2(1 + γ)2 − 2η

) ‖d‖2

Due to Lemma A.1 (3), d = ΣDe, where

Σ = diag
(

1
1 + γη(x1 − γx2)�x2

,

1
1 + γη(x2 − γx3)�x3

, · · · ,
1

1 + γη(xT−1 − γxT )�xT
, 1
)

. (9)

Then, the inequality above becomes:

−‖w1 − u‖2 ≤ b ‖eu‖2 + e�M2e,

where

M2 = D�Σ

„
η2

b
DD� +

`
η2X2(1 + γ)2 − 2η

´
I

«
ΣD. (10)

Since e�M2e ≤ ρ(M2) ‖e‖2, Lemma A.5 implies the
following theorems when the step-size is

η =
1

(1 + γ)2
(
X2 + 1

b

) . (11)

Theorem 3.3. Let η be given by Eqn 11 using b = 1,
then the following holds for RG:

�P ≤
(1 + 2γ)2

(
X2 + 1

)

(1− γ)2
(

�uP + ‖w1 − u‖2
)

.

Theorem 3.4. If E and W are known beforehand
such that �uP ≤ E and ‖w1 − u‖ ≤ W , then η can
be optimized in RG so that

�P ≤ (1 + 2γ)2

(1− γ)2
(

�uP + 2XW
√

E + X2 ‖w1 − u‖2
)

. (12)

563



A Worst-Case Comparison between TD and RG with Linear Function Approximation

Proof. Previous analysis in this subsection yields

�P ≤ (1 + 2γ)2

(1− γ)2
((

�uP + X2 ‖w1 − u‖2
)

+
(

X2b�uP +
‖w1 − u‖2

b

))

≤ (1 + 2γ)2

(1− γ)2
((

�uP + X2 ‖w1 − u‖2
)

+
(

X2bE +
W 2

b

))

.

We simply choose b = W
X

√
E

and accordingly the step-
size in Eqn 11 becomes

η =
1

(1 + γ)2
(

X2 + X
√

E
W

) .

3.5. Squared Temporal Differences of RG

It is most convenient to turn this problem into one
of analyzing the total squared prediction error in
the original online-learning-of-linear-function frame-
work (Cesa-Bianchi et al., 1996). In particular, define
zt = xt − γxt+1 and thus ‖zt‖ ≤ (1 + γ)X. Now,
RG can be viewed as a gradient descent algorithm op-
erating over the sequence of data [(zt, rt)]t∈{1,2,··· ,T}.
Due to Theorem IV.1 of Cesa-Bianchi et al. (1996), we
immediately have

�T D ≤ 2.25
(

�uT D + X2(1 + γ)2 ‖u‖2
)

,

for any u when the step-size is η = 2
3X2(1+γ)2 . If E and

W are known beforehand so that �uT D ≤ E and ‖u‖ ≤
W , then η can be optimized (Theorem IV.3 of Cesa-
Bianchi et al. (1996)) by η = W

X(1+γ)(WX(1+γ)+
√

E)
to

obtain the following improved bound:

�T D ≤ �uT D + 2WX(1 + γ)
√

E + (1 + γ)2W 2X2. (13)

3.6. Discussions

Based on Eqns 4, 8, 12, and 13, Table 1 summarizes
the asymptotic upper bounds (when T → ∞) assum-
ing E and W are known beforehand to optimize η.1

Although our bounds are all upper bounds, results in
the table suggest that, in worst cases, TD∗(0) (and
also TD(0)) tend to make smaller prediction errors,
while RG tends to make smaller temporal differences.
The gaps between corresponding bounds increase as

1Strictly speaking, the validity of these asymptotic re-
sults relies on the assumptions that (i)

√
E = o(�uP), and

(ii) W and X remain constant as T → ∞. Both assump-
tions are reasonable in practice.

Table 1. Asymptotic upper bounds for total squared pre-
diction error and total squared temporal difference of
TD∗(0) and RG.

�P/�uP �T D/�uT D

TD∗(0) 1
1−γ2 + o(1) (1+2γ)2

(1−γ)2 + o(1)

RG (1+2γ)2

(1−γ)2 + o(1) 1 + o(1)

γ → 1. On the other extreme where γ = 0, all these
asymptotic bounds coincide, which is not surprising as
TD(0), TD∗(0), and RG are all identical when γ = 0.

Since it is unknown whether the leading constants in
Table 1 are optimal, the next section will provide nu-
merical evidence to support our claims about the rel-
ative strengths of these algorithms.

It is worth mentioning that in sequential prediction
or decision problems, the factor 1

1−γ often plays a
role similar to the decision horizon (Puterman, 1994).
Therefore, in some sense, our bounds also character-
ize how prediction errors and temporal differences may
scale with decision horizon, in the worst-case sense.

When �P or �T D are relatively small, the asymptotic
bounds in Table 1 are less useful as the ‖w1 − u‖2 in
the bounds dominate �P or �T D. However, we still get
similar qualitative results by comparing the constant
factors of the term ‖w1 − u‖2 in the bounds.

Since our setting is quite different from that of
Schoknecht and Merke (2003), our results are not com-
parable to theirs.

4. Experiments

This section presents empirical evidence in two Markov
chains that supports our claims in Section 3.6.

The first is the Ring Markov chain (Figure 1 (a)),
a variant of the Hall problem introduced by
Baird (1995) in which RG was observed to converge
to the optimal weights more slowly than TD(0). The
state space is a ring consisting of 10 states numbered
from 0 through 9. Each state is associated with a
randomly selected feature vector of dimension k = 5:
x(0), · · · ,x(9) ∈ R

k. Transitions are deterministic and
are indicated by arrows. The reward in every state is
stochastic and is distributed uniformly in [−0.1, 0.1].
As in Hall , the value of every state is exactly 0.

The second problem is a benchmark problem known as
PuddleWorld (Boyan & Moore, 1995). The state
space is a unit square (Figure 1 (d)), and a start state
of an episode is randomly selected in [0, 0.2]× [0, 0.2].

564



A Worst-Case Comparison between TD and RG with Linear Function Approximation

0
1

2

3

4
5

9

8

7

6
0

100

200

300

400

500

600

700

0.7 0.8 0.9 0.95 0.98 0.99 0.995 0.999
discount

pe
r-

st
ep

 sq
ua

re
d 

pr
ed

ic
tio

n 
er

ro
r

TD(0)
TD*(0)
RG

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.7 0.8 0.9 0.95 0.98 0.99 0.995 0.999
discount

pe
r-

st
ep

 sq
ua

re
d 

te
mpo

ra
l d

iffe
re

nc
e

(a) Ring (b) per-step squared prediction error (c) per-step squared temporal difference
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(d) PuddleWorld (e) per-step squared prediction error (f) per-step squared temporal difference

Figure 1. Two Markov chains we used: (a) Ring and (d) PuddleWorld (Boyan & Moore, 1995). All results are averaged
over 500 runs, with 99% confidence intervals plotted. Ring and PuddleWorld results are in (b,c) and (e,f), respectively.

The agent adopts a fixed policy that goes north or
east with probability 0.5 each. Every episode takes
about 40 steps to terminate. The reward is −1 un-
less the agent steps into the puddles and receives
penalty for that; the smallest possible reward is −41.
We used 16 RBF features of width 0.3, whose cen-
ters were evenly distributed in the state space. We
also tried a degree-two polynomial feature: for a state
s = (s1, s2)

�, the feature vector had six components:
xs =

(
1, s1, s2, s1s2, s

2
1, s

2
2

)�. Since the results are sim-
ilar to those for RBF features, they are not included.

We ran three algorithms in the experiments: TD(0),
TD∗(0), and RG. For a fair comparison, all algorithms
started with the all-one weight vector and were given
the same sequence of (xt, rt) for learning. The pro-
cedure was repeated 500 times. For Ring , each run
used a different realization of feature x(s) and T = 500;
for PuddleWorld , each run consisted of 50 episodes
(yielding slightly less than 2000 steps in total). A wide
range of step-sizes were tried, and the best choices for
each discount-factor–algorithm combination were used
to evaluate �P and �T D, respectively. Figure 1 (b,c,e,f)
gives the average per-step squared prediction errors
and squared temporal differences for these two prob-
lems, with 99% confidence intervals plotted.

These results are consistent with our analysis: TD(0)

and TD∗(0) tended to make more accurate predictions,
while RG did a better job at minimizing temporal
differences; the differences between these algorithms
were even larger as the discount factor γ approached
1.2 Finally, as a side effect, it is verified that TD(0)
and TD∗(0) had essentially identical performance, al-
though their best learning rates might differ.

5. Conclusion

We have carried out a worst-case analysis to compare
two policy-evaluation algorithms, TD and RG, when
linear function approximation is used. Together with
previously known results due to Schapire and War-
muth (1996) and Cesa-Bianchi et al. (1996), our re-
sults suggest that, although the TD algorithms may
make more accurate predictions, RG may be a bet-
ter choice when small temporal differences are desired.
This claim is supported by empirical evidence in two
simple Markov chains. Although the analysis is purely
mathematical, we expect the implications to deepen
the understanding of these two types of algorithms and
can provide useful insights to RL practitioners.

2This effect was less obvious when γ got too close to 1.
This was because the trajectories in our experiments were
not long enough for such γ to have full impacts.

565



A Worst-Case Comparison between TD and RG with Linear Function Approximation

There has been relatively little attention to this sort
of online-learning analysis within the RL community.
Our analysis shows that this kind of analysis may
be helpful and provide useful insights. A few direc-
tions are worth pursuing. First, we have focused on
worst-case upper bounds, but it remains open whether
matching lower bounds can be found. More exten-
sive empirical studies are also necessary to see if such
worst-case behavior can be observed in realistic prob-
lems. Second, we wish to generalize the analysis
of total squared temporal difference from TD(0) and
TD∗(0) to TD(λ) and TD∗(λ), respectively. Finally,
we would like to mention that, in their original forms,
both TD and RG use additive updates. Another class
of updates known as multiplicative updates (Kivinen
& Warmuth, 1997) has been useful when the number
of features (i.e., the k in Subsection 2.1) is large but
only a few of them are relevant for making predictions.
Such learning rules have potential uses in RL (Precup
& Sutton, 1997), but it remains open whether these al-
gorithms converge or whether worst-case error bounds
similar to the ones given in this paper can be obtained.

A. Lemmas and Proofs

Lemma A.1. This lemma collects a few basic facts
useful in our analysis (D is given in Eqn 5):

1. In all three algorithms, du = Deu.
2. In TD∗(0), dt = (1− γηx�

t xt+1)(et − γet+1).
3. In RG, dt = et−γet+1

1+γη(xt−γxt+1)�xt+1

.

Proof. 1. Since yt = rt + γyt+1, we have

du
t = rt + γu�xt+1 − u�xt

=
(
yt − u�xt

)− (yt − rt − γu�xt+1

)

=
(
yt − u�xt

)− γ
(
yt+1 − u�xt+1

)

= eu
t − γeu

t+1.

In matrix form, this is du = Deu.
2. Since wt = wt+1 −∆wt and yt = rt + γyt+1,

dt = rt + γw�
t xt+1 −w�

t xt

= rt + γ(wt+1 −∆wt)�xt+1 −w�
t xt +

(yt − rt − γyt+1)
= (yt −w�

t xt)− γ(yt+1 −w�
t+1xt+1)−

γ∆w�
t xt+1

= et − γet+1 − γηdtx�
t xt+1

1− γηx�
t xt+1

.

Reorganizing terms will complete the proof.
3. Similar to the proof for part (2) except that ∆wt

is computed by Eqn 3.

Two technical lemmas are useful to prove Lemma A.4.
It should be noted that the bounds they give are tight.
Lemma A.2. For D given in Eqn 5, let A be
D�D or DD�, and B be D−1D−� or D−�D−1.
Then, σ (A) ⊆ [

(1− γ)2, (1 + γ)2
]

and σ (B) ⊆
[
(1 + γ)−2, (1− γ)−2

]
.

Proof. It can be verified that D�D equals
⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 −γ 0 · · · 0
−γ 1 + γ2 −γ · · · 0

. . .
0 0 · · · 1 + γ2 −γ
0 0 · · · −γ 1 + γ2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Since D�D is symmetric, σ
(
D�D

) ⊂ R. It fol-
lows from Geršgorin’s theorem (Horn & Johnson, 1986,
Theorem 6.1.1) that σ

(
D�D

) ⊆ [(1− γ)2, (1 + γ)2
]
.

The same holds for σ
(
DD�). The second part follows

immediately by observing that D−1D−� =
(
D�D

)−1

and D−�D−1 =
(
DD�)−1.

Lemma A.3. Let D be given by Eqn 5, then

σ(D−1 + D−�) ⊆
[

2
1 + γ

,
2

1− γ

]

.

Proof. It can be verified that D−1 + D−� equals

G =

0
BBBBBBB@

2 γ γ2 · · · γT−2 γT−1

γ 2 γ · · · γT−3 γT−2

. . .

γT−3 γT−4 · · · 2 γ γ2

γT−2 γT−3 · · · γ 2 γ
γT−1 γT−2 · · · γ2 γ 2

1
CCCCCCCA

,

and that (G− I)−1 equals
0
BBBBBBBBB@

1

1−γ2

−γ
1−γ2 0 · · · 0 0

−γ
1−γ2

1+γ2

1−γ2

−γ
1−γ2 · · · 0 0

. . .

0 0 · · · 1+γ2

1−γ2

−γ
1−γ2 0

0 0 · · · −γ
1−γ2

1+γ2

1−γ2

−γ
1−γ2

0 0 · · · 0 −γ
1−γ2

1

1−γ2

1
CCCCCCCCCA

.

Clearly, (G − I)−1 is symmetric, and it follows from
Geršgorin’s theorem that

σ
(
(G− I)−1

) ⊆
[
1− γ

1 + γ
,
1 + γ

1− γ

]

.

Therefore,

σ(G− I) ⊆
[(

1 + γ

1− γ

)−1

,

(
1− γ

1 + γ

)−1
]

=
[
1− γ

1 + γ
,
1 + γ

1− γ

]

.
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Consequently,

σ(G) ⊆
[

1 +
1− γ

1 + γ
, 1 +

1 + γ

1− γ

]

=
[

2
1 + γ

,
2

1− γ

]

.

We are now ready to prove the following lemma.

Lemma A.4. ρ(M1) ≤ − 2η
1+γ + η2

(

X2 + 1
b(1−γ)2

)

where M1 is given in Eqn 6.

Proof. By Weyl’s theorem (Horn & Johnson, 1986,
Theorem 4.3.1),

ρ(M1) ≤ ρ
(
η2X2I

)
+ ρ

(
η2

b
D−1D−�

)

+

ρ
(−η

(
D−1 + D−�)) .

The lemma then follows immediately from Lem-
mas A.2 and A.3.

Lemma A.5. Let M2 be defined by Eqn 10 and sup-
pose the step-size is given by Eqn 11, then

ρ(M2) ≤ − (1− γ)2

(1 + 2γ)2
(
X2 + 1

b

) .

Proof. Let α = η2

b and β = η2X2(1 + γ)2 − 2η, then
M2 = D�Σ

(
αDD� + βI

)
ΣD. It is known that

ρ(M2) = max
v1 �=0

v�
1 M2v1

v�
1 v1

.

Define v2 = Dv1 and we have:

ρ(M2) = max
v2 �=0

v2Σ
(
αDD� + βI

)
Σv2

v�
2 D−�D−1v2

≤ max
v2 �=0

(1− γ)2v2Σ
(
αDD� + βI

)
Σv2

v�
2 v2

,

where the last step is due to Lemma A.2 and the fact
that M2 is negative-definite for η 	 1. Similarly, we
define v3 = Σv2 and use the fact that

0 ≤ v�
2 v2 = v�

3 Σ−2v3 ≤
(
1 + γ(1 + γ)ηX2

)2 ‖v3‖2

to obtain:

ρ(M2) ≤ max
v3 �=0

(1− γ)2v�
3

(
αDD� + βI

)
v�

3

(1 + γ(1 + γ)ηX2)2 v�
3 v3

=
(1− γ)2ρ

(
αDD� + βI

)

(1 + γ(1 + γ)ηX2)2

≤ (1− γ)2
(
α(1 + γ)2 + β

)

(1 + γ(1 + γ)ηX2)2
.

If we choose η as in Eqn 11, then the lemma follows
immediately from the fact that

1 +
γX2

(1 + γ)
(
X2 + 1

b

) ≤ 1 +
γ

1 + γ
=

1 + 2γ

1 + γ
.

Acknowledgment

We thank Michael Littman, Hengshuai Yao, and the
anonymous reviewers for helpful comments that im-
proved the presentation of the paper. The author is
supported by NSF under grant IIS-0325281.

References

Baird, L. C. (1995). Residual algorithms: Reinforcement
learning with function approximation. Proceedings of the
Twelfth International Conference on Machine Learning
(ICML-95) (pp. 30–37).

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic
programming. Athena Scientific.

Boyan, J. A., & Moore, A. W. (1995). Generalization in
reinforcement learning: Safely approximating the value
function. Advances in Neural Information Processing
Systems 7 (NIPS-94) (pp. 369–376).

Cesa-Bianchi, N., Long, P. M., & Warmuth, M. (1996).
Worst-case quadratic loss bounds for prediction using
linear functions and gradient descent. IEEE Transac-
tions on Neural Networks, 7, 604–619.

Horn, R. A., & Johnson, C. R. (1986). Matrix analysis.
Cambridge University Press.

Kivinen, J., & Warmuth, M. K. (1997). Exponentiated
gradient versus gradient descent for linear predictors.
Information and Computation, 132, 1–63.

Lagoudakis, M. G., & Parr, R. (2003). Least-squares pol-
icy iteration. Journal of Machine Learning Research, 4,
1107–1149.

Munos, R. (2003). Error bounds for approximate policy it-
eration. Proceedings of the Twentieth International Con-
ference on Machine Learning (ICML-03) (pp. 560–567).

Precup, D., & Sutton, R. S. (1997). Exponentiated gra-
dient methods for reinforcement learning. Proceedings
of the Fourteenth International Conference on Machine
Learning (ICML-97) (pp. 272–277).

Puterman, M. L. (1994). Markov decision processes:
Discrete stochastic dynamic programming. New York:
Wiley-Interscience.

Schapire, R. E., & Warmuth, M. K. (1996). On the worst-
case analysis of temporal-difference learning algorithms.
Machine Learning, 22, 95–122.

Schoknecht, R., & Merke, A. (2003). TD(0) converges prov-
ably faster than the residual gradient algorithm. Pro-
ceedings of the Twentieth International Conference on
Machine Learning (ICML-03) (pp. 680–687).

Sutton, R. S. (1988). Learning to predict by the methods
of temporal differences. Machine Learning, 3, 9–44.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learn-
ing: An introduction. Cambridge, MA: MIT Press.

Tsitsiklis, J. N., & Van Roy, B. (1997). An analysis of
temporal-difference learning with function approxima-
tion. IEEE Transactions on Automatic Control, 42, 674–
690.

567



Knows What It Knows: A Framework For Self-Aware Learning

Lihong Li lihong@cs.rutgers.edu
Michael L. Littman mlittman@cs.rutgers.edu
Thomas J. Walsh thomaswa@cs.rutgers.edu

Department of Computer Science, Rutgers University, Piscataway, NJ 08854 USA

Abstract

We introduce a learning framework that
combines elements of the well-known PAC
and mistake-bound models. The KWIK
(knows what it knows) framework was de-
signed particularly for its utility in learning
settings where active exploration can impact
the training examples the learner is exposed
to, as is true in reinforcement-learning and
active-learning problems. We catalog several
KWIK-learnable classes and open problems.

1. Motivation

At the core of recent reinforcement-learning algo-
rithms that have polynomial sample complexity guar-
antees (Kearns & Singh, 2002; Kearns & Koller, 1999;
Kakade et al., 2003; Strehl et al., 2007) lies the idea
of distinguishing between instances that have been
learned with sufficient accuracy and those whose out-
puts are still unknown.

The Rmax algorithm (Brafman & Tennenholtz, 2002),
for example, estimates transition probabilities for each
state–action–next-state triple of a Markov decision
process (MDP). The estimates are made separately,
as licensed by the Markov property, and the accuracy
of the estimate is bounded using Hoeffding bounds.
The algorithm explicitly distinguishes between proba-
bilities that have been estimated accurately (known)
and those for which more experience will be needed
(unknown). By encouraging the agent to gather more
experience in the unknown states, Rmax can guaran-
tee a polynomial bound on the number of timesteps in
which it has a non-near-optimal policy (Kakade, 2003).

In this paper, we make explicit the properties that are
sufficient for a learning algorithm to be used in efficient

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

[1,1,1][1,1,1] [1,1,1] [1,1,1]
[0,0,1] [0,0,1]

[1,0,0]

[0,1,1] [0,0,0]

Figure 1. A cost-vector navigation graph.

exploration algorithms like Rmax. Roughly, the learn-
ing algorithm needs to make only accurate predictions,
although it can opt out of predictions by saying “I
don’t know” (⊥). However, there must be a (polyno-
mial) bound on the number of times the algorithm can
respond ⊥. We call such a learning algorithm KWIK
(“know what it knows”).

Section 2 provides a motivating example and sketches
possible uses for KWIK algorithms. Section 3 defines
the KWIK conditions more precisely and relates them
to established models from learning theory. Sections 4
and 5 survey a set of hypothesis classes for which
KWIK algorithms can be created.

2. A KWIK Example

Consider the simple navigation task in Figure 1. There
is a set of nodes connected by edges, with the node on
the left as the source and the dark one on the right
as the sink. Each edge in the graph is associated with
a binary cost vector of dimension d = 3, indicated in
the figure. The cost of traversing an edge is the dot
product of its cost vector with a fixed weight vector
w = [1, 2, 0]. Assume that w is not known to the agent,
but the graph topology and all cost vectors are. In each
episode, the agent starts from the source and moves
along some path to the sink. Each time it crosses an
edge, the agent observes its true cost. Once the sink
is reached, the next episode begins. The learning task
is to take a non-cheapest path in as few episodes as
possible. There are 3 distinct paths in this example.
Given the w above, the top has a cost of 12, the middle
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13, and the bottom 15.

A simple approach for this task is for the agent to
assume edge costs are uniform and walk the shortest
(middle) path to collect data. It would gather 4 exam-
ples of [1, 1, 1] → 3 and one of [1, 0, 0] → 1. Standard
regression algorithms could use this dataset to find a
ŵ that fits this data. Here, ŵ = [1, 1, 1] is a natural
choice. The learned weight vector could then be used
to estimate costs for the three paths: 14 for the top,
13 for the middle, 14 for the bottom. Using these es-
timates, an agent would continue to take the middle
path forever, never realizing it is not optimal.

In contrast, consider a learning algorithm that “knows
what it knows”. Instead of creating an approximate
weight vector ŵ, it reasons about whether the costs
for each edge can be obtained from the available data.
The middle path, since we’ve seen all its edge costs,
is definitely 13. The last edge of the bottom path has
cost vector [0, 0, 0], so its cost must be zero, but the
penultimate edge of this path has cost vector [0, 1, 1].
This vector is a linear combination of the two observed
cost vectors, so, regardless of w,

w·[0, 1, 1] = w·([1, 1, 1]−[1, 0, 0]) = w·[1, 1, 1]−w·[1, 0, 0],

which is just 3 − 1 = 2. Thus, we know the bottom
path’s cost is 14—worse than the middle path.

The vector [0, 0, 1] on the top path is linearly inde-
pendent of the cost vectors we’ve seen, so its cost is
unconstrained. We know we don’t know. A safe thing
to assume provisionally is that it’s zero, encouraging
the agent to try the top path in the second episode.
Now, it observes [0, 0, 1] → 0, allowing it to solve for
w and accurately predict the cost for any vector (the
training data spans <d). It now knows that it knows all
the costs, and can confidently take the optimal (top)
path.

In general, any algorithm that guesses a weight vec-
tor may never find the optimal path. An algorithm
that uses linear algebra to distinguish known from un-
known costs will either take an optimal route or dis-
cover the cost of a linearly independent cost vector on
each episode. Thus, it can never choose suboptimal
paths more than d times.

The motivation for studying KWIK learning grew
out of its use in multi-state sequential decision mak-
ing problems like this one. However, other machine-
learning problems could benefit from this perspective
and from the development of efficient algorithms. For
instance, action selection in bandit problems (Fong,
1995) and associative bandit problems (Strehl et al.,
2006) (bandit problems with inputs) can both be ad-
dressed in the KWIK setting by choosing the better

arm when both payoffs are known and an unknown
arm otherwise.

KWIK could also be a useful framework for study-
ing active learning (Cohn et al., 1994) and anomaly
detection (Lane & Brodley, 2003), both of which are
machine-learning problems that require some degree of
reasoning about whether a recently presented input is
predictable from previous examples. When mistakes
are costly, as in utility-based data mining (Weiss &
Tian, 2006) or learning robust control (Bagnell et al.,
2001), having explicit predictions of certainty can be
very useful for decision making.

3. Formal Definition

This section provides a formal definition of KWIK
learning and its relationship to existing frameworks.

3.1. KWIK Definition

KWIK is an objective for supervised learning algo-
rithms. In particular, we begin with an input set X
and output set Y . The hypothesis class H consists of
a set of functions from X to Y : H ⊆ (X → Y ). The
target function h∗ ∈ H is the source of training ex-
amples and is unknown to the learner. Note that the
setting is “realizable”, meaning we assume the target
function is in the hypothesis class.

The protocol for a “run” is:

• The hypothesis class H and accuracy parameters
ε and δ are known to both the learner and envi-
ronment.

• The environment selects a target function h∗ ∈ H
adversarially.

• Repeat:

– The environment selects an input x ∈ X ad-
versarially and informs the learner.

– The learner predicts an output ŷ ∈ Y ∪ {⊥}.
– If ŷ 6= ⊥, it should be accurate: |ŷ − y| ≤ ε,

where y = h∗(x). Otherwise, the entire run
is considered a failure. The probability of a
failed run must be bounded by δ.

– Over a run, the total number of steps on
which ŷ = ⊥ must be bounded by B(ε, δ),
ideally polynomial in 1/ε, 1/δ, and parame-
ters defining H. Note that this bound should
hold even if h∗ 6∈ H, although, obviously, out-
puts need not be accurate in this case.

– If ŷ = ⊥, the learner makes an observation
z ∈ Z of the output, where z = y in the de-
terministic case, z = 1 with probability y and
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Figure 2. Relationship of KWIK to existing PAC and MB
(mistake bound) frameworks in terms of how labels are
provided for inputs.

0 with probability 1−y in the Bernoulli case,
or z = y + η for zero-mean random variable
η in the additive noise case.

3.2. Connection to PAC and MB

Figure 2 illustrates the relationship of KWIK
to the similar PAC (probably approximately cor-
rect) (Valiant, 1984) and MB (mistake bound) (Lit-
tlestone, 1987) frameworks. In all three cases, a series
of inputs (instances) is presented to the learner. Each
input is depicted in the figure by a rectangular box.

In the PAC model, the learner is provided with labels
(correct outputs) for an initial sequence of inputs, de-
picted by cross-hatched boxes. After that point, the
learner is responsible for producing accurate outputs
(empty boxes) for all new inputs. Inputs are drawn
from a fixed distribution.

In the MB model, the learner is expected to produce
an output for every input. Labels are provided to the
learner whenever it makes a mistake (filled boxes). In-
puts are selected adversarially, so there is no bound
on when the last mistake might be made. However,
MB algorithms guarantee that the total number of
mistakes is small, so the ratio of incorrect to correct
outputs must go to zero asymptotically. Any MB al-
gorithm for a hypothesis class can be used to provide a
PAC algorithm for the same class, but not necessarily
vice versa (Blum, 1994).

The KWIK model has elements of both PAC and MB.
Like PAC, a KWIK algorithm is not allowed to make
mistakes. Like MB, inputs to a KWIK algorithm are
selected adversarially. Instead of bounding mistakes,
a KWIK algorithm must have a bound on the num-
ber of label requests (⊥) it can make. By requiring
performance to be independent of the distribution, a
KWIK algorithm can be used in cases in which the in-
put distribution is dependent in complex ways on the
KWIK algorithm’s behavior, as can happen in on-line
or active learning settings. And, like PAC and MB,
the definition of KWIK algorithms can be naturally
extended to enforce low computational complexity.

Note that any KWIK algorithm can be turned into a
MB algorithm with the same bound by simply hav-
ing the algorithm guess an output each time it is not
certain. However, some hypothesis classes are expo-
nentially harder to learn in the KWIK setting than
in the MB setting. An example is conjunctions of n
Boolean variables, in which MB algorithms can guess
“false” when uncertain and learn with n + 1 mistakes,
but a KWIK algorithm may need Ω(2n/2) ⊥s to ac-
quire the negative examples required to capture the
target hypothesis.

3.3. Other Online Learning Models

The notion of allowing the learner to opt out of some
inputs by returning ⊥ is not unique to KWIK. Several
other authors have considered related models. For in-
stance, sleeping experts (Freund et al., 1997) can re-
spond ⊥ for some inputs, although they need not learn
from these experiences. Learners in the settings of Se-
lective Sampling (SS) (Cesa-Bianchi et al., 2006) and
Label Efficient Prediction (Cesa-Bianchi et al., 2005)
request labels randomly with a changing probability
and achieve bounds on the expected number of mis-
takes and the expected number of label requests for a
finite number of interactions. These algorithms cannot
be used unmodified in the KWIK setting because, with
high probability, KWIK algorithms must not make
mistakes at any time. In the MB-like Apple-Tasting
setting (Helmbold et al., 2000), the learner receives
feedback asymmetrically only when it predicts a par-
ticular label (a positive example, say), which conflates
the request for a sample with the prediction of a par-
ticular outcome.

Open Problem 1 Is there a way of modifying SS al-
gorithms to satisfy the KWIK criteria?

4. Some KWIK Learnable Classes

This section describes some hypothesis classes for
which KWIK algorithms are available. It is not meant
to be an exhaustive survey, but simply to provide a
flavor for the properties of hypothesis classes KWIK
algorithms can exploit. The complexity of many learn-
ing problems has been characterized by defining the di-
mensionality of hypothesis classes (Angluin, 2004). No
such definition has been found for the KWIK model, so
we resort to enumerating examples of learnable classes.

Open Problem 2 Is there a way of characterizing
the “dimension” of a hypothesis class in a way that
can be used to derive KWIK bounds?

570



KWIK Learning Framework

4.1. Memorization and Enumeration

We begin by describing the simplest and most general
KWIK algorithms.

Algorithm 1 The memorization algorithm can learn
any hypothesis class with input space X with a KWIK
bound of |X|. This algorithm can be used when the
input space X is finite and observations are noise free.

To achieve this bound, the algorithm simply keeps a
mapping ĥ initialized to ĥ(x) = ⊥ for all x ∈ X. When
the environment chooses an input x, the algorithm re-
ports ĥ(x). If ĥ(x) = ⊥, the environment will provide
a label y and the algorithm will assign ĥ(x) := y. It
will only report ⊥ once for each input, so the KWIK
bound is |X|.

Algorithm 2 The enumeration algorithm can learn
any hypothesis class H with a KWIK bound of |H|−1.
This algorithm can be used when the hypothesis class
H is finite and observations are noise free.

The algorithm keeps track of Ĥ, the version space, and
initially Ĥ = H. Each time the environment provides
input x ∈ X, the algorithm computes L̂ = {h(x)|h ∈
Ĥ}. That is, it builds the set of all outputs for x for
all hypotheses that have not yet been ruled out. If
|L̂| = 0, the version space has been exhausted and
the target hypothesis is not in the hypothesis class
(h∗ 6∈ H).

If |L̂| = 1, it means that all hypotheses left in Ĥ agree
on the output for this input, and therefore the algo-
rithm knows what the proper output must be. It re-
turns ŷ ∈ L̂. On the other hand, if |L̂| > 1, two
hypotheses in the version space disagree. In this case,
the algorithm returns ⊥ and receives the true label y.
It then computes an updated version space

Ĥ ′ = {h|h ∈ Ĥ ∧ h(x) = y}.

Because |L̂| > 1, there must be some h ∈ Ĥ such
that h(x) 6= y. Therefore, the new version space must
be smaller |Ĥ ′| ≤ |Ĥ| − 1. Before the next input is
received, the version space is updated Ĥ := Ĥ ′.

If |Ĥ| = 1 at any point, |L̂| = 1, and the algorithm will
no longer return ⊥. Therefore, |H|−1 is the maximum
number of ⊥s the algorithm can return.

Example 1 You own a bar that is frequented by a
group of n patrons P . There is one patron f ∈ P who
is an instigator—whenever a group of patrons is in the
bar G ⊆ P , if f ∈ G, a fight will break out. However,
there is another patron p ∈ P , who is a peacemaker.

Figure 3. Schematic of behavior of the planar-distance al-
gorithm after the first (a), second (b), and third (c) time
it returns ⊥.

If p is in the group, it will prevent a fight, even if f is
present.

You want to predict whether a fight will break out
among a subset of patrons, initially without knowing
the identities of f and p. The input space is X = 2P

and the output space is Y = {fight, no fight}.

The memorization algorithm achieves a KWIK bound
of 2n for this problem, since it may have to see each
possible subset of patrons. However, the enumeration
algorithm can KWIK learn this hypothesis class with a
bound of n(n−1) since there is one hypothesis for each
possible assignment of a patron to f and p. Each time
it reports ⊥, it is able to rule out at least one possible
instigator–peacemaker combination.

4.2. Real-valued Functions

The previous two examples exploited the finiteness of
the hypothesis class and input space. KWIK bounds
can also be achieved when these sets are infinite.

Algorithm 3 Define X = <2, Y = <, and

H = {f |f : X → Y, c ∈ <2, f(x) = ‖x− c‖2}.

This is, there is an unknown point and the target func-
tion maps input points to the distance from the un-
known point. The planar-distance algorithm can learn
in this hypothesis class with a KWIK bound of 3.

The algorithm proceeds as follows, illustrated in Fig-
ure 3. First, given initial input x, the algorithm says
⊥ and receives output y. Since y is the distance be-
tween x and some unknown point c, we know c must
lie on the circle illustrated in Figure 3(a). (If y = 0,
then c = x.) Let’s call this input–output pair x1, y1.
The algorithm will return y1 for any future input that
matches x1. Otherwise, it will need to return ⊥ and
will obtain a new input–output pair x, y, as shown in
Figure 3(b). They become x2 and y2.

Now, the algorithm can narrow down the location of c
to the two hatch-marked points. In spite of this ambi-
guity, for any input on the dark diagonal line the algo-
rithm will be able to return the correct distance—all
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these points are equidistant from the two possibilities.
The two circles must intersect, assuming the target
hypothesis is in H1.

Once an input x is received that is not co-linear with
x1 and x2, the algorithm returns ⊥ and obtains an-
other x, y pair, as illustrated in Figure 3(c). Finally,
since three circles will intersect at at most one point,
the algorithm can identify the location of c and use
it to correctly answer any future query. Thus, three
⊥s suffice for KWIK learning in this setting. The al-
gorithm generalizes to d-dimensional versions of the
setting with a KWIK bound of d + 1.

Algorithm 3 illustrates a number of important points.
First, since learners have no control over their inputs
in the KWIK setting, they must be robust to degen-
erate inputs such as inputs that lie precisely on a line.
Second, they can often return valid answers for some
inputs even before they have learned the target func-
tion over the entire input space.

4.3. Noisy Observations

Up to this point, observations have been noise free.
Next, we consider the simplest noisy KWIK learning
problem in the Bernoulli case.

Algorithm 4 The coin-learning algorithm can accu-
rately predict the probability that a biased coin will
come up heads given Bernoulli observations with a
KWIK bound of B(ε, δ) = 1

2ε2 ln 2
δ = O

(
1
ε2 ln 1

δ

)
.

We have a biased coin whose unknown probability of
heads is p. In the notation of this paper, |X| = 1,
Y = [0, 1], and Z = {0, 1}. We want to learn an
estimate p̂ that is accurate (|p̂ − p| ≤ ε) with high
probability (1− δ).

If we could observe p, then this problem would be triv-
ial: Say ⊥ once, observe p, and let p̂ = p. The KWIK
bound is thus 1. Now, however, observations are noisy.
Instead of observing p, we see either 1 (with probabil-
ity p) or 0 (with probability 1− p).

Each time the algorithm says ⊥, it gets an independent
trial that it can use to compute p̂ = 1

T

∑T
t=1 zt, where

zt ∈ Z is the tth observation in T trials. The number
of trials needed before we are 1−δ certain our estimate
is within ε can be computed using a Hoeffding bound:

T ≥ 1
2ε2

ln
2
δ

= O

(
1
ε2

ln
1
δ

)
.

1They can also intersect at one point, if the circles are
tangent, in which case the algorithm can identify c unam-
biguously.

Algorithm 5 Define X = <d, Y = <, and

H = {f |f : X → Y,w ∈ <d, f(x) = w · x}.

That is, H is the linear functions on d variables. Given
additive noise, the noisy linear-regression algorithm
can learn in H with a KWIK bound of B(ε, δ) =
Õ(d3/ε4), where Õ(·) suppresses log factors.

The deterministic case was described in Section 2 with
a bound of d. Here, the algorithm must be cautious
to average over the noisy samples to make predictions
accurately. This problem was solved by Strehl and
Littman (2008). The algorithm uses the least squares
estimate of the weight vector for inputs with high cer-
tainty. Certainty is measured by two terms represent-
ing (1) the number and proximity of previous samples
to the current point and (2) the appropriateness of the
previous samples for making a least squares estimate.
When certainty is low for either measure, the algo-
rithm reports ⊥ and observes a noisy sample of the
linear function.

Here, solving a noisy version of a problem resulted
in an increased KWIK bound (from d to essentially
d3). Note that the deterministic Algorithm 3 also has
a bound of d, but no bound has been found for the
stochastic case.

Open Problem 3 Is there a general scheme for tak-
ing a KWIK algorithm for a deterministic class and
updating it to work in the presence of noise?

5. Combining KWIK Learners

This section provides examples of how KWIK learners
can be combined to provide learning guarantees for
more complex hypothesis classes.

Algorithm 6 Let F : X → Y be the set of functions
mapping input set X to output set Y . Let H1, . . . ,Hk

be a set of KWIK learnable hypothesis classes with
bounds of B1(ε, δ), . . . , Bk(ε, δ) where Hi ⊆ F for all
1 ≤ i ≤ k. That is, all the hypothesis classes share
the same input/output sets. The union algorithm can
learn the joint hypothesis class H =

⋃
i Hi with a

KWIK bound of B(ε, δ) = (1− k) +
∑

i Bi(ε, δ).

The union algorithm is like a higher-level version of
the enumeration algorithm (Algorithm 2) and applies
in the deterministic setting. It maintains a set of
active algorithms Â, one for each hypothesis class:
Â = {1, . . . , k}. Given an input x, the union algorithm
queries each algorithm i ∈ Â to obtain a prediction ŷi

from each active algorithm. Let L̂ = {ŷi|i ∈ Â}.
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If ⊥ ∈ L̂, the union algorithm reports ⊥ and obtains
the correct output y. Any algorithm i for which ŷ = ⊥
is then sent the correct output y to allow it to learn. If
|L̂| > 1, then there is disagreement among the subal-
gorithms. The union algorithm reports ⊥ in this case
because at least one of the algorithms has learned the
wrong hypothesis and it needs to know which.

Any algorithm that made a prediction other than y or
⊥ is “killed”—removed from consideration. That is,

Â′ = {i|i ∈ Â ∧ (ŷi = ⊥ ∨ ŷi = y)}.

On each input for which the union algorithm reports
⊥, either one of the subalgorithms reported ⊥ (at most∑

i Bi(ε, δ) times) or two algorithms disagreed and at
least one was removed from Â (at most k − 1 times).
The KWIK bound follows from these facts.

Example 2 Let X = Y = <. Now, define H1 =
{f |f(x) = |x − c|, c ∈ <}. That is, each function in
H1 maps x to its distance from some unknown point
c. We can learn H1 with a KWIK bound of 2 using
a 1-dimensional version of Algorithm 3. Next, define
H2 = {f |f(x) = yx + b, m ∈ <, b ∈ <}. That is, H2

is the set of lines. We can learn H2 with a KWIK
bound of 2 using the regression algorithm in Section 2.
Finally, define H = H1 ∪ H2, the union of these two
classes. We can use Algorithm 6 to KWIK learn H.

Assume the first input is x1 = 2. The union algorithm
asks the learners for H1 and H2 the output for x1 and
neither has any idea, so it returns ⊥ and receives the
feedback y1 = 2, which it passes to the subalgorithms.
The next input is x2 = 8. The learners for H1 and H2

still don’t have enough information, so it returns ⊥
and sees y2 = 4, which it passes to the subalgorithms.
Next, x3 = 1. Now, the learner for H1 unambiguously
computes c = 4, because that’s the only interpretation
consistent with the first two examples (|2 − 4| = 2,
|8 − 4| = 4), so it returns |1 − 4| = 3. On the other
hand, the learner for H2 unambiguously computes m =
1/3 and b = 4/3, because that’s the only interpretation
consistent with the first two examples (2×1/3+4/3 =
2, 8 × 1/3 + 4/3 = 4), so it returns 1 × 1/3 + 4/3 =
5/3. Since the two subalgorithms disagree, the union
algorithm returns ⊥ one last time and finds out that
y3 = 3. It makes all future predictions (accurately)
using the algorithm for H1.

Next, we consider a variant of Algorithm 1 that com-
bines learners across disjoint input spaces.

Algorithm 7 Let X1, . . . , Xk be a set of disjoint in-
put spaces (Xi ∩ Xj = ∅ if i 6= j) and Y be an out-
put space. Let H1, . . . ,Hk be a set of KWIK learnable

hypothesis classes with bounds of B1(ε, δ), . . . , Bk(ε, δ)
where Hi ∈ (Xi → Y ). The input-partition algorithm
can learn the hypothesis class H ∈ (X1∪· · ·∪Xk → Y )
with a KWIK bound of B(ε, δ) =

∑
i Bi(ε, δ/k).

The input-partition algorithm runs the learning algo-
rithm for each subclass Hi. When it receives an input
x ∈ Xi, it queries the learning algorithm for class Hi

and returns its response, which is ε accurate, by re-
quest. To achieve 1− δ certainty, it insists on 1− δ/k
certainty from each of the subalgorithms. By the union
bound, the overall failure probability must be less than
the sum of the failure probabilities for the subalgo-
rithms.

Example 3 An MDP consists of n states and m ac-
tions. For each combination of state and action and
next state, the transition function returns a probability.
As the reinforcement-learning agent moves around in
the state space, it observes state–action–state transi-
tions and must predict the probabilities for transitions
it has not yet observed. In the model-based setting,
an algorithm learns a mapping from the size n2m in-
put space of state–action–state combinations to prob-
abilities via Bernoulli observations. Thus, the prob-
lem can be solved via the input-partition algorithm
(Algorithm 7) over a set of individual probabilities
learned via Algorithm 4. The resulting KWIK bound
is B(ε, δ) = O

(
n2m
ε2 ln nm

δ

)
.

Note that this approach is precisely what is found in
most efficient RL algorithms in the literature (Kearns
& Singh, 2002; Brafman & Tennenholtz, 2002).

Algorithm 7 combines hypotheses by partitioning the
input space. In contrast, the next example concerns
combinations in input and output space.

Algorithm 8 Let X1, . . . , Xk and Y1, . . . , Yk be a set
of input and output spaces and H1, . . . ,Hk be a set
of KWIK learnable hypothesis classes with bounds of
B1(ε, δ), . . . , Bk(ε, δ) on these spaces. That is, Hi ∈
(Xi → Yi). The cross-product algorithm can learn the
hypothesis class H ∈ ((X1×· · ·×Xk) → (Y1×· · ·×Yk))
with a KWIK bound of B(ε, δ) =

∑
i Bi(ε, δ/k).

Here, each input consists of a vector of inputs from
each of the spaces X1, . . . , Xk and outputs are vectors
of outputs from Y1, . . . , Yk. Like Algorithm 7, each
component of this vector can be learned independently
via the corresponding algorithm. Each is learned to
within an accuracy of ε and confidence 1 − δ/k. Any
time any component returns ⊥, the cross-product algo-
rithm returns ⊥. Since each ⊥ returned can be traced
to one of the subalgorithms, the total is bounded as
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described above. By the union bound, total failure
probability is no more than k × δ/k = δ.

Example 4 Transitions in factored-state MDP can be
thought of as mappings from vectors to vectors. Given
known dependencies, the cross-product algorithm can
be used to learn each component of the transition func-
tion. Each component is, itself, an instance of Algo-
rithm 7 applied to the coin-learning algorithm. This
three-level KWIK algorithm provides an approach to
learn the transition function of a factored-state MDP
with a polynomial KWIK bound. This insight can be
used to derive the factored-state-MDP learning algo-
rithm used by Kearns and Koller (1999).

The previous two algorithms apply to both determin-
istic and noisy observations. We next provide a pow-
erful algorithm that generalizes the union algorithm
(Algorithm 6) to work with noisy observations as well.

Algorithm 9 Let F : X → Y be the set of functions
mapping input set X to output set Y = [0, 1]. Let Z =
{0, 1} be a binary observation set. Let H1, . . . ,Hk be a
set of KWIK learnable hypothesis classes with bounds
of B1(ε, δ), . . . , Bk(ε, δ) where Hi ⊆ F for all 1 ≤ i ≤
k. That is, all the hypothesis classes share the same in-
put/output sets. The noisy union algorithm can learn
the joint hypothesis class H =

⋃
i Hi with a KWIK

bound of B(ε, δ) = O
(

k
ε2 ln k

δ

)
+
∑k

i=1 Bi( ε
4 , δ

k+1 ).

For simplicity, we sketch the special case of k = 2.
The general case will be briefly discussed at the end.
The noisy union algorithm is similar to the union al-
gorithm (Algorithm 6), except that it has to deal with
noisy observations. The algorithm proceeds by run-
ning the KWIK algorithms, using parameters (ε0, δ0),
as subalgorithms for each of the Hi hypothesis classes,
where ε0 = ε

4 and δ0 = δ
3 . Given an input xt in trial t,

it queries each algorithm i to obtain a prediction ŷti.
Let L̂t be the set of responses.

If ⊥ ∈ L̂t, the noisy union algorithm reports ⊥, ob-
tains an observation zt ∈ Z, and sends it to all subal-
gorithms i with ŷti = ⊥ to allow them to learn. In the
following, we focus on the other case where ⊥ /∈ L̂t.

If |ŷt1 − ŷt2| ≤ 4ε0, then these two predictions are suf-
ficiently consistent, and we claim that, with high prob-
ability, the prediction p̂t = (ŷt1 + ŷt2)/2 is ε-close to
yt = Pr(zt = 1). This claim follows because, by as-
sumption, one of the predictions, say ŷt1, deviates from
yt by at most ε0 with probability at least 1− δ/3, and
hence |p̂t − yt| = |p̂t − ŷt1 + ŷt1 − yt| ≤ |p̂t − ŷt1| +
|ŷt1 − ŷt| = |ŷt1 − ŷt2| /2 + |ŷt1 − ŷt| ≤ 2ε0 + ε0 < ε.

If |ŷt1 − ŷt2| > 4ε0, then the individual predictions are
not consistent enough for the noisy union algorithm to
make an ε-accurate prediction. Thus, the noisy union
algorithm reports ⊥ and needs to know which subal-
gorithm provided an inaccurate response. But, since
the observations are noisy in this problem, it cannot
eliminate hi on the basis of a single observation. In-
stead, it maintains the total squared prediction error
for every subalgorithm i: `i =

∑
t∈I (ŷti − zt)

2, where
I = {t| |ŷt1 − ŷt2| > 4ε0} is the set of trials in which
the subalgorithms gave inconsistent predictions. We
observe that |I| is the number of ⊥s returned by the
noisy union algorithm alone (not counting those re-
turned by the subalgorithms). Our last step is to show
`i provides a robust measure for eliminating invalid
predictors when |I| is sufficiently large.

Applying the Hoeffding bound and some algebra, we
find Pr (`1 > `2) ≤

exp

(
−
∑

t∈I |ŷt1 − ŷt2|2

8

)
≤ exp

(
−2ε20 |I|

)
.

Setting the righthand side to be δ/3 and solving for
|I|, we have |I| = 1

2ε20
ln 3

δ = O
(

1
ε2 ln 1

δ

)
.

Since each hi succeeds with probability 1− δ
3 , and the

comparison of `1 and `2 also succeeds with probability
1− δ

3 , a union bound implies that the noisy union algo-
rithm succeeds with probability at least 1− δ. All ⊥s
are either from a subalgorithm (at most

∑
i Bi(ε0, δ0))

or from the noisy union algorithm (O
(

1
ε2 ln 1

δ

)
).

The general case where k > 2 can be reduced to the
k = 2 case by pairing the k learners and running the
noisy union algorithm described above on each pair.
Here, each subalgorithm is run with parameter ε

4 and
δ

k+1 . Although there are
(
k
2

)
= O(k2) pairs, a slightly

improved reduction and analysis can reduce the de-
pendence of |I| on k from quadratic to linearithmic,
leading to the bound given in the statement.

Example 5 Without known dependencies, learning
a factored-state MDP is more challenging. Strehl
et al. (2007) showed that each possible dependence
structure can be viewed as a separate hypothesis and
provided an algorithm for learning the dependencies
in a factored-state MDP while learning the transition
probabilities. The algorithm can be viewed as a four-
level KWIK algorithm with a noisy union algorithm
at the top (to discover the dependence structure), a
cross-product algorithm beneath it (to decompose the
transitions for the separate components of the factored-
state representation), an input-partition algorithm be-
low that (to handle the different combinations of state
component and action), and a coin-learning algorithm

574



KWIK Learning Framework

at the very bottom (to learn the transition probabili-
ties themselves). Note that Algorithm 9 is conceptu-
ally simpler, significantly more efficient (k log k vs. k2

dependence on k), and more generally applicable than
the one due to Strehl et al. (2007).

6. Conclusion and Future Work

We described the KWIK (“knows what it knows”)
model of supervised learning, which identifies and gen-
eralizes a key step common to a class of algorithms
for efficient exploration. We provided algorithms for a
set of basic hypothesis classes given deterministic and
noisy observations as well as methods for composing
hypothesis classes to create more complex algorithms.
One example algorithm consisted of a four-level de-
composition of an existing learning algorithm from the
reinforcement-learning literature.

By providing a set of example algorithms and compo-
sition rules, we hope to encourage the use of KWIK
algorithms as a component in machine-learning appli-
cations as well as spur the development of novel algo-
rithms. One concern of particular interest in applying
the KWIK framework to real-life data we leave as an
open problem.

Open Problem 4 How can KWIK be adapted to ap-
ply in the unrealizable setting in which the target hy-
pothesis can be chosen from outside the hypothesis
class H?
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Abstract

We consider the general problem of learn-
ing from both pairwise constraints and un-
labeled data. The pairwise constraints spec-
ify whether two objects belong to the same
class or not, known as the must-link con-
straints and the cannot-link constraints. We
propose to learn a mapping that is smooth
over the data graph and maps the data onto
a unit hypersphere, where two must-link ob-
jects are mapped to the same point while two
cannot-link objects are mapped to be orthog-
onal. We show that such a mapping can be
achieved by formulating a semidefinite pro-
gramming problem, which is convex and can
be solved globally. Our approach can effec-
tively propagate pairwise constraints to the
whole data set. It can be directly applied to
multi-class classification and can handle data
labels, pairwise constraints, or a mixture of
them in a unified framework. Promising ex-
perimental results are presented for classifica-
tion tasks on a variety of synthetic and real
data sets.

1. Introduction

Learning from both labeled and unlabeled data, known
as semi-supervised learning, has attracted considerable
interest in recent years (Chapelle et al., 2006), (Zhu,
2005). The key to the success of semi-supervised learn-
ing is the cluster assumption (Zhou et al., 2004), stat-
ing that nearby objects and objects on the same mani-
fold structure are likely to be in the same class. Differ-
ent algorithms actually implement the cluster assump-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

tion from different viewpoints (Zhu et al., ), (Zhou
et al., 2004), (Belkin et al., 2006), (Chapelle & Zien,
2005), (Zhang & Ando, 2006), (Szummer et al., 2002).
When the cluster assumption is appropriate, we can
properly classify the whole data set with only one la-
beled object for each class.

However, the distributions of real-world data are of-
ten more complex than expected, where there are cir-
cumstances that a class may consist of multiple sep-
arate groups or manifolds, and different classes may
be close to or even overlap with each other. For ex-
ample, a common experience is that face images of
the same person under different poses and illumina-
tions can be drastically different, while those with sim-
ilar appearances may originate from two different per-
sons. To handle the classification problems of such
practical data, additional assumptions should be made
and more supervisory information should be exploited
when available.

Class labels of data are the most widely used super-
visory information. In addition, pairwise constraints
are also often seen, which specify whether two objects
belong to the same class or not, known as the must-
link constraints and the cannot-link constraints. Such
pairwise constraints may arise from domain knowledge
automatically or with a little human effort (Wagstaff
& Cardie, 2000), (Klein et al., 2002), (Kulis et al.,
2005), (Chapelle et al., 2006). They can also be ob-
tained from data labels where objects with the same
label are must-link while objects with different labels
are cannot-link. Generally, we cannot infer data labels
from only pairwise constraints, especially for multi-
class data. In this sense, pairwise constraints are in-
herently weaker and thus more general than labels of
data. Pairwise constrains have been widely used in the
contexts of clustering with side information (Wagstaff
et al., 2001), (Klein et al., 2002), (Xing et al., 2003),
(Kulis et al., 2005), (Kamvar et al., 2003), (Glober-
son & Roweis, 2006), (Basu et al., 2004), (Bilenko
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et al., 2004), (Bar-Hillel et al., 2003), (Hoi et al., 2007),
where it has been shown that the presence of appro-
priate pairwise constraints can often improve the clus-
tering performance.

In this paper, we consider a more general problem
of semi-supervised classification from pairwise con-
straints and unlabeled data, which includes the tra-
ditional semi-supervised classification as a subprob-
lem that considers labeled and unlabeled data. Note
that the label propagation techniques, which are often
used in the traditional semi-supervised classification
(Zhou et al., 2004), (Zhu et al., ), (Belkin et al., 2006),
cannot be readily generalized to propagate pairwise
constraints. Recently, two methods (Goldberg et al.,
2007), (Tong & Jin, 2007) are proposed to incorporate
dissimilarity information in semi-supervised classifica-
tion, which is similar to the cannot-link constraints.
It is important to notice that the similarities between
objects are not identical to the must-link constraints
imposed on them. The former reflects their distances
in the input space while the latter is often obtained
using domain knowledge or specified by the user.

We propose an approach, called pairwise constraint
propagation (PCP), that can effectively propagate
pairwise constraints to the whole data set. PCP in-
tends to learn a mapping that is smooth over the data
graph and maps the data onto a unit hypersphere,
where two must-link objects are mapped to the same
point while two cannot-link objects are mapped to be
orthogonal. Such a mapping can be implicitly achieved
using the kernel trick via semidefinite programming,
which is convex and can be solved globally. Our ap-
proach can be directly applied to multi-class classifica-
tion and can handle data labels, pairwise constraints,
or a mixture of them in a unified framework.

2. Motivation

Given a data set of n objects X = {x1,x2, ...,xn}
and two sets of pairwise must-link and cannot-link
constraints, denoted respectively by M = {(xi,xj)}
where xi and xj should be in the same class and
C = {(xi,xj)} where xi and xj should be in differ-
ent classes, our goal is to classify X into k classes such
that not only the constraints are satisfied, but also
those unlabeled objects similar to two must-link ob-
jects respectively are classified into the same class and
those similar to two cannot-link objects respectively
are classified into different classes.

To better illustrate our purpose, let us consider the
classification task on a toy data set shown in Fig. 1(a).
Although this data set consists of three separate

Figure 1. Classification on Three-Circle. (a) A data set
with one must-link constraint and one cannot-link con-
straint, denoted by the solid and the dashed red lines, re-
spectively. (b) Ideal classification (two classes) we hope
to obtain where different classes are denoted by different
colors and symbols.

groups (denoted by different colors and symbols in
Fig. 1(a)), it has only two classes (Fig. 1(b)). We argue
that the must-link constraint asks merging the outer
circle and the inner circle into one class, instead of just
merging the two must-link objects; and the cannot-link
constraint asks for keeping the middle circle and the
outer circles into different classes, not just keeping the
two cannot-link objects into different classes. Con-
sequently, the desired classification result is the one
shown in Fig. 1(b). It is such a global implication that
we interpret the pairwise constraints.

From this simple example, we can see that the cluster
assumption is still valid, i.e., nearby objects tend to
be in the same class and objects on the same manifold
structure also tend to be in the same class. However,
this assumption does not concern those objects that
are not close to each other and do not share the same
manifold structure. We argue that the classification
for such objects should accord with the input pairwise
constraints. For example, any two objects on the outer
and inner circles in Fig. 1(a) should be in the same
class because they respectively share the same man-
ifold structures with the two must-link objects, and
any two objects on the outer and middle circles should
be in different classes because they respectively share
the same manifold structures with the two cannot-link
objects. We refer to this assumption as the pairwise
constraint assumption.

In this paper, we seek to implement both the cluster
assumption and the pairwise constraint assumption in
a unified framework. A dilemma is that one may spec-
ify nearby objects or objects sharing the same manifold
structure to be cannot-link. In this case, we choose to
respect the pairwise constraint assumption first and
then the cluster assumption, considering that the prior
pairwise constraints are from reliable knowledge. This
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is true in most practical applications.

3. Pairwise Constraint Propagation

3.1. A General Framework

As mentioned in the last section, our goal is to propa-
gate the given pairwise constraints to the whole data
set in a global implication for classification. Intu-
itively, it is hard to implement our idea in the in-
put space. Therefore, we seek a mapping (usually
non-linear) to map the objects to a new and possi-
bly higher-dimensional space such that the objects are
reshaped in this way: two must-link objects become
close while two cannot-link objects become far apart;
objects respectively similar to two must-link objects
also become close while objects respectively similar to
two cannot-link objects become far apart.

Let φ be a mapping from X to some space F ,

xi ∈ X 7→ φ(xi) ∈ F . (1)

The above analysis motivates us to consider the fol-
lowing optimization framework:

min
φ

: S(φ) (2)

s.t. : ‖φ(xi) − φ(xj)‖F < ε, ∀(xi,xj) ∈ M, (3)

‖φ(xi) − φ(xj)‖F > δ, ∀(xi,xj) ∈ C, (4)

where S(φ) is a smoothness measure for φ such that
the smaller is S(φ), the smoother is φ; ε is a small
positive number; δ is a large positive number; ‖ · ‖F
is a distance metric in F ; M is the set of the must-
link constraints; C is the set of cannot-link constraints.
The inequality constraints (3) and (4) require φ to map
two must-link objects to be close and two cannot-link
objects far apart. By enforcing the smoothness on φ

(minimizing the objective (2)), we actually require φ

to map any two objects respectively similar to two
must-link objects to be close and map any two ob-
jects respectively similar to two cannot-link objects
far apart. Hopefully, after the mapping, each class be-
comes relatively compact and different classes become
far apart. Once such a mapping is derived, the classi-
fication task can be done much easier.

This optimization framework is quite general and the
details have to be developed. We propose a unit hy-
persphere model to substantialize it in Section 3.2, and
then solve the resulting optimization problem in Sec-
tion 3.3.

3.2. The Unit Hypersphere Model

Recall that our goal is to find a smooth mapping that
maps two must-link objects close and two cannot-link

objects far apart. To this end, we consider it better
to put the images of all the objects under a uniform
scale. The unit hypersphere in F is a good choice be-
cause there is a natural way to impose the pairwise
constraints on it. Our key idea is to map all the ob-
jects onto the unit hypersphere in F , where two must-
link objects are mapped to the same point and two
cannot-link objects to be orthogonal. Mathematically,
we require φ to satisfy

< φ(xi),φ(xi) >F= 1, i = 1, 2, ..., n, (5)

< φ(xi),φ(xj) >F= 1, ∀(xi,xj) ∈ M, (6)

< φ(xi),φ(xj) >F= 0, ∀(xi,xj) ∈ C, (7)

where < ·, · >F denotes the dot product in F .

Next we impose smoothness on φ using the spectral
graph theory where the graph Laplacian plays an es-
sential role (Chung, 1997). Let G = (V,W ) be an
undirected, weighted graph with the node set V = X
and the weight matrix W = [wij ]n×n, where wij is the
weight on the edge connecting nodes xi and xj , denot-
ing how similar they are. W is commonly assumed to
be symmetric and non-negative. The graph Laplacian
L of G is defined as L = D−W , where D = [dij ]n×n is
a diagonal matrix with dii =

∑

j wij . The normalized

graph Laplacian L̄ of G is defined as

L̄ = D−1/2LD−1/2 = I − D−1/2WD−1/2, (8)

where I is the identity matrix. W is also called the
affinity matrix, and W̄ = D−1/2WD−1/2 the nor-
malized affinity matrix. L̄ is symmetric and posi-
tive semidefinite, with eigenvalues in the interval [0, 2]
(Chung, 1997).

Following the idea of regularization in spectral graph
theory (e.g., see (Zhou et al., 2004)), we define the
smoothness measure S(·) by

S(φ) =
1

2

n∑

i,j=1

wij‖
φ(xi)√

dii

− φ(xj)
√

djj

‖2
F , (9)

where φ(xi) ∈ F , and ‖ · ‖F is a distance metric in F .
Note that F is possibly an infinite-dimensional space.
By this definition, we can see that S(φ) ≥ 0 since W is
non-negative, and the value S(φ) penalizes the large
change of the mapping φ between two nodes linked
with a large weight. In other words, minimizing S(·)
encourages the smoothness of a mapping over the data
graph. Next we rewrite S(φ) in matrix form.

Let kij =< φ(xi),φ(xj) >F . Then the matrix K =
[kij ]n×n is symmetric and positive semidefinite, de-
noted by K � 0, and thus can be thought as a kernel
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over X (Smola & Kondor, 2003). From (9), we have

S(φ) =
1

2

n∑

i,j=1

wij(
1

dii
kii +

1

djj
kjj − 2

1
√

diidjj

kij)

=

n∑

i=1

kii −
n∑

i,j=1

wij
√

diidjj

kij (10)

= I • K − (D−1/2WD−1/2) • K (11)

= (I − D−1/2WD−1/2) • K = L̄ • K, (12)

where • denotes the dot product between two matrices,
defined as A•B =

∑n
i=1

∑m
j=1 aijbij , for A = [aij ]n×m

and B = [bij ]n×m.

3.3. Learning a Kernel Matrix

With the above analysis (5)–(7), and (12), we have
arrived at the following optimization problem:

min
K

: L̄ • K (13)

s.t. : kii = 1, i = 1, 2, ..., n, (14)

kij = 1, ∀(xi,xj) ∈ M, (15)

kij = 0, ∀(xi,xj) ∈ C, (16)

K � 0, (17)

which can be recognized as a semidefinite program-
ming (SDP) problem (Boyd & Vandenberghe, 2004).
This problem is convex and thus the global optimal
solution is guaranteed. To solve this problem, we can
use the highly optimized software packages, such as
SeDuMi (Sturm, 1999) and CSDP (Borchers, 1999).

We can also express the above SDP problem in a more
familiar matrix form. Let Eij be a n × n matrix con-
sisting of all 0’s except the (i, j)th entry being 1. Then
the above SDP problem becomes

min
K

: L̄ • K (18)

s.t. : Eii • K = 1, i = 1, 2, ..., n, (19)

Eij • K = 1, ∀(xi,xj) ∈ M, (20)

Eij • K = 0, ∀(xi,xj) ∈ C, (21)

K � 0. (22)

It should be noted that we have transformed the prob-
lem of learning a mapping φ stated in (2)–(4) into
the problem of learning a kernel matrix K such that
φ is the feature mapping induced by K. The kernel
trick (Schölkopf & Smola, 2002) indicates that we can
implicitly derive φ by explicitly pursuing K. Note
that the kernel matrix K captures the distribution of
the point set {φ(xi)}n

i=1 in the feature space. The
equality constraints (14) constrain φ(xi)’s to be on

the unit hypersphere, the inequality constraints (15)
and (16) force φ(xi) = φ(xj) if xi and xj are must-
link and φ(xi) and φ(xj) to be orthogonal if xi and xj

are cannot-link. By minimizing the objective function
(13), which is equivalent to enforcing smoothness on
φ, φ(xi) and φ(xj) will move close to each other if xi

and xj are similar (lie on the same group or manifold).
This process will continue until a global stable state is
achieved (the objective function is minimized and the
constraints are satisfied). We call this process the pair-
wise constraint propagation. It is expected that after
the propagation, each class becomes compact and dif-
ferent classes become far apart (being nearly orthog-
onal on the unit hypersphere). This phenomenon is
also observed by our experiments (see Section 5.2).
The idea of reshaping the data in a high-dimensional
space by propagating the spatial information among
objects is previously appeared in our recent work (Li
et al., 2007) where the problem of clustering highly
noisy data is addressed.

3.4. Classification

Let K∗ be the kernel matrix obtained by solving the
SDP problem stated in (18)–(22). The final step of our
approach is to obtain k classes from K∗. We apply the
kernel K-means algorithm (Shawe-Taylor & Cristian-
ini, 2004) to K∗ to form k classes.

4. The Algorithm

Based on the previous analysis, we develop a semi-
supervised classification algorithm listed in Algorithm
1, which we called the Pairwise Constraint Propaga-
tion (PCP). The scale factor σ in Step 1 needs to be
tuned, which is discussed in Section 5.1.

Algorithm 1 Pairwise Constraint Propagation

Input: A data set of n objects X = {x1,x2, ...,xn},
the set of must-link constraints M = {(xi,xj)}, the
set of cannot-link constraints C = {(xi,xj)}, and the
number of classes k.
Output: The class labels of the objects in X .

1. Form the affinity matrix W = [wij ]n×n with wij =
exp(−d2(xi,xj)/2σ2) if i 6= j and wii = 0.

2. Form the normalized graph Laplacian L̄ = I −
D−1/2WD−1/2, where D = diag(dii) is the diag-
onal matrix with dii =

∑n
j=1 wij .

3. Obtain the kernel matrix K∗ by solving the SDP
problem stated in (18)–(22).

4. Form k classes by applying the kernel K-means to
K∗.
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Figure 2. (a) Three-Circle with classes denoted by different colors and symbols. The solid red line denotes a must-link
constraint and the dashed red line denotes a cannot-link constraint. (b) & (c) Distance matrices for Three-Circle in the
input space and in the feature space, respectively, where, for illustration purpose, the data are arranged such that points
within a class appear consecutively. The darker is a pixel, the smaller is the distance the pixel represents.

5. Experimental Results

In this section, we evaluate the proposed algorithm
PCP on a number of synthetic and real data sets. By
comparison, the results of two notable and most re-
lated algorithms, Kamvar et al.’s spectral learning al-
gorithm (SL) (Kamvar et al., 2003) and Kulis et al’s
semi-supervised kernel K-means algorithm (SSKK)
(Kulis et al., 2005), are also presented. Note that
most semi-supervised classification algorithms cannot
be directly applied to the tasks of classification from
pairwise constraints we consider here, because they
perform classification from labeled and unlabeled data
and cannot be readily generalized to address classifi-
cation from pairwise constraints and unlabeled data.

In order to evaluate these algorithms, we compare the
results with available ground-truth data labels, and
employ the Normalized Mutual Information (NMI) as
the performance measure (Strehl & Ghosh, 2003). For
two random variables X and Y, the NMI is defined as:

NMI(X,Y) =
I(X,Y)

√

H(X)H(Y)
, (23)

where I(X,Y) is the mutual information between X

and Y, and H(X) and H(Y) are the entropies of X

and Y, respectively. Note that 0 ≤ NMI ≤ 1, and
NMI = 1 when a result is the same as the ground-
truth. The larger is the NMI, the better is a result.

To evaluate the algorithms under different settings
of pairwise constraints, we generate a varying num-
ber of pairwise constraints randomly for each data
set. For a data set of k classes, we randomly gen-
erate j must-link constraints for each class, and j

cannot-link constraints for every two classes, giving to-
tal j × (k + k(k− 1)/2) constraints for each j, where j

ranges from 1 to 10. The averaged NMI is reported for
each number of pairwise constraints over 20 different

realizations. Since all the three algorithms employ the
K-means or kernel K-means in the final step, for each
experiment we run the K-means or kernel K-means 20
times with random initializations, and report the av-
eraged result.

5.1. Parameter Selection

The three algorithms are all graph-based and thus the
inputs are assumed to be graphs. We use the weighted
graphs for all the algorithms, where the similarity ma-
trix W = [wij ] is given by

wij =

{

e−‖xi−xj‖
2/2σ2

i 6= j

0 i = j
. (24)

The most suitable scale factor σ is found over the set
S(0.1r, r, 5)

⋃
S(r, 10r, 5), where S(r1, r2,m) denotes

the set of m linearly equally spaced numbers between
r1 and r1, and r denotes the averaged distance from
each node to its 10-th nearest neighbor.

We use the SDP solver CSDP 6.0.11 (Borchers, 1999)
to solve the SDP problem in the proposed PCP. For
SSKK, we use its normalized cut version since it per-
forms best in the experiments given in (Kulis et al.,
2005). The constraint penalty in SSKK is set to
n/(kc), as suggested in (Kulis et al., 2005), where n is
the number of objects, k is the number of classes, and
c is the total number of pairwise constraints. All the
algorithms are implemented in MATLAB 7.6, running
on a 3.4 GHz, 2GB RAM Pentium IV PC.

5.2. A Toy Example

In this subsection, we illustrate the proposed PCP us-
ing a toy example. We mainly study its capability
of propagating pairwise constraints to the whole data

1https://projects.coin-or.org/Csdp/.

580



Pairwise Constraint Propagation

Table 1. Description of the four sensory data sets from UCI.

Data Iris Wine Ionosphere Soybean
Number of objects 150 178 351 47

Dimension 4 13 34 35
Number of classes 3 3 2 4
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Figure 3. Classification results on the four sensory data sets: NMI vs. Number of constraints. (a) Results on Iris. (b)
Results on Wine. (c) Results on Ionosphere. (d) Results on Soybean.

set. Specifically, we want to see how PCP reshapes
the data in the feature space according to the original
data structure and the given pairwise constraints. The
classification task on the Three-Circle data is shown
in Fig. 2(a), where the ground-truth classes are de-
noted by different colors and symbols, and one must-
link (solid red line) and one cannot-link (dashed red
line) constraints are also provided. At first glance,
Three-Circle is composed of a mixture of curve-like
and Gaussian-like groups. A more detailed observa-
tion is that there is one class composed of separate
groups.

The distance matrices for Three-Circle in the input
space and in the feature space are shown in Figs. 2(b)
and (c), where the data are ordered such that all the
objects in the outer circle appear first, all the objects
in the inner circle appear second, and all the objects
in the middle circle appear finally. Note that this ar-
rangement does not affect the classification results but
only for better illustration of the distance matrices.
We can see that the distance matrix in the feature
space, compared to the one in the input space, ex-
hibits a clear block structure, meaning that each class
becomes highly compact (although in the input space
one of the two classes consists of two well-separated
groups) and the two classes become far apart. Our
computations show that the distance between any two
points in the feature space in different classes falls in
[
√

2 − 1.9262 × 10−5,
√

2 + 1.3214 × 10−6], implying
that the two classes are nearly

√
2 from each other,

which comes from the requirement that two cannot-
link objects are mapped to be orthogonal on the unit
hypersphere.

5.3. On Sensory Data

Four sensory data sets from the UCI Machine Learn-
ing Repository2 are used for testing in this experiment.
The data sets are described in Table 1. These four
data sets are widely used for evaluation of the classifi-
cation and clustering methods in the machine learning
community.

The results are shown in Fig. 3, from which two ob-
servations can be drawn. First, PCP performs better
than SSKK and SL on all the four data sets under dif-
ferent settings of pairwise constraints, especially on the
Ionosphere data. Second, as the number of constraints
grows, the performances of all the algorithms increase
accordingly on Soybean, but vary little on Wine and
Ionosphere. On Iris, as the number of constraints
grows the performance of PCP improves accordingly
but those of SSKK and SL are almost unchanged.

5.4. On Imagery Data

In this subsection, we test the algorithms on three im-
age databases USPS, MNIST, and CMU PIE (Pose, Il-
lumination, and Expression). Both USPS and MNIST
consist of images of handwritten digits with signifi-
cantly different fashion and of sizes 16×16 and 28×28.
The CMU PIE contains 41,368 images of 68 people,
each person with 13 different poses, 43 different illu-
mination conditions, and 4 different expressions. From
these databases, we draw four data sets, which are de-
scribed in Table 2. The USPS0123 and MNIST0123
are drawn respectively from USPS and MNIST, and
PIE-10-20 and PIE-22-23 are drawn from CMU PIE.

2http://archive.ics.uci.edu/ml.
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Table 2. Description of the four imagery data sets.

Data USPS0123 MNIST0123 PIE-10-20 PIE-22-23
Number of objects 400 400 340 340

Dimension 256 784 1024 1024
Number of classes 4 4 2 2
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Figure 4. Classification results on the four imagery data sets: NMI vs. Number of constraints. (a) Results on USPS0123.
(b) Results on MNIST0123. (c) Results on PIE-10-20. (d) Results on PIE-22-23.

USPS0123 (MNIST0123) consists of digits 0 to 3, with
first 100 instances from each class. PIE-10-20 (PIE-22-
23) contains five near frontal poses (C05, C07, C09,
C27, C29) of two individuals indexed as 10 and 20
(22 and 23) under different illuminations and expres-
sions. Original images in PIE-10-20 and PIE-22-23 are
manually aligned (two eyes are aligned at the fixed po-
sitions), cropped, and then down-sampled to 32 × 32.
Each image is represented by a vector of size equal to
the product of its width and height.

The results are shown in Fig. 4, from which we can see
that the proposed PCP consistently and significantly
outperforms SSKK and SL on all the four data sets
under different settings of pairwise constraints. As the
number of constraints grows, the performance of PCP
improves more significantly than those of SSKK and
SL.

We also look at the computational costs of different
algorithms. For example, for each run on USPS0123
(of size 400) with 100 pairwise constraints, PCP takes
about 17 seconds while both SSKK and SL take less
than 0.5 second. PCP does take more execution time
than SSKK and SL since it involves solving for a kernel
matrix with SDP, while either SSKK or SL uses pre-
defined kernel matrix. The main computational cost
in PCP is in solving the SDP problem.

6. Conclusions

A semi-supervised classification approach, Pairwise
Constraint Propagation (PCP), for learning from pair-
wise constraints and unlabeled data is proposed. PCP
seeks a smooth mapping to map the data onto a

unit hypersphere, where any two must-link objects are
mapped to the same point and any two cannot-link
objects are mapped to be orthogonal. Consequently,
PCP simultaneously implements the cluster assump-
tion and the pairwise constraint assumption stated in
Section 2. PCP implicitly derives such a mapping by
explicitly finding a kernel matrix via semidefinite pro-
gramming. In contrast to label propagation in tra-
ditional semi-supervised learning, PCP can effectively
propagate pairwise constraints to the whole data set.
Experimental results on a variety of synthetic and real
data sets have demonstrated the superiority of PCP.

Note that PCP falls into semi-supervised learning since
it performs learning from both constrained and uncon-
strained data. Most previous metric learning methods,
however, belong to supervised learning. PCP always
keeps every two must-link objects close and every two
cannot-link objects far apart. Therefore it essentially
addresses hard constrained classification.

Although extensive experiments have confirmed the ef-
fectiveness of the PCP algorithm, there are several is-
sues worthy to be further investigated in future work.
One issue is to accelerate PCP where solving the asso-
ciated SDP problem is the bottleneck. Another issue
is to handle noisy constraints effectively.
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Abstract

Statistical and computational concerns have
motivated parameter estimators based on
various forms of likelihood, e.g., joint, condi-
tional, and pseudolikelihood. In this paper,
we present a unified framework for studying
these estimators, which allows us to compare
their relative (statistical) efficiencies. Our
asymptotic analysis suggests that modeling
more of the data tends to reduce variance,
but at the cost of being more sensitive to
model misspecification. We present experi-
ments validating our analysis.

1. Introduction

Probabilistic models play a prominent role in domains
such as natural language processing, bioinformatics,
and computer vision, where they provide methods
for jointly reasoning about many interdependent vari-
ables. For prediction tasks, one generally models a
conditional distribution over outputs given an input.
There can be reasons, however, for pursuing alterna-
tives to conditional modeling. First, we might be able
to leverage additional statistical strength present in
the input by using generative methods rather than dis-
criminative ones. Second, the exact inference required
for a full conditional likelihood could be intractable;
in this case, one might turn to computationally more
efficient alternatives such as pseudolikelihood (Besag,
1975).

The generative-discriminative distinction has received
much attention in machine learning. The standing in-
tuition is that while discriminative methods achieve
lower asymptotic error, generative methods might be

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

better when training data are limited. This intuition
is supported by the theoretical comparison of Naive
Bayes and logistic regression (Ng & Jordan, 2002) and
the recent empirical success of hybrid methods (Mc-
Callum et al., 2006; Lasserre et al., 2006).

Computational concerns have also spurred the devel-
opment of alternatives to the full likelihood; these
methods can be seen as optimizing an alternate
objective or performing approximate inference dur-
ing optimization. Examples include pseudolikelihood
(Besag, 1975), composite likelihood (Lindsay, 1988),
tree-reweighted belief propagation (Wainwright et al.,
2003), piecewise training (Sutton & McCallum, 2005),
agreement-based learning (Liang et al., 2008), and
many others (Varin, 2008).

We can think of all these schemes as simply different
estimators operating in a single model family. In this
work, we analyze the statistical properties of a class of
convex composite likelihood estimators for exponential
families, which contains the generative, discriminative,
and pseudolikelihood estimators as special cases.

The main focus of our analysis is on prediction error.
Standard tools from learning theory based on uniform
convergence typically only provide upper bounds on
this quantity. Moreover, they generally express esti-
mation error in terms of the overall complexity of the
model family.1 In our case, since all estimators operate
in the same model family, these tools are inadequate
for comparing different estimators.

Instead, we turn to asymptotic analysis, a mainstay
of theoretical statistics. There is much relevant sta-
tistical work on the estimators that we treat; note in
particular that Lindsay (1988) used asymptotic argu-
ments to show that composite likelihoods are generally

1There are more advanced techniques such as local
Rademacher complexities, which focus on the relevant re-
gions of the model family, but these typically only apply
to empirical risk minimization.
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less efficient than the joint likelihood. The majority of
these results are, however, focused on parameter esti-
mation. In the current paper, our focus is on predic-
tion, and we also consider model misspecification.

We draw two main conclusions from our analysis:
First, when the model is well-specified, conditioning
on fewer variables increases statistical efficiency; this
to some extent accounts for the better generalization
enjoyed by generative estimators and the worse perfor-
mance of pseudolikelihood estimators. Second, model
misspecification can severely increase both the approx-
imation and estimation errors of generative estimators.
We confirm our theoretical results by comparing our
three estimators on a toy example to verify the asymp-
totics and on a Markov model for part-of-speech tag-
ging.

2. Exponential Family Estimators

In structured prediction tasks, we are interested in
learning a mapping from an input space X to an out-
put space Y. Probabilistic modeling is a common plat-
form for solving such tasks, allowing for the natural
handling of missing data and the incorporation of la-
tent variables.

In this paper, we focus on regular exponential families,
which define distributions over an outcome space Z as
follows:

pθ(z)
def= exp{φ(z)>θ −A(θ)} for z ∈ Z, (1)

where φ(z) ∈ Rd is a vector of sufficient statistics
(features), θ ∈ Rd is a vector of parameters, and
A(θ) def= log

∫
eφ(z)>θν(dz) is the log-partition func-

tion. In our case, the outcomes are input-output pairs:
z = (x, y) and Z = X × Y.

Exponential families include a wide range of popular
models used in machine learning. For example, for a
conditional random field (CRF) (Lafferty et al., 2001)
defined on a graph G = (V,E), we have an output vari-
able for each node (y = {yi}i∈V ), and the features are
φ(x, y) =

∑
i∈V φnode(yi,x, i) +

∑
(i,j)∈E φedge(yi, yj).

From the density pθ(z), we can compute event proba-
bilities as follows:

pθ(z ∈ s) = exp{A(θ; s)−A(θ)}, (2)

where A(θ; s) = log
∫
eφ(z)>θ

1[z ∈ s]ν(dz) is a condi-
tional log-partition function.

2.1. Composite Likelihood Estimators

In this paper, we consider a class of composite likeli-
hood estimators (Lindsay, 1988), which is incidentally

equivalent to the multi-conditional learning framework
of McCallum et al. (2006). A composite likelihood con-
sists of a weighted sum of component likelihoods, each
of which is the probability of one subset of variables
conditioned on another. In this work, we only consider
the case where the first set is all the variables.

We adopt the following more fundamental way of spec-
ifying the components: Each component r is defined by
a partitioning of the outcome space Z. We represent a
partitioning by an associated equivalence function that
maps each z ∈ Z to its partition:

Definition 1 (Equivalence function). An equivalence
function r is a measurable map from Z to measurable
subsets of Z such that for each z ∈ Z and z′ ∈ r(z),
r(z) = r(z′).

The component likelihood associated with r takes the
following form:

pθ(z | z ∈ r(z)) = exp{φ(z)>θ −A(θ; r(z))}. (3)

By maximizing this quantity, we are intuitively taking
probability mass away from some neighborhood r(z)
of z and putting it on z.

Without loss of generality, assume the component
weights sum to 1, so we can think of taking an ex-
pectation over a random component R drawn from
some fixed distribution Pr. We then define the crite-
rion function:

mθ(z)
def= ER∼Pr log pθ(z | z ∈ R(z)). (4)

Given data points Z(1), . . . , Z(n) drawn i.i.d. from
some true distribution p∗ (not necessarily in the ex-
ponential family), the maximum composite likelihood
estimator is defined by averaging the criterion function
over these data points:

θ̂ = argmax
θ

Êmθ(Z), (5)

where Êmθ(Z) = 1
n

∑n
i=1mθ(Z(i)).

We can now place the three estimators of interest in
our framework:

Generative: We have one component rg(x, y) = X ×
Y, which has one partition—the whole outcome space.

Fully discriminative: We have one component
rd(x, y) = x×Y. The outcomes in each partition have
the same value of x, but different y.

Pseudolikelihood discriminative: Assume y =
{yi}i∈V . For each i ∈ V , we have a component
ri(x, y) = {(x′, y′) : x′ = x, y′ ∈ Y, y′j = yj for j 6= i}.
Pr is uniform over these components.
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v⊗ = vv>

Parameter estimates
p∗ true distribution of the data
mθ criterion function (defines the estimator)
R risk (expected log-loss)
θ̂ = argmaxθ Êmθ(Z) [empirical parameter estimate]
θ◦ = argmaxθ Emθ(Z) [limiting parameter vector]
Random variables for asymptotic analysis
R ∼ Pr [choose composite likelihood component]
rd(x, y) = x× Y [fully discriminative component]
φ = φ(Z), Z ∼ p∗ [sample from true distribution]
φt = φ(Zt), Zt ∼ p∗(· | · ∈ R(Z)) [from true distrib.]
φm = φ(Zm), Zm ∼ pθ◦(· | · ∈ R(Z)) [for estimation]
φe = φ(Ze), Ze ∼ pθ◦(· | · ∈ rd(Z)) [for prediction]

Table 1. Notation used in the paper.

2.2. Prediction and Evaluation

Given a parameter estimate θ̂, we make predictions
based on pθ̂(y | x). In this paper, we evaluate our
model according to log-loss; the risk is the expected
log-loss:

R(θ) = E(X,Y )∼p∗ [− log pθ(Y | X)]. (6)

The quality of an estimator is determined by the gap
between the risk of the estimate R(θ̂) and the Bayes
risk R∗ = H(Y | X). It will be useful to relate these
two via the risk of θ◦ = argmaxθ EZ∼p∗ mθ(Z), which
leads to the following standard decomposition:

R(θ̂)−R∗︸ ︷︷ ︸
total error

= (R(θ̂)−R(θ◦))︸ ︷︷ ︸
estimation error

+ (R(θ◦)−R∗)︸ ︷︷ ︸
approx. error

. (7)

The estimation error is due to having only finite data;
the approximation error is due to the intrinsic subop-
timality of the estimator.2

3. Asymptotic Analysis

We first compute the asymptotic estimation errors
of composite likelihood estimators in general (Sec-
tions 3.1 and 3.2). Then we use these results to com-
pare the estimators of interest (Sections 3.3 and 3.4).

In this paper, we assume that our exponential family
is identifiable.3 Also assume that our estimators con-
verge (θ̂ P−→ θ◦) and are consistent when the model is

2Note that θ◦ is not necessarily the minimum risk pa-
rameter vector in the model family.

3In the non-identifiable case, the analysis becomes more
cluttered, but the results are essentially the same, since
predictions depend on only the distributions induced by
the parameters. See the longer version of this paper for an
in-depth discussion.

well-specified (if p∗ = pθ∗ , then θ◦ = θ∗). Note, how-
ever, that in general we do not assume that our model
is well-specified.

Our asymptotic analysis is driven by Taylor expan-
sions, so we need to compute a few derivatives. The
derivatives of the log-partition function are moments
of the sufficient statistics (a standard result, see Wain-
wright and Jordan (2003)):

Ȧ(θ; s) = EZ∼pθ(·|·∈s)(φ(Z)) (8)

Ä(θ; s) = varZ∼pθ(·|·∈s)(φ(Z)). (9)

From these moments, we can obtain the derivatives
of mθ◦ and R (to simplify notation, we express these
in terms of random variables whose distributions are
defined in Table 1):

ṁθ◦ = φ− E(φm | Z) (10)
m̈θ◦ = −E[var(φm | R(Z)) | Z] (11)
Ṙ(θ◦) = E(φe − φ) (12)
R̈(θ◦) = E var(φe | Z). (13)

3.1. Asymptotics of the Parameters

We first analyze how fast θ̂ converges to θ◦ by comput-
ing the asymptotic distribution of θ̂−θ◦. In Section 3.2
we use this result to get the asymptotic distribution of
the estimation error R(θ̂)−R(θ◦).

The following standard lemma will prove to be very
useful in our analysis:
Lemma 1. For random vectors X,Y, Z, we have
var(X | Z) = E[var(X | Y,Z) | Z] + var[E(X | Y,Z) |
Z].

The important implication of this lemma is that con-
ditioning on another variable Y reduces the variance
of X. This lemma already hints at how conditioning
on more variables can lead to poorer estimators: con-
ditioning reduces the variance of the data, which can
make it harder to learn about the parameters.

The following theorem gives us the asymptotic vari-
ance of a general composite likelihood estimator:
Theorem 1 (Asymptotic distribution of the parame-
ters). Assume θ̂ P−→ θ◦. Then

√
n(θ̂ − θ◦)→ N (0,Σ) . (14)

The asymptotic variance is

Σ = Γ−1 + Γ−1(Cc + Cm)Γ−1, (15)

where Γ = E var(φm | R(Z)) is the sensitivity, Cc =
E var[E(φm | R(Z)) | Z] is the component correction,
and Cm = E[var(φt | Z) − var(φm | Z)] + E[E(φt |
Z)− E(φm | Z)]⊗ is the misspecification correction.
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Proof. The standard asymptotic normality result for
M-estimators (Theorem 5.21 of van der Vaart (1998)),
which includes composite likelihood estimators, gives
us the asymptotic variance:

Σ = (Em̈θ◦)−1(Eṁ⊗θ◦)(Em̈θ◦)−1. (16)

The remainder of the proof simply re-expresses Σ in
terms of more interpretable quantities. Algebraic ma-
nipulation of (10) yields:

Eṁ⊗θ◦ = E[(φ−E(φt | Z))+(E(φt | Z)−E(φm | Z))]⊗.

Note that cross terms cancel conditioned on Z and
that E[φ− E(φt | Z)]⊗ = E[φt − E(φt | Z)]⊗, so

Eṁ⊗θ◦ = Cm + E var(φm | Z). (17)

We then apply Lemma 1 to decompose the second term
of the right-hand side:

E var(φm | Z) = (18)
E var(φm | R(Z)) + E var[E(φm | R(Z)) | Z].

Substitute (18) into (17) to get an expression for Eṁ⊗θ◦ ;
(11) already provides one for Em̈θ◦ . Substitute these
two expressions into (16) and simplify to get (15).

The decomposition in (15) allows us to make sev-
eral qualitative judgments. First, the sensitivity Γ =
E var(φm | R(Z)) is the expected amount of varia-
tion in the features given Z and R (equivalently, given
R(Z)). The larger the sensitivity, the more the data
can tell us about the parameters, and thus the lower
the asymptotic variance will be.

The component correction Cc intuitively measures how
different the feature expectations E(φm | R(Z)) under
the various components are. Cc is zero for the genera-
tive and fully discriminative estimators, but the pseu-
dolikelihood discriminative estimator pays a penalty
for having more than one component.

The misspecification correction Cm is zero when the
model is well-specified (in this case, φm | Z d= φt | Z),
but is in general nonzero under model misspecification.
In this latter case, one incurs a nonzero approximation
error (defined in (7)) as expected, but we see that there
is also a nonzero effect on estimation error.

3.2. Asymptotics of the Risk

The following theorem turns Theorem 1 from a state-
ment about the asymptotic distribution of the param-
eters into one about the risk:

Theorem 2 (Asymptotic distribution of the risk). Let
Σ be the asymptotic variance as defined in (15). De-
note Ṙ def= Ṙ(θ◦) and R̈ def= R̈(θ◦). Then

√
n(R(θ̂)−R(θ◦)) d−→ N

(
0, Ṙ>ΣṘ

)
. (19)

Furthermore, if Ṙ = 0, then

n(R(θ̂)−R(θ◦)) d−→ 1
2

trW
(
R̈ 1

2 ΣR̈ 1
2 , 1
)
, (20)

where W(V, n) is the Wishart distribution with n de-
grees of freedom.

Proof. Perform a Taylor expansion of the risk function
around θ◦:

R(θ̂) = R(θ◦) + Ṙ>(θ̂ − θ◦) + (21)
1
2

(θ̂ − θ◦)>R̈(θ̂ − θ◦) + o(||θ̂ − θ◦||2).

We use a standard argument known as the delta
method (van der Vaart, 1998). Multiplying (21) on
both sides by

√
n, rearranging terms, and applying

Slutsky’s theorem, we get (19). However, when Ṙ = 0,
the first-order term of the expansion (21) is zero,
so we must consider the second-order term to get a
non-degenerate distribution. Note that R̈ is positive
semidefinite. Multiplying (21) by n and rearranging
yields the following:

n(R(θ̂)−R(θ◦)) =
1
2

tr
(

[R̈ 1
2
√
n(θ̂ − θ◦)]⊗

)
+ · · ·

Since R̈ 1
2
√
n(θ̂ − θ◦) d−→ N (0, R̈ 1

2 ΣR̈ 1
2 ), applying the

continuous mapping theorem with the outer product
function yields a Wishart as the limiting distribution.
Thus, n(R(θ̂)−R(θ◦)) is asymptotically equal in dis-
tribution to 1

2 times the trace of a sample from that
Wishart distribution.

We can also understand (20) in the following way.
Let V = R̈ 1

2 ΣR̈ 1
2 . Note that 1

2 trW(V, 1) d=
1
2 tr (VW(I, 1)), which is the distribution of a weighted
sum of independent χ2

1 variables, where the weights
are determined by the diagonal elements of V . The
mean of this distribution is 1

2 tr(V ) and the variance is
tr(V • V ), where • denotes elementwise product.

An important question is when we obtain the ordi-
nary O(n−

1
2 ) convergence (19) versus the much better

O(n−1) convergence (20). A sufficient condition for
O(n−1) convergence is Ṙ(θ◦) = 0. When the model is
well-specified, this is true for any consistent estimator.

Even if the model is misspecified, the fully discrimi-
native estimator still achieves the O(n−1) rate. The
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reason is that whenever a training criterion mθ is the
same (up to constants) as the test criterion R(·), Ṙ
vanishes and we obtain the O(n−1) rate. This is in
concordance with a related observation made by Wain-
wright (2006) that it is better to use the same inference
procedure at both training and test time.

When the model is well-specified, there is another ap-
pealing property that holds if the training and test
criterion are the same up to constants: the asymp-
totic distribution of the risk depends on only the di-
mensionality of the exponential family, not the actual
structure of the model. In particular, for composite
likelihood estimators with one component, Σ = Γ−1 =
(−Em̈θ◦)−1 = R̈−1. Therefore, R̈ 1

2 ΣR̈ 1
2 = Id and so

n(R(θ̂) − R(θ◦)) d−→ 1
2 trW(Id, 1) d= 1

2χ
2
d, where d is

the number of parameters. This result is essentially
another way of looking at the fact that the likelihood
ratio test statistic is asymptotically distributed as χ2.

3.3. Comparing Estimation Errors

In the previous section, we analyzed the asymptotics
of a single estimator. Now, given two estimators, we
would like to be able to tell which one is better. In or-
der to compare two estimators, it would be convenient
if they converged to the same limit. In this section,
we ensure this by assuming that the model is well-
specified and that our estimators are consistent.

Since all parameter estimates are used in the same
way for prediction, it suffices to analyze the relative
efficiencies of the parameter estimates. The following
theorem says that coarser partitionings of Z generally
lead to more efficient estimators:

Theorem 3 (Asymptotic relative efficiency). Let θ̂1
and θ̂2 be two consistent estimators with asymptotic
variances Σ1 and Σ2 as defined in (15). Assume that
R1 is constant (θ̂1 has exactly one component) and
R1(z) ⊃ R2(z) for all z ∈ Z. If the model is well-
specified, then Σ1 � Σ2 (θ̂1 is no worse than θ̂2).

Proof. We first show that Γ−1
1 � Γ−1

2 , where Γ1 and
Γ2 are the sensitivities of the two estimators. Because
the model is well-specified, Γk = E var(φt | Rk(Z)) for
k = 1, 2. The assumption R1(Z) ⊃ R2(Z) means that
R2(Z) provides more information about Z thanR1(Z);
formally, the σ-fields satisfy σ(R1(Z)) ⊂ σ(R2(Z)).
Thus, we can use Lemma 1 to decompose the variance:
Γ1 = E var(φt | R2(Z))+E var[E(φt | R2(Z)) | R1(Z)].
The first term of the right-hand side is exactly Γ2 and
the second term is positive semidefinite, so Γ1 � Γ2,
which implies Γ−1

1 � Γ−1
2 .

Let Cc1 and Cc2 be the component corrections of the

two estimators. Note that Cc1 = 0 because the R1

is constant, so Cc1 � Cc2. The misspecification cor-
rections are both zero. Putting these results together
yields the theorem.

One might wonder if we really need R1 to be constant.
Is it not enough to just assume that R1(z) ⊃ R2(z)
(for some coupling of R1 and R2)? The answer is no,
as the following counterexample shows:

Counterexample Let Z = {1, 2, 3}. The general
shape of the distribution is given by the single feature
φ(1) = 1, φ(2) = 3, φ(3) = 2 and a scalar parame-
ter θ controls the peakiness of the distribution. Let
the true parameter be θ∗ = 1. Consider two esti-
mators: θ̂1 has two components, r1a = {{1, 2}, {3}}
and r1b = {{1}, {2, 3}}; θ̂2 also has two components,
r2a = {{1, 2}, {3}} and r2b = {{1}, {2}, {3}}.

Coupling r1a with r2a and r1b with r2b, we have
R1(z) ⊃ R2(z). However, we computed and found
that Γ1 u 4.19 and Γ2 u 3.15, so θ̂2 actually has lower
asymptotic variance although it has finer partitionings.

To explain this, note that the contribution of r2b to
the criterion function is zero, so the second estimator
is equivalent to just using the single component r2a
(= r1a), so the first estimator actually suffers by us-
ing the additional component r1b. In general, while
we would still expect coarser partitionings to be bet-
ter even for estimators with many components, this
counterexample shows that we must exercise caution.

3.4. Comparing Estimators

Finally, we use Theorem 3 to compare the estimation
and approximation errors of the generative (θ̂g), fully
discriminative (θ̂d), and pseudolikelihood discrimina-
tive (θ̂p) estimators. The subscripts g,d,p will be at-
tached to other variables to refer to the quantities as-
sociated with the corresponding estimators. In the fol-
lowing corollaries, we use the word “lower” loosely to
mean “no more than,” although in general we expect
the inequality to be strict.

Corollary 1 (Generative versus fully discriminative).
(1) If the model is well-specified, θ̂g has lower asymp-
totic estimation error than θ̂d; both have zero approx-
imation error. (2) If the model is misspecified, θ̂d has
lower approximation and asymptotic estimation errors
than θ̂g.

Proof. For (1), since Rd(z) ⊂ Rg(z), we have Σg � Σd

by Theorem 3. Zero approximation error follows from
consistency. For (2), since the discriminative estimator
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achieves the minimum risk in the model family, it has
the lowest approximation error. Also, by Theorem 2
and the ensuing discussion, it always converges at a
O(n−1) rate, whereas the generative estimator will in
general converge at a O(n−

1
2 ) rate.

Note that there is a qualitative change of asymptotics
in going from the well-specified to the misspecified sce-
nario. This discontinuity demonstrates one weakness
of asymptotic analyses: we would expect that for a
very minor model misspecification, the generative es-
timator would still dominate the discriminative esti-
mator for moderate sample sizes, but even a small
misspecification is magnified in the asymptotic limit.

In the following toy example where the model is well-
specified, we see concretely that the generative estima-
tor has smaller asymptotic estimation error:

Example Consider a model where x and y are bi-
nary variables: φ(x, y)>θ = θ01[x = 0, y = 1] +
θ11[x = 1, y = 1], where the true parameters are θ∗ =
(0, 0). We can compute Γg = var(φ) = 1

16

(
3 −1
−1 3

)
and R̈(θ∗) = Γd = E var(φ | X) = 1

16

(
2 0
0 2

)
. The

mean asymptotic estimation error (scaled by n) of the
generative estimator is 1

2 tr(ΓdΓ−1
g ) = 3

4 while that of
the discriminative estimator is 1

2 tr(ΓdΓ−1
d ) = 1.

We now show that fully discriminative estimators are
statistically superior to pseudolikelihood discrimina-
tive estimators in all regimes, but of course pseudo-
likelihood is computationally more efficient.

Corollary 2 (Fully discriminative versus pseudolikeli-
hood discriminative). (1) If the model is well-specified,
θ̂d has lower asymptotic estimation error than θ̂p; both
have zero approximation error. (2) If the model is mis-
specified, θ̂d has lower approximation and asymptotic
estimation errors than θ̂p.

Proof. For (1), since Rp(z) ⊂ Rd(z), Σd � Σp by The-
orem 3. Zero approximation error follows from consis-
tency. For (2), the same arguments as the correspond-
ing part of the proof of Corollary 1 apply.

4. Experiments

In this section, we validate our theoretical analysis em-
pirically. First, we evaluate the three estimators on a
simple graphical model which allows us to plot the
real asymptotics of the estimation error (Section 4.1).
Then we show that in the non-asymptotic regime, the
qualitative predictions of the asymptotic analyses are
also valid (Section 4.2).

4.1. A Simple Graphical Model

Consider a four-node binary-valued graphical model
where z = (x1, x2, y1, y2). The true model family
p∗ is an Markov random field parametrized by θ∗ =
(α∗, β∗, γ∗) as follows:

φ(z)>θ = α1[y1 = y2] + β(1[x1 = y1] + 1[x2 = y2]) +
γ(1[x1 = y2] + 1[x2 = y1]).

To emulate misspecification, we set γ∗ to be nonzero
and force γ = 0 during parameter estimation.

In the first experiment, we estimated the variance (by
running 10K trials) of the estimation error as we in-
creased the number of data points. We set α∗ = β∗ =
1 for the true model. When γ∗ = 0 (the model is
well-specified), Figures 1(a)–(c) show that scaling the
variance by n yields a constant; this implies that all
three estimators achieve O(n−1) convergence.

When the model is misspecified with γ∗ = 0.5 (Fig-
ures 1(d)–(f)), there is a sharp difference between
the rates of the generative and discriminative estima-
tors. The fully discriminative estimator still enjoys
the O(n−1) convergence; scaling by n reveals that the
generative and pseudolikelihood discriminative estima-
tors are only attaining a O(n−

1
2 ) rate as predicted by

Theorem 2 (Figure 1(f)). Note that the generative
estimator is affected most severely.

Figures 1(g)–(h) demonstrate the non-asymptotic im-
pact of varying the parameters of the graphical model
in terms of the total error. In (g), as we increase the
amount of misspecification γ, the error increases for
all estimators, but most sharply for the generative es-
timator. In (h), as we increase the strength of the
edge potential α, the pseudolikelihood discriminative
estimator suffers, the fully discriminative estimator is
unaffected, and the generative estimator actually im-
proves.

4.2. Part-of-speech Tagging

In this section, we present experiments on part-of-
speech (POS) tagging. In POS tagging, the input is a
sequence of words x = (x1, . . . , x`) and the output is a
sequence of POS tags y = (y1, . . . , y`), e.g., noun, verb,
etc. (There are 45 tags total.) We consider the follow-
ing model, specified by the following features (roughly
2 million total):

φ(x, y) =
∑̀
i=1

φnode(yi, xi) +
`−1∑
i=1

φedge(yi, yi+1), (22)

where the node features φnode(yi, xi) are a vector of
indicator functions of the form 1[yi = a, xi = b], and
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Figure 1. Asymptotics of the simple four-node graphical model. In (a)–(c), α∗ = β∗ = 1 and γ∗ = 0; we plot the
asymptotic variance of the estimation error, scaled by 1,

√
n, and n. In (d)–(f), we repeat with γ∗ = 0.5. In (g), we take

n = 20000 examples, α∗ = β∗ = 1 and vary γ. In (h), we take n = 20000, β∗ = 1, γ∗ = 0 and vary α.

the edge features φedge(yi, yi+1) are a vector of indica-
tor functions of the form 1[yi = a, yi+1 = b]. Trained
generatively, this model is essentially an HMM, but
slightly more expressive. Trained (fully) discrimina-
tively, this model is a CRF.

We used the Wall Street Journal (WSJ) portion of the
Penn Treebank, with sections 0–21 for training (38K
sentences) and 22–24 for testing (5.5K sentences). Ta-
ble 2(a) shows that the discriminative estimators per-
form better than the generative one. This is not sur-
prising given that the model is misspecified (language
does not come from an HMM).

To verify that the generative estimator is superior
when the model is well-specified, we used the learned
generative model in the previous experiment to sample
1000 synthetic training and 1000 synthetic test exam-
ples. We then applied the estimators as before on this
artificial data. Table 2(b) shows that the generative es-

Accuracy Log-loss
Train Test Train Test

Gen. 0.940 0.935 4.628 4.945
Fully dis. 0.977 0.956 1.480 3.120
Pseudo dis. 0.975 0.955 1.562 3.170

(a) Real data (misspecified)

Accuracy Log-loss
Train Test Train Test

Gen. 0.989 0.898 0.570 7.297
Full dis. 0.992 0.879 0.407 12.431
Pseudo dis. 0.990 0.891 0.469 10.840

(b) Synthetic data (well-specified)

Table 2. Part-of-speech tagging results. Discriminative es-
timators outperform the generative estimator (on both test
accuracy and log-loss) when the model is misspecified, but
the reverse is true when the model is well-specified.
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timator has an advantage over the fully discriminative
estimator, and both are better than the pseudolikeli-
hood estimator.

5. Discussion and Extensions

We believe our analysis captures the essence of the
generative-discriminative distinction: by modeling the
input, we reduce the variance of the parameter esti-
mates. In related work, Ng and Jordan (2002) showed
that Naive Bayes requires exponentially fewer exam-
ples than logistic regression to obtain the same esti-
mation error. The key property needed in their proof
was that the Naive Bayes estimator decouples into d
independent closed form optimization problems, which
does not seem to be the defining property of genera-
tive estimation. In particular, this property does not
apply to general globally-normalized generative mod-
els, but one would still expect those models to have
the advantages of being generative.

Given that the generative and discriminative estima-
tors are complementary, one natural question is how
to interpolate between the two to get the benefits of
both. Our framework naturally suggests two ways to
go about this. First, we could vary the coarseness of
the partitioning. Generative and discriminative esti-
mators differ only in this coarseness and there is a
range of intermediate choices corresponding to condi-
tioning on more or fewer of the input variables. Sec-
ond, we could take a weighted combination of esti-
mators (e.g., Bouchard and Triggs (2004); McCallum
et al. (2006)). For one-parameter models, Lindsay
(1988) derived the optimal weighting of the component
likelihoods, but unfortunately these results cannot be
applied directly in practice.

It would also be interesting to perform a similar
asymptotic analysis on other estimators used in prac-
tice, for example marginal likelihoods with latent vari-
ables, tree-reweighted belief propagation (Wainwright
et al., 2003; Wainwright, 2006), piecewise training
(Sutton & McCallum, 2005), etc. Another important
extension is to curved exponential families, which ac-
count for many of the popular generative models based
on directed graphical models.

6. Conclusion

We have analyzed the asymptotic distributions of com-
posite likelihood estimators in the exponential family.
The idea of considering different partitionings of the
outcome space allows a clean and intuitive character-
ization of the asymptotic variances, which enables us
to compare the commonly used generative, discrimina-

tive, and pseudolikelihood estimators as special cases.
Our work provides new theoretical support for exist-
ing intuitions and a basis for developing new estima-
tors which balance the tradeoff between computational
and statistical efficiency.
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Abstract

Structured models often achieve excellent
performance but can be slow at test time.
We investigate structure compilation, where
we replace structure with features, which are
often computationally simpler but unfortu-
nately statistically more complex. We an-
alyze this tradeoff theoretically and empir-
ically on three natural language processing
tasks. We also introduce a simple method to
transfer predictive power from structure to
features via unlabeled data, while incurring
a minimal statistical penalty.

1. Introduction

Structured models have proven to be quite effective for
tasks which require the prediction of complex outputs
with many interdependencies, e.g., sequences, segmen-
tations, trees, etc. For example, conditional random
fields (CRFs) can be used to predict tag sequences
where there are strong dependencies between adjacent
tags (Lafferty et al., 2001). In part-of-speech tagging,
for instance, a CRF can easily model the fact that ad-
jectives tend to precede nouns in English. However,
the excellent performance of structured models comes
at a computational cost: inference in loopy graphs re-
quires approximate inference, and even for sequences,
there is a quadratic dependence on the number of tags.

In this paper, we ask a bold question: do we really need
structure? Consider replacing the edges in a CRF with
additional contextual features, i.e., having an indepen-
dent logistic regression (ILR) at each position. A fun-
damental question is whether there is a gap between

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

the expressive power of the ILR and that of the CRF.
Punyakanok et al. (2005) investigated this question
for margin-based models1 and concluded that struc-
ture was not needed when the independent problems
were “easy.” They characterized difficulty in terms of
classifier separability, which is a very rigid notion. In
Section 3.1, we provide an information-theoretic anal-
ysis, decomposing the gap between the ILR and CRF
into three terms, each one representing a shortcoming
of the ILR. The impact of each is investigated empiri-
cally.

Even if the ILR were made as expressive as the CRF
by adding additional features, an important remaining
question is whether the ILR could generalize as well
as the CRF given limited labeled data. Indeed, the
ILR overfits more easily, and we provide generalization
bounds in Section 3.2 to quantify this effect.

At this point, it seems as though we are forced to make
a tradeoff between the computational simplicity of the
ILR and the statistical simplicity of the CRF. How-
ever, we propose structure compilation as a way to
have the best of both worlds. Our strategy is to la-
bel a plethora of unlabeled examples using the CRF
and then train the ILR on these automatically labeled
examples. If we label enough examples, the ILR will
be less likely to overfit. Although training now takes
longer, it is only a one-time cost, whereas prediction
at test time should be made as fast as possible.

Many authors have used unlabeled data to transfer
the predictive power of one model to another, for ex-
ample, from high accuracy neural networks to more
interpretable decision trees (Craven, 1996), or from
high accuracy ensembles to faster and more com-
pact neural networks (Bucilă et al., 2006). Our fo-

1In their case, the independent models are not endowed
with extra features, but coherence of the predictions is en-
forced at test time.
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cus is on structured classification tasks, specifically on
studying the tradeoff between structure and features.
We ran experiments on three tasks: part-of-speech
tagging (POS), named-entity recognition (NER), and
constituency parsing (Figure 1).

DT NNP NNP VBD
The European Commission agreed
Part-of-speech tagging (POS)

O B-ORG I-ORG O
The European Commission agreed

Named-entity recognition (NER)

S

NP

DT

The

NN

man

VP

VBD

ate

NP

DT

a

NN

JJ

tasty

NN

sandwich
Parsing

Figure 1. Examples of inputs and their outputs for the
three tasks we experimented on. The input (what’s seen
at test time) is italicized.

2. From Structure to Features

In this section, we will walk through the process of
replacing structure with features, using empirical re-
sults on POS2 and NER3 as running examples. Table 1
summarizes the notation we will use.

2.1. Conditional Random Fields (CRFs)

In structured classification, our goal is to learn to pre-
dict an output y ∈ Y (e.g., a tag sequence, a segmen-
tation, or a parse tree) given an input x ∈ X (e.g., a
sentence). In this paper, we consider conditional expo-
nential family models, which have the following form:

pθ(y | x) = exp{φ(x,y)>θ −A(θ; x)}, (1)

where φ(x,y) are the sufficient statistics (features),
θ ∈ Rd are the parameters, and A(θ; x) =
log
∑

y exp{φ(x,y)>θ} is the log-partition function.

One important type of conditional exponential family
is a conditional random field (CRF) defined on a graph
G = (V,E). In this case, the output y = {yi}i∈V is
a collection of labels, one for each node i ∈ V , with
yi ∈ {1, . . . ,K}. The features include functions over
both nodes and edges:

φ(x,y) =
∑
i∈V

f(yi,x, i) +
∑

(i,j)∈E

g(yi, yj).

2We used the Wall Street Journal (WSJ) portion of the
Penn Treebank, with sections 0–21 as the training set (38K
sentences) and sections 22–24 as the test set (5.5K sen-
tences).

3We used the English data from the 2003 CoNLL Shared
Task, consisting of 14.8K training sentences and 3.5K test
sentences (set A).

In this work, we use a generic set of features for both
POS and NER. The components of the node features
f(yi,x, i) are all indicator functions of the form I[yi =
a, s(xi+o) = b], where a ranges over tags, s(·) ranges
over functions on words,4 b are values in the range of
s(·), and −L ≤ o ≤ L is an offset within a radius L
window of the current position i (we used L = 0 for
POS, L = 1 for NER). The components of the edge
features g(yi, yj) are of the form I[yi = a, yj = b]. Let
f1 denote this base feature set.

Training Suppose we are given n labeled exam-
ples (x(1),y(1)), . . . , (x(n),y(n)), which for the pur-
poses of our theoretical analysis are assumed to be
drawn i.i.d. from some unknown true distribution p∗.
We train the CRF using standard maximum likeli-
hood:5 maxθ Epl(x,y) log p(y | x; θ), where pl(x,y) =
1
n

∑n
i=1 I[x = x(i),y = y(i)] denotes the empirical dis-

tribution of the labeled data. Later, we will consider
other training regimes, so we need to establish some
new notation. Let pc = Tr(crf, f1, p

l) denote the
CRF trained with the base feature set f1 on the la-
beled data.

CRFs achieve state-of-the-art performance on POS
and NER. Using just our generic feature set, we ob-
tain 96.9% tagging accuracy on POS (training with
30K examples) and 85.3% F1 on NER (training with
10K examples). However, the performance does come
at a computational cost, since inference scales quadrat-
ically with the number of tags K. This cost only in-
creases with more complex models.

2.2. Independent Logistic Regression (ILR)

Let us try something drastic: remove the edges from
the CRF to get an independent logistic regression
(ILR), where now φ(x,y) =

∑
i∈V f(yi,x, i). For an

ILR trained on the labeled data with our base feature
set (denoted formally as Tr(ilr, f1, p

l)), inference can
be done independently for each node. For POS, the
ILR takes only 0.4ms to process one sentence whereas
the CRF takes 2.7ms, which is a speedup of 5.8x, not
including the time for precomputing features.6 Unfor-
tunately, the accuracy of POS drops from 96.9% to
93.7%. For NER, F1 drops from 85.3% to 81.4%.

4We used 10 standard NLP functions which return the
word, prefixes and suffixes (up to length 3) of the word,
word signatures (e.g., McPherson maps to AaAaaaaaa and
AaAa), and whether the word is capitalized.

5In our experiments, we ran stochastic gradient for 50
iterations with a 1/(iteration + 3) step-size.

6If we include the time for computing features, the
speedup drops to 2.3x.
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2.3. Adding New Features

Without edges, the ILR has less expressiveness com-
pared to the CRF. We can compensate for this loss
by expanding our base feature set. We will use f2 to
denote the expanded feature set.

We use a simple recipe to automatically construct f2

from f1, but in general, we could engineer the features
more carefully for better performance (see the parsing
experiments in Section 4, for example). Essentially,
our recipe is to allow the ILR at node i to use the
base features f1 applied to the nodes in a local win-
dow around i. For the chain CRF, this amounts to
simply increasing the window size from L to L + r
(Section 2.1), where we call r the expansion radius.

For POS, we used an expansion radius of r = 1; for
NER, r = 2. By training with these new features
(Tr(ilr, f2, p

l)), we get 96.8% on POS (compared to
the 96.9% of the CRF), taking 0.8ms per example
(compared to 2.7ms for the CRF). In this case, we
have successfully traded structure for features with a
negligible loss in performance and a 3.4x speedup. For
NER, the story is quite different: adding features ac-
tually makes F1 drop from 81.1% to 78.8%.

We believe there are two reasons for the poor perfor-
mance on NER. First, since NER is a segmentation
problem, the structure plays a more integral role and
thus cannot be easily replaced with features. In other
words, the approximation error of the ILR with respect
to the CRF is higher for NER than POS. Section 3.1
provides a more formal treatment of this matter. Sec-
ond, adding more features increases the risk of over-
fitting. In other words, the estimation error is larger
when there are more features. Section 3.2 analyzes
this error theoretically.

2.4. Using Unlabeled Data

There seems to be a tradeoff between approximation
error and estimation error: More features can provide
a better substitute for structure (decreasing the ap-
proximation error), but at the risk of overfitting the
data (increasing the estimation error).

The algorithmic contribution of this paper is using un-
labeled data to reduce the estimation error of the ILR
via structure compilation. Suppose we have m unla-
beled examples x(1), . . . ,x(m) (which we assume are
also generated from p∗); let pu(x) denote the corre-
sponding empirical distribution. We can use the CRF
pc(y | x) (which has been trained on pl) to label this
unlabeled data. Let pu

c(x,y) = pu(x)pc(y | x) denote
this new plentiful source of labeled data. Instead of
training the ILR on the limited amount of originally

f1 base feature set
f2 expanded feature set
p∗(x,y) true data distribution
pl(x,y) original labeled examples (few)
pc(y | x) = Tr(crf, f1, p

l) [trained CRF]
pc∗(y | x) = Tr(crf, f1, p

∗) [limiting CRF]
pu(x) unlabeled examples (many)
pu
c(x,y) = pu(x)pc(y | x) [labeled with CRF]
p∗c(x,y) = p∗(x)pc(y | x) [labeled with CRF]
pi(y | x) = Tr(ilr, f2, p

u
c) [trained ILR]

pi∗(y | x) = Tr(ilr, f2, p
∗
c) [limiting ILR]

Table 1. Notation used in this paper. In general, super-
scripts denote marginal distributions over x and subscripts
denote conditional distributions over y given x.

labeled data pl, we instead train it on our automati-
cally labeled data pu

c.7

Structure compilation is most useful when there are
few original labeled examples. Figure 2 shows the
performance of a ILR obtained using structure com-
pilation when the CRF is trained on only 2K labeled
examples. We see that using more unlabeled data re-
duces the performance gap between the CRF and ILR
as the estimation error is reduced. For POS, the gap is
closed entirely, whereas for NER, there is a remaining
approximation error.
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Figure 2. crf(f1) is the CRF trained using the base fea-
ture set on 2K examples. ilr(f1) is the ILR trained the
same way; performance suffers. However, by using the ex-
panded feature set and training on m examples (New York
Times articles from Gigawords) which are labeled with the
CRF, ilr(f2) can recover all of the performance for POS
and more than half of the performance for NER.

7Strictly speaking, training on pu
c would involve creat-

ing many examples weighted by pc(yi | x) for each origi-
nal x. But since the posteriors are sharply peaked, using
argmaxy pc(y | x) was faster and an adequate approxima-
tion for our applications.
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3. Analysis

In this section, we try to get a better understanding
of when structure compilation would be effective. For
the theoretical analysis, we will measure performance
in terms of log-loss (negative cross-entropy):

ε(p1, p2) def= Ep1(x,y)[− log p2(y | x)], (2)

where p1(x,y) is the data generating distribution and
p2(y | x) is the model under evaluation. We will also
use conditional KL-divergence to quantify approxima-
tion error:

κ(p1, p2) def= ε(p1, p2)− ε(p1, p1). (3)

We are interested in ε(p∗, pi), the loss of the final com-
piled ILR. As we will later show in (7), this loss can
be expressed in terms of two parts: (1) ε(p∗, pc), the
loss of the CRF; and (2) κ(pc, pi), the penalty due to
structure compilation.

The CRF loss can be decomposed into approxima-
tion and estimation errors as follows, using telescoping
sums (refer to Table 1 for notation):

ε(p∗, pc) = ε(p∗, pc)− ε(pl, pc)︸ ︷︷ ︸
crf-est-err

+ (4)

ε(pl, pc)− ε(pl, pc∗)︸ ︷︷ ︸
≤0

+

ε(pl, pc∗)− ε(p∗, pc∗)︸ ︷︷ ︸
crf-est-err

+ ε(p∗, pc∗)︸ ︷︷ ︸
crf-apx-err

.

The second term on the RHS is non-positive because
because pc is chosen to minimize log-loss on pl. The
first and third terms are the estimation errors result-
ing from using pl instead of p∗; these will be uniformly
bounded in Section 3.2. Finally, the last term is an ap-
proximation error reflecting the modeling limitations
of the CRF.

The structure compilation penalty can be decomposed
analogously:

κ(p∗c, pi) = κ(p∗c, pi)− κ(pu
c, pi)︸ ︷︷ ︸

ilr-est-err

+ (5)

κ(pu
c, pi)− κ(pu

c, pi∗)︸ ︷︷ ︸
≤0

+

κ(pu
c, pi∗)− κ(p∗c, pi∗)︸ ︷︷ ︸

ilr-est-err

+ κ(p∗c, pi∗)︸ ︷︷ ︸
ilr-apx-err

.

We would now like to combine ε(p∗, pc) and κ(pc, pi)
to get a handle on ε(p∗, pi), but unfortunately, KL-
divergence does not satisfy a triangle inequality. We

can, however, derive the following approximate trian-
gle inequality, where we pay an extra multiplicative
factor (see Appendix A.1 for the proof):
Theorem 1. Consider a conditional exponential fam-
ily P with features φ. Let Θ be a compact subset of
parameters, and define PΘ = {pθ : θ ∈ Θ}. For
any p1, p2 ∈ PΘ and any distribution p0 such that
p′0 = argmaxp∈PEp∗(x)p0(y|x) log p(y | x) ∈ PΘ,

Ep∗(x)KL (p0(y | x) || p2(y | x)) ≤ (6)
α [Ep∗(x)KL (p0(y | x) || p1(y | x)) +

Ep∗(x)KL (p1(y | x) || p2(y | x))],

where α = 2 supθ∈Θ λmax(E varθ(φ|x))

infθ∈Θ λ
+
min(E varθ(φ|x))

. Here, λmax(Σ) and

λ+
min(Σ) are the largest and smallest nonzero eigenval-

ues of Σ, respectively.

Theorem 1 generalizes Lemma 3 of Crammar et al.
(2007) to conditional distributions and the case where
p0 is not necessarily in an exponential family.

Let us apply Theorem 1 with p∗, pc, pi. We then add
the conditional entropy EH(p∗(y | x)) to the LHS of
the resulting inequality and αEH(p∗(y | x)) to the
RHS (note that α ≥ 1), thus obtaining a bound for
the total loss of the final compiled ILR:

ε(p∗, pi) ≤ α(ε(p∗, pc) + κ(p∗c, pi)) (7)
≤ α(crf-apx-err + ilr-apx-err) +

2α(crf-est-err + ilr-est-err).

In the remaining sections, we analyze the various
pieces of this bound.

3.1. Approximation Error

We start by analyzing ilr-apx-err = κ(p∗c, pi∗),
which measures how well the ILR can approximate
the CRF. Specifically, we show that κ(p∗c, pi∗) decom-
poses into three terms, each reflecting a limitation of
the ILR: (1) Ic, the inability to produce a coherent
output; (2) In, the inability to express nonlinearities;
and (3) Ig, the inability to use information about the
input outside a local window. The following theorem
formalizes these concepts (see Appendix A.2 for the
proof):
Theorem 2 (Decomposition of approximation error).
κ(p∗c, pi∗) = Ic + In + Ig, where

Ic = Ep∗(x)KL

(
pc(y | x) ||

∏
i∈V

pc(yi | x)

)
,

In = Ep∗(x)

∑
i∈V

KL (pc(yi | x) || pa∗(yi | x)) ,

Ig = Ep∗(x)

∑
i∈V

KL (pa∗(yi | x) || pi∗(yi | x)) ,
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with pa∗ = Tr(ilr, f∞, p∗c), where the node features
f∞ are constructed from f1 with an expansion radius
of ∞ (so the entire input sequence x is used).

Coherence One advantage of structured models is
their ability to predict the output jointly. This could
be especially important for NER, where the output tag
sequence actually codes for a segmentation of the in-
put. Ic measures the information lost by using the
independent marginals of the CRF rather than the
joint.8

For a chain CRF defined on y = (y1, . . . , y`), one can
check that Ic is the sum of mutual information terms
along the edges: Ic = E

∑`−1
i=1 I(yi, yi+1 | x). We

computed Ic empirically: for POS, Ic = 0.003 and
for NER, Ic = 0.009 (normalized by sequence length).
Also, when we predict using the CRF marginals, the
performance drops from 76.3% to 76.0% for NER but
stays at 95.0% for POS. From these results, we con-
clude that coherence is not a big concern for our appli-
cations, although it is slightly more serious for NER,
as we would expect.

Nonlinearities Although we think of CRFs as lin-
ear models, their marginal predictions actually behave
nonlinearly. In captures the importance of this non-
linearity by comparing pc(yi | x) and pa∗(yi | x).
Both depend on x through the same sufficient statistics
f1(·,x, ·), but pa∗ acts on these sufficient statistics in
a linear way whereas pc allows the information about
x to propagate in a nonlinear way through the other
hidden labels y−i = {yj : j 6= i} in a manner roughly
similar to that of a neural network. However, one dif-
ference is that the parameters of pc(yi | x) are learned
with y−i fixed at training time; they are not arbitrary
hidden units in service of yi. A neural network there-
fore offers more expressive power but could be more
difficult to learn.

We would like to measure the effect of nonlinearity
empirically, but pa∗ has too many parameters to learn
effectively. Thus, instead of comparing pa∗ and pc, we
compare pi∗ and a truncated CRF ptc, which we train
as follows:9 For each labeled example (x,y) (which
are sequences of length `), we create ` new examples:
(xi−L−r..i+L+r,yi−r..i+r) for i = 1, . . . , `, where r is
the expansion radius (Section 2.3). Then we train a
CRF with features f1 on these new examples to get
ptc. To label node i, we use ptc(yi | xi−L−r..i+L+r),

8On the other hand, if we evaluate predictions using
Hamming distance, it could actually be better to use the
marginals. In that case, coherence is irrelevant.

9Truncated CRFs are closely related to piecewise-
trained CRFs (Sutton & McCallum, 2005).

marginalizing out yi−r..i−1,i+1..i+r. By this setup,
both ptc(yi | x) and pi∗(yi | x) depend on x through
the same features. Table 2 compares the NER perfor-
mance of ptc and pi. As we can see, the truncated CRF
significantly outperforms the ILR, demonstrating the
power of nonlinearities.

Expansion radius r 1 2 3 ∞
compiled ILR 0.725 0.727 0.721 —
truncated CRF 0.748 0.760 0.762 0.760

Table 2. NER F1 (2K originally labeled examples, 200K
automatically labeled examples for structure compilation)
showing the importance of nonlinearity. Both the ILR and
truncated CRF depend on the input x in the same way,
but only the latter permits nonlinearities.

Global information Ig compares pa∗ and pi∗ , both
of which are independent linear classifiers. The differ-
ence is that pa∗ uses all features of x, while pi∗ uses
only features of x in a local window.

Instead of comparing pa∗ and pi∗ , we compare their
nonlinear counterparts pc and ptc. From Table 2, we
can see that the truncated CRF with just an expan-
sion radius of 2 has the same performance as the origi-
nal CRF (expansion radius∞). Therefore, we suspect
that the features on x outside a local window have
little impact on performance, and that most of the ap-
proximation error is due to lacking nonlinearities.

3.2. Estimation Error

In this section, we quantify the estimation errors for
the CRF and ILR. First, we establish a general result
about the estimation error of log-loss for exponential
families. Our strategy is to uniformly bound the differ-
ence between empirical and expected log-losses across
all parameter values of the exponential family. Our
proof uses covering numbers and is based on Collins
(2001), which derived an analogous result for a 0-1
margin loss.

Assume our parameters and features are bounded:
Θ = {θ : ||θ||2 ≤ B} and R = supx,y ||φ(x,y)||2. The
following theorem relates the difference between em-
pirical and expected log-loss to the number of exam-
ples n (see Appendix for proof):
Theorem 3. For δ > 0, with probability ≥ 1 − δ,
for |ε(p∗, pθ) − ε(pl, pθ)| ≤ η to hold for all θ ∈ Θ, it
suffices to use n = Ω(B4R4 log2 |Y|η−4 log(1/δ)) ex-
amples, where we have suppressed logarithmic factors.

The above result gives uniform convergence of ε(·, ·),
which allows us to bound crf-est-err. In order to
bound ilr-est-err, we need uniform convergence of
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κ(·, ·) (5). This requires the convergence of one ad-
ditional term: |ε(pu

c, pc) − ε(p∗c, pc)| P−→ 0 (pc is non-
random in this context). The asymptotics for n in
Theorem 3 therefore remain unchanged.

We now apply Theorem 3 to the CRF and ILR with
the features described in Section 2.1. For both mod-
els, log |Y| = K|V |. Where they differ is on the norms
of the parameters and features (B and R). Let d1 be
the total number of features in the base feature set;
d2, the expanded feature set. Let ck be the number of
nonzero entries in fk(yi,x, i). Natural language pro-
cessing is typified by sparse binary feature vectors, so
dk � ck. For the CRF, ||φ(x,y)||2 is bounded by
R ≤

√
c1|V |2 + |E|2 ≤ √c1|V |+ |E|. The ILR has no

edge potentials so R ≤ √c2|V |. In general, R is small
for NLP applications.

On the other hand, B ∼
√
d1 for the CRF and B ∼√

d2 for the ILR if the magnitude of the individual
parameters are comparable. Since d2 is significantly
larger than d1, the generalization bound for the ILR is
much worse than for the CRF. While comparing upper
bounds is inconclusive, showing that one upper bound
is larger than another via the same methodology is
weak evidence that the actual quantities obey a similar
inequality.

4. Parsing Experiments

We now apply structure compilation to parsing. In
this case, our structured model is a log-linear parser
(Petrov & Klein, 2008), which we would like to replace
with independent logistic regressions. For simplicity,
we consider unlabeled binary trees. We could always
use another independent classifier to predict node la-
bels.

Standard parsing algorithms require O(|G|`3) time to
parse a sentence with ` words, where |G| is the size of
the grammar. The ILR-based parser we will describe
only requires O(`3) time. An extension to the labeled
case would require O(`3 + K`) time, where K is the
number of labels. This is a significant gain, since the
grammars used in real-world parsers are quite large
(|G| � `,K).

4.1. Independent Model

An example parse tree is shown in Figure 1 (recall
that we do not predict the labels). For each span
(i, j) (1 ≤ i < j ≤ `), the independent model pre-
dicts whether a node in the parse tree dominates the
span. For example, of the 14 non-trivial spans in the
sentence in Figure 1, the positively labeled spans are

(1, 2), (5, 6), (4, 6), and (3, 6). To parse a sentence
at test time, we first use the independent model to
assign each span a probability and then use dynamic
programming to find the most likely tree.

The independent model uses the following features
evaluated (a) within the span, (b) at the boundary
of the span, and (c) within a window of 3 words on
either side of the span: identity, parts-of-speech, pre-
fixes/suffixes (length 1-3), and case patterns. Addi-
tional features include 3- and 4-grams of the words and
POS tags that occur within the span; the entire POS
sequence; the entire word sequence; the 3-character
suffix sequence; the case sequence within the span; the
length of the span; the position of the span relative to
the entire sentence; the number of verbs, conjunctions
and punctuation marks within the span; and whether
the span centers on a conjunction and has symmetric
POS tags to the left and right.

4.2. Results

In all of our experiments, we evaluate according to the
F1 score on unlabeled, binarized trees (using right-
binarization). This scoring metric is slightly non-
standard, but equally difficult: a parser that achieves
a labeled F1 (the usual metric) of 89.96% on the Tree-
bank test data (section 23) achieves 90.29% under our
metric; on 10% of the data, the two metrics are 82.84%
and 85.16%, respectively.

To test our independent parser, we trained a struc-
tured parser on 10% of the WSJ portion of the Penn
Treebank (4K sentences). We then used the structured
parser to parse 160K unlabeled sentences,10 which
were then used, along with the original 4K sentences,
to train the independent model. Figure 3(a) shows
the F1 scores of the various models. When only 4K
is used, the independent parser achieves a score of
79.18%, whereas the structured parser gets 85.16%.
With more automatically labeled examples, the per-
formance of the independent parser approaches that of
the structured parser (84.97% with 164K sentences).

On the other hand, if we trained the structured parser
on 40K sentences, then the independent parser has a
much harder time catching up, improving from 85.42%
(40K sentences) to just 87.57% (360K sentences) com-
pared to the structured parser’s 90.78% (Figure 3(b)).
Since parsing is a much more complex task compared
to POS or NER, we believe that richer features would
be needed to reduce this gap.

10These sentences are from the North American National
Corpus, selected by test-set relativization.
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Figure 3. A comparison of the structured and indepen-
dent parsers when the structured parser is trained on 4K
(a) and 40K (b) sentences. m is the number of examples
(original + automatically labeled) used to train the inde-
pendent parser.

5. Conclusion

The importance of deploying fast classifiers at test
time motivated our investigation into the feasibility
of replacing structure with features. We presented a
method to compile structure into features and con-
ducted theoretical and empirical analyses of the esti-
mation and approximation errors involved in structure
compilation. We hope that a better understanding of
the role structure plays will lead to more computation-
ally efficient methods that can still reap the benefits
of structure.
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A. Proofs

Lemma 1 gives conditions under which a conditional
KL-divergence can be decomposed exactly. Lemma 2
specializes to the exponential family. These lemmas
are variants of standard results from information ge-
ometry (see Csiszár and Shields (2004)). We will use
them in the proofs of Theorems 1 and 2.

Lemma 1 (Conditional Pythagorean identity). Let
d(p, p′) = Ep∗(x)p(y|x) log p′(y | x) be the negative
conditional cross-entropy. For any three conditional
distributions p0, p1, p2, if d(p0, p1) = d(p1, p1) and
d(p0, p2) = d(p1, p2), then

Ep∗(x)KL (p0(y | x) || p2(y | x)) = (8)
Ep∗(x)KL (p0(y | x) || p1(y | x)) +
Ep∗(x)KL (p1(y | x) || p2(y | x)) .

Proof. Use the fact that Ep∗(x)KL (p || p′) = d(p, p) −
d(p, p′) and perform algebra.

Lemma 2 (Conditional Pythagorean identity for ex-
ponential families). Let P be a conditional exponential
family. If p1 = argmaxp∈PEp∗(x)p0(y|x) log p(y | x)
and p2 ∈ P, (8) holds for p0, p1, p2.

Proof. Since p1 is the maximum likelihood solution,
µ

def= Ep∗(x)p0(y|x)φ(x,y) = Ep∗(x)p1(y|x)φ(x,y), where
φ are the features of P. Then for p ∈ P with param-
eters θ, d(p0, p) = µ>θ − EA(θ; x) = d(p1, p) (follows
from (1)). Plug in p = p1, p2 and apply Lemma 1.

A.1. Proof of Theorem 1

Proof. The first part of the proof is similar to that
of Lemma 3 in Crammar et al. (2007). Denote
k(p, p′) = Ep∗(x)KL (p(y | x) || p′(y | x)) and B(θ) =
Ep∗(x)A(θ; x).

The key is to note that for p, p′ ∈ P, the condi-
tional KL-divergence is the residual term in the first-
order approximation of B: k(p, p′) = ∇B(θ)>(θ −
θ′) − (B(θ) − B(θ′)), where θ, θ′ are the parameters
of p, p′. Thus, we can use Taylor’s theorem to get that
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k(p, p′) = 1
2 ||θ − θ′||2Vp,p′ , where Vp,p′ = ∇2B(θ̃) =

E varθ̃(φ | x) for some θ̃ ∈ Θ.

One can check that ||θ′0 − θ2||2V0,2
≤ 2[||θ′0 − θ1||2V0,2

+
||θ1− θ2||2V0,2

], where V0,2 = Vp′0,p2 . By definition of α,
V0,2 � α

2 V0,1 and V0,2 � α
2 V1,2,11 so ||θ′0 − θ2||2V0,2

≤
α[||θ′0 − θ1||2V0,1

+ ||θ1 − θ2||2V1,2
]. Rewritten another

way: k(p′0, p2) ≤ α[k(p′0, p1) + k(p1, p2)].

Applying Lemma 2 twice to p0, p
′
0, p1 and p0, p

′
0, p2

yields k(p0, p2) − k(p0, p
′
0) ≤ α[k(p0, p1) − k(p0, p

′
0) +

k(p1, p2)]. Subtracting k(p0, p
′
0) from both sides and

noting α ≥ 1 yields the theorem.

A.2. Proof of Theorem 2

Proof. Define pmc(y | x) =
∏
i∈V pc(yi | x). Check

that d(pc(y | x),
∏
i∈V p(yi | x)) = d(

∏
i∈V pc(yi |

x),
∏
i∈V p(yi | x)) for any p, in particular, pmc and

pi∗ . Thus we can apply Lemma 1 with pc, pmc, pi∗ to
get κ(p∗c, pi∗) = Ic + Ep∗(x)KL (pmc(y | x) || pi∗(y | x)).

Since f∞ is a superset of f2, both pi∗ and pa∗ are mem-
bers of the f∞-exponential family, with pa∗ being the
maximum likelihood solution. Apply Lemma 2 with
pmc, pa∗ , pi∗ to get Ep∗(x)KL (pmc(y | x) || pi∗(y | x)) =
In + Ig.

A.3. Proof of Theorem 3

We use covering numbers to bound the complexity of
the class of log-losses. Our proof is inspired by Collins
(2001), who works with a 0-1 margin-based loss. De-
fine the loss class:

M def= {(x,y) 7→ − log pθ(y | x) : θ ∈ Θ} . (9)

We first show that the elements of M are bounded:

Lemma 3. For each f ∈M and (x,y), 0 ≤ f(x,y) ≤
L, where L def= BR(1 + log |Y|).

Proof. The lower bound holds since probabilities are
bounded above by 1. For the upper bound, consider
the absolute value of the two terms in (1) separately.
For the linear term, |φ(x,y)>θ| ≤ BR by the Cauchy-
Schwartz inequality. The log-partition function can
be bounded by BR log |Y| by applying the linear term
result to the exponent. Add the two bounds.

Theorem 1 of Zhang (2002) (originally due to Pollard

11It suffices to consider nonzero eigenvalues because
zero eigenvalues correspond to non-identifiable directions,
which are the same for all parameters θ.

(1984)) applied to M: With probability ≥ 1− δ,

P

(
sup
θ∈Θ
|ε(p∗, pθ)− ε(pl, pθ)| > η

)
(10)

≤ 8N1(M, η/8, n) exp
{
−nη2

128L2

}
,

where Np(F , ε, n), the covering number of function
class F , is the supremum over all points z1, . . . , zn,
of the size of the smallest cover {g1, . . . , gk} such that
for all f ∈ F , there exists a gj in the cover with
( 1
n

∑n
i=1 |f(zi)− gj(zi)|p)1/p ≤ ε.

We now upper bound N∞(M, ε/8, n), adapting the
method used in Collins (2001). First define the set of
linear functions:

L def=
{
v 7→ θ>v : θ ∈ Θ

}
. (11)

Theorem 4 of Zhang (2002) (with p = q = 2) allows us
to bound the complexity of this class:

log2N∞(L, ε, n) (12)
≤ 36(BR/ε)2 log2(2d4BR/ε+ 2en+ 1).

We now relate the covering numbers of L and M:
Lemma 4. N∞(M, ε, n) ≤ N∞(L, ε/2, n|Y|).

Proof. Let S = {(x(1),y(1)), . . . , (x(n),y(n))}. We will
construct a covering of M (with respect to S) by re-
ducing to the problem of finding a covering of L. Let
viy = φ(x(i),y) and V = {viy : i = 1, . . . , n,y ∈ Y}.
By (12), we can cover L with respect to V with a set
CL. Consider the corresponding set CM ⊂ M (note
the natural 3-way bijections between Θ, L, and M).

To prove the lemma, it suffices to show that CM is a
covering of M. Fix some g ∈ M, which is associated
with some f ∈ L and θ ∈ Θ. There exists a f̃ ∈ CL
(corresponding to a θ̃ ∈ Θ and a g̃ ∈ CM) such that
|f(x,y)− f̃(x,y)| = |θ>φ(x,y)− θ̃>φ(x,y)| ≤ ε/2 for
all (x,y) ∈ S and y ∈ Y. We now argue that g̃ is close
to g. For each (x,y) ∈ S,

g(x,y) = − log pθ(y | x)

= −θ>φ(x,y) + log
∑
y′∈Y

eθ
>φ(x,y′)

≤ −(θ̃>φ(x,y)− ε/2) + log
∑
y′∈Y

eθ̃
>φ(x,y′)+ε/2

= g̃(x,y) + ε.

Similarly, g(x,y) ≥ g̃(x,y) − ε. Therefore, CM is a
cover of M.

Substitute (12) into Lemma 4 to get an expression for
N∞(M, ε, n); substitute that into (10), using the fact
that N1 ≤ N∞. Solving for n yields the theorem.
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Abstract

We describe a manifold learning frame-
work that naturally accommodates super-
vised learning, partially supervised learn-
ing and unsupervised clustering as particu-
lar cases. Our method chooses a function by
minimizing loss subject to a manifold regu-
larization penalty. This augmented cost is
minimized using a greedy, stagewise, func-
tional minimization procedure, as in Gradi-
entboost. Each stage of boosting is fast and
efficient. We demonstrate our approach us-
ing both radial basis function approximations
and trees. The performance of our method is
at the state of the art on many standard semi-
supervised learning benchmarks, and we pro-
duce results for large scale datasets.

1. Introduction

Manifold Learning algorithms exploit geometric (or
correlation) properties of datasets in high-dimensional
spaces. The literature is too large to review in detail
here (163 references in a recent review (Zhu, 2006)).
Many different approaches have been pursued that uti-
lize manifold structure such as constructing an explicit
parametrization (e.g. (Tenenbaum et al., 2000; Roweis
& Saul, 2000; Donoho & Grimes, 2003)), introducing a
penalty term that imposes smoothness conditions on
functions restricted to the manifold (e.g. (Sindhwani
et al., 2006)), adjusting kernel smoothing bandwidths
to account for manifold properties (e.g. (Bickel & Li,
2007)), and infering labels for unlabeled data using a
harmonic smoother (e.g. (Zhu et al., 2003)).

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

There is a rough distinction in semi-supervised learn-
ing between manifold based algorithms that expect
data to lie embedded in a space of lower intrisic di-
mensionality, and cluster-based algorithms that ex-
pect data to lie in clumps (the distinction seems to
explain some differences in performance on different
datasets (Chapelle et al., 2006)). There is some dis-
agreement about the benefits of using unlabeled data,
which may not always improve the asymptotic error
rate of a regression estimator (Lafferty & Wasserman,
2007). On the other hand, (Niyogi, 2008) argues that
manifold learning is useful insofar as the marginal of
the data Px can be linked with the conditional Py|x
via the manifold.

Computational Complexity is a common problem
for most semi-supervised approaches. Write l for the
number of labeled data items and u for the number
of unlabeled data items. Many algorithms scale as
badly as O((l+u)3) (Zhu, 2006). Transductive support
vector machines must solve a quadratic programming
problem in (l+u) variables (Joachims, 1999). Manifold
smoothing of an SVM solves a quadratic programming
problem in l variables, followed by a linear problem
in l + u variables; the situation is better for a linear
SVM if feature vectors are sufficiently sparse (Sind-
hwani et al., 2006). Harmonic smoothing solves a rel-
atively sparse linear system in l variables. This prob-
lem is relatively tractable, because the linear system
involves the Laplacian of the smoothing kernel and so
should be diagonally dominant (see (Dyn et al., 1986)
for relevant observations in the context of radial basis
functions). Each method must pay the cost of forming
the Laplacian. For functional approximation schemes
other than kernel smoothing, the complexity of current
manifold learning methods in the number of training
examples appears to be high. This is a problem – it is
natural to want to use a manifold regularization term
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with such methods as tree-structured classifiers, and
with very large datasets.

Gradient Boosting poses function approximation as
a variational problem, then uses a form of coordi-
nate ascent on that problem ((Friedman, 1999); sec-
tion 2). In this paper, we describe a variation on
gradient boosting that can exploit a manifold regu-
larization term, is fast and efficient for many forms of
functional approximation (section 2.1), provides out
of sample extensions (section 4), offers performance at
the state of the art on standard datasets, and is capa-
ble of handling very large datasets (section 6). In the
extreme case, when there is no supervision, the gen-
eralized method gracefully degrades into a clustering
method (section 4). Finally, we show that our frame-
work also easily extends to multi-class problems by
choosing suitable loss functions (section 5).

2. Semi-Supervised Boosting

We follow convention by minimizing the sum of an
expected loss and a regularization term. We must pre-
dict labels y ∈ Y for patterns x ∈ X . We assume a
probability distribution Px,y over X × Y.

We will further assume the support of the marginal Px

lies on a domainM⊂ X . Typically, this domain is of
lower intrinsic dimension than X ; the term manifold
is widely used to refer to such domains, though we
require no manifold properties.

Write the predictor as F (x), and the cost function as
ψ(y, F (x)). We would like to find the function mini-
mizer F ∗ = arg minF∈H V [F ], of the cost functional

V [F ] =
∫
ψ(y, F (x))dPx,y︸ ︷︷ ︸
Expected Loss

+ γM

∫
M
||∇MF (x)||2dPx︸ ︷︷ ︸

Manifold Regularization

(1)

restricted to some function family H. Our regulariza-
tion term is of the same form as that of (Sindhwani
et al., 2006), and encourages smoothness of the solu-
tion in regions of high probability density. We control
the complexity of the solution by choosingH and using
the shrinkage approach of (Friedman, 1999).

This expression is very general. There are many pos-
sible choices for ψ[y, F ]. Expressions such as |y − F |
and (y−F )2 are typically used for regression. Expres-
sions such as exp(−yF ) and the binomial log likelihood
log(1 + exp(−2yF )) penalize the margin yF , and are
typically used for classification.

2.1. ManifoldBoost Framework

2.1.1. Stagewise Functional Minimization (Px

Known)

Following the work of Friedman (Friedman, 1999), we
will find a additive solution of the form

FM (x) =
M∑

m′=0

fm′(x) (2)

We will proceed in a greedy fashion. Assume we have
a solution for M = m; we will then minimize V [Fm +
fm+1] with respect to fm+1. After (Friedman, 1999),
we obtain a descent direction from the first variation
of V

V [Fm + εf ] = V [Fm] + εδV [Fm, f ] +O(ε2) (3)

where
δV [Fm, f ] =

d

dε
V [Fm + εf ]|ε=0

Write 〈u, v〉 for the usual inner product in L2. Now
δV [Fm, f ] is a linear functional of f , so there is some
GV (Fm) — which we regard as the “gradient” of the
cost — such that δV [Fm, f ] = 〈GV (Fm), f〉. Now we
have that 〈GV (Fm), f〉 is equal to∫ {

f(x)
[∫

y
∂

∂uψ(y, u)
∣∣
u=Fm(x)

dPy|x

]
+2γM∇f(x)t∇Fm(x)

}
dPx (4)

Assuming sufficient regularity, recalling that Px = 0
on the boundary of the support of Px, and using the
first Green identity, we have that 〈GV (Fm), f〉 is equal
to∫ {

f(x)
[∫

y
∂

∂uψ(y, u)
∣∣
u=Fm(x)

dPy|x

]
+2γMf(x)∇2

MFm(x)

}
dPx (5)

where ∇2
M = −∇ · ∇M is the Laplace-Beltrami op-

erator. The optimal descent direction is a function f
that maximizes −〈GV (Fm), f〉 (subject, if necessary
to a norm constraint on f). The term fm+1 = αf is
obtained using line search, minimizing the true cost
V [Fm + αf ] with respect to α.

2.1.2. Finite Data

Generally, neither Px nor Px,y are known. Instead, we
have sample of labelled data {xi, yi}li=1, and of un-
labelled data {xi}ui=l+1. Now integrals become sums
over data points. Generally, {fm(x)} will belong to
a parametric family of functions (e. g. Radial Basis
functions, decision trees, etc)̇.

The Laplacian operator in equation 5 must be dis-
cretized. In high dimensions, we cannot triangulate
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the data set. A smoothed Laplacian is equivalent to
the difference between a short-scale average of the data
and a long-scale average (e.g. the use of unsharp mask-
ing in photography, or the difference of Gaussians in
computer vision). The graph Laplacian is a linear
operator that takes a function on the graph to the
weighted difference between the function value and the
average of the K nearest neighbours. This means it is
usual to approximate the Laplacian operator with the
graph Laplacian L (e.g. see (Sindhwani et al., 2006)).

Write the graph Laplacian as LM. The cost function
becomes

V [F ] =
1
l

l∑
i=1

ψ(yi, F (xi))

+
γM

(l + u)K

∑
i,j

F (xi)LMi,jF (xj) (6)

Again, assume we know Fm, and seek fm+1. We will
find a function f that maximizes −〈GV (Fm), f〉 then
we will weight this function using line search. The
inner product is 〈a, b〉 = 1

N

∑N
i=1 a(xi) · b(xj) and we

have that

〈GV (Fm), f〉 =
1
l

∑
i

∂

∂u
ψ(y, u)

∣∣∣∣
u=Fm(xi)

f(xi)

+
2γM

(l + u)2
∑
i,j

f(xi)LMi,jFm−1(xj)(7)

Now −〈GV , f〉 is linear in f , and so we should maxi-
mize subject to a norm constraint on f . If the norm is
fixed, then maximizing this expression is equivalent to
minimizing ||GV − f ||2 = ||GV ||2 − 2 〈GV , f〉 + ||f ||2.
This means any squared loss regression algorithm can
be used to find the optimal parameters. Our varia-
tional formulation explains why Friedman’s choosing
to make f parallel to the gradient GV and posing
the problem as squared error minimization is natu-
ral. Once the descent direction f is found, the final
fm+1 = αf is obtained using line search, minimizing
the true cost V [Fm + αf ].

3. Two Examples: Tree and RBF
ManifoldBoost Algorithms

We offer two example algorithms with calculations to
illustrate our extremely general formalism. For each
example, we consider the binary case (y ∈ {−1, 1},
y = 0 for unlabeled data), and use the negative
binomial log likelihood as the loss function (Fried-
man, 1999): ψ(y, F ) = log(1 + exp(−2yF )) For this
case, whatever classifier we use represents F (x) =
1
2 [log(p(y = 1|x))− log(p(y = −1|x))] and so at round

m, the inner product with the “gradient” becomes,

〈GV (Fm), f〉 =
1
l

∑
i

2yi

1 + exp(2yiFm(xi))
f(xi)

+
2γM

(l + u)K

∑
i,j

f(xi)LMi,jFm(xj) (8)

The cases now differ by the procedures used to choose
the optimal f

Tree-ManifoldBoost: As in L2 TreeBoost (Fried-
man, 1999), we use regression trees as base learners.
A tree has the form fm+1(x) =

∑S
s=1 ηm+1,sI[x ∈ Rs],

where I[·] = 1 if the expression inside is true, and
I[·] = 0 otherwise.

To minimize ||GV − f ||2, we must search for the pa-
rameters Rs (which determine the geometry of the
tree) and ηs (which determine weights within region).
Once a tree has been found, we fix Rs and min-
imize V (Fm(x) +

∑S
s=1 ηm,s[x ∈ Rs]) with respect

to {ηs}, using a standard continuous optimization
method (BFGS; see (Bertsekas, 1996)). In each round,
we use a small number of descent steps to prevent over-
fitting.

Algorithm 1 Tree ManifoldBoost Algorithm
1: F0(x) = 1/2[log(1 + y)− log(1− y)]
2: for m = 1 to M do
3: Compute GV as in (8)
4: Obtain regression tree {Rs,m} by minimizing∑

i(GV (xi)−
∑

s ηm,sI[xi ∈ Rm,s])2

5: Find {ηm,s} using BFGS and ∂V
∂ηs

, and fixing
{Rm,s}

6: Fm(x) = Fm−1(x) +
∑

s ηm,s[x ∈ Rm,s]
7: end for

The algorithm converges when M rounds have been
run, or the relative change in the cost function in a
round is below a threshold. Probability estimates for
each x can then be estimated by inverting the loss
function: p(y = 1|x) = 1/(1 + exp(−2FM (x))). This
in turn can be used for classification:

ỹi =
{

1 p(y = 1|x)k−1,1 > p(y = −1|x)k1,−1

−1 otherwise
(9)

where cost ka,b is the penalty for choosing label a when
b is the correct label.

Figure 1 shows a toy example for semisupervised clas-
sification taken from (Sindhwani et al., 2006) (two
moons dataset). The unlabeled datapoints are de-
picted in green and the diamonds represent the labeled
examples (one for each class). The algorithm also can
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Figure 1. Semi-supervised learning using Tree- and RBF-ManifoldBoost. first figure from left to right shows a toy
example introduced in (Sindhwani et al., 2006) (two moons dataset): the unlabeled datapoints are depicted in green, the
diamonds represent the labeled examples (one for each class). The output classification of both algorithm is the same
and is depicted on the second image (for datapoints). The third and fourth figures depict the likelihood predicted by
the classifiers for the whole space for the tree- and rbf-based classifier respectively.

provide likelihood estimates, as seen in the right fig-
ures.

RBF-ManifoldBoost: Tree functions are not the
only possible approximation to the “gradient”. Step
4 in algorithm 1 can be modified so that R radial ba-
sis function of width σ, each with a weight wr and
centered in a datapoint are chosen as approximation.
Again, a BFGS step can be performed to improve the
loss by fitting the weights wr. Algorithm 2 describes
this.

Algorithm 2 RBF ManifoldBoost Algorithm
1: F0(x) = 1/2[log(1 + y)− log(1− y)]
2: for m = 1 to M do
3: Compute GV as in (8)
4: Choose R RBFs greedily to minimize∑

i(GV (xi)−
∑

r wrRBFr,σ(xi)])2

5: Find {wr} using BFGS and ∂V
∂wr

6: Fm(x) = Fm−1(x) + ν
∑

r wrRBFr,σ(x)
7: end for

Complexity: The procedure itself is linear in n =
l+u, in the Laplacian neighborhoodK, the dimension-
ality of x and the number of rounds. The complexity
of the algorithm depends then on the base regressor,
and the computation of the Laplacian matrix. Influ-
ence trimming can also be used to get tenfold speedups
(Friedman, 1999), although the algorithm is still linear
in the number of datapoints.

4. Unsupervised Boosting

The essential step in semi-supervised learning is the
observation that similar data items should tend to
have similar labels, which means that semi-supervised
learning method should be capable of clustering. Our
framework can naturally be extended to unsupervised
learning, where one wishes to cluster data and the
choice of label for a cluster is arbitrary. As there are
no labeled data, the first term in equation 6 becomes

zero and the problem is,

F ∗ = arg min
F∈H

∑
i,j

F (xi)LMi,jF (xj) (10)

under the constraints
∑

i F (xi) = 0,
∑

i F (xi)2 = N
(this is a form of spectral clustering problem, see (Sind-
hwani et al., 2006); without the constraints, the prob-
lem is ill-posed). Our formalism yields a greedy
method for this problem, rather than the usual gen-
eralized eigenvalue problem. To manage constraints,
we use the Augmented Lagrangian method (Bertsekas,
1996), which adds a penalty in each round for con-
straint violations in the unconstrained problem. We
choose F ∗ to be

arg min
F∈H

∑
i,j

F (xi)Li,jF (xj) + λm
1

∑
i

F (xi) + . . .

λm
2

(∑
i

F (xi)2 −N

)
+
cm1
2

(∑
i

F (xi)

)2

+ . . .

cm2
2

(∑
i

F (xi)2 −N

)2

(11)

for non-decreasing sequences {cm1 , cm2 }Mm=1. Af-
ter each round, the values of the Lagrange mul-
tipliers are increased by the constraint violation
(Bertsekas, 1996) λm+1

1 ← λm
1 + cm1 (

∑
i F (xi)) and

λm+1 ← λm
1 + cm1 (

∑
i F (xi)2 −N). As before, BFGS

is applied in each round. Algorithm 3 describes the
tree-based version.

The algorithm converges to a local minimum of
the constrained problem. This formulation, unlike
ISOMAP, naturally takes care of out-of-sample evalu-
ation. Compared to (Sindhwani et al., 2006), the com-
putational complexity is greatly reduced. On the other
hand the solution is greedy, and there is no straightfor-
ward term for controlling the complexity of the func-
tion in the ambient space; this is achieved through the
depth of the trees used in the algorithm.
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Figure 2. Unsupervised learning. The framework can be extended to unsupervised learning. The same problem as in
figure 1 is presented without labels (left image). The result of the Tree-based algorithm is shown in the center image.
The plots on the right show the constraint violations go to zero as learning progresses. This figure is best viewed in color.

Algorithm 3 Unsupervised Tree ManifoldBoost Al-
gorithm
1: Initialize F0(x) randomly, with zero mean and low

variance.
2: for m = 1 to M do
3: Compute GV of the penalized, uncontrained

problem.
4: Obtain regression tree {Rm,s} by minimizing∑

i(GV (xi)−
∑

s ηm,s[xi ∈ Rm,s])2

5: Find {ηm,s} using BFGS and fixing {Rm,s}
6: Fm(x) = Fm−1(x) +

∑
s ηm,s[x ∈ Rm,s]

7: Update Lagrange multipliers using the constrain
violations.

8: end for

5. Multiclass Case

Algorithm 1 can be extended to K-class problems by
introducing a multinomial cost in equation 1,

ψ({y(c), F (c)(x)}Cc=1) = −
C∑

c′=1

y(c′) log p(c′)(x) (12)

where p(c)(x) represents the belief example x belongs
to class c, and y(c) is a binary variable which is one if
example x belongs to class c. As in (Friedman, 1999)
we use the symmetric multiple logistic transform

p(c)(x) = expF (c)(x) ·

(
C∑

c′=1

expF (c′)(x)

)−1

(13)

Smoothness of F (c) is enforced by defining the cost
V ({F (c)}) to be

1
l

∑
i

ψ({y(c)
i , F (c)(xi)}Cc=1) + . . .

1
C · (l + u) ·K

∑
c′

∑
i,j

γ
(c′)
M F (c′)(xi)LMi,jF (c′)(xj)

The inner product of f (c) with gradient of V becomes,
for class c,

〈G(c)
V (F (c)

m ), f〉 =
1
l

∑
i

(−y(c)
i + p(c)

m (xi))f(xi) (14)

+
2γMc

C · (l + u)2
∑
i,j

f(xi)LMi,jF (c)
m (xj)

Now one regression tree is fitted per class at each round
to approximate each descent direction. As in the two
class problem, the S regions {R(c)

m,s}Ss=1 defined by the
terminal nodes are fixed, and the parameters η(c)

m,s for
regions in each tree are learned in order to minimize
the total cost V . We use a couple of BFGS iterations
per round to find these parameters. In order to do
this, the derivatives of the cost with respect to η

(c)
m,s

have to be computed.

Once the final {F (c)
M (x)} are computed, the proba-

bility for a given example of each label can be esti-
mated and thus the label can be classified as ĉ(xi) =
arg minc

∑C
c′=1 kc,c′p

(c′)
M (x) for costs kc,c′ when label c

is assigned when label c′ is correct. The complexity of
this algorithm is also linear in the number of classes,
but it scales highly sub-linearly with the number of
rounds M when inluence trimming is used (Friedman,
1999).

6. Experiments and Discussion

6.1. Comparison to Other Regularized
Boosting Algorithms

Kegl et. al. (Kégl & Wang, 2005) introduce Reg-
Boost, an extension to AdaBoost which incorpo-
rates a weight decay that depends on a Laplacian reg-
ularizer. Our approach is different several senses: first,
ours is based on the GradientBoost framework while
theirs is based on AdaBoost, second, in the sense that
ManifoldBoost does not require manifold-regularized
base learners. This makes their approach limited in
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Figure 3. The framework also handles multiclass learning. Left figure shows another toy example (three rings): the
unlabeled datapoints are depicted in green, the diamonds represent the labeled examples (one for each class). The output
of the algorithm is depicted on the center figure. The blue classification function F 2(x) is shown on the right. This
figure is best viewed in color.

Algorithm 4 K-Tree ManifoldBoost Algorithm

1: Let p(c)
0 be the frequencies of each class c.

2: F
(c)
0 (x) = log p(c)

0 − 1
C

∑C
c′=1 log p(c)

0

3: for m = 1 to C do
4: Compute p(c)

m (x) as in eq. 13 for all c.
5: for c = 1 to C do
6: Compute G(c)

V as in (14)
7: Obtain regression tree {R(c)

m,s} by minimizing∑
i(G

(c)
V (xi)−

∑
s η

(c)
m,sI[xi ∈ R(c)

m,s])2

8: end for
9: Find {η(c)

m,s} using BFGS and ∂V
∂ηm,s

, and fixing

{R(c)
m,s} for all c.

10: F
(c)
m (x) = F

(c)
m−1(x) +

∑
s η

((c))m,sI[x ∈ R
(c)
m,s]

for all c.
11: end for

the types of learners to be used (they use stumps only).
Also, the ensemble classifier should be smooth on the
manifold, but regularizing each of the base learners
may result in over-smoothing of the overall solution.
We compare our results with (Kégl & Wang, 2005) on
standard UCI benchmark datasets. Whenever possi-
ble we tried to use the same configuration as (Kégl &
Wang, 2005)1. We set number of nearest neighbors
K = 8 and used binary weights to compute the graph
Laplacian. We used regression trees of fixed depth 3 as
learners. The datasets were normalized to zero mean
and unit variance. The learning rate was set to ν = 0.1
after (Friedman, 1999). Only γ was explored for dif-
ferent values. We used 5-fold cross validation for de-
termining parameters and 10-fold cross validation for
error estimation. Table 1 compares our performance
with that of AdaBoost, RegBoost, and (M. Belkin
& Niyogi, 2004) as reported in (Kégl & Wang, 2005).

In the fully supervised problems, there is a difference
1The breast cancer dataset was not used because (Kégl

& Wang, 2005) does not explain what metric they use for
categorical data in the Lalacian, making any comparison
meaningless.

in performance for the Sonar dataset, an impovement
in the Ionosphere dataset, and a very slight decrease in
performance in the Pima Indians dataset with respect
to RegBoost, well within a standard deviation. It
should be noted that the variance in the performance
of the algorithm is consistently smaller for our algo-
rithm. (Kégl & Wang, 2005) also tests the algorithm
under semi-supervision, using 100 labeled and 251 un-
labeled examples. We ran our algorithm under the
same conditions, using the stumps to prevent overfit-
ting. In this case our algorithm outperforms (Kégl &
Wang, 2005) and (M. Belkin & Niyogi, 2004), as our
mean performance over 10 runs is more than a stan-
dard deviation above theirs. No variance of results is
reported in (Kégl & Wang, 2005).

(Chen & Wang, 2008) proposes an interesting alter-
native approach to regularized boosting based on the
more traditional framework of boosting “weak” learn-
ers outlined in (Mason et al., 2000). As a consequence,
they need to assign pseudo-class labels to unlabeled
data (labels assigned with the current Ft(x)) while
learning the ensemble. In contrast, ManifoldBoost
uses base regressors to measure the confidence of the
prediction and does not commit to {−1,+1} classifi-
cation at each step. Smoothing this seems more natu-
ral in a formulation that penalizes second derivatives
(Laplacian cost).

6.2. Comparison to Other Semi-Supervised
Learning Algorithms

We measured the performance of our two-class RBF-
ManifoldBoost algorithm on the SSL data sets, a stan-
dard benchmark for semi-supervised learning problems
introduced in (Chapelle et al., 2006), and compared
with the 14 other state-of-the-art semi-supervised
learning algorithms discussed there. In table 2 we
present results for five data sets, 2 of which are cluster-
like and 3 manifold-like. On the manifold-like data
sets, we are at the state of the art and no single algo-
rithm does uniformly better than us. On the cluster-
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Table 1. Performance results of Tree-ManifoldBoost and different boosting approaches on standard UCI datasets, as
reported in (Kégl & Wang, 2005) (variance in parenthesis)

Ionosphere Pima Indians Sonar Ionosphere
Algorithm Train / Test Train / Test Train / Test (semisup.)
AdaBoost 0% / 9.2% (7.1) 10.9% / 25.3% (5.3) 0% / 32.5% (19.8) -
RegBoost 0% / 7.7% (6.0) 16.0% / 23.3% (6.8) 0% / 29.8% (18.8) 12%

Tree-ManifoldBoost 0% (0) / 6.5% (4.8) 6.5% (0.5) / 24.0% (5.2) 0% (0) / 18.7% (6.1) 10.4% (0.8)
Belkin et al., 04 2 - / - - / - - / - 18%

like data sets, our performance is good compared to
most other regularization-based and manifold learn-
ers but is not as good as the specialized clustering
algorithms Cluster-Kernel and SGT (Spectral Graph
Transducer).

Parameter search was performed following section
21.2.5 of (Chapelle et al., 2006) when possible, us-
ing the same ranges for γ, the RBF width σ, dis-
tance metric, K, etc. For the base regressors, we used
R ∈ {15, 30} as the numbers of RBFs, and M = 500
rounds. The learning rate was again chosen as ν = 0.1.
These parameters were obtained in small-scale experi-
ments and then fixed. Results reported are the means
over the different splits.

The running times for a MATLAB implementation on
a 2 GHz machine was in the order of minutes. Unfor-
tunately, running times for the other algorithms were
not reported in (Chapelle et al., 2006).

6.3. SecStr Data Set

We also ran experiments on the SecStr data set
(Chapelle et al., 2006), which is a problem of predict-
ing the secondary structure of protein sequences from
their amino acid chains. This is a large-scale and chal-
lenging data set with 83,000 labeled and 1.2 million
unlabeled examples. Semi-supervised algorithms have
made little improvement to this benchmark so far (Ta-
ble 3), and the best result is the manifold-regularized
learning algorithm (Sindhwani et al., 2006), which
yields a 29% error rate on a subset of the data with
10,000 labeled and 73,000 unlabeled examples.

Tree-ManifoldBoost with γ ∈ {0, 10−5, 10−3, 0.1, 1}
achieved similar performance on the same subset in
approximately 45 minutes of training time (after com-
puting the Laplacian matrix). We used stumps, K = 6
and ν = 0.05. No model selection was performed. We
used as similarity measure the Hamming distance be-
tween the best alignment of sequences. The results
reported are the mean over the 10 splits.

When we used the whole dataset (1.3 million se-

quences) with γ ∈ {0, 10−3, 1}, there is virtually no
performance improvement. This may be due to the
smaller parameter search space, or to peculiarities of
the dataset. When we analysed the structure of the
manifold on the labeled subset, we observed that al-
most 20% of sequences at distance 1 (that is, shifted
by one position to the left or right) had a different la-
bel. Therefore the manifold assumption is not strong
on this set.

As far as we know, this is the first time results are
reported on the complete SecStr dataset. Our algo-
rithm is efficient and therefore can handle datasets of
this size. Learning time is in the order of three hours
for 1.3 million samples (leaving aside the computa-
tion of the graph Laplacian, which took significantly
longer)

Table 3. Error rates on SecStr dataset. l is the number of
labeled examples.

l 100 1000 10000
SVM 44.59 33.71
Cluster Kernel 42.95 34.03
QC randsub (CMN) 42.32 40.84
QC smartonly (CMN) 42.14 40.71
QC smartsub (CMN) 42.26 40.84
Boosting (assemble) 32.21
LapRLS 42.59 34.17 28.55
LapSVM 43.42 33.96 28.53
Tree-ManifoldBoost (83K) 42.70 33.43 28.96
Tree-ManifoldBoost (1.3M) 43.28 33.42 29.07

7. Conclusion

We have presented a new boosting framework for reg-
ularized learning in a greedy, stage-wise procedure. It
is flexible enough to handle the whole range of super-
vision, from fully supervised classification to unsuper-
vised clustering. The framework is general, accepts
many different function approximation techniques, is
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Table 2. Error rates for data sets from (Chapelle et al., 2006). l is the number of labeled examples.

Manifold-like Cluster-like
l = 10 l = 100 l = 10 l = 100
BCI Digit1 USPS BCI Digit1 USPS g241c g241d g241c g241d

1-NN 49.00 13.65 16.66 48.67 3.89 5.81 47.88 46.72 43.93 42.45
SVM 49.85 30.60 20.03 34.31 5.53 9.75 47.32 46.66 23.11 24.64
21.2.8 MVU + 1-NN 47.95 14.42 23.34 47.89 2.83 6.50 47.15 45.56 43.01 38.20
21.2.8 LEM + 1-NN 48.74 23.47 19.82 44.83 6.12 7.64 44.05 43.22 40.28 37.49
21.2.4 QC + CMN 50.36 9.80 13.61 46.22 3.15 6.36 39.96 46.55 22.05 28.20
21.2.6 Discrete Reg. 49.51 12.64 16.07 47.67 2.77 4.68 49.59 49.05 43.65 41.65
21.2.1 TSVM 49.15 17.77 25.20 33.25 6.15 9.77 24.71 50.08 18.46 22.42
21.2.1 SGT 49.59 8.92 25.36 45.03 2.61 6.80 22.76 18.64 17.41 9.11
21.2.10 Cluster-Kernel 48.31 18.73 19.41 35.17 3.79 9.68 48.28 42.05 13.49 4.95
21.2.3 Data-Dep. Reg. 50.21 12.49 17.96 47.47 2.44 5.10 41.25 45.89 20.31 32.82
21.2.11 LDS 49.27 15.63 17.57 43.97 3.46 4.96 28.85 50.63 18.04 23.74
21.2.5 Laplacian RLS 48.97 5.44 18.99 31.36 2.92 4.68 43.95 45.68 24.36 26.46
21.2.7 CHM (normed) 46.90 14.86 20.53 36.03 3.79 7.65 39.03 43.01 24.82 25.67
RBF-ManifoldBoost 47.12 19.42 19.97 32.17 4.29 6.65 42.17 42.80 22.87 25.00

efficient and fast at each round of boosting, handles
multi-class and wholly unsupervised problems, and
produces results at the state of the art. We are work-
ing on understanding important aspects of the algo-
rithm, in particular, generalization, error bounds, con-
vergence and local minima.
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Abstract

A broad class of boosting algorithms can
be interpreted as performing coordinate-wise
gradient descent to minimize some potential
function of the margins of a data set. This
class includes AdaBoost, LogitBoost, and
other widely used and well-studied boosters.
In this paper we show that for a broad class
of convex potential functions, any such boost-
ing algorithm is highly susceptible to random
classification noise. We do this by showing
that for any such booster and any nonzero
random classification noise rate η, there is
a simple data set of examples which is effi-
ciently learnable by such a booster if there
is no noise, but which cannot be learned to
accuracy better than 1/2 if there is random
classification noise at rate η. This negative re-
sult is in contrast with known branching pro-
gram based boosters which do not fall into
the convex potential function framework and
which can provably learn to high accuracy in
the presence of random classification noise.

1. Introduction

1.1. Background

Much work has been done on viewing boosting algo-
rithms as greedy iterative algorithms that perform a
coordinate-wise gradient descent to minimize a poten-
tial function of the margin of the examples, see e.g.
[3, 12, 19, 7, 18, 2]. In this framework every poten-
tial function φ defines an algorithm that may possi-
bly be a boosting algorithm; we denote the algorithm
corresponding to φ by Bφ. For example, AdaBoost
[11] and its confidence-rated generalization [20] may
be viewed as the algorithm Bφ corresponding to the

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

potential function φ(z) = e−z. The MadaBoost algo-
rithm of Domingo and Watanabe [5] may be viewed as
the algorithm Bφ corresponding to

φ(z) =

{

1 − z if z ≤ 0

e−z if z > 0.
(1)

(We give a more detailed description of exactly what
the algorithm Bφ is for a given potential function φ in
Section 2.2.)

1.2. Motivation: noise-tolerant boosters?

It has been widely observed that AdaBoost can suf-
fer poor performance when run on noisy data, see e.g.
[10, 17, 4]. The most commonly given explanation for
this is that the exponential reweighting of examples
which it performs (a consequence of the exponential
potential function) can cause the algorithm to invest
too much “effort” on correctly classifying noisy exam-
ples. Boosting algorithms such as MadaBoost [5] and
LogitBoost [12] based on a range of other potential
functions have subsequently been provided, sometimes
with an explicitly stated motivation of rectifying Ad-
aBoost’s poor noise tolerance. However, we are not
aware of rigorous results establishing provable noise
tolerance for any boosting algorithms that fit into the
potential functions framework, even for mild forms of
noise such as random classification noise (henceforth
abbreviated RCN) at low noise rates. This motivates
the following question: are Adaboost’s difficulties in
dealing with noise due solely to its exponential weight-
ing scheme, or are these difficulties inherent in the po-
tential function approach to boosting?

1.3. Our results: convex potential boosters

cannot withstand random classification

noise

This paper shows that the potential function boosting
approach provably cannot yield learning algorithms
that tolerate even low levels of random classification
noise when convex potential functions are used. More
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precisely, we exhibit a fixed natural set of base classi-
fiers h1, . . . , hn and show that for every convex func-
tion φ satisfying some very mild conditions and every
noise rate η > 0, there is a multiset S of labeled ex-
amples such that the following holds:

• There is a linear separator sgn(α1h1 + · · ·+αnhn)
over the base classifiers h1, . . . , hn that correctly
labels every example in S with margin γ > 0 (and
hence it is easy for a boosting algorithm trained
on S to efficiently construct a final hypothesis that
correctly classifies all examples in S). However,

• When the algorithm Bφ is run on the distribu-
tion Dη,S , it constructs a classifier that has error
rate 1/2 on the examples in S. Here Dη,S is the
uniform distribution over S but where examples
are corrupted with random classification noise at
rate η, i.e. labels are independently flipped with
probability η.

This result shows that random classification noise can
cause convex potential function boosters to fail in a
rather strong sense. We note that as discussed in
Section 7, there do exist known boosting algorithms
[13, 16] that can tolerate random classification noise,
and in particular can efficiently achieve perfect accu-
racy on S, after at most poly(1/γ) stages of boosting,
when run on Dη,S in the scenario described above.

Recently Bartlett and Traskin proved that the Ad-
aBoost algorithm is consistent if it is stopped after a
suitable number of iterations, given certain conditions
on a random source generating the data [1]. Our anal-
ysis does not contradict theirs because the source in
our construction does not satisfy Condition 1 of their
paper. To see why this is the case it is useful, as has
become customary, to think of the contribution that
a given example makes to the potential as a “loss”
paid by the learning algorithm. Informally, Condi-
tion 1 from [1] requires linear combinations of base
classifier predictions to have total loss arbitrarily close
to the best possible loss for any measurable function.
Our analysis takes advantage of the fact that, for lin-
ear combinations of base classifiers with a convex loss
function, large-margin errors are especially egregious:
we present the learner with a choice between a lot of
cheap errors and relatively few expensive errors. If
optimization were to be performed over all measur-
able functions, roughly speaking, it would be possible
to make all errors cheap.

Though the analysis required to establish our main
result is somewhat delicate, the actual construction
is quite simple and admits an intuitive explanation

(see Section 4.2). For every convex potential function
φ we use the same set of only n = 2 base classifiers
(these are confidence-rated base classifiers which out-
put real values in the range [−1, 1]), and the multi-
set S contains only three distinct labeled examples;
one of these occurs twice in S, for a total multiset
size of four. We expect that many other construc-
tions which similarly show the brittleness of convex
potential boosters to random classification noise can
be given. We describe experiments with one such
construction that uses Boolean-valued weak classifiers
rather than confidence-rated ones in Section 6.

2. Background and Notation

Throughout the paper X will denote the instance
space. H = {h1, . . . , hn} will denote a fixed finite
collection of base classifiers over X, where each base
classifier is a function hi : X → [−1, 1]; i.e. we
shall work with confidence-rated base classifiers. S =
(x1, y1), . . . , (xm, ym) ∈ (X × {−1, 1})m will denote a
multiset of m examples with binary labels.

2.1. Convex potential functions

We adopt the following natural definition which, as we
discuss in Section 5, captures a broad range of different
potential functions that have been studied.

Definition 1 We say that φ : R → R is a convex po-
tential function if φ satisfies the following properties:

1. φ is convex and nonincreasing and φ ∈ C1 (i.e. φ

is differentiable and φ′ is continuous);

2. φ′(0) < 0 and limx→+∞ φ(x) = 0.

2.2. Convex potential boosters

Let φ be a convex potential function, H =
{h1, . . . , hn} a fixed set of base classifiers, and S =
(x1, y1), . . . , (xm, ym) a multiset of labeled examples.

Similarly to Duffy and Helmbold [6, 7], we consider
an iterative algorithm which we denote Bφ. The al-
gorithm performs a coordinatewise gradient descent
through the space of all possible coefficient vectors for
the weak hypotheses, in an attempt to minimize the
convex potential function of the margins of the exam-
ples. We now give a more precise description of how
Bφ works when run with H on S.

Algorithm Bφ maintains a vector (α1, ..., αn) of voting
weights for the base classifiers h1, ..., hn. The weights
are initialized to 0. In a given round T , the algorithm
chooses an index iT of a base classifier, and modifies
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the value of αiT
. If αiT

had previously been zero, this
can be thought of as adding base classifier number iT
to a pool of voters, and choosing a voting weight.

Let F (x;α1, ..., αn) =
∑n

i=1 αihi(x) be the master hy-
pothesis that the algorithm has constructed prior to
stage T (so at stage T = 1 the hypothesis F is iden-
tically zero.) We write Pφ,S to denote the “global”
potential function over S

Pφ,S(α1, ..., αn) =

m∑

i=1

φ(yiF (xi;α1, ..., αn)) (2)

which represents the overall potential of a hypothesis
vector (α1, . . . , αn) on the sample S. It is easy to check
that this is a convex function from Rn (the space of all
possible (α1, . . . , αn) coefficient vectors for F ) to R.

In stage T the algorithm Bφ first chooses a base clas-
sifier by choosing iT to be the index i ∈ [n] which
maximizes

− ∂

∂αi
Pφ,S(α1, ..., αn),

and then choosing a new value of αiT
in order to mini-

mize Pφ,S(α1, ..., αn) for the resulting α1, ..., αn. Thus,
in the terminology of [6] we consider “un-normalized”
algorithms which preserve the original weighting fac-
tors α1, α2, etc. The AdaBoost algorithm is an exam-
ple of an algorithm that falls into this framework, as
are the other algorithms we discuss in Section 5. Note
that the fact that Bφ can determine the exactly opti-
mal weak classifier to add in each round errs on the
side of pessimism in our analysis.

In our analysis, we will consider the case in which Bφ as
being run on a distribution Dη,S obtained by starting
with a finite multiset of examples, and adding indepen-
dent misclassification noise. One can naturally extend
the definition of Bφ to apply to probability distribu-
tions over X × {−1, 1} by extending the definition of
potential in (2) as follows

Pφ,D(α1, ..., αn) = E(x,y)∼D(φ(yF (x;α1, ..., αn))).
(3)

For rational values of η, running Bφ on (3) for D =
Dη,S is equivalent to running Bφ over a finite multiset
in which each element of S occurs a number of times
proportional to its weight under D.

2.3. Boosting

Fix a classifier c : X → {−1, 1} and a multiset
S = (x1, y1), . . . , (xm, ym) of labeled examples. We
say that a set of base classifiers H = {h1, . . . , hn} is
boostable with respect to c and S if there is a vector
α ∈ Rn such that for all i = 1, . . . ,m, we have

sgn[α1h1(x
i) + · · · + αnhn(xi)] = yi.

If γ > 0 is such that

yi ·
(
α1h1(x

i) + · · · + αnhn(xi)
)

√

α2
1 + · · · + α2

n

≥ γ

for all i, we say that H is boostable w.r.t. c and S with
margin γ.

It is well known that if H is boostable w.r.t. c and S

with margin γ, then a range of different boosting algo-
rithms (such as AdaBoost) can be run on the noise-free
data set S to efficiently construct a final classifier that
correctly labels every example in S. As one concrete ex-
ample, after O( log m

γ2 ) stages of boosting AdaBoost will

construct a linear combination F (x) =
∑n

i=1 γihi(x)
of the base classifiers such that sgn(F (xi)) = yi for all
i = 1, . . . ,m; see [11, 20] for details.

2.4. Random classification noise and

noise-tolerant boosting

Random classification noise is a simple, natural, and
well-studied model of how benign (nonadversarial)
noise can affect data. Given a multiset S of labeled
examples and a value 0 < η < 1

2 , we write Dη,S to
denote the distribution corresponding to S corrupted
with random classification noise at rate η. A draw from
Dη,S is obtained by drawing (x, y) uniformly at ran-
dom from S and independently flipping the binary la-
bel y with probability η.

We say that an algorithm B is a boosting algorithm
which tolerates RCN at rate η if B has the following
property. Let c be a target classifier, S be a multiset of
m examples, and H be a set of base classifiers such that
H is boostable w.r.t. c and S. Then for any ǫ > 0, if
B is run with H as the set of base classifiers on Dη,S ,
at some stage of boosting B constructs a classifier g

which has accuracy

|{(xi, yi) ∈ S : g(xi) = yi}|
m

≥ 1 − η − ǫ.

The accuracy rate above is in some sense optimal, since
known results [13] show that no “black-box” boosting
algorithm can be guaranteed to construct a classifier g

whose accuracy exceeds 1 − η in the presence of RCN
at rate η. As we discuss in Section 7, there are known
boosting algorithms [13, 16] which can tolerate RCN
at rate η for any 0 < η < 1/2. These algorithms, which
do not follow the convex potential function approach
but instead build a branching program over the base
classifiers, use poly(1/γ, log(1/ǫ)) stages to achieve ac-
curacy 1− η − ǫ in the presence of RCN at rate η if H
is boostable w.r.t. c and S with margin γ.
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3. Main Result

As was just noted, there do exist boosting algorithms
(based on branching programs) that can tolerate RCN.
Our main result is that no convex potential function
booster can have this property:

Theorem 2 Fix any convex potential function φ. For
any noise rate 0 < η < 1/2, the algorithm Bφ does not
tolerate RCN at rate η.

We obtain Theorem 2 as a direct consequence of the
following stronger result, which shows that there is a
simple RCN learning problem for which Bφ will in fact
misclassify half the examples in S.

Theorem 3 Fix the instance space X = [−1, 1]2 ⊂
R2 and the set H = {h1(x) = x1, h2(x) = x2} of
confidence-rated base classifiers over X.

For any noise rate 0 < η < 1/2 and any convex po-
tential function φ, there is a target classifier c, a value
γ > 0, and a multiset S of four labeled examples (three
of which are distinct) such that (a) H is boostable w.r.t.
c and S with margin γ, but (b) when Bφ is run on the
distribution Dη,S, it constructs a classifier which mis-
classifies two of the four examples in S.

4. Proof of Theorem 3

We are given an RCN noise rate 0 < η < 1/2 and a
convex potential function φ.

4.1. The basic idea

Before specifying the sample S we explain the high-
level structure of our argument. Recall from (3) that
Pφ,D is defined as

Pφ,D(α1, α2) =
∑

(x,y)

Dη,S(x, y)φ(y(α1x1 +α2x2)). (4)

As noted in Section 2.2 the function Pφ,D(α1, α2) is
convex. It follows immediately from the definition of
a convex potential function that Pφ,D(α1, α2) ≥ 0 for
all (α1, α2) ∈ R2.

The high-level idea of our proof is as follows. We
shall construct a multiset S of four labeled examples in
[−1, 1]2 (actually in the unit disc {x : ‖x‖ ≤ 1} ⊂ R2)
such that there is a global minimum (α∗

1, α
∗
2) of the cor-

responding Pφ,D(α1, α2) which has the following two
properties:

1. (“high error”) The corresponding classifier
g(x) = sgn(α∗

1x1 + α∗
2x2) misclassifies two of the

points in S (and thus has error rate 1/2); and

2. (“steep slope”) At the point (0, 0), the direc-
tional derivative of Pφ,D(α1, α2) in any direction
orthogonal to (α∗

1, α
∗
2) is not as steep as the direc-

tional derivative toward (α∗
1, α

∗
2).

We now show that it suffices to establish these two
properties to prove part (b) of Theorem 3.1 Suppose
we have such an S. Since Pφ,D(α1, α2) depends only
on the inner product between (α1, α2) and the (nor-
malized) example vectors (yx1, yx2), it follows that ro-
tating the set S around the origin by any fixed angle
induces a corresponding rotation of the function Pφ,D,
and in particular of its minima. (Note that we have
used here the fact that every example point in S lies
within the unit disc; this ensures that for any rotation
of S each weak hypothesis xi will always give outputs
in [−1, 1] as required.) Consequently a suitable rota-
tion of S to S′ will result in the corresponding rotated
function Pφ,D having a global minimum at a vector
which lies on one of the two coordinate axes (say a
vector of the form (0, τ)). If this is the case, then the
“steep slope” property (2) ensures that the directional
derivative at (0, 0) in this direction will be steepest, so
the convex potential booster Bφ will pick a base clas-
sifier corresponding to this direction (in this case h2).
Since a globally optimal weight vector is available in
this direction (the vector of length

√

(α∗
1)

2 + (α∗
2)

2 is
such a vector), Bφ will select such a vector. Once it
has achieved such a global optimum it will not change
its hypothesis in any subsequent stage, and thus Bφ’s
hypothesis will have error rate 1/2 on the points in the
rotated set S′ by the “high error” property (1).

4.2. The sample S

Now let us define the multiset S of examples. S con-
sists of three distinct examples, one of which is re-
peated twice. (We shall specify the value of γ later
and show that 0 < γ < 1

6 .)

• S contains one copy of the example x = (1, 0) with
label y = +1. (We call this the “large margin”
example.)

• S contains two copies of the example x = (γ,−γ)
with label y = +1. (We call these examples the
“penalizers” since they are the points that Bφ will
misclassify.)

• S contains one copy of the example x = (γ, 5γ)
with label y = +1. (We call this example the
“puller” for reasons described below.)

1To prove part (a) we need to show that H is boostable
w.r.t. some classifier c and S with margin γ, but as we
shall see this is easy to achieve.
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Thus all examples in S are positive. It is immediately
clear that the classifier c(x) = sgn(x1) correctly clas-
sifies all examples in S with margin γ > 0, so the set
H = {h1(x) = x1, h2(x) = x2} of base classifiers is
boostable w.r.t. c and S with margin γ. We further
note that since γ < 1

6 , each example in S does indeed
lie in the unit disc {x : ‖x‖ ≤ 1}.
Let us give some intuition for why this set S has
the “high error” property. The halfspace whose nor-
mal vector is (1, 0) classifies all examples correctly,
but the noisy (negative labeled) version of the “large
margin” example causes a convex potential function
to incur a very large cost for this hypothesis vec-
tor. Consequently a lower cost hypothesis can be ob-
tained with a vector that points rather far away from
(1, 0). The “puller” example (whose y-coordinate is
5γ) outweights the two “penalizer” examples (whose
y-coordinates are −γ), so it “pulls” the minimum cost
hypothesis vector to point up into the first quadrant
– in fact, so far up that the two “penalizer” examples
are misclassified by the optimal hypothesis vector for
the potential function φ.

In Section 4.3 below we make this intuition precise and
show that there is a global minimum (α∗

1, α
∗
2) of Pφ,D

for which α∗
1 < α∗

2. This immediately implies that
the corresponding classifier g(x) = sgn(α∗

1x1 + α∗
2x2)

misclassifies the two copies of (γ,−γ) in S and gives
us the “high error” property (1). In Section 4.4 we
show that this (α∗

1, α
∗
2) moreover has the “steep slope”

property (2).

4.3. The “high error” property: analyzing a

global minimum of Pφ,D

Let 1 < N < ∞ be such that η = 1
N+1 , so 1−η = N

N+1 .

We have that

Pφ,D(α1, α2) =
∑

(x,y)

Dη,S(x, y)φ(y(α1x1 + α2x2))

=
1

4

∑

(x,y)∈S

[(1 − η)φ(α1x1 + α2x2)

+ ηφ(−α1x1 − α2x2)] .

It is clear that minimizing 4(N + 1)Pφ,D is the same
as minimizing Pφ,D so we shall henceforth work with
4(N +1)Pφ,D since it gives rise to cleaner expressions.
We have that 4(N + 1)Pφ,D(α1, α2) equals

∑

(x,y)∈S

[Nφ(α1x1 + α2x2) + φ(−α1x1 − α2x2)]

= Nφ(α1) + φ(−α1)

+2Nφ(α1γ − α2γ) + 2φ(−α1γ + α2γ)

+Nφ(α1γ + 5α2γ) + φ(−α1γ − 5α2γ). (5)

Let L1(α1, α2) and L2(α1, α2) be defined as follows:

L1(α1, α2)
def
=

∂

∂α1
4(N + 1)Pφ,D(α1, α2) and

L2(α1, α2)
def
=

∂

∂α2
4(N + 1)Pφ,D(α1, α2).

For B > 1 to be fixed later, let us write L1(α) to
denote L1(α,Bα) and similarly write L2(α) to denote
L2(α,Bα). It is easy to verify that we have

L1(α) = Nφ′(α) − φ′(−α) + 2γNφ′(−(B − 1)αγ)

−2γφ′((B − 1)αγ) + Nγφ′((5B + 1)αγ)

−γφ′(−(5B + 1)αγ)

and

L2(α) = −2γNφ′(−(B − 1)αγ) + 2γφ′((B − 1)αγ)

+5γNφ′((5B + 1)αγ) − 5γφ′(−(5B + 1)αγ).

We introduce the following function to help in the anal-
ysis of L1(α) and L2(α):

for α ∈ R, Z(α)
def
= Nφ′(α) − φ′(−α).

Let us establish some basic properties of this function.
Since φ is differentiable and convex, we have that φ′ is
a non-decreasing function. This is easily seen to imply
that Z(·) is a non-decreasing function. We moreover
have Z(0) = φ′(0)(N − 1) < 0. The definition of a
convex potential function implies that as α → +∞ we
have φ′(α) → 0−, and consequently we have

lim
α→+∞

Z(α) = 0 + lim
α→+∞

−φ′(−α) > 0,

where the inequality holds since φ′(α) is a nonincreas-
ing function and φ′(0) < 0. Since φ′ and hence Z is
continuous, we have that over the interval [0,+∞)
the function Z(α) assumes every value in the range
[φ′(0)(N − 1),−φ′(0)).

Next observe that we may rewrite L1(α) and L2(α) as

L1(α) = Z(α) + 2γZ(−(B − 1)αγ) + γZ((5B + 1)γα)
(6)

and

L2(α) = −2γZ(−(B−1)αγ)+5γZ((5B +1)γα). (7)

In the rest of this section we shall show that there
are values α > 0, 0 < γ < 1/6, B > 1 such that
L1(α) = L2(α) = 0. Since Pφ,D is convex, this will

imply that (α∗
1, α

∗
2)

def
= (α,Bα) is a global minimum

for the dataset constructed using this γ, as required.

Let us begin with the following claim which will be
useful in establishing L2(α) = 0.
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Claim 4 For any B ≥ 1 there is a finite value ǫ(B) >

0 such that

2Z(−(B − 1)ǫ(B)) = 5Z((5B + 1)ǫ(B)) < 0 (8)

Proof: Fix any value B ≥ 1. Recalling that Z(0) =
φ′(0)(N − 1) < 0, at ǫ = 0 the quantity 2Z(−(B −
1)ǫ) equals 2φ′(0)(N − 1) < 0, and as ǫ increases this
quantity does not increase. On the other hand, at
ǫ = 0 the quantity 5Z((5B + 1)ǫ) equals 5φ′(0)(N −
1) < 2φ′(0)(N − 1), and as ǫ increases this quantity
increases to a limit, as ǫ → +∞, which is at least
5(−φ′(0)). Since Z is continuous, there must be some
ǫ > 0 at which the two quantities are equal and are
each at most 2φ′(0)(N − 1) < 0.

Observation 5 The function ǫ(B) is a continuous
and nonincreasing function of B for B ∈ [0,∞).

Proof: The larger B ≥ 1 is, the faster −(B − 1)ǫ)
decreases as a function of ǫ and the faster (5B + 1)ǫ
increases as a function of ǫ. Continuity of ǫ(·) follows
from continuity of Z(·).

We now fix the value of B to be B
def
= 1+γ, where the

parameter γ will be fixed later. We shall only consider
settings of α, γ > 0 such that αγ = ǫ(B) = ǫ(1 + γ);

i.e. given a setting of γ, we shall take α = ǫ(1+γ)
γ . For

any such α, γ we have

L2(α) = (7) = γ[−2Z(−(B − 1)ǫ(1 + γ))

+5Z((5B + 1)ǫ(1 + γ))] = 0

where the last equality is by Claim 4. Now let us
consider (6); our goal is to show that for some γ > 0
it is also 0. For any (α, γ) pair with αγ = ǫ(1 + γ), we
have by Claim 4 that

2γZ(−(B − 1)γα) + γZ((5B + 1)γα)

= 2γZ(−(B − 1)ǫ(1 + γ)) + γZ((5B + 1)ǫ(1 + γ))

= 6γZ((5B + 1)ǫ(1 + γ))

where the second equality is by Claim 4. Plugging this

into (6), we have that for α = ǫ(1+γ)
γ , the quantity

L1(α) equals 0 if and only if

Z

(
ǫ(1 + γ)

γ

)

= −6γZ((5B + 1)ǫ(1 + γ))

= 6γ · (−Z((6 + 5γ) · ǫ(1 + γ))). (9)

Let us analyze (9). We first note that Observation 5
implies that ǫ(1 + γ) is a nonincreasing function of γ

for γ ∈ [0,∞). Consequently ǫ(1+γ)
γ is a decreasing

function of γ, and since Z is a nonincreasing function,
the LHS is a nonincreasing function of γ. Recall that at
γ = 0 we have ǫ(1+γ) = ǫ(1) which is some fixed finite
positive value by Claim 4. So we have limγ→0+ LHS
= limx→+∞ Z(x) ≥ −φ′(0). On the other extreme,
since ǫ(·) is nonincreasing, we have

lim
γ→+∞

LHS ≤ lim
γ→+∞

Z

(
ǫ(1)

γ

)

= Z(0) = φ′(0)(N−1) < 0.

So as γ varies through (0,∞), the LHS decreases
through all values between −φ′(0) and 0.

On the other hand, at γ = 0 the RHS of (9) is clearly
0. Moreover the RHS is always positive for γ > 0 by
Claim 4. Since the RHS is continuous (by continu-
ity of Z(·) and ǫ(·)), this together with the previous
paragraph implies that there must be some γ > 0 for
which the LHS and RHS of (9) are the same positive
value. So we have shown that there are values α > 0,
γ > 0, B = 1 + γ such that L1(α) = L2(α) = 0. This
concludes the proof of the “high error” property (1).

We close this section by showing that the value of γ >

0 obtained above is indeed at most 1/6 (and hence
every example in S lies in the unit disc as required).
To see this, note that we have shown that for this γ, we

have Z((6+5γ)ǫ(1+γ)) < 0 and Z
(

ǫ(1+γ)
γ

)

> 0. Since

Z is a nondecreasing function this implies 6 + 5γ < 1
γ

which clearly implies γ < 1/6 as desired.

4.4. The “steep slope” property: analyzing

directional derivatives

Now we turn to proving that the directional derivative
in the orthogonal direction is less steep than in the
direction of the global minimum (α∗

1, α
∗
2). We have just

established that (α,Bα) = (α, (1 + γ)α) is a global
minimum for the data set as constructed above. The
directional derivative at (0, 0) in the direction of this

optimum is L1(0)+BL2(0)√
1+B2

.

Since φ′(0) < 0, by (6) and (7) we have

L1(0) = (1 + 3γ)φ′(0)(N − 1) < 0

L2(0) = 3γφ′(0)(N − 1) < 0.

This implies that L1(0) < L2(0) < 0, which, since
B > 1, implies BL1(0) − L2(0) < 0. This means that
(B,−1) rather than (−B, 1) is the direction orthogonal
to the optimal (1, B) which has negative slope.

Recalling that B = 1 + γ, we have the following in-
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equalities:

B < 1 + 6γ =
(1 + 3γ) + 3γ

(1 + 3γ) − 3γ

B <
−L1(0) − L2(0)

−L1(0) + L2(0)
(10)

B(−L1(0) + L2(0)) < −L1(0) − L2(0) (11)

L1(0) + BL2(0) < BL1(0) − L2(0) < 0, (12)

where (11) follows from (10) using L1(0) < L2(0) < 0.

So the directional derivative in the optimal direction
(1, B) is steeper than in (B,−1), and the proof of the
“steep slope” property, and with it Theorem 3, is com-
plete.

5. Consequences for Known Boosting

Algorithms

A wide range of well-studied boosting algorithms are
based on potential functions φ that satisfy our Def-
inition 1. Theorem 2 thus implies that each of the
corresponding convex potential function boosters as
defined in Section 2.2 cannot tolerate random classi-
fication noise at any noise rate 0 < η < 1

2 . (In some
cases the original versions of the algorithms discussed
below are not exactly the same as the Bφ algorithm
as described in Section 2.2 because of small differences
such as the way the step size is chosen at each update.
Thus we do not claim that Theorem 2 applies directly
to each of the original boosting algorithms; however
we feel that our analysis strongly suggests that the
original boosters may, like the corresponding Bφ algo-
rithms, be highly susceptible to random classification
noise.)

AdaBoost and MadaBoost. As discussed in the
Introduction and in [6, 18] the Adaboost algorithm
[11] is the algorithm Bφ obtained by taking the convex
potential function to be φ(x) = exp(−x). Similarly
the MadaBoost algorithm [5] is based on the potential
function φ(x) defined in Equation (1). Each of these
functions clearly satisfies Definition 1.

LogitBoost and FilterBoost. As described in
[6, 18, 2], the LogitBoost algorithm of [12] is based on
the logistic potential function ln(1 + exp(−x)), which
is easily seen to fit our Definition 1. Roughly, Filter-
Boost [2] combines a variation on the rejection sam-
pling of MadaBoost with the reweighting scheme, and
therefore the potential function, of LogitBoost.

6. Experiments with Binary-valued

Weak Learners

The analysis of this paper leaves open the possibil-
ity that a convex potential booster could still tolerate
noise if the base classifiers were restricted to be binary-
valued. In this section we describe empirical evidence
that this is not the case. We generated 100 datasets,
applied three convex potential boosters to each, and
calculated the training error.

Data. Each dataset consisted of 4000 examples, di-
vided into three groups, 1000 large margin examples,
1000 pullers, and 2000 penalizers. The large margin
examples corresponded to the example (1, 0) in Sec-
tion 4.2, the pullers play the role of (γ, 5γ), and the
penalizers collectively play the role of (γ,−γ).

Each labeled example (x, y) in our dataset is gen-
erated as follows. First the label y is chosen ran-
domly from {−1, 1}. There are 21 features x1, . . . , x21

that take values in {−1, 1}. Each large margin ex-
ample sets x1 = · · · = x21 = y. Each puller assigns
x1 = · · · = x11 = y and x12 = · · · = x21 = −y.
Each penalizer is chosen at random in three stages:
(1) the values of a random subset of five of the first
eleven features x1, . . . , x11 are set equal to y, (2) the
values of a random subset of six of the last ten features
x12, . . . , x21 are set equal to y, and (3) the remaining
ten features are set to −y.

At this stage, if we associate a base classifier with each
feature xi, then each of the 4000 examples is classified
correctly by a majority vote over these 21 base classi-
fiers. Intuitively, when an algorithm responds to the
pressure exerted by the noisy large margin examples
and the pullers to move toward a hypothesis that is
a majority vote over the first 11 features only, then it
tends to incorrectly classify the penalizers, because in
the penalizers only 5 of those first 11 features agree
with the class.

Finally, each class designation y is corrupted with clas-
sification noise with probability 0.1.

Boosters. We experimented with three boosters: Ad-
aBoost, MadaBoost (which is arguably, loosely speak-
ing, the least convex of the convex potential boosters),
and LogitBoost. Each booster was run for 100 rounds.

Results. The average training error of AdaBoost over
the 100 datasets was 33%. The average for LogitBoost
was 30%, and for MadaBoost, 27%.
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7. Discussion

We have shown that any boosting algorithm based on
coordinate-wise gradient descent to optimize a con-
vex potential function satisfying mild conditions can-
not tolerate random classification noise. While our
results imply strong limits on the noise-tolerance of al-
gorithms that fit this framework, they do not apply to
other boosting algorithms such as Freund’s Boost-By-
Majority algorithm [8] and BrownBoost [9] for which
the corresponding potential function is non-convex.
An interesting direction for future work is to extend
our negative results to a broader class of potential
functions, or to other types of boosters such as “regu-
larized” boosters [19, 14].

We close by observing that there do exist efficient
boosting algorithms (which do not follow the poten-
tial function approach) that can provably tolerate ran-
dom classification noise [13, 16]. These noise-tolerant
boosters work by constructing a branching program
over the weak classifiers; the original algorithms of
[13, 16] were presented only for binary-valued weak
classifiers, but recent work [15] extends the algorithm
from [16] to work with confidence-rated base classi-
fiers. A standard analysis (omitted because of space
constraints) shows that this boosting algorithm for
confidence-rated base classifiers can tolerate random
classification noise at any rate 0 < η < 1/2 according
to our definition from Section 2.4. In particular, for
any noise rate η bounded below 1/4, if this booster is
run on the data sets considered in this paper, it can
construct a final classifier with accuracy 1−η−ǫ > 3/4

after O( log 1/ǫ
γ2 ) stages of boosting. Since our set of ex-

amples S is of size four, though, this means that the
booster’s final hypothesis will in fact have perfect accu-
racy on these data sets which thwart convex potential
boosters.
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Abstract

Tensorial data are frequently encountered in
various machine learning tasks today and di-
mensionality reduction is one of their most
important applications. This paper extends
the classical principal component analysis
(PCA) to its multilinear version by propos-
ing a novel unsupervised dimensionality re-
duction algorithm for tensorial data, named
as uncorrelated multilinear PCA (UMPCA).
UMPCA seeks a tensor-to-vector projec-
tion that captures most of the variation in
the original tensorial input while produc-
ing uncorrelated features through successive
variance maximization. We evaluate the
UMPCA on a second-order tensorial prob-
lem, face recognition, and the experimental
results show its superiority, especially in low-
dimensional spaces, through the comparison
with three other PCA-based algorithms.

1. Introduction

Various machine learning problems take multi-
dimensional data as input, which are formally called
tensors. The elements of a tensor are to be addressed
by several indices and the number of indices used in the
description defines the order of the tensor object, with
each index defining one “mode” (Lathauwer et al.,
2000). Many real-world data are naturally tensor ob-
jects. For example, matrix data such as gray-level
images are second-order tensors, gray-scale video se-
quences and 3-D objects are third-order tensors. In ad-
dition, streaming data and mining data are frequently
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organized as third-order tensors. For instance, data in
environmental sensor monitoring are often organized
in three modes of time, location and type, and data
in web graph mining are commonly organized in three
modes of source, destination and text. Other appli-
cations involving tensorial data include data center
monitoring, social network analysis, network forensics
and face recognition (Faloutsos et al., 2007). In these
practical applications, tensor objects are often spec-
ified in a high-dimensional tensor space, leading to
the so-called curse of dimensionality. Nonetheless, the
class of tensor objects in most applications are highly
constrained to a subspace, a manifold of intrinsically
low dimension (Shakhnarovich & Moghaddam, 2004),
and feature extraction or dimensionality reduction is
frequently employed to transform a high-dimensional
data set into a low-dimensional space of equivalent
representation while retaining most of the underlying
structure (Law & Jain, 2006).

The PCA is a classical linear method for unsupervised
dimensionality reduction that transforms a data set
consisting of a large number of interrelated variables
to a new set of uncorrelated variables, while retain-
ing as much as possible the variations present in the
original data set (Jolliffe, 2002). PCA on tensor ob-
jects requires their reshaping (vectorization) into vec-
tors in a very high-dimensional space, which not only
results in high computational and memory demands
but also breaks the natural structure and correlation
in the original data (Ye, 2005; Ye et al., 2004; Lu et al.,
2008a). It is believed by many researchers that po-
tentially more compact or useful representations can
be obtained from the original form and PCA exten-
sions operating directly on the tensor objects rather
than their vectorized versions are emerging recently
(Ye et al., 2004; Lu et al., 2008a; Xu et al., 2005).

In (Shashua & Levin, 2001), the tensor rank-one de-
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composition (TROD) is used to represent a class of im-
ages based on variance maximization and (greedy) suc-
cessive residue calculation. A two-dimensional PCA
(2DPCA) is proposed in (Yang et al., 2004) that con-
structs an image covariance matrix using image ma-
trices as inputs. However, linear transformation is
applied only to the right side of image matrices so
the image data is projected in one mode only, result-
ing in poor dimensionality reduction. A more general
algorithm named generalized low rank approximation
of matrices (GLRAM) was introduced in (Ye, 2005),
which applies two linear transforms to both the left
and right sides of input image matrices and results
in a better dimensionality reduction than 2DPCA.
GLRAM is developed from the perspective of approx-
imation while the generalized PCA (GPCA) is pro-
posed in (Ye et al., 2004) from the view of variation
maximization, as an extension of PCA. Later, the con-
current subspaces analysis (CSA) is formulated in (Xu
et al., 2005) for optimal reconstruction of general ten-
sor objects, which can be considered as a generaliza-
tion of GLRAM, and the multilinear PCA (MPCA)
introduced in (Lu et al., 2008a) targets at variation
maximization for general tensor objects in the exten-
sion of PCA to the multilinear case, which can be con-
sidered as a further generalization of GPCA.

However, none of the existing multilinear extensions
of PCA mentioned above takes an important property
of PCA into account, i.e., PCA derives uncorrelated
features, which contain minimum redundancy and en-
sure independence among features. Instead, most of
them produce orthogonal bases in each mode. Al-
though uncorrelated features imply orthogonal projec-
tion bases in PCA, this is not necessarily the case for
its multilinear extension. With this motivation, this
paper investigates multilinear extension of PCA that
can produce uncorrelated features. We propose a novel
uncorrelated multilinear PCA (UMPCA) for unsuper-
vised tensor object dimensionality reduction (feature
extraction). UMPCA is based on the tensor-to-vector
projection (TVP) (Lu et al., 2008b) and it follows the
classical PCA derivation of successive variance maxi-
mization (Jolliffe, 2002). Thus, a number of elemen-
tary multilinear projections (EMPs) are solved to max-
imize the captured variance with the zero-correlation
constraint. The solution is iterative in nature, as many
other multilinear algorithms (Xu et al., 2005; Ye et al.,
2004; Shashua & Levin, 2001).

The rest of this paper is organized as follows. Section
2 reviews basic multilinear notations and operations,
as well as the concept of tensor-to-vector projection.
In Sec. 3, the problem of UMPCA is formulated and
the solution is derived as a sequential iterative process.

Table 1. Notations
Notations Descriptions

Xm, m = 1, ..., M the mth input tensor sample

u(n), n = 1, ..., N the n-mode projection vector

{u(n)T

p , n = 1, ..., N} the pth EMP, where p is the
index of the EMP

ym the projection of Xm on the

TVP {u(n)T

p , n = 1, ..., N}P
p=1

ym(p) = ymp = gp(m) the projection of Xm on the

pth EMP {u(n)T

p , n = 1, ..., N}
gp the pth coordinate vector

Next, Sec. 4 evaluates the effectiveness of UMPCA in
the popular face recognition task through comparison
with PCA, MPCA and TROD. Finally, the conclusions
are drawn in Sec. 5.

2. Multilinear Fundamentals

This section introduces the multilinear notations, op-
erations and projections needed in the presentation of
UMPCA, and for further pursuing of multilinear alge-
bra, (Lathauwer et al., 2000) is a good reference. The
important notations used in this paper are listed in
Table 1 for handy reference.

2.1. Notations and basic multilinear operations

Due to the multilinear nature of tensor objects, new
notations have been introduced in the literature for
mathematical analysis. Following the notations in
(Lathauwer et al., 2000), we denote vectors by low-
ercase boldface letters, e.g., x; matrices by uppercase
boldface letters, e.g., U; and tensors by calligraphic
letters, e.g., A. Their elements are denoted with in-
dices in parentheses. Indices are denoted by lowercase
letters and span the range from 1 to the uppercase
letter of the index, e.g., n = 1, 2, ..., N .

An N th-order tensor A ∈ RI1×I2×...×IN is addressed
by N indices in, n = 1, ..., N , and each in addresses
the n-mode of A. The n-mode product of a tensor A
by a matrix U ∈ RJn×In , denoted by A ×n U, is a
tensor with entries:

(A×n U)(i1, ..., in−1, jn, in+1, ..., iN )

=
∑
in

A(i1, i2, ..., iN ) ·U(jn, in). (1)

The scalar product of two tensorsA,B ∈ RI1×I2×...×IN

is defined as:

< A,B >=
∑
i1

...
∑
iN

A(i1, ..., iN ) · B(i1, ..., iN ). (2)

A rank-one tensor A equals to the outer product of N
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vectors: A = u(1) ◦ u(2) ◦ ... ◦ u(N), which means that
A(i1, i2, ..., iN ) = u(1)(i1) ·u(2)(i2) · ... ·u(N)(iN ) for all
values of indices.

2.2. Tensor-to-vector projection

In order to extract uncorrelated features from tenso-
rial data directly, we employ the TVP introduced in
(Lu et al., 2008b), which is a more general form of
the projection in (Shashua & Levin, 2001) and con-
sists of multiple EMPs. An EMP is a multilinear pro-
jection {u(1)T

,u(2)T

, ...,u(N)T } consisting of one unit
projection vector in each mode, i.e., ‖ u(n) ‖= 1 for
n = 1, ..., N , where ‖ · ‖ is the Euclidean norm for
vectors. It projects a tensor X ∈ RI1×I2×...×IN to a
scalar y through the N unit projection vectors as

y = X ×1 u(1)T

×2 u(2)T

...×N u(N)T

=< X ,U >,

where U = u(1) ◦ u(2) ◦ ... ◦ u(N). An EMP can
be viewed as a constrained linear projection since
< X ,U >=< vec(X ), vec(U) >= [vec(U)]T vec(X ),
where vec(·) denotes the vectorized representation.

The TVP of a tensor object X to a vector y ∈
RP consists of P EMPs {u(1)T

p ,u(2)T

p , ...,u(N)T

p }, p =
1, ..., P , which can be written concisely as {u(n)T

p , n =
1, ..., N}Pp=1:

y = X ×N
n=1 {u(n)T

p , n = 1, ..., N}Pp=1, (3)

where the pth component of y is obtained from the pth

EMP as: y(p) = X ×1 u(1)T

p ×2 u(2)T

p ...×N u(N)T

p . The
TROD (Shashua & Levin, 2001) in fact seeks a TVP
to maximize the captured variance, however, it takes
a heuristic greedy approach. In the next section, we
propose a systematic, more principled formulation by
taking consideration of the correlation among features.

In addition, the TVP for dimensionality reduction here
is related mathematically to the parallel factor analysis
(PARAFAC) originated from psychometrics (Harsh-
man, 1970), also known as the canonical decomposi-
tion (CANDECOMP) (Carroll & Chang, 1970), which
is popular in factor analysis of multi-way data, i.e.,
tensors. However, they are developed from different
perspectives. The PARAFAC in the factorization lit-
erature aims to decompose a higher-order tensor, often
formed by arranging lower-order tensors, into a num-
ber of rank-one tensorial factors explaining the for-
mation of the data. In contrast, the objective of the
TVP for dimensionality reduction here is to learn a
low-dimensional (subspace) representation of a class
of tensor objects from a number of samples so that
the underlying (class) structure is well captured.

3. Uncorrelated Multilinear PCA

This section proposes the UMPCA for unsupervised
dimensionality reduction of tensor objects by first for-
mulating the UMPCA objective function and then
adopting the successive variance maximization ap-
proach and alternating projection method to solve the
problem. In the presentation, for the convenience of
discussion, the training samples are assumed to be
zero-mean 1 so that the constraint of uncorrelated
features is the same as orthogonal features (Koren &
Carmel, 2004).

3.1. Problem formulation

Following the standard derivation of PCA given in
(Jolliffe, 2002), we consider the variance of the princi-
pal components (PCs) one by one. In the TVP setting,
the pth PCs are {ymp

,m = 1, ...,M}, where M is the
number of training samples and ymp

is the projection

of the mth sample Xm by the pth EMP {u(n)T

p , n =
1, ..., N}: ymp

= Xm ×N
n=1 {u

(n)T

p , n = 1, ..., N}. Ac-
cordingly, the variance is measure by their total scatter
Sy

Tp
, which is defined as

Sy
Tp

=
M∑

m=1

(ymp
− ȳp)2, (4)

where ȳp = 1
M

∑
m ymp

. In addition, let gp denote
the pth coordinate vector, with its mth component
gp(m) = ymp

. A formal definition of the unsupervised
multilinear feature extraction problem to be solved in
UMPCA is then given in the following:

A set of M tensor object samples {X1, X2, ...,
XM} are available for training. Each tensor object
Xm ∈ RI1×I2×...×IN assumes values in the tensor
space RI1

⊗
RI2 ...

⊗
RIN , where In is the n-mode di-

mension of the tensor and
⊗

denotes the Kronecker
product. The objective of the UMPCA is to find a
TVP, which consists of P EMPs {u(n)

p ∈ RIn×1, n =
1, ..., N}Pp=1, mapping from the original tensor space
RI1

⊗
RI2 ...

⊗
RIN into a vector subspace RP (with

P <
∏N

n=1 In):

ym = Xm ×N
n=1 {u(n)T

p , n = 1, ..., N}Pp=1,m = 1, ...,M,
(5)

such that the variance of the projected samples, mea-
sured by Sy

Tp
, is maximized in each EMP direction,

subject to the constraint that the P coordinate vec-
tors {gp ∈ RM , p = 1, ..., P} are uncorrelated.

1When the training sample mean is not zero, it can be
subtracted to make the training samples to be zero-mean.
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In other words, the UMPCA objective is to determine
a set of P EMPs {u(n)T

p , n = 1, ..., N}Pp=1 that maxi-
mize the variance while producing features with zero-
correlation. Thus, the objective function for the pth

EMP is

{u(n)T

p , n = 1, ..., N} = arg max
M∑

m=1

(ymp
− yp)2,

subject to u(n)T

p u(n)
p = 1 and

gT
p gq

‖ gp ‖ ‖ gq ‖
= δpq, p, q = 1, ..., P, (6)

where δpq is the Kronecker delta (defined as 1 for p = q
and as 0 otherwise).

3.2. The UMPCA algorithm

To solve the UMPCA problem (6), we follow the suc-
cessive variance maximization approach in the deriva-
tion of PCA in (Jolliffe, 2002). The P EMPs
{u(n)T

p , n = 1, ..., N}Pp=1 are determined one by one
in P steps, with the pth step obtaining the pth EMP:

Step 1: Determine the first EMP {u(n)T

1 , n =
1, ..., N} by maximizing Sy

T1
without any con-

straint.

Step 2: Determine the second EMP {u(n)T

2 , n =
1, ..., N} by maximizing Sy

T2
subject to the con-

straint that gT
2 g1 = 0.

Step p(p = 3, ..., P ): Determine the pth EMP
{u(n)T

p , n = 1, ..., N} by maximizing Sy
Tp

subject
to the constraint that gT

p gq = 0 for q = 1, ..., p−1.

In order to solve for the pth EMP {u(n)T

p , n = 1, ..., N},
we need to determineN sets of parameters correspond-
ing to N projection vectors, u(1)

p ,u(2)
p , ...u(N)

p , one in
each mode. Unfortunately, simultaneous determina-
tion of these N sets of parameters in all modes is a
complicated non-linear problem without an existing
optimal solution, except when N = 1, which is the
classical PCA where only one projection vector is to
be solved. Therefore, we follow the approach in the
alternating least square (ALS) algorithm (Harshman,
1970) to solve this multilinear problem. For each EMP
to be determined, the parameters of the projection vec-
tor u(n∗)

p for each mode n∗ are estimated one mode by
one mode separately, conditioned on {u(n)

p , n 6= n∗},
the parameter values of the projection vectors in the
other modes.

To solve for u(n∗)
p in the n∗-mode, assuming that

{u(n)
p , n 6= n∗} is given, the tensor samples are pro-

jected in these (N − 1) modes {n 6= n∗} first to obtain
the vectors

ỹ(n∗)
mp

= Xm ×1 u(1)T

p ...×n∗−1 u(n∗−1)T

p

×n∗+1u(n∗+1)T

p ...×N u(N)T

p , (7)

where ỹ(n∗)
mp ∈ RIn∗ . This conditional subproblem then

becomes to determine u(n∗)
p that projects the vector

samples {ỹ(n∗)
mp ,m = 1, ...,M} onto a line so that the

variance is maximized, subject to the zero-correlation
constraint, which is a PCA problem with the input
samples {ỹ(n∗)

mp ,m = 1, ...,M}. The corresponding to-
tal scatter matrix S̃(n∗)

Tp
is then defined as

S̃(n∗)
Tp

=
M∑

m=1

(ỹ(n∗)
mp
− ¯̃y(n∗)

p )(ỹ(n∗)
mp
− ¯̃y(n∗)

p )T , (8)

where ¯̃y(n∗)
p = 1

M

∑
m ỹ(n∗)

mp . With (8), we are ready
to solve for the P EMPs. For p = 1, the u(n∗)

1 that

maximizes the total scatter u(n∗)T

1 S̃(n∗)
T1

u(n∗)
1 in the

projected space is obtained as the unit eigenvector of
S̃(n∗)

T1
associated with the largest eigenvalue. Next, we

show how to determine the pth (p > 1) EMP given
the first (p− 1) EMPs. Given the first (p− 1) EMPs,
the pth EMP aims to maximize the total scatter Sy

Tp
,

subject to the constraint that features projected by
the pth EMP are uncorrelated with those projected
by the first (p − 1) EMPs. Let Ỹ(n∗)

p ∈ RIn∗×M be
a matrix with ỹ(n∗)

mp as its mth column, i.e., Ỹ(n∗)
p =[

ỹ(n∗)
1p

, ỹ(n∗)
2p

, ..., ỹ(n∗)
Mp

]
, then the pth coordinate vector

is gp = Ỹ(n∗)T

p u(n∗)
p . The constraint that gp is un-

correlated with {gq, q = 1, ..., p − 1} can be written
as

gT
p gq = u(n∗)T

p Ỹ(n∗)
p gq = 0, q = 1, ..., p− 1. (9)

Thus, u(n∗)
p (p > 1) can be determined by solving the

following constrained optimization problem:

u(n∗)
p = arg max u(n∗)T

p S̃(n∗)
Tp

u(n∗)
p , (10)

subject to u(n∗)T

p u(n∗)
p = 1 and

u(n∗)T

p Ỹ(n∗)
p gq = 0, q = 1, ..., p− 1,

The solution is given by the following theorem:
Theorem 1. The solution to the problem (10) is the
(unit-length) eigenvector corresponding to the largest
eigenvalue of the following eigenvalue problem:

Ψ(n∗)
p S̃(n∗)

Tp
u = λu, (11)
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where

Ψ(n∗)
p = IIn∗ − Ỹ(n∗)

p Gp−1Φ−1
p GT

p−1Ỹ
(n∗)T

p , (12)

Φp = GT
p−1Ỹ

(n∗)T

p Ỹ(n∗)
p Gp−1, (13)

Gp−1 = [g1 g2 ...gp−1] ∈ RM×(p−1), (14)

and IIn∗ is an identity matrix of size In∗ × In∗ .

Proof. First, Lagrange multipliers can be used to
transform the problem (10) to the following to include
all the constraints:

F (u(n∗)
p ) = u(n∗)T

p S̃(n∗)
Tp

u(n∗)
p − ν

(
u(n∗)T

p u(n∗)
p − 1

)
−

p−1∑
q=1

µqu(n∗)T

p Ỹ(n∗)
p gq, (15)

where ν and {µq, q = 1, ..., p− 1} are Lagrange multi-
pliers.

The optimization is performed by setting the partial
derivative of F (u(n∗)

p ) with respect to u(n∗)
p to zero:

∂F (u(n∗)
p )

∂u(n∗)
p

= 2S̃(n∗)
Tp

u(n∗)
p − 2νu(n∗)

p

−
p−1∑
q=1

µqỸ(n∗)
p gq = 0. (16)

Multiplying (16) by u(n∗)T

p results in

2u(n∗)T

p S̃(n∗)
Tp

u(n∗)
p − 2νu(n∗)T

p u(n∗)
p = 0

⇒ ν =
u(n∗)T

p S̃(n∗)
Tp

u(n∗)
p

u(n∗)T

p u(n∗)
p

, (17)

which indicates that ν is exactly the criterion to be
maximized, with the constraint on the norm of the
projection vector incorporated.

Next, a set of (p− 1) equations are obtained by multi-
plying (16) by gT

q Ỹ(n∗)T

p , q = 1, ..., p− 1, respectively:

2gT
q Ỹ(n∗)T

p S̃(n∗)
Tp

u(n∗)
p −

p−1∑
q=1

µqgT
q Ỹ(n∗)T

p · Ỹ(n∗)
p gq

= 0. (18)

Let
µp−1 = [µ1 µ2 ... µp−1]T (19)

and use (13) and (14), then the (p − 1) equations of
(18) can be represented in a single matrix equation as
following:

2GT
p−1Ỹ

(n∗)T

p S̃(n∗)
Tp

u(n∗)
p −Φpµp−1 = 0. (20)

Thus,

µp−1 = 2Φ−1
p ·GT

p−1Ỹ
(n∗)T

p S̃(n∗)
Tp

u(n∗)
p . (21)

Since from (14) and (19),

p−1∑
q=1

µqỸ(n∗)
p gq = Ỹ(n∗)

p Gp−1µp−1, (22)

the equation (16) can be written as

2S̃(n∗)
Tp

u(n∗)
p − 2νu(n∗)

p − Ỹ(n∗)
p Gp−1µp−1 = 0

⇒νu(n∗)
p = S̃(n∗)

Tp
u(n∗)

p − Ỹ(n∗)
p Gp−1

µp−1

2

=
[
IIn∗ − Ỹ(n∗)

p Gp−1Φ−1
p GT

p−1Ỹ
(n∗)T

p

]
S̃(n∗)

Tp
u(n∗)

p .

Using the definition in (12), an eigenvalue problem is
obtained as Ψ(n∗)

p S̃(n∗)
Tp

u = νu. Since ν is the criterion
to be maximized, the maximization is achieved by set-
ting u(n)∗

p to be the (unit) eigenvector corresponding
to the largest eigenvalue of (11).

By setting Ψ(n∗)
1 = IIn∗ and from Theorem 1, we have

a unified solution for UMPCA: for p = 1, ..., P , u(n∗)
p

is obtained as the unit eigenvector of Ψ(n∗)
p S̃(n∗)

Tp
asso-

ciated with the largest eigenvalue. Algorithm 1 sum-
marizes the UMPCA developed here.

Algorithm 1 Uncorrelated Multilinear Principal
Component Analysis (UMPCA)

Input: A set of tensor samples {Xm ∈
RI1×...×IN ,m = 1, ...,M}, the subspace dimension-
ality P , and the maximum number of iterations K.
for p = 1 to P do

for n = 1 to N do
Initialize u(n)

p(0) = 1/ ‖ 1 ‖.
end for
for k = 1 to K do

for n = 1 to N do
Calculate ỹ(n)

mp = Xm ×1 u(1)T

p(k) ... ×n−1

u(n−1)T

p(k) ×n+1 u(n+1)T

p(k−1) ...×N u(N)T

p(k−1) , for m =
1, ...,M .
Calculate Ψ(n)

p and S̃(n)
Tp

. Set u(n)
p(k) to be

the (unit) eigenvector of Ψ(n)
p S̃(n)

Tp
associated

with the largest eigenvalue.
end for

end for
Set u(n)

p = u(n)
pk for all n.

Calculate the coordinate vector gp.
end for
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3.3. Initialization, projection order and
termination

As an iterative algorithm, the UMPCA may be af-
fected by the initialization method, the projection or-
der and the termination conditions. Due to the space
constraint, these issues, as well as the convergence and
computational issues, are not studied here. Instead,
we adopt simple implementation strategies for them.
First, we use the uniform initialization for UMPCA,
where all n-mode projection vectors are initialized to
have unit length and the same value along the In di-
mensions in n-mode, which is equivalent to the all ones
vector 1 with proper normalization. Second, as shown
in Algorithm 1, the projection order, which is the mode
ordering in computing the projection vectors, is from
1-mode to N -mode, as in other multilinear algorithms
(Ye, 2005; Xu et al., 2005; Lu et al., 2008a). Third,
the iteration is terminated by setting K, the maximum
number of iterations.

4. Experimental Evaluation

The proposed UMPCA can potentially benefit various
applications involving tensorial data, as mentioned in
Sec. 1. Since face recognition has practical impor-
tance in security-related applications such as biomet-
ric authentication and surveillance, it has been used
widely for evaluation of unsupervised learning algo-
rithms (Shashua & Levin, 2001; Yang et al., 2004; Xu
et al., 2005; Ye, 2005). Therefore, in this section, we
focus on evaluating the effectiveness of UMPCA on
this popular classification task through performance
comparison with existing unsupervised dimensionality
reduction algorithms.

4.1. The FERET database

The Facial Recognition Technology (FERET)
database (Phillips et al., 2000) is widely used for
testing face recognition performance, with 14,126
images from 1,199 subjects covering a wide range
of variations in viewpoint, illumination, facial ex-
pression, races and ages. A subset of this database
is selected in our experimental evaluation and it
consists of those subjects with each subject having
at least eight images with at most 15 degrees of
pose variation, resulting in 721 face images from 70
subjects. Since our focus here is on the recognition of
faces rather than their detection, all face images are
manually cropped, aligned (with manually annotated
coordinate information of eyes) and normalized to
80 × 80 pixels, with 256 gray levels per pixel. Figure
1 shows some sample face images from two subjects
in this FERET subset.

Figure 1. Examples of face images from two subjects in the
FERET subset used in our experimental evaluation.

4.2. Face recognition performance comparison

In the evaluation, we compare the performance of
the UMPCA against three PCA-based unsupervised
learning algorithms: the PCA (eigenface) algorithm
(Turk & Pentland, 1991), the MPCA algorithm (Lu
et al., 2008a)2 and the TROD algorithm (Shashua &
Levin, 2001). The number of iterations in TROD and
UMPCA is set to ten, with the same (uniform) initial-
ization used. For MPCA, we obtain the full projection
and select the most descriptive P features for recogni-
tion. The features obtained by these four algorithms
are arranged in descending variation captured (mea-
sured by respective total scatter). For classification of
extracted features, we use the nearest neighbor classi-
fier (NNC) with Euclidean distance measure.

Gray-level face images are naturally second-order ten-
sors (matrices), i.e., N = 2. Therefore, they are
input directly as 80 × 80 tensors to the multilin-
ear algorithms (MPCA, TROD, UMPCA), while for
PCA, they are vectorized to 6400 × 1 vectors as in-
put. For each subject in a face recognition experiment,
L(= 1, 2, 3, 4, 5, 6, 7) samples are randomly selected for
unsupervised training and the rest are used for testing.
We report the results averaged over ten such random
splits (repetitions).

Figures 2 and 3 show the detailed results3 for L = 1
and L = 7, respectively. L = 1 is an extreme small
sample size scenario where only one sample per class is
available for training, the so-called one training sample
(OTS) case important in practice (Wang et al., 2006),
and L = 7 is the maximum number of training samples
we can use in our experiments. Figures 2(a) and 3(a)
plot the correct recognition rates against P , the di-
mensionality of the subspace for P = 1, ..., 10, and Figs
2(b) and 3(b) plot those for P = 15, ..., 80. From the
figures, UMPCA outperforms the other three methods
in both cases and across all dimensionality, indicating
that the uncorrelated features extracted directly from
the tensorial face data are more effective in classifi-

2Note that MPCA with N = 2 is equivalent to GPCA.
3Note that for PCA and UMPCA, there are at most 69

features when L = 1 (only 70 faces for training).
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(a) (b)

(c) (d)

Figure 2. Detailed face recognition results on the FERET
database for L = 1: (a) performance curves for the low-
dimensional case, (b) performance curves for the high-
dimensional case, (c) the variation captured by individual
features and (d) the correlation among features.

(a) (b)

(c) (d)

Figure 3. Detailed face recognition results on the FERET
database for L = 7: (a) performance curves for the low-
dimensional case, (b) performance curves for the high-
dimensional case, (c) the variation captured by individual
features and (d) the correlation among features.

cation. The figures also show that for UMPCA, the
recognition rate saturates around P = 30, which can
be explained by observing the variance captured by in-
dividual features as shown in Figs. 2(c) and 3(c) (in log
scale). These figures show that the variance captured

by UMPCA is considerably lower than those captured
by the other methods, which is due to its constraints
of zero-correlation and TVP. Despite capturing lower
variance, UMPCA is superior in the recognition task
performed. Nonetheless, when the variance captured
is too low, those corresponding features are no longer
descriptive enough to contribute in classification, lead-
ing to the saturation.

In addition, we also plot the average correlation of in-
dividual features with all the other features in Figs.
2(d) and 3(d). As supported by theoretical deriva-
tion, features extracted by PCA and UMPCA are un-
correlated. In contrast, features extracted by MPCA
and TROD are correlated, with TROD features have
higher correlation on average.

Table 2. Face recognition results on the FERET database:
the recognition rates (in percentage) for various Ls and P s.

L P 1 5 10 20 50 80
PCA 2.8 20.2 32.0 39.1 43.6 45.1

2 MPCA 2.6 21.4 28.1 38.9 44.6 46.0
TROD 3.6 19.3 30.6 38.4 43.0 44.3

UMPCA 8.1 27.6 40.6 45.0 45.8 45.7
PCA 2.7 23.9 37.1 45.9 51.3 52.6

3 MPCA 2.3 25.9 34.8 45.5 52.0 53.3
TROD 4.0 23.5 36.1 44.5 50.1 51.7

UMPCA 7.5 35.5 49.8 56.0 56.6 56.6
PCA 2.7 25.5 41.7 49.4 56.8 57.9

4 MPCA 2.3 28.7 39.4 50.2 57.5 58.9
TROD 4.2 25.3 41.1 49.0 55.1 56.6

UMPCA 8.5 39.5 56.2 63.5 64.1 64.2
PCA 3.0 28.9 47.1 55.6 63.9 64.6

5 MPCA 2.6 33.0 43.2 56.8 64.3 65.8
TROD 4.5 28.4 47.2 55.6 62.0 63.9

UMPCA 8.1 43.6 61.7 68.2 69.1 69.1
PCA 2.8 30.3 49.0 58.5 66.7 68.1

6 MPCA 2.2 33.5 45.7 59.7 67.9 69.7
TROD 4.3 27.3 49.3 58.6 64.7 66.9

UMPCA 9.1 45.6 62.9 70.7 71.8 71.8

The recognition results for P = 1, 5, 10, 20, 50, 80 are
listed in Table 2 for L = 2, 3, 4, 5, 6, where the best
recognition results among the four methods are shown
in bold. More detailed results are omitted here to
save space. From the table, UMPCA achieves supe-
rior recognition results in all cases except for P = 80
and L = 2, where the difference with the best results
by MPCA is small (0.3%). In particular, for smaller
P (1, 5, 10, 20), UMPCA outperforms the other algo-
rithms significantly, demonstrating its superior capa-
bility in classifying faces in low-dimensional spaces.
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5. Conclusions

This paper proposes a novel uncorrelated multilinear
PCA algorithm, where uncorrelated features are ex-
tracted directly from tensorial representation through
a tensor-to-vector projection. The algorithm succes-
sively maximizes variance captured by each elemen-
tary projection while enforcing the zero-correlation
constraint. The solution employs the alternating pro-
jection method and is iterative. Experiments on face
recognition demonstrate that compared with other
unsupervised learning algorithms including the PCA,
MPCA and TROD, the UMPCA achieves the best re-
sults and it is particularly effective in low-dimensional
spaces. Thus, face recognition through unsupervised
learning benefits from the proposed UMPCA and in
future research, it is worthwhile to investigate whether
UMPCA can contribute in other unsupervised learning
tasks, such as clustering.
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Abstract

A good distance measure for time series needs
to properly incorporate the temporal struc-
ture, and should be applicable to sequences
with unequal lengths. In this paper, we pro-
pose a distance measure as a principled solu-
tion to the two requirements. Unlike the con-
ventional feature vector representation, our
approach represents each time series with a
summarizing smooth curve in a reproduc-
ing kernel Hilbert space (RKHS), and there-
fore translate the distance between time se-
ries into distances between curves. Moreover
we propose to learn the kernel of this RKHS
from a population of time series with discrete
observations using Gaussian process-based
non-parametric mixed-effect models. Experi-
ments on two vastly different real-world prob-
lems show that the proposed distance mea-
sure leads to improved classification accuracy
over the conventional distance measures.

1. Introduction

Time series classification is a supervised learning prob-
lem aimed at labeling temporally structured sequences
of variable length. The most common approach re-
duces time series classification to a static problem by
suitably transforming the input sequences into vectors
in Euclidean space. One can either summarize each
time series with attributes pertinent to classification
(called feature extraction)(Keogh & Pazzani, 1998),
or use a properly sampled and aligned subsequence
(called sampling)(Parra et al., 2003). Unfortunately,

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

the feature extraction method is still more art than sci-
ence, and the performance depends heavily on the de-
signer’s domain knowledge and the particular heuristic
implemented. The sampling method, although pre-
serving most of the information, is accused of ignoring
the important temporal structure of the series. In-
deed, the sampled sequences, if treated as vectors in
Euclidean space, lead to the same classifiers after any
permutation of the vector entries. Moreover, the sam-
pling strategy does not apply to situations where we
have only sparse observations that are made at irreg-
ular times.

In this paper, we propose a principled non-parametric
distance measure for time series by representing each
time series with a smooth curve in a reproducing kernel
Hilbert space (RKHS) with a kernel learned from data.
This new distance measure circumvents the limitations
of the two above mentioned strategies.

Paper Roadmap In Section 2, we give the back-
ground of the Bregman divergence, and then generalize
it to function space for a proper distance measure of
smooth curves. In Section 3 we propose a family of
new distance measures for time series with only dis-
crete observations. Section 4 is devoted to the non-
parametric mixed-effect model, which helps to further
specify the proposed distance measure. In Section 5,
we apply the proposed distance measure to two real-
world time series classification problems. Finally we
discuss the related work in Section 6.

2. Gaussian Processes and Functional

Bregman Divergence

The Bregman divergence is a natural generalization
of squared Euclidean distance and KL-divergence. A
Bregman divergence corresponding to a strictly convex
function φ(x) (called seed function) is defined as

dφ(x1||x2) = φ(x1) − φ(x2) − 〈∇φ(x2), x1 − x2〉 . (1)
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Bregman divergence is closely connected to the expo-
nential family (Banerjee et al., 2005). For any distri-
bution in the exponential family

p(x; θ) = exp(〈x, θ〉 − Φ(θ))p0(x),

we know that the log likelihood can be re-written as

log p(x; θ) = −dφ(x||µ(θ)) + φ(x) + log p0(x), (2)

where φ is the conjugate function of Φ

φ(x) = sup
θ
{〈x, θ〉 − Φ(θ)} (3)

and µ(θ) = ∇Φ(θ) is the expectation parameter corre-
sponding to θ. We go one step further to argue that
dφ(x1||x2) should be a proper model-weighted diver-
gence measure between any x1 and x2. It is straight-
forward to show that for multi-variate Gaussian dis-
tribution N (a,Σ), the corresponding Bregman diver-
gence is given by

dφ(x1||x2) =
1

2
(x1 − x2)

T Σ−1(x1 − x2), (4)

which is also suggested in (Tipping, 1999) as a model-
weighted distance for Gaussian distribution.

2.1. Extension to Function Space

We generalize our discussion on the Bregman diver-
gence and the exponential family to function spaces.
To facilitate our discussion, we adopt the language of
functional integral, which, although allegedly not rig-
orously defined, provides a powerful technique for de-
scribing the probability on functions (Simon, 1979).

Gaussian processes (GPs) (Rasmussen & Williams,
2006) generalize the multivariate Gaussian distribu-
tion to function space, which model any function f

with the following probability 1

p[f ] ∝ exp(−1

2
||f − f0||2H), (5)

with f0 being the mean function and || · ||H the norm
for the reproducing kernel Hilbert space (RKHS) H.
We use K to denote the reproducing kernel, which
will also be noted as the covariance function for the
Gaussian process expressed in Eq.(5) (Seeger, 2004).
In regularization theory, the norm ||·||H is often related
to a particular type of smoothness of function, with
large (even infinite) ||f ||H for non-smooth function f .

After generalizing Eq.(1) to the functional case
(Frigyik et al., 2006), we get the Bregman divergence

1In the remainder of the paper, we use the square brack-
ets [ ] to distinguish functionals from common functions.

between function f1 and f2, with a seed functional g[·]

dg(f1||f2) = g[f1] − g[f2] −
∫

Dg[f2](f1(t) − f2(t))dt.

where Dg[f ] is the Fréchet derivative. The Gaussian
process expressed in Eq.(5) can be viewed as a member
of the exponential family extended to distributions on
functions (Altun et al., 2004). Then a direct general-
ization of Eq.(3) leads to g[f ] = 1

2 ||f ||2H, which gives a
GP-related divergence for smooth functions

dH(f1||f2) =
1

2
||f1 − f2||2H. (6)

3. Distance for Time Series

We consider k time series, using yi to denote the Ni

observations from the ith time series made at times ti

yi
.
= [yi1, · · · , yiNi

]T , ti
.
= [ti1, · · · , tiNi

]T .

The subscript i on ti and Ni indicates that the obser-
vation times and even the number of observations are
generally different for each individual. The time series
are called synchronized if all the ti are the same.

We can define a distance measure for such time se-
ries by associating the observations {ti,yi} with a
(smooth) curve. We assume the observations for each
individual i is generated from a independent Gaussian
process fi with the same covariance function K (and
therefore H) and mean f0. The observation is modeled
as

yin = fi(tin) + ǫin, n = 1, 2, · · · , Ni, (7)

where ǫin is a white observation noise with standard
deviation σ for all i and n.

We choose to summarize each individual time series i

with the expectation of fi(t) given the discrete noisy
observation {ti,yi}.

f̂i(t) = E[fi(t)|yi, f0; ti,K] (8)

= f0 + K(t, ti)(K(ti, ti) + σ2
I)−1(yi − f0,i) (9)

where f0,i
.
= [f0(ti1), f0(ti2), · · · , f0(tiNi

)]T is the val-
ues of f0 at times ti, and K(ti, ti) is the Ni × Ni

matrix with the (n,m) entry being K(tin, tim). With

a smooth f0, we have ||f̂i||H < +∞, which can be

loosely interpreted as that f̂i is smooth according to
K. In Fig.1, we give an example of using such a curve
f̂ to represent the noisy observations (black crosses).

We then use the distance between f̂i and f̂j as the
distance between time series {ti,yi} and {tj ,yj} 2,

2Although E[||fi −fj ||
2

H|yi,yj ; ti, tj ] seems to be a rea-
sonable measure of distance, it goes to infinity since with
probability one a sample f from the a Gaussian process
with covariance function K has ||f ||H = ∞ (Seeger, 2004).
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Figure 1. Using smooth curve to represent noisy discrete
observations (black crosses). The smooth curve is obtained
using Eq.(9) with K being a Gaussian kernel and f0 = 0.

which is given by Eq.(6) as

dij =
1

2
||f̂i − f̂j ||2H. (10)

Since H is the RKHS induced by the kernel K, this
distance measure is well-defined

dij =
1

2
||f̂i − f̂j ||2H =

1

2

〈

f̂i − f̂j , f̂i − f̂j

〉

H

=
1

2
〈K(t, ti)vi−K(t, tj)vj ,K(t, ti)vi−K(t, tj)vj〉H ,

where vi = (K(ti, ti) + σ2
I)−1(yi − f0,i). Using the

reproducing kernel property

∀ tn, tm 〈K(tn, t),K(tm, t)〉H = K(tn, tm),

the distance measurement can be simplified as

dij =
1

2
vT

i K(ti, ti)vi+
1

2
vT

j K(ti, ti)vj−vT
i K(ti, tj)vj .

(11)

It is important to note that this distance does not re-
quire all the time series to be synchronized, an advan-
tage when sequences are of different lengths, or the
observations are made at different times, as shown in
our first experiment in Section 5. When the observa-
tions for all individuals are synchronized, we have ti =
t = [t1, t2, · · · , tN ]T with N as the total number of ob-
servations for each individual. Letting K = K(t, t),
we can re-write dij as

dij = vT
i Kvi + vT

j Kvj − 2vT
i Kvj (12)

= (vi − vj)
T K(vi − vj) (13)

= (yi−yj)
T (K + σ2

I)
−1

K(K + σ2
I)−1(yi−yj).(14)

Temporal Structure In Eq.(11)-(14), the temporal
regularity is incorporated in the distance via the kernel
K. It is most clear when we notice that K models the
correlation of f value at different time

K(ti, tj) = E[(f(ti) − f0(ti))
T (f(tj) − f0(tj))].

The norm ||fi − fj ||H measures the irregularity de-
fined by K, in contrast to the Euclidean distance
∫

(fi(t)−fj(t))
2dt which only concerns about the point

wise difference between fi and fj . It is also important
to notice the particular temporal structure incorpo-
rated varies greatly with the choice of K. For example,
the widely used Matérn (including Gaussian) kernel or
rational quadratic kernel promote different types and
level of smoothness. On the other hand, the temporal
structure is often problem specific and hard to deter-
mine beforehand. In the next section, we will discuss
learning this temporal structure from the data.

4. Non-parametric Mixed-effect Model

In Section 3, we assume a Gaussian process with
known mean and covariance function. However in
practice it is often not the case. Instead we may want
to learn the characteristic of Gaussian process from
examples. One situation of interest to us is when a
population of similar time series are available. This
prior learning scheme is known in statistics as the em-
pirical Bayesian or the hierarchial Beyesian (Gelman,
2004). Particularly, the model is called mixed-effect
model when the hyper-prior is a Gaussian, on which
the maximum likelihood (ML) solution can be found
with Expectation-Maximization (EM) algorithm.

Traditional mixed-effect models are parametric, which
assume a θ-parameterized regression model for each
individual. Since the model parameters vary across
individuals, it is natural to consider them generated
by the sum of a fixed and a random piece θ = α + βi,
where α is called the fixed effect, and βi, called random
effect, is assumed distributed N (0,D) with unknown
covariance D. The fitting of mixed-effect model is to
find α, D, and the variance of observation noise.

In non-parametric mixed-effect models, the individual
regression models do not take a parametric form. In-
stead, we assume the observations are generated by
k smooth curves {f1, f2, · · · , fk} fluctuating around a

mean (fixed-effect) function f0. We use f̃i = fi − f0

to denote the deviation of fi from f0 (random effect).

The prior of both f0 and f̃i can be summarized with
the following equations:

p0[f0] ∝ exp(−1

2
||f0||2H0

) (15)

pf [f̃i] ∝ exp(−1

2
||f̃i||2H) i = 1, 2, · · · , k, (16)

where H and H0 are generally different Hilbert spaces,
with the corresponding reproducing kernel denoted as
K and K0. Also we assume the observation noise to be
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white Gaussian with variance σ2, from which follows

p(yi|f̃i, f0; ti) ∝
ni∏

j=1

exp(− (yin − f̃i(tin) − f0(tin))2

2σ2
).

We assume H0 (and thus the form of p0[·]) is pre-
determined, while the fixed effect f0 is to be de-
cided. Also unknown are the noise variance σ2 and the
Hilbert space H for random effects (or equivalently K).
Our learning task is therefore to jointly optimize over
{f0,K, σ} by maximizing the following probability of
Y = {y1,y2, · · · ,yk}.

p(Y|f0;K,σ)p0[f0] =

p0[f0]

k∏

i=1

∫

Dfi{p(yi|f̃i, f0;σ)pf [f̃i]}, (17)

where the integral
∫

Dω g[ω] is a functional integral
over ω (Simon, 1979). Using the Gaussian property,
Eq.(17) can be further reduced to a standard integral

p(Y|f0;K,σ)p0[f0] =

p0[f0]
k∏

i=1

∫

dfi{p(yi|fi, f0;σ)p(fi;K)}. (18)

where fi = [f̃i(ti1), f̃i(ti2), · · · , f̃i(tiNi
)]T collects the

values of fi on times ti and p(fi;K) is a standard mul-
tivariate Gaussian

p(fi;K) =

1
√

(2π)Ni |K(ti, ti)|
exp(−1

2
fT
i K(ti, ti)

−1fi). (19)

In general, there is no unique solution of K that max-
imizes p(Y|f0;K,σ)p0[f0]. Indeed, it is easy to verify
that if K(tin, tim) = K ′(tin, tim) for any individual i

and time index (n, m), we will have

p(Y|f0;K,σ)p0[f0] = p(Y|f0;K
′, σ)p0[f0].

This situation can be circumvented in two ways. First
we can restrain K in a particular parametric family,
such as the widely used Gaussian kernel. Second, we
can instead optimize only over the entry K(tin, tim) for
all individual i, and time index (n,m). Both strategies
will be addressed in this paper.

4.1. Optimization with the EM Algorithm

The task is to find the set M = {f0,K, σ} that
maximizes the probability p(Y|f0;K,σ)p0[f0]. As
shown in Eq.(18), we can rewrite the data likelihood
p(yi|f0;K,σ) using the {f1, f2, · · · , fk} as the latent
variables

p(yi|f0;K,σ) =

∫

dfip(yi|fi, f0, σ)p(fi;K), (20)

which enables us to employ the EM algorithm in find-
ing M. In the following, we will give the results of the
expectation step (E-step) and the maximization step
(M-step).

E-step: In each EM iteration:

Q(M,Mg) = E{fi |Y;Mg}[log{p(Y, {fi};M)p0[f0]}]

=

k∑

i=1

∫

dfi log p(yi, fi;M)p(fi|yi;Mg)

+ log p[f0],

where Mg stands for the parameters from the last
iteration. After some algebra, we can re-arrange
Q(M,Mg) into the following form

Q(M,Mg) = −1

2
||f0||2H0

− n log σ

− 1

2σ2

k∑

i=1

ni∑

j=1

E{fi|Y;Mg}[(yij − f̃i(tij) − f0(tij))
2 ]

+
k∑

i=1

∫

dfi log p(fi;M)p(fi|yi;Mg). (21)

M-step: In M-step, we find the

M∗ = arg max
M

Q(M,Mg), (22)

and use M∗ to update the model parameters. The op-
timization in Eq.(22) can be divided into two separate
parts. The first three terms on the left hand side of
Eq.(21) is a function of only (f0, σ); The last (fourth)
term is a function of only K. To find the solution of
f0 and σ, we need to solve the following optimization
problem:

(σ∗, f∗
0 ) = arg min

σ,f0

{1

2
||f0||2H0

+ N log σ+

1

2σ2

k∑

i=1

ni∑

j=1

E{fi|Y;Mg}[(yij−f̃i(tij)−f0(tij))
2]. (23)

Particularly, with any fixed σ, maximizing Q(M,Mg)
over f0 becomes a regularized regression problem

f∗
0 = arg min

f0

1

2
||f0||2H0

+

1

2σ2

N∑

i=1

ni∑

j=1

{(yij − E{fi|yi,Mg}[f̃i(tij)] − f0(tij))
2}.

The optimization over K is

K = arg max
K∈K

k∑

i=1

∫

dfi log p(fi;K)p(fi|yi;K
g) (24)
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= arg max
K∈K

−
k∑

i=1

{1

2
log |K(ti, ti)|

+
1

2
tr(K(ti, ti)

−1(C g
i + µ

g
i (µ

g
i )

T ))}, (25)

where K is the set of feasible K, and µi is the posterior
mean E[fi|yi;M] that can be calculated as

µi = K(ti, ti)(K(ti, ti) + σ2
I)−1(yi − f0,i)

and Ci is the posterior covariance of fi

Ci = K(ti, ti) − K(ti, ti)(K(ti, ti) + σ2
I)−1K(ti, ti).

4.2. Parametric Covariance Estimation

We assume the covariance function K is of the para-
metric form K(x, y; θ). For example, the Gaussian ker-
nel with scale a and kernel width s

K(x, y; {a, s}) = a exp(−||x − y||2
2s2

),

or as suggested in (Lanckriet et al., 2004) a convex
combination of a set of kernels {K1,K2, · · · ,KM}

K(x, y;λ) = λ1K1(x, y)+λ2K2(x, y)+· · ·+λMKM (x, y).

In this case, the optimization of K in the M-step can
be reduced to the following parameter estimation

θ∗ = arg max
θ

−
k∑

i=1

{1

2
log |K(ti, ti; θ)|

+
1

2
tr(K(ti, ti; θ)

−1(C g
i + µ

g
i (µ

g
i )

T ))}, (26)

where p(fi; θ) = p(fi;K(ti, ti; θ)). This parametric
form of K is appealing in either one of the following
two situations:

• when the observation are sparse, since the para-
metric K is generally less prone to overfitting
compared to the non-parametric estimation, as
will be discussed in Section 4.3.

• when the time series are not synchronized (as in
Section 5.1) since the parametric K allows the
out-of-sample extension.

4.3. Non-parametric Covariance Estimation

When all the time series all synchronized, we have ti =
t, i = 1, 2, · · · , k. We can replace K(ti, ti) in Eq.(25)
with K ≡ K(t, t), and rewrite the optimization into
the matrix form

K = arg max
K∈P

−
N∑

i=1

{1

2
log |K|+

1

2
tr(K−1(Cg

i + µ
g
i (µ

g
i )

T ))}. (27)

If we let P be the set of positive definite matrix, the
solution of Eq.(27) is simple

K =
1

k

k∑

i=1

(Cg
i + µ

g
i (µ

g
i )

T ). (28)

The non-parametric fitting of kernel matrix K is ap-
pealing since it does not assume a particular form for
the covariance matrix and thus can fully exploit the in-
formation in the samples. However it can only be used
when the time series are synchronized. One example
of this modeling choice is given in Section 5.2.

5. Experiments

We tested the proposed distance measure on two real-
world applications. The first one is an algorithm for
cognitive decline detection based on longitudinal clin-
ical observations of motor ability. The second one is
an target identifier system based on electroencephalo-
graph (EEG) signal.

In each experiment, we employ support vector machine
(SVM) (Burges, 1998) with Gaussian kernel defined as
follows

Gij = exp(− dij

2r2
) (29)

where dij is the squared distance between the time
series i and j and the kernel width r is usually obtained
using cross-validation. It is easy to see the G is a
Mercer kernel.

5.1. Cognitive Decline Detection Based on

Longitudinal Data

Research by our group and others show that motor
changes, such as in walking and finger tapping rates,
can effectively predict cognitive decline several years
before impairment is manifest (Camicioli et al., 1998).
It would be useful to build a system to detect cogni-
tive decline (at least partially) from motor behavior,
since they can be obtained by unintrusive in-home as-
sessment (Hayes et al., 2004). Our research focuses on
using clinical motor behavior and data from the Ore-
gon Brain Aging Study (OBAS) (Green et al., 2000).
All 143 subjects in the cohort were healthy at entry,
and when the data were drawn 46 of them had de-
veloped into mild cognitive impairment, while 97 re-
mained cognitively healthy. We divide all the subjects
into the impaired group and the normal group accord-
ing to their state when the data were drawn from the
database. 3 We intend to predict whether a subject

3This grouping is potentially inaccurate due to the pos-
sibility that those cognitively healthy subjects can later
develop into dementia, which is known as right censoring
in survival analysis.
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Figure 2. Left panel: sample spaghetti plots of seconds

from two groups. Right panel: the population of seconds

data and the fit fixed effect model (red line).

would develop into cognitive impairment based on his
or her motor behavior before a clinical diagnosis (if
any). In this experiment, this task reduces to pre-
dicting the group membership for each subject. This
classification is difficult due to the fact that motor ob-
servations are sparse and noisy, as shown in Fig.2(left
panel). We examined four motor behaviors summa-
rized in Table 1. Usually as the subjects age or be-
come impaired, the seconds and steps increase, while
tappingD and tappingN decrease.

seconds # of seconds the subject takes to walk 9 m

steps # of steps the subject takes to walk 9 m

tappingD # of the tappings the subject does in 10

seconds with the dominant hand

tappingN # of the tappings the subject does in 10

seconds with the non-dominant hand

Table 1. Description of data.

We fit the non-parametric mixed-effect model to each
motor behavior with the parameterized kernel

K0(t1, t2) = exp(
||t1 − t2||2

2s2
0

),

K(t1, t2; {a, s}) = a exp(
||t1 − t2||2

2s2
),

where s0 is predetermined and {a, s} are to be learnt.
The right panel of Fig.2 shows the seconds time series
from the 143 subjects (black −◦−) and the fit fixed
effect (red line). Once the model is fit, the distance
between any two subjects i and j is calculated as in
Eq.(11).

For comparison, we also examined a parametric feature
based on the least-square (LSQ) fit coefficients for lin-

ear regression: xi = arg minx

∑Ni

j=1(x0 + x1tij − yij)
2

with x = [x0, x1]
T . This feature extraction is justified

by the observation that the intercept and the slope
of the motor behavior trajectory are predictor of fu-
ture cognitive decline and dementia (Marquis et al.,
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Figure 3. The ROC curve of SVM with two distance mea-
sures. SVM(P): SVM with proposed distance. SVM(L):
SVM with least-square features.

2002). Based on the LSQ feature we get another dis-
tance measure dij = ||xi − xj ||2. We employ a SVM
as the classifier with kernels calculated with Eq.(29).
Fig.3 compares the ROC curves using the proposed
distance measure and the Euclidean distance between
the LSQ features. It is clear that SVM with proposed
distance measure outperforms the SVM with the LSQ
features in terms of the area under curve (AUC). There
are two reasons for the superiority of the proposed dis-
tance over the LSQ feature:

• The simple heuristic features such as the intercept
and the slope cannot capture enough information
for the classification.

• The feature extraction is not robust enough for
the sparse and noisy observations.

5.2. EEG-based Image Target Detection

The system reported here exploits the perceptual ca-
pabilities of expert humans for searching objects of
interest (e.g., a golf course in a satellite image) within
large image sets. The technique uses event related po-
tentials (ERPs), neural signals linked to critical events,
such as interesting/novel visual stimuli. The basic idea
of the ERP-based image triage system is to collect
electroencephalograph (EEG) signals from a subject’s
scalp when he or she performs visual target detection,
and then detect the ERPs associated with the target
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stimuli. We focus on single-trial ERP detection using
32 EEG sensors, which is challenging due to the low
signal-to-noise ratio.

This detection task is then boiled down to classifying
the EEG segments into target-associated EPRs and
distractors. After proper alignment and sampling, the
EEG segments are transformed into synchronized se-
quence of length 4128, which are denoted yi for each
individual trial i. In this experiment, we collected the
EEG data from three human experts, each of them
performed 1 training session and 7 test sessions. In
each training session, the human expert was fed with
∼600 images with ∼50 targets among them. In each
test session, there are 1-4 targets within ∼3000 distrac-
tors. Fig.4 (left panel) shows single-trial EEG signals
associated with a target and a distractor stimulus.

Due to the high dimensionality, the EM algorithm will
be fairly slow due to the extensive use of inverse of
K (4128 × 4128). To keep the computation at a rea-
sonable level, we simplify the model by assigning a
flat prior to the fixed effect f0, or equivalently letting
||f ||H0

= 0 for any f . This simplifying assumption
instantly leads to the following results.

• The optimal solution of f0 is simply the data mean
f0 = 1

k

∑k
i=1 yi, as shown in Fig.4 (right panel).

• The data likelihood is independent of σ2 as long
as it is less than the smallest eigenvalue of K̂ =
1
k

∑k
i=1(yi − f0)(yi − f0)

T .

Based on the above two results, we can pick a σ and
then calculate the optimal covariance K with Eq.(28)
in one iteration.
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Figure 4. EEG data and the fit mixed-effect model. Left
panel: Example of target-associated and distractor-
associated EEG signals. Right panel: The population of
EEG signals (black −◦−) and the fit f0 (red curve).

Once the optimal f0 and K are obtained, the distance
between any time series i and j can be calculated us-
ing Eq.(14). In addition to directly using the distance,
we isometrically embed the time series {yi} into Eu-
clidean space while preserving the distance expressed
in Eq.(14). The embedded vectors, called ISO feature,

will then be used directly in linear classifiers. One
obvious choice is the non-degenerated linear transfor-
mation

xi = K1/2(K + σ2
I)−1yi (30)

where K
1

2 could be any matrix A ∈ R
N×N with

AAT = K. We tested both the proposed distance
and the (squared) Euclidean distance 4 ||yi − yj ||2 as
the distance term dij in the Gaussian kernel G and
compared the performance of the SVM with the two
distance measures. In addition, we also tried a linear
logistic classifier (LLC) with both the raw feature yi

and ISO feature xi as the input. In our experiment,
the SVM parameters and kernel width were selected
using 10-fold cross validation.

Due to the extremely low probability of targets and
the high cost of misdetection, we aim for zero-miss and
minimum false alarm rate (MFAR), which is defined as
the percentage of false alarms among all classifications
while all targets are correctly detected. We test both
SVM and LLC on the 21 (=3 × 7) test sessions. Ta-
ble 1 summarizes the detection results when different
distance or features are used. The criteria of compari-
son include the average MFAR across the 21 sessions,
the number of sessions with low MFAR (≤ 10%)and
very low MFAR (≤ 2%). Clearly, the LLC with ISO
features outperforms the LLC with raw feature by giv-
ing low average MFAR, more low MFAR sessions, and
more very low MFAR sessions. The story is similar
when using SVM as the classifier: the proposed dis-
tance outperforms the the Euclidean distance on all
three criteria.

Clearly the temporal structure is important in de-
scribing the EEG signal, and thus plays a crucial role
in deciding the distances between EEG time series.
The proposed distance measure successfully incorpo-
rates the temporal structure information learnt with a
rather simple algorithm, and yields significantly better
classification than the Euclidean distance that simply
adds the index-by-index differences.

6. Related Work

The connection between Bregman divergence and ex-
ponential family is first proposed by (Forster & War-
muth, 2000), and later used by several authors in de-
riving a proper distance measure for either clustering
(Banerjee et al., 2005) or dimension reduction (Collins
et al., 2001). Our work also depends heavily on the
functional Bregman divergence, an idea first fully ex-
plored in (Frigyik et al., 2006). The non-parametric

4It would be fair to learn the covariance for a Maha-
lanobis distance. However, we have not performed this
comparison for the sake of simplicity.
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Aver. MFAR # ≤ 2% # ≤ 10%
LLC(I) 8.99% 12 16
LLC(R) 18.18% 2 12
SVM(P) 4.91% 13 19
SVM(E) 6.31% 7 16

Table 2. The detection results with different classifier set-
tings. Columns: AverMFAR: the average MFAR across 21
sessions; #≤ 2%: the number of sessions with MFAR≤ 2%;
#≤ 10%:the number of sessions with MFAR≤ 10%. Rows:

LLC(I): LLC with the ISO feature; LLC(R): LLC with
raw feature; SVM(P): SVM with the proposed distance;
SVM(E): SVM with Euclidean distance.

mixed-effect model is a natural generalization to the
hierarchical Bayesian Gaussian process proposed by
(Schwaighofer et al., 2005) to functional form where
synchronized and non-synchronized time series can be
treated in a unified framework.

This work can be viewed as a particular example of the
functional data analysis (Ramsay & Silverman, 1997).
Particularly, in an early effort towards the functional
PCA (Ramsay & Dalzell, 1991), the authors suggested
to map the discrete observations (ti,yi) to a smooth
function through the following regularized regression

f̂i(t) = arg min
f

1

2

Ni∑

n=1

(yin−f(tin))2+
1

2
λ||Df ||2, (31)

where D is a linear operator. The solution to Eq.(31) is
the expectation in Eq.(9) if we let λ = σ2 and K be the
Green’s function of the operator D∗D. The difference,
however, are that (1) our model also assumes a non-
zero mean (fixed effect) f0 and (2) the kernel K is
learned from a population of time series.
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Abstract

We present an algorithm for on-line, incre-
mental discovery of temporal-difference (TD)
networks. The key contribution is the estab-
lishment of three criteria to expand a node in
TD network: a node is expanded when the
node is well-known, independent, and has a
prediction error that requires further expla-
nation. Since none of these criteria requires
centralized calculation operations, they are
easily computed in a parallel and distributed
manner, and scalable for bigger problems
compared to other discovery methods of pre-
dictive state representations. Through com-
puter experiments, we demonstrate the em-
pirical effectiveness of our algorithm.

1. Introduction

Predictive representations (Littman et al., 2002;
Jaeger, 2000) are a relatively new group of approaches
for expressing and learning grounded knowledge about
dynamical systems. These approaches represent the
state of a dynamical system as a vector of predictions,
based on the hypothesis that important knowledge
about the world can be represented strictly in terms
of relationships between predictions of observable
quantities. In the predictive state representations
(PSRs) introduced by Littman et al. (2002), each
prediction is an estimate of the probability of tests,
defined as some sequence of observations given a
sequence of actions. Sutton and Tanner (2005)
proposed another approach for predictive represen-
tations, namely Temporal-Difference (TD) networks.
TD networks are developed as a generalization of
PSRs: in TD networks, each prediction is an estimate

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

of the probability or expected value of some function
of future predictions, actions and observations. The
predictions can be considered as “answers” to a set of
“questions” represented in the TD network.

One important problem in the research of predictive
representations is the discovery problem, that is, the
problem of determining the set of questions (or core
tests) so that the state of a dynamical system is cor-
rectly represented by the vector of predictions for these
questions. Many of the existing studies on this prob-
lem (Rosencrantz et al., 2004; James & Singh, 2004;
Wolfe et al., 2005) utilize off-line discovery and learn-
ing on PSRs, and therefore they are hardly applicable
to both implementing live-interaction agents and find-
ing corresponding activity in the human brain. There
is an on-line discovery algorithm (McCracken & Bowl-
ing, 2006) for PSR core tests, but it requires complex
operations on a large matrix, such as calculation of the
maximum linear independent set, and is therefore not
suitable for parallel and distributed computing. As far
as we are aware, no algorithm has been proposed for
discovery of questions in TD networks. Study of a TD-
network discovery algorithm that is suitable for paral-
lel distributed computing would contribute not only to
research on predictive representations but also to re-
search on cognitive science by providing a hypothesis
for the algorithm actually used in the human brain.

In this study, we propose an algorithm for discovering
the correct set of tests by incremental node expansion
in a TD network. Our key contribution is in the cri-
teria that we have developed for node expansion: a
node is expanded when the node is well-known, in-
dependent, and has a prediction error that requires
further explanation. To check these criteria, our algo-
rithm maintains the average squared error and average
variance for each node, and it introduces a dependency
detection network. Since none of these criteria requires
centralized operations such as calculation of linear in-
dependence in the whole representation matrix, they

632



On-line Discovery of Temporal-Difference Networks
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Figure 1. Example TD network we focus in this paper.

are easily computed in a parallel and distributed man-
ner, which is an important property for seeking the
algorithm used in the human brain. Although the al-
gorithm has no theoretical guarantee to find the ques-
tion network (indeed, it is known to be failed in some
cases), our simulation experiments demonstrate the
empirical effectiveness of our algorithm.

Section 2 reviews PSR and TD network that is neces-
sary to understand our algorithm. Section 3 describes
our incremental discovery algorithm. Experiments and
results are shown in Section 4. After that, we discuss
related work and future directions in Sections 5 and 6.

2. TD Networks

In this section, we make a brief review on TD network,
based on the work by Tanner and Sutton (2005a).

The purpose of TD networks is to learn prediction
of future observation obtained from the environment.
Consider a partially observable environment, which
changes its state according to an agent’s action at ∈ A
at every time step t, but the agent can only have a
partial (and possibly noisy) observation ot+1 ∈ O of
the state. Generally ot can be a vector consisting of l
bits, but in this paper, we consider the case that the
observation is a single bit (l = 1).

A TD network consists of a set of nodes and links,
and each node represents a single scalar prediction. A
node has one or more links directed to other nodes or
the observation from the environment, which denotes
the targets for prediction of the node. A link may
have a condition, which indicates that the node is a
conditional prediction of the target. This set of nodes
and links are called the question network since each
node is some question about the environment.

As in the previous studies (Tanner & Sutton, 2005b;
Tanner & Sutton, 2005a), we focus on a subset of
TD networks, in which every node has a single target
(hereafter, the parent node) and every link is condi-
tioned with an action. Figure 1 is an example of such
a TD network. The node y1 predicts the observation
at the next step if action a1 is taken. The node y4

predicts the value of the node y1 at the next step if

action a2 is taken, and so on.

To provide an answer for the questions asked by the
question network, each node in a TD network works
also as a function approximator. The inputs to the
function approximator of a node are defined by answer
network, taking values from other nodes, available ob-
servations, and actions to be taken. These function
approximators are trained so that the output of the
nodes becomes the answers to the question asked by
the question network. However, to provide an accurate
answer, the set of nodes have to be a sufficient repre-
sentation for the environmental state; in other words,
a correct set of questions have to be posed by the ques-
tion network. The focus of this paper is the discovery
of the question network, i.e., to find the structure of
the question network that is sufficient for prediction.

Formally, we denote the prediction for node i at time
step t as yi

t ∈ [0, 1], i = 1, . . . , n. The prediction vector
yt = (y1

t , . . . , yn
t )T is given by the answer network:

yt = σ(Wtxt) , (1)

where xt ∈ ℜm is a feature vector, Wt is a n × m
matrix of modifiable weights, and σ is the S-shaped
logistic function σ(s) = (1 + e−x)−1.

The feature vector is a function of the preceding action,
observation, and node values:

xt = x(at−1, ot,yt−1) ∈ Rm . (2)

We used the similar form of feature vector as appeared
in the work of Tanner and Sutton (2005a); in our ex-
periments, where two actions (L and R) are possible,

x(a, o,y) =

{
(o, 1−o, y1, . . . , yn, 0, . . . , 0)T a=L
(0, . . . , 0, o, 1−o, y1, . . . , yn)T a=R

(3)

This is equivalent to separate W for each action.

The question network, which gives the target of pre-
dictions in terms of the node values at the next time
steps, is represented by a n× (n + l) matrix Za and a
vector c. Without eligibility traces, the vector of the
target values is

zt−1 = ct ⊙ Z
(
yt

ot

)
+ c̄t ⊙ yt−1 , (4)

where ⊙ is element-by-element multiplication, and
each element of Z, c and c̄ is:

zij =

{
1 yi is the parent node of yj

0 otherwise
, (5)

ci
t =

{
1 at satisfies the node yi’s condition
0 otherwise

, (6)

c̄i
t = 1 − ci

t . (7)

The elements of Z are assigned so that zi
t−1 = y

p(i)
t for

any i with ci
t = 1, where p(i) is the parent node of i.
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On the other hand, if ci
t = 0, zi

t−1 = yi
t−1, and the TD

error of the node becomes zero so that only the weights
for the nodes that satisfy the condition are updated.

In this study we employ eligibility traces (Tanner &
Sutton, 2005a), which is a technique to accelerate
learning in TD-error learning by incorporating further
prediction into the learning target. In a forward view,

zt−1 = ct ⊙ Z(λzt + (1 − λ)yt) + c̄t ⊙ yt−1 , (8)

where λ ∈ [0, 1] is a parameter that controls the bal-
ance of temporally distant results in the learning tar-
get. When λ = 0, eq. (8) is equivalent to eq. (4), and
no eligibility traces are used.

However, this formula recursively contains future val-
ues of z, and it is not easy to be calculated on-line.
Tanner and Sutton (2005a) proposes an algorithm that
performs on-line update of the weight vector to make
the equivalent update as (8). Then each component
wij

t of Wt is updated by the learning rule:

wij
t+1 = wij

t + α(zi
t − yi

t)
∂yi

t

∂wij
t

= wij
t + α(zi

t − yi
t)y

i
t(1 − yi

t)x
j
t , (9)

in which the second line is derived from eq. (1).

Roughly, the operation of a TD network proceeds by
repeating the following steps: (1) Choose an action
at−1 and receive an observation ot from the environ-
ment. (2) Operate the answer network, i.e., calculate
feature vector xt = x(at−1, ot,yt−1) and obtain the
new predictions yt = σ(Wtxt). (3) Use the question
network to obtain the target value for the previous
predictions zt−1 = z(yt, ot), and update the weights
W according to the TD error zt−1 −yt−1. For details,
readers should consult the original paper of the TD
network (Sutton & Tanner, 2005) to see subtle points,
such as the precise order of calculation.

3. On-line Discovery Algorithm

We propose an algorithm that performs on-line discov-
ery of the question network. Our algorithm starts with
the minimal network, which consists of the observation
node and a set of prediction nodes for the observation
nodes, one for each action. During learning, the algo-
rithm grows the network by expanding leaf nodes by
adding a set of prediction nodes for the node. Intu-
itively, a node is expanded when the following three
criteria holds:

1. The node is well-known: The agent has suf-
ficient experience to learn the node. This crite-
rion prevents relatively unexplored nodes to be
expanded.

2. The node is independent: The prediction of
the node cannot be calculated in terms of other,
formerly known node values. In terms of PSRs,
the node represents a core test. This criterion
avoids redundant expansion of the nodes.

3. The node’s error requires further explana-
tion: The node’s prediction error is not smaller
than expected from the prediction error of the
node’s parent node. This criterion chooses the
node that has the best descriptive power for the
error in the parent node, and stops expansion
when unpredictability is solved.

In the following, we first describe the variables that
our algorithm maintains to check these criteria, and
we present more detailed conditions for the criteria.

3.1. Variables

3.1.1. Dependency Detection Network

Our algorithm uses a dependency detection network,
which tries to represent a prediction of the node yi

in terms of observation o and values of the nodes
with younger index yj (j < i). If the network suc-
ceeds to represent yi with small error, we can see that
yi is dependent to the predictions with younger in-
dex (namely, not a core test of PSRs), and exclude
it from the candidate of node expansion. Otherwise,
we can assume that yi is an independent node. Note
that it corresponds to the core test in non-linear PSRs
(Rudary & Singh, 2004) because the nodes in TD net-
works correspond to e-tests in non-linear PSRs (Sutton
& Tanner, 2005) and we use sigmoidal function in the
answer network.

Formally, the dependency detection network is repre-
sented by Dt, a n×(n+l) matrix of modifiable weights.
In the matrix dij is restricted to zero if i ≥ j − l. The
output of the network is dt = σ(Dt

(
ot

yt

)
). The network

is trained so that dt is close to yt; in other words, the
network tries to represent a prediction of the node yi

in terms of observation o and predictions with nodes
with smaller index yj (j < i). Since the indices of the
nodes are numbered in order, newly expanded nodes
are always given higher indices, and are not used by
the dependency detection network for describing older
nodes with lower indices.

Each component dij
t of Dt is updated by the learning

rule similar to eq. 9:

dij
t+1 = dij

t + αD(yi
t − di

t)
∂di

t

∂dij
t

(10)

= dij
t + αD(yi

t − di
t)d

i
t(1 − di

t)y
j
t (11)
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But the update is limited in the area i < j − l. We
assign the learning rate of the dependency detection
network αD to be larger than that of the answer net-
work α to allow the dependency detection network to
track changes in the calculated node values during the
learning of the answer network (as long as the values
are dependent).

3.1.2. Average Errors

Our algorithm gathers statistical information about
the prediction and error of the TD network and the
dependency detection network. To allow on-line learn-
ing, the statistical variables are calculated in forms of
exponential moving averages:

yLERR
t+1 = ρ2 yLERR

t + (1−ρ2)((zt−yt) ⊙ (zt−yt)) (12)

dSERR
t+1 = ρ1 dSERR

t + (1−ρ1)((yt−dt) ⊙ (yt−dt)) (13)

dLERR
t+1 = ρ2 dLERR

t + (1−ρ2)((yt−dt) ⊙ (yt−dt)) (14)

where dSERR
t is a short-term average of squared pre-

diction errors, dLERR
t is a long-term average of squared

prediction errors, and 0 < ρ1 < ρ2 < 1 is a temporal
factor. When a node yi is added to the network, sta-
tistical variables are initialized as yLERR i = dSERR i

t =
dLERR i

t = 1.0so that the variables show larger errors
during the initial period of the node.

Without eligibility traces, the target variable zt is
available at time t + 1, so these parameters are eas-
ily calculated on-line. However, since eq. (12) con-
tains quadratic term for zt, on-line calculation tech-
nique with eligibility traces such as used in Tanner
and Sutton’s work (2005a) cannot be used directly.
Our implementation keeps the record of last k steps
of node values, where k is the maximum depth of the
current question network, and calculates errors of yt

and dt at time t + k.

3.2. Expansion Criteria

Using these variables, we check the criteria described
in the beginning of Section 3 as follows. The crite-
ria are checked for every time step. Since all crite-
ria are described on exponential moving averages, the
precise timing of criteria check and node expansion is
not important; it should be inserted somewhere in the
TD(λ) network learning algorithm (Tanner & Sutton,
2005a). The expansion criterion are designed to avoid
redundant expansion as much as possible because no
shrinking criterion is given.

3.2.1. The node is well-known

To avoid expanding relatively unexplored nodes, we
use the following criteria to determine whether the

node yi is well-known.

• Learning error is not in a decreasing trend (we as-
sume the error is always decreasing during initial
learning phase).

• Learning error of the node gets smaller compared
with that of its parent node.

In formal representation,

dSERR i
t ≥ dLERR i

t and (15)

dLERR i
t ≤ d

LERR p(i)
t . (16)

If p(i) is the observation bit, then d
LERR p(i)
t is consid-

ered as 1 (the largest possible value).

Eq. 15 works because these variables, representing
moving averages of errors, are initialized with the high-
est possible value (see Section 3.1.2). Thus it is ex-
pected that the short-term average error variables stay
lower than the long-term ones until the end of the ini-
tial learning period, in which the learning error is con-
stantly decreasing.

Eq. 16 is usually satisfied with a plenty amount of ex-
perience because the dependency network has no con-
nection from a child node to a parent node. The parent
node always has fewer inputs in the dependency net-
work than the child node; if the child node has an un-
explained dependency (large dLERR i

t ), it is likely that
the parent node also has an unexplained dependency.

3.2.2. The node is independent

To prevent dependent (non-core test) nodes to be ex-
panded, we require that the learning error in the de-
pendency detection network is not small.

dLERR i
t ≥ θ1 (17)

θ1 is a threshold parameter that controls the require-
ment for independence.

When all the nodes that match this criterion are ex-
panded, then all the leaf nodes in the question network
becomes dependent nodes, and no further expansion
occurs. Thus, this criterion is equivalent to the as-
sumption that independent (core test) nodes does not
exist as a child of dependent (non-core test) nodes.

3.2.3. The node’s error requires further
explanation

If the prediction error of a node is larger than expected
from its parent node, it is reasonable to require further
prediction on the node to reduce the error. Otherwise,
we can infer that the error in the parent node has other
causes (e.g. another prediction node with different ac-
tion conditions has large prediction error), and further
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Figure 2. 8-state ring world. The digit in a node represents
observation from the state, and edge labels denote actions.

Table 1. Tests for various θ1 and θ2 values in the 8-state
ring world. Values are [final number of nodes] / [steps
(×104) until learned (MSE reduces less than 10−4)].

θ1\θ2 0.005 0.0075 0.01 0.0125 0.015
0.001 18/47 20/46 16/49 6/– 6/–
0.002 18/49 18/48 18/51 6/– 6/–
0.003 18/53 18/55 16/55 6/– 6/–
0.004 18/54 18/57 16/58 6/– 6/–
0.005 18/59 18/59 16/60 6/– 6/–

prediction for the node is less important to reduce the
error of the final prediction for the observation.

In case that the parent node p(i) is purely probabilis-
tic, error distribution of the p(i)’s child nodes is pro-
portional to the probability that the conditions of the
nodes are matched; the following condition checks that
the error of the node is greater than that:

yLERR i
t ≥ γ

#yi

#yp(i)
y
LERR p(i)
t + θ2 , (18)

where #yi is the frequency that the conditions on the
chain from the observation bit to node yi is matched
(thus, #yi

#yp(i) is the relative probability that the condi-
tion of the node is matched). If p(i) is the observation
bit, then y

LERR p(i)
t is assumed to be zero. θ2 is a

threshold parameter that controls tolerance for noise.

4. Experiments

To test the efficiency of our algorithm, we conducted a
series of computer experiments on n-state ring world
(n = 5, 8) (Tanner & Sutton, 2005b). Figure 2 illus-
trates 8-state ring world. There are two observations,
0 or 1, and two actions, L and R.

Since the ring worlds contains only deterministic state
transitions and observations, we also tested our al-
gorithm on some standard probabilistic POMDP en-
vironments taken from repository (Cassandra, 1999).
Among them, environments with one-bit observation
are used, and adapted to non-reward situation (we
followed a previous work that describe details; Mc-

Cracken, 2005).

We generated a sequence of experience by a uni-
form random policy and applied our algorithm on-
line. Through all experiments we used ρ1 = 0.99,
ρ2 = 0.999, αD = 0.2, λ = 0.9, θ1 = 0.0045, and
θ2 = 0.0005. α is initialized with 0.1, and after 800,000
steps, α is halved with every 100,000 step. We mea-
sured the error of the prediction for the selected action,
compared to the oracle (observation probability calcu-
lated from the structure of the environment), and the
mean squared errors for every 10,000 steps are plotted.

Figures 3(a) and 3(b) are the results in 5- and 8-state
ring worlds. We can see that the number of nodes
in the TD network increases as a result of node ex-
pansion until the prediction error decreases. This in-
dicates that nodes in the TD-networks are expanded
only when it is required.

We made additional tests with various parameters θ1

and θ2 on the 8-state ring world (Table 1). We found
that θ2 affects the final number of nodes. With larger
θ2, algorithm failed to make a required node expan-
sion; with smaller θ2, the algorithm made some spuri-
ous node expansions (though the learning was success-
ful). On the other hand, θ1 mainly affects the learning
time, but less related to the number of nodes.

Figures 3(c) to 3(f) show the results of our algorithm
in other well-known POMDP environments. Our algo-
rithm has successfully learned predictions in all cases.
However, we found that the initial form of the TD net-
work without node expansion can learn equally well
(compared to the case started with a large TD net-
work, which is mechanically generated by expanding
all nodes), due to the high generalization capacity of
TD-network with sigmoid function. Thus these exper-
iments are not helpful for evaluating our discovery al-
gorithm. However, we see that some node expansions
are occurred in these experiments. This indicates that
our algorithm sometimes makes spurious node expan-
sions, especially in these probabilistic environments.

We also evaluated the criteria we selected in terms of
the discovered question network for the 8-state ring
world. Figure 4 compares the mean square errors and
the number of nodes in the discovered network with
various settings of criteria (in these experiments α is
kept constant to 0.1). Although the prediction error
approaches to zero on all conditions, increase in the
number of nodes is observed if any one of the criteria
is removed.

Figure 5 further examines the difference of the discov-
ered TD network. In the TD network discovered using
all of the criteria (Figure 5(a)), all the expanded nodes
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Figure 3. Results of experiments. X-axis shows time steps ( × 105)

are independent of each other, thus the discovered net-
work is the best network for the 8-state ring world that
can be discovered by our algorithm. This shows clear
contrast to TD network discovered solely by depen-
dency detection network, shown in Figure 5(b). Al-
though this network has correctly learned to predict
the 8-state ring world, some spurious node expansions
are observed. This indicates that the dependency de-
tection network is not powerful enough to choose the
right node to be expanded, and shows importance of
other criteria in our algorithm.

5. Discussion

The algorithm we have presented has some limitations.
It seems unavoidable because the algorithm has to
make inference using an incomplete question network.
In this section, we discuss some of the limitations that
arose in our approach.

5.1. Deep Dependency

In our algorithm, Criterion 3 (requires more explana-
tion) are devoted for distinguishing apparently unpre-
dictable events, caused by an incomplete question net-
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Figure 5. An example of discovered TD network for 8-state
ring world. The number in a node denotes the time the
node is expanded (×103).

work, from inherently random events. However, we
can imagine cases in which this criterion does not work
well, especially when the observation depends only on
the actions several steps before.

As an example, suppose an n-step delay world: A =

O = {0, 1}, and the agent observes its own action with
n-step delay. If the agent chooses actions randomly,
then the observation is also random string. Moreover,
unless the depth of the question network reaches n, the
agent can predict nothing. For n ≥ 2, the nodes in a
question network are likely to fail satisfying Criterion
3, and as a result, the algorithm fails to achieve the
correct test set for the environment.

A partial solution may be to introduce active learning
(planned exploration). In the example above, if the
agent could adopt some biased choice of actions for a
while, one would observe informative result that might
satisfy Criterion 3.

5.2. Selection of Expanding Node

The algorithm always expands the node that requires
more explanation, but it is possible that the node is not
the best one to be expanded. The algorithm depends
on an assumption that, if there is a better node to be
expanded, the node also satisfies the expansion criteria
sooner or later. We need to work for some theoretical
support for the assumption. However, if the assump-
tion is correct, the algorithm may perform some spuri-
ous expansion due to its distributed-processing nature.
A complete solution would require either centralized
processing or node shrinking.

5.3. Parameter Selection

The algorithm depends on a number of parameters.
Our selection of parameters seems working for the
tested problems, but not guaranteed for others. In
particular, the algorithm is sensitive to θ2, a threshold
value used in Criterion 3 for distinguishing apparently
unpredictable events from inherently random events.
Due to the limitation of our approach, it seems impos-
sible to provide a universal parameter set for producing
the minimum network for any environment; a better
solution would be to use lower thresholds to overgen-
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erate the question network and shrink it afterwards.

5.4. Handling Wider Observation

In this paper, we considered only the simple case with
one observation bit (l = 1). When l ≥ 2, it would
be necessary to consider sets of nodes that share a
common action conditions and associated to different
observations, and to expand all nodes in a set simul-
taneously. In addition, it is necessary to extend our
criteria have to handle the node sets.

6. Related Work

McCracken and Bowling (2006) proposes the on-line
discovery and learning algorithm for predictive state
representation. However, their algorithm has to keep
substantially long (in their example, 1000 steps) his-
tory in memory and calculate linear independency, and
requires quite complex efforts to normalize the proba-
bility in their representation. On the other hand, our
algorithm requires only a small amount of memory (up
to the size required for eligibility traces) and, thanks to
the sigmoidal function used in the TD network, no ef-
fort is required to normalize the result. We argue that
these differences cause larger difference in calculation
costs in a complex environment.

7. Summary

We presented an algorithm for on-line, incremental dis-
covery of temporal-difference (TD) networks. The key
contribution is the establishment of criteria to expand
a leaf node in TD network: the algorithm expands a
node when the node is well-known, independent, and
has a prediction error that requires further explana-
tion. Since none of these criteria requires centralized
calculation operations, they can be computed in a par-
allel and distributed manner. Through computer ex-
periments on n-state ring worlds, we demonstrated the
empirical effectiveness of our algorithm.

Among the future work the most important is to evalu-
ate our algorithm on various environments for compar-
ison with other discovery algorithms. Agent planning
with TD network should be also studied to combine
with our algorithm for developing an agent that ex-
plores environments (Bowling et al., 2006).
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Abstract

Positive definite kernels on probability mea-
sures have been recently applied in struc-
tured data classification problems. Some
of these kernels are related to classic infor-
mation theoretic quantities, such as mutual
information and the Jensen-Shannon diver-
gence. Meanwhile, driven by recent advances
in Tsallis statistics, nonextensive generaliza-
tions of Shannon’s information theory have
been proposed. This paper bridges these
two trends. We introduce the Jensen-Tsallis
q-difference, a generalization of the Jensen-
Shannon divergence. We then define a new
family of nonextensive mutual information
kernels, which allow weights to be assigned
to their arguments, and which includes the
Boolean, Jensen-Shannon, and linear kernels
as particular cases. We illustrate the perfor-
mance of these kernels on text categorization
tasks.

1. Introduction

There has been recent interest in kernels on probabil-
ity distributions, to tackle several classification prob-
lems (Moreno et al., 2003; Jebara et al., 2004; Hein
& Bousquet, 2005; Lafferty & Lebanon, 2005; Cuturi
et al., 2005). By mapping data points to fitted dis-
tributions in a parametric family where a kernel is de-
fined, a kernel is automatically induced on the original
input space. In text categorization, this appears as
an alternative to the Euclidean geometry inherent to
the usual bag-of-words vector representations. In fact,

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

approaches that map data to a statistical manifold,
where well-motivated non-Euclidean metrics may be
defined (Lafferty & Lebanon, 2005), outperform SVM
classifiers with linear kernels (Joachims, 1997). Some
of these kernels have a natural information theoretic
interpretation, creating a bridge between kernel meth-
ods and information theory (Cuturi et al., 2005; Hein
& Bousquet, 2005).

We reinforce that bridge by introducing a new class of
kernels rooted in nonextensive (NE) information the-
ory. The Shannon and Rényi entropies (Rényi, 1961)
share the extensivity property: the joint entropy of a
pair of independent random variables equals the sum
of the individual entropies. Abandoning this property
yields the so-called NE entropies (Havrda & Charvát,
1967; Tsallis, 1988), which have raised great interest
among physicists in modeling certain phenomena (e.g.,
long-range interactions and multifractals) and as gen-
eralizations of Boltzmann-Gibbs statistical mechanics
(Abe, 2006). NE entropies have also been recently
used in signal/image processing (Li et al., 2006) and
other areas (Gell-Mann & Tsallis, 2004).

The main contributions of this paper are:

• Based on the new concept of q-convexity and
a related q-Jensen inequality, we introduce the
Jensen-Tsallis q-difference, a NE generalization
of the Jensen-Shannon (JS) divergence.

• We propose a broad family of positive definite
(pd) kernels, which are interpretable as NE mu-
tual information (MI) kernels. This family ranges
from the Boolean to the linear kernels, and also
includes the JS kernel (Hein & Bousquet, 2005).

• We extend results of Hein and Bousquet (2005) by
proving positive definiteness of kernels based on
the unbalanced JS divergence. As a side note, we
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show that the parametrix approximation of the
multinomial diffusion kernel introduced by Laf-
ferty and Lebanon (2005) is not pd in general.

Our main purpose is to present new theoretical insights
about kernels on measures by unifying some well-
known instances into a common parametrized family.
This family allows reinterpreting these kernels in light
of NE information theory, a connection that to our
knowledge had not been presented before. The fact
that some members of this family are novel pd kernels
leads us to include a set of text categorization experi-
ments that illustrates their effectiveness.

The paper is organized as follows. Sec. 2 reviews NE
entropies, while Jensen differences and divergences are
discussed in Sec. 3. In Sec. 4, the concepts of q-
differences and q-convexity are introduced and used to
define the Jensen-Tsallis q-difference. Sec. 5 presents
the new family of entropic kernels. Sec. 6 reports ex-
periments on text categorization and Sec. 7 presents
concluding remarks and future research directions.

Although, for simplicity, we focus on discrete distribu-
tions on finite sets, most results are valid in arbitrary
measured spaces, as shown by Martins et al. (2008).

2. Nonextensive Information Theory

Let X denote a random variable (rv) taking values in a
finite set X = {x1, . . . , xn} according to a probability
distribution PX . An entropy function is said to be
extensive if it is additive over independent variables.
For example, the Shannon entropy (Cover & Thomas,
1991), H(X) , −E[lnPX ], is extensive: ifX and Y are
independent, then H(X,Y ) = H(X)+H(Y ). Another
example is the family of Rényi entropies (Rényi, 1961),
parameterized by q ≥ 0,

Rq(X) ,
1

1− q
ln

n∑
i=1

PX(xi)q, (1)

which includes Shannon’s entropy as a special case
when q → 1.

In classic information theory, extensivity is considered
desirable, and is enforced axiomatically (Khinchin,
1957), to express the idea borrowed from thermo-
dynamics that “independent systems add their en-
tropies.” In contrast, the Tsallis entropies abandon
the extensivity requirement (Tsallis, 1988). These NE
entropies, denoted Sq(X), are defined as follows:

Sq(X) , −Eq(lnq PX) =
1

q − 1

(
1−

n∑
i=1

PX(xi)q

)
,

(2)

where Eq(f) ,
∑n

i=1 P (xi)qf(xi) is the unnormalized
q-expectation, and lnq(y) , (y1−q−1)/(1−q) is the so-
called q-logarithm. It is noteworthy that when q → 1,
we get Eq→ E, lnq→ ln, and Sq→ H; i.e., the family
of Tsallis entropies also includes Shannon’s entropy.
For the Tsallis family, when X and Y are independent,
extensivity no longer holds; instead, we have

Sq(X,Y ) = Sq(X)+Sq(Y )− (q−1)Sq(X)Sq(Y ), (3)

where the parameter q ≥ 0 is called entropic index.

While statistical physics has been the main applica-
tion of Tsallis entropies, some attempts have been
made to produce NE generalizations of classic infor-
mation theory results (Furuichi, 2006). As for the
Shannon entropy, the Tsallis joint and conditional en-
tropies are defined as Sq(X,Y ) , −Eq[lnq PXY ] and
Sq(X|Y ) , −Eq[lnq PX|Y ], respectively, and follow a
chain rule Sq(X,Y ) = Sq(X) + Sq(Y |X). Similarly,
Furuichi (2006) defines the Tsallis MI as

Iq(X;Y ) , Sq(X)− Sq(X|Y ) = Iq(Y ;X), (4)

generalizing (for q > 1) Shannon’s MI. This NE version
of the MI underlies one of the central contributions of
this paper: the Jensen-Tsallis q-difference (Sec. 4).

For reasons that will become clear in Sec. 5, it is conve-
nient to extend the domain of Tsallis entropies to un-
normalized measures, i.e., in Rn

+ , {µ ∈ Rn | ∀i µi ≥
0}, but not necessarily in the probability simplex
Pn−1 , {p ∈ Rn |

∑n
i=1 pi = 1, ∀i pi ≥ 0}. The

Tsallis entropy of a measure µ in Rn
+ is1

Sq(µ) , −
n∑

i=1

µq
i lnq µi =

n∑
i=1

ϕq(µi), (5)

where ϕq : R+ → R is given by

ϕq(y) = −yq lnq y =
{
−y ln y, if q = 1,
(y − yq)/(q − 1), if q 6= 1.

(6)
This extension does not add expressive power, since
function (5) is completely determined by its values on
Pn−1, as shown by the following proposition (the proof
is straightforward).

Proposition 1 The following denormalization for-
mula holds for any c ≥ 0 and µ ∈ Rn

+:

Sq(cµ) = cqSq(µ) + ϕq(c)‖µ‖1, (7)

where ‖µ‖1 ,
∑n

i=1 µi is the `1-norm of µ.

1In the following, we represent normalized and unnor-
malized measures as vectors in Rn, and we use those as
arguments of entropy functions, e.g., we write H(π) to de-
note H(X) where X ∼ P (X), with πi = P (xi).
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This fact will be used in a constructive way in Sec. 5
to devise a family of pd NE entropic kernels.

3. Jensen Differences and Divergences

Jensen’s inequality is at the heart of many important
results in information theory. Let the rv Z take val-
ues on a finite set Z. Jensen’s inequality states that
if f is a convex function defined on the convex hull of
Z, then f(E[Z]) ≤ E[f(Z)]. The nonnegative quan-
tity E[f(Z)] − f(E[Z]) is known as Jensen difference
and has been studied by Burbea and Rao (1982) when
−f is some form of generalized entropy. Here, we are
interested in the case where Z ∈ {µ1, . . . ,µm} is a
random measure, where each µj ∈ Rn

+, with probabil-
ities π = (π1, . . . , πm) ∈ Pm−1. The Jensen difference
induced by a (concave) generalized entropy Ψ is

Jπ
Ψ(µ1, . . . ,µm) , Ψ

 m∑
j=1

πj µj

−
m∑

j=1

πjΨ(µj)

= Ψ (E[Z])− E[Ψ(Z)], (8)

Below, we show examples of Jensen differences that
have been applied in machine learning. In Sec. 4, we
provide a NE generalization of the Jensen difference.

Jensen-Shannon (JS) Divergence Consider a
classification problem with m classes, Y ∈ Y =
{1, . . . ,m}, with a priori probabilities π =
(π1, . . . , πm) ∈ Pm−1. Let pj = (pj1, . . . , pjn) ∈ Pn

for j = 1, . . . ,m, where pji , P (X = xi|Y = j), be
the corresponding class-conditional distributions.

Letting Ψ in (8) beH, the Shannon entropy, the result-
ing Jensen difference Jπ

H(p1, . . . ,pm) is known as the
JS divergence of p1, . . . ,pm, with weights π1, . . . , πm

(Burbea & Rao, 1982; Lin, 1991). In this instance of
the Jensen difference,

Jπ
H(p1, . . . ,pm) = I(X;Y ), (9)

where I(X;Y ) = H(X)−H(X|Y ) is the MI between
X and Y (Banerjee et al., 2005).

For m = 2 and π = ( 1
2 ,

1
2 ), we denote the ensuing

J
( 1
2 , 1

2 )

H (p1,p2) as JS(p1,p2):

JS(p1,p2) = H((p1 + p2)/2)− (H(p1) +H(p2))/2.

It can be shown that that
√
JS satisfies the triangle in-

equality and is a Hilbertian metric2 (Endres & Schin-
delin, 2003; Topsøe, 2000), which has motivated its use
in kernel-based machine learning.

2A metric d : X × X → R is Hilbertian if there is some
Hilbert space H and an isometry f : X → H such that
d2(x, y) = 〈f(x)−f(y), f(x)−f(y)〉H holds for any x, y ∈ X
(Hein & Bousquet, 2005).

Jensen-Rényi (JR) Divergence Let Ψ = Rq,
which is concave for q ∈ [0, 1); then, (8) becomes

Jπ
Rq

(p1, . . . ,pm) = Rq (E[p])− E[Rq(p)]. (10)

We call Jπ
Rq

the JR divergence. When m = 2 and
π = (1/2, 1/2), we write Jπ

Rq
(p) = JRq(p1,p2), where

JRq(p1,p2) = Rq

(
p1 + p2

2

)
− Rq(p1) +Rq(p2)

2
.

The JR divergence has been used in signal processing
applications (Karakos et al., 2007). We show in Sect.
5.3 that

√
JRq is also an Hilbertian metric.

Jensen-Tsallis (JT) Divergence Divergences of
the form (8), with Ψ = Sq, are known as JT diver-
gences (Burbea & Rao, 1982) and were recently used
in image processing (Hamza, 2006). Unlike the JS di-
vergence, the JT divergence lacks a MI interpretation;
in Sec. 4, we introduce an alternative to the JT diver-
gence, which is interpretable as a NE MI in the sense
of Furuichi (2006).

4. Jensen q-Differences

We now introduce Jensen q-differences, a generaliza-
tion of Jensen differences. As described shortly, a spe-
cial case of the Jensen q-difference is the Jensen-Tsallis
q-difference, which is an NE generalization of the JS
divergence, and provides the building block for the NE
entropic kernels to be introduced in Sec. 5. We be-
gin by introducing the concept of “q-convexity”, which
satisfies a Jensen-type inequality.

Definition 1 Let q ∈ R and X a convex set. A func-
tion f : X → R is q-convex if, for any x, y ∈ X and
λ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λqf(x) + (1− λ)qf(y). (11)

f is q-concave if −f is q-convex.

Naturally, 1-convexity is the usual convexity. The next
proposition states the q-Jensen inequality and is easily
proved by induction, like the standard Jensen inequal-
ity (Cover & Thomas, 1991). It also states that the
property of q-convexity gets stronger as q increases.

Proposition 2 If f : X → R is q-convex and f ≥ 0,
then, for any n ∈ N, x1, . . . , xn ∈ X and π ∈ Pn−1:

f

(
n∑

i=1

πixi

)
≤

n∑
i=1

πq
i f(xi). (12)

Moreover, if q ≥ r ≥ 0, we have:

f is q-convex ⇒ f is r-convex (13)
f is r-concave ⇒ f is q-concave. (14)
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Based on the q-Jensen inequality, we can now consider
Jensen q-differences of the form Eq[f(Z)] − f (E[Z]),
which are nonnegative if f is q-convex. As in Sec. 3,
we focus on the scenario where Z is a random measure
and −f = Ψ is an entropy function, yielding

Tπ
q,Ψ(µ1, . . . ,µm) , Ψ

(
m∑

t=1

πt µt

)
−

m∑
t=1

πq
t Ψ(µt)

= Ψ (E[Z])− Eq[Ψ(Z)]. (15)

The Jensen q-difference is a deformation of the Jensen
1-difference (8), in which the second expectation is re-
placed by a q-expectation. We are now ready to intro-
duce the class of Jensen-Tsallis q-differences.

Jensen-Tsallis q-Differences Consider again the
classification problem used in the description of the
JS divergence, but replacing the Jensen difference with
the Jensen q-difference and the Shannon entropy with
the Tsallis q-entropy, i.e., letting Ψ = Sq in (15). We
obtain (writing Tπ

q,Sq
simply as Tπ

q ):

Tπ
q (p1, . . . ,pm) = Sq(X)− Sq(X|Y ) = Iq(X;Y ), (16)

where Sq(X|Y ) is the Tsallis conditional q-entropy,
and Iq(X;Y ) is the Tsallis MI (cf. (4)). Note that
(16) is an NE analogue of (9), i.e. the Jensen-Tsallis
q-differences are NE mutual informations.

We call Tπ
q (p1, . . . ,pm) the Jensen-Tsallis q-difference

of p1, . . . ,pm with weights π1, . . . , πm.

When m = 2 and π=(1/2, 1/2), define Tq ,T (1/2,1/2)
q ,

Tq(p1,p2) = Sq

(
p1 + p2

2

)
− Sq(p1) + Sq(p2)

2q
. (17)

Three special cases are obtained for q ∈ {0, 1, 2}:

S0(p) = −1 + ‖p‖0; T0(p1,p2) = 1− ‖p1 � p2‖0

S1(p) = H(p); T1(p1,p2) = JS(p1,p2)

S2(p) = 1− 〈p,p〉; T2(p1,p2) =
1
2
− 1

2
〈p1,p2〉

where ‖x‖0 is the number of nonzeros in x, � denotes
the Hadamard-Schur (elementwise) product, and 〈·, ·〉
is the inner product.

The JT q-difference is an NE generalization of the
JS divergence, and some of the latter’s properties are
lost in general. Since Tsallis entropies are 1-concave,
Prop. 2 guarantees q-concaveness only for q ≥ 1.
Therefore, nonnegativity is only guaranteed for JT q-
differences when q ≥ 1; for this reason some authors
only consider this range of values (Furuichi, 2006).
Moreover, unless q = 1 (the JS divergence), it is not

generally true that Tπ
q (p, . . . ,p) = 0 or even that

Tπ
q (p, . . . ,p,p′) ≥ Tπ

q (p, . . . ,p,p). For example,

argminp1∈Pn−1 Tq(p1,p2) (18)

can be different from p2, unless q = 1. In general, the
minimizer is closer to either the uniform distribution
(if q ∈ [0, 1)) or a degenerate distribution3 (for q ∈
(1, 2]). For these reasons, the term “divergence” is
misleading and we use the term “difference.” Other
properties of JT q-differences (convexity, lower/upper
bounds) are studied by Martins et al. (2008).

5. Nonextensive Entropic Kernels

Using the denormalization formula (7), we now intro-
duce kernels based on the JS divergence and the JT q-
difference, which allow weighting their arguments. In
this section, m = 2 (kernels involve pairs of measures).

5.1. Background on Kernels

We begin with some basic results on kernels (Schölkopf
& Smola, 2002). Below, X denotes a nonempty set; R+

denote the nonnegative reals, and R++ , R+ \ {0}.

Definition 2 Let ϕ : X × X → R be a symmetric
function, i.e., ϕ(y, x) = ϕ(x, y), for all x, y ∈ X . ϕ is
called a pd kernel if and only if

n∑
i=1

n∑
j=1

ci cj ϕ(xi, xj) ≥ 0, (19)

for any integer n, xi, . . . , xn ∈ X and ci, . . . , cn ∈ R.
A symmetric function ψ : X × X → R is called a
negative definite (nd) kernel if and only if

n∑
i=1

n∑
j=1

ci cj ψ(xi, xj) ≤ 0, (20)

for any integer n, xi, . . . , xn ∈ X and ci, . . . , cn ∈ R,
satisfying the additional constraint

∑
i ci = 0. In this

case, −ψ is called conditionally pd; obviously, positive
definiteness implies conditional positive definiteness.

Both the sets of pd and nd kernels are closed un-
der pointwise sums/integrations, the former being also
closed under pointwise products; moreover, both sets
are closed under pointwise convergence. While pd ker-
nels correspond to inner products via embedding in a
Hilbert space, nd kernels that vanish on the diagonal
and are positive anywhere else, correspond to squared
Hilbertian distances. These facts, and the following
ones, are shown by Berg et al. (1984).

3Notice that T2(p1,p2) = 1
2
− 1

2
〈p1,p2〉; in this case,

(18) becomes a linear program, and the solution is p∗1 = ej ,
where j = argmaxi p2i.
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Proposition 3 Let ψ : X × X → R be a symmetric
function, and x0 ∈ X . Let ϕ : X × X → R be

ϕ(x, y) = ψ(x, x0) + ψ(y, x0)− ψ(x, y)− ψ(x0, x0).

Then, ϕ is pd if and only if ψ is nd.

Proposition 4 The function ψ : X × X → R is a nd
kernel if and only if exp(−tψ) is pd for all t > 0.

Proposition 5 The function ψ : X × X → R+ is a
nd kernel if and only if (t+ ψ)−1 is pd for all t > 0.

Proposition 6 If ψ is nd and ψ(x, x) ≥ 0, for all
x ∈ X , then so are ψα, for α ∈ [0, 1], and ln(1 + ψ).

Proposition 7 If f :X →R satisfies f ≥ 0, then, for
α ∈ [1, 2], the function −(f(x)+f(y))α is a nd kernel.

5.2. Jensen-Shannon and Tsallis Kernels

The basic result that allows deriving pd kernels based
on the JS divergence and, more generally, on the JT
q-difference, is the fact that the denormalized Tsal-
lis q-entropies are nd functions4 on Rn

+, for q ∈ [0, 2].
Of course, this includes the denormalized Shannon en-
tropy as a particular case, corresponding to q = 1.
Partial proofs are given by Berg et al. (1984), Topsøe
(2000), and Cuturi et al. (2005); we present here a
complete proof.

Proposition 8 For q ∈ [0, 2], the denormalized Tsal-
lis q-entropy Sq is an nd function on Rn

+.
Proof: Since nd kernels are closed under pointwise
summation, it suffices to prove that ϕq (see (6)) is nd
on R+. For q 6= 1, ϕq(y) = (q − 1)−1(y − yq). If
q ∈ [0, 1), ϕq equals −ι+ ιq times a positive constant,
where ι is the identity (ι(y) = y) on R+. Since the
set of nd functions is closed under sums, we only need
to show that both −ι and ιq are nd, which is easily
seen from the definition; besides, since ι is nd and
nonnegative, Prop. 6 implies that ιq is also nd. For
q ∈ (1, 2], ϕq equals ι − ιq times a positive constant.
It remains to show that −ιq is nd for q ∈ (1, 2]; since
k(x, y) = −(x+y)q is nd (Prop. 7), so is ιq. For q = 1,
since the set of nd functions is closed under limits,

ϕ1(x) = ϕH(x) = −x lnx = lim
q→1

−xq lnq x = lim
q→1

ϕq(x),

it follows that ϕ1 is nd.

The following proposition, proved by Berg et al.
(1984), will also be used below.

4A function f : X → R is called pd (resp. nd) if k :
X × X → R, defined as k(x, y) = f(x + y), is a pd (resp.
nd) kernel (Berg et al., 1984).

Proposition 9 The function ζq : R++ → R, defined
as ζq(y) = y−q is pd, for q ∈ [0, 1].

We now present the main contribution of this section,
the family of weighted JT kernels, generalizing the JS
divergence kernels in two ways: (i) they apply to un-
normalized measures (equivalently, they allow weight-
ing the arguments differently); (ii) they extend the MI
nature of the JS divergence kernel to the NE case.

Definition 3 (weighted Jensen-Tsallis kernels)
The kernel k̃q : (Rn

+)2 → R is defined as

k̃q(µ1,µ2) = k̃q(ω1p1, ω2p2)

,
[
Sq(π)− Tπ

q (p1,p2)
]
(ω1 + ω2)q,

where p1 = µ1/ω1 and p2 = µ2/ω2 are the normalized
counterparts of µ1 and µ2, with corresponding weights
ω1, ω2 ∈ R+, and π = (ω1/(ω1 + ω2), ω2/(ω1 + ω2)).

The kernel kq : (Rn
++)2 → R is defined as

kq(µ1,µ2) = kq(ω1p1, ω2p2) , Sq(π)− Tπ
q (p1,p2).

Recalling (16), notice Sq(Y ) − Iq(X;Y ) = Sq(Y |X)
can be interpreted as the Tsallis posterior conditional
entropy. Hence, kq can be seen (in Bayesian classi-
fication terms) as a NE expected measure of uncer-
tainty in correctly identifying the class given the prior
π = (π1, π2) and a random sample from the mixture
distribution π1p1 + π2p2. The more similar the two
distributions are, the greater this uncertainty.

Proposition 10 The kernel k̃q is pd, for q ∈ [0, 2].
The kernel kq is pd, for q ∈ [0, 1].
Proof: With µ1 = ω1p1 and µ2 = ω2p2 and using the
denormalization formula (7), we obtain k̃q(µ1,µ2) =
−Sq(µ1 + µ2) +Sq(µ1) +Sq(µ2). Now invoke Prop. 3
with ψ = Sq (which is nd by Prop. 8), x = µ1, y = µ2,
and x0 = 0 (the null measure). Observe now that
kq(µ1,µ2) = k̃q(µ1,µ2)(ω1+ω2)−q. Since the product
of two pd kernels is a pd kernel and (Prop. 9) (ω1 +
ω2)−q is a pd kernel, for q ∈ [0, 1], kq is pd.

As we can see, the weighted JT kernels have two in-
herent properties: they are parameterized by the en-
tropic index q and they allow their arguments to be
unbalanced, i.e., to have different weights ωi. We now
mention some instances of kernels where each of these
degrees of freedom is suppressed.

Weighted JS Kernel Setting q = 1, we obtain an
extensive subfamily that contains unbalanced versions
of the JS kernel (Hein & Bousquet, 2005). Namely, we
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get the pd kernels:

k̃1(µ1,µ2) = [H(π)−Jπ(p1,p2)] (ω1 + ω2),
k1(µ1,µ2) = H(π)− Jπ(p1,p2). (21)

Exponentiated Weighted JS Kernel Using
Prop. 4, we have that exponentiated weighted JS ker-
nel kEWJS :Rn

+→ R,

kEWJS (µ1,µ2) , exp[t k1(µ1,µ2)]
= exp(tH(π)) exp [−tJπ(p1,p2)](22)

is also pd for any t > 0. This generalizes the exponen-
tiated JS kernel kEJS (p1,p2) , exp [−t JS (p1,p2)]
(Cuturi et al., 2005).

We now keep q ∈ [0, 2] but consider the weighted
JT kernel family restricted to normalized measures,
kq|(Pn−1)2 . This corresponds to setting uniform
weights (ω1 = ω2 = 1/2); note that in this case k̃q

and kq collapse into the same kernel,

k̃q(p1,p2) = kq(p1,p2) = lnq(2)− Tq(p1,p2). (23)

Prop. 10 tells us that these kernels are pd for q ∈ [0, 2].
Remarkably, we recover three well-known particular
cases for q ∈ {0, 1, 2}.

Jensen-Shannon kernel (JSK) For q = 1, we ob-
tain the JS kernel, kJS : (Pn−1)2 → R,

kJS (p1,p2) = ln(2)− JS(p1,p2), (24)

introduced and shown pd by Hein and Bousquet
(2005).

Boolean kernel For q = 0, we obtain the kernel
k0 = kBool : (Pn−1)2 → R,

kBool(p1,p2) = ‖p1 � p2‖0. (25)

Linear kernel For q = 2, we obtain the kernel k2 =
klin : (Pn−1)2 → R,

klin(p1,p2) =
1
2
〈p1,p2〉. (26)

Summarizing, Boolean, JS, and linear kernels, are
members of the much wider family of Tsallis kernels,
continuously parameterized by q ∈ [0, 2]. Further-
more, Tsallis kernels are a particular subfamily of the
even wider set of weighted Tsallis kernels.

A key feature of our generalization is that the kernels
are defined on unnormalized measures. This is rele-
vant for empirical measures (e.g., term counts, image

histograms); instead of the usual normalization (Hein
& Bousquet, 2005), these empirical measures may be
left unnormalized, allowing objects of different sizes to
have different weights. Another possibility is the ex-
plicit inclusion of weights (ωi): given an input set of
normalized measures, each can be multiplied by an ar-
bitrary (positive) weight before computing the kernel.

5.3. Other Kernels Based on Jensen
Differences

Other pd kernels may be devised inspired by Jensen-
Rényi and Jensen-Tsallis divergences (Section 3). For
example, it is a direct consequence of Prop. 6 that, for
q ∈ [0, 1], (p1,p2) 7→ Rq

(
p1+p2

2

)
, and therefore JRq,

are nd kernels on (Pn−1)2. We can then make use of
Prop. 4 to derive pd kernels via exponentiation; for
example, the exponentiated Jensen-Rényi kernel (pd
for q ∈ [0, 1] and t ≥ 0):

kEJR(p1,p2) , exp(−t JRq
(p1,p2))

=

( ∑
i

(
p1i+p2i

2

)q√∑
i p

q
1i

∑
i p

q
2i

)− t
1−q

. (27)

However, these kernels are no longer interpretable as
MIs, and arbitrary weights are not allowed. Martins
et al. (2008) also show that a related family of pd ker-
nels for probability measures introduced by Hein and
Bousquet (2005) can be written as differences between
JT-type divergences.

5.4. The Heat Kernel Approximation

The diffusion kernel for statistical manifolds, recently
proposed by Lafferty and Lebanon (2005), is grounded
in information geometry. It models the diffusion of “in-
formation” over the manifold through the heat equa-
tion. Since in the case of the multinomial manifold
the diffusion kernel has no closed form, the authors
adopt the so-called “first-order parametrix expansion,”
which resembles the Gaussian kernel replacing the
Euclidean distance by the geodesic distance induced
by the Fisher information metric. The resulting heat
kernel approximation is

k heat(p1,p2) = (4πτ)−
n
2 exp

(
− 1

4t
d2

g(p1,p2)
)
,

(28)
where τ > 0 and dg(p1,p2) = 2 arccos

(∑
i

√
p1ip2i

)
.

Whether k heat is pd has been an open problem (Hein
et al., 2004; Zhang et al., 2005).

Proposition 11 Let n ≥ 2. For sufficiently large τ ,
the kernel kheat is not pd.
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Proof: From Prop. 4, kheat is pd, for all τ > 0, if
and only if d2

g is nd. We provide a counterexample,
using the following four points in P2: p1 = (1, 0, 0),
p2 = (0, 1, 0), p3 = (0, 0, 1) and p4 = (1/2, 1/2, 0).
The squared distance matrix [Dij ] = [d2

g(pi,pj)] is

D =
π2

4
·


0 4 4 1
4 0 4 1
4 4 0 4
1 1 4 0

 . (29)

Taking c = (−4,−4, 1, 7) we have cTDc = 2π2 > 0,
showing that D is not nd. Although p1,p2,p3,p4 lie
on the boundary of P2, continuity of d2

g implies that it
is not nd. The case n > 2 follows easily, by appending
zeros to the four vectors above.

6. Experiments

We illustrate the performance of the proposed NE ker-
nels, in comparison with common kernels, for SVM
text classification. We performed experiments in two
standard datasets: Reuters-21578 and WebKB.5 Since
our objective was to evaluate the kernels, we consid-
ered a simple binary classification task that tries to
discriminate among the two largest categories of each
dataset; this led us to the earn-vs-acq classification
task for the first dataset, and stud-vs-fac (student vs.
faculty webpages) in the second dataset.

After the usual preprocessing steps of stemming and
stop-word removal, we mapped text documents into
probability distributions over words using the bag-
of-words model and maximum likelihood estimation
(which corresponds to normalizing term frequency us-
ing the `1-norm), which we denote by tf. We also
used the tf-idf measure, which penalizes terms that
occur in many documents. To weight the documents
for the Tsallis kernels, we tried four strategies: uni-
form weighting, word counts, square root of the word
counts, and one plus the logarithm of the word counts;
however, for both tasks, uniform weighting revealed
the best strategy, which may be due to the fact that
documents in both collections are usually short and do
not differ much in size.

As baselines, we used the linear kernel with `2 nor-
malization, commonly used for this task, and the
heat kernel approximation (28) (Lafferty & Lebanon,
2005), which is known to outperform the former, al-
beit not being guaranteed to be pd for an arbitrary
choice of τ (see 28), as shown above. This parame-

5Available at http://www.daviddlewis.com/
resources/testcollections and http://www.cs.
cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data,
respectively.

ter and the SVM C parameter were tuned with cross-
validation over the training set. The SVM-Light pack-
age (http://svmlight.joachims.org/) was used to
solve the SVM quadratic optimization problem.

Figs. 1–2 summarize the results. We report the per-
formance of the Tsallis kernels as a function of the
entropic index. For comparison, we also plot the per-
formance of an instance of a Tsallis kernel with q tuned
through cross-validation. For the first task, this kernel
and the two baselines exhibit similar performance for
both the tf and the tf-idf representations; differences
are not statiscally significant. In the second task, the
Tsallis kernel outperformed the `2-normalized linear
kernel for both representations, and the heat kernel
for tf-idf ; the differences are statistically significant
(using the unpaired t test at the 0.05 level). Regard-
ing the influence of the entropic index, we observe that
in both tasks, the optimum value of q is usually higher
for tf-idf than for tf.

The results on these two problems are representative
of the typical relative performance of the kernels con-
sidered: in almost all tested cases, both the heat ker-
nel and the Tsallis kernels (for a suitable value of q)
outperform the `2-normalized linear kernel; the Tsallis
kernels are competitive with the heat kernel.
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Figure 1. Results for earn-vs-acq using tf and tf-idf repre-
sentations. The error bars represent ±1 standard deviation
on 30 runs. Training (resp. testing) with 200 (resp. 250)
samples per class.

7. Conclusion

We have introduced a new family of positive defi-
nite kernels between measures, which contains some
well-known kernels as particular cases. These kernels
are defined on unnormalized measures, which makes
them suitable for use on empirical measures (e.g., word
counts or pixel intensity histograms), allowing objects
of different sizes to be weighted differently. The family
is parameterized by the entropic index, a key concept
in Tsallis statistics, and includes as extreme cases the
Boolean and the linear kernels. The new kernels, and
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Figure 2. Results for stud-vs-fac.

the proofs of positive definiteness, are supported by
the other contributions of this paper: the new concept
of q-convexity, the underlying Jensen q-inequality, and
the concept of Jensen-Tsallis q-difference, a nonexten-
sive generalization of the Jensen-Shannon divergence.
Experimentally, kernels in this family outperformed
the linear kernel in the task of text classification and
achieved similar results to the first-order approxima-
tion of the multinomial diffusion kernel. They have the
advantage, however, of being pd, which fails to happen
with the latter kernel, as also shown in this paper.

Future research will concern applying Jensen-Tsallis q-
differences to other learning problems, like clustering,
possibly exploiting the fact that they accept more than
two arguments.
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Abstract

We present an algorithm, HI-MAT (Hierar-
chy Induction via Models And Trajectories),
that discovers MAXQ task hierarchies by ap-
plying dynamic Bayesian network models to
a successful trajectory from a source rein-
forcement learning task. HI-MAT discovers
subtasks by analyzing the causal and tem-
poral relationships among the actions in the
trajectory. Under appropriate assumptions,
HI-MAT induces hierarchies that are consis-
tent with the observed trajectory and have
compact value-function tables employing safe
state abstractions. We demonstrate empir-
ically that HI-MAT constructs compact hi-
erarchies that are comparable to manually-
engineered hierarchies and facilitate signifi-
cant speedup in learning when transferred to
a target task.

1. Introduction

Scaling up reinforcement learning (RL) to large do-
mains requires leveraging the structure in these do-
mains. Hierarchical reinforcement learning (HRL) pro-
vides mechanisms through which domain structure can
be exploited to constrain the value function and pol-
icy space of the learner, and hence speed up learning
(Sutton et al., 1999; Dietterich, 2000; Andre & Rus-
sell, 2002). In the MAXQ framework, a task hierarchy
is defined (along with relevant state variables) for rep-
resenting the value function of the overall task. This
allows for decomposed subtask-specific value functions
that are easier to learn than the global value function.

Automated discovery of such task hierarchies is com-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

pelling for at least two reasons. First, it avoids the sig-
nificant human effort in engineering the task-subtask
structural decomposition, along with the associated
state abstractions and subtask goals. Second, if the
same hierarchy is useful in multiple domains, it leads
to significant transfer of learned structural knowledge
from one domain to the other. The cost of learning can
be amortized over several domains. Several researchers
have focused on the problem of automatically induc-
ing temporally extended actions and task hierarchies
(Thrun & Schwartz, 1995; McGovern & Barto, 2001;
Menache et al., 2001; Pickett & Barto, 2002; Hengst,
2002; Şimşek & Barto, 2004; Jonsson & Barto, 2006).

In this paper, we focus on the asymmetric knowledge
transfer setting where we are given access to solved
source RL problems. The objective is to derive use-
ful biases from these solutions that could speed up
learning in target problems. We present and evalu-
ate our approach, HI-MAT, for learning MAXQ hier-
archies from a solved RL problem. HI-MAT applies
dynamic Bayesian network (DBN) models to a single
successful trajectory from the source problem to con-
struct a causally annotated trajectory (CAT). Guided
by the causal and temporal associations between ac-
tions in the CAT, HI-MAT recursively parses it and
defines MAXQ subtasks based on each discovered par-
tition of the CAT.

We analyze our approach both theoretically and em-
pirically. Our theoretical results show that, under
appropriate conditions, the task hierarchies induced
by HI-MAT are consistent with the observed trajec-
tory, and possess compact value-function tables that
are safe with respect to state abstraction. Empiri-
cally, we show that (1) using a successful trajectory
can result in more compact task decompositions than
when using only DBNs, (2) our induced hierarchies
are comparable to manually-engineered hierarchies on
target RL tasks, and MAXQ-learning converges signif-
icantly faster than flat Q-learning on those tasks, and
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(3) transferring hierarchical structure from a source
task can speed up learning in target RL tasks where
transferring value functions cannot.

2. Background and Related Work

We briefly review the MAXQ framework (Dietterich,
2000). This framework facilitates learning separate
value functions for subtasks which can be composed
to compute the value function for the overall semi-
Markov Decision Process (SMDP) with state space S
and action space A. The task hierarchy H is repre-
sented as a directed acyclic graph called the task graph,
and reflects the task-subtask relationships. Leaf nodes
are the primitive subtasks corresponding to A. Each
composite subtask Ti defines an SMDP with param-
eters 〈Xi, Si, Gi, Ci〉, where Xi is the set of relevant
state variables, Si ⊆ S is the set of admissible states,
Gi is the termination/goal predicate, and Ci is the set
of child tasks of Ti. T0 represents the root task. Ti

can be invoked in any state s ∈ Si, it terminates when
s′ ∈ Gi, and (s, a) is called an exit if Pr(s′|s, a) > 0.

The set Si is defined using a projection function that
maps a world state to an abstract state defined by
a subset of the state variables. A safe abstraction
function only merges world states that have identical
values. The local policy for a subtask Ti is a map-
ping πi : Si 7→ Ci. A hierarchical policy π for the
overall task is an assignment of a local policy to each
Ti. A hierarchically optimal policy for a given MAXQ
graph is a hierarchical policy that has the best pos-
sible expected total reward. A hierarchical policy is
recursively optimal if the local policy for each subtask
is optimal given that all its child tasks are in turn re-
cursively optimal.

HEXQ (Hengst, 2002) and VISA (Jonsson & Barto,
2006) are two existing approaches to learning task hi-
erarchies. These methods define subtasks based on the
changing values of state variables. HEXQ employs a
heuristic that orders state variables based on the fre-
quencies of change in their values to induce an exit-
option hierarchy. The most frequently-changing vari-
able is associated with the lowest-level subtask, and
the least frequently-changing variable with the root.
VISA uses DBNs to analyze the influence of state vari-
ables on one another. The variables are partitioned
such that there is an acyclic influence relationship
between the variables in different clusters (strongly-
connected components). Here, state variables that in-
fluence others are associated with lower-level subtasks.
VISA provides a more principled rationale for HEXQ’s
heuristic – a variable used to satisfy a precondition for
setting another variable through an action typically

changes more frequently than the other variable. A
key difference between VISA and HI-MAT is the use
of a successful trajectory in addition to the DBNs. In
Section 5.1, we provide empirical evidence that this
allows HI-MAT to learn hierarchies that are exponen-
tially more compact than those of VISA.

The algorithm developed by Marthi et al. (2007) takes
a search-based approach to generating hierarchies.
Flat Q-value functions are learned for the source do-
main, and are used to sample trajectories. A greedy
top-down search is conducted for the best-scoring hi-
erarchy that fits the trajectories. The set of relevant
state variables for each task is determined through sta-
tistical tests on the Q values of different states with
differing values of the variables. In contrast to this
approach, HI-MAT relies less on direct search through
the hierarchy space, and more on the causal analysis
of a trajectory based on DBN models.

3. Discovering MAXQ Hierarchies

In this work, we consider MDPs where the agent is
solving a known conjunctive goal. This is a subset
of the class of stochastic shortest-path MDPs. In such
MDPs, there is a goal state (or a set of goal states), and
the optimal policy for the agent is to reach such a state
as quickly as possible. We assume that we are given
factored DBN models for the source MDP where the
conditional probability distributions are represented
as trees (CPTs). Further, we are given a successful
trajectory that reaches the goal in the source MDP.
With this in hand, our objective is to automatically
induce a MAXQ hierarchy that can suitably constrain
the policy space when solving a related target prob-
lem, and therefore achieve faster convergence in the
target problem. This is achieved via recursive parti-
tioning of the given trajectory into subtasks using a
top-down parse guided by backward chaining from the
goal. We use the DBNs along with the trajectory to
define the termination predicate, the set of subtasks,
and the relevant abstraction for each MAXQ subtask.

We use the Taxi domain (Dietterich, 2000) to illustrate
our procedure. Here, a taxi has to transport a passen-
ger from a source location to a destination location
within a 5 × 5 grid-world. The pass.dest variable is
restricted to one of four special locations on the grid
denoted by R, G, B, Y; the pass.loc could be set to
R, G, B, Y or in-taxi; taxi.loc could be one of the 25
cells. The goal of pass.loc = pass.dest is achieved by
taking the passenger to its intended destination. Be-
sides the four navigation actions, a successful Pickup
changes pass.loc to in-taxi, and a successful Putdown
changes pass.loc from in-taxi to the value of pass.dest.
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pass.loc
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Figure 1. A sample CAT for the Taxi domain.

3.1. Definitions and Notation

We say that a variable v is relevant to an action a if
the reward and transition dynamics for a either check
or change v; it is irrelevant otherwise. The set of
trajectory-relevant (t-relevant) variables of a, a subset
of the relevant variables, are the variables that were
actually checked or changed when a was executed in
the trajectory. A causal edge a

v−→ b connects a to
another action b (b following a in the trajectory) iff v is
t-relevant to both a and b, and irrelevant to all actions
in between. A sink edge, a

v−→ End connects a with
a dummy End action iff v is relevant to a and irrele-
vant to all actions before the final goal state; this holds
analogously for a source edge Start

v−→ a. A causally
annotated trajectory (CAT) is the original trajectory
annotated with all the causal, source, and sink edges.
Moreover, the CAT is preprocessed to remove any cy-
cles present in the original trajectory (failed actions,
such as an unsuccessful Pickup, introduce cycles of unit
length). A sample CAT for Taxi is shown in Figure 1.

Given a
v−→ b, the phrase “literal on a causal edge”

refers to a formula of the form v = V where V is
the value taken by v in the state before b is exe-
cuted. We define DBN-closure(v) as the set of vari-
ables that influence v recursively as follows. From the
action DBNs, add all variables that appear in internal
nodes in the CPTs for the dynamics of v. Next, for
each added variable u, union DBN-closure(u) with
this set, repeating until no new variables are added.
Similarly, the set DBN-closure(reward) contains all
variables that influence the reward function of the
MDP. The set DBN-closure(fluent) is the union of
the DBN-closures of all variables in the fluent. For
example, DBN-closure(goal) is the set of all variables
that influence the goal fluent. The CAT ignores all
variables v /∈ DBN-closure(goal), namely, those vari-
ables that never affect the goal conjunction.

3.2. The HI-MAT Algorithm

Given a CAT and the MDP’s goal predicate (or re-
cursively, the current subtask’s goal predicate), the
main loop of the hierarchy induction procedure is il-
lustrated in Algorithm 1. The algorithm first checks if
two stopping criteria are satisfied (lines 2 & 4): ei-
ther the trajectory contains only a single primitive

action, or it consists of actions whose relevances are
identical. (In the latter case, any further partition-
ing would yield subtasks with the same abstraction as
the parent.) Otherwise, it first initializes the set of
“unsolved” goals to the set of literals in the goal con-
junction (line 9). It then selects any unsolved goal u,
and finds the corresponding subtask (line 12). Algo-
rithm 2 returns indices i, j marking the boundaries of
the subtask in the CAT. If this CAT segment is non-
trivial (neither just the initial state nor the whole tra-
jectory), it is stored (line 17), and the literals on causal
edges that enter it (from earlier in the trajectory) are
added to the unsolved goals (line 18). This ensures
that the algorithm parses the entire trajectory barring
redundant actions. If the trajectory segment is equal
to the entire trajectory, this implies that the trajectory
achieves only the literal u after the ultimate action. In
this case, the trajectory is split into two segments: one
segment contains the prefix of the ultimate action an

with the preconditions of an forming the goal literals
for this segment (line 14); the other segment contains
only the ultimate action an (line 15). CAT scanning
is repeated until all subgoal literals are accounted for.

The only way trajectory segments can overlap is if
they have identical boundaries, and the ultimate ac-
tion achieves the literals of all these segments. In this
case, the segments are merged (line 23). Merging re-
places the duplicative segments with one that is as-
signed a conjunction of the subgoal literals.

The HI-MAT algorithm partitions the CAT into
unique segments, each achieving a single literal or a
conjunction of literals due to merging. It is called re-
cursively on each element of the partition (line 27).
It can be proved that the set of subtasks output by
the algorithm is independent of the order in which the
literal u is picked (line 11).

3.2.1. Subtask Detection

Given a literal, a subtask is determined by finding the
set of temporally contiguous actions that are closed
with respect to the causal edges in the CAT such that
the final action achieves the literal. The idea is to
group all actions that contribute to achieving the spe-
cific literal being considered. This procedure is shown
in Algorithm 2.

650



Automatic Discovery and Transfer of MAXQ Hierarchies

Algorithm 1 HI-MAT
Input: CAT Ω, Goal predicate G.
Output: Task 〈X, S, G, C〉; X is the set of relevant vari-
ables, S is the set of non-terminal states, G is the goal
predicate, C is the set of child actions.

1: n← Number of actions in Ω excluding Start and End
2: if n = 1 then // Single action
3: return 〈RelVars(Ω),S, true, a1〉
4: else if CheckRelVars(Ω) then // Same relevance
5: S ← All states that reach G via Actions(Ω)
6: return 〈RelVars(Ω), S, G,Actions(Ω)〉
7: end if
8: Ψ← ∅ // Trajectory segments
9: U ← Literals(G)

10: while U 6= ∅ do
11: Pick u ∈ U
12: (i, j, u)← CAT-Scan(Ω, u)
13: if i = 1 ∧ j = n then
14: Ψ← Ψ∪ {(1, n− 1, v) : v ∈ Precondition(an)}
15: Ψ← Ψ ∪ {(n, n, ∅)}
16: else if j > 0 then // Last segment action 6= Start
17: Ψ← Ψ ∪ {(i, j, u)}
18: U ← U ∪ {v : ∃k < i ∃l ak

v−→ al ∈ Ω, i ≤ l ≤ j}
19: end if
20: U ← U − {u}
21: end while
22: while ∃(i, j, u1), (i, j, u2) ∈ Ψ do
23: Ψ← (Ψ− {(i, j, u1), (i, j, u2)}) ∪ {(i, j, u1 ∧ u2)}
24: end while
25: C ← ∅
26: for t ∈ Ψ do
27: 〈Xt, St, Gt, Ct〉 ← HI-MAT(Extract(Ω, ti, tj), tu)
28: C ← C ∪ {〈Xt, St, Gt, Ct〉}
29: end for
30: X ← RelVars(Ω) ∪Variables(G)
31: S ← All states that reach G via C
32: return 〈X, S, G, C〉

Algorithm 2 CAT-Scan
Input: CAT Ω, literal u.
Output: (i, j, u); i is the start index, j is the end index.

1: Set j such that aj
u−→ End ∈ Ω

2: i← j − 1

3: while i > 0 and ∀v ∃k ai
v−→ ak =⇒ k ≤ j do

4: i← i− 1
5: end while
6: return (i + 1, j, u)

As before, when considering causal edges in line 3, we
can ignore all causal edges that are labeled with vari-
ables not in the DBN-closure of any variable in the
current unsolved goal list. Because of the way we con-
struct the CAT, we can show that this procedure will
always stop before adding an action which has a rel-
evant variable that is not relevant to the last action
in the partition. Note that the temporal contiguity
of the actions we assign to a subtask is required by
the MAXQ-style execution of a policy. A hierarchical
MAXQ policy cannot interrupt an unterminated sub-

task, start executing a sibling subtask, and then return
to executing the interrupted subtask.

3.2.2. Termination Predicate

After finding the partition that constitutes a subtask,
we assign a set of child tasks and a termination pred-
icate to it. To assign the termination condition to a
subtask, we consider the relational test(s) tu in the
action and reward DBNs involving the variable u on
the causal edge leaving the subtask (line 27 of Algo-
rithm 1). When a subtask’s relational termination
condition involves other variables not already in the
abstraction, these variables are added to the state ab-
straction (line 30), effectively creating a parameterized
subtask. For example, consider the navigation subtask
that terminates when taxi.loc = pass.dest in the Taxi
domain. The abstraction for this subtask already in-
volves taxi.loc. However, pass.dest in the relational
test implies that pass.dest behaves like a parameter
for this subtask.

3.2.3. Action Generalization

To determine if the set of primitive actions available to
any subtask should be expanded, we follow a bottom-
up procedure (not shown in Algorithm 1). We start
with subtasks that have only primitive actions as chil-
dren. We create a merged DBN structure for such
a subtask T using the incorporated primitive actions.
The merged DBN represents possible variable effects
after any sequence of these primitive actions. Next,
for each primitive action that we did not see in this
trajectory, we consider the subgraph of its DBN that
only involves the variables relevant to T . If this is a
subgraph of the merged DBN of T , we add this ac-
tion to the set of actions available to T . The ratio-
nale here is that the added action has similar effects
to the actions we observed in the trajectory, and it
does not increase the set of relevant variables for T .
For example, if the navigation actions used on the ob-
served trajectory consisted only of North and East ac-
tions, this procedure would also add South and West
to the available actions for this subtask. When con-
sidering subtasks that have non-primitive children, we
only consider adding actions that have not been added
to any of the non-primitive children.

Given the termination predicate and the generalized
set of actions, the set of relevant variables for a sub-
task is the union of the set of relevant variables of the
merged DBN (described above) and the variables ap-
pearing in the termination predicate (line 30). Com-
puting the relevant variables is similar to explanation-
based reinforcement learning (Tadepalli & Dietterich,
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1997) except that here we care only about the set of
relevant variables and not their values. Moreover, the
relevant variables are computed over a set rather than
a sequence of actions.

4. Theoretical Analysis

In this section, we establish certain theoretical prop-
erties of the hierarchies induced by the HI-MAT al-
gorithm. We consider a factored SMDP state-space
S = Dx1 × . . . × Dxk

, where each Dxi
is the domain

of variable xi. We assume that our DBN models have
the following property.

Definition 1 A DBN model is maximally sparse if for
any y ∈ Y where Y is the set of parents of some node x
(which represents either a state variable or the reward
node), and Y ′ = Y − {y},

∃y1, y2 ∈ Dy Pr(x|Y ′, y = y1) 6= Pr(x|Y ′, y = y2).

Maximal sparseness implies that the parents of a vari-
able have non-trivial influences on it; no parent can be
removed without affecting the next-state distribution.

A task hierarchy H = 〈V,E〉, is a directed acyclic
graph, where V is a set of task nodes, and E rep-
resents the task-subtask edges of the graph. Each task
node Ti ∈ V is defined as in Section 2.

A trajectory-task pair 〈Ω, Ti〉, where Ω =
〈s1, a1, . . . , sn, an, sn+1〉 and Ti = 〈Xi, Si, Gi, Ci〉,
is consistent with H if Ti ∈ V , and {s1, . . . , sn} ⊆ Si.
If Ti is a primitive subtask then n = 1, and Ci = a1.
If Ti is not primitive then {s1, . . . , sn} ∩ Gi = ∅,
sn+1 ∈ Gi, and there exist trajectory-task pairs
〈Ωj , Tj〉 consistent with H where Ω is a concatenation
of Ω1, . . . ,Ωp and T1, . . . , Tp ∈ Ci.

A trajectory Ω is consistent with a hierarchy H if
〈Ω, T0〉 is consistent with H.

Definition 2 A trajectory 〈s1, a1, . . . , sn, an, sn+1〉 is
non-redundant if no subsequence of the action sequence
in the trajectory, a1, . . . , an, can be removed such that
the remaining sequence still achieves the goal starting
from s1.

Theorem 1 If a trajectory Ω is non-redundant then
HI-MAT produces a task hierarchy H such that Ω is
consistent with H.

Proof sketch: Let Ω = 〈s1, a1, . . . , sn, an, sn+1〉 be
the trajectory. The algorithm extracts the conjunction
of literals that are true in sn+1 (and not before), and
assigns it to the goal, Gi. Such literals must exist

since, otherwise, some suffix of the trajectory can be
removed while the rest still achieves the goal, violating
the property of non-redundancy. Since the set Si is set
to all states that do not satisfy Gi, the condition that
all states s1, . . . , sn are in Si is satisfied.

Whenever the trajectory is partitioned into a sequence
of sub-trajectories, each sub-trajectory is associated
with a conjunction of goal literals achieved by that
sub-trajectory. Hence, the above argument applies re-
cursively to each such sub-trajectory. �

Definition 3 A hierarchy H is safe with respect to the
DBN models M if for any trajectory-task pair 〈Ω, Ti〉
consistent with H, where Ti = 〈Xi, Si, Gi, Ci〉, the to-
tal expected reward during the trajectory is only a func-
tion of the values of x ∈ Xi in the starting state of Ω.

The above definition says that the state variables in
each task are sufficient to capture the value of any
trajectory consistent with the sub-hierarchy rooted at
that task node.

Theorem 2 If the procedure HI-MAT produces a task
hierarchy H from Ω and the DBN models M then H
is safe with respect to M . Further, if the DBN models
are maximally sparse, for any hierarchy H′ which is
consistent with Ω and safe with respect to M , and Ti =
〈Xi, Si, Gi, Ci〉 in H, there exists T ′

i = 〈X ′
i, S

′
i, G

′
i, C

′
i〉

in H′ such that Xi ⊆ X ′
i.

Proof sketch: By the construction procedure, in any
segment of trajectory Ω composed of primitive actions
under a subtask Ti, all primitive actions check or set
only the variables in Xi. Thus, changing any other
variables in the initial state s of Ω yielding s′ does
not change the effects of these actions according to
the DBN models. Similarly, all immediate rewards
in the trajectory are also functions of the variables
in Xi. Hence, the total accumulated reward and the
probability of the trajectory only depend on Xi, and
the hierarchy produced is safe with respect to M .

Suppose that H′ is a consistent hierarchy which is safe
with respect to M . Let ai be the last action in the
trajectory Ωi corresponding to the subtask Ti in H.
By consistency, there must be some task T ′

i in H′ that
matches up with ai. Recall that Xi includes only those
variables checked and set by ai to achieve the goal Gi.
We claim that the abstraction variables X ′

i of T ′
i must

include Xi. If this is not the case then, by maximal
sparseness, there is a variable y in Xi −X ′

i and some
values y1 and y2 such that the probabilities of the next
state or reward are different based on whether y = y1

or y = y2. Hence, H′ would not be safe, leading to a
contradiction. �
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Corollary 1 If the DBN models are maximally sparse
then the maximum size of the value function table for
any task in the hierarchy produced by HI-MAT is the
smallest over all safe hierarchies which are consistent
with the trajectory.

Proof: Direct consequence of part 2 of the previous
theorem. �

The significance of the above corollary lies in the fact
that the size of the value-function table is exponential
in the number of variables ni = |Xi| in the abstraction
of task Ti. If all features are binary and there are t
tasks then the total number of values for the value-
function tables is O(t 2nmax). Since the hierarchy is
a tree with the primitive actions at the leaves, the
number of subtasks is bounded by 2l where l is the
length of the trajectory. Hence, we can claim that
the number of parameters needed to fully specify the
value-function tables in our hierarchy is at most O(l)
times that of the best possible.

Our analysis does not address state abstractions aris-
ing from the so-called funnel property of subtasks
where many starting states result in a few terminal
states. Funnel abstractions permit the parent task to
ignore variables that, while relevant inside the child
task, do not affect the terminal state. Nevertheless,
our analysis captures some of the key properties of
our algorithm including consistency with the trajec-
tory, safety, minimality, and sheds some light on its
effectiveness.

5. Empirical Evaluation

We test three hypotheses. First, we expect that em-
ploying a successful trajectory along with the action
models will allow the HI-MAT algorithm to induce
task hierarchies that are much more compact than (or
at least as compact as) just using the action models.
Second, in a transfer setting, we expect that the hier-
archies induced by HI-MAT will speed up convergence
to the optimal policy in related target problems. Fi-
nally, we expect that the HI-MAT hierarchies will be
applicable to and speed up learning in RL problems
which are different enough from the source problems
such that value functions either do not transfer or lead
to poor transfer.

5.1. Contribution of the Trajectory

To highlight our first hypothesis, a modified Bitflip do-
main (Diuk et al., 2006) is designed as follows. The
state is represented by n bits, b0b1 . . . bn−1. There are
n actions denoted by Flip(i). Flip(i) toggles bi if both

Root

Flip(n-2)Flip(0) Flip(n-1)

Parity(b0,…,bn-2) ∧ bn-2 = 1

2n-3 exit options

(a) VISA hierarchy. Task la-
bels are the exit conditions;
dash-dot arrows indicate exit
options.

Root

Flip(1)Flip(0)

Flip(n-1)b0 ∧…∧ bn-2 = 1

Flip(n-2)
b0 ∧ b1 = 1

(b) HI-MAT hierarchy.
Task labels are the ter-
mination conditions.

Figure 2. Task hierarchies for the modified Bitflip domain.
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Figure 3. Performance of Q, VISA, and HI-MAT in the 7-
bit modified Bitflip domain (averaged over 20 runs).

bi−1 is set and the parity across bits b0, . . . , bi−1 is even
when i is even (odd otherwise); if not, it resets the bits
b0, . . . , bi. All bits are reset at the initial state, and the
goal is to set all bits.

We ran both VISA and HI-MAT in this domain with
n = 7, and compared the induced hierarchies (Fig-
ure 2). We observe that VISA constructs an ex-
ponentially sized hierarchy even with subtask merg-
ing activated within VISA. There are two reasons for
this. First, VISA relies on the full action set to con-
struct its causal graph, and does not take advantage of
any context-specific independence among its variables
that may arise when the agent acts according to cer-
tain policies. Specifically, for this domain, the causal
graph constructed from DBN analysis has only two
strongly connected components (SCCs): one partition
has {b0, . . . , bn−2}, and the other has {bn−1}. This
SCC cannot be further decomposed using only infor-
mation from the DBNs. Second, VISA creates exit op-
tions for all strongly connected components that tran-
sitively influence the reward function, whereas only a
few of these may actually be necessary to solve the
problem. Specifically, for this problem, VISA creates
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an exit condition for any instantiation that satisfies
parity(b0, . . . , bn−2) ∧ bn−2 = 1, resulting in exponen-
tial number of subtasks shown in Figure 2(a). The
successful trajectory provided to HI-MAT achieves the
goal by setting the bits going from left to right, and re-
sults in the hierarchy in Figure 2(b). The performance
results are shown in Figure 3. VISA’s hierarchy con-
verges even slower than the basic Q learner because
the root has O(2n) children as opposed to O(n).

This domain has been engineered to highlight the case
when access to a successful trajectory allows for sig-
nificantly more compact hierarchies than without. We
expect that access to a solved instance will usually im-
prove the compactness of the resulting hierarchy.

5.2. Transfer of the Task Hierarchy

To test our remaining hypotheses, we apply the trans-
fer setting to two domains: Taxi and the real-time
strategy game Wargus. The Taxi domain has been de-
scribed in Section 3. The source and target problems
in Taxi differ only in the wall configurations; the pas-
senger sources and destinations are the same. This is
engineered to allow value-function transfer to occur.
For Wargus, we consider the resource collection prob-
lem. Here, the agent has units called peasants that
can harvest gold and wood from goldmines and forests
respectively, and deposit them at a townhall. The goal
is to reach a predetermined quota of gold and wood.
Since the HI-MAT approach does not currently gener-
alize to termination conditions involving numeric pred-
icates, the state representation of the domain replaces
the actual quota variables with Boolean variables that
are set when the requisite quotas of gold and wood
are met. We consider target problems whose specifica-
tions are scaled up from that of the source problems,
including the number of peasants, goldmines, forests,
and the size of the map. In this domain, coordina-
tion does not affect the policy significantly. Thus, in
the target maps, we learn a hierarchical policy for the
peasants using a shared hierarchy structure without
coordination (Mehta & Tadepalli, 2005). In each case,
we report the total reward received as a function of
the number of episodes, averaged over multiple trials.

We compare three basic approaches: (1) non-
hierarchical Q-learning (Q), (2) MAXQ-learning ap-
plied to a hierarchy manually engineered for each do-
main (Manual), and (3) MAXQ-learning applied to the
HI-MAT hierarchy induced for each domain (HI-MAT).
The HI-MAT algorithm first solves the source prob-
lem using flat Q-learning, and generates a successful
trajectory from it. In Taxi, we also show the perfor-
mance of initializing the value-function tables with val-

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0

 0  5  10  15  20  25  30

T
ot

al
 R

ew
ar

d

Episode

Q
Q with value

Manual
Manual with value

HI-MAT
HI-MAT with value

Figure 4. Performance in the Taxi domain (averaged over
20 runs). Source and target problems differ only in the
configuration of the grid walls.
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Figure 5. Performance in the Wargus domain (averaged
over 10 runs). Source: 25 × 25 grid, 1 peasant, 2 gold-
mines, 2 forests, 1 townhall, 100 units of gold, 100 units
of wood. Target: 50 × 50 grid, 3 peasants, 3 goldmines, 3
forests, 1 townhall, 300 units of gold, 300 units of wood.

ues learned from the source problem – these curves are
suffixed with the phrase “with value”. In Wargus, we
include the performance of VISA. The results of these
experiments are shown in Figures 4 and 5.

Although the target problems in Taxi allow value-
function transfer to occur, the target problems are still
different enough that the agent has to “unlearn” the
old policy. This leads to negative transfer evidenced
in the fact that transferring value functions leads to
worse rates of convergence to the optimal policy than
transferring just the hierarchy structure with uninitial-
ized policies. This indicates that transferring struc-
tural knowledge via the task-subtask decomposition
can be superior to transferring value functions espe-
cially when the target problem differs significantly in
terms of its optimal policy. In Wargus, the difference
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between the source and target problems renders direct
value-function transfer impossible even though the hi-
erarchy structure still transfers.

In Taxi, we observe that MAXQ-learning on HI-MAT’s
hierarchy converges to the optimal policy at a rate
comparable to that of the manually-engineered hierar-
chy. However, in Wargus, HI-MAT’s hierarchy is faster
to converge than the manually-engineered one because,
by analyzing the solved source problem, it is able to
find stricter termination conditions for each subtask.
Consequently, reducing the policy space in the target
problem leads to a greater speed-up in learning than
reducing the number of value parameters via subtask
sharing as in the manually-engineered hierarchy. The
improved rate of convergence is in spite of the fact that
HI-MAT does not currently merge subtly different in-
stantiations of the same subtask so there is room for
further improvement. VISA’s performance suffers ini-
tially due to a large branching factor at the root option
(which directly includes all the navigation actions).

6. Conclusion

We have presented an approach to automatically in-
ducing MAXQ hierarchies from solved RL problems.
Given DBN models and an observed successful tra-
jectory, our method analyzes the causal and temporal
relationships between actions, and partitions the tra-
jectory recursively into subtasks as long as the state
abstraction improves. We show that the learned hier-
archies are consistent, safe, and have compact value-
function tables. Our empirical results indicate that
using the observed trajectory can allow us to learn
more compact hierarchies. Further, in a transfer set-
ting, our hierarchies perform comparably to manually-
engineered hierarchies, and improve the rate of conver-
gence where direct policy transfer does not help.

We are currently working on extending the approach
to handle disjunctive goals. Further, in order to en-
sure hierarchical optimality, we may need to deal with
non-zero pseudo-rewards. In related work, we are also
investigating methods that learn compact DBN mod-
els of the MDP. Finally, an important challenge for the
future is to investigate the transfer scenario where the
induced hierarchy may need to be altered structurally
in order to apply effectively to the target problem.
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Abstract

Minimum rank problems arise frequently in ma-
chine learning applications and are notoriously
difficult to solve due to the non-convex nature
of the rank objective. In this paper, we present
the first online learning approach for the prob-
lem of rank minimization of matrices over poly-
hedral sets. In particular, we present two online
learning algorithms for rank minimization - our
first algorithm is a multiplicative update method
based on a generalized experts framework, while
our second algorithm is a novel application of the
online convex programming framework (Zinke-
vich, 2003). In the latter, we flip the role of the
decision maker by making the decision maker
search over the constraint space instead of fea-
sible points, as is usually the case in online con-
vex programming. A salient feature of our on-
line learning approach is that it allows us to give
provable approximation guarantees for the rank
minimization problem over polyhedral sets. We
demonstrate the effectiveness of our methods on
synthetic examples, and on the real-life applica-
tion of low-rank kernel learning.

1. Introduction

Minimizing the rank of matrices restricted to a convex set
is an important problem in the field of optimization with
numerous applications in machine learning. For instance,
many important problems like low-rank kernel learning,
feature efficient linear classification, semi-definite embed-
ding (SDE), non-negative matrix approximation (NNMA),
etc., can be viewed as rank minimization problems over
a polyhedron with additional convex constraints such as a
Frobenius norm constraint and/or a semi-definiteness con-

Appearing inProceedings of the 25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

straint. Even though there has been extensive work on the
specific problems mentioned above, the general problem
of rank minimization over polyhedral sets is not well un-
derstood. In this paper we address the problem of rank
minimization when there are a large number of trace con-
straints along with a few convex constraints that are rela-
tively “easy” in a precise sense defined below.

We now formulate the rank minimization problem we
study. LetA1, . . . , Am ∈ R

n×n, b1, . . . , bm ∈ R and let
C ⊆ R

n×n be a convex set of matrices. Then, consider the
following optimization problem which we refer to asRMP

(for Rank Minimization over Polyhedron):

min rank(X)

s.t Tr(AiX) ≥ bi, 1 ≤ i ≤ m (RMP)

X ∈ C.

The setC will represent the “easy” constraints in the sense
that for such a setC, we assume thatRMP with a single
trace constraint can be solved efficiently. This holds for
many typical convex setsC, e.g., the unit ball under anyLp

or Frobenius norm, the semi-definite cone, and the inter-
section of the unit ball with the p.s.d. cone. Furthermore,
low-rank kernel learning, SDE and NNMA can all be seen
as instantiations of the above general formulation.

The generalRMP problem as stated above is non-convex,
NP-hard and, as we prove, cannot be approximated well
unlessP = NP . Due to the computational hardness of the
problem, much of the previous work has concentrated on
providing heuristics, with no guarantees on the quality of
the solution. We remark that the recent trace-norm based
approach of (Recht et al., 2007) does guarantee an optimal
solution for a simplified instance of RMP where only well-
conditioned linear equality constraints are allowed. How-
ever, it is not clear how to extend their guarantees to the
more generalRMP problem.

We now list the main contributions of this paper:

• We show that for theRMP problem, the minimum fea-
sible rank cannot be approximated well unlessP =
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NP (see Theorem 3.1). To get over this hurdle we
introduce a relaxed notion of approximation, where
along with approximating the optimal rank we also al-
low small violations in the constraints. In practice,
this relaxed notion is as meaningful as the standard no-
tion of approximation since almost all real-life prob-
lems have noisy measurements.

• We provide an algorithm forRMP based on the Multi-
plicative Weights Update framework of (Plotkin et al.,
1991; Arora et al., 2005b) and under the relaxed no-
tion of approximation, we prove approximation guar-
antees for the algorithm.

• We provide an algorithm forRMP based on the frame-
work of online convex programming (OCP) intro-
duced by (Zinkevich, 2003). We use the OCP frame-
work in a novel way by changing the role of the deci-
sion maker to search over the constraints instead of the
feasible points, as is usually the case. We prove that
under the relaxed notion of approximation, the algo-
rithm provides approximation guarantees. The guar-
antees obtained using the OCP framework are better
than those obtained using the Multiplicative Weights
Update framework by a logarithmic factor.

• For a practical application, we apply our methods to
the problem of low-rank kernel learning which can be
seen as a specific instance of generalRMP.

We empirically evaluate our methods on synthetic instances
of RMP, where the constraints are chosen randomly. We
compare them with the trace-norm heuristic of (Fazel et al.,
2001; Recht et al., 2007) and the log-det heuristic of (Fazel
et al., 2003), and our experimental results indicate that our
methods are significantly faster and give comparable rank
solutions to existing methods. We also evaluate the per-
formance of our methods for low-rank kernel learning on
UCI datasets. On all the datasets, our algorithms improve
the accuracy of the baseline kernel while also significantly
decreasing the rank.

2. Related Work and Background

Most existing methods for rank minimization over convex
sets are based on relaxing the non-convex rank function to
a convex function, e.g., the trace-norm (Fazel et al., 2001;
Recht et al., 2007) or the logarithm of the determinant
(Fazel et al., 2003). Unfortunately, these heuristics do not
have any guarantees on the quality of the solution in gen-
eral. A notable exception is the work of (Recht et al., 2007),
which extends the techniques of (Candès & Tao, 2005) for
compressed sensing to rank minimization. (Recht et al.,
2007) show that minimizing the trace-norm guarantees an
optimal rank solution to a special class ofRMP where only
well-conditioned linear equalities are allowed. Thus their
approach is limited in its applicability and it is not clear

how to extend it to generalRMP. We also remark that mini-
mizing the trace-norm is computationally expensive, which
further limits its applicability.

(Barvinok, 2002) (Chapter V) describes an approximation
algorithm forRMP based on random projections and a gen-
eralization of the Johnson-Lindenstrauss Lemma, with an
approximation guarantee similar to the one provided by
our MW algorithm (Section 4.1). However, this approach
works only for a special case ofRMP where only linear
equalities described by p.s.d. matrices are allowed. Fur-
thermore, this approach needs to solve the relaxedRMP

problem without the rank constraint which involves solving
a large semi-definite programming problem. This maybe
undesirable for various real-world applications such as the
low-rank kernel learning problem. In contrast, our ap-
proaches can be used for a larger class of convex setsC
and are considerably more scalable.

Several specific instances of the generalRMP problem
have been widely researched in the machine learning com-
munity. Examples include low-rank kernel learning, SDE,
sparse PCA and NNMA. Most methods for these problems
can be broadly grouped into the following two categories:
a) methods which drop the rank constraint and use the top
k eigenvectors of the solution to the relaxed optimization
problem e.g., (Weinberger et al., 2004); b) methods which
factor the matrixX in RMP into ABT and optimize the re-
sultant non-convex problem e.g., (Lee & Seung, 2000; Kim
et al., 2007). However, typically these methods do not have
any provable guarantees.

We apply our algorithms for the generalRMP problem
to the low-rank kernel learning problem(Bach & Jordan,
2005; Kulis et al., 2006). Existing methods for this prob-
lem do not provide any provable guarantees on the solution
and/or assume that the initial kernel has a small rank to
begin with. In contrast, a straight forward application of
our generalRMP framework gives algorithms with prov-
able guarantees on the rank of the learned kernel. Further-
more, we demonstrate that our algorithms can be used to
initialize existing methods to obtain better solutions.

Our approaches toRMP are based on two online learning
methods - the generalized experts framework as abstracted
in (Arora et al., 2005b) and the online convex programming
(Zinkevich, 2003), which we now review briefly.

2.1. Multiplicative Weights Update Algorithm

The Multiplicative Weights Update algorithm (MW algo-
rithm) is an adaptation of the Winnow algorithm (Little-
stone & Warmuth, 1989) for a generalized experts frame-
work as described in (Freund & Schapire, 1997). This
framework was implicitly used by (Plotkin et al., 1991) for
solving several fractional packing and covering problems
and was formalized and extended to semi-definite programs
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in (Arora et al., 2005a). Throughout this work we will fol-
low the presentation of the generalized experts framework
as abstracted in (Arora et al., 2005b).

In the generalized experts (GE) framework there is a set of
n experts, a set of eventsE , and a penalty matrixM such
that thei-th expert incurs a penalty ofM(i, j) for an event
j ∈ E . The penalties are assumed to be bounded and lie
in the interval[−ρ, ρ] for a fixedρ > 0. At each time step
t = 1, 2, . . . , an adversary chooses an eventjt ∈ E so that
thei-th expert incurs a penalty ofM(i, jt). The goal in the
GE framework is to formulate aprediction algorithmthat
chooses a distributionDt = (pt

1, . . . , p
t
n) on the experts

at time stept, so that the total expected loss incurred by
the prediction algorithm is not much worse than the total
loss incurred by the best expert. Formally, the goal of the
prediction algorithm is to minimize

T∑

t=1

n∑

l=1

pt
lM(l, jt) − min

i

T∑

t=1

M(i, jt).

Note that the distribution in roundt, Dt, must be chosen
without knowledge of the eventjt chosen at time stept. At
every stept, the MW algorithm has a weightwt

i assigned to
experti, and sets the distributionDt = (pt

1, . . . , p
t
n), where

pt
i = wt

i/
∑

j wt
j . The MW algorithm then proceeds analo-

gously to the Winnow algorithm and updates the weights at
time stept+1 to wt+1

i = wt
i(1− δ)M(i,jt)/ρ if M(i, jt) ≥

0 andwt+1
i = wt

i(1 + δ)M(i,jt)/ρ if M(i, jt) < 0, whereδ
is a parameter provided to the algorithm. For our analysis
we will use the following theorem.

Theorem 2.1(Corollary 4 of (Arora et al., 2005b)). Sup-
pose that for all i and j ∈ E , M(i, j) ∈ [−ρ, ρ]. Let
ǫ > 0 be an error parameter and let δ = min{ ǫ

4ρ , 1
2},

and T = 16ρ2 ln n
ǫ2 . Then, the following bound holds for the

average expected loss of the MW algorithm

∑T
t=1

∑n
l=1 pt

lM(l, jt)

T
≤ ǫ +

∑

t M(k, jt)

T
, ∀k.

2.2. Online Convex Programming

The online convex programming (OCP) framework (Zinke-
vich, 2003; Kalai & Vempala, 2005; Hazan et al., 2006)
models various useful online learning problems like indus-
trial production and network routing. The OCP framework
involves a fixed convex setK and a sequence of unknown
cost functionsf1, f2, . . . : K → R. At each time stept, a
decision maker must choose a pointzt ∈ K and incurs a
costft(zt). However, the choice ofzt must be made with
the knowledge ofz1, . . . , zt−1 andf1, . . . , ft−1 alone i.e.,
without knowingft. The total cost incurred by the algo-
rithm afterT steps equals

∑

t ft(zt). The objective in OCP

is to minimize theregretas defined below:

R(T ) =

T∑

t=1

ft(zt) − min
z∈K

T∑

t=1

ft(z). (1)

(Zinkevich, 2003) has shown that in the case when the func-
tions ft are convex and differentiable with bounded gra-
dient, one can achieve a regret ofO(

√
T ). Let ‖K‖ =

maxz1,z2∈K ‖z1 − z2‖ and G = maxz∈K,t∈{1,...} ‖ ▽
f t(z)‖, where‖ · ‖ denotes the Euclidean norm (or Frobe-
nius norm if the setK is defined over matrices). Also, as-
sume that▽f t can be evaluated efficiently at any given
point z. Under the above assumptions (Zinkevich, 2003)
proposed a Generalized Infinitesimal Gradient Ascent algo-
rithm which achieves a regret ofO((G2 +‖K‖2)

√
T ). The

function GIGA in Algorithm 2 describes a slightly modi-
fied version of (Zinkevich, 2003)’s algorithm that achieves
the following improved regret bound.

Theorem 2.2 (Adaptation of Theorem 1 of (Zinkevich,
2003)). The following bound holds for the regret of the
GIGA sub-routine of Algorithm 2 after T rounds,

R(T ) ≤ G · ‖K‖
√

T (2)

Proof sketch: Using the modified step-size in Algorithm 2,
the theorem follows from Zinkevich’s original proof.

3. Computational Complexity

As was mentioned in the introduction,RMP is NP-hard in
general. Further, by a reduction to the problem of support
minimization over convex sets, and using hardness of ap-
proximation results from (Amaldi & Kann, 1998) we prove
the following hardness result for RMP. A full proof of the
following theorem appears in (Meka et al., 2008).

Theorem 3.1. There exists no polynomial time algorithm
for approximating RMP within a logarithmic factor unless
P = NP. Further, assuming NP * DTIME(npoly log n),

RMP is not approximable within a factor of 2log1−δ n for
every δ > 0; and RMP is not approximable within a factor
of 2log1−δ ∆ for every δ > 0, where ∆ = max{‖Ai‖F +
|bi| : 1 ≤ i ≤ m} 1.

In view of the above hardness result we introduce a weaker
notion of approximation. We believe the relaxed notion of
approximation to be of equal use, if not more, as the stan-
dard notion of approximation in practice. For an instance of
RMP, let F(A1, . . . , Am, b, C) denote the feasible region,
whereb = (b1, . . . , bm):

F(A1, . . . , Am, b, C) = {X : X ∈ C, Tr(AiX) ≥ bi, ∀i}.
(3)

1This hardness result holds even whenC is fixed to be the unit
ball under anLp or Frobenius norm or many other common sets.
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Definition 3.1. Given a function c : R → R+, we say that
a matrix X is a (c(ǫ), ǫ)-approximate solution to RMP if
the following hold:

X̄ ∈ F(A1, . . . , Am, b − ǫ1, C)

rank(X̄) ≤ c(ǫ)min{rank(X) : X ∈ F(A1, .., Am, b, C)}.
Further, we say that RMP is (c(ǫ), ǫ)-approximable, if
there exists a polynomial time algorithm that given inputs
A1, . . . , Am, b, ǫ, outputs a (c(ǫ), ǫ)-approximate solution
to RMP.

Thus, along with approximating the minimum feasible rank
we also allow a small violation, quantified byǫ, of the con-
straints. Note that forǫ = 0, we recover the normal notion
of approximation with an approximation factor ofc(0).

4. Methodology

Our approaches toRMP rely on the fact that even though
RMP is hard in general, it is efficiently solvable for certain
convex setsC when there is a single trace constraint. For
instance, whenC = {X : ‖X‖F ≤ 1}, a RMP problem
with a single trace constraint can be solved efficiently using
a singular value decomposition of the constraint matrix.

In our approach, we assume the existence of an oracleO
that solves the followingRMP problem with a single trace
constraint, and returns an optimalX or declares the prob-
lem infeasible:

O : min rank(X) s.t. Tr(AX) ≥ b, X ∈ C. (4)

As discussed above, for certain convex setsC, oracleO
solves a non-convex problem. In both our approaches, we
exploit this fact by making several queries to the oracle
where the trace constraint Tr(AX) ≥ b is obtained by a
weighted combination of the original trace constraints. The
trick then is to choose the combinations in such a way that
after a small number of iterations, we can find a low-rankX

that satisfies all the constraints with at most anǫ-violation.

Based on the above intuition, we give two approaches to
solve theRMP problem - one based on the Multiplicative
Weights Update algorithm and the other based on online
convex programming.

Before we describe our algorithms, we need to intro-
duce additional notation. For an instance ofRMP speci-
fied by matricesA1, . . . , Am, scalarsb1, . . . , bm and con-
vex setC, let D = max{‖X‖F : X ∈ C}. We as-
sume, without loss of generality, thatD ≥ 1. Recall
thatF((A1, . . . , Am), b, C) andF((A1, . . . , Am), b−ǫ1, C)
denote the feasibility sets as defined in (3) and∆ =
max{‖Ai‖F + |bi| : 1 ≤ i ≤ m}. Further, letk∗ be
the rank of the optimal solution toRMP. That is,

k∗ = min{rank(X) : X ∈ F((A1, . . . , Am), b, C)}.

Algorithm 1 RMP-MW (Multiplicative Updates)

Require: Constraints(Ai, bi), 1 ≤ i ≤ m, ǫ

Require: OracleO(A, b) which solves
min rank(X) s.t. Tr(AX) ≥ b, X ∈ C

1: Initialize: w1
i = 1, ∀i andt = 1

2: repeat
3: Set(At, bt) =

∑

i wt
i(Ai, bi)

4: if OracleO(At, bt) declares infeasibilitythen
5: return Problem is infeasible
6: else
7: ObtainXt using OracleO(At, bt)
8: SetM(i, Xt) = Tr(AiX

t) − bi

9: Setρ = maxi M(i, Xt)
10: Setwt+1=MultUpdate(wt, M, ρ, ǫ)
11: end if
12: Sett = t + 1
13: until t > T

14: return X =
∑

t Xt/T

function wt+1=MultUpdate(wt, M, ρ, ǫ)
1: Setδ = min{ ǫ

4ρ , 1
2}

2: for all 1 ≤ i ≤ m do
3: if M(i, Xt) ≥ 0 then
4: wt+1

i = wt
i(1 − δ)M(i,Xt)/ρ

5: else
6: wt+1

i = wt
i(1 + δ)−M(i,Xt)/ρ

7: end if
8: end for

4.1. Rank Minimization via Multiplicative Weights
Update

In this section we present an approach toRMP based on
the generalized experts (GE) framework described in Sec-
tion 2.1. To adapt the GE framework for theRMP prob-
lem, we first need to select a set of experts, a set of events
and the associated penalties. We associate eachRMP con-
straint Tr(AiX) ≥ bi with an expert and let the events cor-
respond to elements ofC. The penalty for experti corre-
sponding to thei-th constraint and eventX is then given
by Tr(AiX) − bi. Note that rather than rewarding a satis-
fied constraint, we penalize it. This strategy is motivated
by the work of (Plotkin et al., 1991; Arora et al., 2005a)
and is similar to boosting, where a distribution is skewed
towards an example for which the current hypothesis made
an incorrect prediction.

We assign weightwt
i to thei-th expert in thet-th iteration,

and initialize the weightsw1
i = 1, for all i. In thet-th iter-

ation we query the oracleO with (At, bt) =
∑

i wt
i(Ai, bi)

to obtain a solutionXt+1 ∈ C. We then use the Multi-
plicative Weights Update algorithm as described in func-
tion MultUpdate of Algorithm 1 to compute the weights
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wt+1
i for the(t + 1)-st iteration. Algorithm 1 describes our

multiplicative update based algorithm forRMP. In the fol-
lowing theorem we prove approximation guarantees for the
solution output by Algorithm 1.

Theorem 4.1. Given the existence of an oracle O to solve
the problem (4), Algorithm 1 outputs an (O(∆2D2 log n

ǫ2 ), ǫ)-
approximate solution to RMP.

Proof. Observe that, if the oracle declares infeasibility at
any time stept, the original problem is also infeasible.
Hence, we assume that the oracle returns a feasible point
Xt at time-stept, for all 1 ≤ t ≤ T .

Now, |Tr(AiX)− bi| ≤ ‖Ai‖F ‖X‖F + |bi| ≤ ∆D. Thus,
the penalties Tr(AiX)− bi lie in the interval[−∆D, ∆D].
Since Algorithm 1 uses multiplicative updates to update the
weights2 as in Theorem 2.1, forT = 16(∆D)2 log n/ǫ2,
we have

∑

t

∑

j pt
j[AjX

t − bj]

T
≤ ǫ +

∑

t[AiX
t − bi]

T
, ∀i,

wherept
j = wt

j/
∑

l wt
l . Since Tr(AtXt) ≥ bt), ∀t, the

LHS ≥ 0. Thus, forX =
∑

t Xt/T we have

Tr(AiX) ≥ bi − ǫ, ∀i. (5)

We now bound the rank ofX compared to the optimal
value. Lett be such thatXt has the highest rank, sayk,
amongX1, . . . , XT . Then,k∗ ≥ k, as for a particular
convex combination of(Ai, bi) the minimum rank possible

wask. Thus, rank(X) ≤ kT = O( (∆2·D2 log n)k∗

ǫ2 ). Using
(5) we have thatX ∈ F((A1, . . . , Am), b − ǫ1, C). Thus,

by Definition 3.1X is an(O(∆2D2 log n
ǫ2 ), ǫ)-approximate

solution toRMP.

The running time of Algorithm 1 isO(∆2D2 log n
ǫ2 (TO +

mn2)), whereTO denotes the oracle’s running time.

4.2. Rank Minimization via OCP

In this section, we present a novel application of online
convex programming described in Section 2.2 to obtain an
approximate solution toRMP. The intuition behind this
approach is similar to that of Section 4.1; in fact this ap-
proach can be viewed as a generalization of the approach
of Section 4.1.

In the OCP framework one generally associates the convex
set K with a feasible region and the cost functions with
penalty functions. In our application of OCP toRMP we

2Our updates are slightly different from those of (Arora et al.,
2005b) in that we adaptively choose the width parameterρ. How-
ever, the analysis of (Arora et al., 2005b) is applicable forthese
updates as well.

Algorithm 2 RMP-OCP (Online Convex Programming)

Require: Constraints(Ai, bi), 1 ≤ i ≤ m, ǫ

Require: Oracle O(A, b) which solves
min rank(X) s.t. Tr(AX) ≥ b, X ∈ C

1: Initialize: A1 =
P

i
Ai

m andb1 =
P

i
bi

m , t = 1
2: SetK = {∑i λi(Ai, bi) :

∑

i λi = 1, λi ≥ 0 ∀i}
3: repeat
4: if OracleO(At, bt) declares infeasibilitythen
5: return Problem is infeasible
6: else
7: ObtainXt using OracleO(At, bt)
8: Define functionf t(A, b) = Tr(AXt) − b

9: Set(At+1, bt+1)=GIGA((At, bt), f t(A, b), K, t)
10: end if
11: Sett = t + 1
12: until t > T

13: return X =
∑

t Xt/T

function zt+1=GIGA(zt, f t(z), K, t)
1: Setηt = ∆

2D
√

t

2: Setzt+1 = ΠK

(
zt − ηt∇f t(zt)

)
, whereΠK repre-

sents the orthogonal projection ontoK

flip this view and chooseK to be the space of convex com-
binations of the constraints and associate cost functions
with feasible points ofRMP. In particular, we setK ⊆
R

n×n×R to be the convex hull of(A1, b1), . . . , (Am, bm),
i.e.,

K =

{
∑

i

λi(Ai, bi) :
∑

i

λi = 1, λi ≥ 0 ∀i

}

.

Given a matrixX , we define a cost functionfX : K → R

by fX(A, b) = Tr(AX) − b.

We initializeA1 =
∑

i Ai/m andb1 =
∑

i bi/m. Given
(At, bt) ∈ K for the t-th iteration, we query the oracle
O with (A, b) = (At, bt) to obtain a solutionXt ∈ C.
We then set the cost functionf t(A, b) = fXt(A, b) =
Tr(AXt)−b and use the OCP algorithm (Zinkevich, 2003)
as described in function GIGA of Algorithm 2 to com-
pute (At+1, bt+1) for the (t + 1)-st iteration. Algorithm
2 describes our OCP based algorithm forRMP. In the fol-
lowing theorem we prove approximation guarantees for the
output of Algorithm 2.

Theorem 4.2. Given the existence of an oracle O to solve
the problem (4), Algorithm 2 outputs an (O(∆2D2

ǫ2 ), ǫ)-
approximate solution to RMP.

Proof. As in Theorem 4.1 we assume that the oracle re-
turns a feasible point at all time steps. Note that using the
terminology of Theorem 2.2,G = maxz∈K,t∈{1,...} ‖ ▽
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f t(z)‖ ≤ D and‖K‖ ≤ ∆. Thus, using Theorem 2.2 we
have

T∑

t=1

(Tr(AtXt)−bt) ≤ min
(A,b)∈K

T∑

t=1

(Tr(AXt)−b)+∆D
√

T .

Note that the above LHS≥ 0 since oracle returns a feasible
Xt, ∀t. Thus, forT = ∆2D2/ǫ2 andX =

∑

t Xt/T ,

Tr(AX) ≥ b − ǫ, (6)

for all (A, b) ∈ K. In particular, we have for everyi,
Tr(AiX) ≥ bi− ǫ. We now bound the rank ofX compared
to the optimal value. Lett be such thatXt has the highest
rank, say k, amongX1, . . . , XT . Then, we must havek∗ ≥
k, and so we have rank(X) ≤ kT ≤ O((∆D)2k∗/ǫ2).
Also, from (6) we have thatX ∈ F((A1, . . . , Am), b −
ǫ1, C). Thus by Definition 3.1,X is a(O((∆2D2)/ǫ2), ǫ)-
approximate solution toRMP.

The running time of Algorithm 2 isO(∆2D2

ǫ2 (TO+TOCP +
mn2)), whereTO denotes the running time of the oracle,
and TOCP denotes the time taken in each round by the
GIGA algorithm of Theorem 2.2.

4.3. Discussion

Oracle: The oracle for solving problem (4) plays a crucial
role in both our approaches. As discussed previously, for
typical cases ofC, like the unit ball under anLp or Frobe-
nius norm etc., (4) can be solved by the singular value de-
composition ofA. Further, in the case when the setC in-
volves a quadratic or ellipsoid constraint we can use the
S-procedure (Rockafellar, 1970) to solve (4).

Comparison of the approaches: Our approach toRMP

based on Multiplicative Weights Update has a slightly
weaker guarantee than the approach based on OCP. This is
also confirmed by our experiments where OCP gives better
results than the MW approach. However, the MW approach
is computationally less intensive as the approach based on
OCP involves a projection onto the convex setK. Thus,
MW can be used for large scale problems.

Limitations : A drawback of our methods is the depen-
dence on∆, ǫ in the bounds of Theorems 4.1 and 4.2. This
limits the applicability of our methods to problems, such as
NNMA, with a large number of non-negativity constraints
where the ratio∆

ǫ is typically large. However, our algo-
rithms can be used as a heuristic for such problems and can
be used to initialize other methods which require a good
low-rank solution for initialization. Also, the lower bounds
for the experts framework and boosting suggest that the de-
pendence on∆, ǫ in our bounds may be optimal for the
generalRMP problem (Arora et al., 2005b).

5. Low-rank Kernel Learning

In this section we apply both our rank minimization algo-
rithms to the problem of low-rank kernel learning, which
involves finding a low-rank positive semi-definite (p.s.d.)
matrix that satisfies linear constraints typically derived
from labeled data. Due to the rank constraint, this problem
is non-convex and is in general hard to solve. As described
below, both our online learning approaches can be applied
naturally to this problem. We provide provable guarantees
on the rank of the obtained kernel.

Formally, the low-rank kernel learning problem can be cast
as the following optimization problem:

min
K

‖K − K0‖F

s.t. Tr(SiK) ≤ ℓ, ∀ 1 ≤ i ≤ |S|,
Tr(DjK) ≥ u, ∀ 1 ≤ j ≤ |D|,
rank(K) ≤ r, K � 0,

(7)

whereS is a set of pairs of points from the same class that
are constrained to have distance less thanℓ. Similarly,D is
a set of pairs of points from different classes that are con-
strained to have distance greater thanu, with ℓ ≪ u. For
a similarity constraint matrixSi, Si(i1, i1) = Si(i2, i2) =
1, Si(i1, i2) = Si(i2, i1) = −1 and all other entries0.
The dissimilarity constraint matricesDj can be constructed
similarly. Assuming‖K0‖F = 1, (7) can be reformulated
as:

min
K

rank(K)

s.t. Tr(SiK) ≤ ℓ ∀i, Tr(DjK) ≥ u ∀j,

Tr(KK0) ≥ β, ‖K‖F ≤ 1, K � 0,

(8)

whereβ is a function ofr and can be computed using bi-
nary search. Note that (8) is a special case ofRMP with the
convex setC being the intersection of the p.s.d. cone and
the unit Frobenius ball. Hence, we can useRMP-MW and
RMP-OCP to solve (8). Given(A, b) the oracle for both
the methods solves:

min
K

rank(K) : Tr(AK) ≥ b, ‖K‖F ≤ 1, K � 0. (9)

Let A = UΣUT be the eigenvalue decomposition ofA,
and letΛ be a diagonal matrix with just the positive entries

of Σ. Then the minimumk s.t.
√

∑k
i=1 Λ(i, i)2 ≥ b is

the solution to (9). This follows from elementary linear
algebra. Note that for the oracle solving (9),TO = O(n3).

Now, D = 1 and ∆ = O(1 + l2 + u2) as ‖Si‖F =
‖Dj‖F = 2. Using Theorem 4.1, theRMP-MW algo-

rithm obtains a solution with rankr ≤ O(1+u2+l2

ǫ2 log n)r∗

wherer∗ is the optimal rank. Similarly,RMP-OCP ob-

tains an
(

O(1+u2+l2

ǫ2 ), ǫ
)

-approximate solution. In Sec-

tion 6.2, we present empirical results forRMP-MW and
RMP-OCP algorithms on some standard UCI datasets.
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6. Experimental Results

We empirically evaluate and compare our algorithms to ex-
isting methods for generalRMP as well as low-rank ker-
nel learning. For generalRMP, we use synthetic examples
to compare our methods against the trace-norm heuristic
(Recht et al., 2007) and the log-det heuristic (Fazel et al.,
2001). The trace-norm heuristic relaxes the rank objective
to the trace-norm of the matrix, which is given by the sum
of its singular values. Note that the trace-norm of a matrix
is a convex function. The log-det heuristic relaxes the rank
objective to the log of the determinant of the matrix. For
the application ofRMP to low-rank kernel learning, we use
standard UCI datasets. All the presented results represent
the average over 20 runs.

6.1. Synthetic Datasets

First we use synthetic datasets by generating random ma-
tricesAi ∈ Sn, whereSn is the set ofn × n symmetric
matrices. We also generate a random positive semi-definite
matrix X0 ∈ Sn with ‖X0‖F ≤ 1, and use the obtained
X0 to generate constraints Tr(AiX) ≥ bi = Tr(AiX0).
The convex setC is fixed to be the intersection of the p.s.d
cone and the unit ball under the Frobenius norm. We fix
the number of constraints to be200 and the toleranceǫ for
RMP-MW andRMP-OCP to be5%. We use SeDuMi to
implement the trace-norm and log-det heuristics.

In Table 1, we compare the ranks of the solutions obtained
by our algorithms against the ones obtained by the trace-
norm and log-det heuristics. For smalln, both trace-norm
and log-det heuristic perform better thanRMP-MW and
RMP-OCP. Note that since the constraint matricesAi

are random, they satisfy (with high probability) the re-
stricted isometry property used in the analysis of (Recht
et al., 2007). However,RMP-OCP outperforms trace-norm
heuristic for largen (Table 1,n = 100) andRMP-MW

performs comparably. We attribute this phenomenon to the
Frobenius norm constraint for which the theoretical guar-
antees of (Recht et al., 2007) are not applicable. Also,
both trace-norm and log-det heuristic scale poorly with the
problem size and fail to obtain a result in reasonable time
even for moderately largen. In contrast, both our algo-
rithms scale well withn, with RMP-MW in particular able
to solve problems of sizes up ton = 5000.

6.2. Low-rank Kernel Learning

We evaluate the performance of our methods applied to the
problem of low-rank kernel learning, as described in Sec-
tion 5, for k-NN classification on standard UCI datasets.
We use two-fold cross validation withk = 5. The lower
and upper bounds for the similarity and dissimilarity con-
straints (l, u) are set using the30-th and70-th percentiles

Method\n 50 75 100 200 300
RMP-MW 23.25 11.25 7.3 2 2
RMP-OCP 12.8 7.5 5.3 2 2
Trace-norm 6.8 6.7 6.5 - -

LogDet 5 4.2 4.0 - -

Table 1.Rank of the matrices obtained by differentRMP meth-
ods for varying size of the constraint matrices (n). The number of
constraints generated (m) is fixed to be200. A “-” represents that
the method could not find a solution within 3 hours on a 2.6GHz
Pentium 4 machine. Note that for large problem sizes, both the
trace-norm and the log-det heuristics are not computationally vi-
able. Both our approaches outperform the trace-norm heuristic as
the problem size increases.

Dataset\Method GK MW OCP BK
Musk 80.80 93.11 98.15 81.51

(476) (44.1) (61.2) (61.2)
Heart 77.44 91.05 91.13 83.91

(267) (46.8) (39.5) (39.5)
Ionosphere 90.34 91.26 91.17 90.67

(350) (40) (27.9) (27.9)
Cancer 90.12 93.14 91.46 93.38

(569) (82) (94) (94)
Scale 66.34 73.78 72.46 72.11

(607) (146) (91) (91)

Table 2.Accuracies for5-Nearest Neighbor classification using
kernels obtained by different methods. Numbers in parentheses
represent the rank of the obtained solution. GK represents Gaus-
sian Kernel (σ = 0.1), MW representsRMP-MW, OCP rep-
resentsRMP-OCP and BK represents BurgKernel(Kulis et al.,
2006). Overall,RMP-OCP obtains the best accuracy.

of the observed distribution of distances between pairs of
points. We randomly select a set of40c2 pairs of points for
constraints, wherec is the number of classes in the dataset.
We run bothRMP-MW andRMP-OCP for T = 50 itera-
tions. Empirically our algorithms significantly outperform
the theoretical rank guarantees of Theorems (4.1) and (4.2).

Table 2 shows the accuracies achieved by the baseline
Gaussian kernel (withσ = 0.1), RMP-MW, RMP-OCP

and the Burg divergence (also called as LogDet diver-
gence) based low-rank kernel learning algorithm (BurgK-
ernel) of (Kulis et al., 2006). It can be seen from the ta-
ble that bothRMP-MW andRMP-OCP obtain a signifi-
cantly lower rank kernel than the baseline Gaussian kernel.
Further,RMP-MW andRMP-OCP achieve a substantially
higher accuracy than the Gaussian kernel. Our algorithms
also achieve a substantial improvement in accuracy over the
BurgKernel method. Note that we iterate our algorithms
for fewer iterations compared to the ones suggested by the
theoretical bounds, hence few of the constraints maybe un-
satisfied. This suggests that these unsatisfied constraints
maybe noisy constraints and have small effect on the gen-
eralization error. We leave further investigation into gener-
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alization error of our methods as a topic for future research.

Note that the BurgKernel method needs to be initialized
with a low-rank kernel. Typically, a few top eigenvectors of
the baseline kernel are used for this initialization. However,
selecting only a few top eigenvectors can lead to a poor
initial kernel, especially if the rank of the initial kernelis
high. This can further lead to poor accuracy for the BurgK-
ernel method, as indicated by our experiments. Instead, the
kernels obtained by our algorithms could be used toinitial-
ize the BurgKernel algorithm. For example, for the case
of the Heart dataset, initialization of BurgKernel algorithm
with the low-rank solution obtained byRMP-OCP method
achieves an accuracy of94.29 compared to83.91 achieved
when initialized with the top eigenvectors of the baseline
Gaussian kernel. Note that this also improves upon the ac-
curacy achieved byRMP-MW andRMP-OCP.

7. Conclusion

In this paper, we address the general problem of rank min-
imization over polyhedral sets and in particular the prob-
lem of low-rank kernel learning. We show that the prob-
lem is hard to approximate within a factor of2log1−ǫ ∆ (see
Theorem 3.1). Further, we introduce a relaxed notion of
approximation and present two novel approaches for solv-
ing RMP with provable guarantees. Our first approach is
based on the multiplicative weights update framework and
provides an(O(∆2D2

ǫ2 log n), ǫ)-approximate solution. Our
second approach is based on online convex programming
and provides a tighter bound ofO(∆2D2

ǫ2 ) for the rank of
the obtained matrix.

For future work, it would be interesting to see if the hard-
ness of approximation factor of Theorem 3.1 can be im-
proved; we believe it can be improved toO(∆2). Another
question of interest is whether the dependence onǫ in the
bounds of Theorems 4.1 and 4.2 can be improved.

The regret bounds of (Zinkevich, 2003) were improved in
(Hazan et al., 2006). However, the algorithms of (Hazan
et al., 2006) require stronger convexity properties which are
not satisfied in our application of OCP toRMP. It would
be interesting to see if the linear constraints in RMP can be
perturbed to satisfy the strong convexity properties, so that
the improved regret bounds of (Hazan et al., 2006) can be
used to achieve better bounds forRMP.

Our algorithms toRMP are motivated from an online learn-
ing perspective. However, for an optimization problem
such asRMP an understanding of the algorithms from an
optimization perspective would be highly desirable. In par-
ticular, intuitively there seems to be a correspondence be-
tween our methods and a primal-dual approach but we were
unable to obtain a rigorous connection. We believe that
such an understanding would be of importance in obtaining

new applications of the online learning approach to solving
optimization problems.
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Abstract

We address the problem of computing the
optimal Q-function in Markov decision prob-
lems with infinite state-space. We analyze
the convergence properties of several vari-
ations of Q-learning when combined with
function approximation, extending the anal-
ysis of TD-learning in (Tsitsiklis & Van Roy,
1996a) to stochastic control settings. We
identify conditions under which such approx-
imate methods converge with probability 1.
We conclude with a brief discussion on the
general applicability of our results and com-
pare them with several related works.

1. Introduction

Convergence of Q-learning with function approxima-
tion has been a long standing open question in rein-
forcement learning (Sutton, 1999). In general, value-
based reinforcement learning (RL) methods for opti-
mal control behave poorly when combined with func-
tion approximation (Baird, 1995; Tsitsiklis & Van Roy,
1996a). In this paper, we address this problem by an-
alyzing the convergence of Q-learning when combined
with linear function approximation. We identify a set
of conditions that imply the convergence of this ap-
proximation method with probability 1 (w.p.1), when
a fixed learning policy is used, and provide an interpre-
tation of the resulting approximation as the fixed point
of a Bellman-like operator. This motivates the analy-
sis of several variations of Q-learning when combined
with linear function approximation. In particular, we

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

study a variation of Q-learning using importance sam-
pling and an on-policy variant of Q-learning (SARSA).

The paper is organized as follows. We start in Sec-
tion 2 by describing Markov decision problems. We
proceed with our analysis of the Q-learning algorithm
and its variants, and produce our main results in Sec-
tion 3. We also compare our results with other related
works in the RL literature. We conclude with some
further discussion in Section 4.

2. Markov Decision Problems

Let (X,A,P, r, γ) be a Markov decision problem
(MDP) with a compact state-space X ⊂ Rp and a
finite action set A. The action-dependent kernel Pa
defines the transition probabilities for the underlying
controlled Markov chain {Xt} as

P [Xt+1 ∈ U | Xt = x,At = a] = Pa(x, U),

where U is any measurable subset of X . The A-valued
process {At} represents the control process: At is the
control action at time instant t.1 Solving the MDP
consists in determining the control process {At} max-
imizing the expected total discounted reward

V
(
{At} , x

)
= E

[ ∞∑
t=0

γtR(Xt, At) | X0 = x

]
,

where 0 ≤ γ < 1 is a discount-factor and R(x, a)
represents a random “reward” received for taking ac-
tion a ∈ A in state x ∈ X . For simplicity of no-
tation, we consider a bounded deterministic function
r : X ×A× X −→ R assigning a reward r(x, a, y) ev-
ery time a transition from x to y occurs after taking

1We take the control process {At} to be adapted to the
σ-algebra induced by {Xt}.
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action a. This means that

E [R(x, a)] =
∫
X
r(x, a, y)Pa(x, dy).

The optimal value function V ∗ is defined for each state
x ∈ X as

V ∗(x) = max
{At}

V
(
{At} , x

)
=

= max
{At}

E

[ ∞∑
t=0

γtR(Xt, At) | X0 = x

]
and verifies the Bellman optimality equation

V ∗(x) = max
a∈A

∫
X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy). (1)

V ∗(x) represents the expected total discounted reward
received along an optimal trajectory starting at state
x. We can also define the optimal Q-function Q∗ as

Q∗(x, a) =
∫
X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy), (2)

representing the expected total discounted reward
along a trajectory starting at state x obtained by
choosing a as the first action and following the optimal
policy thereafter. The control process {At} defined as

At = arg max
a∈A

Q∗(Xt, a), ∀t,

is optimal in the sense that V ({At} , x) = V ∗(x) and
defines a mapping π∗ : X → A known as the optimal
policy. The optimal policy determines the optimal de-
cision rule for a given MDP.

More generally, a (Markov) policy is any mapping πt
defined over X ×A generating a control process {At}
verifying, for all t,

P [At = a | Xt = x] = πt(x, a), ∀t.

We write V πt(x) instead of V ({At} , x) if the control
process {At} is generated by policy πt. A policy πt is
stationary if it does not depend on t and deterministic
if it assigns probability 1 to a single action in each
state and is thus represented as a map πt : X → A for
every t. Notice that the optimal control process can be
obtained from the optimal (stationary, deterministic)
policy π∗, which can in turn be obtained from Q∗.
Therefore, the optimal control problem is solved once
the function Q∗ is known for all pairs (x, a).

Now given any real function q defined over X ×A, we
define the Bellman operator

(Hq)(x, a) =
∫
X

[
r(x, a, y) + γmax

u∈A
q(y, u)

]
Pa(x, dy).

(3)

The function Q∗ in (2) is the fixed-point of H and,
since this operator is a contraction in the sup-norm, a
fixed-point iteration can be used to determine Q∗ (at
least theoretically).

2.1. The Q-Learning Algorithm

We previously suggested that a fixed-point iteration
could be used to determine the function Q∗. In prac-
tice, this requires two important conditions:

• The kernel P and the reward function r are known;

• The successive estimates for Q∗ can be repre-
sented compactly and stored in a computer with
finite memory.

If P and/or r are not known, a fixed-point iteration us-
ing H is not possible. To solve this problem, Watkins
proposed in 1989 the Q-learning algorithm (Watkins,
1989). Q-learning proceeds as follows: consider a
MDP M = (X,A,P, r, γ) and suppose that {xt} is
an infinite sample trajectory of the underlying Markov
chain obtained with some policy πt. The correspond-
ing sample control process is denoted as {at} and the
sequence of obtained rewards as {rt}. Given any ini-
tial estimate Q0, Q-learning successively updates this
estimate using the rule

Qt+1(x, a) = Qt(x, a) + αt(x, a)∆t, (4)

where {αt} is a step-size sequence and ∆t is the tem-
poral difference at time t,

∆t = rt + γmax
b∈A

Qt(xt+1, b)−Qt(xt, at). (5)

If both X and A are finite sets, each estimate Qt is
simply a |X | × |A| matrix and can be represented ex-
plicitly in a computer. In that case, the convergence of
Q-learning and several other related algorithms (such
as TD(λ) or SARSA) has been thoroughly studied (see,
for example, (Bertsekas & Tsitsiklis, 1996) and refer-
ences therein). However, if either X or A are infinite
or very large, explicitly representing each Qt becomes
infeasible and some form of compact representation is
needed (e.g., using function approximation). In this
paper, we address how several RL methods such as Q-
learning and SARSA can be combined with function
approximation and still retain their main convergence
properties.

3. Reinforcement Learning with Linear
Function Approximation

In this section, we address the problem of determining
the optimal Q-function for MDPs with infinite state-
space X . Let Q = {Qθ} be a family of real-valued

665



An Analysis of Reinforcement Learning with Function Approximation

functions defined in X × A. It is assumed that the
function class is linearly parameterized, so that Q can
be expressed as the linear span of a fixed set of M
linearly independent functions φi : X × A → R. For
each M -dimensional parameter vector θ ∈ RM , the
function Qθ ∈ Q is defined as,

Qθ(x, a) =
M∑
i=1

φi(x, a)θ(i) = φ>(x, a)θ,

where > represents the transpose operator. We will
also denote the above function by Q(θ) to emphasize
the dependence on θ over the dependency on (x, a).

Let π be a fixed stochastic, stationary policy and sup-
pose that {xt}, {at} and {rt} are sampled trajectories
of states, actions and rewards obtained from the MDP
using policy π. In the original Q-learning algorithm,
the Q-values are updated according to (4). The tem-
poral difference ∆t can be interpreted as a 1-step esti-
mation error with respect to the optimal function Q∗.
The update rule in Q-learning “moves” the estimates
Qt closer to the desired function Q∗, minimizing the
expected value of ∆t.

In our approximate setting, we apply the same under-
lying idea to obtain the update rule for approximate
Q-learning:

θt+1 = θt + αt∇θQθ(xt, at)∆t

= θt + αtφ(xt, at)∆t,
(6)

where, as above, ∆t is the temporal difference at time
t defined in (5). Notice that (6) updates θt using
the temporal difference ∆t as the error. The gradient
∇θQθ provides the “direction” in which this update is
performed.

To establish convergence of the algorithm (6) we adopt
an ODE argument, establishing the trajectories of
the algorithm to closely follow those of an associated
ODE with a globally asymptotically stable equilibrium
point. This will require several regularity properties on
the policy π and on its induced Markov chain that will,
in turn, motivate the study of the on-policy version of
the algorithm. This on-policy algorithm can be seen
as an extension of SARSA to infinite settings.

3.1. Convergence of Q-Learning

We now proceed by identifying conditions that ensure
the convergence of Q-learning with linear function ap-
proximation as described by (6). Due to space limita-
tions, we overlook some of the technical details in the
proofs that can easily be filled in.

We start by introducing some notation that will
greatly simplify the presentation. Given an MDP

M = (X,A,P, r, γ) with compact state space X ⊂ Rp,
let (X ,Pπ) be the Markov chain induced by a fixed pol-
icy π. We assume the chain (X ,Pπ) to be uniformly
ergodic with invariant probability measure µX and the
policy π to verify π(x, a) > 0 for all a ∈ A and µX -
almost all x ∈ X . We denote by µπ the probability
measure defined for each measurable set U ⊂ X and
each action a ∈ A as

µπ(U × {a}) =
∫
U

π(x, a)µX(dx).

Let now {φi, i = 1, . . . ,M} be a set of bounded, lin-
early independent basis functions to be used in our
approximate Q-learning algorithm. We denote by Σπ
the matrix defined as

Σπ = Eπ
[
φ(x, a)φ>(x, a)

]
=
∫
X×A

φ φ>dµπ

Notice that the above expression is well-defined and
independent of the initial distribution for the chain,
due to our assumption of uniform ergodicity.

For fixed θ ∈ RM and x ∈ X , define the set of maxi-
mizing actions at x as

Aθx = {a∗ ∈ A | φ>(x, a∗)θ = max
a

φ>(x, a)θ}

and the greedy policy with respect to θ as any policy
that, at each state x, assigns positive probability only
to actions in Aθx. Finally, let φx denote the row-vector
φ>(x, a), where a is a random action generated accord-
ing to the policy π at state x; likewise, let φθx denote
the row-vector φ>(x, aθx), where aθx is now any action
in Aθx. We now introduce the θ-dependent matrix

Σ∗π(θ) = Eπ
[(
φθx
)>
φθx

]
.

By construction, both Σπ and Σ∗π are positive defi-
nite, since the functions φi are assumed linearly inde-
pendent. Notice also the difference between Σπ and
each Σ∗π: the actions in the definition of the former
are taken according to π while in the latter they are
taken greedily with respect to a particular θ.

We are now in position to introduce our first result.

Theorem 1 Let M, π and {φi, i = 1, . . . ,M} be as
defined above. If, for all θ,

Σπ > γ2Σ∗π(θ) (7)

and the step-size sequence verifies∑
t

αt =∞
∑
t

α2
t <∞,
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then the algorithm in (6) converges w.p.1 and the limit
point θ∗ verifies the recursive relation

Q(θ∗) = ΠQHQ(θ∗),

where ΠQ is the orthogonal projection onto Q.2

Proof We establish the main statement of the theo-
rem using a standard ODE argument.

The assumptions on the chain (X ,Pπ) and basis func-
tions {φi, i = 1, . . . ,M} and the fact that π(x, a) > 0
for all a ∈ A and µX -almost every x ∈ X ensure the
applicability of Theorem 17 in page 239 of (Benveniste
et al., 1990). Therefore, the convergence of the algo-
rithm can be analyzed in terms of the stability of the
equilibrium points of the associated ODE

θ̇ = Eπ
[
φ>x
(
r(x, a, y) + γφθyθ − φxθ

)]
, (8)

where we omitted the explicit dependence of θ on t to
avoid excessively cluttering the expression. If the ODE
(8) has a globally asymptotically stable equilibrium
point, this implies the algorithm (6) to converge w.p.1
(Benveniste et al., 1990). Let then θ1(t) and θ2(t) be
two trajectories of the ODE starting at different initial
conditions, and let θ̃(t) = θ1(t) − θ2(t). From (8), we
get

d

dt
‖θ̃‖22 = −2θ̃>Σπ θ̃ + 2γEπ

[(
φxθ̃

)(
φθ1y θ1 − φθ2y θ2

)]
.

Notice now that, from the definition of φθ1y and φθ2y ,

φθ1y θ2 ≤ φθ2y θ2 φθ2y θ1 ≤ φθ1y θ1.

Taking this into account and defining the sets S+ =
{(x, a) | φ>(x, a)θ̃ > 0} and S− = X × A − S+, the
previous expression becomes

d

dt
‖θ̃‖22 ≤ −2θ̃>Σπ θ̃ + 2γEπ

[(
φxθ̃

)(
φθ1y θ̃

)
IS+

]
+ 2γEπ

[(
φxθ̃

)(
φθ2y θ̃

)
IS−
]
,

where IS represents the indicator function for the set
S. Applying Hölder’s inequality to each of the expec-

2The orthogonal projection is naturally defined in the
(infinite-dimensional) Hilbert space containing Q with
inner-product given by

〈f, g〉 =

∫
X×A

f g dµπ.

tations above, we get

d

dt
‖θ̃‖22 ≤ −2θ̃>Σπ θ̃

+ 2γ
√

Eπ
[
(φxθ̃)2IS+

]
Eπ
[
(φθ1x θ̃)2IS+

]
+ 2γ

√
Eπ
[
(φxθ̃)2IS−

]
Eπ
[
(φθ2x θ̃)2IS−

]
and a few simple computations finally yield

d

dt
‖θ̃‖22 ≤ −2θ̃>Σπ θ̃

+ 2γ
√
θ̃>Σπ θ̃max

(
θ̃>Σ∗π(θ1)θ̃, θ̃>Σ∗π(θ2)θ̃).

Since, by assumption, Σπ > γ2Σ∗π(θ), we can conclude
from the expression above that

d

dt
‖θ̃‖22 < 0.

This means, in particular, that θ̃(t) converges asymp-
totically to the origin, i.e., the ODE (8) is globally
asymptotically stable. Since the ODE is autonomous
(i.e., time-invariant), there exists one globally asymp-
totically stable equilibrium point for the ODE, that
verifies the recursive relation

θ∗ = Σ−1
π Eπ

[
φx
(
r(x, a, y) + γφθ

∗

y θ
∗)] . (9)

Since Σπ is, by construction, positive definite, the in-
verse in (9) is well-defined. Multiplying (9) by φ>(x, a)
on both sides yields the desired result. �

It is now important to observe that condition (7) is
quite restrictive: since γ is usually taken close to 1,
condition (7) essentially requires that, for every θ,

max
a∈A

φ>(x, a)θ ≈
∑
a∈A

π(x, a)φ>(x, a)θ.

Therefore, such condition will seldom be met in prac-
tice, since it implies that the learning policy π is al-
ready close to the policy that the algorithm is meant
to compute. In other words, the maximization above
yields a policy close to the policy used during learning.
And, when this is the case, the algorithm essentially
behaves like an on-policy algorithm.

On the other hand, the above condition can be ensured
by considering only a local maximization around the
learning policy π. This is the most interesting aspect
of the above result: it explicitly relates how much in-
formation the learning policy provides about greedy
policies, as a function of γ. To better understand this,

667



An Analysis of Reinforcement Learning with Function Approximation

notice that each policy π is associated with a partic-
ular invariant measure on the induced chain (X ,Pπ).
In particular, the measure associated with the learn-
ing policy may be very different from the one induced
by the greedy/optimal policy. Taking into account the
fact that γ measures, in a sense, the “importance of
the future”, Theorem 1 basically states that:

In problems where the performance of the agent greatly
depends on future rewards (γ ≈ 1), the information
provided by the learning policy can only be “safely gen-
eralized” to nearby greedy policies, in the sense of (7).
In problems where the performance of the agent is less
dependent on future rewards (γ � 1), the information
provided by the learning policy can be safely generalized
to more general greedy policies.

Suppose then that the maximization in the update
equation (6) is to be replaced by a local maximiza-
tion. In other words, instead of maximizing over all
actions in A, the algorithm should maximize over a
small neighborhood of the learning policy π (in policy
space). The difficulty with this approach is that such
maximization can be hard to implement. The use of
importance sampling can readily overcome such diffi-
culty, by making the maximization in policy-space im-
plicit. The algorithm thus obtained, which resembles
in many aspects the one proposed in (Precup et al.,
2001), is described by the update rule

θt+1 = θt + αtφ(xt, at)∆̂t, (10)

where the modified temporal difference ∆̂t is given by

∆̂t = rt + γ
∑
b

πθ(xt+1, b)
π(xt+1, b)

Qθt(xt+1, b)−Qθt(xt, at),

(11)
where πθ is, for example, a θ-dependent ε-greedy pol-
icy close to the learning policy π.3 A possible imple-
mentation of such algorithm is sketched in Figure 1.
We denoted by πN the behavior policy at iteration N
of the algorithm; in the stopping condition for the al-
gorithm, any adequate policy norm can be used.

3.2. SARSA with Linear Function
Approximation

The analysis in the previous subsection suggests that
on-policy algorithms may potentially yield more re-
liable convergence properties. Such fact has already
been observed in (Tsitsiklis & Van Roy, 1996a; Perkins
& Pendrith, 2002). In this subsection we thus focus on

3Given ε > 0, a policy π is ε-greedy with respect to
a function Qθ ∈ Q if, at each state x ∈ X , it chooses
a random action with probability ε and a greedy action
a ∈ Aθx with probability (1− ε).

Algorithm 1 Modified Q-learning.
Require: Initial policy π0;
1: Initialize X0 = x0 and set N = 0;
2: for t = 0 until T do
3: Sample At ∼ πN (xt, ·);
4: Sample next-state Xt+1 ∼ Pat

(xt, ·);
5: rt = r(xt, at, xt+1);
6: Update θt according to (10);
7: end for
8: Set πN+1(x, a) = πθ∗(x, a);
9: N = N + 1;

10: if ‖πN − πN−1‖ then
11: return πN ;
12: else
13: Goto 2;
14: end if

on-policy algorithms. We analyze the convergence of
SARSA when combined with linear function approxi-
mation. In our main result, we recover the essence of
the result in (Perkins & Precup, 2003), although in a
somewhat different setting. The main differences be-
tween our work and that in (Perkins & Precup, 2003)
are discussed further ahead.

Once again, we consider a familyQ of real-valued func-
tions, the linear span of a fixed set of M linearly inde-
pendent functions φi : X × A → R, and derive an
on-policy algorithm to compute a parameter vector
θ∗ such that φ>(x, a)θ∗ approximates the optimal Q-
function. To this purpose, and unlike what has been
done so far, we now consider a θ-dependent learning
policy πθ verifying πθ(x, a) > 0 for all θ. In particular,
we consider at each time step a learning policy πθt

that
is ε-greedy with respect to φ>(x, a)θt and Lipschitz
continuous with respect to θ, with Lipschitz constant
C (with respect to some preferred metric). We fur-
ther assume that, for every fixed θ, the Markov chain
(X ,Pθ) induced by such policy is uniformly ergodic.

Let then {xt}, {at} and {rt} be sampled trajectories
of states, actions and rewards obtained from the MDP
M = (X,A,P, r, γ) using (at each time-step) the θ-
dependent policy πθt

. The update rule for our approx-
imate SARSA algorithm is:

θt+1 = θt + αtφ(xt, at)∆t, (12)

where ∆t is the temporal difference at time t,

∆t = rt + γφ>(xt+1, at+1)θt − φ>(xt, at)θt.

In order to use the SARSA algorithm above to approx-
imate the optimal Q-function, it is necessary to slowly
decay the exploration rate, ε, to zero, while guaran-
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teeing the learning policy to verify the necessary reg-
ularity conditions (namely, Lipschitz continuous w.r.t.
θ). However, as will soon become apparent, decreasing
the exploration rate to zero will render our convergent
result (and other related results) not applicable.

We are now in position to introduce our main result.

Theorem 2 LetM, πθt
and {φi, i = 1, . . . ,M} be as

defined above. Let C be the Lipschitz constant of the
learning policy πθ with respect to θ. Assume that the
step-size sequence verifies∑

t

αt =∞
∑
t

α2
t <∞.

Then, there is C0 > 0 such that, if C < C0, the algo-
rithm in (12) converges w.p.1.

Proof We again use an ODE argument to establish
the statement of the theorem.

As before, the assumptions on (X ,Pθ) and basis func-
tions {φi, i = 1, . . . ,M} and the fact that the learning
policy is Lipschitz continuous with respect to θ and
verifies π(x, a) > 0 ensure the applicability of Theo-
rem 17 in page 239 of (Benveniste et al., 1990). There-
fore, the convergence of the algorithm can be analyzed
in terms of the stability of the associated ODE:

θ̇ = Eθ
[
φ>x
(
r(x, a, y) + γφyθ − φxθ

)]
. (13)

Notice that the expectation is taken with respect to
the invariant measure of the chain and learning pol-
icy, both θ-dependent. To establish global asymptotic
stability, we re-write (13) as

θ̇(t) = Aθθ(t) + bθ

where

Aθ = Eθ
[
φ>x
(
γφy − φx

)]
; bθ = Eθ

[
φ>x r(x, a, y)

]
.

An equilibrium point of (13) must verify θ∗ = A−1
θ∗ bθ∗

and the existence of such equilibrium point has been
established in (de Farias & Van Roy, 2000) (Theo-
rem 5.1). Let θ̃(t) = θ(t)− θ∗. Then,

d

dt
‖θ̃‖22 = 2θ̃>

(
Aθθ + bθ

)
=

= 2θ̃>
(
Aθθ −Aθ∗θ

∗ + bθ − bθ∗
)
.

Let

λA = sup
θ
‖Aθ −Aθ∗‖2 λb = sup

θ 6=θ∗

‖bθ − bθ∗‖2
‖θ − θ∗‖2

,

where the norm in the definition of λA is the induced
operator norm and the one in the definition of λb is

the regular Euclidian norm. The previous expression
thus becomes

d

dt
‖θ̃‖22 =

= 2θ̃>Aθ∗ θ̃ + 2θ̃>(Aθ∗ −Aθ)θ + 2θ̃>(bθ − bθ∗)

≤ 2θ̃>Aθ∗ θ̃ + 2(λA + λb)‖θ̃‖22.

Letting λ = λA + λb, the above expression can be
written as

d

dt
‖θ̃‖22 ≤ θ̃>

(
Aθ∗ + λI)θ̃.

The fact that the learning policy is assumed Lipschitz
w.r.t. θ and the uniform ergodicity of the correspond-
ing induced chain implies that Aθ and bθ are also
Lipschitz w.r.t. θ (with a different constant). This
means that λ goes to zero with C and, therefore, for
C sufficiently small, (A+λI) is a negative definite ma-
trix.4 Therefore, the ODE (13) is globally asymptoti-
cally stable and the conclusion of the theorem follows.

�

Several remarks are now in order. First of all, The-
orem 2 basically states that, for fixed ε if the depen-
dence of the learning policy πθ can be made sufficiently
“smooth”, then SARSA converges w.p.1. This result
is similar to the result in (Perkins & Precup, 2003),
although the algorithms are not exactly similar: we
consider a continuing task, while the algorithm fea-
tured in (Perkins & Precup, 2003) is implemented in
an episodic fashion. Furthermore, in our case, con-
vergence was established using an ODE argument, in-
stead of the contraction argument in (Perkins & Pre-
cup, 2003). Nevertheless, both methods of proof are,
in its essence, equivalent and the results in both papers
concordant.

A second remark is related with the implementation
of SARSA with a decaying exploration policy. The
analysis of one such algorithm could be conducted us-
ing, once again, an ODE argument. In particular,
SARSA could be described as a two-time-scale algo-
rithm: the iterations of the main algorithm (corre-
sponding to (12)) would develop on a faster time-scale
and the decaying exploration rate would develop at a
slower time-scale. The analysis in (Borkar, 1997) could
then be replicated. However, it is well-known that, as ε
approaches zero, the learning policy will approach the
greedy policy w.r.t. θ which is, in general, discontinu-
ous. Therefore, there is little hope that the smoothness

4The fact that Aθ is negative definite has been estab-
lished in several works. See, for example, Lemma 3 in
(Perkins & Precup, 2003) or, in a slightly different setting
(easily extendable to our setting) the proof of Theorem 1
in (Tsitsiklis & Van Roy, 1996a).
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condition in Theorem 2 (or its equivalent in (Perkins
& Precup, 2003)) can be met as ε approaches to zero.

4. Discussion

We now briefly discuss some of the assumptions in the
above theorems.

We start by emphasizing that all stated conditions are
only sufficient, meaning that it is possible that conver-
gence may occur even if some (or all) fail to hold. We
also discuss the relation between our results and other
related works from the literature.

Seconsly, uniform ergodicity of a Markov chain essen-
tially means that the chain quickly converges to a sta-
tionary behavior uniformly over the state-space and
we can study any properties of the stationary chain by
direct sampling.5 This property and the requirement
that π(x, a) > 0 for all a ∈ A and µX -almost all x ∈ X
can be interpreted as a continuous counterpart to the
usual condition that all state-action pairs are visited
infinitely often. In fact, uniform ergodicity implies
that all the regions of the state-space with positive µX
measure are “sufficiently” visited (Meyn & Tweedie,
1993), and the condition π(x, a) > 0 ensures that, at
each state, every action is “sufficiently” tried. It ap-
pears to be a standard requirement in this continuous
scenario, as it has also been used in other works (Tsit-
siklis & Van Roy, 1996a; Singh et al., 1994; Perkins &
Precup, 2003).6 The requirement that π(x, a) > 0 for
all a ∈ A and µX -almost all x ∈ X also corresponds to
the concept of fair control as introduced in (Borkar,
2000).

We also remark that the divergence example in (Gor-
don, 1996) is due to the fact that the learning policy
fails to verify the Lipschitz continuity condition stated
in Theorem 2 (as discussed in (Perkins & Pendrith,
2002)).

4.1. Related Work

In this paper, we analyzed how RL algorithms can be
combined with linear function approximation to ap-
proximate the optimal Q-function in MDPs with in-
finite state-spaces. In the last decade or so, several
authors have addressed this same problem from differ-
ent perspectives. We now briefly discuss several such

5Explicit bounds on the rate of convergence to station-
arity are available in the literature (Meyn & Tweedie, 1994;
Diaconis & Saloff-Coste, 1996; Rosenthal, 2002). However,
for general chains, such bounds tend to be loose.

6Most of these works make use of geometric ergodicity
which, since we admit a compact state-space, is a conse-
quence of uniform ergodicity.

approaches and their relation to the results in this pa-
per.

One possible approach is to rely on soft-state aggrega-
tion (Singh et al., 1994; Gordon, 1995; Tsitsiklis & Van
Roy, 1996b), partitioning the state-space into “soft”
regions. Treating the soft-regions as “hyper-states”,
these methods then use standard learning methods
(such as Q-learning or SARSA) to approximate the op-
timal Q-function. The main differences between such
methods and those using linear function approxima-
tion (such as the ones portrayed here) are that, in the
former, only one component of the parameter vector is
updated at each iteration and the basis functions are,
by construction, restrained to be positive and to add
to one at each point of the state-space.

Sample-based methods (Ormoneit & Sen, 2002;
Szepesvári & Smart, 2004) further generalize the ap-
plicability of soft-state aggregation methods by us-
ing spreading functions/kernels (Ribeiro & Szepesvári,
1996). Sample-based methods thus exhibit superior
convergence rate when compared with simple soft-
state aggregation methods, although under somewhat
more restrictive conditions.

Finally, RL with general linear function approxima-
tion was thorougly studied in (Tsitsiklis & Van Roy,
1996a; Tadić, 2001). Posterior works extended the ap-
plicability of such results. In Precup01icml, an off-
policy convergent algorithm was proposed that uses
an importance-sampling principle similar to the one
described in Section 3. In (Perkins & Precup, 2003),
the authors establish the convergence of SARSA with
linear function approximation.

4.2. Concluding Remarks

We conclude by observing that all methods analyzed
here as well as those surveyed above experience a
degradation in performance as the distance between
the target function and the chosen linear space in-
creases. If the functions in the chosen linear space
provide only a poor approximation of the desired func-
tion, there are no practical guarantees on the useful-
ness of such approximation. The error bounds derived
in (Tsitsiklis & Van Roy, 1996a) are reassuring in that
they state that the performance of approximate TD
“gracefully” degrades as the distance between the tar-
get function and the chosen linear space increases. Al-
though we have not addressed such topic in our anal-
ysis, we expect the error bounds in (Tsitsiklis & Van
Roy, 1996a) to carry with little changes to our set-
ting. Finally, we make no use of eligibility traces in
our algorithms. However, it is just expectable that the
methods described herein can easily be adapted to ac-
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commodate for eligibility traces, this eventually yield-
ing better approximations (with tighter error bounds)
(Tsitsiklis & Van Roy, 1996a)
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Abstract

Sampling is a popular way of scaling up ma-
chine learning algorithms to large datasets.
The question often is how many samples
are needed. Adaptive stopping algorithms
monitor the performance in an online fash-
ion and they can stop early, saving valu-
able resources. We consider problems where
probabilistic guarantees are desired and
demonstrate how recently-introduced empir-
ical Bernstein bounds can be used to design
stopping rules that are efficient. We provide
upper bounds on the sample complexity of
the new rules, as well as empirical results on
model selection and boosting in the filtering
setting.

1. Introduction

Being able to handle large datasets and streaming data
is crucial to scaling up machine learning algorithms to
many-real world settings. When making even a sin-
gle pass through the data is prohibitive, sampling may
offer a good solution. In order for the resulting algo-
rithms to be theoretically sound, sampling techniques
that come with probabilistic guarantees are desirable.
For example, when estimating the error of a classi-
fier on a large dataset one may want to sample until
the estimated error is within some small number ǫ of
the true error with probability at least 1− δ. The key
problem is one of stopping or determining the required
number of samples. Taking too many samples will re-
sult in inefficient algorithms, while taking too few may
not be enough to achieve the desired guarantees.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

Finite sample bounds, such as Hoeffding’s inequal-
ity (Hoeffding, 1963), are the key technique used
by recent, non-parametric stopping algorithms with
probabilistic guarantees. While these stopping algo-
rithms have proved to be effective for scaling up ma-
chine learning algorithms (Bradley & Schapire, 2008),
(Domingos & Hulten, 2001), they can be significantly
improved by incorporating variance information in a
principled manner. We show how to employ the re-
cently introduced empirical Bernstein bounds (Audib-
ert et al., 2007a) to improve stopping algorithms and
provide sample complexity bounds and empirical re-
sults to demonstrate the effect of incorporating vari-
ance information.

Before proceeding, we identify two classes of stopping
problems that will be examined. The first class con-
cerns problems where some unknown quantities have
to be measured either up to some prespecified level
of accuracy or to support making a binary decision.
Examples in this class include stopping with a fixed
relative or absolute accuracy, with applications in hy-
pothesis testing such as deciding on the sign of the
mean, independence tests, and change detection. In
problems belonging to the second group, the task is to
pick the best option from a finite pool while measuring
their performance using samples. Some notable exam-
ples include various versions of bandit problems, Ho-
effding Races (Maron & Moore, 1993), and the general
framework for scaling up learning algorithms proposed
by Domingos (2001).

The paper is organized as follows. In Section 2 we ex-
amine Hoeffding’s inequality and introduce the empir-
ical Bernstein bound. In Section 3, we introduce a new
stopping algorithm for stopping with a predefined rel-
ative accuracy and show that it is more efficient than
previous algorithms. Section 4 demonstrates how a
simple application of the empirical Bernstein bound
can result in substantial improvements for problems
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from the second class. Conclusions and future work
directions are presented in Section 5.

2. Hoeffding Bounds vs. Empirical

Bernstein Bounds

Let X1, . . . , Xt real-valued i.i.d. random variables
with range R and, mean µ, and let Xt = 1/t

∑t
i=1 Xi.

Hoeffding’s inequality (Hoeffding, 1963) states that
with probability at least 1− δ

|Xt − µ| ≤ R

√

log(2/δ)

2t
.

Due to its generality, Hoeffding’s inequality has been
widely used in online learning scenarios. A drawback
of the bound is that it scales linearly with the range R

and does not scale with the variance of Xi. If a bound
on the variance is known, Bernstein’s inequality can be
used instead, which can yield significant improvements
when the variance bound is small relative to the range.
Since useful a priori bounds on the variance are rarely
available, this approach is not practical.

An approach that is more suitable to online scenar-
ios is to apply Bernstein’s inequality to the sum of
X1, . . . , Xt, as well as the sum of the squares to obtain
a single bound on the mean of X1, . . . , Xt. The re-
sulting bound, which we will refer to as the empirical
Bernstein bound (Audibert et al., 2007a) states that
with probability at least 1− δ

|Xt − µ| ≤ σt

√

2 log (3/δ)

t
+

3R log (3/δ)

t
,

where σt is the empirical standard deviation of
X1, . . . , Xt: σ2

t = 1
t

∑t
i=1(Xi − Xt)

2. The term in-
volving the range R decreases at the rate of t−1 and
quickly becomes negligible when the variance is large,
while the square root term depends on σt instead of
R. Hence, when σt ≪ R the empirical Bernstein
bound quickly becomes much tighter than Hoeffding’s
inequality.

3. Stopping Rules

Let X1, X2, . . . be i.i.d. random variables with mean
µ and variance σ2. We will refer to an algorithm as a
stopping rule if at time t it observes Xt and based on
past observations decides whether to stop or continue
sampling. If a stopping rule S returns µ̂ that satisfies

P [|µ̂− µ| ≤ ǫ|µ|] ≥ 1− δ, (1)

then S is a (ǫ, δ)-stopping rule and µ̂ is an (ǫ, δ)-
approximation of µ. In this section, we develop an
(ǫ, δ)-stopping rule for bounded Xi.

Algorithms proposed for this problem include the
Nonmonotonic Adaptive Sampling (NAS) algorithm,
shown as Algorithm 1, due to Domingo et al. (2000a).
The general idea is to first use Hoeffding’s inequal-
ity to construct a sequence {αt} such that the event
E =

{
|Xt − µ| ≤ αt, t ∈ N

+
}

occurs with probability
at least 1 − δ, and then use this sequence to design a
stopping criterion that stops only if

∣
∣Xt − µ

∣
∣ ≤ ǫ|µ|

given that E holds.

Algorithm 1 Algorithm NAS

t← 0
repeat

t← t + 1
Obtain Xt

α←
√

(1/2t) log(t(t + 1)/δ)
until |Xt| < α(1 + 1/ǫ)
return Xt

Domingo et al. (2000a) argue that if T is the number
of samples after which NAS stops, and |µ| > 0, then
there exists a constant C such that with probability at
least 1− δ

T < C · R2

ǫ2µ2

(

log
2

δ
+ log

R

ǫµ

)

. (2)

The assumption that |µ| > 0 is necessary for guaran-
teeing that the algorithm will indeed stop, and will be
assumed for the rest of the section.

Dagum et al. (2000) introduced the AA algorithm for
the case of bounded and nonnegative Xi. The AA al-
gorithm is a three step procedure. In the first step,
an (max(

√
ǫ, 1/2), δ/3)-approximation of µ, µ̃, is ob-

tained. In the second step µ̃ is used to determine the
number of samples necessary to produce an estimate
σ̃2 of σ2 such that max(σ̃2, ǫµ̃) is a high probabil-
ity upper bound on max(σ2, ǫµ)/2. In the last step,

c max(σ̃2, ǫµ̃) log(1/δ)
ǫ2µ̃2 samples are drawn and their av-

erage is returned as µ̂, where c is a universal constant.

Dagum et al. (2000) prove that µ̂ is indeed an (ǫ, δ)-
approximation of µ and that that if T is the number
of samples taken by AA, then there exists a constant
C such that with probability at least 1− δ

T ≤ C ·max (σ2, ǫµ) · 1

ǫ2µ2
log

2

δ
. (3)

In addition, Dagum et al. prove that if T is the number
of samples taken by any (ǫ, δ)-stopping rule, then there
exists a constant C′ such that with probability at least
1− δ

T ≥ C′ ·max (σ2, ǫµ) · 1

ǫ2µ2
log

2

δ
.
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Hence, for bounded Xi, the AA algorithm requires
a number of samples that is at most a multiplicative
constant larger than that required by any other (ǫ, δ)-
stopping rule. In this sense the algorithm achieves
“optimal” efficiency, up to a multiplicative constant.

While the AA algorithm is able to take advantage of
variance, it requires the random variables to be non-
negative. Any trivial extension of the AA algorithm
to the case of signed random variables seems unlikely
since the rule heavily relies on the monotonicity of par-
tial sums that is present in the nonnegative case. On
the other hand, Equation (2) suggests that the NAS
algorithm is not able to take advantage of variance.

As the first demonstration of how the empirical Bern-
stein bound can be used to design improved stop-
ping algorithms, we propose a new algorithm, EBStop,
which uses empirical Bernstein Bounds to achieve
nearly the same scaling properties as the AA algo-
rithm and, like the NAS algorithm, only requires the
random variables to be bounded.

3.1. EBStop

Similarly to the NAS algorithm, EBStop relies on a
sequence {ct} with the property that the event E =
{
∣
∣Xt − µ

∣
∣ ≤ ct, t ∈ N

+ } occurs with probability at
least 1 − δ. Let dt be a positive sequence satisfying
∑∞

t=1 dt ≤ δ and let

ct = σt

√

2 log (3/dt)

t
+

3R log (3/dt)

t
.

Since {dt} sums to at most δ and (Xt−ct, Xt +ct) is a
1− dt confidence interval for µ obtained from the em-
pirical Bernstein bound, by a union bound argument,
the event E indeed occurs with probability at least
1−δ. In our work, we use dt = c/tp and c = δ(p−1)/p.

The pseudocode for EBStop is shown as Algorithm 2,
but the general idea is as follows. After drawing t

samples, we set LB to max(0, max1≤s≤t |Xs|− cs) and
UB to min1≤s≤t(|Xs|+cs). EBStop terminates as soon
as (1+ǫ)LB ≥ (1−ǫ)UB and returns µ̂ = sgn(Xt)·1/2·
[(1 + ǫ)LB +(1− ǫ) UB].

To see why µ̂ is an (ǫ, δ)-approximation, suppose the
stopping condition has been satisfied and event E
holds. Then

|µ̂| ≤ 1/2 · [(1 + ǫ)LB + (1 + ǫ)LB] ≤ (1 + ǫ)|µ|,

and similarly (1 − ǫ)|µ| ≤ |µ̂|. From the definition of
LB, it also follows that |Xt| > ct ≥ |Xt − µ| which
implies that sgn(µ̂) = sgn(µ). Since event E holds
with probability at least 1 − δ, µ̂ is indeed an (ǫ, δ)-
approximation of µ.

Algorithm 2 Algorithm EBStop

LB ← 0
UB ←∞
t← 1
Obtain X1

while (1 + ǫ)LB < (1− ǫ)UB do

t← t + 1
Obtain Xt

LB ← max(LB, |Xt| − ct)
UB ← min(UB, |Xt|+ ct)

end while

return sgn(Xt) · 1/2· [(1 + ǫ)LB +(1− ǫ) UB]

While we omit the proof due to space constraints1, we
note that if X is a random variable distributed with
range R, and if T is the number of samples taken by
EBStop on X , then there exists a constant C such that
with probability at least 1− δ

T < C ·max

(
σ2

ǫ2µ2
,

R

ǫ|µ|

) (

log
1

δ
+ log

R

ǫ|µ|

)

. (4)

This bound is very similar to the upper bound for the
stopping time of the AA algorithm, with the only dif-
ference being the extra log R

ǫ|µ| term. This term comes

from constructing a confidence interval at each t and
is not an artifact of our proof techniques. However,
this extra term can be reduced to log log 1

ǫ|µ| by ap-

plying a geometric grid as we will see in the next sec-
tion. Since EBStop does not require the variables to
be non-negative, we can say that EBStop combines the
best properties of NAS and AA algorithms for signed
random variables.

3.2. Improving EBStop

While EBStop has the desired scaling properties, we
make two simple improvements in order to make it
more efficient in practice.

The first improvement is based on the idea that if the
algorithm is not close to stopping, there is no point
in checking the stopping condition at every point. We
incorporate this idea into EBStop by adopting a geo-
metric sampling schedule, also used by Domingo and
Watanabe (2000a). Instead of testing the stopping cri-
terion after each sample, we perform the kth test after
⌈βk⌉ samples have been taken for some β > 1. Un-
der this sampling strategy, when EBStop constructs a
1−d confidence interval after t samples, d is of the or-
der 1/(logβ t)p, which is much larger than 1/tp. Since

1A version of the paper containing the proofs will be
made available as a technical report.
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this results in tighter confidence intervals, LB and UB
will approach each other faster and the stopping con-
dition will be satisfied after fewer samples.

While geometric sampling can often reduce the number
of required samples, it can also lead to taking roughly
β times too many samples, because testing is only done
at the ends of intervals. Nevertheless, the following
result due to Audibert et al. (2007b) can be used to
test the stopping condition after each sample without
sacrificing the advantages of geometric sampling. Let
t1 ≤ t2 for t1, t2 ∈ N and let α ≥ t2/t1. Then with
probability at least 1− d, for all t ∈ {t1, . . . , t2}

|Xt − µ| ≤ σt

√

2α log (3/d) /t + 3α log (3/d) /t. (5)

We use Equation (5) with t1 = ⌊βk⌋+ 1, t2 = ⌊βk+1⌋,
and d = c/kp to construct ct for each t ∈ {t1, . . . , t2}.
This allows us to test the stopping condition after each
sample, and use d that is on the order of 1/(logβ t)pα

after t samples. A variant of EBStop that incorporates
these two improvements is shown as Algorithm 3.

Algorithm 3 Algorithm EBGStop

LB ← 0
UB ←∞
t← 1
k ← 0
Obtain X1

while (1 + ǫ)LB < (1− ǫ)UB do

t← t + 1
Obtain Xt

if t > floor(βk) then

k ← k + 1
α← floor(βk)/floor(βk−1)
x← −α log dk/3

end if

ct ← σt

√

2x/t + 3Rx/t

LB ← max(LB, |Xt| − ct)
UB ← min(UB, |Xt|+ ct)

end while

return sgn(Xt) · 1/2· [(1 + ǫ)LB +(1− ǫ) UB]

One can show that as the result of adding geometric
sampling to EBStop reduces the log 1

ǫ|µ| term in in-

equality (4) to log log 1
ǫ|µ| . It should be noted that

from the arguments of Dagum et al. (2000), no stop-
ping rule can achieve a better bound than (3) for
the case of bounded non-negative random variables.
Hence, EBGStop is very close to being “optimal” in
this sense. Where it would loose (for non-negative ran-
dom variables) to AA is when ǫ, µ and δ are such that
log(R/(ǫµ)) becomes significantly larger than 1/δ. We
do not expect to see this happening in practice for not
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Figure 1. Comparison of stopping rules on averages of uni-
form random variables with varying variances. Error bars
are at one standard deviation.

too large values of δ. For example, for δ = 0.05, R = 1,
the condition is ǫµ < e−20.

3.3. Results: Synthetic Data

In this section we evaluate the stopping rules AA,
NAS, geometric NAS, EBStop, and EBGStop on the
problem of estimating means of various random vari-
ables. To make the comparison fair, the geometric
version of the NAS algorithm and EBGStop both grew
intervals by a factor of 1.5, as this value worked best in
previous experiments (Domingo & Watanabe, 2000b).
We also used dt = (t(t+1))−1 in EBStop and EBGStop
since this is the sequence implicitly used in NAS for
constructing confidence intervals at time t. Since this
put EBGStop at a slight disadvantage, we also include
results for EBGStop, denoted by EBGStop*, with our
default choice of dt = c/(logβ t)p, p = 1.1, and β = 1.1.
In all the experiments we used ǫ = δ = 0.1. We
use only non-negative valued random variables as they
allow comparison to AA. Finally, we only compare
the number of samples taken because none of the al-
gorithms produced any estimates with relative error
greater than ǫ in any of our experiments.

The first set of experiments was meant to test how
well the various stopping rules are able to exploit
the variance when it is small. Let the average
of n uniform [a, b] random variables be denoted by
U(a, b, n). Note that the expected value and vari-
ance of U(a, b, n) are (a + b)/2 and (b − a)2/(12n),
respectively. For this comparison we fixed a to 0, b

to 1, and varied n to control the variance for a fixed
mean. Figure 1 shows the results of running each
stopping rule 100 times on U(0, 1, n) random variables
for n = 1, 5, 10, 50, 100, 1000. Not surprisingly, NAS
and geometric NAS fail to make use of the variance
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Figure 2. Comparison of stopping rules on averages of uni-
form random variables with varying means. The number
of samples is shown in log scale.

and take roughly the same numbers of samples for
all values of n. Variants of EBStop improve when
the variance decreases, with EBGStop* performing es-
pecially well, beating all the other algorithms for all
the scenarios tested. AA initially improves with the
decreasing variance, but the effect is not as large as
with EBGStop* because of the multi-phase structure
of AA.

In the second set of experiments we fix n at 10 and
b − a at 0.2, keeping the variance fixed, and vary the
mean. The variance is small enough that EBStop, its
variants, and AA should take a number of samples
in the order of R/(ǫµ). The results are presented in
Figure 2 and suggest that both variants of NAS require
1/µ times more samples than the variance-adaptive
methods. Note that Figure 2 shows the number of
samples taken by each method in log scale.

It may be surprising that in both experiments the AA
algorithm did not outperform EBStop and EBGStop
even though AA offers better guarantees on sample
complexity. We believe that EBStop is able make
better use of the data because it uses all samples in
its stopping criterion, while AA wastes some samples
on intermediate quantities. However, this difference
should be reflected in the hidden constants. As dis-
cussed earlier, for really small values of µ and ǫ the
AA algorithm should stop earlier than EBStop.

Finally, we include a comparison of the stopping rules
on Bernoulli random variables. Since Bernoulli ran-
dom variables have maximal variance of all bounded
random variables, the advantage of variance estima-
tion should be diminished. However, inequality (4)
suggests that in the case of Bernoulli random vari-
ables EBStop requires O(1/(ǫ2µ)) samples since σ2 =
µ(1 − µ). Similarly, inequality (2) suggests that NAS
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Figure 3. Comparison of stopping rules on Bernoulli ran-
dom variables. The number of samples is shown in log
scale.

requires O(1/(ǫ2µ2)) samples.

Figure 3 shows the results of running each stopping
rule on Bernoulli random variables with means 0.99,
0.9, 0.5, 0.1, 0.05, and 0.01, averaged over 100 runs.
As in the previous set of experiments, the variance-
adaptive methods seem to require 1/µ times fewer
samples to stop. It should also be noted that the geo-
metric version of the NAS algorithm does outperform
EBStop for some intermediate values of µ, where the
variance is the largest. However the performance dif-
ference is not large, and so we think the price paid
for the unboundedly better performance of EBStop for
small or large values of µ is not large.

3.4. Results: FilterBoost

Boosting by filtering (Bradley & Schapire, 2008) is a
framework for scaling up boosting algorithms to large
or streaming datasets. Instead of working with the
entire training set, all steps, such as finding a weak
learner that has classification accuracy of at least 0.5,
are done through sampling that employs stopping al-
gorithms. Bradley and Schapire showed that such an
approach can lead to a drastic speedup over a batch
boosting algorithm.

We evaluated the suitability of EBGStop and both
variants of the NAS algorithm for the boosting by fil-
tering setting by plugging them into the FilterBoost
algorithm (Bradley & Schapire, 2008). The AA algo-
rithm was not included because it cannot deal with
signed random variables.

Following Bradley and Schapire, the Adult and Cover-
type datasets from the UCI machine learning repos-
itory (Asuncion & Newman, 2007) were used. The
covertype dataset was converted into a binary classi-
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fication problem by taking ”Lodgepole Pine” as one
class and merging the other classes. In setting up
boosting we followed the procedure of Domingo and
Watanabe (2000b) who also considered the use of stop-
ping rules in the same context. Accordingly, we used
decisions stumps as weak learners and we discretized
all continuous attributes by binning their values into
five equal bins. The results for the Adult dataset were
averaged over 10 runs on the training set, while 10-fold
cross-validation was used for the Covertype dataset.

As shown in Figure 4, EBGStop required fewer sam-
ples and offered lower variance in stopping times than
either variant of the NAS algorithm on both datasets.
At the same time, the resulting classification accu-
racies were within 0.2% of each other on the Adult
dataset and within 0.04% of each other on the Cover-
type dataset.

4. Racing Algorithms

In this section we demonstrate how a general stop-
ping algorithm that makes use of finite sample devia-
tion bounds can be improved with the use of empirical
Bernstein bounds. We consider the Hoeffding races
algorithm (Maron & Moore, 1993) since it is represen-
tative of the class of general stopping algorithms.

Racing algorithms aim to reduce the computational
burden of performing tasks such model selection us-
ing a hold-out set by discarding poor models quickly
(Maron & Moore, 1993; Ortiz & Kaelbling, 2000).
The context of racing algorithms is the one of multi-
armed bandit problems. Formally, consider M op-
tions. When option m is chosen the tth time, it gives a
random value Xm,t from an unknown distribution νm.
The samples {Xm,t}t≥1 are independent of each other.
Let µm =

∫
xνm(dx) be the mean reward obtained of

option m. The goal is to find the options with the
highest mean reward.

Let δ > 0 be the confidence level parameter and N

be the maximal amount of time allowed for deciding
which option leads to the best expected reward. A
racing algorithm either terminates when it runs out
of time (i.e. at the end of the N -th round) or when
it can say that with probability at least 1 − δ, it has
found the best option, i.e. an option m∗ with µm∗ =
maxm∈{1,...,M} µm.

The Hoeffding race is an algorithm based on discarding
options which are likely to have smaller mean than the
optimal one until only one option remains. Precisely,
for each time step and each distribution, δ/(MN) con-
fidence intervals are constructed for the mean. Options
with upper confidence smaller than the lower confi-

dence bound of another option are discarded. The al-
gorithm samples one by one all the options that have
not been discarded yet.

We assume that the rewards have a bounded range
R. If Xm,t denotes the sample mean for option m

after seeing t samples of this option then according to
Hoeffding’s inequality, a δ/(MN) confidence interval
for the mean of option m is
[

Xm,t −R

√

log(2MN/δ)

2t
, Xm,t + R

√

log(2MN/δ)

2t

]

The Hoeffding race has been introduced and studied
in (Maron & Moore, 1993; Maron & Moore, 1997) in a
slightly different viewpoint since there the target was
to find an option with mean at most ǫ below the opti-
mal mean maxm∈{1,...,M} µm, where ǫ is a given pos-
itive parameter. The same problem was also studied
by (Even-Dar et al., 2002, Theorem 3) in the infinite
horizon setting.

By substituting Hoeffding’s inequality with the empir-
ical Bernstein bound we obtain a new algorithm, which
we will refer to as the empirical Bernstein race.

4.1. Analysis of Racing Algorithms

For the analysis we are interested in the expected num-
ber of samples taken by the Hoeffding race and the
empirical Bernstein race. Due to space limitations, we
omit the proofs of the following theorems.

Let ∆m = µm∗ − µm, where option m∗ still denotes
an optimal option: µm∗ = maxm∈{1,...,M} µm. Let ⌈u⌉
denote the smallest integer larger or equal to u, and
let ⌊u⌋ denote the largest integer smaller or equal to u.

Theorem 1 (Hoeffding Race). Let nH(m) =
⌈8R2 log(2MN/δ)

∆2
m

⌉
. Without loss of generality, assume

that nH(1) ≤ nH(2) ≤ . . . ≤ nH(m). The number of
samples, T, taken by the Hoeffding race is bounded by

2
∑

µm<µm∗

nH(m).

The probability that no optimal option is returned is
bounded by δ. If the algorithm runs out of time, then
with probability at least 1 − δ, (i) the number of dis-
carded options is at least d, where d is the largest in-
teger such that 2

∑d
m=1 nH(m) ≤ N , and (ii) the non-

discarded options satisfy

µm ≥ µm∗ − 4R

√

log(2MN/δ)

2⌊N/M⌋ .

We recall that the principle of the empirical Bernstein
race algorithm is the same as the Hoeffding’s one. We
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Figure 4. Comparison of the number of samples required by different stopping rules in FilterBoost. Parameters ǫ, δ were
set to 0.1 for both methods while τ was set to 0.25. Error bars are at 1 standard deviation. a) Results on the Adult
dataset b) Results on the covertype dataset.

sample one by one all the distributions that has not
been discarded yet. The algorithm discards an option
as soon as the upper bound on its mean reward is
smaller than at least one of the lower bound on the
mean of any other option.

Theorem 2 (Empirical Bernstein Race). Let σm de-
note the standard deviation of νm. Introduce Σm =
σm∗ + σm and

n(m) =

⌈
8Σ2

m + 18R∆m

∆2
m

log(4MN/δ)

⌉

.

Without loss of generality, assume that n(1) ≤ n(2) ≤
. . . ≤ n(m). The number of samples taken by the em-
pirical Bernstein race is bounded by

2
∑

µm<µ
m
∗

n(m).

The probability that no optimal option is returned is
bounded by δ. If the algorithm runs out of time, then
with probability at least 1 − δ, (i) the number of dis-
carded options is at least d, where d is the largest in-
teger such that 2

∑d
m=1 nH(m) ≤ N , and (ii) the non-

discarded options satisfy

µm ≥ µm∗ − Σm

√

8 log(4MN/δ)

⌊N/M⌋ − 9R log(4MN/δ)

⌊N/M⌋ .

As can be seen from the bounds, the result of incor-
porating the variance estimates is similar to what was
observed in Section 3: The dependence of the number
of required samples on R2 is reduced to a dependence
on R and the variance. Similar results can be expected
when applying the empirical Bernstein bound to other
situations.

4.2. Results

Following the procedure of Maron and Moore (1997),
we evaluated the Hoeffding and empirical Bernstein
races on the task of selecting the best k for k-nearest
neighbor regression and classification through leave-
one-out cross-validation.2 Three datasets of different
types were used for the comparison. The SARCOS
data presents a regression problem which involves pre-
dicting the torques at 7 joints of a robot arm based
on the positions, velocities and accelerations at those
joints. We only considered predicting the torque at the
first joint. The Covertype2 dataset consists of 50,000
points sampled from the Covertype dataset from Sec-
tion 3.4 and is a binary classification task. The Local
dataset presents a regression problem that was cre-
ated by sampling 10,000 points from a noisy piecewise-
linear function defined on the unit interval and having
a range of 1.

The value of the range parameter R was set to 1 for
the Covertype2 and Local datasets. For the SARCOS
dataset, R was set to the range of the target values
in the dataset. This differs from the approach of set-
ting R separately for each option to several times the
standard deviation in the samples observed, suggested
by Maron and Moore (1997). We do not follow this
approach because it invalidates the use of Hoeffding’s
inequality.

2Since leave-one-out cross-validation creates dependen-
cies between the samples, the analysis does not apply to
this case. However, our experiments gave similar results
when we used a separate hold-out set. We decided to
present results for leave-one-out cross-validation to facil-
itate comparison with the original papers.
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Table 1. Percentage of work saved / number of options left
after termination.

Data set Hoeffding EB

SARCOS 0.0% / 11 44.9% / 4
Covertype2 14.9% / 8 29.3% / 5
Local 6.0% / 9 33.1% / 6

All methods were given the options k =
20, 21, 22, 23, . . . , 210 to begin with. The results
are presented in Table 1. The table shows the
percentage of work saved by each method (1− number
of samples taken by method / MN), as well as the
number of options remaining after termination.

The empirical Bernstein racing algorithm, which is de-
noted by EB, significantly outperforms the Hoeffding
racing algorithm on all three datasets. The advantage
of incorporating variance estimates is the smallest on
the Covertype2 classification dataset. This is expected
because the samples come from Bernoulli distributions
which have the largest possible variance for a bounded
random variable. The advantage of variance estima-
tion is the largest on the SARCOS dataset, where R is
much larger than the variance. While one may argue
that the Hoeffding racing algorithm would do much
better if R was set to a smaller value based on the
standard deviation, the empirical Bernstein algorithm
would also benefit. However, tweaking R this way is
merely an unprincipled way of incorporating variance
estimates into a racing algorithm.

5. Conclusions and Future Work

We showed how variance information can be exploited
in stopping problems in a principled manner. Most
notably, we presented a near-optimal stopping rule
for relative error estimation on bounded random vari-
ables, significantly extending the results of Domingo
and Watanabe, and Dagum et al.. We also provided
empirical and theoretical results on the effect that can
be expected from incorporating variance estimates into
existing stopping algorithms.

One interesting question that should be addressed is if
the bound achieved by the AA algorithm in the non-
negative case, which is known to be optimal, can be
achieved without the non-negativity condition.
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Abstract
The problem of obtaining the maximum a
posteriori (map) estimate of a discrete ran-
dom field is of fundamental importance in
many areas of Computer Science. In this
work, we build on the tree reweighted message
passing (trw) framework of (Kolmogorov,
2006; Wainwright et al., 2005). trw itera-
tively optimizes the Lagrangian dual of a lin-
ear programming relaxation for map estima-
tion. We show how the dual formulation of
trw can be extended to include cycle inequal-
ities (Barahona & Mahjoub, 1986) and some
recently proposed second order cone (soc)
constraints (Kumar et al., 2007). We pro-
pose efficient iterative algorithms for solving
the resulting duals. Similar to the method
described in (Kolmogorov, 2006), these algo-
rithms are guaranteed to converge. We test
our approach on a large set of synthetic data,
as well as real data. Our experiments show
that the additional constraints (i.e. cycle in-
equalities and soc constraints) provide better
results in cases where the trw framework fails
(namely map estimation for non-submodular
energy functions).

1. Introduction

The problem of obtaining the maximum a posteri-
ori (map) estimate of a discrete random field plays a
central role in various applications, e.g. stereo recon-
struction (Szeliski et al., 2006) and protein side-chain
prediction (Sontag & Jaakkola, 2007). Furthermore,
it is closely related to many important combinatorial
optimization problems such as maxcut (Goemans &
Williamson, 1995) and 0-extension (Karzanov, 1998).

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

It is therefore not surprising that a number of approx-
imate map estimation approaches exist in the litera-
ture. One such class of approaches which provides a
good approximation, both in theory and in practice,
is based on convex relaxations (e.g. see (Kumar et al.,
2007) for an overview). In this work, we focus on the
issue of solving these relaxations efficiently with the
goal of handling a large number of random variables,
e.g. variables corresponding to pixels in an image.

A discrete random field is defined over random vari-
ables v = {v0, · · · , vn−1}, each of which can take a
label from the set l = {l0, · · · , lh−1}. Throughout this
paper, we will assume a conditional random field (crf)
while noting that all our results are applicable to the
Markov random field framework. A crf describes a
neighbourhood relationship E between the variables
such that (a, b) ∈ E if, and only if, va and vb are neigh-
bours. A labelling of the crf is specified by a function
f : {0, · · · , n − 1} −→ {0, · · · , h − 1} (i.e. variable va

takes label lf(a)). Given data D, the energy of the
labelling is given by

Q(f ;D, θ) =
∑

va∈v

θ1
a;f(a) +

∑

(a,b)∈E

θ2
ab;f(a)f(b), (1)

where θ1
a;f(a) and θ2

ab;f(a)f(b) are the data-dependent
unary and pairwise potentials respectively, and θ de-
notes the parameter of the crf. The problem of map

estimation is to obtain the labelling f∗ with the min-
imum energy (or equivalently the maximum posterior
probability), i.e. f∗ = arg minf Q(f ;D, θ).

Related Work: We build upon the linear program-
ming (lp) relaxation of (Wainwright et al., 2005),
which we call lp-s (since it was first proposed
by (Schlesinger, 1976) for the special case of hard con-
straint pairwise potentials). Although the lp-s relax-
ation can be solved in polynomial time using Interior
Point algorithms, the state of the art softwares can
only handle up to a few hundred variables due to their
large memory requirements. To overcome this prob-
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lem, two iterative algorithms were proposed by (Wain-
wright et al., 2005) for solving the dual of the lp-s re-
laxation. Similar to min-sum belief propagation (bp),
these algorithms are not guaranteed to converge. The
work of (Kolmogorov, 2006) addressed this problem by
proposing a convergent sequential tree-reweighted mes-
sage passing (trw-s) algorithm for solving the dual.

Despite its strong theoretical foundation, it was ob-
served that trw-s yields labellings with very high
energies when the energy function contains non-
submodular terms (Kolmogorov, 2006). This is not
surprising since the lp-s relaxation provides an inac-
curate approximation in such cases (e.g. see (Kumar
et al., 2007)). In this work, we address this deficiency
of trw-s by appending the lp-s relaxation with some
useful constraints.

Our Results: We show how the dual formulation
of the lp-s relaxation can be extended to include lin-
ear cycle inequalities (Barahona & Mahjoub, 1986)
(section 3). Furthermore, we incorporate the recently
proposed second order cone (soc) constraints of (Ku-
mar et al., 2007) within this framework (section 4).
Note that although the importance of cycle inequali-
ties and soc constraints is well-recognized, their use
has been limited to a small number of random vari-
ables due to the lack of efficient algorithms (Sontag &
Jaakkola, 2007). Our results on including these con-
straints within the trw formulation allow us to develop
efficient convergent algorithms for solving the result-
ing duals. We successfully apply these algorithms to
several synthetic and real problems containing a large
number of variables which could not be handled by pre-
vious approaches (section 5). Our experiments indicate
that incorporating these constraints provides a much
better approximation for the map estimation problem
within reasonable computational times compared to
several state of the art algorithms. Additional exper-
imental results and proofs are provided in (Kumar &
Torr, 2008).

2. Preliminaries
We begin by introducing some notation which would
allow us to describe our results concisely.

Optimal Energy and Min-Marginals: The en-
ergy of the optimal labelling and the min-marginals of
random variables and neighbouring random variables
is given by the following equations respectively:

q(θ) = min
f

Q(f : D), (2)

qa;i(θ) = min
f,f(a)=i

Q(f ;D, θ), (3)

qab;ij(θ) = min
f,f(a)=i,f(b)=j

Q(f ;D, θ), (4)

where the term D is dropped from the lhs to make the
notation less cluttered.

Reparameterization: A parameter θ is called a
reparameterization of the parameter θ (denoted by
θ ≡ θ) if, and only if,

Q(f ;D, θ) = Q(f ;D, θ), ∀f. (5)

Over-complete Representations: A labelling f

can be represented using an over-complete set of
boolean variables y defined as

ya;i =

{
1 if f(a) = i,

0 otherwise.
, yab;ij = ya;iyb;j . (6)

We also define variables (x,X) such that

xa;i = 2ya;i−1, Xab;ij = 4yab;ij−2ya;i−2yb;j +1. (7)

We will sometimes specify the additional constraints
(i.e. cycle inequalities and soc constraints) using vari-
ables (x,X), since they will allow us to write these
constraints concisely.

The lp-s Relaxation: The lp-s relaxation of the
map estimation problem is given by

y∗ = argminy∈LOCAL(v,E) y
⊤θ,

LOCAL(v, E) =







ya;i ∈ [0, 1], yab;ij ∈ [0, 1],
∑

li∈l
ya;i = 1,

∑

lj∈l
yab;ij = ya;i.

(8)

The term LOCAL(v, E) stands for local consistency
polytope (Wainwright et al., 2005) and denotes the fea-
sibility region of the lp-s relaxation (specified by the
above constraints for all va ∈ v, (a, b) ∈ E , li, lj ∈ l).

Dual of the lp-s Relaxation: Let T denote a set of
tree-structured crfs defined over subsets of the given
random variables. For a crf T ∈ T , we denote its ran-
dom variables by vT , its neighbourhood relationship by
ET and its parameter as θT . The parameter θT con-
sists of unary potentials θT1

a;i and pairwise potentials

θT2
ab;ij . Let ρ = {ρ(T ), T ∈ T } be a set of non-negative

real numbers which sum to one. Using the above nota-
tion, the dual of the lp-s relaxation can be written as
follows (Kolmogorov, 2006; Wainwright et al., 2005):

max∑

T∈T
ρ(T )θT

≡θ

∑

T

ρ(T )q(θT ). (9)

The trw-s Algorithm: Table 1 describes the trw-s

algorithm (Kolmogorov, 2006) which attempts to solve
the dual of the lp-s relaxation. In other words, it
solves for the set of parameters θT , T ∈ T , which
maximize the dual (9). There are two main steps: (i)
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reparameterization, which involves running one pass of
bp on the tree structured crfs T; and (ii) averaging
operation. trw-s is guaranteed not to decrease the
value of the dual (9) at each iteration. Further, it can
be shown that it converges to a solution which satisfies
the weak tree agreement (wta) (Kolmogorov, 2006).

Initialization

1. For every ω ∈ v
⋃

E , find all trees Tω ⊆ T
which contains ω.

2. Initialize θT such that
∑

T
ρ(T )θT ≡ θ.

Typically, we set ρ(T ) = 1

|T |
for all T ∈ T .

Then we can initialize θT1

a;i = θ1

a;i
|T |

|Tva
|

for all T ∈ Tva
.

Similarly, θT2

ab;ij = θ2

ab;ij
|T |

|T
(a,b)

|
for all T ∈ T(a,b).

Iterative Steps

3. Pick an element ω ∈ v
⋃

E .

4. For all T ∈ Tω, reparameterize θT to θ
T

such that

(i) θ
T1

a;i = qa;i(θ
T ), if ω = va ∈ v,

(ii) θ
T1

a;i + θ
T1

b;j + θ
T2

ab;ij = qab;ij(θ
T ), if ω = (a, b) ∈ E .

This step involves running one iteration of bp for T .
5. Averaging operation:
(i) If ω = va ∈ v,

(a) Compute νa;i = 1

ρa

∑

T∈Ta

ρ(T )θ
T1

a;i.

(b) Set θ
T1

a;i = νa;i, for all T ∈ Tva
.

(ii) If ω = (a, b) ∈ T ,
(a) Compute νab;ij =

1

ρ
ab

∑

T∈T
(a,b)

ρ(T )(θ
T1

a;i + θ
T1

b;j + θ
T2

ab;ij).

(b) Set θ
T1

a;i + θ
T1

b;j + θ
T2

ab;ij = νab;ij , for all T ∈ T(a,b).
6. Repeat steps 3, 4 and 5 till convergence.

Table 1. The trw-s algorithm. Recall that θT1

a;i and θT2

ab;ij

are the unary and pairwise potentials for the parameter

θT . Similarly, θ
T1

a;i and θ
T2

ab;ij are the unary and pairwise
potentials defined by the parameter θ. The terms ρa =
∑

T,va∈v
T

ρ(T ) and ρab =
∑

T,(a,b)∈E
T

ρ(T ) are the vari-

able and edge appearance terms for va ∈ v and (a, b) ∈ E
respectively. In step 3, the value of the dual (9) remains un-
changed. Step 4, i.e. the averaging operation, ensures that
the value of the dual does not decrease. trw-s converges
to a solution which satisfies the wta condition.

3. Adding Linear Constraints

We now show how the results of (Kolmogorov, 2006;
Wainwright et al., 2005) can be extended to include an
arbitrary number of linear cycle inequalities (Barahona
& Mahjoub, 1986; Kumar et al., 2007). This requires
us to incorporate cycle inequalities into the dual (11).

We begin by briefly describing cycle inequalities. Con-
sider a cycle of length c in the graphical model of
the given crf, which is specified over a set of ran-
dom variables vC = {vb, b = a1, a2, · · · , ac} such that
EC = {(a1, a2), (a2, a3), · · · , (an, a1)} ⊆ E . Further, let
EF ⊆ EC such that |EF | (i.e. the cardinality of EF ) is
odd. Using these sets of edges, a cycle inequality can
be specified as

∑

(a
k

,am)∈E
F

Xa
k

am;i
k

im
−

∑

(a
k

,am)∈E
C
−E

F

Xa
k

am;i
k

im
≥ 2− c,

(10)

where lik
, lim

∈ l1. The variables Xakam;ikim
are de-

fined in equation (7). It can be shown that adding
cycle inequalities to lp-s, i.e. problem (8), provides a
better relaxation than lp-s alone. Their importance
is reflected in their wide use in recent literature such
as (Sontag & Jaakkola, 2007; Zwick, 1999).

In general, a set of NC cycle inequalities defined on a
cycle C = (vC , EC) (using different labels lik

for vari-
ables vak

∈ vC) can be written as ACy ≥ bC . In other
words, for every cycle we can define up to hc cycle in-
equalities (where h = |l|), i.e. NC ∈ {0, 1, · · · , hc}. Let
C be a set of cycles in the given crf. Theorem 1 (given
below) provides us with the dual of the lp relaxation
obtained by appending problem (8) with cycle inequal-
ities (defined over cycles in the set C). We refer to the
resulting relaxation as lp-c (where c denotes cycles).

Theorem 1: The following problem is the dual of
problem (8) appended with a set of cycle inequalities
ACy ≥ bC , for all C ∈ C (hereby referred to as the
lp-c relaxation):

max
∑

T ρ(T )q(θT ) +
∑

C ρ′(C)(bC)⊤uC ,

s.t.
∑

T ρ(T )θT +
∑

C ρ′(C)(AC)⊤uC ≡ θ,

uC
k ≥ 0, ∀k ∈ {1, 2, · · · , NC}, C ∈ C. (11)

Here ρ′ = {ρ′(C), C ∈ C} is some (fixed) set of non-
negative real numbers which sum to one, and uC =
{uC

k , k = 1, · · · , NC} are some non-negative slack vari-
ables.

Similar to the dual (9), the above problem cannot be
solved using standard software for a large number of
variables v. In order to overcome this deficiency we
propose a convergent algorithm (similar to trw-s) to
approximately solve problem (11). We call our ap-
proach the trw-s(lp-c) algorithm. In order to de-
scribe trw-s(lp-c), we need the following definitions.

We say that a tree structured random field T =
(vT , ET ) ∈ T belongs to a cycle C = (vC , EC) ∈ C
(denoted by T ∈ C) if, and only if, there exists an
edge (a, b) ∈ ET such that (a, b) ∈ EC . In other words,
T ∈ C if they share a common pair of neighbouring
random variables (a, b) ∈ E . We also define the follow-
ing problem:

max
∑

T∈C ρ(T )q(θT ) + ρ′(C)(bC)⊤uC ,

1Note that using the variable y would result in a less
compact representation of cycle inequalities.
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s.t.
∑

T∈C ρ(T )θT + ρ′(C)(AC)⊤uC = θC ,

uC
k ≥ 0, ∀k ∈ {1, 2, · · · , NC}, (12)

for some parameter θC . The variables of the above
problem are restricted to uC

k , θT1
a;i and θT2

ab;ij where
(a, b) ∈ ET

⋂ EC for some T ∈ C. In other words,
problem (12) has fewer variables and constraints than
dual (11) and can be solved easily using standard In-
terior Point algorithms for small cycles C. As will be
seen, even using cycles of size 3 or 4 results in much
better approximations of the map estimation problem
for non-submodular energy functions.

Table 2 describes the convergent trw-s(lp-c) algo-
rithm for approximately solving the dual (11). The
algorithm consists of two main steps : (i) solving prob-
lem (12) for a cycle; and (ii) running steps 4 and 5 of
the trw-s algorithm. Note that our approach is dif-
ferent from other generalizations of trw, e.g. (Wieger-
nick, 2005) which computes marginals. Specifically, we
do not cluster random variables but include additional
constraints to reduce the feasibility region of the re-
laxation. Our experiments in section 5 show that, un-
like (Wiegernick, 2005), we always outperform bp. The
properties of the trw-s(lp-c) algorithm are summa-
rized below.

Initialization

1. Choose a set of tree structured random fields T .
Choose a set of cycles C.
For example, if the 4-neighbourhood is employed,
C can be the set of all cycles of size 4.

2. Initialize θT such that
∑

T
ρ(T )θT ≡ θ.

Initialize uC
k = 0 for all C and k.

Iterative Steps

3. Pick an element ω ∈ v
⋃

C.
Find all cycles Cω ⊆ C which contains ω.

4. For a cycle C ∈ Cω, compute
θC =

∑

T∈C
ρ(T )θT + ρ′(C)(AC)⊤u

C

using the values of θT and u
C obtained

in the previous iteration.
Solve problem (12) using an Interior Point method.
Update the values of θT and u

C .
5. For all trees T ∈ T which contain ω,
run steps 4 and 5 of the trw-s algorithm.

6. Repeat steps 3 and 4 for all cycles C ∈ Cω.
7. Repeat steps 3 to 5 for all elements ω
till convergence.

Table 2. The trw-s(lp-c) algorithm.

3.1. Properties of the trw-s(lp-c) Algorithm.

Property 1: At each step of the algorithm, the repa-
rameterization constraint is satisfied, i.e.

∑

T

ρ(T )θT +
∑

C

ρ′(C)(AC)⊤uC ≡ θ. (13)

The constraint in problem (12) ensures that parameter

vector θC of cycle C remains unchanged. Hence, after
step 4 of the trw-s(lp-c) algorithm, the reparameter-
ization constraint is satisfied. It was also shown that
step 5 (i.e. running trw-s) provides a reparameteriza-
tion of θ (see Lemma 3.3 of (Kolmogorov, 2006) for
details). This proves Property 1.

Property 2: At each step of the algorithm, the value
of the dual (11) never decreases. Clearly, step 4 of
the trw-s(lp-c) algorithm does not decrease the value
of the dual (11) (since the objective function of prob-
lem (12) is part of the objective function of dual (11)).
The work of (Kolmogorov, 2006) showed that step 5
(i.e. trw-s) also does not decrease this value. Note
that the lp-c relaxation is guaranteed to be bounded
since it dominates the lp-s relaxation (Kumar et al.,
2007), which itself is bounded (Kolmogorov, 2006).
Therefore, by the Bolzano-Weierstrass theorem (Fitz-
patrick, 2006), it follows that trw-s(lp-c) will con-
verge.

Property 3: Like trw-s, the necessary condition for
convergence of trw-s(lp-c) is that the parameter vec-
tors θT of the trees T ∈ T satisfy wta. This follows
from the fact that trw-s increases the value of the dual
in a finite number of steps as long as the set of param-
eters θT , T ∈ T , do not satisfy wta (see (Kolmogorov,
2006) for details).

Property 4: Unlike trw-s, wta is not the sufficient
condition for convergence. One of the main drawbacks
of the trw-s algorithm is that it converges as soon as
the wta condition is satisfied. Experiments in (Kol-
mogorov, 2006) indicate that this results in high energy
solutions for the map estimation problem when the
energy function is non-submodular. Using a counter-
example, it can be shown that wta is not the sufficient
condition for the convergence of trw-s(lp-c) (Kumar
& Torr, 2008).

Obtaining the Labelling: Similar to the trw-s al-
gorithm, trw-s(lp-c) solves the dual (11) and not the
primal problem. In other words, it does not directly
provide a labelling of the random variables. In order
to obtain a labelling, we use the same scheme as the
one suggested in (Kolmogorov, 2006) for the trw-s

algorithm. Briefly, we assign labels to the variables
v = {v0, v1, · · · , vn−1} in increasing order (i.e. we label
variable v0, followed by variable v1 and so on). Let
θT =

∑

T ρ(T )θT . At each stage, a variable va is as-
signed the label lf(a) such that

f(a) = arg min
i,li∈l



θT 1
a;i +

∑

b<a,(a,b)∈E

θT 2
ab;i,f(b))



 , (14)

where θT 1
a;i and θT 2

ab;i,f(b) are the unary and pairwise

potentials corresponding to the parameter θT respec-
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tively. It can be shown that under certain condi-
tions the above procedure provides the optimal la-
belling (Meltzer et al., 2005).

4. Adding SOC Constraints
We now show how second order cone (soc) constraints
can be added to the dual (9). Specifically, we consider
the two soc constraints proposed in (Kumar et al.,
2007) which result in the socp-c and socp-q relax-
ations described below.

The socp-c Relaxation: Consider a set of random
variables vC = {vb, b = a1, · · · , ac} ⊆ v such that
EC = {(a1, a2), (a2, a3), (ac, a1)} ⊆ E (i.e. vC forms a
cycle of length c). We define a vector xC whose kth ele-
ment is given by xak;ik

and a matrix XC whose (k, m)th

element is given by Xakam;ikim
(where lik

, lim
∈ l).

socp-c specifies constraints ||U⊤xC ||2 ≤ C•XC where
C = Dc+λcI = UU⊤ and (•) represents the Frobenius
inner product. The c × c matrix Dc is given by

Dc(i, j) =







(−1)c−1 if |i − j| = c − 1,

1 if |i − j| = 1,

0 otherwise,
(15)

and λc is the absolute value of the smallest eigenvalue
of Dc.

The socp-q Relaxation: Consider a set of random
variables vC = {vb, b = a1, · · · , ac} ⊆ v such that
EC = {(ai, aj), i, j = 1, · · · , c} ⊆ E (i.e. vC form a
clique of size c). socp-q specifies constraints of the
form ||U⊤xC ||2 ≤ C • XC where C is a matrix whose
elements are all 1.

In general, a set of NC soc constraints on a cy-
cle/clique can be defined as

||AC
k y + bC

k || ≤ y⊤cC
k + dC

k , k ∈ {1, 2, · · · , NC}. (16)

Let C be a set of cycles/cliques in the graphical model
of the given random field. The following theorem pro-
vides us with the dual of the socp relaxation obtained
by appending problem (8) with soc constraints defined
over the set C.

Theorem 2: The following problem is the dual of
problem (8) appended with a set of soc constraints
||AC

k y + bC
k || ≤ y⊤cC

k + dC
k for k ∈ {1, 2, · · · , NC} and

C ∈ C.

max
∑

T ρ(T )q(θT ) − ∑

C ρ′(C)
∑

k pC
k ,

s.t.
∑

T ρ(T )θT +
∑

C ρ′(C)
∑

k qC
k ≡ θ,

||uC
k || ≤ vC

k , ∀k ∈ {1, 2, · · · , NC}, C ∈ C. (17)

where

pC
k = (bC

k )⊤uC
k + dC

k vC
k , (18)

qC
k = (AC

k )⊤uC
k + cC

k vC
k . (19)

Here uC
k and vC

k are some slack variables.

We can define up to hc soc constraints for a cy-
cle/clique, where c is the size of the cycle/clique (i.e.
NC ∈ {0, 1, · · · , hc}). Before proceeding further, we
also define the following problem:

max
∑

T∈C ρ(T )q(θT ) − ρ′(C)
∑

k pC
k ,

s.t.
∑

T∈C ρ(T )θT + ρ′(C)
∑

k qC
k = θ

C ,

||uC
k || ≤ vC

k , ∀k ∈ {1, 2, · · · , NC}, (20)

where θC is some parameter vector. The variables of
the above problem are restricted to uC

k , vC
k , θT1

a;i and

θT2
ab;ij where (a, b) ∈ ET

⋂ EC . Like problem (12), we
can solve problem (20) using standard Interior Point
algorithms for small cycles/cliques C.

Similar to trw-s(lp-c), a convergent algorithm can
now be described for solving the dual (17). This algo-
rithm differs from trw-s(lp-c) in only step 4, where
it solves problem (20) for a cycle/clique C instead of
problem (12). We refer to this algorithm as either
trw-s(socp-c) or trw-s(socp-q) depending upon the
socp relaxation that we are solving. When using the
trw-s(socp-q) algorithm, we include all slack vari-
ables corresponding to the cycle inequalities defined
over the cycles in clique C. It can easily be shown
that both trw-s(socp-c) and trw-s(socp-q) satisfy
all the properties given in § 3.1. Note that, like trw-s

and trw-s(lp-c), these algorithms do not directly pro-
vide a labelling for the random variables of the crf.
Instead we use the procedure described in § 3.1 to ob-
tain the final solution.

5. Experiments
We tested the approaches described in this paper using
both synthetic and real data. For synthetic data ex-
periments, we closely follow the setup of (Kolmogorov,
2006). We show that our algorithms overcome a well-
known deficiency of trw-s, namely that it does not
provide good map estimates for non-submodular en-
ergy functions. Next, we consider the problem of seg-
mentation using real data and show favourable compar-
ison between our methods and several other standard
map estimation techniques.

5.1. Synthetic Data

Datasets: We conducted two sets of experiments us-
ing binary grid crfs (i.e. h = |l| = 2) of size 30×30. In
the first experiment the edges of the graphical model,
i.e. E , were defined using a 4-neighbourhood system
while the second experiment used an 8-neighbourhood
system. Similar to (Kolmogorov, 2006), the unary po-
tentials θ1

a;0 and θ1
a;1 were generated using the normal

distribution N (0, 1). The pairwise potentials θ2
ab;00 and
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θ2
ab;11 were set to 0 while θ2

ab;01 and θ2
ab;10 were gener-

ated using N (0, σ2). For both experiments, 50 crfs
were generated using the method described above. All
the crfs defined non-submodular energy functions (i.e.
there exists an (a, b) ∈ E such that θab;01 + θab;10 < 0)
which are in general np-hard to minimize. As noted
in (Kolmogorov, 2006), trw-s performs considerably
worse than bp on such examples.

Implementation Details: We tested the lp-c and
the socp-c relaxations in the first experiment. Con-
straints were defined on all cycles of size 4. The lp-c

and socp-q relaxation were tested in the second exper-
iment. Cycles inequalities were defined on all cycles of
size 3. In addition, for socp-q, soc constraints were
defined on all cliques of size 4. In both the experiments,
our algorithms were tested using trees defined by indi-
vidual edges of the graphical model for ease of imple-
mentation. In other words, a tree T = (vT , ET ) ∈ T
such that vT = {va, vb} and ET = {(a, b)} ⊆ E . How-
ever, we note here that our algorithms are general and
can be applied for any choice of trees. Although our
current set of trees are quite restrictive, the results
show that they outperform several state of the art al-
gorithms. The trw-s algorithm, as well as other stan-
dard approaches, was tested using the publically avail-
able code which uses monotonic chains as trees.

The terms ρ(T ) and ρ′(C) were set to 1/|T | and 1/|C|
respectively for all T ∈ T and C ∈ C. We found it suf-
ficient to define one cycle inequality per cycle C using
a set of labels {li1 , li2 , · · · , lic

} which satisfies

∑

(a
k

,am)∈E
F

θa
k

am;i
k

im
−

∑

(a
k

,am)∈E
C
−E

F

θ2

a
k

am;i
k

im
≥

∑

(a
k

,am)∈E
F

θa
k

am;j
k

jm
−

∑

(a
k

,am)∈E
C
−E

F

θ2

a
k

am;j
k

jm
,

for all sets of labels {lj1 , · · · , ljc
}. Here EC =

{(a1, a2), · · · , (an, a1)} and EF ⊆ EC such that |EF | =
3. As proposed in (Kumar et al., 2007), we also define
only one soc constraint per cycle/clique when consid-
ering the socp-c and the socp-q relaxations. At each
iteration, problems (12) and (20) were solved using the
mosek software (available at http://www.mosek.com).

Results: Figure 1 (a) shows the results obtained for
the first experiment using σ = 10√

d
(where d is the de-

gree of the variables in the graphical model). Note that
since the energy functions are non-submodular, trw-s

provides labellings with higher energies than bp as ob-
served in (Kolmogorov, 2006). However, the additional
constraints in the lp-c and socp-c algorithm enable
us to obtain labelling with lower energies than bp. Fur-
ther, unlike bp, they also provide us with the value of
the dual at each iteration. This value allows us to find
out how close we are to the global optimum (since the
energy of the optimal labelling cannot be less than the

(a)

(b)

Figure 1. Results of the synthetic data experiment. (a)

First experiment. The x-axis shows the iteration number.
The lower curves show the average value of the dual at each
iteration over 50 random crfs while the upper curves show
the average energy of the best labelling found till that iter-
ation. The additional constraints in the lp-c and socp-c

relaxations enable us to obtain labellings with lower energy
compared to trw-s and bp. Cycle inequalities provide a
better approximation than the soc constraint of the socp-

c relaxation. (b) Second experiment. Note that the value
of the dual obtained using socp-q is greater than the value
of the dual of the lp-c relaxation.

value of the dual). Also note that the value of the lp-

c dual is greater than the value of the socp-c dual.
This provides empirical evidence that lp-c dominates
socp-c as conjectured in (Kumar et al., 2007).

The results of the second experiment are shown in Fig-
ure 1 (b) using σ = 10√

d
. Again, bp outperforms trw-s,

while lp-c and socp-q provide better approximations.
The soc constraints defined over cliques in socp-q pro-
vide a greater value of the dual compared to the lp-c

relaxation. The complexity and timings for all the al-
gorithms are given in tables 3 and 4.

5.2. Real Data - Segmentation
We now present the results of our method on interac-
tive segmentation (Boykov & Jolly, 2001) where, given
some seed pixels for all the segments present in an im-
age, we wish to obtain the segmentation of the image.

Problem Formulation: The problem of obtaining
the segmentation of an image can be cast within the
crf framework. Specifically, we define a crf over ran-
dom variables v = {v0, · · · , vn−1}, where each variable
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Algorithm No. of Var. No. of Cons. Time(sec)
bp - - 0.0018

trw-s nh + |E|h2 n + 2|E|h 0.0018
lp-c nh + |E|h2 2n + 2|E|h 7.5222

socp-c nh + |E|h2 2n + 2|E|h 8.9091

Table 3. Complexity and timings of the algorithms for the
first synthetic data experiment with a 4-neighbourhood re-
lationship. Recall that n = |v| is the number of random
variables, h = |l| is the size of the label set and E is the
neighbourhood relationship defined by the crf. The sec-
ond and third columns show the number of variables and
constraints in the primal problem respectively. The fourth
column shows the average time of the each algorithm for
one iteration (in seconds). All timings are reported for a
Pentium IV 3.3 GHz processor with 2GB RAM.

Algorithm No. of Var. No. of Cons. Time(sec)
bp - - 0.0027

trw-s nh + |E|h2 n + 2|E|h 0.0027
lp-c nh + |E|h2 5n + 2|E|h 7.7778

socp-q nh + |E|h2 6n + 2|E|h 9.1170

Table 4. Complexity and timings for the second synthetic
data experiment with an 8-neighbourhood relationship.
Note that socp-q includes all the constraints of lp-c.

corresponds to a pixel of the frame. Each label in the
set l = {l0, · · · , lh−1} corresponds to a segment (where
h is the total number of segments). The unary poten-
tial of assigning a variable va to segment li is specified
by the negative log-likelihood of the rgb value of pixel
a given the seed pixels of the segment li. The pair-
wise potentials encourage continuous segments whose
boundaries lie on image edges. For more details, we
refer the reader to (Boykov & Jolly, 2001). The prob-
lem of obtaining the segmentation of a frame then boils
down to that of finding the map estimate of the crf.

Datasets and Implementation Details: We used
the well-known ‘Garden’ sequence to conduct our ex-
periments (with frame size 120× 175). The seed pixels
were provided using the ground truth segmentation of
a keyframe as shown in Fig. 2.

Similar to the synthetic data experiment, we defined
the trees as individual edges of the graphical model
of the crf for our algorithms. Other algorithms were
tested using publically available code (including trw-

s which uses monotonic chains as trees). We specified
one cycle inequality and one soc constraint for each cy-
cle/clique (as described in the previous section). The
terms ρ(T ) and ρ′(C) were set to 1/|T | and 1/|C| re-
spectively for all T ∈ T and C ∈ C. Once again, prob-
lems (12) and (20) were solved using mosek.

Results: For the first set of experiments, we used a
4-neighbourhood system and tested the following algo-
rithms: trw-s, lp-c, socp-c, αβ-swap, α-expansion
and bp. Fig. 3 shows the segmentations (of frames

Figure 2. Segmented keyframe of the ‘Garden’ sequence.
The left image shows the keyframe while the right im-
age shows the corresponding segmentation provided by the
user. The four different colours indicate pixels belonging to
the four segments namely sky, house, garden and tree.

Algorithm Avg. Time-1 (s) Avg. Time-2 (s)
bp 0.1400 0.1740

trw-s 0.1400 0.1740
αβ-swap 0.1052 0.1201

α-expansion 0.1100 0.1240
lp-c 140.3320 142.2226

socp-c/socp-q 143.6365 144.9890

Table 5. Average timings of the algorithms (per iteration)
for the first experiment on video segmentation with a 4-
neighbourhood relationship (column 2) and the second ex-
periment with an 8-neighbourhood relationship (column 3).
Again, all timings are reported for a Pentium IV 3.3 GHz
processor with 2GB RAM.

other than the keyframe) and the values of the energy
function obtained for all algorithms. Note that, by in-
corporating additional constraints using all cycles of
length 4, lp-c and socp-c outperform other methods.
Further, the cycle inequalities in lp-c provide better
results than the soc constraints of socp-c. Table 5
provides the average time for all algorithms.

The second set of experiments used an 8-
neighbourhood system and tested the following
algorithms: trw-s, lp-c, socp-q, αβ-swap, α-
expansion and bp. For the lp-c algorithm, cycle
inequalities were specified for all cycles of size 3.
In addition, the socp-q algorithm specifies soc

constraints on all cliques of size 4. Fig. 4 shows the
segmentations and energies obtained for all the algo-
rithms. The average timings per iteration are shown
in table 5. Note that, similar to the synthetic data
examples, socp-q outperforms lp-c by incorporating
additional soc constraints.

6. Discussion
We extended the lp-s relaxation based approach
of (Kolmogorov, 2006; Wainwright et al., 2005) for
the map estimation problem. Specifically, we showed
how cycle inequalities and soc constraints can be in-
corporated within the trw framework. We also pro-
posed convergent algorithms for solving the result-
ing duals. Our experiments indicate that these ad-
ditional constraints provide a more accurate approxi-
mation for map estimation when the energy function
is non-submodular. Although our algorithm is much
faster than Interior Point methods, it is slower than
trw-s and bp. An interesting direction for future re-
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Input

bp

0380 0047 6098

αβ

0778 0433 0585

α

0571 0094 0176

trw-s

0151 0126 1596

lp-c

0000 0000 0000

socp-c

0026 0086 1044

Figure 3. Segmentations obtained for the ‘Garden’ video
sequence using 4-neighbourhood. The corresponding en-
ergy values (scaled up to integers for using αβ-swap and
α-expansion) of all the algorithms are shown below the
segmentation. The following constant terms are subtracted
from the energy values of all algorithms for the three frames
respectively (to make minimum energy among all algo-
rithms 0): 5139499, 5145234 and 5126941.

search would be to develop specialized algorithms for
solving problems (12) and (20) (which are used in our
approach).
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Abstract
In this work we address the question of find-
ing symmetries of a given MDP. We show that
the problem is Isomorphism Complete, that is,
the problem is polynomially equivalent to veri-
fying whether two graphs are isomorphic. Apart
from the theoretical importance of this result it
has an important practical application. The re-
duction presented can be used together with any
off-the-shelf Graph Isomorphism solver, which
performs well in the average case, to find sym-
metries of an MDP. In fact, we present results
of using NAutY (the best Graph Isomorphism
solver currently available), to find symmetries of
MDPs.

1. Introduction

Markov Decision Processes (MDPs) are widely employed
to model sequential decision problems. But current solu-
tion techniques for MDPs do not scale well with the size
of the MDPs, and hence are proving inadequate in solving
large real-world problems. While building abstract models
of real-world problems, it can be seen that a high degree of
redundancy is present which can be exploited to reduce size
of the model. This reduction in size could possibly lead to
more efficient solution methods.

One such notion of redundancy is a degree of symmetry
that is present in any real-world problem. (Amarel, 1968)
first looked at exploiting such symmetries in solving a mis-
sionaries and cannibals problem. In this work we use the
notion of symmetries in MDPs introduced in (Ravindran,
2004). While it is widely believed that finding symmetries
in MDPs is a hard problem, no one has investigated before
exactly how hard this problem is.

Intuitively this seems harder than finding symmetries in

Appearing in Proceedings of the 25th International Conference on
Machine Learning, Helsinki, Finland, 2008. Copyright 2008 by
the author(s)/owner(s).

graphs, due to the additional structure introduced by MDPs.
In this work we show that finding symmetries in MDPs is
no harder than the problem of graph isomorphism. We also
show that existing graph isomorphism solvers can be used
to find symmetries in MDPs.

We present some notation in the next section, and some re-
lated work in Section 3. In Section 4 we formally define
the problem, and present a constructive algorithm in Sec-
tion 5 for showing the equivalence to graph isomorphism.
We discuss some results Section 6 and conclude in Section
7.

2. Homomorphisms and Symmetry Groups

Let B be a partition of a set X. For any x ∈ X, [x]B denotes
the block of B to which x belongs. Any function f from a
set X to a set Y induces a partition (or equivalence relation)
on X, with [x] f = [x′] f if and only if f (x) = f (x′) and
x, x′ are f -equivalent written x ≡ f x′. Let B be a partition
of Z ⊆ X × Y, where X and Y are arbitrary sets. The
projection of B onto X is the partition B|X of X such that
for any x, x′ ∈ X, [x]B|X = [x′]B|X if and only if every block
containing a pair in which x is a component also contains a
pair in which x′ is a component or every block containing
a pair in which x′ is a component also contains a pair in
which x is a component.
Definition 1. An MDP homomorphism h from an MDP
M = 〈S,A,Ψ,P,R〉 to an MDPM′

= 〈S′,A′,Ψ′,P′,R′〉
is a surjection from Ψ to Ψ′, defined by a tuple of surjec-
tions < f , {gs|s ∈ S} >, with h((s, a)) = ( f (s), gs(a)), where
f : S → S′ and gs : As → A′f (s) for s ∈ S, such that:
∀s, s′ ∈ S, a ∈ As

P′( f (s), gs(a), f (s′)) =

∑

s′′∈[s′] f

P(s, a, s′′) (1)

R′( f (s), gs(a)) = R(s, a) (2)

We use the shorthand h(s, a) for h((s, a)). Often for conve-
nience, we use < f , {gs} > to denote
< f , {gs|s ∈ S} >.
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Definition 2. Let M’ be an image of the MDP M under
homomorphism h =< f , {gs} >. For any s ∈ S, g−1

s (a′) de-
notes the set of actions that have the same image a′ ∈ A′f (s)
under gs. Let π′ be a stochastic policy in M′. Then
π′ lifted to M is the policy πM′ such that for any a ∈
g−1

s (a′), π′
M

(s, a) = π′( f (s), a′)/|g−1
s (a′)|

Definition 3. An MDP homomorphism h =< f , {gs} >
from MDP M = 〈S,A,Ψ,P,R〉 to MDP M′

=

〈S′,A′,Ψ′,P′,R′〉 is an MDP isomorphism fromM toM′

if and only if f and gs, are bijective. M is said to be iso-
morphic toM′ and vice versa. An MDP isomorphism from
MDPM to itself is called an automorphism ofM.
Definition 4. The set of all automorphisms of an MDPM,
denoted by AutM, forms a group under composition of
homomorphisms. This group is the symmetry group ofM.

Let G be a subgroup of AutM. The image ofM under G
is called the G-reduced image ofM.
Definition 5. An MDPM′ is said to be a reduced model
of an MDP M, iff there exists an MDP homomorphism
h :M→M′.

3. Related Work

MDP Minimization is a well studied problem. As stated
earlier, in the model minimization approach, a reduced
MDP that that preserves some key properties as the orig-
inal MDP is found by combining “equivalent” states. The
reduced MDP found depends on the notion of equivalence
between states used in the aggregation. The notion of
equivalence chosen will be fundamental in designing and
analyzing algorithms for reducing MDPs. In (Dean & Gi-
van, 1997) a minimization algorithm is proposed based on
the notion of stochastic bi-simulation homogeneity. Infor-
mally, a partition of the state space for an MDP is said
to be homogeneous if for each action, states in the same
block have the same probability of transitioning to each
other block. They also provide an algorithm for finding
the coarsest homogeneous refinement of any partition of
the state space of an MDP. The algorithm starts with an
initial partition P0 and iteratively refines it by splitting the
blocks until the coarsest homogeneous refinement of P0 is
obtained. A notion of stability of a block with respect to an-
other is defined and unstable blocks are split till all blocks
of the partition are stable. The complexity of the algorithm
is expressed in terms of the partition manipulation opera-
tions. Hence, the actual complexity depends on the under-
lying partition representation and manipulation algorithms.
(Givan et al., 2003) discuss the application of the algorithm
to solving factored MDP problems. Enumerating the state
space is avoided by describing large blocks of equivalent
states in factored form with the block descriptions being
inferred directly from the original factored representation.

(Ravindran, 2004) proposes a more generic framework
based on the notion of MDP homomorphisms with state-
dependent action recoding as introduced in Section 2. This
allows a greater reduction in problem size and aids in mod-
eling many other notions of equivalence like symmetries. A
polynomial time algorithm to find the reduced model under
the notion of MDP homomorphisms is also proposed by
extending the algorithm proposed by (Givan et al., 2003)
and (Lee & Yannakakis, 1992). Again, the algorithm is
polynomial in the number of block operations, the stability
criterion is modified to suit the equivalence notion and the
same process of iterative splitting is used. The notion of
stability used is called the stochastic substitution property,
which is an extension of the substitution property for finite
state machines (Hartmanis, 1966).

However, literature on MDP minimization using symme-
tries is sparse. (Zinkevich & Balch, 2001) define symme-
tries based on state-action equivalence but do not make any
connections to group-theoretic concepts or minimization
algorithms.

Another dimension to analyze the literature is the approach
to symmetry finding. Two main approaches exist:

1. To derive a set of necessary conditions for elements to
be symmetric

2. Prove Isomorphism Completeness and use a graph
isomorphism finding system

Intuitively symmetries seem easier to identify than homo-
morphisms and we tried the first approach to find a polyno-
mial time algorithm for symmetry finding, along the lines
of the MDP homomorphism finding, with the motivation of
finding better algorithms for MDP minimization. The MDP
homomorphism definition allows for deriving this easily
because, two state action pairs (s1, a1), (s2, a2) are homo-
morphically equivalent if

h(s1, a1) = h(s2, a2)
P′( f (s1), gs1 (a1), f (s′)) = P′( f (s2), gs2 (a2), f (s′))

T(s1, a1, [s′]Bh |S) = T(s2, a2, [s′]Bh |S)

for all s′ ∈ S. This is the stochastic substitution property
and it allows us to deal just with blocks without worry-
ing about the actual functions. However, a similar attempt
for symmetries still needs the symmetry f in the necessary
condition as below:

h(s1, a1) = (s2, a2)
P( f (s1), gs1 (a1), f (s′)) = P(s2, a2, f (s′))

P(s1, a1, s′) = P(s2, a2, f (s′))

(Flener et al., 2002) and (Crawford, 1992) point that sym-
metry finding for CSPs in general is Isomorphism Com-
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plete. However, there also exist results showing that sym-
metry finding is NP-complete (in case of geometric auto-
morphism of graphs (Manning, 1990)). So we were still un-
clear whether symmetry finding for MDPs is Isomorphism
Complete or NP-complete due to the presence of factorially
many action recoding functions. A better understanding of
the use of symmetries for abstraction in MDPs is the moti-
vation for this work.

4. Problem Definition

To exploit the power of abstraction using symmetries, we
identify them and construct a reduced model by abstract-
ing away the symmetric portions. As the reduced model
can be significantly smaller, it can be easier to solve. We
use the notion of automorphisms to model symmetries. So
formally, given an MDPM,

1. Find the automorphism group, AutM and

2. Given the automorphism group, AutM find the corre-
sponding reduced model, the AutM-Reduced Image

5. Finding Symmetries

5.1. Problem Simplification

Let us consider the first part of our problem, i.e., given an
MDPM, find the automorphism group ofM, AutM. We
know that a group can be specified using its generators.
So we simplify the problem to finding the generators of
AutM. Let AMGEN(M) denote the problem of finding
the generators of AutM. We write A ∝ B if a problem A is
polynomially reducible to B. We say that problems A and
B are polynomially equivalent iff A ∝ B and B ∝ A. We
denote polynomial equivalence by ≡∝.
Definition 6. A problem A is Isomorphism Complete iff A
is polynomially equivalent to finding whether two graphs
are isomorphic.

Let G1,G2 be two simple graphs unless otherwise men-
tioned. The following is a list of relevant Isomorphism
Complete problems (Booth & Colbourn, 1977) on graphs:

• ISO(G1,G2): Isomorphism recognition for G1 and G2

• IMAP(G1,G2): Isomorphism Map from G1 to G2(if it
exists),

• AGEN(G1): Generators of the automorphism group,
AutG1

• DGEN(G): Generators of the automorphism group,
AutG, where G is a weighted digraph

From (Mathon, 1979), (Read & Corneil, 1977), (Miller,
1977) we have,
DGEN(G) ≡∝ AGEN(G) ≡∝ IMAP(G1,G2) ≡∝
ISO(G1,G2).
We intend to prove that AMGEN(M) is Isomorphism
Complete. We are done if we prove that AMGEN(M) ≡∝
DGEN(GM), where GM is a weighted graph constructed
in polynomial time from M, that is, AMGEN(M) ∝
DGEN(GM) and DGEN(GM) ∝ AMGEN(M). It is easy
to see that DGEN(GM) ∝ AMGEN(M) is true because we
can always construct a degenerate MDP from a digraph. So
we need to prove that AMGEN(M) ∝ DGEN(GM).

5.2. Isomorphism Completeness of the problem

An MDPM can be considered as a pseudograph with states
acting as vertices and actions acting as edges. Since there
can be more than one action affecting the transition be-
tween 2 states, we need to represent this as a pseudograph.
The transition probabilities and rewards can be thought of
as weight functions. Next, we formally pose AMGEN(M)
as a problem on a weighted pseudograph.

Let GM =< Σa,V,E,WP,WR > be the pseudograph corre-
sponding toM, where

Σa : Alphabet for labelling corresponding
to actions

V : Set of vertices corresponding to states
E : Set of edges, where each edge is a triple

(u, a, v) where, u, v ∈ V and a ∈ Σa

corresponding to state transitions

WP : E→ R corresponding to transition
probabilities

WR : E→ R corresponding to rewards with
WR(u, a, v) =WR(u, a, v′)
∀ (u, a, v), (u, a, v′) ∈ E

Note, E =

⋃

u,v∈V
Euv where, Euv = { (u′, a, v′) ∈ E

| u′ = u and v′ = v }

AMGEN(M) can be formulated as finding the generators
of the group of bijections h : V×Σa → V×Σa. h is defined
by h(u, a) = ( f (u), gu(a)), where

f : V → V and
gu : Σa → Σa defined for each

u ∈ V are bijections s. t.
WP( f (u), gu(a), f (v)) = WP(u, a, v) and
WR( f (u), gu(a), f (v)) = WR(u, a, v) ∀ (u, a, v) ∈ E
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These two components of each generator can be interpreted
as follows:

1. f is a function that permutes the states/vertices

2. The set of functions {gu} defined for each state/vertex
permutes the actions/edge labels. These are called the
State-Dependent Action Recoding (SDAR) functions.

5.2.1. SET BIJECTIONS

Let us assume, for a moment, that we have a procedure that
constructs a weighted digraph WDM from GM. Now, solv-
ing DGEN(WDM) gives the generators of WDM. Even if
these were somehow same as the f s we are looking for, we
still need a way to find the SDAR functions. To achieve
this, we define the notion of a set bijection which repre-
sents a set of bijections very compactly. In the worst case,
for each f , there can be factorially many SDAR functions.
So a normal explicit representation cannot be used. We
also define the operations of intersection between two set
bijections to find the bijections that are common to both
set bijections, composition between two set bijections and
an inverse of a set bijection. All these operations can be
done in time polynomial of the number of elements in the
domain of a bijection belonging to the set bijection.
Definition 7. Consider two finite sets A and B. Let UA =
{UA1 ,UA2 , . . . ,UAk } and UB = {UB1 ,UB2 , . . . ,UBk } be par-
titions of A and B respectively. UA and UB are said to be
similar iff |UA| = |UB| and for each UAi ∈ UA there exists
a unique UB j ∈ UB such that |UAi | = |UB j |. We denote it by
UA ∼ UB.

Note that, by definition the sets A and B will be of the same
size.
Definition 8. Let A and B be two finite sets and UA =
{UA1 ,UA2 , . . . ,UAk } and UB = {UB1 ,UB2 , . . . ,UBk } be par-
titions of A and B respectively such that UA ∼ UB. A
bijective map X : UA → UB where X(UAi ) = UB j implies
|UAi | = |UB j | for all UAi ∈ UA is called a set bijection.

Informally, a set bijection can be interpreted as represent-
ing a set of bijections from A to B. X(UAi ) = UB j repre-
sents all possible bijective mappings from elements in UAi

to elements in UB j . A bijection from A to B in the set of
bijections that represent the set bijection, can be formed by
collating mappings from each X(UAi ) = UB j . The set bi-
jection represents all mappings that can be formed by such
collations. To formalize this notion, we define the interpre-
tation function next.

Let XAB , { all bijections X : UA → UB such that UA
and UB are similar partitions of A and B respectively } be
the set of all set bijections. Let 2S|V| be the powerset set of
all permutations from A → B. Define, Î : XAB → 2S|V|

such that Î(X : UA → UB) = { all bijections l : A →
B | l(x ∈ UAi ) ∈ X(UAi ) ∀UAi ∈ UA}. Evidently, Î is
only injective and not surjective as there exist sets of 2S|V|

that cannot be represented by a set bijection. For example,
consider the set of bijections, between {a, b, c} and {1, 2, 3},
L = {(a → 1, b → 2, c → 3), (a → 2, b → 1, c → 3), (a →
2, b → 3, c → 1)}. Clearly there does not exist an X :
UA → UB such that Î(X) = L. All we can say is that
there exists an X such that L ⊂ Î(X). To get a bijective
interpretation function, we define, I : XAB → image(Î)
such that I(X : UA → UB) = Î(X : UA → UB). Clearly I is
a bijection and we call this the interpretation function.
Definition 9. Let A be a finite set and let U1

A =

{U1
A1
,U1

A2
, . . . ,U1

Ak
}, U2

A = {U2
A1
,U2

A2
, . . . ,U2

Ak
} be two

partitions of A such that, U1
A ∼ U2

A. We define the intersec-
tion of two similar partitions of a finite set as U1

A ∩ U2
A =

{U1
Ai
∩U2

A j
| U1

Ai
∈ U1

A,U2
A j
∈ U2

A and U1
Ai
∩U2

A j
, ∅}.

Definition 10. Let A and B be two finite sets and U1
A =

{U1
A1
,U1

A2
, . . . ,U1

Ak
}, U2

A = {U2
A1
,U2

A2
, . . . ,U2

Ak
} be two

partitions of A and U1
B = {U1

B1
,U1

B2
, . . . ,U1

Bk
}, U2

B =

{U2
B1
,U2

B2
, . . . ,U2

Bk
} be two partitions of B. Also let U1

A ∼

U1
B and U2

A ∼ U2
B. Let two set bijections X1 and X2 be

defined from U1
A to U1

B and from U2
A to U2

B respectively. If
(U1

A∩U2
A) ∼ (U1

B∩U2
B), we define the intersection between

the two set bijections X = X1 ∩ X2 as follows: ∀U1
Ai
∈

U1
A,U2

A j
∈ U2

A such that U1
Ai
∩ U2

A j
, ∅, X(U1

Ai
∩ U2

A j
) =

X1(U1
Ai

) ∩ X2(U2
A j

). Note that, X : U1
A ∩ U2

A → U1
B ∩ U2

B
and it can be shown that I(X) = I(X1) ∩ I(X2).
Definition 11. Let A be a finite set. Let U1

A =

{U1
A1
,U1

A2
, . . . ,U1

Ak
}, U2

A = {U2
A1
,U2

A2
, . . . , U2

Ak
} be two

similar partitions of A. Let X be a set bijection defined
from U1

A to U2
A. We define the inverse of X as X−1 : U2

A →

U1
A such that X−1(U2

Ai
) = U1

A j
iff X(U1

A j
) = U2

Ai
.

Definition 12. Let A, B and C be three finite sets and
UA = {UA1 ,UA2 , . . . ,UAk }, UB = {UB1 ,UB2 , . . . ,UBk } and
UC = {UC1 ,UC2 , . . . ,UCk } be partitions of A, B and C re-
spectively . Also let UA, UB and UC be pairwise similar
to each other. Let two set bijections X1 and X2 be defined
from UB to UC and UA to UB respectively. We define the
composition of X1 and X2, X = X1 � X2 as the set bijec-
tion from UA to UC defined by X(UAi ) = X1(X2(UAi )), for
each UAi ∈ UA. It can be shown that for each l ∈ I(X) there
exist, l1 ∈ I(X1) and l2 ∈ I(X2) such that l = l1 ◦ l2 where ◦
denotes normal function composition.

5.2.2. VECTOR-WEIGHTED DIGRAPH

We assume that Σa can be ordered and let O be such an
ordering.

Without loss of generality, we can assume that |Euv| =
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k,∀u, v ∈ V because, we can always take maxu,v∈V |Euv| = k
and if ∃u, v ∈ V such that (u, a, v) ∈ E for some a ∈ Σa
and |Euv| < k, then add dummy labels (chosen from the re-
maining labels in Σa) and zero weights to make |Euv| = k.
This corresponds to the general assumption in MDPs that
|As| = k, ∀s ∈ S.

Let < a1, a2, . . . , ak > ordered as per O be the k-tuple repre-
senting the label of each edge in Euv. This being the same
for all edges, we leave out labeling from the graph defini-
tion.

Now we define the vector-weighted digraph corresponding
toM, VWGM =< V,E′,WP,WR >, as follows:

E′ = {(u, v) | ∃a ∈ Σa and (u, a, v) ∈ E}
WP : E′ → R

k defined by
WP(u,v) =<WP(u, a1, v), . . . ,WP(u, ak, v) >

WR : E′ → R
k defined by

WR(u,v) =<WR(u, a1, v), . . . ,WR(u, ak, v) >

where a1, a2, . . . , ak are ordered as per O.

5.2.3. SORTED VECTOR-WEIGHTED DIGRAPH

We define the sorted vector-weighted digraph,
SVWGM =< V,E′,WPs ,WRs >, as follows:

WPs : E′ → R
k defined by

WPs (u,v) =<WP(u, puv(1), v), . . . ,WP(u, puv(k), v) >
where, puv : Nk → Σa such that

WP(u, puv(1), v) ≤ . . . ≤WP(u, puv(k), v)

WRs : E′ → R
k defined by

WRs (u,v) =<WR(u, ruv(1), v), . . . ,WR(u, ruv(k), v) >
where, ruv : Nk → Σa such that

WR(u, ruv(1), v) ≤ . . . ≤WR(u, ruv(k), v)
Note that, puv and ruv are not unique. So we choose them
such that the order O is preserved.

5.2.4. Set Bijections THAT SORT THE VECTOR-WEIGHTS

Here we show that there exists a set bijection whose in-
terpretation is the set of permutations that sort the vector-
weights. Let Nk be the set of first k natural numbers. Let
DP

uv , { all permutations l : Nk → Σa | l sorts WP(u,v)}
be defined for each (u, v) ∈ E′. So, WPs (u,v) =<
WP(u, l(1), v), . . . ,WP(u, l(k), v) > and WP(u, l(1), v) ≤
WP(u, l(2), v) ≤ . . . ≤ WP(u, l(k), v) . Clearly, Nk can be
partitioned into Uuv

Nk
= {N1

k ,N
2
k , . . . ,N

j
k} such that, ∀t ∈ N

y
k ,

WP(u, l(t), v) has the same value for each y = 1, 2, . . . , j
and if t ∈ N

y
k and t′ ∈ N

y+1
k then WP(u, l(t), v) <

WP(u, l(t′), v). This partition induces a corresponding par-
tition Uuv

Σa
= {Σ1

a ,Σ
2
a , . . . ,Σ

j
a} where Σi

a = {l(t) | t ∈ N
i
k}.

Since, each l sorts WP(u,v), they satisfy the property that
l(x ∈ N

i
k) ∈ Σi

a. Therefore, there exists a set bijection
QP

uv : Uuv
Nk
→ Uuv

Σa
such that, I(QP

uv) = DP
uv.

Using a similar procedure, we can show that there exists set
bijection QR

uv : Uuv
Nk
→ Uuv

Σa
whose interpretation is the set

of permutations that sort WR(u,v).
Let Quv = QP

uv ∩ QR
uv. If Quv = ∅, then there doesn’t exist

an automorphism for the MDPM.

5.2.5. WEIGHTED DIGRAPH

Now we define the weighted digraph WGM =<

V,E′,W′ > as follows:

W′ : E′ → R such that W′(u, v) = m(WPs (u, v).
WRs (u, v)) where m is a bijection from R

2k → R

and . denotes concatenation

Algorithm 1 Construction
1: GivenM = 〈S,A,Ψ,P,R〉
2: Let SOLN be an empty set
3: Construct the pseudograph GM =< Σa,V,E,WP,WR > as

defined in Section 5.2
4: Construct the vector-weighted digraph VWGM =<

V,E′,WP,WR > as defined in Section 5.2.2
5: Construct the sorted vector-weighted digraph SVWGM =<

V,E′,WPs ,WRs > as defined in Section 5.2.3
6: for each (u, v) ∈ E′ do
7: Compute QP

uv and QR
uv by finding the partition of Nk as

described in Section 5.2.4
8: Quv ← QP

uv ∩QR
uv

9: if QP
uv ∩QR

uv does not exist then
10: exit
11: end if
12: end for
13: Construct the weighted digraph WGM =< V,E′,W′ > using

m as described in Section 5.2.5
14: F ← DGEN(WGM) where F is the set of generators of

AutWGM
15: for each f ∈ F do
16: for each (u, v) ∈ E′ do
17: Guv ← Q f (u) f (v) �Q−1

uv
18: end for
19: Let Ĥ f be an empty set
20: for each u ∈ V do
21: Gu ← Guv from some v ∈ V
22: for each v ∈ V do
23: Gu ← Gu ∩ Guv
24: end for
25: Add Gu to Ĥ f

26: end for
27: Add < f , Ĥ f > to SOLN
28: end for
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5.2.6. CONSTRUCTION

The procedure for finding symmetries of an MDP M is
given in Algorithm 1.

The complexity of the algorithm is as follows. The con-
struction steps in lines 3 to 5, are at most polynomial in
|E|. Using a constant access time data structure like a hash-
table, QP

uv and QR
uv can be constructed in O(|Euv|) time.The

intersection takes O(|Euv|2) time. Since this runs for |E′| it-
erations, computation of Quv is at most polynomial in |E|.
Since m is known, the construction of weighted digraph in
line 13, is polynomial in |E|. With the use of procedures that
return at most |V| automorphisms of AutWGM (Mathon,
1979), the construction of Gu for each f , from lines 15 to
26, runs for at most |V| iterations.

The most expensive part of the loop from lines 20 to 26
is the computation of |V|2 intersections. But this is still
polynomial in |V||E| time. Hence the algorithm takes poly-
nomially more time than the solution time of DGEN. Also
to extract a solution from SOLN, we need to extract |V|
SDAR functions from Ĥ f for each f , which takes |Euv| time
if we use a constant access time data structure. So extrac-
tion of a solution takes O(|V|2|E|) which is still polynomial
in |V||E|. While one can intuitively see that the reduction
is indeed polynomial time, the proof is presented in an as-
sociated technical report (Narayanamurthy & Ravindran,
2008), due to lack of space.

5.3. Significance

The above result is significant both theoretically and practi-
cally. Practically speaking, the reduction to Graph Isomor-
phism allows us to use any of the numerous off-the-shelf
Graph Isomorphism solvers to find symmetries on MDPs.
In fact, we use NAutY - No Automorphisms, Yes?, the
best Graph Isomorphism solver currently available (Skiena,
1997) to find out symmetries in MDPs. NAutY solves
AGEN(G). It uses backtracking and a refinement proce-
dure to find the canonical labeling. If two different label-
ings lead to the same graph, then an automorphism can be
found using these labelings (McKay, 1981). In the worst
case it can take exponential time. So it allows the use of
a variety of vertex invariants, which act like heuristics, to
solve harder problems. However, for random graphs with n
vertices and edge probability 0.5, average execution times
for large n are about n2 nanosecs.We use NAutY in the
fourteenth line in the construction, where we need to solve
DGEN(G). We first convert the weighted digraph into an
unweighted digraph using standard procedure. We then use
NAutY to find the generators of the automorphism group of
the so found digraph. From these we extract generators of
AutWG as per the above procedure. We present some re-
sults in Section 6.

6. Results

The experiments were run on the following two domains.
We describe results per domain.

6.1. Probabilistic GridWorld

The domain is an N × N GridWorld with four probabilis-
tic actions of going UP, DOWN, RIGHT and LEFT having
a 90% success probability. The initial state was (0,0) and
the goal states were {(0,N − 1), (N − 1, 0)}. We used Al-
gorithm 1 to find the symmetries with NAutY being used
as the DGEN solver. We then used the symmetries to find
the partition ofΨ. We were able to find the partition corre-
sponding to the symmetry group, that is, for a grid of size
M ×N, states (x,y), (y,x), (M-1-x,N-1-y) and (N-1,M-1-x)
are equivalent. We present the time taken by the algorithm
for GridWorlds of different sizes.
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Figure 1. Average running times of the value iteration algorithm
with explicit model minimization on Probabilistic GridWorld vs
size of the GridWorld. Each of the 3 sets should be compared with
the graph for no reduction. Curves in a set represent different
degrees of symmetry. Each set shows the time reduction with
reduced model usage. First one discounts the time taken to find
symmetries and for reduction. The next set includes the time for
reduction but discounts time taken to find symmetries. The last
one includes both the time taken to find symmetries using NAutY
and time for reduction.

To complete the end-to-end approach, we ran the G-
reduced image algorithm, presented in (Ravindran, 2004),
to find the reduced image and ran the Value Iteration algo-
rithm on the reduced image. To show the efficiency of re-
duction, we show the time taken for reduction and solution
separately. We also present the case of a handcrafted 2-
folded symmetry which is used with the G-reduced image
algorithm and reduced model is used with Value Iteration.

From Figure 1 it is evident that the reduced model con-
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struction is efficient and adds little overhead. However, the
results of the end-to-end approach show a significant over-
head due to symmetry finding. It cuts the saving by almost
half. Still the results are significant because they double
the size of the largest GridWorld that can be solved in some
given time.

6.2. GridWorld Soccer

The domain is a soccer-inspired grid domain. It is a slightly
modified version of that described in (Bowling, 2003). We
first describe the original version of the domain and then
state the modification.

It is an M × N grid with two agents. One is denoted the
attacker (A) who holds the ball and the other as the de-
fender (B) who tries to snatch the ball from the attacker.
The center lines/grids(depending on whether M and N are
even or odd) for both x-axis and y-axis are chosen natu-
rally. The state is defined by the non-identical positions of
the attacker and the defender. This defines the state space
with (MN)2 − (MN) states. The actions are movements
in the four compass directions: N, E, W, S and the hold
action H. It is a single player game, in that, only the at-
tacker chooses actions deliberately while the defender ex-
ecutes random actions. The action chosen by the attacker
and the random action of the defender are executed in ran-
dom order, which determines the next state. However if
the defender tries to move into the attacker’s location then
the state is unchanged and if the attacker tries to move into
the defender’s location, the game is reset to the initial state
which is shown in Figure 2. The right hand section of the
grid is the attacker’s half and the left hand section that of
the defender. The goal is chosen to be situated beyond the
first column of grids occupying one grid on each side of
the y-axis central line/grid. A W action from the squares
in front of the goal state leads to a goal with a reward of 1
and to the end of an episode. Everywhere else the reward
is 0. A 5 × 4 domain is shown in Figure 2.

Intuitively, the domain seems symmetric around the y-axis
center line. However, the results of using Algorithm 1 on
this domain showed us that the domain is not symmetric
due to the existence of the reset action when the attacker
tries to move into the defender’s position. So we modified
the domain to have symmetric reset, that is, reset happens
to the initial state and its symmetric state around the y-axis
center line with equal probability. This makes the domain
symmetric as per intuition, which the algorithm confirms.

Interestingly, the algorithm also finds that the existence of
the hold action adds further symmetry. The grids along the
border of the domain act as walls. For example, the north-
ern wall stops the N action leaving the state unchanged
which is the same result if the agent were to execute a H ac-
tion. These additional symmetries which we did not think
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Figure 2. Single Player grid soccer where agent B selects it ac-
tions randomly. The initial state is shown on the left and an ex-
ample of transitions and associated probabilities are given for a
particular state and action on the right. Notice that fifty percent
of the time A’s actions are executed first causing it to lose the ball
and the game reset to the initial state. In addition, if B selects H
or E it does not move and so A still loses the ball and returns to
the initial state. The other outcomes are equiprobable.

of before running algorithm were found by the algorithm.
This suggests that there might exist complicated symme-
tries that will be discovered by the algorithm, which are
hard to find, even upon a close examination. Also in many
cases, symmetries are size invariant. So we can use the al-
gorithm on a relatively smaller version of the domain and
find symmetries which might still hold on the larger ver-
sion.

We present the time taken by the algorithm for different
sizes. An increment of one here means an increase of one
along both axes. The presence of two agents, blows up the
state space very rapidly and we hit the limit on the order
of the graph imposed by NAutY very soon (for a 11 × 10
grid).To present similar graphs as in the probabilistic Grid-
World case, we use the explicit model minimization ap-
proach with Value Iteration. The results are presented in
Figure 3.

In this case, we find that the overheads due to the con-
struction and the G-reduced image algorithm is negligible.
Though efficiency of the G-reduced image algorithm is ex-
pected, the efficiency of the construction can be possibly
because of the structure of the domain yielding an easy
graph to find automorphisms on.

7. Conclusion

In this work, we have provided a constructive proof for the
Isomorphism Completeness of the problem of finding sym-
metries. We have also proposed the use of this construc-
tive proof along with an efficient minimization algorithm to
solve an MDP using symmetries and demonstrated it em-
pirically. As part of future work, we are looking at adapting
approximation algorithms for finding graph isomorphisms
to finding approximate symmetries in MDPs.
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Figure 3. Average running times of the value iteration algorithm
with explicit model minimization on GridWorld Soccer domain vs
size of the domain. Size of one represents the 5 × 4 grid. There-
after an increment of one means an increment of one along both
axes. Each graph should be compared with the graph for no re-
duction. The other graphs show the time reduction with reduced
model usage. First one discounts the time taken to find symme-
tries and for reduction. The next one includes the time for reduc-
tion but discounts time taken to find symmetries. The last one
includes both the time taken to find symmetries using NAutY and
time for reduction.
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Abstract

We present an algorithm for exact Bayes op-
timal classification from a hypothesis space of
decision trees satisfying leaf constraints. Our
contribution is that we reduce this classifica-
tion problem to the problem of finding a rule-
based classifier with appropriate weights. We
show that these rules and weights can be
computed in linear time from the output of a
modified frequent itemset mining algorithm,
which means that we can compute the classi-
fier in practice, despite the exponential worst-
case complexity. In experiments we compare
the Bayes optimal predictions with those of
the maximum a posteriori hypothesis.

1. Introduction

We study the problem of Bayes optimal classification
for density estimation trees. A density estimation tree
in this context is a decision tree which has a probabil-
ity density for a class attribute in each of its leaves.
One can distinguish two Bayesian approaches to den-
sity estimation using a space of such trees.

In the first approach a single maximum a posteriori
(MAP) density estimation tree is identified first:

T = argmax
T

P (T |X, ~y),

where X and ~y together constitute the training data.
The posterior probability P (T |X, ~y) of a hypothesis T

is usually the product of a prior and a likelihood. The
MAP hypothesis can then be used to classify a test
example x′ using the densities in the leaves.

The second approach is to marginalize over all possible
trees, instead of preferring a single one:

arg max
c

P (c|x′,X, ~y) = arg max
c

∑

T

P (c|x′, T )P (T |X, ~y).

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

Predictions that are performed using this second ap-
proach are called Bayes optimal predictions. It has
been claimed that “no single tree classifier using the
same prior knowledge as an optimal Bayesian classifier
can obtain better performance on average” (Mitchell,
1997). The Bayesian point of view is that Bayesian
averaging cancels out the effects of overfitted models
(Buntine, 1990), and “solves” overfitting problems.

This claim was challenged by Domingos (2000).
Domingos demonstrated experimentally that an en-
semble of decision trees that are weighted according to
posterior probabilities performs worse than uniformly
weighted hypotheses. It was found that one overfitting
tree usually dominates an ensemble.

However, these results were obtained by sampling from
the hypothesis space. Even though Domingos argued
that similar issues should also occur in the truly op-
timal approach, this claim could not be checked in
practice as the exact computation of Bayes optimal
predictions was considered to be impractical. Indeed,
in (Chipman et al., 1998) it was already claimed that
“exhaustive evaluation ... over all trees will not be
feasible, except in trivially small problems, because
of the sheer number of trees”. Similar claims were
made in other papers studying Bayesian tree induction
(Buntine, 1992; Chipman et al., 1998; Angelopoulos &
Cussens, 2005; Oliver & Hand, 1995), and have led to
the use of sampling techniques such as Markov Chain
Monte Carlo sampling.

In this paper we present an algorithm that can be used
to evaluate Domingos’ claim in a reasonable number
of non-trivial settings. Our algorithm allows us to ex-
actly compute the Bayes optimal predictions given pri-
ors that assign non-zero probability to trees that sat-
isfy certain constraints. An example of a constraint is
that every leaf covers a significant number of examples;
this constraint has been used very often in the liter-
ature (Buntine, 1992; Quinlan, 1993; Chipman et al.,
1998; Angelopoulos & Cussens, 2005; Oliver & Hand,
1995).

Our algorithm is an extension of our earlier work, in
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which we developed the DL8 algorithm for determining
one tree that maximizes accuracy (Nijssen & Fromont,
2007). DL8 is based on dynamic programming on
a pre-computed lattice of itemsets, and scans these
itemsets decreasing in size. Its time complexity is lin-
ear in the size of the lattice. In this paper we extend
this algorithm to a Bayesian setting. From a technical
point of view, the main contribution is that we prove
that a different pass over the lattice allows us to per-
form Bayes optimal predictions without increasing the
asymptotic complexity of building the lattice.

The task that our algorithm addresses is similar to the
task addressed in (Cleary & Trigg, 1998). Compared
to this earlier work, we study the more common Dirich-
let priors also considered in (Chipman et al., 1998;
Angelopoulos & Cussens, 2005); furthermore, by ex-
ploiting the link to itemset mining, our algorithm is
more efficient, and its results are more interpretable.

The paper is organized as follows. Notation and con-
cepts are introduced in Section 2. Bayes optimal clas-
sification is formalized in Section 3. We show how to
map this problem to the problem of finding itemsets
and building a classifier with weighted rules in Sec-
tion 4. Experiments are performed in Section 5.

2. Preliminaries

Before we are ready to formalize our problem and our
proposed solution, we require some notation. We re-
strict ourselves to binary data; we assume that data
is converted in this form in a preprocessing step. The
data is stored in binary matrix X, of which each row
~xk corresponds to one example. Every example ~xk has
a class label yk out of a total number of C class labels.
Class labels are collected in a vector ~y.

We assume that the reader is familiar with the concept
of decision trees (see (Breiman et al., 1984; Quinlan,
1993) for details). Essential in our work is a link be-
tween decision trees and itemsets. Itemsets are a con-
cept that was introduced in the data mining literature
(Agrawal et al., 1996). If I is a domain of items, I ⊆ I
is an itemset. In our case, we assume that we have two
types of items: for every attribute there is a positive
item i that represents a positive value, and a negative
item ¬i that represents a negative value. An example
~x can be represented as an itemset

{i|xi = 1} ∪ {¬i|xi = 0}.

Thus, for a data matrix with n columns, we have
that I = Ipos ∪ Ineg , where Ipos = {1, 2, . . . n} and
Ineg = {¬1,¬2, . . .¬n}. We overload the use of the ⊆
operator: when I is an itemset, and ~x is an example,

we use I ⊆ ~x to denote that I is a subset of ~x after
translating ~x into an itemset.

Every sequence of test outcomes in a decision tree,
starting from the root of the tree to an arbitrary node
deeper down the tree, can be represented as an itemset.
For instance, a decision tree with B in the root, and
A in its right-hand branch can be represented by:

T = {∅, {B}, {¬B}, {¬B, A}, {¬B,¬A}}.

Every itemset in T corresponds to one node in the
tree. By T we denote all subsets of 2I that represent
decision trees. A decision tree structure is an element
T ∈ T . Consequently, when T is a decision tree we can
write I ∈ T to determine if the itemset I corresponds
to a path occurring in the tree.

An itemset is an unordered set: given an itemset in
a tree, we cannot derive from this itemset in which
order its tests appear in the tree. This order can only
be determined by considering all itemsets in a tree T .

We are not always interested in all nodes of a tree. The
subset of itemsets that correspond to the leaves of a
tree T will be denoted by leaves(T ); in our example,

leaves(T ) = {{B}, {¬B, A}, {¬B,¬A}}.

The most common example of a decision tree is the
classification tree, in which every leaf is labeled with a
single class. In a density estimation tree, on the other
hand, we attach a class distribution to each leaf, rep-
resented by a vector ~θI ; for each class c this vector
contains the probability θIc that examples ~x ⊇ I be-
long to class c. All the parameters of the leaves of
a tree are denoted by Θ. The vectors in Θ are thus
indexed by the itemsets representing leaves of the tree.

For the evaluation of a tree T on a binary matrix X, it
is useful to have a shorthand notation for the number
of examples covered by a leaf:

f(I,X) = |{~xk|~xk ⊇ I}| ;

usually we omit the matrix X in our notation, as we
assume the training data to be fixed. We call f(I,X)
the frequency of I. Class-based frequency is given by:

fc(I,X, ~y) = |{~xk|~xk ⊇ I, yk = c}| .

The frequent itemset mining problem is the problem
of finding all I ⊆ I such that f(I) ≥ γ, for a given
threshold γ. Many algorithms for computing this set
exist (Agrawal et al., 1996; Goethals & Zaki, 2003).
They are based on the property that the frequency
constraint is anti-monotonic. A binary constraint p on
itemsets is called anti-monotonic iff ∀I ′ ⊆ I : p(I) =
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true =⇒ p(I ′) = true. Consequently, these algo-
rithms do not need to search through all supersets
I ′ ⊇ I of an itemset I that is found to be infrequent.

One application of itemsets is in the construction of
rule-based classifiers (CMAR (Li et al., 2001) is an
example). Many rule-based classifiers traverse rules
sequentially when predicting examples. Here, we study
a rule-based classifier that derives a prediction from all
rules through voting. Such a classifier can be seen as a
subset P ⊆ 2I of itemsets, each of which has a weight
vector ~w(I). We predict an example ~x by computing

argmax
c

∑

{I∈P|I⊆~x}

wc(I),

where we thus pick the class that gets most votes of
all rules in the ruleset; each rule votes with a certain
weight on each class. The aim of this paper is to show
that we can derive a set of itemsets P and weights ~w(I)
for all I ∈ P such that the predictions of the rule-based
classifier equal those of a Bayes optimal classifier. The
rules in P represent all paths that can occur in trees
in the hypothesis space.

3. Problem Specification

In this section we formalize the problem of Bayes op-
timal classification for a hypotheses space of decision
trees. Central in the Bayesian approach is that we first
define the probability of the data given a tree structure
T and parameters Θ:

P (~y|X, T,Θ) =
∏

I∈leaves(T )

C∏

c=1

(θIc)
fc(I)

In Bayes optimal classification we are interested in
finding for a particular example ~x′ the class y′ which
maximizes the probability

y′ = argmax
c

P (c|~x′,X, ~y) (1)

= argmax
c

∑

T∈T

∫

Θ

P (c|~x′, T,Θ)P (T,Θ|X, ~y)dΘ,

where we sum over the space of all decision trees and
integrate over all possible distributions in the leaves of
each tree. Applying Bayes’ rule on the second term,
and observing that Θ is dependent on the tree T , we
can rewrite this into

∑

T∈T

∫

Θ

P (c|~x′, T,Θ)P (~y|T,Θ,X)P (Θ|T,X)P (T |X)dΘ;

(2)
in this formula P (T |X) is the probability of a tree
given that we have seen all data except the class labels.

Our method is based on the idea that we can constrain
the space of decision trees by manipulating this term.

A first possibility is that we set P (T |X) = 0 if there is a
leaf I ∈ leaves(T ) such that f(I) < γ, for a frequency
threshold γ. We call such leaves small leaves. The
class estimates of a small leaf are often unreliable, and
it is therefore common in many algorithms to consider
only large leaves.

Additionally, we can set P (T |X) = 0 if the depth of
the decision tree exceeds a predefined threshold.

Both limitations impose hard constraints on the trees
that are considered to be feasible estimators. We de-
note trees in T that satisfy all hard constraints by L.

In the simplest case we can assume a uniform distribu-
tion on the trees that satisfy the hard constraints. Ef-
fectively, this would mean that we set P (Θ|T,X) = 1
in Equation 2 for all T ∈ L. However, we will study
a more sophisticated prior in this paper to show the
power of our method. The aim of this prior, which was
proposed in (Chipman et al., 1998), is to give more
weight to smaller trees; it can be seen as a soft con-
straint. This prior is defined as follows.

P (T |X) =
∏

I∈T

Pnode(I, T,X)

Here, the term Pnode(I, T,X) is defined as follows.

Pnode(I, T,X) =

{
Pleaf (I,X), if I is a leaf in T ;
Pintern(I,X), if I is internal in T ;

where

Pleaf (I,X) =







0, if f(I) < γ or |I| > δ;
1, else if |I| = δ or e(I) = 0;
1 − α(1 + |I|)−β , otherwise;

and

Pintern(I,X) =







0, if f(I) < γ or |I| ≥ δ

or e(I) = 0;
α(1 + |I|)−β/e(I), otherwise;

Here e(I) is the size of the set {i ∈ Ipos|f(I ∪ i) ≥ γ ∧
f(I∪¬i) ≥ γ}, which consists of all possible tests that
can still be performed to split the examples covered by
itemset I.

The term α(1 + |I|)−β makes it less likely that nodes
at a higher depth are split. The term e(I) determines
how many tests are still available if a test is to be
performed. We assume that tests are apriori equally
likely, independent of the order in which the previous
tests on the path have been performed. An alternative
could be to give more likelihood to tests that are well-
balanced.
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Note that Pleaf and Pintern are computed for an item-
set I almost independently from the tree T : we only
need to know if I is a leaf or not.

As common in Bayesian approaches, we assume that
the parameters in every leaf of the tree are Dirichlet
distributed with the same parameter vector ~α, i.e.

P (Θ|T,X) = P (Θ|T ) =
∏

I∈leaves(T )

Dir(~θI |~α),

where

Dir(~θI |~α) =
Γ(
∑

c αc)
∏

c Γ(αc)

∏

c

θIc
αc−1,

and Γ is the gamma function.

Finally, it can be seen that

P (c|~x′, T,Θ) = θI(T,~x′)c,

where I(T, ~x′) is the leaf of T for which I ⊆ ~x′.

We now have formalized all terms of Equation 2.

4. Solution Strategy

An essential step in our solution strategy is the con-
struction of the set

P = {I|T ∈ L, I ∈ T },

which consists of all itemsets in trees that satisfy the
hard constraints. Only these paths are needed when
we wish to compute the posterior distribution over
class labels, and are used as rules in our rule-based
classifier. The weights of these rules are obtained by
rewriting the Bayesian optimization criterion for a test
example ~x′ (Equation 1) as

arg max
c

∑

{I∈P|I⊆~x′}

wc(I)

where

wc(I) =
∑

T∈L, has leaf I

(
∏

I∈T

Pnode(I, T,X)

)





∫

Θ

θIc

∏

I′∈leaves(T )

Dir(~θ′I |~α)
∏

c

θ
fc(I

′)
I′c dΘ



 . (3)

The idea behind this rewrite is that the set of all trees
in L can be partitioned by considering in which leaf a
test example ends up. An example ends in exactly one
leaf in every tree, and thus every tree belongs to one
partition as determined by that leaf. We sum first over

all possible leaves that can contain the example, and
then over all trees having that leaf. The weights of the
rules in our classifier consist of the terms wc(I), and
will be computed from the training data in the training
phase; the sum of the weights wc(I) is computed for a
test example in the classification phase.

This rewrite shows that in the training phase we need
to compute weights for all itemsets that are in P . We
will discuss now how to compute these.

In the formulation above we multiply over all leaves,
including the leaf that we assumed the example ended
up in. Taking this special leaf apart we obtain:

wc(I) = Wc(I)
∑

T∈L, has leaf I

∏

I′∈T,I′ 6=I

V (I ′, T ); (4)

where

Wc(I) = Pleaf (I,X)

∫

~θI

θIcDir(~θI |~α)
∏

c

θ
fc(I)
Ic d~θI

and

V (I, T ) =







Pintern(I,X) if I is internal in T ;

Pleaf (I,X)
∫

~θI
Dir(~θI |~α)

∏

c θ
fc(I)
Ic d~θI ,

otherwise.

This rewrite is correct due to the fact that we can move
the integral of Equation 3 within the product over the
leaves: the parameters of the leaves are independent
from each other.

Let us write the integrals in closed form. First consider
Wc(I). As the Dirichlet distribution is the conjugate
prior of the binomial distribution, we have

Wc(I) =

Pleaf (I,X)
Γ(
∑

c αc)
∏

c Γ(αc)

∫

~θI

θIc

∏

c

θ
αc−1+fc(I)
Ic d~θI =

Pleaf (I,X)
Γ(
∑

c αc)
∏

c Γ(αc)

∏

c Γ(αc + f ′
c(I))

Γ(
∑

c αc + f ′
c(I))

Here f ′
c′(I) = fc′(I) if c 6= c′, else f ′

c′(I) = fc′(I) + 1.

Similarly, we can compute V (I, T ) as follows.

V (I, T ) =







Vintern(I) = Pintern(I,X),
if I is internal in T ;

Vleaf (I) =

Pleaf (I,X)
Γ(

P

c
αc)

Q

c
Γ(αc+fc(I))

Q

c
Γ(αc)Γ(

P

c
αc+fc(I)) ,

otherwise.

The remaining question is now how to avoid summing
all trees of Equation 4 explicitly. In the following,
we will derive a dynamic programming algorithm to
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implicitly compute this sum. We use a variable that is
defined as follows.

u(I) =
∑

T∈L(I)

∏

I′∈T

V (I ′, T ); (5)

Here we define L(I) as follows:

L(I) = {{I ′ ∈ T |I ′ ⊇ I}| all T ∈ L for which I ∈ T };

thus, L(I) consists of all subtrees that can be put be-
low an itemset I while satisfying the hard constraints.
As usual, we represent a subtree by listing all its paths.

For this variable we will first prove the following.

Theorem 1. The following recursive relation holds
for u(I):

u(I) = Vleaf (I)+
∑

i∈Ipos s.t. I∪i,I∪¬i∈P

Vintern(I)u(I ∪ i)u(I ∪ ¬i).

Proof. We prove this by induction. Assume that for
all itemsets |I| > k our definition holds. Let us fill in
our definition in the recursive formula, then we get:

u(I) = Vleaf (I)+
∑

i∈Ipos, s.t. I∪i,I∪¬i∈P

∑

T∈L(I∪i)

∑

T ′∈L(I∪¬i)

Vintern(I)
∏

I′∈T

V (I ′, T )
∏

I′∈T ′

V (I ′, T ′);

This can be written as Equation 5 to prove our claim:
the term for Vleaf corresponds to the possibility that
I is a leaf, the first sum passes over all possible tests
if the node is internal, the second and third sum tra-
verse all possible left-hand and right-hand subtrees;
the product within the three sums is over all nodes in
each resulting tree.

We can use this formula to write wc(I) as follows.

Theorem 2. The formula wc(I) can be written as:

wc(I) = Wc(I)

∑

π∈Π(I)

|I|
∏

i=1

Vintern({π1, . . . , πi−1})u({π1, . . . , πi−1,¬πi}).

Here, Π(I) contains all permutations (π1, . . . , πn) of
the items in I for which it holds that ∀1 ≤ i ≤ n :
{π1, . . . , πi}, {π1, . . . , πi−1,¬πi} ∈ P.

Proof. The set of permutations Π(I) consists of all (or-
dered) paths that can be constructed from the items in
I and that fulfill the constraints on size and frequency.
Each tree T ∈ L with I ∈ T must have exactly one of
these paths. Given one such path, Equation 4 requires
us to sum over all trees that contain this path. Each
tree in this sum consists of a particular choice of sub-
trees for each sidebranch of the path. Every node in a
tree T ∈ L with I ∈ T is either (1) part of the path to
node I or (2) part of a sidebranch; this means that we
can decompose the product

∏

I′∈T,I′ 6=I V (I ′, T ), which
is part of Equation 4, into a product for nodes in side-
branches, and a product for nodes on the path to I.
The term for nodes on the path is computed by

Wc(I)

|I|
∏

i=1

Vintern({π1, . . . , πi−1});

considering the side branches, u(I) sums over
all possible subtrees below sidebranches of the
path {π1, . . . , πn}; using the product-of-sums rule
that

∏n
i=1

∑mi

j=1 αij =
∑m1

i1=1 . . .
∑mn

in=1 x1α1
· · ·αnin

,

where
∑mi

j=1 αij corresponds to a u-value of a
sidebranch, we can deduce that the product
∏|Ik|

i=1 u({π1, . . . , πi−1,¬πi}) sums over all possible
combinations of side branches.

Given their potentially exponential number it is unde-
sirable to enumerate all permutations of item orders
for every itemset. To avoid this let us define

v(I) =

∑

π∈Π(I)

|I|
∏

k=1

Vintern({π1, . . . , πk−1})u({π1, . . . , πk−1,¬πk}),

such that wc(I) = Wc(I)v(I).

Theorem 3. The following recursive relation holds.

v(I) =







1, if I = ∅,
∑

i∈I s.t. I−i∪¬i∈P Vintern(I − i)
u(I − i ∪ ¬i)v(I − i), otherwise.

Proof. This can be shown by induction: if we fill in
our definition of v(I) in the recursive formula we get

∑

i∈I s.t. I−i∪¬i∈P

Vintern(I − i)u(I − i ∪ ¬i)

∑

π∈Π(I−i)

|I|−1
∏

k=1

Vintern({π1, . . . , πk−1})u({π1, . . . ,¬πk})

Both sums together sum exactly over all possible per-
mutations of the items; the product is exactly over all
terms of every permutation.
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Algorithm 1 Compute Bayes Optimal Weights

input The set of itemsets P and for all I ∈ P : ~f(I)
output The weight vectors ~w(I) for all I ∈ P
1: % Bottom-up Phase
2: Let n be the size of the largest itemset in P
3: for k := n downto 0 do

4: for all I ∈ P s.t. |I | = k do

5: u[I ] := Vleaf (I)
6: for all i ∈ Ipos s.t. I ∪ i, I ∪ ¬i ∈ P do

7: u[I ] := u[I ] + Vintern(I)u[I ∪ i]u[I ∪ ¬i]
8: end for

9: end for

10: end for

11: % Top-down Phase
12: v[∅] := 1
13: for k := 1 to n do

14: for all I ∈ P s.t. |I | = k do

15: v[I ] := 0
16: for all i ∈ I s.t. I − i ∪ ¬i ∈ P do

17: v[I ] := v[I ] + Vintern(I − i)u[I − i ∪ ¬i]v[I − i]
18: end for

19: for c := 1 to C do

20: wc[I ] := Wc(I)v[I ]
21: end for

22: end for

23: end for

A summary of our algorithm is given in Algorithm 1.
The main idea is to apply the recursive formulas for
u(I) and v(I) to perform dynamic programming in two
phases: one bottom-up phase to compute the u(I) val-
ues, and one top-down phase to compute the v(I) val-
ues. Given appropriate data structures to perform the
look-up of sub- and supersets of itemsets I, this pro-
cedure has complexity O(|P|δC). As |P| = O(n2m),
where n is the number of examples in the training data
and m the number of attributes, this algorithm is ex-
ponential in the number of attributes.

After the run of this algorithm, for a test example we
can compute qc(~x

′) =
∑

I⊆~x′ wc(I) for every c. We can
easily compute the exact class probability estimates

from this: P (y′ = c|~x′,X, ~y) = qc(~x′)
P

c′
qc′ (~x

′) .

To compute the set P of paths in feasible trees, we can
modify a frequent itemset miner (Goethals & Zaki,
2003), as indicated in our earlier work (Nijssen &
Fromont, 2007). We replace the itemset lattice post-
processing method of (Nijssen & Fromont, 2007) by
the algorithm for computing Bayes optimal weights.

Compared to the OB1 algorithm of Cleary & Trigg
(1998), the main advantage of our method is its clear
link to frequent itemset mining. OB1 is based on the
use of option trees, which have a worst case complexity
of O(nm!) instead of O(n2m). Cleary et al. suggest
that sharing subtrees in option trees could improve
performance; this exactly what our approach achieves

in a fundamental way. The link between weighted rule-
based and Bayes optimal classification was also not
made by Cleary et al., making the classification phase
either more time or space complex. We can interpret
predictions by our approach by listing the (maximal)
itemsets that contribute most weight to a prediction.

5. Experiments

We do not perform a feasibility study here, as we did
such a study in earlier work (Nijssen & Fromont, 2007).

We performed several experiments to determine the
importance of the α and β parameters of the size
prior. We found that the differences between values
α, β ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.95} were often not sig-
nificant and choose α = 0.80 and β = 0.80 as defaults.
We also experimented with a uniform prior. We choose
~α = (1.0, . . . , 1.0) as default for the Dirichlet prior.
This setting is common in the literature.

All comparisons were tested using a corrected, two-
tailed, paired t−test with a 95% confidence interval.

Artificial Data In our first set of experiments we
use generated data. We use this data to confirm the
influence of priors and the ability of the Bayes optimal
classifier to recognize that data can best be represented
by an ensemble of multiple trees.

A common approach is to generate data from a model
and to compute how well a learning algorithm recov-
ers this original model. In our setting this approach is
however far from trivial, as it is hard to generate a re-
alistic lattice of itemsets: Calders (2007) showed that
it is NP-hard to decide if a set of itemset frequencies
can occur at all in data. Hence we used an alternative
approach. The main idea is that we wish to generate
data such that different trees perform best on different
parts of the data. We proceed as follows: we first gen-
erate n tree structures (in our experiments, all trees
are complete trees of depth 7; the trees do not yet
have class labels in their leaves); from these n trees we
randomly generate a database of given size (4000 ex-
amples with 15 binary attributes in our experiments,
without class labels). We make sure that every leaf in
every tree has at least γ examples (3% of the training
data in our experiments). Next, we iterate in a fixed
order over these trees to assign classes to the exam-
ples in one leaf of each tree; in each tree we pick the
leaf which has the largest number of examples without
class, and assign a class to these examples, taking care
that two adjacent leaves get different majority classes.
We aim for pure leaves, but these are less likely for
higher numbers of generating trees.
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Figure 1. Results on artificial data.

The results of our experiments are reported in Fig-
ure 1. The accuracies in these experiments are com-
puted for 20 randomly generated datasets. Each fig-
ure represents a different fraction of examples used as
training data; remaining examples were as test data.
The learners were run using the same depth and sup-
port constraints as used to generate the data.

We can learn the following from these experiments.

As all our datasets were created from trees with max-
imal height, the prior which prefers small trees per-
forms worse than the one which assigns equal weight
to all trees. If the amount of training data is small,
the size prior forces the learner to prefer trees which
are not 100% accurate for data created from one tree.

In all cases, the Bayes optimal approach is significantly
more accurate than the corresponding MAP approach,
except if the data was created using a single tree; in
this case we observe that a single (correct) tree is dom-
inating the trees in the ensembles.

The more training data we provide, the smaller the
differences between the approaches are. For the correct
prior the optimal approach has a better learning curve.

Additional experiments (not reported here) for other
tree depths, dataset sizes and less pure leaves con-
firm the results above, although sometimes less pro-
nounced.

UCI Data In our next set of experiments we de-
termine the performance of our algorithm on common
benchmark data, using ten-fold cross validation.

The frequency and depth constraints in our prior in-
fluence the efficiency of the search; too low frequency
or too high depth constraints can make the search in-
feasible. Default values for δ that we considered were
4, 6 and ∞; for γ we considered 2, 15 and 50. We re-
laxed the constraints as much as was computationally
possible; experiments (not reported here) show that
this usually does not worsen accuracy.

As our algorithm requires binary data, numeric at-
tributes were discretized in equifrequency bins. Only
a relatively small number of 4 bins was feasible in
all experiments; we used this value in all datasets to

avoid drawing conclusions after parameter overfitting.
Where feasible within the range of parameters used,
we added results for other numbers of bins to investi-
gate the influence of discretization.

The experiments reported in Figure 1 help to provide
more insight in the following questions:

(Q1) Is a single tree dominating a Bayes optimal clas-
sifier in practice?

(Q2) Are there significant differences between a uni-
form and a size-based prior in practice?

(Q3) Is the optimal approach overfitting more in
practice than the traditional approach, in this
case Weka’s implementation of C4.5?

(Q4) What is the influence of the 4-bin discretization?

To get an indication about (Q1) we compare the opti-
mal and MAP predictions. We underlined those cases
where there is a significant difference between optimal
and MAP predictions. We found that in many cases
there is indeed no significant difference between these
two settings; in particular when hard constraints im-
pose a high bias, such as in the Segment and Vote
data, most predictions turn out to be equal. If there is
a significant difference, the optimal approach is always
the most accurate.

To answer (Q2) we highlighted in bold for each dataset
the system that performs significantly better than all
other systems. In many cases, the differences between
the most accurate settings are not significant; how-
ever, our results indicate that a uniform prior performs
slightly better than a size prior in the Bayes optimal
case; the situation is less clear in the MAP setting.

Answering (Q3), we found not many significant dif-
ferences between J48’s and Bayes optimal predictions
in those cases where we did not have to enforce very
hard constraints to turn the search feasible. This sup-
ports the claim of Domingos (2000) that Bayes optimal
predictions are not really much better. However, our
results also indicate that there is no higher risk of over-
fitting either. The optimal learner does not perform as
well as J48 in those cases where the search is only fea-
sible for high frequency or low depth constraints, and
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Accuracy
Dataset γ δ Bins Opt - Size MAP - Size Opt - Unif MAP - Unif J48
Anneal 2 6 4 0.81±0.02 0.80±0.01 0.82±0.03 0.81±0.03 0.82±0.04
Anneal 15 6 10 0.86±0.04 0.86±0.04 0.86±0.04 0.85±0.04 0.89±0.03
Anneal 2 4 10 0.81±0.02 0.81±0.01 0.81±0.01 0.81±0.01 0.89±0.03
Balance 2 ∞ 4 0.81±0.04 0.76±0.06 0.84±0.03 0.83±0.03 0.76±0.06
Balance 2 ∞ 10 0.80±0.03 0.74±0.06 0.85±0.03 0.79±0.03 0.78±0.03
Heart 2 6 4 0.82±0.07 0.79±0.05 0.84±0.05 0.73±0.08 0.78±0.06
Heart 2 4 10 0.81±0.06 0.79±0.05 0.81±0.06 0.78±0.04 0.79±0.05
Vote 15 4 – 0.95±0.03 0.96±0.02 0.95±0.03 0.94±0.03 0.96±0.02
Segment 15 4 4 0.78±0.02 0.78±0.02 0.78±0.02 0.78±0.02 0.95±0.02
P-Tumor 2 ∞ – 0.40±0.05 0.37±0.05 0.43±0.05 0.37±0.05 0.40±0.05
Yeast 2 6 4 0.52±0.03 0.52±0.03 0.53±0.03 0.52±0.03 0.54±0.05
Yeast 2 4 10 0.51±0.03 0.50±0.03 0.49±0.03 0.49±0.03 0.58±0.03
Diabetes 2 6 4 0.75±0.06 0.74±0.06 0.75±0.05 0.71±0.05 0.74±0.06
Diabetes 2 4 10 0.76±0.05 0.75±0.04 0.77±0.05 0.75±0.05 0.74±0.06
Ionosphere 15 4 4 0.87±0.06 0.87±0.06 0.87±0.06 0.87±0.05 0.86±0.07
Ionosphere 15 4 10 0.91±0.04 0.91±0.04 0.90±0.03 0.88±0.03 0.92±0.03
Vowel 50 6 4 0.42±0.04 0.40±0.04 0.41±0.07 0.38±0.05 0.78±0.04
Vehicle 50 6 4 0.67±0.03 0.66±0.03 0.66±0.03 0.65±0.03 0.70±0.04

Table 1. Experimental results on UCI data. A result is highlighted if it is the best in its row; significant winners of com-
parisons between MAP and Opt settings are underlined. Bins are not indicated for datasets without numeric attributes.

thus quite unrealistic priors; in (Nijssen & Fromont,
2007) we found that under the same hard constraints
J48 is not able to find accurate trees either, and often
finds even worse trees in terms of accuracy.

To provide more insight in (Q4), we have added results
for different discretizations. In the datasets where we
used harder constraints to make the search feasible, a
negative effect on accuracy is observed compared to
J48. Where the same hard constraints can be used we
observe similar accuracies as in J48. The experiments
do not indicate that a higher number of bins leads to
increased risks of overfitting.

6. Conclusions

Our results indicate that instead of constructing the
optimal MAP hypothesis, it is always preferable to
use the Bayes optimal setting; even though we found
many cases in which the claim of Domingos (2000) is
confirmed and a single tree performs equally well, in
those cases where there is a significant difference, the
comparison is always in favor of the optimal setting.
The computation of both kinds of hypothesis remains
challenging if no hard constraints are applied, while
incorrect constraints can have a negative impact.
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Abstract

A recent trend in exemplar based unsuper-
vised learning is to formulate the learning
problem as a convex optimization problem.
Convexity is achieved by restricting the set
of possible prototypes to training exemplars.
In particular, this has been done for cluster-
ing, vector quantization and mixture model
density estimation. In this paper we propose
a novel algorithm that is theoretically and
practically superior to these convex formu-
lations. This is possible by posing the un-
supervised learning problem as a single con-
vex “master problem” with non-convex sub-
problems. We show that for the above learn-
ing tasks the subproblems are extremely well-
behaved and can be solved efficiently.

1. Introduction

Methods for unsupervised learning aim at recovering
underlying structure from data. In this paper, we are
concerned with exemplar based models in which this
structure is represented by a weighted set of points
in input space. Depending on the used model, these
points can be interpreted as clusters, codebook vectors
or mixture components.

Although the representation is done by a finite point
set, the structure being represented – such as a den-
sity – is defined on the entire input space by expanding
a smoothing kernel function around each representing
point. In this setting learning simply becomes decid-
ing on the number of points and their weights, as well
as their location in input space by means of a suitable
objective. In EM-learning of mixture models and in
k-means clustering one fixes the number of points and
adjusts their position by performing descent steps on
the objective function starting from a random initial-
ization. This leads to well-behaved but usually non-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

convex learning problems. Recently, a number of con-
vex approaches have been proposed. Our goal in this
paper is to improve on these approaches.

In section 2 we review convex formulations for unsu-
pervised learning tasks and discuss two recent meth-
ods. We show how convexity is achieved and derive
a small experiment whose result suggests a way to
improve on the established models. We describe our
model in section 3 together with an algorithm and a
theoretical justification. The model is validated exper-
imentally in section 4 and we conclude in section 5.

2. Review of Convex Approaches

We now discuss two convex approaches to unsuper-
vised learning from the literature. We will denote the
training set as X = {xi}i=1,...,N , with xi ∈ X and
usually X = Rd.

Kernel Vector Quantization (Tipping & Schölkopf,
2001) learns a small set of codebook vectors such that
the minimum distance from any training sample to
its nearest codebook vector is bounded above by a
given maximum distortion h. In (Tipping & Schölkopf,
2001), this is done by formulating a linear program-
ming problem, of which the following problem is an
equivalent reformulation.1

max
q,ρ

ρ (1)

sb.t. Kq ≥ ρ1,
‖q‖1 = 1,
q ≥ 0.

Here K is a (N,N) matrix with Ki,j = I(‖xi −xj‖ ≤
h), where I(·) evaluates to one if the predicate is true
and to zero otherwise, therefore, Ki,j is one if a ball of
radius h centered on xj contains xi. In the solution
of (1) the balls selected by qj > 0 form a sparse cover-
ing of the training set and the distance of each sample
to its closest covering ball is bounded by h.

Convex Clustering (Lashkari & Golland, 2007) was re-

1Subject to rescaling of q.
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cently proposed for clustering. In Lashkari and Gol-
land’s model, a mixture model is fit to an observed
training set, such that a candidate mixture compo-
nent is centered around each training set exemplar.
Using the framework of Bregman clustering (Baner-
jee et al., 2005), their objective maximizes the log-
likelihood subject to the constraint that the resulting
model is a proper mixture model. In the optimum
solution of the model, a sparse set of exemplars is se-
lected, allowing the interpretation as clusters.

Formally, Lashkari and Golland maximize
1
N

∑N
i=1 log

[∑N
j=1 qje

−βdφ(xi,xj)
]

over the mixture

parameters qj ≥ 0, j = 1, . . . , N with
∑N
j=1 qj = 1.

The model allows all exponential family distribu-
tions with a corresponding Bregman divergence
dφ (Banerjee et al., 2005). For the maximization, a
multiplicative update is used, which leads to slow
convergence once elements of q approach zero. We re-
formulate the above objective function by introducing
a new set of variables γi, with i = 1, . . . , N as follows.

max
q,γ

1
N

N∑
i=1

log γi (2)

sb.t. Kq = γ, (3)
‖qj‖1 = 1,
qj ≥ 0, j = 1, . . . , N,

where K is a (N,N) matrix and Ki,j = e−βdφ(xi,xj).
Clearly, problem (2) is equivalent to the previous one
because constraints (3) only serve to evaluate the like-
lihood γi for each sample xi.

2.1. Where does Convexity come from?

Models as proposed in (Tipping & Schölkopf, 2001)
and (Lashkari & Golland, 2007) achieve convexity by
changing the problem parametrization. Instead of
learning the coordinates of a fixed number of exem-
plars zj , j = 1, . . . ,M , there is now a larger set of
possible candidate exemplars with fixed coordinates.
Learning is performed by optimizing over indicator
variables, selecting a sparse subset of the candidates.

This reparametrization makes the problem convex but
also changes the regularization: whereas usually the
number of exemplars M is the main regularization pa-
rameter, it is now an implicit guarantee on the quality
of the solution. In (Tipping & Schölkopf, 2001) this
is the maximum distortion h, whereas in (Lashkari &
Golland, 2007) the regularization parameter β controls
the smoothness of the density.
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Figure 1. Exemplar selection within the training set versus
the finest dense set of 900 exemplars on a regular grid. In
this toy example, there are 66 data points.

2.2. Motivating Experiment: More Exemplars

Restricting the set of possible prototype candidates to
the training set might result in a suboptimal solution
if there is no exemplar close to the true mean of a clus-
ter. If the data is low-dimensional, normal-distributed
within each cluster, has low noise and there are enough
training examples, this effect is small and can be ig-
nored. But in high dimensions the true mean might
be far away from any exemplar.

To demonstrate the effect of restricting the prototype
candidate set we perform an experiment. A simple
two-dimensional data set is created by sampling from
an isotropic Gaussian and a ring of uniform density,
forming two well-separated clusters, see Figure 1. We
compare convex clustering (Lashkari & Golland, 2007)
with a modified model where the objective is changed
to 1

N

∑N
i=1 log

[∑M
j=1 qje

−βdφ(xi,zj)
]
, with N training

samples xi and M cluster center candidates zj . This
convex objective still represents the log-likelihood of
the training samples under a mixture model. We gen-
erate zj by densely discretizing the [−2; 7]2 box on a
regular grid. Our hope is that a fine discretization
will increase the chance that {zj}j=1,...,M contains ex-
emplars close to the true center of each cluster. For
both models we use an isotropic multivariate normal
distribution with covariance matrix Σ = σ2I, σ = 2.5.

The clustering result is shown in Figure 1. For the
cluster around the origin there is indeed a training set
exemplar close to the mean of the generating Gaus-
sian and the difference between the convex clustering
and dense selection is small. However, for the ring-like
structure, the training set exemplars cannot represent
the cluster center adequately. This causes convex clus-
tering to select two exemplars, while in the dense set
a single good candidate is selected. A slight perturba-
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tion in the training data would lead to a different se-
lection by the convex clustering method, as all samples
bordering to the interior of the ring are roughly equally
bad. For this data set, the solution produced by con-
vex clustering is not only qualitatively disappointing
but also unstable. The achieved objectives are shown
in Figure 2, where the convex clustering objective is
drawn as horizontal line and the dense exemplar model
forms a curve as the discretization becomes finer and
finer. At around eight discretizations per dimension
our modified model surpasses the log-likelihood of the
convex clustering model. At around 30 discretizations
per dimension the log-likelihood levels out and adding
more cluster candidates does not improve the solution.

This experiment suggests that a larger set of candi-
date clusters can lead to higher quality results which
are also more robust. While dense discretization is
only feasible in case the input space is low-dimensional,
ideally we would like to use an infinitely fine discretiza-
tion and thus use the set of all possible input points as
candidates. This idea will be the basis for our method.

3. A Decoupled Model

We now introduce our model for unsupervised learning
together with an efficient solution algorithm. Essential
to the solution is the ability to solve a certain subprob-
lem which we analyze in detail.

3.1. Model

Our model for unsupervised learning generalizes con-
vex clustering (Lashkari & Golland, 2007) and kernel
vector quantization (Tipping & Schölkopf, 2001). Let
kz(·) be a non-negative smoothing kernel centered at
z ∈ Z, with Z ⊆ X . Let {xi}i=1,...,N , xi ∈ X denote
the training set. The following semi-infinite convex
programming problem learns a convex combination of

response functions such that an objective is minimized.

min
q,γ,ρ

Ω(γ, ρ) (4)

sb.t.
∫
Z
qzkz(xi) dz = γi : αi, i = 1, . . . , N (5)

ρ ≤ γi : ωi, i = 1, . . . , N, (6)
qz ≥ 0 : µz, ∀z ∈ Z, (7)∫
Z
qz dz = 1 : σ, (8)

where α, ω, µ and σ are the Lagrange multipliers for
the respective constraints. Before discussing the choice
of objective function Ω, let us discuss the purpose of
the constraints.

• Constraint (5) evaluates a convex combination of
responses for each sample. γi contains the com-
bined response for sample xi.

• Constraint (6) identifies – if ∇ρΩ(γ, ρ) < 0 – the
lowest response among all samples. The value of
the lowest combined response is ρ.

• Constraints (7) and (8) define the combination
simplex of the response functions.

For the special case where Z is a finite set of points in
X , we can replace the integrals and infinite constraints
with a finite sum and finite set of constraints, respec-
tively. Constraints (5) can then be compactly written
as Kq = γ, where K is a (N, |Z|) matrix storing the
kernel responses. The dual problem of (4) can be de-
rived from the conjugate function Ω∗(α, σ,ω,µ) and
its respective domain (Boyd & Vandenberghe, 2004,
result (5.11)). The dual problem is

max
α,σ,ω,µ

−Ω∗(α, σ,ω,µ)− σ (9)

sb.t. (α, σ,ω,µ) ∈ dom(Ω∗),
N∑
i=1

αikz(xi) ≥ µz − σ, ∀z ∈ Z

ω ≥ 0 (10)
µz ≥ 0, ∀z ∈ Z

We propose the following choices of convex objective
functions Ω(γ, ρ).

1. Ω(γ, ρ) = −ρ
The objective states that the lowest response
among all samples is to be maximized. All other
samples have equal or higher responses but are ig-
nored by this objective, hence a single exemplar
can have a large influence on the overall objec-
tive. The KVQ problem (1) corresponds to this
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objective with K chosen as discussed in section 2.
The conjugate is Ω∗(α, σ,ω,µ) = 0 and domain
dom(Ω∗) = {(α, σ,ω,µ) : ω +α ≤ 0,ω>1 = 1}.
With (10) we have α ≤ 0.

2. Ω(γ, ρ) = − 1
N

∑N
i=1 log(γi)

This objective maximizes
∏N
i=1 γi. For the spe-

cial case where the columns of K correspond
to evaluations of probability density functions
at the training samples this objective maxi-
mizes the log-likelihood of the samples under
a mixture model, resulting in convex cluster-
ing (2). A single exemplar can have a sig-
nificant effect on the overall objective, but all
sample responses are considered, contrasting the
previous objective function. The conjugate is
Ω∗(α, σ,ω,µ) = − 1

N

∑N
i=1 log(−αi) + log(N)

with domain dom(Ω∗) = {(α, σ,ω,µ) : α <
0,ω = 0}.

3. Ω(γ, ρ) = −ρ+ C
N

∑N
i=1 (γi − ρ)2

The objective maximizes the margin ρ while pe-
nalizing large deviations from the margin, where
the penalty strength is determined by C ≥ 0. The
objective may prefer a smaller margin if the cor-
responding choice of q leads to a more uniform
γi. This margin-minus-variance (MMV) objec-
tive was first proposed in (Rückert & Kramer,
2006) for supervised learning.

4. Ω(γ, ρ) = − 1
N

∑N
i=1 γi+

C
N

∑N
i=1(γi− 1

N

∑N
i=1 γi)

2

The objective maximizes the mean response while
penalizing large deviations from it, where the
penalty strength is determined by C ≥ 0. This
maximizes the mean-minus-variance popular in
applications such as portfolio optimization, see for
example (Cornuejols & Tütüncü, 2007).

In order to be able to compare our method with es-
tablished methods from the literature we only use the
first two objectives in the experiments.

3.1.1. Relation to existing methods.

Most relevant for our approach is Boosting Density Es-
timation (Rosset & Segal, 2002). We note the follow-
ing differences, i) our model includes different objec-
tives, ii) in our solution algorithm, we will use totally-
corrective weight updates2 instead of a simple line-
search procedure, and iii) we identify each weak learner
uniquely with a point in input space. Also related is
the hard-margin case of 1-class Boosting (Rätsch et al.,
2001). With exemplar-based weak learners it is a spe-
cial case of our model with the first objective.

2Totally-corrective steps update all weights individually
in each iteration, leading to faster convergence.

Algorithm 1 Infinite Exemplar Column Generation
(Z, q) = Infex(X, ε, k, Z0)
Input:

Sample set X = {xi}i=1,...,N , xi ∈ X
Convergence tolerance ε > 0
Non-negative smoothing kernel kz : Z×X → R+

Initial exemplar set Z0 = {zj}j=1,...,|Z0|, zj ∈ Z
Output:

Column exemplar set Z = {zj}j=1,...,R, zj ∈ Z
Weightings qzj ∈ R+, j = 1, . . . , R

Algorithm:
α← − 1

N 1, Z ← Z0, R← |Z0|+ 1, δ ←∞, σ∗ ← 0
loop
zR ← argmaxz∈Z −

∑N
i=1 αikz(xi) {(SP)}

δ ← σ∗ −
∑N
i=1 αikzR(xi) {Compute ∇zR}

if δ < ε then
break {convergence to tolerance}

end if
Z ← Z ∪ {zR}
K ←

[
kzj (xi)

]
i=1,...,N, j=1,...,R

{response matrix}
p∗R, (q∗R,γ

∗, ρ∗), (α∗,ω∗,µ∗R, σ
∗) ←

objective value, primal- and dual-solution to
problem (4) with finite (N,R) matrix K.

R← R+ 1
end loop

3.2. Algorithm

To solve problem (4), we propose Algorithm 1 (IN-
FEX), a delayed column generation algorithm. The
algorithm works with a finite and usually small set of
candidate prototypes zj . This set is iteratively en-
larged by adding good candidates. Selecting the can-
didates to add in each iteration becomes a subproblem,
which we define now.

Problem 1 (Subproblem (SP)) Given a set of
samples xi ∈ X , i = 1, . . . , N , a corresponding non-
positive sample weighting αi ≤ 0, i = 1, . . . , N and a
non-negative smoothing kernel kz(x) : Z × X → R+,
obtain z∗ as the solution of

z∗ = argmaxz∈Z −
N∑
i=1

αikz(xi).

The solution to this subproblem provides a candidate
z∗ that, when added to the set of considered candi-
dates, will reduce the global objective.3 We will now
rigorously derive the subproblem from global optimal-
ity conditions of problem (4).

3In the optimization literature such columns are re-
ferred to as having negative reduced cost. The overall de-
coupled solution approach is closely related to the general-
ized Benders decomposition (Geoffrion, 1972).
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Theorem 1 Assume that the subproblem (SP) can be
solved exactly in each iteration. Then Algorithm 1
solves problem (4) globally to the desired accuracy ε.

Proof. Consider a slightly modified version of prob-
lem (4), where a part of the constraints (7) is replaced
by equality constraints. We replace (7) by the fol-
lowing constraint set, parametrized by a finite set of
points ZR = {z1, . . . ,z|ZR|}.

qz ≥ 0 : µz, ∀z ∈ ZR, (11)
qz = vz : µz, ∀z ∈ Z \ ZR, (12)

where vz = 0 is constant for all z ∈ Z \ZR. Together,
constraints (11) and (12) restrict problem (4) such that
only a finite subset of the variables q are used.

For a given finite ZR, we can obtain an optimal primal
(q∗,γ∗, ρ∗), and dual (α∗,ω∗,µ∗, σ∗) solution to the
modified problem by solving a finite problem in the
restricted set of variables {qz : z ∈ ZR}. Let the
optimal function value of this solution be denoted by
p(v). Because the optimal solution must be feasible,
we have q∗z = vz = 0 for all z ∈ Z \ ZR. How would
the objective function value p(v) change if we force
a q∗z to become non-zero? That is, if we increase vz
by a very small amount can we improve the solution?
The sensitivity theorem (Bertsekas, 1999, Proposition
3.3.3) provides a definite answer, namely we have for
all z ∈ Z \ ZR the following.

∇vz
p(v) = −µ∗z.

If we have for all z ∈ Z \ ZR that ∇vzp(v) ≥ 0, then
this implies that we can not decrease p(v) by making
qz > 0. Conversely, this observation provides us with a
global optimality condition: if and only if ZR contains
all relevant (positive qz) exemplars, we have ∀z ∈ Z \
ZR : µ∗z ≤ 0. Given ZR and a primal-dual optimal
solution we can find an alternative expression for µ∗z.
Consider the Lagrangian of the modified problem.

L(q,γ, ρ,α,ω,µ, σ) = Ω(γ, ρ)

+
N∑
i=1

αi

(∫
Z
qzkz(xi) dz − γi

)
+ ω>(ρ1− γ)

−
∑
z∈ZR

µzqz +
∫
Z\ZR

µzqz dz

+ σ(
∑
z∈ZR

qz +
∫
Z\ZR

qz dz − 1)

Because of optimality of the solution, it must
satisfy the Karush-Kuhn-Tucker necessary condi-
tions (Bertsekas, 1999), therefore we must have a
zero gradient with respect to the primal variables.

Specifically, for all z ∈ Z \ ZR we must have
∇qz
L(q∗,γ∗, ρ∗,α∗,ω∗,µ∗, σ∗) =

∑N
i=1 α

∗
i kz(xi) +

µ∗z + σ∗ = 0. This allows us to express µ∗z as

µ∗z = σ∗ −
N∑
i=1

α∗i kz(xi). (13)

Therefore, if for all z ∈ Z \ ZR we have dual feasible
µ∗z ≤ 0, then the current solution is optimal, despite
the restrictions imposed by constraints (12). If we sat-
isfy the optimality condition, then replacing (12) with
constraints (11), does not change the solution, which
remains optimal in the original problem (4).

What remains to be shown is that Algorithm 1
makes progress in each iteration and thus in the limit
will satisfy the optimality condition. Consider the
case where the above optimality condition is violated
for one or more z ∈ Z \ ZR. Then, let z∗ =
argmaxz∈Z\ZR

(
σ∗ −

∑N
i=1 α

∗
i kz(xi)

)
be the sample

corresponding to the most negative partial derivative
∇vz∗p(v) < 0. Because of the sensitivity theorem,
adding z∗ to ZR – making qz∗ a free variable – and
re-solving (4) will reduce the objective value. There-
fore, either no z∗ with ∇vz∗p(v) < −ε is found and
convergence to the tolerance is established, or a strict
decrease in the objective is obtained. �

Note that in practice, we can add multiple exemplars
in each iteration. Suppose during solving the subprob-
lem (SP) we obtain a number of good local maximizers.
Then, we can add all these local maximizers in order
to obtain a faster convergence. Adding redundant ex-
emplars with ∇vzp(v) > 0 does not have an effect as
they will receive a zero weight qz = 0.

3.3. On the Nature of the Subproblem

The subproblem (SP) is completely determined by the
negative weighting of the training set and the shape of
the smoothing kernel function. For further discussion
let us define ηi = −αi and rewrite the subproblem as
argmaxz∈Z

∑N
i=1 ηik(xi, z). From the definition it fol-

lows that all ηi are non-negative. Clearly, this problem
is non-concave whenever k is non-concave in z which
is true for all smoothing functions we consider.

However, for kernel functions of the form kz(x) =
k(‖x − z‖), the optima of the subproblem, thus the
new candidates, are located at the modes of the ex-
pansion

∑N
i=1 ηikz(xi). It is this fact that can be

exploited to efficiently solve the subproblem by stan-
dard hill-climbing algorithms. Such algorithms start
at a point z(0) in input space and generate iteratively
better candidates such that

∑N
i=1 ηikz(t+1)(xi) >∑N

i=1 ηikz(t)(xi). In this paper, we use the weighted
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mean shift procedure which was introduced by (Fuku-
naga & Hostetler, 1975; Cheng, 1995) and gained pop-
ularity due to (Comaniciu & Meer, 2002). Given an
initial starting point z(0) the iterates are produced by

z(t+1) =

∑N
i=1 αig

(∥∥∥z(t)−xi
h

∥∥∥2
)
xi∑N

i=1 αig

(∥∥∥z(t)−xi
h

∥∥∥2
) , (14)

where g : R+ → R+ is the negative derivative of the
so called kernel profile. If for a continuous kernel the
function g is convex and non-increasing, then the mean
shift procedure is guaranteed to converge to a local
maxima (Comaniciu & Meer, 2002). For each of the
common continuous smoothing kernels, a unique func-
tion g exists and some popular kernels and their profile
derivatives are discussed in section 4. For the Gaus-
sian kernel, g is a scaled version of the original kernel
profile and thus particularly easy to maximize.4 Mean
shift is popular in computer vision, where specialized
procedures have been developed to efficiently find glob-
ally good modes, for example the annealed mean shift
procedure (Shen et al., 2007).

If the smoothing kernel function is a reproducing
Hilbert kernel (Schölkopf & Smola, 2002), then prob-
lem (SP) is known as the pre-image problem (Schölkopf
et al., 1999). An important difference which simplifies
our subproblem considerably is that all our weights α
are of the same sign. In the general pre-image problem
the sign is not fixed and procedures such as the one
of (Schölkopf et al., 1999) can be unstable and do not
have a convergence guarantee.

3.4. Optimality Bound

The proof of global optimality of the solution obtained
by Algorithm 1 was based on the assumption that the
subproblem (SP) can be solved globally. We now show
that even without this assumption, the method can be
no worse than methods using a fixed exemplar set.

Theorem 2 Given Ω(γ, ρ), a set X = {xi}i=1,...,N ,
xi ∈ X and a finite set of exemplars ZF =
{zj}j=1,...,M , the solution obtained by solving prob-
lem (4) with Z = ZF can not achieve a better objective
than the solution obtained by Algorithm 1 with Z = X ,
Z0 = ZF .

4The Gaussian kernel has received special attention in
the literature. In (Carreira-Perpiñán, 2000) it was conjec-
tured that the number of modes in a Gaussian mixture is
bounded above by the number of components. While this
is true in the univariate case, this has been proven wrong
in general in (Carreira-Perpiñán & Williams, 2003). See
also the counter-example at http://www.inference.phy.
cam.ac.uk/mackay/gaussians/.

Proof. Let Algorithm 1 be called with Z0 = ZF . In
the first iteration of Algorithm 1, the solved problem
is identical to problem (4) with Z = ZF . Therefore,
after the first iteration, the objective of Algorithm 1 is
equal to the one obtained by solving problem (4). In
all later iterations, the objective can only improve. �

4. Experiments and Results

For the following experiments, we solve the restricted
master problem (4) using IpOpt (Wächter & Biegler,
2006), a modern primal-dual interior point solver for
non-linear programming available as open-source. For
each master problem, we obtain accurate convergence
in a few dozen solver iterations. We use tolerances
10−10 for the restricted master problem and 10−7 for
the subproblems for all experiments.5

As smoothing kernels we use the unnormalized Gaus-
sian, the unnormalized Epanechnikov, and a simple
uniform disc kernel. All are parametrized by a band-
width parameter h. The following are the kernel func-
tions k and profiles g used in the mean shift procedure.

1. Gaussian, bandwidth h

kz(x) = e−
1
2‖x−z

h ‖
2

, g(y) =
1

2
e−

1
2 y

2. Epanechnikov, bandwidth h

kz(x) =


1−

‚‚ x−z
h

‚‚2 ‚‚ x−z
h

‚‚ ≤ 1
0 otherwise

g(y) =


1 0 ≤ y ≤ 1
0 y > 1

3. Uniform disc, maximum distortion h

kz(x) =


1

‚‚ x−z
h

‚‚ ≤ 1
0 otherwise

The first two kernels are common in non-parametric
density estimation, whereas the last one is used
by (Tipping & Schölkopf, 2001) for vector quantiza-
tion. We use the mean shift procedure (14) started
from all training samples to solve the subproblem (SP)
for the Gaussian and Epanechnikov kernels. We col-
lect the result of each run and add the set of unique
local maximizers to the restricted master problem.

However, mean shift cannot be used to solve subprob-
lem (SP) for the non-continuous uniform disc kernel.
Instead, when using the uniform disc kernel, we find
new codebook candidates by solving the subproblem
with the Epanechnikov kernel instead. This is a rea-
sonable approximation as the Epanechnikov kernel re-
sponse lower bounds the uniform disc kernel response
and its maximum lies in the center of the disc.

5Our implementation is available at http://www.kyb.
mpg.de/bs/people/nowozin/infex/.
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4.1. Comparison with KVQ

In the first experiment we compare the original Ker-
nel Vector Quantization formulation (1) with all train-
ing exemplars as possible prototypes with our Algo-
rithm 1, where the initial set is empty, ZR = ∅. We
use the first objective Ω(γ, ρ) = −ρ and the uniform
disc kernel. As dataset we use a subset of 1100 exem-
plars from the USPS digit machine learning dataset,
with all labels removed and each class sampled equally
such that there are 110 exemplars from each class. We
evaluate by selecting the maximum allowed distortion
h from {800, 1000, 1200, 1400, 1600, 1800, 2000}, where
≈ 2000 is the mean inter-class L2-distance in the
dataset. We compare the achieved margin ρ∗KVQ(h)
with ρ∗INFEX(h), and the number of codebook vectors
‖q∗KVQ‖0 with ‖q∗INFEX‖0. Figures 3 and 4 show these
as the maximum allowed distortion is varied.

The proposed method outperforms KVQ, selecting a
smaller number of codebook vectors and achieving a
better objective value. Especially for larger allowed
distortions, the benefit of selecting an arbitrary point
in input space is substantial as due to the high dimen-
sionality of the data set all input samples are relatively
far away from each other. Because we use ZR = ∅ to
initialize our method, the results show that our sub-
problem approximation using the Epanechnikov kernel
is an effective way to find good codebook candidates.

4.2. Comparison with Gaussian Mixture EM

In the second experiment we consider mixture model
density estimation and compare our method with Con-
vex Clustering and a homoscedastic Gaussian mix-
ture (Σ = σ2I) learned with Expectation Maximiza-
tion (EM).6 The log-likelihood objective and the same
USPS dataset as before is used. The experimental pro-
tocol is as follows. For a range of bandwidths our
model and convex clustering are run once per band-
width. For each run, the number of components of
our model is used to fix the number of components in
the Gaussian mixture model, which is trained by EM
starting 20 times from random initial sample points.
The results are shown in Table 1. Clearly, a single run
of our model is consistently the best. The best EM run
is always close to our result and Convex Clustering is
always the worst. (Lashkari & Golland, 2007) mention
that their solution “can be improved in practice with
a few extra steps of the EM algorithm”. From Table 1,
we conclude that the results of convex clustering are
qualitatively inferior to plain EM and such refitting is
actually essential for obtaining good results.

6A similar experiment is in (Lashkari & Golland, 2007).

4.3. Subproblem Modes

In the last experiment we show the qualitative behav-
ior of our model with the Epanechnikov kernel with
h = 1500 and the log-likelihood objective. Because
the Epanechnikov kernel has finite support, if we start
with Z0 = ∅ we could have some samples xi which have
zero response because kzj (xi) = 0 for all j. Then, the
restricted variables qj are too few and problem (4)
would be infeasible. Thus, in order to ensure feasi-
bility of the initial master problems, we use Z0 = X.
Some subproblem modes are shown in Figure 5. The
modes approximate the “natural” clusters well except
for classes such as 3, 8 and 9, which seem to be ex-
plained by one joint region with many local modes in
it, for example in the first and second row.

5. Discussion and Conclusion

We presented a unifying perspective on existing ex-
emplar based methods that aim at density estimation,
clustering and vector quantization. Existing methods
were either non-convex or achieved convexity by se-
vere restrictions. In contrast, our approach – although
still non-convex as a whole – is provable better than
all existing methods. This is achieved by isolating
a non-convex but still efficient solvable subproblem.
The non-convex subproblem is embedded into a convex
master problem steering towards an optimal solution.

One limitation of our model is that one cannot fix
‖q∗‖0, the number of components. For problems where
guarantees such as maximum distortion or smoothness
are more natural constraints, this is not an issue.

There are open questions that result from our work:

1. Does there exists a response function k that is
useful for unsupervised learning and at the same
time yields a globally solvable subproblem?

2. What is the relation between objective Ω, kernel
k and number of components ‖q∗‖0?

Table 1. Achieved log-likelihoods. CC is Convex Cluster-
ing; for EM the best and mean of 20 runs are shown.

σ CC Infex EM best EM mean

440 −6.3356 -5.1370 −5.1442 −5.1485
460 −6.1269 -4.7424 −4.7486 −4.7503
480 −5.8705 -4.3796 −4.3823 −4.3834
500 −5.5813 -4.0499 −4.0507 −4.0520
520 −5.2780 -3.7499 −3.7502 −3.7512
540 −4.9779 -3.4788 −3.4789 −3.4795
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Figure 3. Optimal margin ρ∗ as a func-
tion of the maximum allowed distor-
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Figure 4. The number of selected pro-
totypes as a function of the maximum
allowed distortion.

Figure 5. Subproblem modes found in
different iterations.

3. Can a decomposition similar to ours yield a train-
ing scheme for supervised learning of RBF net-
works in the line of (Bengio et al., 2005)?
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Abstract

For two-class classification, it is common to
classify by setting a threshold on class prob-
ability estimates, where the threshold is de-
termined by ROC curve analysis. An analog
for multi-class classification is learning a new
class partitioning of the multiclass probabil-
ity simplex to minimize empirical misclassi-
fication costs. We analyze the interplay be-
tween systematic errors in the class proba-
bility estimates and cost matrices for multi-
class classification. We explore the effect on
the class partitioning of five different trans-
formations of the cost matrix. Experiments
on benchmark datasets with naive Bayes and
quadratic discriminant analysis show the ef-
fectiveness of learning a new partition matrix
compared to previously proposed methods.

1. Introduction

Many classifiers first estimate class probabilities p̂k(x)
for each class k ∈ {1, . . . , K}, then classify a test sam-
ple x as the class ŷ(x) that minimizes the expected
misclassification costs:

ŷ(x) = arg min
i=1,...,K

K∑

j=1

ci|j p̂j(x) .= g(p̂(x); c), (1)

where ci|j is the ith row, jth column element of the
cost matrix c, and the cost of classifying as class i
when the true class is j. We define the function g to
use as short-hand for this minimization.

Such probability-based classifiers can be interpreted as
mapping each test sample to a point on the p̂-simplex,

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

where each corner of the simplex has p̂j = 1 for some
j, and p̂i = 0 for all i 6= j; and that the cost matrix
c induces a partitioning of the p̂-simplex into regions
assigned to each of the K classes. However, the proba-
bility estimation can suffer from systematic errors, e.g.
oversmoothing the estimate towards class prior prob-
abilities. The main contribution of this paper is an
analytic and experimental investigation of how chang-
ing the partitioning of the p̂-simplex can reduce the
effect of such systematic errors on classification loss,
analogous to ROC analysis for two-class classification.

First, we discuss systematic probability estimation er-
rors and show how these errors can cause classification
errors. Then in Section 3 we review methods to reduce
the effect of such errors. In Section 4 we establish prop-
erties that describe how changing c affects the class-
partitioning of the p̂-simplex. In Section 5, we propose
learning a partitioning of the p̂-simplex that seeks to
minimize the empirical misclassification costs for the
given c, and we provide experimental evidence of the
effectiveness of our approach in Section 6.

2. Systematic Error in Multi-class
Probability Estimation

Friedman uses the term oversmoothing for cases where
the probability estimates are systematically smoothed
towards the class prior probabilities, and undersmooth-
ing for cases where the class probability estimates
produced are too confident, such as 1-NN (Friedman,
1997). Other systematic errors in the probability es-
timates can occur; Niculescu-Mizil and Caruana have
documented the systematic errors introduced by var-
ious methods of probability estimation for two-class
classification (Niculescu-Mizil & Caruana, 2005). Here
we provide illustrative examples of over- and under-
smoothing in multiclass tasks.
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2.1. A Naive Bayes’ Example

Consider a three-class problem with discrete features.
We estimate class probabilities for test samples using
naive Bayes (Hastie et al., 2001). The three classes are
equally likely, and the feature vector consists of two
identical copies of the same feature. Thus the naive
Bayes’ assumption of independent features is clearly
violated. Figure 1(a) shows pairings of a true class
probability (marked with an attached circle) and the
associated naive Bayes’ estimated probability (marked
with a triangle). The incorrect feature-independence
assumption undersmooths the probability estimates,
pushing them towards the edges of the simplex.

When an estimated probability and the corresponding
true probability fall in the same class partition, the un-
dersmoothing does not cause any classification error.
When the line attaching a triangle to a circle crosses a
class partition line, a classification error occurs. One
sees that undersmoothing does not cause errors given
the 0/1 cost matrix (dashed lines), but causes many
errors given an asymmetric cost matrix (solid lines).

2.2. A k-NN Example

Let N be the number of training samples. Then for
the k-NN classifier as the number of nearest neigh-
bors k → N , the probability estimates are smoothed
towards the class prior probabilities. Figure 1(b) illus-
trates an extreme example: k = 2000, N = 3000, and
the samples are drawn iid and with equal probability
from one of three class-conditional normal distribu-
tions. The oversmoothing does not cause errors given
the 0/1 cost matrix (dashed lines), but causes many
errors given an asymmetric cost matrix (solid lines).

3. Related Work

Approaches to deal with the systematic errors in prob-
ability estimation can be analyzed in terms of the clas-
sification rule given in (1). Such approaches gener-
ally either change the partitioning of the p̂-simplex, or
change the probability estimates.

3.1. Related Work in Two-class Classification

For the two-class case, the p̂-simplex is a line segment
from p̂1(x) = 0 to p̂1(x) = 1, and a scalar threshold t
partitions the two class regions. The optimal threshold
t? derived with respect to (1) is,

t? =
c1|2 − c2|2

c1|2 + c2|1 − c1|1 − c2|2
. (2)

Classification errors can be reduced by changing the
class-partitioning by specifying a threshold t that re-

1

2

3

(a) Naive Bayes example

1

2

3

(b) k-NN example

Figure 1. Circles mark the true probabilities, triangles
mark the estimated probabilities, and each line connects a
true probability to the corresponding estimate. The dashed
lines mark the class partitioning of the p̂-simplex induced
by the 0-1 cost matrix, and the solid lines mark the class
partitioning induced by an asymmetric cost matrix.

duces the effect of systematic errors of the class prob-
ability estimates. The most common approach uses
the receiver operating characteristic (ROC) curves
(Egan, 1975; Hanley & McNeil, 1982). An ROC curve
plots estimates of the probabilities PŶ |Y (2|2) versus
PŶ |Y (2|1) for thresholds t, 0 ≤ t ≤ 1, where the es-
timates are derived from training or validation data.
For a given cost matrix the desired point on the ROC
curve is chosen and the associated threshold t is used
for the classifier (Noe, 1983; Provost & Fawcett, 2001).

Other methods fix the threshold at the theoretical op-
timal t? given by (2), and seek to improve classification
by improving the probability estimates. Friedman con-
sidered adding a scalar a to the probability estimates
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for class 1 (Friedman, 1997); it is easy to show that this
method is equivalent to using a threshold t̃ = t? − a.

Zadrozny and Elkan use monotonic functions of the
probability estimate p̂1 to give a calibrated estimate
and show great improvements in cost-sensitive classi-
fication when the calibrated probability estimates are
used in place of the original estimates (Zadrozny &
Elkan, 2001; Zadrozny & Elkan, 2002). One of their
approaches builds on Platt’s earlier work to transform
support vector machine (SVM) scores into probability
estimates using a sigmoid function (Platt, 2000). The
same approach can be applied to probability estimates
rather than SVM scores. Zadrozny and Elkan propose
two other approaches to perform the calibration: bin-
ning and pair-adjacent violators.

Binning takes the probability estimates obtained using
cross-validation, orders these values and then groups
them into B bins so that there are an equal num-
ber of samples in each bin (Zadrozny & Elkan, 2001).
The upper and lower boundaries of each bin are de-
termined, and for any test sample with a probability
estimate falling in bin b, the updated probability esti-
mate for class 1 is given by the fraction of validation
samples in bin b that belong to class 1.

Pair-adjacent violators (PAV) monotonically trans-
form the probability estimates using isotonic regres-
sion (Ayer et al., 1955). It has been shown that apply-
ing threshold t? from (2) to the calibrated probability
estimates obtained using PAV is equivalent to using
a threshold chosen by ROC analysis on the original
probabilities (O’Brien, 2006).

3.2. Related Work in Multi-class Classification

Zadrozny and Elkan extended their two-class solutions
to multi-class problems by breaking the classification
task into a number of binary classification tasks and
using error correcting output codes (ECOC) to obtain
multi-class probability estimates (Zadrozny & Elkan,
2002).

Other methods seek to extend the ROC thresholding
approach to K-class classification. Instead of choos-
ing a scalar threshold t, a partition of the (K − 1)-
dimensional p̂-simplex must be specified. Mossman
proposed a method for three class tasks using a very re-
strictive partitioning of the simplex (Mossman, 1999):

ŷ(x) =





1 if p̂3(x) ≤ δ1 and p̂2(x)− p̂1(x) ≤ δ2

2 if p̂3(x) ≤ δ1 and p̂2(x)− p̂1(x) > δ2

3 if p̂3(x) > δ1.
(3)

Lachiche and Flach proposed an alternative to the

minimum expected misclassification cost assignment
of (1) (Lachiche & Flach, 2003):

ŷ(x) = arg max
i

w∗i p̂i, (4)

where the w∗i are chosen by minimizing costs on the
training set:

w∗ = arg min
w

N∑
n=1

c(arg maxi wip̂i(xn))|yn
, (5)

and xn, yn are the nth training sample and its asso-
ciated class label. We refer to (4) and (5) as the LF
method. Mossman’s method and the LF method can
both be viewed as learning a new partitioning for the
p̂-simplex. In Section 5, we show how these parti-
tions can be achieved by using different cost matrices
in equation (1).

MetaCost is a wrapper method that can be used with
any classification algorithm and reduces the variance
of the probability estimates by bootstrapping (Domin-
gos, 1999). MetaCost reduces the variance of proba-
bility estimates, but is not designed to overcome sys-
tematic probability estimation errors.

4. The Effect of the Cost Matrix on the
Class-Decision Boundaries

In this section we establish how different changes in
the cost matrix affect the class partitioning of the p̂-
simplex enacted by (1). In Section 5 we use these
properties to propose a new method to reduce the ef-
fect of systematic errors in probability estimation.

For a particular cost matrix c, and any two classes i, k
that are adjacent in the partition of the p̂-simplex, the
partition-boundary between them is described by the
hyperplane,

K∑

j=1

ci|j p̂j =
K∑

j=1

ck|j p̂j . (6)

We restrict attention to cost matrices where the cost
of correct assignment is always less than the cost of
incorrect assignment, that is, cj|j < ci|j , ∀i 6= j.

Property 1: For any p̂, the assigned class is the same
for cost matrices c and αc for any scalar α.

Proof: The minimization in (1) is unaffected by
replacing ci|j by αci|j , ∀i, j.

Property 2: If the cost matrix c is full rank, then
there is a point ζe where all two class boundaries as
described by (6) intersect, and ζe may occur outside
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the probability simplex. We term ζe the “equal risk
point”.

Proof: If c is full rank then the solution is ζe =
c−11/‖c−11‖1 that will solve (6) for all classes. How-
ever, it can happen that ‖c−11‖1 = 0, in which case
the equal risk point can be said to be at infinity.

If c is not full rank there may still be an unique
equal risk point. In general, ζe must solve


c -1

1T 0







ζe

γ


 =




0

1


 for some γ ∈ R.

If the above matrix is full rank then there is a unique
point solution for ζe, otherwise the above system is un-
derdetermined and there is a hyperplane of solutions,
or the above system can be overdetermined and there
is no solution.

Property 3: Adding a constant to all costs for a par-
ticular true class (equivalently, adding a constant to
each term in any column of the cost matrix) does not
affect the assignment.

Proof: The minimization in (1) is unaffected by
changing ci|j to ci|j + αj , ∀i.

Property 4: The class-partitioning produced by any
cost matrix c can equivalently be produced by some cost
matrix c̃ where c̃i|i = 0 and c̃i|j > 0 for i 6= j.

Proof: Follows directly from Property 3.

Property 5: (See Fig. 2b) Adding a constant α
to the cost of assignment to class i irrespective of the
true class (that is, adding α to each term in row i of
a cost matrix), produces a new class-partitioning with
partition boundaries parallel to those of the original.

Proof: This change only affects the two-class boundary
equations specified by (6) for class i and each class k:

K∑

j=1

(ci|j + α)p̂j =
K∑

j=1

ck|j p̂j =
K∑

j=1

ci|j p̂j + α.

Thus the new boundary between class i and k is
parallel to the original boundary between class i
and k. To maintain cj|j < ci|j , ∀i 6= j requires
maxk 6=i(ck|k − ci|k) < α < mink 6=i(ck|i − ci|i).

Property 6: (See Fig. 2c) Scaling all costs where
the true class is ` by a positive constant α (that is, mul-
tiplying column ` of c by α) moves an equal risk point
along the line joining it to the corner of the simplex
where p̂` = 1. The intersections of the class bound-

aries with the p̂` = 0 plane are unchanged.

Proof: To prove that the new equal risk point ζ̃e is
on the line joining the original equal risk point ζe and
the corner of the simplex where p̂` = 1, we show that
there exists a constant β such that

ζ̃e
j = βζe

j + (1− β)I(j=`), (7)

for all j, and where I is the indicator function.

From (6), multiplying column ` by α, and requiring
equal risk for classes ` and k:

K∑

j=1,j 6=`

(ci|j − ck|j)ζ̃e
j + (ci|` − ck|`)(αζ̃e

` ) = 0. (8)

First note that if ζe
` = 0, then ζe remains an equal risk

point for the transformed cost matrix. Otherwise, for
any ζe, we write ζe

j = sjζ
e
` . Comparing (6) and (8),

there exists ζ̃ such that ζ̃e
j = α(sj ζ̃

e
` ), ∀j 6= `. Thus,

ζ̃e
j =

(
αζ̃e

`

ζe
`

)
ζe
j . (9)

Let β = αζ̃e
` /ζe

` , then (9) establishes (7) ∀j 6= `. Also,
∑

j 6=`

ζ̃e
j = β

∑

j 6=`

ζe
j (10)

⇒ 1− ζ̃e
` = β(1− ζe

` ), (11)

where (11) follows from (10) since components of ζ̃e

and ζe both sum to 1. This establishes (7) for `.

Lastly, by setting p̂` = 0 in equation (6), it is evident
that changes in ci|` and cj|` will not effect the inter-
sections of the class boundaries with the p̂` = 0 plane.

Property 7: (See Fig. 2d) Scaling all costs where
the assigned class is i by a positive constant α (that is,
multiplying all elements in row i by α) moves an equal
risk point ζe along the hyper-plane where all classes
but class i have equal expected misclassification costs.

Proof: Let c̃j|k = cj|k for all j 6= i, and let c̃i|k = αci|k.
Then the equal risk point ζ̃e produced by c̃ solves the
same set of class boundary equations (6) specifying ζe,
except

K∑

j=1

(ci|j − cK|j)ζe
j = 0 ⇒

K∑

j=1

(αci|j − cK|j)ζ̃e
j = 0.

Because the constraints specifying that the other
classes have equal misclassification costs still apply, the
new equal risk point ζ̃e must occur along the hyper-
plane specified by that subset of the constraints.
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5. Learning the Partition Matrix

We propose changing the class partitions so that the
class-partitioning corrects for the systematic error in
the probability estimates. Changing the partition of
the multi-class p̂-simplex is analogous to the two-class
practice of changing the threshold on p̂1(x).

We split the cost matrix’s role into two separate enti-
ties: a partition matrix (which partitions the p̂-simplex
with linear boundaries), and the misclassification cost
matrix that specifies how misclassification errors are to
be scored. From now on we will use the term partition
matrix for the former role, and the term cost matrix
only for the latter role.

Given a training set {(x1, y1), (x2, y2), ..., (xN , yN )},
where xn has class probability estimate vector p̂(xn),
we propose to use a partition matrix a? that solves

a? = arg min
a

∑
n

c g(p̂(xn);a)|yn
, (12)

where the function g in (12) is defined in (1). To avoid
the issue of overfitting in learning a partition matrix,
we restrict the partition to have linear boundaries that
are parallel to the original decision boundaries pro-
duced by the cost matrix (see Fig. 2b). We have
also considered learning partition matrices with differ-
ent constraints, including partition matrices with all
K2 − K free parameters, partition matrices that are
column-multiply modifications of the original cost ma-
trix (see Fig. 2c), and row-multiply modifications (see
Fig. 2d). We found these different constraints resulted
in similar performance, with the parallel partitioning
working consistently well (O’Brien, 2006).

By Property 4 stated in Section 4, without loss of gen-
erality we consider only partition matrices a where
ai|i = 0 and ai|j > 0 for i 6= j. From Property 5,
adding αi to row i of the cost matrix will yield a par-
tition matrix with partition boundaries parallel to the
partition boundaries induced by c. To maintain the
requirement that ai|i = 0 we subtract the same con-
stant from column i without affecting the partition
boundaries (Property 3). Thus given the cost matrix
c, the partition matrix is a where ai|j = ci|j + αi−αj .
This approach requires learning the parameters αi for
i = 1, . . . ,K.

Related methods can also be viewed as applications of
(12) but with different restrictions on a. Mossman’s
method for three classes (Mossman, 1999) implicitly
requires a to be of the form




0 1 L− δ2
1−δ2

1+δ2
1−δ2

0 L
δ1

1−δ1
L δ1

1−δ1
L 0


 , (13)

1

2

3 1

2

3

(a) Initial Cost Matrices

1

2

3 1

2

3

(b) Parallel Cost Matrices (α = 0.3)

1

2

3 1

2

3

(c) Column Multiply (α = 1.5)

1

2

3 1

2

3

(d) Row Multiply (α = 1.75)

Figure 2. This figure illustrates Properties 5, 6, and 7 de-
scribed in Section 4 for a three-class classification. The
partition produced by the cost matrix is marked by solid
lines: a 0/1 cost matrix for the left figures, and an asym-
metric cost matrix for the right figures. The corners of the
simplex are marked such that p̂j = 1 at corner j, and if a
test sample has estimated class probability p̂ that falls in
the region including corner j, then the estimated class la-
bel is j. For each of the figures, manipulations are applied
to the class 1 elements of the cost matrix. The dashed lines
show the initial cost matrix partitions, the gray lines help
to illustrate the properties.
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where the δ terms are those used in (3) and L À 1.
The LF method (Lachiche & Flach, 2003) is equivalent
to choosing a partition matrix a such that ai|j = wjzi|j
where zi|j is the 0-1 cost matrix and wj is the weight
used in equations (4) and (5). Thus the LF method is
equal to a column-multiply of a 0-1 cost matrix (see
Property 5 stated in Section 4, and Fig 2c), whereas
our proposed method enacts a parallel shift based on
the actual cost matrix c.

5.1. Optimizing the Partition Matrix

We learn the new partition matrix by minimizing an
empirical loss calculated on a validation set of labeled
samples using a greedy approach. The new partition
matrix a is initialized to the cost matrix c. Then each
free parameter is updated in turn. Let a denote the
current partition matrix, and the new partition matrix
ã will have ãi|j = ai|j + αi and ãj|i = aj|i − αi for all
j 6= i. Suppose αi = −∞ and interpret ã as a cost
matrix – then there would be an infinitely negative
cost to assigning a sample as class i, and thus every
training sample would be assigned to class i. Sup-
pose one increased αi from negative infinity. For dif-
ferent values of αi it would become more cost-effective
to classify each of the training samples as a different
class, call this classification choice gi(p̂(xn)), where
gi(p̂(xn)) = arg mink 6=i

∑K
j=1 ak|j p̂j(x). Let αin de-

note the changepoint value – for αi < αin training
sample n would be assigned to class i and for αi > αin

training sample n would be assigned to class gi(p̂(xn)).

We find these N changepoints αin for n = 1, . . . , N ,
by solving the N equations,

K∑

j=1

(
agi(p̂(xn))|j

)
p̂j(xn) =

K∑

j=1

(
ai|j + αin

)
p̂j(xn).

Re-order the training data by their changepoints, so
that {xk, yk} denotes the training point with the kth
largest changepoint. Then select N∗ where,

N∗ = arg min
N0=1,2,...,N

∑

n<N0

cgi(p̂(xn))|yn
+

∑

n≥N0

ci|yn
.

(14)
Note that αiN∗ to αiN∗+1 defines the range of αi that
would yield the empirical cost given in (14); we set the
parameter αi to be the geometric mean of αiN∗ and
αiN∗+1. Since we require that ãj|j < ãk|j , for all k 6= j,
it must be that aj|j < ai|j + αi and ai|i + αi < ak|i,
for all j, k 6= i, and so αi is clipped to satisfy these
conditions. In addition, if αiN∗ < 0 < αiN∗+1, then
αi is set equal to 0, or equivalently ã is set equal to a.

Each class’s partition matrix parameter is adjusted in
this manner once, and the parameters are updated in

order of class size from most populous to least. Pre-
liminary experiments provided evidence that multiple
passes through the parameters did not improve the fi-
nal classification performance, and that performance
was fairly robust to the parameter ordering.

6. Experiments

Experiments with UCI benchmark datasets compare
the proposed parallel-partition matrix method to
MetaCost (MC) (Domingos, 1999) and to the LF
method (Lachiche & Flach, 2003).

For two-class problems the proposed partition matrix
methods are equivalent to ROC analysis and therefore
only multi-class problems are considered here.

There are two basic variants of MetaCost: the first
variant is that the probability estimates are based on
training samples not including the sample, while the
other variant is that all-inclusive estimates are made.
The results reported here are the better of the two
variants for each dataset.

Randomized ten-fold cross-validation was done 100
times for each method and each dataset. In the cross-
validation, 1/10 of the data was set aside as test data.
For MetaCost, 100 resamples were generated using the
remaining nine folds. For the proposed methods and
the LF method the remaining nine folds were subject
to a nine-fold cross-validation so that 8/10 of the data
(eight folds) were used to estimate the probabilities
for each of the nine folds. Then the partition matrix
a and LF parameters were estimated using the nine
folds’ probability estimates. Finally, the learned cost-
sensitive classifier was applied to the withheld 1/10 of
the test data.

Experiments were done with two different probability
estimation methods. For datasets with discrete fea-
tures, multinomial naive Bayes was used with Lapla-
cian correction for estimating probabilities. Any con-
tinuous features used with naive Bayes were quan-
tized to 21 values. For datasets with continuous
features, regularized quadratic discriminant analysis
(QDA) (Friedman, 1989) was used. Each class’s esti-
mated covariance matrix was regularized as,

Σ̂ = (1− γ − λ)Σ̂ML + λΣ̄ + λ
trace

(
Σ̂ML

)

d
I,

where Σ̂ML is the maximum likelihood estimate of the
full covariance matrix, Σ̄ is the pooled maximum like-
lihood estimate, d is the dimensionality of the feature
vector, and γ and λ were increased from zero until the
condition number of Σ̂ was less than 106.
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Experiments were run with two different cost scenar-
ios. In practical situations it is often the rare events
that are of greatest interest, and therefore the cost of
misclassifying samples from rare classes is higher. To
simulate this situation, we set ci|i = 0 and,

ci|j =
Ni

Ni + Nj
,

where Ni is the number of training samples labeled
class i. For the second set of experiments, we set ci|i =
0, and each element cj|k for j 6= k was drawn randomly
and uniformly from [1, 10].

6.1. Discussion of Results

Results are presented in Tables 1 and 2 in terms of the
mean increase in performance over the baseline of us-
ing the partitioning induced by the cost matrix. The
datasets in the results tables are ordered by increas-
ing geometric-mean class size for the training set. The
results show that MetaCost did not consistently im-
prove over the baseline. The LF method performed
better and usually improved performance, but caused
large increases in error in two cases: image segmenta-
tion with QDA, and dermatology with naive Bayes. In
contrast, learning a new parallel partitioning showed a
mean improvement of 10.8% for the rarity-based cost
matrix and a mean improvement of 8.9% with the ran-
dom cost matrix.

The LF method and proposed partition-learning
method are designed to correct for systematic errors in
the probability estimates. Such systematic errors can
be interpreted as a bias that can cause the classifier
to be wrong in the same way on average over many
training sets. Thus, we expected to see a greater in-
crease in performance for the LF method and proposed
partition-learning method for larger datasets (further
down in the tables) because performance given a large
training sets is more likely to suffer from problems of
bias than estimation variance. With smaller datasets,
estimation variance is generally a larger concern, and
the bias reduction offered by the LF and proposed
method may not be very helpful. In addition, for small
datasets it is harder to learn the systematic error from
only a few training samples, and there is an increased
risk of overfitting the learned parameters.

The datasets iris and dermatology had very low mis-
classification loss for the original probability estimates.
For these datasets there was not much improvement
possible, and we hypothesize that the methods that
learned parameters were likely to overfit to small im-
provements in the training data.

We used a greedy optimization approach to learn the

Mean % Improved
Alg. Dataset MC LF Par
NB Bridges 2 (type) -1 -10 5
NB Bridges 2 (material) 16 0 -8
NB Audiology -34 4 -3
NB Horse (site) -7 17 18
NB Bridges 2 (rel-l) -6 -3 -5
NB Image segmentation -53 5 0
QDA Image segmentation -5 -122 9
NB Horse (code) 1 13 16
NB Glass -4 18 16
QDA Glass -3 27 33
NB Flag (religion) 2 7 6
NB Horse (type) 1 25 27
QDA Iris -1 -18 -4
NB Ecoli -13 -5 -7
QDA Ecoli -6 -9 -1
NB Dermatology -12 -100 -18
QDA Wine 1 64 56
NB Horse (subtype) 2 22 21
NB Flare2 (common) 2 18 17
NB Car -16 10 18
NB Nursery -16 -8 31

Mean -7.2 -2.1 10.8
Std. Dev. 14.4 40.4 17.3

Table 1. Performance for the rarity-based cost matrix with
ci|i = 0 and ci|j = Ni/(Ni +Nj). Largest average improve-
ment for each dataset is in bold.

new partition matrix for our method, but in some cases
this leads only to a locally optimal solution. The LF
method also uses a greedy search. However, Deng et
al.’s results (Deng et al., 2006) show that improving
the optimization of the LF objective can lead to an
improvement in results. Similarly, we hypothesize that
finding a globally optimal solution would also lead to
an improvement in costs.

7. Discussion

We analyzed how changes in the cost matrix affect
the partitioning of the p̂-simplex due to the cost ma-
trix. Based on this analysis, we explored correcting for
systematic probability estimation errors by learning a
partitioning of the p̂-simplex that minimizes empirical
misclassification costs on the training set. To reduce
overfitting, we only considered partitionings parallel to
the original partitioning induced by the cost matrix.
Experiments with two standard classifiers showed that
this post-processing worked best when the number of
training samples per class is relatively large, and when
the estimation error with the original cost matrix is
large.
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Mean % Improved
Alg. Dataset MC LF Par
NB Bridges 2 (type) -5 -12 -3
NB Bridges 2 (material) 12 -10 2
NB Audiology -63 -46 -9
NB Horse(site) 2 1 -1
NB Bridges 2 (rel-l) -2 -5 -5
NB Image segmentation -36 8 -3
QDA Image segmentation -11 -123 35
NB Horse (code) -2 5 1
NB Glass 5 -4 1
QDA Glass -4 7 1
NB Flag (religion) -2 13 13
NB Horse(type) -2 5 1
QDA Iris -1 -7 -3
NB Ecoli -11 -17 -10
QDA Ecoli -3 -2 3
NB Dermatology -42 -132 15
QDA Wine -5 68 73
NB Horse(subtype) -19 18 18
NB Flare2 (common) -5 35 22
NB Car -22 25 32
NB Nursery -55 10 3

Mean -12.9 -7.8 8.9
Std. Dev. 19.9 45.4 19.2

Table 2. Performance for random cost matrix. Largest av-
erage improvement for each dataset is in bold.
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Abstract

We present a discriminative online algorithm
with a bounded memory growth, which is
based on the kernel-based Perceptron. Gen-
erally, the required memory of the kernel-
based Perceptron for storing the online hy-
pothesis is not bounded. Previous work
has been focused on discarding part of
the instances in order to keep the memory
bounded. In the proposed algorithm the in-
stances are not discarded, but projected onto
the space spanned by the previous online hy-
pothesis. We derive a relative mistake bound
and compare our algorithm both analytically
and empirically to the state-of-the-art For-
getron algorithm (Dekel et al, 2007). The
first variant of our algorithm, called Projec-
tron, outperforms the Forgetron. The sec-
ond variant, called Projectron++, outper-
forms even the Perceptron.

1. Introduction

One of the most important aspects of online learning
methods is their ability to work in an open-ended fash-
ion. Autonomous agents, for example, need to learn
continuously from their surroundings, to adapt to the
environment and maintain satisfactory performances.
A recent stream of work on artificial cognitive systems
have signaled the need for life-long learning methods
and the promise of discriminative classifiers for this
task (Orabona et al., 2007, and references therein).

Kernel-based discriminative online algorithms have
been shown to perform very well on binary classifica-
tion problems (see for example (Kivinen et al., 2004;
Crammer et al., 2006)). Most of them can be seen as
belonging to the Perceptron algorithm family. They

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

construct their classification function incrementally,
keeping a subset of the instances called support set.
Each time an instance is misclassified it is added to
the support set, and the classification function is de-
fined as a kernel combination of the observations in
this set. It is clear that if the problem is not linearly
separable, they will never stop updating the classifi-
cation function. This leads eventually to a memory
explosion, and it concretely limits the usage of these
methods for all those applications where data must be
acquired continuously in time.

Several authors tried in the past to address this prob-
lem, mainly by bounding a priori the memory require-
ments. The first algorithm to overcome the unlimited
growth of the support set was proposed by Crammer et
al. (2003). The algorithm was then refined by Weston
et al. (2005). The idea of the algorithm was to discard
a vector of the solution, once the maximum dimension
has been reached. The strategy was purely heuristic
and no mistake bounds were given. A similar strategy
has been used also in NORMA (Kivinen et al., 2004)
and SILK (Cheng et al., 2007). The very first online
algorithm to have a fixed memory “budget” and at the
same time to have a relative mistake bound has been
the Forgetron (Dekel et al., 2007). A stochastic algo-
rithm that on average achieves similar performances,
and with a similar mistake bound has been proposed
by Cesa-Bianchi et al. (2006).

In this paper we take a different route. We modify
the Perceptron algorithm so that the number of stored
samples is always bounded. Instead of fixing a priori
the maximum dimension of the solution, we introduce
a parameter that can be tuned by the user, to trade
accuracy for sparseness, depending on the needs of the
task at hand. We call the algorithm, that constitutes
the first contribution of this paper, Projectron. The
Projectron is an online, Perceptron-like method that
is bounded in space and in time complexity. We derive
for it a mistake bound, and we show experimentally
that it outperforms consistently the Forgetron algo-
rithm. The second contribution of this paper is the
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derivation of a second algorithm, that we call Projec-
tron++. It achieves better performances than the Per-
ceptron, retaining all the advantage of the Projectron
listed above. Note that this is opposite to previous
budget online learning algorithms, delivering perfor-
mances at most as good as the original Perceptron.

The rest of the paper is organized as follows: in Section
2 we state the problem and we introduce the necessary
background theory. Section 3 introduces the Projec-
tron, Section 4 derives its properties and Section 4.1
derives the Projectron++. We report experiments in
Section 5, and we conclude the paper with an overall
discussion.

2. Problem Setting

The basis of our study is the well known Perceptron
algorithm (Rosenblatt, 1958). The Perceptron algo-
rithm learns the mapping f : X → R based on a set of
examples S = {(x1, y1), . . . , (xT , yT )}, where xt ∈ X
is called an instance and yt ∈ {−1,+1} is called a label.
We denote the prediction of Perceptron as sign(f(x))
and we interpret |f(x)| as the confidence in the predic-
tion. We call the output f of the Perceptron algorithm
a hypothesis, and we denote the set of all attainable
hypotheses by H. In this paper we assume that H is
a Reproducing Kernel Hilbert Space (RKHS) with a
positive definite kernel function k : X × X → R im-
plementing the inner product 〈·, ·〉. The inner product
is defined so that it satisfies the reproducing property,
〈k(x, ·), f(·)〉 = f(x)

The Perceptron algorithm is an online algorithm, in
which the learning takes place in rounds. At each
round a new hypothesis function is estimated, based
on the previous one. We denote the hypothesis esti-
mated after the t-th round by ft. The algorithm starts
with the zero hypothesis f0 = 0. On each round t, an
instance xt ∈ X is presented to the algorithm. The
algorithm predicts a label ŷt ∈ {−1,+1} by using the
current function, ŷt = sign(ft(xt)). Then, the cor-
rect label yt is revealed. If the prediction ŷt differs
from the correct label yt, it updates the hypothesis
ft = ft−1 + ytk(xt, ·), otherwise the hypothesis is left
intact, ft = ft−1. Practically, the hypothesis ft can be
written as a kernel expansion (Schölkopf et al., 2000),

ft(x) =
∑

i∈St

αik(xi,x) , (1)

where αi = yi and St is defined to be the set of instance
indices for which an update of the hypothesis occurred,
i.e., St = {0 ≤ i ≤ t | ŷi 6= yi}. The set St is called the
support set. The Perceptron algorithm is summarized
in Algorithm 1.

Algorithm 1 Perceptron Algorithm

Initialize: S0 = ∅, f0 = 0

for t = 1, 2, . . . , T do

Receive new instance xt

Predict ŷt = sign(ft−1(xt))
Receive label yt

if yt 6= ŷt then

ft = ft−1 + ytk(xt, ·)
St = St−1 ∪ {t}

else

ft = ft−1

St = St−1

end if

end for

Although the Perceptron is a very simple algorithm, it
is considered to produce very good results. Our goal
is to derive and analyze a new algorithm which attains
the same results as the Perceptron but with a minimal
size of support set. In the next section we present our
Projectron algorithm.

3. The Projectron Algorithm

Let us first consider a finite dimensional RKHS H in-
duced by a kernel such as the polynomial kernel. Since
H is finite dimensional, there is a finite number of lin-
early independent hypotheses in this space. Hence,
any hypothesis in this space can be expressed using a
finite number of examples. We can modify the Per-
ceptron algorithm to use only one set of independent
instances as follows. On each round the algorithm re-
ceives an instance and predicts its label. On a pre-
diction mistake, if the instance can be spanned by the
support set, namely, xt =

∑t−1
i=1 dixi, it is not added

to the support set. Instead, the coefficients {αi} in the
expansion Eq. (1) are not merely yi, i ∈ St−1, but they
are changed to reflect the addition of this instance to
the hypothesis, that is, αi = yi +ytdi, 1 ≤ i ≤ t−1. If
the instance and the support set are linearly indepen-
dent, the instance is added to the set with αt = yt as
before. This technique reduces the size of the support
set without changing the hypothesis in any way, and
was used by Downs at al. (2001) to simplify Support
Vector Machine solutions.

Let us consider now the more elaborate case of an in-
finite dimensional RKHS H induced by kernels such
as the Gaussian kernel. In this case, it is not pos-
sible to find a finite number of linearly independent
vectors which span the whole space, and hence there
is no guarantee that the hypothesis can be expressed
by a finite number of instances. However, we can ap-
proximate the concept of linear independence with a
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Algorithm 2 Projectron Algorithm

Initialize: S0 = ∅, f0 = 0

for t = 1, 2, . . . , T do

Receive new instance xt

Predict ŷt = sign(ft−1(xt))
Receive label yt

if yt 6= ŷt then

f ′
t = ft−1 + ytk(xt, ·)

f ′′
t = f ′

t projected onto the space St−1

δt = f ′′
t − f ′

t

if ‖δt‖ ≤ η then

ft = f ′′
t

St = St−1

else

ft = f ′
t

St = St−1 ∪ {t}
end if

else

ft = ft−1

St = St−1

end if

end for

finite number of vectors (Csató & Opper, 2001; En-
gel et al., 2002; Orabona et al., 2007). In particular
assume that at round t of the algorithm there is a pre-
diction mistake and the mistaken instance xt should
be added to the support set. Before adding the in-
stance to the support, we construct two hypotheses:
a temporal hypothesis f ′

t using the function k(xt, ·),
that is, f ′

t = ft−1 + ytk(xt, ·), and a projected hypoth-
esis f ′′

t , which is the projection of f ′
t onto the space

spanned by St−1. That is, the projected hypothesis is
a hypothesis from the support set St−1 which is the
closest to the temporal hypothesis. Denote by δt the
distance between the hypotheses δt = f ′′

t − f ′
t . If the

norm of distance ‖δt‖ is below some threshold η, we
use the projected hypothesis as our next hypothesis,
i.e., ft = f ′′

t , otherwise we use the temporal hypothesis
as our next hypothesis, i.e., ft = f ′

t . As we show in the
next section, this strategy assures that the maximum
size of the support set is always finite, regardless of the
dimension of the RKHS H. Guided by these consider-
ations we can design a new Perceptron-like algorithm
that projects the solution onto the space spanned by
the previous support vectors whenever possible. We
call this algorithm Projectron. The algorithm is given
in Algorithm 2.

In our algorithm the parameter η plays an important
role. If η is equal to zero, we obtain exactly the same
solution of the Perceptron algorithm. In this case,
however, the Projectron solution can still be sparser
when some of the instances are linearly dependent or

when the kernel induces a finite dimensional RKHS
H. In case η is greater than zero we trade precision
for sparseness. Moreover, as shown in the next sec-
tion, this implies a bounded algorithmic complexity,
namely, the memory and time requirements for each
step are bounded. We will also derive mistake bounds
to analyze the effect of η on the classification accuracy.

We now consider the problem of deriving the projected
hypothesis f ′′

t in a Hilbert space H, induced by a kernel
function k(·, ·). Denote by Pt−1ft the projection of
ft ∈ H onto the subspace Ht−1 ⊂ H spanned by the
set St−1. The projected hypothesis f ′′

t is defined as
f ′′

t = Pt−1f
′
t . Expanding f ′

t we have

f ′′
t = Pt−1f

′
t = Pt−1 (ft−1 + ytk(xt, ·)) . (2)

The projection is an idempotent (P 2
t−1 = Pt−1) and

linear operator, hence,

f ′′
t = ft−1 + ytPt−1k(xt, ·) . (3)

Recall that δt = f ′′
t − f ′

t . Substitute f ′′
t from Eq. (3)

and f ′
t we have

δt = f ′′
t − f ′

t = ytPt−1k(xt, ·) − ytk(xt, ·) . (4)

Recall that the projection of f ′
t ∈ H onto a sub-

space Ht−1 ⊂ H is the hypothesis in Ht−1 closest to
f ′

t . Hence, let
∑

j∈St−1
djk(xj , ·) be an hypothesis in

Ht−1, where (d1, . . . , dt−1) is a set of coefficients. The
closest hypothesis is the one for which

‖δt‖2 = min
(d1,...,dt−1)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

∑

j∈St−1

djk(xj , ·) − k(xt, ·)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2

.

(5)
Expanding Eq. (5) we get

‖δt‖2 = min
(d1,...,dt−1)

(
∑

i,j∈St−1

djdik(xj ,xi)

− 2
∑

j∈St−1

djk(xj ,xt) + k(xt,xt)

)

. (6)

Define Kt−1 to be the matrix generated by the in-
stances in the support set St−1, that is, {Kt−1}i,j =
k(xi,xj) for every i, j ∈ St−1. Define kt to be the
vector whose i-th element is kti

= k(xi,xt). We have

‖δt‖2 = min
d

(
dT Kt−1d − 2dT kt + k(xt,xt)

)
, (7)

where d = (d1, . . . , dt−1)
T . Solving Eq. (7), that is,

applying the extremum conditions with respect to d,
we obtain

d⋆ = K−1
t−1kt (8)
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and, by substituting Eq. (8) into Eq. (7),

‖δt‖2 = k(xt,xt) − kT
t d⋆ . (9)

Furthermore, substituting Eq. (8) into Eq. (3) we get

f ′′
t = ft−1 + yt

∑

j∈St−1

d⋆
j k(xj , ·) . (10)

We have shown how to calculate both the distance δt

and the projected hypothesis f ′′
t . In summary, one

needs to compute d⋆ according to Eq. (8), plug the
result either into Eq. (9) and obtain δt or into Eq. (10)
and obtain the projected hypothesis.

In order to make the computation more tractable, we
introduce an efficient method to calculate the matrix
inversion K−1

t iteratively. This method was first in-
troduced in (Cauwenberghs & Poggio, 2000), and we
give it here only for completeness. We would like to
note in passing that the matrix Kt−1 can be safely in-
verted since, by incremental construction, it is always
full-rank. After the addition of a new sample, K−1

t

becomes







0

K−1
t−1

...
0

0 · · · 0 0








+
1

‖δt‖2

[
d⋆

−1

]
[

d⋆T −1
]

(11)
where d⋆ and ‖δt‖2 are already evaluated during the
previous steps of the algorithm. Thanks to this incre-
mental evaluation, the time complexity of the linear
independence check is O(|St−1|2), as one can easily
see from Eq. (8).

4. Analysis

In this section we analyze the performance of the Pro-
jectron algorithm in the usual framework of online
learning with a competitor. First, we present a the-
orem which states that the size of the support set is
bounded.

Theorem 1. Let k : X ×X → R a continuous Mercer
kernel, with X a compact subset of a Banach space.
Then, for any training sequence (xi, yi), i = 1, · · · ,∞
and for any η > 0, the size of the support set of the
Projectron algorithm is finite.

The proof of this theorem goes along the same lines
as the proof of Theorem 3.1 in (Engel et al., 2002),
and we omit it for brevity. Note that this theorem
guarantees that the size of the support set is bounded,
however it does not state that the size of the support
set is fixed or can be estimated before training.

The next theorem provides a mistake bound. The
main idea is to bound the maximum number of mis-
takes of the algorithm, relatively to the best hypothesis
g ∈ H chosen in hindsight. Let us define D1 as

D1 =
T∑

t=1

ℓ(g(xt), yt) (12)

where ℓ(g(xt), yt) is the hinge loss suffered by the func-
tion g on the example (xt, yt), that is, max{0, 1 −
ytg(xt)}. With these definitions we can state the fol-
lowing bound for the Projectron Algorithm.

Theorem 2. Let (x1, y1), · · · , (xT , yT ) be a sequence
of instance-label pairs where xt ∈ X , yt ∈ {−1,+1},
and k(xt,xt) ≤ R for all t. Let g be an arbitrary func-
tion in H. Assume that the Projectron algorithm is

run with 0 ≤ η < 2−R2

2‖g‖ . Then the number of predic-

tion mistakes the Projectron makes on the sequence is
at most

‖g‖2
+ 2D1

2 − R2 − 2η‖g‖

The proof of this theorem is based on the following
lemma.

Lemma 1. Let (x, y) be an example, with x ∈ X and
y ∈ {+1,−1}. Denote by f an hypothesis in H, such
that yf(x) < 1. Let f ′ = f + τyq(·), where q(·) ∈ H.
Then the following bound holds for any τ ≥ 0:

‖f − g‖2 − ‖f ′ − g‖2 ≥ τ
(
2ℓ(f(x), y) − 2ℓ(g(x), y)

−τ‖q(·)‖2−2〈f, q(·)−k(x, ·)〉−2‖q(·)−k(x, ·)‖·‖g‖
)

Proof.

‖f − g‖2 − ‖f ′ − g‖2 = 2τy〈g − f, q(·)〉 − τ2‖q(·)‖2

= 2τy(g(x) − f(x)) − τ2‖q(·)‖2

+ 2τy〈g − f, q(·) − k(x, ·)〉
≥ τ

(
2ℓ(f(x), y) − 2ℓ(g(x), y) − τ‖q(·)‖2

− 2y〈f, q(·) − k(x, ·)〉 − 2‖q(·) − k(x, ·)‖ · ‖g‖
)

With this bound we are ready to prove Thm. 2.

Proof. Define the relative progress in each round as
∆t = ‖ft−1 − g‖2 − ‖ft − g‖2. We bound the progress
from above and below. On rounds in which there is
no mistake ∆t is 0. On rounds in which there is a
mistake there are two possible updates: either ft =
ft−1 + ytPt−1k(xt, ·) or ft = ft−1 + ytk(xt, ·). In the
following we bound the progress from below, when the
update is of the former type (the same bound can be
obtained for the latter type as well, but the derivation
is omitted). In particular we set q(·) = Pt−1k(xt, ·) in
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Lemma 1 and use δt = ytPt−1k(xt, ·) − ytk(xt, ·) from
Eq. (4)

∆t = ‖ft−1 − g‖2 − ‖ft − g‖2

≥ τt

(

2ℓ(ft−1(xt), yt) − 2ℓ(g(xt), yt)

− τt‖Pt−1k(xt, ·)‖2 − 2〈ft−1, δt〉 − 2‖δt‖‖g‖
)

.

Note that 〈ft−1, δt〉 = 0, because ft−1 belongs to
the space spanned by the functions indexed by St−1.
Moreover, on every projection update ‖δt‖ ≤ η and
using the theorem assumption ‖Pt−1k(xt, ·)‖ ≤ R, we
then have

∆t≥τt

(

2 (ℓ(ft−1(xt), yt) − ℓ(g(xt), yt))−τtR
2−2η‖g‖

)

.

We can further bound ∆t by noting that on every pre-
diction mistake ℓ(ft−1(xt), yt) ≥ 1. Overall we have

‖ft−1 − g‖2 − ‖ft − g‖2 ≥
τt

(

2 (1 − ℓ(g(xt), yt)) − τtR
2 − 2η‖g‖

)

.

We sum over t both sides. Let τt be an indicator func-
tion for a mistake on the t-th round, that is, τt is 1 if
there is a mistake on round t and 0 otherwise, hence
it can be upper bounded by 1. The left hand side of
the equation is a telescopic sum, hence it collapses to
‖f0−g‖2−‖fT −g‖2, which can be upper bounded by
‖g‖2, using the fact that f0 = 0 and that ‖fT − g‖2 is
non-negative. Finally, we have

‖g‖2 + 2D1 ≥ M
(
2 − R2 − 2η‖g‖

)
,

where M is the number of mistakes.

To compare with other similar algorithms it can be
useful to change the formulation of the algorithm in
order to use the maximum norm of g as parameter
instead of η. Hence we can fix an upper bound, U ,
on ‖g‖ and then we set η to have a positive progress.
Specifically, on each round we set η to be

1

2U

(

2ℓ(ft−1(xt), yt) − ‖Pt−1k(xt, ·)‖2 − 0.5
)

. (13)

The next corollary, based on Thm. 2, provides a mis-
take bounds in terms of U rather than η.

Corollary 1. Let (x1, y1), · · · , (xT , yT ) be a sequence
of instance-label pairs where xt ∈ X , yt ∈ {−1,+1},
and k(xt,xt) ≤ 1 for all t. Let g be an arbitrary func-
tion in H, whose norm ‖g‖ is bounded by U . Assume
that the Projectron algorithm is run with a parameter
η, which is set in each round according to Eq. (13).
Then, the number of prediction mistakes the Projec-
tron makes on the sequence is at most

2‖g‖2
+ 4D1 .

Notice that the bound in Corollary 1 is similar to Thm.
5.1 in (Dekel et al., 2007) of the Forgetron algorithm.
The difference is in the assumptions made: in the For-
getron, the size of the support set is guaranteed to be
less than a fixed size B that depends on U , while in the
Projectron we choose the value of η or, equivalently, U ,
and there is no guarantee on the exact size of the sup-
port set. However, the experimental results suggest
that, with the same assumptions used in the deriva-
tion of the Forgetron bound, the Projectron needs a
smaller support set and produces less mistakes.

It is also possible to give yet another bound by slightly
changing the proof of Thm. 2. This theorem is a worst-
case mistake bound for the Projectron algorithm. We
state it here without the proof, leaving it for a long
version of this paper.

Theorem 3. Let (x1, y1), · · · , (xT , yT ) be a sequence
of instance-label pairs where xt ∈ X , yt ∈ {−1,+1},
and k(xt,xt) ≤ R for all t. Let g an arbitrary function
in H. Assume that the Projectron algorithm is run
with 0 ≤ η < 1

‖g‖ . Then, M , the number of prediction

mistakes the Projectron makes on the sequence is at
most




R‖g‖ +

√

R2‖g‖2
+ 4D1

2(1 − η‖g‖)





2

The last theorem suggests that the performance of
the Projectron are slightly worse than the Percep-
tron (Shalev-Shwartz & Singer, 2005). Specifically
the degradation in the performance of Projectron com-
pared to the Perceptron are related to 1/(1−η‖g‖)2. In
the next subsection we present a variant to the Projec-
tron algorithm, which attains even better performance.

4.1. Going Beyond the Perceptron

The proof of Thm. 2 and Corollary 1 direct us how
to improve the Projectron algorithm to go beyond the
performance of the Perceptron algorithm, while main-
taining a bounded support set.

Let us start from the algorithm in Corollary 1. We
change it so an update takes place not only if there is
a prediction mistake, but also when the prediction is
correct with a low confidence. We indicate this latter
case as a margin error, that is, 0 < ytft−1(xt) < 1.
This strategy improves the classification rate but also
increases the size of the support set (Crammer et al.,
2006). A possible solution to this obstacle is not to
update every round a margin error occurs, but also
when the new instance can be projected onto the sup-
port set. Hence, the update on margin error rounds
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would be in the general form

ft = ft−1 + ytτtPt−1k(xt, ·) , (14)

with 0 < τt ≤ 1. The last constraint comes from proofs
of Thm. 2 and Corollary 1 in which we upper bound
τt by 1. Note that setting τt to 0 is equivalent to leave
the hypothesis unchanged. The bound in Corollary 1
becomes

M ≤ 2(‖g‖2
+ 2D1 −

∑

{t:0<ytft−1(xt)<1}

βt) , (15)

where βt bounds the progress made on margin error
round t. In particular it is easy to see from Lemma 1
that βt is

τt

(
2ℓ(ft−1(xt), yt)−τt‖Pt−1k(xt,·)‖2 −2U‖δt‖

)
, (16)

for 0 < τt ≤ 1, and is 0 when there is no up-
date. Whenever βt is non-negative the worst-case
number of mistakes in Eq. (15) decreases, hopefully
along with the classification error rate of the algo-
rithm. Hence, we determine the optimal τt which
maximizes βt. In particular, the expression of βt

in Eq. (16) is quadratic in τt, and is maximized for
τt = ℓ(ft−1(xt), yt)/‖Pt−1k(xt, ·)‖2. Constraining τt

to be less than or equal to 1, we have1

τt = min{ℓ(ft−1(xt), yt)/‖Pt−1k(xt, ·)‖2, 1} . (17)

In summary, at every round t with margin error we
calculate τt according to Eq. (17), and check that βt

is non-negative. If so we update the hypothesis using
Eq. (14), otherwise we leave it untouched.

With this modification we expect better performance,
that is, fewer mistakes, but without any increase of the
support set size. We can even expect solutions with a
smaller support set, since new instances can be added
to the support set only if misclassified, hence having
less mistakes should result in a smaller support set.
We name this variant Projectron++, and in the next
section we compare it to the original version.

5. Experimental Results

In this section we present experimental results that
demonstrate the effectiveness of the Projectron and
the Projectron++. We compare both algorithms to
the Perceptron and to the budget algorithms For-
getron (Dekel et al., 2007) and Randomized Budget
Perceptron (RBP) (Cesa-Bianchi et al., 2006). For the
Forgetron, we choose the state-of-the-art “self-tuned”

1This update rule gives τt = 1 on rounds in which there
is a mistake.

variant, which outperforms its other variants. We also
use two other baseline algorithms: the first one is a
Perceptron algorithm which stops updating the solu-
tion once the support size has reached some limit, and
it is used to verify that the Projectron is better than
just stop learning. We name it Stoptron. The second
baseline algorithm is the PA-I variant of the Passive-
Aggressive learning algorithm (Crammer et al., 2006),
which gives an upper bound to the classification per-
formance that Projectron++ can reach.

We tested the algorithms with two standard machine
learning datasets: Adults9 and Vehicle2 and a syn-
thetic dataset, all of them with more than 10000 sam-
ples. The synthetic dataset is built in the same way
as in (Dekel et al., 2007). It is composed with sam-
ples taken from two separate bi-dimensional Gaussian
distributions. The means of the positive and nega-
tive samples are (1, 1) and (−1,−1), respectively, while
the covariance matrix for both is diagonal matrix with
(0.2, 2) as its diagonal. Then the labels are flipped
with a probability of 0.1 to introduce noise.

All the experiments were performed over 5 different
permutations of the training set. All algorithms used
a Gaussian kernel with σ2 equals 25, 4, and 0.5 for
Adults9, Vehicle, and the synthetic datasets, respec-
tively. The C parameter of the PA-I was set to 1,
to have an update similar to the Perceptron and Pro-
jectron. Due to the different nature of our algorithm
compared to the budget ones, we cannot select the sup-
port set size in hindsight. Hence, we compared them
using the proper conditions to obtain the same bounds.
That is, we selected the maximum support size B for
the Forgetron algorithm, which implies a maximum
value U , the norm of g, for its bound to hold. In par-
ticular U is equal to 1/4

√

(B + 1)/ log (B + 1) (Dekel
et al., 2007), where B is the budget parameter that
sets the maximum size of the support set. We then se-
lected the parameter η in the Projectron in each round
according to Eq. (13). Hence the final size of the Pro-
jectron solution will depend on U and on the particular
classification problem at hand. We have set B on each
dataset roughly to 1/2 and 1/4 of the size of the Per-
ceptron support set, for a total of 6 experiments. Note
that Projectron can also be used without taking into
account the norm of the competitor and considering η

just as a parameter. In particular η should be set to
trade accuracy for sparseness.

In Tables 1–3 we summarize the results of our experi-
ments. The cumulative number of mistakes as percent-
age of the training size (mean ± std) and the size of the

2Downloaded from http://www.sie.ntu.edu.tw/

~cjlin/libsvmtools/datasets/.
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Table 1. Adult9 dataset, 32561 samples.
Algorithm % Mistakes Size Support Set

Perceptron 20.99% ± 0.06 6835.6 ± 20.28
PA-I 18.11% ± 0.10 12537 ± 36.2

B=1500
Projectron 20.95% ± 0.12 1094.6 ± 16.06

Projectron++ 20.04% ± 0.14 992.8 ± 9.73

Forgetron 21.90% ± 0.23 1500
RBP 22.05% ± 0.21 1500

Stoptron 22.73% ± 2.82 1500
B=3000

Projectron 20.97% ± 0.13 1499.6 ± 13.58
Projectron++ 20.16% ± 0.11 1364.2 ± 4.76

Forgetron 21.41% ± 0.13 3000
RBP 21.49% ± 0.11 3000

Stoptron 21.04% ± 1.54 3000

support set are reported. In all the experiments both
the Projectron and the Projectron++ outperform the
Forgetron and the RBP with a smaller support size.
Moreover, the Projectron++ always outperforms the
Projectron and has smaller support set. Due to its
theoretically derived formulation, it achieves better re-
sults even if being bounded, and it has better perfor-
mance than the Perceptron. In particular it gets closer
to the classification rate of the PA-I, without paying
the price of a large support set. It is interesting to note
the performances of the Stoptron: it has an accuracy
close to the other bounded algorithms in average, but
with much bigger variance. This indicates that all the
examined strategies for bounded learning are always
better than the simple procedure to stop learning, at
least to have stable performances.

Last, we show the behavior of the algorithms over time.
In Fig. 1 we show the average online error rate, that
is, the total numbers of errors on the examples seen
as a function of the number of samples for all algo-
rithms on the Adult9 dataset with B = 1500. Note
how the Projectron algorithm closely tracks the Per-
ceptron. On the other hand the Forgetron and the
RBP stop improving after reaching the support set size
B, around 7500 samples. The growth of the support
set as a function of the number of samples is depicted
in Fig. 2. While for PA-I and Perceptron the growth
is clearly linear, it is sub-linear for Projectron and for
the Projectron++ and they will reach a maximum size
and then they will stop growing (as stated in Thm. 1).
In Fig. 3 we show the average online error rate as a
function of the size of the support set. It is clear that
the Projectron and the Projectron++ outperform the
Perceptron with smaller support set.

6. Discussion

This paper presented two different versions of a
bounded online learning algorithm. The algorithms
depend on a parameter that allows to trade accuracy

Table 2. Vehicle dataset, 78823 samples.
Algorithm % Mistakes Size Support Set

Perceptron 19.58% ± 0.09 15432.0 ± 69.62
PA-I 15.27% ± 0.05 30131.4 ± 21.07

B=4000
Projectron 19.63% ± 0.08 3496.4 ± 18.39

Projectron++ 18.27% ± 0.06 3187.0 ± 13.64

Forgetron 20.40% ± 0.04 4000
RBP 20.32% ± 0.04 4000

Stoptron 19.49% ± 3.56 4000
B=8000

Projectron 19.62% ± 0.04 4668.2 ± 32.88
Projectron++ 18.53% ± 0.07 4309.6 ± 28.67

Forgetron 19.98% ± 0.06 8000
RBP 19.94% ± 0.06 8000

Stoptron 20.17% ± 2.03 8000

Table 3. Synthetic dataset, 10000 samples.
Algorithm % Mistakes Size Support Set

Perceptron 18.80% ± 0.25 1880.0 ± 25.12
PA-I 12.58% ± 0.05 3986.8 ± 42.83

B=1000
Projectron 18.71% ± 0.14 108.6 ± 2.97

Projectron++ 14.09% ± 0.10 104.2 ± 2.39

Forgetron 18.96% ± 0.32 1000
RBP 18.86% ± 0.29 1000

Stoptron 17.49% ± 1.77 1000
B=500

Projectron 18.70% ± 0.21 98.6 ± 3.05

Projectron++ 14.23% ± 0.10 98.6 ± 2.30

Forgetron 19.20% ± 0.19 500
RBP 19.27% ± 0.20 500

Stoptron 21.96% ± 4.62 500

for sparseness of the solution. The size of the solution
is always guaranteed to be bounded, therefore it solves
the memory explosion problem of the Perceptron and
similar algorithms. Although the size of the support
set is guaranteed to be bounded, the actual size of the
support set cannot be determined in advance, like in
the Forgetron algorithm, and it is not fixed. Prac-
tically, the size of the support set of the Projectron
algorithms is much smaller than that of the budget
algorithms.

Compared to budget algorithms it has the advantage
of a bounded support set size without removing or scal-
ing instances in the set. This keeps performance high.
We call this algorithm Projectron. Its second variant,
the Projectron++, always outperforms the standard
Perceptron algorithm, while assuring a bounded so-
lution. Another advantage over budget algorithms is
the possibility to obtain bounded batch solutions us-
ing standard online-to-batch conversion. In fact using
the averaging conversion (Cesa-Bianchi et al., 2004)
we get a bounded solution. This is not true for bud-
get algorithms, where more sophisticated techniques
have to be used (Dekel & Singer, 2005). A similar ap-
proach has been used in (Csató & Opper, 2001) in the
framework of the Gaussian Processes. However in that
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Figure 1. Average online error for the different algorithms
on Adult9 dataset as a function of the number of training
samples. B is set to 1500.
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Figure 2. Size of the support set for the different algorithms
on Adult9 dataset as a function of the number of training
samples. B is set to 1500.

paper no mistake bounds were derived and the use of
the hinge loss allows us to have sparser solution.
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Abstract

We consider the problem of learning dis-
similarities between points via formulations
which preserve a specified ordering between
points rather than the numerical values of
the dissimilarities. Dissimilarity ranking (d-
ranking) learns from instances like “A is more
similar to B than C is to D” or “The dis-
tance between E and F is larger than that
between G and H”. Three formulations of d-
ranking problems are presented and new al-
gorithms are presented for two of them, one
by semidefinite programming (SDP) and one
by quadratic programming (QP). Among the
novel capabilities of these approaches are out-
of-sample prediction and scalability to large
problems.

1. Introduction

Ranking or sometimes referred as ordinal regression, is
a statistical learning problem which gained much at-
tention recently (Cohen et al., 1998; Herbrich et al.,
1999; Joachims, 2002). This problem learns from rel-
ative comparisons like “A ranks lower than B” or “C
ranks higher than D”. The goal is to learn an explicit
or implicit function which gives ranks over an sampling
space X. In most of these tasks, the sampled instances
to be ranked are vector-valued data in RD, while the
ranks are real numbers which can be either discrete or
continuous. If the problem is to learn a real valued
ranking function, it can be stated as: given a set S of
pairs (xi,xj) ∈ S (which indicates that the rank of xi

is lower than xj), learn a real valued f : X → R that
satisfies f(xm) < f(xn) if the rank of xm is lower than
xn.

In this paper we investigate a special ranking prob-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

lem: dissimilarity ranking (d-ranking). Unlike rank-
ing, this problem learns from instances like “A is more
similar to B than C is to D” or “The distance be-
tween E and F is larger than that between G and
H”. Note that the dissimilarities here are not neces-
sarily distances. Other than real vectors in conven-
tional ranking problems, the data to be ranked here
are dissimilates of pairwised data vectors. This prob-
lem can be stated as: learning an explicit or implicit
function which gives ranks over a space of dissimilar-
ities d (X,X) ∈ R. Based on different requirements of
applications, this learning problem can have various
formulations. We will present some of them in Section
2.

D-ranking can be regarded as a special instance of dis-
similarity learning (or metric learning). Different dis-
similarity learning methods have different goals. We
highlight some previous work as below.

• In metric learning methods (Hastie & Tibshirani,
1996; Xing et al., 2002), the purpose of learning a
proper Mahalanobis distance is to achieve better
class/cluster separations.

• In kernel learning methods (Lanckriet et al., 2004;
Micchelli & Pontil, 2005), learning a proper ker-
nel is equivalent to learning a good inner-product
function which introduces a dissimilarity in the
input space. The purpose is to maximize the per-
formance of a kernel-based learning machine.

• Multidimensional scaling (MDS) (Borg & Groe-
nen, 2005) and Isomap (Tenenbaum et al., 2000)
can also be regarded as learning an implicity func-
tion f : RD → RL. The purpose of learning
an embedding is to preserve distances in a low-
dimensional Euclidean space RL.

In our d-ranking problems, the purpose of learning a
proper dissimilarity is to preserve the ranks of dissim-
ilarities, not the absolute values of them (which is the
case in MDS and Isomap). For example, if we know
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that “The distance between A and B is smaller than
that between C and D”, the problem can be formu-
lated as: find a dissimilarity function d, such that
d(A,B) < d(C,D).

Unlike conventional learning and ranking problems, d-
ranking hasn’t received intensive studies in previous
research. One of the most important related work
is the nonmetric multidimensional scaling (NMDS)
(Borg & Groenen, 2005). Given a symmetric prox-
imity (similarity or dissimilarity) matrix ∆ = [δmn],
NMDS tries to find a low dimensional embedding space
RL such that ∀xi,xj ,xk,xl ∈ RL, ‖xi − xj‖22 <
‖xk − xl‖22 ⇔ δij < δkl. NMDS was recently ex-
tended to the generalized NMDS (GNMDS) (Agarwal,
2007). GNMDS does not need to know the absolute
values of proximities δmn. Instead it only need a set
S of quadruples (i, j, k, l) ∈ S, which indicate that
δij < δkl.

Both NMDS and GNMDS learn an embedding space
instead of learning an explicit ranking function, thus
they are unable to handle out-of-sample problems.
Schultz et. al. gave a solution to these problems by
proposing to learn a distance metric from relative com-
parisons (Schultz & Joachims, 2003). They choose to
learn a Mahalanobis distance which can preserve ranks
of distances. Since the learned distance functions are
parameterized, they can be used to handle new sam-
ples. The proposed formulation was solved in a similar
manner as SVM. Nonetheless, the regularization term
was not well justified.

Many applications in biology, computer vision, web
search, social science etc. can be put into the frame-
work of d-ranking problems. Take document classifica-
tion as an instance. Without adequate domain knowl-
edge, it is hard to accurately determine the quantita-
tive dissimilarities between two documents. However,
comparing the dissimilarities between every three or
four documents can be easily done, either automat-
ically or manually. Generally speaking, d-ranking is
especially useful when the quantized dissimilarities are
not reliable.

In Section 2, we propose three formulations of d-
ranking problems. Section 3 gives the numerical so-
lutions for solving d-ranking by SDP. Section 4 shows
how to solve d-ranking by QP. The proposed methods
are evaluated in Section 5. Section 6 concludes the
paper.

2. Three Formulations of D-Ranking

D-ranking problems can have various formulations de-
pending on specific requirements or settings of appli-

cations. Next we will give three formulations.

Formulation 2.1. (F1) Inputs: a set S of ordered
quadruples (i, j, k, l) ∈ S, indicating that d(xi,xj) ≤
d(xk,xl), where d(·, ·) is a fixed but unknown dissim-
ilarity function; Outputs: coefficients of embedded
samples x

′
i,x

′
j ,x

′
k,x

′
l ∈ RL; Criteria: (i, j, k, l) ∈

S ⇔ ‖x′i − x
′
j‖22 ≤ ‖x′k − x

′
l‖22.

As proposed by Agarwal et. al. (Agarwal, 2007), in
F1 we neither assume any geometry of the input space,
nor assume any form of dissimilarities in it. We do
not need to know the coefficients of input samples.
Only ordering information is provided. Nonetheless
we assume a Euclidean metric in the embedding space,
which is often of low dimensions (e.g. L = 2, or 3). As
shown in Section 3, F1 can be formed as a problem of
semidefinite programming (SDP).

Formulation 2.2. (F2) Inputs: a set S of ordered
quadruples (i, j, k, l) ∈ S, indicating that d(xi,xj) ≤
d(xk,xl), where d(·, ·) is a fixed but unknown dissimi-
larity function; corresponding coefficients in the input
Euclidean space xi,xj ,xk,xl ∈ RD; Outputs: dissim-
ilarity functions d̂(·, ·) : RD × RD → R; Criteria:
(i, j, k, l) ∈ S ⇔ d̂(xi,xj) ≤ d̂(xk,xl).

Unlike learning an embedding space as in F1, F2
learns an explicit dissimilarity function d̂(·, ·) which
preserves the ranks of dissimilarities. We will show
in Section 4 that F2 can be handled in a very sim-
ilar manner as support vector machines, where the
quadratic programming (QP) problem can be solved
efficiently by specialized sequential optimization meth-
ods. If in some cases we need to find a low dimensional
Euclidean embedding of the input samples, we can
then use the classical multidimensional scaling (MDS)
to preserve the learned dissimilarities.

Formulation 2.3. (F3) Inputs: a set S of ordered
quadruples (i, j, k, l) ∈ S, indicating that d(xi,xj) ≤
d(xk,xl), where d(·, ·) is a fixed but unknown dissimi-
larity function; corresponding coefficients in the input
Euclidean space xi,xj ,xk,xl ∈ RD; Outputs: pro-
jection function f : RD → RL, x

′
i,x

′
j ,x

′
k,x

′
l ∈ RL;

Criteria: (i, j, k, l) ∈ S ⇔ ‖x′i − x
′
j‖22 ≤ ‖x′k − x

′
l‖22.

Although we formulate F3 as a function learning prob-
lem, currently we have not found any efficient method
to solve it. This formulation will remains as our future
work.

3. Solving F1 by SDP

F1 was studied by Agarwal et. al. (Agarwal, 2007).
The authors proposed GNMDS which can be solved as
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a SDP, as shown in Eq.(1).

GNMDS:

min
∑

ijkl∈S
ξijkl + λtr(K),

s.t. (Kkk − 2Kkl + Kll)− (Kii − 2Kij + Kjj)
+ ξijkl ≥ 1,
∑

ab

Kab = 0, ξijkl ≥ 0, K º 0,

for all (i, j, k, l) ∈ S.

(1)

The main idea of GNMDS is to learn a positive
semidefinite Gram matrix K = XT X which can
be eigen-decomposed to recover the embedded sam-
ples. The relation between Euclidian distances and
the Gram matrix is used:

‖xi − xj‖22 = Kii − 2Kij + Kjj . (2)

Nonetheless, the constraints that contain order infor-
mation of dissimilarities are not sufficient to determine
a unique K, since any rotation, translation or scaling
can also satisfies these constraints. To reduce these
ambiguities, they use

∑
ab Kab = 0 to center all the

embedded samples at the origin.

It is preferable in many applications to find low di-
mensional embedding spaces, e.g. 2D or 3D Euclidean
space. Thus a low-rank K is desired. Unfortunately,
minimizing rank(K) subject to linear inequality con-
straints is NP-Hard (Vandenberghe & Boyd, 1996).
Thus the objective function is relaxed heuristically as
minimizing trace(K), which is a convex envelope of the
rank.

Figure 1 shows the result of GNMDS on a toy problem.
The inputs are 990 pairwise ranks of distances between
10 European cities. The outputs are the recovered
2D coefficients. It can be observed that the recovered
locations of the cities do not correspond to the true
locations. Actually only 789 out of 990 pairs of ranks
are preserved by the learned 2D embedding, i.e. 20.3%
error rate. Figure 2 shows the 10 sorted eigenvalues
of the Gram matrix K. Although the original space
is a 2D Euclidean space, the first 2 eigenvalues only
account for 49.4% of the total variation.

There are at least two reasons that account for the
poor performance of GNMDS. Firstly, there is no guar-
antee on the quality of the solution of the relaxed prob-
lem compared with the original problem. There may
exist some higher dimensional spaces which satisfy all
the constants while have smaller traces than lower di-
mensional spaces. Secondly, due to the introduction of
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Figure 1. d-ranking toy problem: locations of ten Euro-
pean cities. Purple: true locations. Green: locations re-
covered by GNMDS. All the coefficients have been scaled
before plotting.
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Figure 2. 10 sorted eigenvalues of the Gram matrix K
learned by GNMDS.

slack variables ξijkl in the inequality constraints, the
learned embedding tends to push all the samples to
the same point. The first problem can be solved by
introducing better heuristics of the convex envelope of
the rank. The second problem can be solved by the
following slight modification of GNMDS:

Modified GNMDS:

min
∑

ijkl∈S
ξijkl + λtr(K),

s.t. (Kkk − 2Kkl + Kll)− (Kii − 2Kij + Kjj)
− ξijkl ≥ 1,
∑

ab

Kab = 0, ξijkl ≥ 0, K º 0,

for all (i, j, k, l) ∈ S.

(3)

The modified GNMDS just changes the slack variables
from +ξijkl to−ξijkl. This simple trick can ensure that
all the differences between distances k, l and i, j are
larger than 1, thus pulls the embedding samples apart.
Figure 3 shows toy problem solved by the modified
GNMDS. The recovered samples are closer to the true
locations than those in Figure 1. There are 850 out
of 990 pairs of ranks correctly preserved, i.e. 14.14%
error rate, which is 6% lower than GNMDS. Figure

730



Learning Dissimilarities by Ranking: From SDP to QP

-600 -400 -200 0 200 400 600
-500

-400

-300

-200

-100

0

100

200

300

400

500

1

1

2

2

3

3 4
4

5

5

6

6

7

7

8

8

9

9

10

10

 

 

true locations

modified GNMDS

Figure 3. d-ranking toy problem: locations of ten Euro-
pean cities. Purple: true locations. Green: locations re-
covered by modified GNMDS. All the coefficients have been
scaled before plotting.

4 shows the 10 eigenvalues of K learned by modified
GNMDS. The first 2 eigenvalues account to 69.8% of
the total variant, which is 20% higher than GNMDS.
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Figure 4. 10 sorted eigenvalues of the Gram matrix K
learned by modified GNMDS.

4. Solving F2 by QP

As introduced in Section 2, instead of learning an em-
bedding as in F1, a dissimilarity function d(xi,xj) :
X×X→ R is learned in F2, such that all the training
ranks between d(·, ·) are preserved, and can generalize
to new samples. This is indeed a dissimilarity learning
problem.

Many previous metric learning methods (Hastie & Tib-
shirani, 1996; Goldberger et al., 2004; Kwok & Tsang,
2003) try to learn an alternative dissimilarity function
by replacing the Euclidean metric with an properly
learnt Mahalanobis metric, either globally or locally.

In this section we propose the d-ranking Vector Ma-
chine (d-ranking-VM ) method. Unlike metric learn-
ing methods, d-ranking-VM is explicitly regularized.
Thus we can have a full control over the complexity of
d(xi,xj). D-ranking-VM utilizes the technique of hy-
perkernel learning (Ong et al., 2005) which was origi-
nally proposed for learning a proper kernel.

D-ranking-VM is formulated as the following optimiza-

tion problem:

d-ranking-VM (primal):

min
1
N

∑

ijkl∈S
ξijkl + λ‖d‖2H,

s.t. d (xk,xl)− d (xi,xj)− ξijkl ≥ 1,

ξijkl ≥ 0,

for all (i, j, k, l) ∈ S.

(4)

where N = |S|. H is a hyper-reproducing kernel
Hilbert space (hyper-RKHS) from which the function
d : X× X→ R is drawn.

Like the representer theorem in RKHS (Kimeldorf &
Wahba, 1971), there is also a representer theorem in
hyper-RHKS (see (Ong et al., 2005) or (Kondor & Je-
bara, 2006) for the theorem and proofs):

d(x) =
M∑

p=1

cpK(xp,x), (5)

where K is a semidefinite hyperkernel, x denotes a pair
of samples (xi,xj), and M is the number of distinct
dissimilarity pairs provided by the training rank data
S. We denote the set of dissimilarity pairs as D, and
M = |D|. Normally we have M > N (the discussion
of M and N is given in Section 5.1).

Substitute Eq.(5) into (4), we can change the primal
problem to the following form:

min
1
N

∑

p∈S
ξp + λCT KC,

s.t.
M∑

p=1

cpK(xp;xk,xl)−
M∑

p=1

cpK(xp;xi,xj)

− ξp ≥ 1,

ξp ≥ 0, for all p ∈ S,

(6)

where C ∈ RM is a vector with the ith element being
cp, and K ∈ RM×M is the hyper-kernel matrix.

The dual problem of (6) can be derived by using the
Lagrangian technique. The solution to this optimiza-
tion problem is given by the saddle point of the La-
grangian function:

L(C, ξp, αp, ζp) =
1
N

∑

p∈S
ξp + λCT KC −

N∑
p=1

ζpξp

+
N∑

p=1

αp

{
M∑

s=1

cs [K(xs;xi,xj)−K(xs;xi,xj)] + 1 + ξp

}
,

(7)
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where ζp and αp are non-negative Lagrange multipli-
ers. The primal problem is convex, thus there exist a
strong duality between the primal and the dual. Uti-
lizing the KKT optimality condition, we have:

∂L

∂C
= 2λKC + K(P −Q)A = 0, (8)

and
∂L

∂ξp
=

1
N

+ λp − ζp = 0, (9)

where A ∈ RN is a vector with the pth element be-
ing αp. P,Q ∈ RM×N are two matrices with contain
the rank information. Each column px·(x = 1 . . . N)
of P and each column qx·(x = 1 . . . N) of Q only con-
tain one 1 and M − 1 0s. For example, if the rth
training quadruples in S is (i, j, k, l), which means that
d(xi,xj) < d(xk,xl), and if the pair (i, j) is the mth
element in D, while (k, l) is the nthe element in D,
then prm = 1 and qrn = 1.

From Eq.(8) and (9) we have:

C =
(Q− P )A

2λ
, (10)

and
αp = ζp − 1

N
(11)

Substitute Eq.(10) and (11) into (6), we arrive at the
following dual problem for d-ranking-VM:

d-ranking-VM (dual):

max
N∑

p=1

αp − AT (Q− P )T K(Q− P )A
4λ

,

s.t. αp ≥ 0,

for all (i, j, k, l) ∈ S.

(12)

This problem is a quadratic programming (QP) prob-
lem which shares a similar form as SVM. Thus the se-
quential optimization techniques of SVM can be read-
ily employed for d-ranking-VM. To perform testing,
we can use the learnt dissimilarity function in Eq.(5)
and make pairwise comparisons.

An important problem for kernel learning methods is
the selection of proper kernels. This problem also ex-
ists in hyperkernel learning methods. Here we pro-
pose some examples of hyperkernels, which are hyper-
extensions of Gaussian RBF kernels and polynomial
kernels. The construction of these hyperkernels are
based on the following proposition.

Proposition 4.1. Let ka(·, ·) and kb(·, ·) be posi-
tive definite kernels, then ∀x1,x

′
1,x2,x

′
2 ∈ X, and

∀α, β > 0,
(
ka(x1,x2)

)α(
kb(x

′
1,x

′
2)

)β or αka(x1,x2)+
βkb(x

′
1,x

′
2) can give a hyperkernel k.

Proof. See appendix.

Example 4.2. (Gaussian symmetric product hy-
perkernel) Let ka and kb be the same Gaussian RBF

kernel k(x,x
′
) = exp

( − ‖x−x
′‖2

2σ2

)
, and let α = β = 1,

the Gaussian symmetric product hyperkernel is given
by:

k
(
(x1,x

′
1), (x2,x

′
2)

)
= k(x1,x

′
1)k(x2,x

′
2)

= exp
(
− ‖x1 − x

′
1‖2 + ‖x2 − x

′
2‖2

2σ2

) (13)

Example 4.3. (Gaussian symmetric sum hyper-
kernel) Under the same conditions as Example 4.2,
we can construct the Gaussian symmetric sum hyper-
kernel as:

k
(
(x1,x

′
1), (x2,x

′
2)

)
= k(x1,x

′
1) + k(x2,x

′
2)

= exp
(
− ‖x1 − x

′
1‖2

2σ2

)
+ exp

(
− ‖x2 − x

′
2‖2

2σ2

)

(14)

Example 4.4. (polynomial symmetric product
hyperkernel) Let ka and kb be the same polynomial
kernel k(x,x

′
) =

(〈x,x
′〉+ q

)p, and let α = β = 1, we
can construct the polynomial symmetric product hyper-
kernel as:

k
(
(x1,x

′
1), (x2,x

′
2)

)
=

(〈x1,x
′
1〉+ q

)p(〈x2,x
′
2〉+ q

)p

(15)

Example 4.5. (polynomial symmetric sum hy-
perkernel) Under the same conditions as Example
4.4, we can construct the polynomial symmetric sum
hyperkernel as:

k
(
(x1,x

′
1), (x2,x

′
2)

)
=

(〈x1,x
′
1〉+ q

)p +
(〈x2,x

′
2〉+ q

)p

(16)

5. Experiments

The proposed d-ranking methods in Section 3 and Sec-
tion 4 are evaluated by several experiments.

5.1. Obtaining Ranks of Pairs from Data

To test our methods, we need to obtain pairwise dis-
tance ranks. This can be done in many ways. Gen-
erally speaking, for a problem of n data samples, the
total number of available distance pairs are M = C2

n =
n(n−1)

2 (if we take d(xi,xj) and d(xj ,xi) as the same
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distance). The total number of pairwise distance ranks
are N = C2

M = M(M−1)
2 = n4

8 − n3

4 − n2

8 + n
4 (if we

take d(xi,xj) < d(xk,xl) and d(xk,xl) > d(xi,xj) as
the same rank pair). Table 1 gives some examples of
the relation between n and N . When n grows, the

Table 1. Some examples of N v.s. n.

n 2 3 4 10 20 50 100 1000
N 0 3 15 990 17955 749700 12248775 1.2475e+11

number of rank constraints will increase dramatically.
Even solving a problem of n > 100 will be impossible
for some optimization solvers.

Here we reduce N by considering order transitivities,
i.e. if A > B and B > C, then the rank pair A > C can
be ignored (automatically satisfied) in the optimiza-
tion constraints. The method is very simple. Firstly
we sort the M distances decreasingly. Then we take
the adjacent two distances to form one distance rank
pair. By doing this, N can be reduced to n2

2 − n
2 − 1.

This is the maximum number of N which carries full
rank information of all the distances. Of course in
some applications, the rank information is not be fully
given, and N < n2

2 − n
2 − 1.

We test our method on three data sets: 1) 2D locations
of 109 largest cities in the continental US; 2) 100 im-
ages of handwritten digits “3” and “5” from the USPS
database, each of size 16× 16; 3) 126 face images of 4
people from the UMist database, each of size 112×92.

For GNMDS and modified GNMDS methods, all ranks
of distance pairs are fed to a SDP solver, and the re-
covered 2D embeddings are plotted. We used SeDuMi
(Strum, 1999) to get the results given in the follow-
ing subsection. For d-ranking-VM, LibSVM (Chang
& Lin, 2001) is employed as our QP solver. It is im-
plemented by employing the sequential minimal opti-
mization (SMO) technique. The learned dissimilarities
are used as a “pseudo-distances”, and are fed to the
classical MDS. The recovered 2D embeddings are then
plotted.

5.2. Results of US Cities

In this data set, n = 109 and N = 5885. Every loca-
tion of the cities is given by a 2D coefficient. Figure
5 shows the true locations. Figure 6 shows the results
given by GNMDS.

It can be observed that GNMDS cannot correctly re-
cover the embedding based on distance ranks. Most of
the embedded samples are pushed to a line. 50.3% of
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Figure 5. Locations of 109 largest cities in the continental
United States.
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Figure 6. Recovered locations of 109 US cities given by GN-
MDS.

the distances ranks are preserved, which are the results
of randomness. This gives an evidence to the analysis
in Section 3. Figure 7 shows the result given by the
modified GNMDS. The recovered embedding roughly
reflects the geometry of the cities. 74.5% of the dis-
tances ranks have been preserved. Since the distance
information is not provided, there is no hope to match
the true locations exactly.

Figure 8 shows the results given by d-ranking-VM,
where λ = 10, and the Gaussian symmetric product
hyperkernel is used, with σ = 15. 97.9% of the dis-
tances ranks are preserved.

Table 2 shows the runtime of the above experiments.

Table 2. Runtime comparison for the three d-ranking
methods.

Method Runtime(minutes)
GNMDS 124
modified GNMDS 71
d-ranking-VM 4.5
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Figure 7. Recovered locations of 109 US cities given by the
modified GNMDS.

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500
-1500

-1000

-500

0

500

1000

1500

Figure 8. Recovered locations of 109 US cities given by the
d-ranking-VM, using Gaussian symmetric product hyper-
kernel.

5.3. Results of USPS Handwritten Digits

In this data set, n = 100 and N = 4949. The dimen-
sion every data sample is 16 × 16 = 256. Figure 9
shows the recovered 2D results given by RnakD-VM.

5.4. Results of UMist Human Faces

In this data set, n = 126 and N = 7874. The dimen-
sion every data sample is 112× 92 = 10304. Figure 10
shows the recovered 2D results given by RnakD-VM.

6. Discussions and Conclusions

We have presented three d-ranking formulations, and
give numerical solutions for two of them, namely solv-
ing d-ranking by SDP and solving d-ranking by QP.
Each of them has its advantages and shortcomings.
We list some pros and cons from different perspectives:

• Pros for d-ranking by SDP (GNMDS and the

Figure 9. Recovered locations of USPS handwritten digits
“3” and “5” given by d-ranking-VM.

Figure 10. Recovered locations of UMist human faces given
by d-ranking-VM.

modified version): It can recover low dimensional
embedding directly. Only ordering information is
needed. There is no need to know the values of
sample coefficients.

• Cons for d-ranking by SDP (GNMDS and the
modified version): Solving SDP is hard, especially
for large scale problems. Even sophistries SDP
solver can only solve N < 103 problems with the
number of constraints less than 105. It cannot be
used to predict unseen samples.

• Pros for d-ranking by QP (d-ranking-VM): Solv-
ing QP in our case is much easier than SDP, since
it can be converted to a similar form as SVM. Us-
ing sequential methods (SMO), can solve N > 105

problems. The learn dissimilarity function can be
used to predict unseen samples.

• Cons for d-ranking by QP (d-ranking-VM): It can-
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not recover low-dimensional embedding explicitly.
One needs to use MDS or other embedding meth-
ods after learning the dissimilarities. Learning
dissimilarity measure needs to know the coeffi-
cients of original samples. Like kernel methods,
how to choose a good hyperkernel is crucial in
solving a specific problem.

To our knowledge, this is the first work which brings
out-of-sample prediction capability and large-scale
scalability to d-ranking problems. Note that the tech-
nique of d-ranking-VM can also be employed in solv-
ing distances preserving problems. We will investigate
the regularization properties and evaluate the perfor-
mances of different hyperkernels in the following re-
search. Finding a numerical solution for formulation
F3 will also be our future work.

7. Appendix: Proof of Proposition 4.1

We need to prove that k is a kernel on X2.

Denote
⊗

as the Kronecker product of two matrices
A ∈ Rm×n and B ∈ Rp×q:

A
⊗

B =




a11B · · · a1nB
...

. . .
...

am1B · · · amnB


 , (17)

and define
⊕

as:

A
⊕

B =




a111+ B · · · a1n1+ B
...

. . .
...

am11+ B · · · amn1+ B


 , (18)

where 1 is a matrix of all ones.

Denote the kernel matrix of ka(x1,x2) as Ka, and that
of kb(x

′
1,x

′
2) as Kb. Denote the hyperkernel matrix of

k as K.

It is easy to verify that we can construct K =
Ka

⊗
Kb. Since Ka and Kb are positive definite, their

eigenvalues µa and µb are positive. Thus the eigenval-
ues of K: vij = αβµaiµbj are also positive. A symmet-
ric matrix K with positive eigenvalues is positive def-
inite. Thus k =

(
ka(x1,x2)

)α(
kb(x

′
1,x

′
2)

)β is a valid
hyperkernel.

We can also verify that αKa

⊕
βKb = αKa

⊗
1 +

β1
⊗

Kb. Since Ka, Kb and 1 are all positive semidef-
inite and α, β > 0, K = αKa

⊕
βKb is positive

semidefinite. Thus k = αka(x1,x2) + βkb(x
′
1,x

′
2) is

a valid hyperkernel.
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Abstract

Modeling long-term dependencies in time se-
ries has proved very difficult to achieve with
traditional machine learning methods. This
problem occurs when considering music data.
In this paper, we introduce a model for
rhythms based on the distributions of dis-
tances between subsequences. A specific im-
plementation of the model when consider-
ing Hamming distances over a simple rhythm
representation is described. The proposed
model consistently outperforms a standard
Hidden Markov Model in terms of conditional
prediction accuracy on two different music
databases.

1. Introduction

Reliable models for music would be useful in a broad
range of applications, from contextual music genera-
tion to on-line music recommendation and retrieval.
However, modeling music involves capturing long-term
dependencies in time series, which has proved very dif-
ficult to achieve with traditional statistical methods.
Note that the problem of long-term dependencies is
not limited to music, nor to one particular probabilis-
tic model (Bengio et al., 1994).

Music is characterized by strong hierarchical depen-
dencies determined in large part by meter, the sense
of strong and weak beats that arises from the inter-
action among hierarchical levels of sequences having

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

nested periodic components. Such a hierarchy is im-
plied in western music notation, where different levels
are indicated by kinds of notes (whole notes, half notes,
quarter notes, etc.) and where bars establish measures
of an equal number of beats. Meter and rhythm pro-
vide a framework for developing musical melody. For
example, a long melody is often composed by repeating
with variation shorter sequences that fit into the met-
rical hierarchy (e.g. sequences of 4, 8 or 16 measures).
It is well know in music theory that distance patterns
are more important than the actual choice of notes in
order to create coherent music (Handel, 1993). In this
work, distance patterns refer to distances between sub-
sequences of equal length in particular positions. For
instance, measure 1 may be always similar to measure
5 in a particular musical genre. In fact, even random
music can sound structured and melodic if it is built by
repeating random subsequences with slight variation.

Many algorithms have been proposed for audio beat
tracking (Dixon, 2007; Scheirer, 1998). Probabilistic
models have also been proposed for tempo tracking
and inference of rhythmic structure in musical audio
(Whiteley et al., 2007; Cemgil & Kappen, 2002). The
goal of these models is to align rhythm events with
the metrical structure. However, simple Markovian as-
sumptions are used to model the transitions between
rhythms themselves. Hence, these models do not take
into account long-term dependencies. A few generative
models have already been proposed for music in gen-
eral (Pachet, 2003; Dubnov et al., 2003). While these
models generate impressive musical results, we are not
aware of quantitative comparisons between models of
music with machine learning standards, as it is done
in Section 3 in terms of out-of-sample prediction ac-
curacy. In this paper, we focus on modeling rhyth-
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mic sequences, ignoring for the moment other aspects
of music such as pitch, timbre and dynamics. How-
ever, by capturing aspects of global temporal struc-
ture in music, this model should be valuable for full
melodic prediction and generation: combined with an
audio transcription algorithm, it should help improve
the poor performance of state-of-the-art transcription
systems; it could as well be included in genre classifiers
or automatic composition systems (Eck & Schmidhu-
ber, 2002); used to generate rhythms, the model could
act as a drum machine or automatic accompaniment
system which learns by example.

Our main contribution is to propose a generative
model for distance patterns, specifically designed for
capturing long-term dependencies in rhythms. In Sec-
tion 2, we describe the model, detail its implemen-
tation and present an algorithm using this model for
rhythm prediction. The algorithm solves a constrained
optimization problem, where the distance model is
used to filter out rhythms that do not comply with
the inferred structure. The proposed model is evalu-
ated in terms of conditional prediction error on two
distinct databases in Section 3 and a discussion fol-
lows.

2. Distance Model

In this Section, we present a generative model for
distance patterns and its application to rhythm se-
quences. Such a model is appropriate for most music
data, where distances between subsequences of data
exhibit strong regularities.

2.1. Motivation

Let xl = (xl
1, . . . , x

l
m) ∈ Rm be the l-th rhythm se-

quence in a dataset X = {x1, . . . ,xn} where all the
sequences contain m elements. Suppose that we con-
struct a partition of this sequence by dividing it into
ρ parts defined by yl

i = (xl
1+(i−1)m/ρ, . . . , x

l
im/ρ) with

i ∈ {1, . . . , ρ}. We are interested in modeling the dis-
tances between these subsequences, given a suitable
metric d(yi, yj) : Rm/ρ × Rm/ρ → R. As was pointed
out in Section 1, the distribution of d(yi, yj) for each
specific choice of i and j may be more important when
modeling rhythms (and music in general) than the ac-
tual choice of subsequences yi.

Hidden Markov Models (HMM) (Rabiner, 1989) are
commonly used to model temporal data. In princi-
ple, an HMM is able to capture complex regularities
in patterns between subsequences of data, provided
its number of hidden states is large enough. However,
when dealing with music, such a model would lead to

a learning process requiring a prohibitive amount of
data: in order to learn long range interactions, the
training set should be representative of the joint dis-
tribution of subsequences. To overcome this problem,
we summarize the joint distribution of subsequences
by the distribution of distances between these sub-
sequences. This summary is clearly not a sufficient
statistics for the distribution of subsequences, but its
distribution can be learned from a limited number of
examples. The resulting model, which generates dis-
tances, is then used to recover subsequences.

2.2. Decomposition of Distances

Let D(xl) = (dl
i,j)ρ×ρ be the distance matrix asso-

ciated with each sequence xl, where dl
i,j = d(yl

i, y
l
j).

Since D(xl) is symmetric and contains only zeros on
the diagonal, it is completely characterized by the up-
per triangular matrix of distances without the diago-
nal. Hence,

p(D(xl)) =
ρ−1∏
i=1

ρ∏
j=i+1

p(dl
i,j |Sl,i,j) (1)

where

Sl,i,j = {dl
r,s| (1 < s < j and 1 ≤ r < s)
or (s = j and 1 ≤ r < i)} .

(2)

In words, we order the elements column-wise and do
a standard factorization, where each random variable
depends on the previous elements in the ordering.
Hence, we do not assume any conditional indepen-
dence between the distances.

Since d(yi, yj) is a metric, we have that d(yi, yj) ≤
d(yi, yk) + d(yk, yj) for all i, j, k ∈ {1, . . . , ρ}. This in-
equality is usually referred to as the triangle inequality.
Defining

αl
i,j = min

k∈{1,...,(i−1)}
(dl

k,j + dl
i,k) and

βl
i,j = max

k∈{1,...,(i−1)}
(|dl

k,j − dl
i,k|) ,

(3)

we know that given previously observed (or sampled)
distances, constraints imposed by the triangle inequal-
ity on dl

i,j are simply

βl
i,j ≤ dl

i,j ≤ αl
i,j . (4)

One may observe that the boundaries given in Eq. (3)
contain a subset of the distances that are on the con-
ditioning side of each factor in Eq. (1) for each indexes
i and j. Thus, constraints imposed by the triangle in-
equality can be taken into account when modeling each
factor of p(D(xl)): each dl

i,j must lie in the interval im-
posed by previously observed/sampled distances given
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in Eq. (4). Figure 1 shows an example where ρ = 4.
Using Eq. (1), the distribution of dl

2,4 would be condi-
tioned on dl

1,2, d
l
1,3, d

l
2,3, and dl

1,4, and Eq. (4) reads
|dl

1,2−dl
1,4| ≤ dl

2,4 ≤ dl
1,2 +dl

1,4. Then, if subsequences
yl
1 and yl

2 are close and yl
1 and yl

4 are also close, we
know that yl

2 and yl
4 cannot be far. Conversely, if sub-

sequences yl
1 and yl

2 are far and yl
1 and yl

4 are close,
we know that yl

2 and yl
4 cannot be close.

d
l
1,2 d

l
1,3 d

l
1,4

d
l
2,3 d

l
2,4

d
l
3,4

Figure 1. Each circle represents the random variable asso-
ciated with the corresponding factor in Eq. (1), when ρ = 4.
For instance, the conditional distribution for dl

2,4 possibly
depends on the variables associated to the grey circles.

2.3. Modeling Relative Distances Between
Rhythms

We want to model rhythms in a music dataset X con-
sisting of melodies of the same musical genre. We
first quantize the database by segmenting each song
in m time steps and associate each note to the near-
est time step, such that all melodies have the same
length m1. It is then possible to represent rhythms by
sequences containing potentially three different sym-
bols: 1) Note onset, 2) Note continuation, and 3) Si-
lence. When using quantization, there is a one to one
mapping between this representation and the set of all
possible rhythms. Using this representation, symbol 2
can never follow symbol 3. Let A = {1, 2, 3}; in the
remaining of this paper, we assume that xl ∈ Am for
all xl ∈ X .

When using this representation, dl
i,j can simply be cho-

sen to be the Hamming distance (i.e. counting the
number of positions on which corresponding symbols
are different.) One could think of using more gen-

1This hypothesis is not fundamental in the proposed
model and could easily be avoided if one would have to
deal with more general datasets.

eral edit distance such as the Levenshtein distance.
However, this approach would not make sense psycho-
acoustically: doing an insertion or a deletion in a
rhythm produces a translation that alters dramatically
the nature of the sequence. Putting it another way,
rhythm perception heavily depends on the position on
which rhythmic events occur. In the remainder of this
paper, dl

i,j is the Hamming distance between subse-
quences yi and yj .

We now have to encode our belief that melodies of the
same musical genre have a common distance structure.
For instance, drum beats in rock music can be very
repetitive, except in the endings of every four mea-
sures, without regard to the actual beats being played.
This should be accounted for in the distributions of
the corresponding dl

i,j . With Hamming distances, the
conditional distributions of dl

i,j in Eq. (1) should be
modeled by discrete distributions, whose range of pos-
sible values must obey Eq. (4). Hence, we assume that
the random variables (dl

i,j − βl
i,j)/(α

l
i,j − βl

i,j) should
be identically distributed for l = 1, . . . , n. As an ex-
ample, suppose that measures 1 and 4 always tend to
be far away, that measures 1 and 3 are close, and that
measures 3 and 4 are close; Triangle inequality states
that 1 and 4 should be close in this case, but the de-
sired model would still favor a solution with the great-
est distance possible within the constrains imposed by
triangle inequalities.

All these requirements are fulfilled if we model di,j −
βi,j by a binomial distribution of parameters (αi,j −
βi,j , pi,j), where pi,j is the probability that two sym-
bols of subsequences yi and yj differ. With this choice,
the conditional probability of getting di,j = βi,j + δ
would be

B(δ, αi,j , βi,j , pi,j) =(
αi,j − βi,j

δ

)
(pi,j)δ(1− pi,j)(αi,j−βi,j−δ) ,

(5)

with 0 ≤ pi,j ≤ 1. If pi,j is close to zero/one, the
relative distance between subsequences yi and yj is
small/large. However, the binomial distribution is not
flexible enough since there is no indication that the
distribution of di,j − βi,j is unimodal. We thus model
each di,j−βi,j with a binomial mixture distribution in
order to allow multiple modes. We thus use

p(di,j = βi,j + δ|Si,j) =
c∑

k=1

w
(k)
i,j B(δ, αi,j , βi,j , p

(k)
i,j )

(6)
with w

(k)
i,j ≥ 0,

∑c
k=1 w

(k)
i,j = 1 for every indexes i and

j, and Si,j defined similarly as in Eq. (2). Parameters

θi,j = {w(1)
i,j , . . . , w

(c−1)
i,j } ∪ {p(1)

i,j , . . . , p
(c)
i,j }
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can be learned with the EM algorithm (Dempster
et al., 1977) on rhythm data for a specific music style.

In words, we model the difference between the ob-
served distance dl

i,j between two subsequences and the
minimum possible value βi,j for such a difference by a
binomial mixture.

The parameters θi,j can be initialized to arbitrary val-
ues before applying the EM algorithm. However, as
the likelihood of mixture models is not a convex func-
tion, one may get better models and speed up the
learning process by choosing sensible values for the
initial parameters. In the experiments reported in Sec-
tion 3, the k-means algorithm for clustering (Duda
et al., 2000) was used. More precisely, k-means was
used to partition the values (dl

i,j − βl
i,j)/(α

l
i,j − βl

i,j)
into c clusters corresponding to each component of the
mixture in Eq. (6). Let {µ(1)

i,j , . . . , µ
(c)
i,j } be the cen-

troids and {n(1)
i,j , . . . , n

(c)
i,j } the number of elements in

each of these clusters. We initialize the parameters θi,j

with

w
(k)
i,j =

n
(k)
i,j

n
and p

(k)
i,j = µ

(k)
i,j .

We then follow a standard approach (Bilmes, 1997)
to apply the EM algorithm to the binomial mixture
in Eq. (6). Let zl

i,j ∈ {1, . . . , c} be a hidden variable
telling which component density generated dl

i,j . For
every iteration of the EM algorithm, we first compute

p(zl
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j) =

ψk,i,j,l∑c
t=1 ψt,i,j,l

where θ̂i,j are the parameters estimated in the previous
iteration, or the parameters guessed with k-means on
the first iteration of EM, and

ψk,i,j,l = ŵ
(k)
i,j B(dl

i,j , α
l
i,j , β

l
i,j , p

(k)) .

Then, the parameters can be updated with

p
(k)
i,j =

∑n
l=1(d

l
i,j − βl

i,j)p(z
l
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j)∑n

l=1(α
l
i,j − βl

i,j)p(z
l
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j)

and

w
(k)
i,j =

1
n

n∑
l=1

p(zl
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j).

This process is repeated until convergence.

Note that using mixture models for discrete data is
known to lead to identifiability problems. Identifiabil-
ity refers here to the uniqueness of the representation
(up to an irrelevant permutation of parameters) of any
distribution that can be modeled by a mixture.

Estimation procedures may not be well-defined and
asymptotic theory may not hold if a model is not iden-
tifiable. However, the model defined in Eq. (6) is iden-
tifiable if αi,j−βi,j > 2c−1 (Titterington et al., 1985,
p.40). While this is the case for most di,j , we observed
that this condition is sometimes violated. Whatever
happens, there is no impact on the estimation because
we only care about what happens at the distribution
level: there may be several parameters leading to the
same distribution, some components may vanish in the
fitting process, but this is easily remedied, and EM be-
haves well.

As stated in Section 1, musical patterns form hierarchi-
cal structures closely related to meter (Handel, 1993).
Thus, the distribution of p(D(xl)) can be computed
for many numbers of partitions within each rhythmic
sequence. Let P = {ρ1, . . . ρh} be a set of numbers of
partitions to be considered by our model, where h is
the number of such numbers of partitions. The choice
of P depends on the domain of application. Following
meter, P may have dyadic2 tree-like structure when
modeling music (e.g. P = {2, 4, 8, 16}). Let Dρr

(xl)
be the distance matrix associated with sequence xl di-
vided into ρr parts. Estimating the joint probability∏h

r=1 p(Dρr
(xl)) with the EM algorithm as described

in this section leads to a model of the distance struc-
tures in music datasets. Suppose we consider 16 bars
songs with four beats per bar. Using P = {8, 16}
would mean that we consider pairs of distances be-
tween every group of two measures (ρ = 8), and every
single measures (ρ = 16).

One may argue that our proposed model for long-term
dependencies is rather unorthodox. However, simpler
models like Poisson or Bernoulli process (we are work-
ing in discrete time) defined over the whole sequence
would not be flexible enough to represent the particu-
lar long-term structures in music.

2.4. Conditional Prediction

For most music applications, it would be particularly
helpful to know which sequence x̂s, . . . , x̂m maximizes
p(x̂s, . . . , x̂m|x1, . . . , xs−1). Knowing which musical
events are the most likely given the past s − 1 obser-
vations would be useful both for prediction and gen-
eration. Note that in the remaining of the paper, we
refer to prediction of musical events given past obser-
vations only for notational simplicity. The distance
model presented in this paper could be used to predict

2Even when considering non-dyadic measures (e.g. a
three-beat waltz), the very large majority of the hierarchi-
cal levels in metric structures follow dyadic patterns (Han-
del, 1993) in most tonal music.
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any part of a music sequence given any other part with
only minor modifications.

While the described modeling approach captures long
range interactions in the music signal, it has two short-
comings. First, it does not model local dependen-
cies: it does not predict how the distances in the
smallest subsequences (i.e. with length smaller than
m/max(P)) are distributed on the events contained
in these subsequences. Second, as the mapping from
sequences to distances is many to one, there exists
several admissible sequences xl for a given set of dis-
tances. These limitations are addressed by using an-
other sequence learner designed to capture short-term
dependencies between musical events. Here, we use
a standard Hidden Markov Model (HMM) (Rabiner,
1989) displayed in Figure 2, following standard graph-
ical model formalism. Each node is associated to a
random variable and arrows denote conditional depen-
dencies. Learning the parameters of the HMM can be
done as usual with the EM algorithm.
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Figure 2. Hidden Markov Model. Each node is associated
to a random variable and arrows denote conditional de-
pendencies. During training of the model, white nodes are
hidden while grey nodes are observed.

The two models are trained separately using their re-
spective version of the EM algorithm. For predicting
the continuation of new sequences, they are combined
by choosing the sequence that is most likely according
to the local HMM model, provided it is also plausible
regarding the model of long-term dependencies. Let
pHMM(xl) be the probability of observing sequence xl

estimated by the HMM after training. The final pre-
dicted sequence is the solution of the following opti-
mization problem:


max

x̃s,...,x̃m

pHMM(x̃s, . . . , x̃m|x1, . . . , xs−1)

subject to
h∏

r=1

p(Dρr (x
l)) ≥ P0 ,

(7)

where P0 is a threshold. In practice, one solves a La-
grangian formulation of problem (7), where we use log-

Algorithm 1 Simple optimization algorithm to max-
imize p(x̂i, . . . , x̂m|x1, . . . , xi−1)

Initialize x̂s, . . . , x̂m using Eq. (9)
Initialize end = false
while end = false do

Set end = true
for j = s to m do

Set x̂j = arg max
a∈A

[log pHMM(x∗|x1, . . . , xs−1) +

λ
∑h

r=1 log p(Dρr
(x1, . . . , xs−1,x∗))]

where x∗ = (x̂s, . . . , x̂j−1, a, x̂j+1, . . . , x̂m)
if x̂j has been modified in the last step then

Set end = false
end if

end for
end while
Output x̂s, . . . , x̂m.

probabilities for obvious computational reasons:

maxx̃s,...,x̃m [log pHMM(x̃s, . . . , x̃m|x1, . . . , xs−1)
+λ

∑h
r=1 log p(Dρr (x

l))] ,
(8)

where tuning λ has the same effect as choosing a
threshold P0 in Eq. (7) and can be done by cross-
validation.

Multidimensional Scaling (MDS) is an algorithm that
tries to embed points (here “local” subsequences) into
a potentially lower dimensional space while trying to
be faithful to the pairwise affinities given by a “global”
distance matrix. Here, we propose to consider the pre-
diction problem as finding sequences that maximize
the likelihood of a “local” model of subsequences un-
der the constraints imposed by a “global” generative
model of distances between subsequences. In other
words, solving problem (7) is similar to finding points
between which distances are as close as possible to a
given set of distances (i.e. minimizing a stress func-
tion in MDS). Naively trying all possible subsequences
to maximize (8) leads to O(|A|(m−s+1)) computations.
Instead, we propose to search the space of sequences
using a variant of the Greedy Max Cut (GMC) method
(Rohde, 2002) that has proven to be optimal in terms
of running time and performance for binary MDS op-
timization.

The subsequence x̂s, . . . , x̂m can be simply initialized
with

(x̂s, . . . , x̂m) = max
x̃s,...,x̃m

pHMM(x̃s, . . . , x̃m|x1, . . . , xs−1)

(9)
using the local HMM model. Then, Algorithm 1 car-
ries on complete optimization.
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For each position, we try every admissible symbol of
the alphabet and test if a change increases the proba-
bility of the sequence. We stop when no further change
can increase the value of the utility function. Obvi-
ously, many other methods could have been used to
search the space of possible sequences x̂s, . . . , x̂m, such
as simulated annealing (Kirkpatrick et al., 1983). We
chose Algorithm 1 for its simplicity and the fact that
it yields excellent results, as reported in the following
section.

3. Experiments

Two rhythm databases from different musical genres
were used to evaluate the proposed model. Firstly, 47
jazz standards melodies (Sher, 1988) were interpreted
and recorded by the first author in MIDI format. Ap-
propriate rhythmic representations as described in Sec-
tion 2.3 have been extracted from these files. The com-
plexity of the rhythm sequences found in this corpus is
representative of the complexity of common jazz and
pop music. We used the last 16 bars of each song to
train the models, with four beats per bar. Two rhyth-
mic observations were made for each beat, yielding ob-
served sequences of length 128. We also used a subset
of the Nottingham database 3 consisting of 53 tradi-
tional British folk dance tunes called “hornpipes”. In
this case, we used the first 16 bars of each song to train
the models, with four beats per bar. Three rhyth-
mic observations were made for each beat, yielding
observed sequences of length 192. The sequences from
this second database contain no silence (i.e. rests),
leading to sequences with binary states.

The goal of the proposed model is to predict or gener-
ate rhythms given previously observed rhythm pat-
terns. As pointed out in Section 1, such a model
could be particularly useful for music information re-
trieval, transcription, or music generation applica-
tions. Let εt

i = 1 if x̂t
i = xt

i, and 0 otherwise, with
xt = (xt

1, . . . , x
t
m) a test sequence, and x̂t

i the output
of the evaluated prediction model on the i-th posi-
tion when given (xt

1, . . . , x
t
s) with s < i. Assume that

the dataset is divided into K folds T1, . . . , TK (each
containing different sequences), and that the k-th fold
Tk contains nk test sequences. When using cross-
validation, the accuracy Acc of an evaluated model
is given by

Acc =
1
K

K∑
k=1

1
nk

∑
t∈Tk

1
m− s

m∑
i=s+1

εt
i . (10)

Note that, while the prediction accuracy is simple to
3http://www.cs.nott.ac.uk/~ef/music/database.htm.

estimate and to interpret, other performance criteria,
such as ratings provided by a panel of experts, should
be more appropriate to evaluate the relevance of music
models. We plan to define such an evaluation protocol
in future work. We used 5-fold double cross-validation
to estimate the accuracies. Double cross-validation is
a recursive application of cross-validation that enables
to jointly optimize the hyper-parameters of the model
and evaluate its generalization performance. Standard
cross-validation is applied to each subset of K−1 folds
with each hyper-parameter setting and tested with the
best estimated setting on the remaining hold-out fold.
The reported accuracies are the averages of the results
of each of the K applications of simple cross-validation
during this process.

For the baseline HMM model, double cross-validation
optimizes the number of possible states for the hidden
variables. 2 to 20 possible states were tried in the re-
ported experiments. In the case of the model with dis-
tance constraints, referred to as the global model, the
hyper-parameters that were optimized are the num-
ber of possible states for hidden variables in the local
HMM model (i.e. 2 to 20), the Lagrange multiplier
λ, the number of components c (common to all dis-
tances) for each binomial mixture, and the choice of
P, i.e. which partitions of the sequences to consider.
Values of λ ranging between 0.1 and 4 and values of
c ranging between 2 and 5 were tried during double
cross-validation. Since music data commonly shows
strong dyadic structure following meter, many subsets
of P = {2, 4, 8, 16} were allowed during double cross-
validation.

Note that the baseline HMM model is a poor bench-
mark on this task, since the predicted sequence, when
prediction consists in choosing the most probable sub-
sequence given previous observations, only depends on
the state of the hidden variable in position s, where s
is the index of the last observation. This observation
implies that the number of possible states for the hid-
den variables of the HMM upper-bounds the number of
different sequences that the HMM can predict. How-
ever, this behavior of the HMM does not harm the
validity of the reported experiments. The main goal
of this quantitative study is to measure to what extent
distance patterns are present in music data and how
well these dependencies can be captured by the pro-
posed model. What we really want to measure is how
much gain we observe in terms of out-of-sample predic-
tion accuracy when using an arbitrary model if we im-
pose additional constraints based on distance patterns.
That being said, it would be interesting to measure the
effect of appending distance constraints to more com-
plex music prediction models (Pachet, 2003; Dubnov
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Table 1. Accuracy (the higher the better) for best models
on the jazz standards database.

Observed Predicted HMM Global

32 96 34.5% 54.6%
64 64 34.5% 55.6%
96 32 41.6% 47.2%

Table 2. Accuracy (the higher the better) for best models
on the hornpipes database.

Observed Predicted HMM Global

48 144 75.1% 83.0%
96 96 75.6% 82.1%
144 48 76.6% 80.1%

et al., 2003) in future work.

Results in Table 1 for the jazz standards database
show that considering distance patterns significantly
improves the HMM model. One can observe that the
baseline HMM model performs much better when try-
ing to predict the last 32 symbols. This is due to the
fact that this database contains song endings. Such
endings contain many silences and, in terms of accu-
racy, a useless model predicting silence at any position
performs already well. On the other hand, the end-
ings are generally different from the rest of the rhythm
structures, thus harming the performance of the global
model when just trying to predict the last 32 symbols.
Results in Table 2 for the hornpipes database again

show that the prediction accuracy of the global model
is consistently better than the prediction accuracy of
the HMM, but the difference is less marked. This is
mainly due to the fact that this dataset only contains
two symbols, associated to note onset and note con-
tinuation. Moreover, the frequency of these symbols is
quite unbalanced, making the HMM model much more
accurate when almost always predicting the most com-
mon symbol.

In Table 3, the set of partitions P is not optimized
by double cross-validation. Results are shown for dif-
ferent fixed sets of partitions. The best results are
reached with “deeper” dyadic structure. This is a good
indication that the basic hypothesis underlying the
proposed model is well-suited to music data, namely
that dyadic distance patterns exhibit strong regulari-
ties in music data. We did not compute accuracies for
ρ > 16 because it makes no sense to estimate distribu-
tion of distances between too short subsequences.

Table 3. Accuracy over the last 64 positions for many sets
of partitions P on the jazz database, given the first 64
observations. The higher the better.

P Global

{2} 49.3%
{2, 4} 49.3%
{2, 4, 8} 51.4%
{2, 4, 8, 16} 55.6%

4. Conclusion

The main contribution of this paper is the design
and evaluation of a generative model for distance pat-
terns in temporal data. The model is specifically
well-suited to music data, which exhibits strong reg-
ularities in dyadic distance patterns between subse-
quences. Reported conditional prediction accuracies
show that such regularities are present in music data
and can be effectively captured by the proposed model.
Moreover, learning distributions of distances between
subsequences really helps for accurate rhythm predic-
tion. Rhythm prediction can be seen as the first step
towards full melodic prediction and generation. A
promising approach would be to apply the proposed
model to melody prediction. It could also be read-
ily used to increase the performance of transcription
algorithms, genre classifiers, or even automatic com-
position systems.

The choice of the HMM to initialize the model is not
optimal. However, this has no impact on the validity
of the reported results, since our goal was to show the
importance of distance patterns between subsequences
in rhythm data. In order to sample to models to gen-
erate subjectively good results (Pachet, 2003; Dubnov
et al., 2003), one could use other benchmark and ini-
tialization techniques, such as repetition of common
patterns.

Finally, besides being fundamental in music, modeling
distance between subsequences should also be useful in
other application domains, such as in natural language
processing. Being able to characterize and constrain
the relative distances between various parts of a se-
quence of bags-of-concepts could be an efficient means
to improve performance of automatic systems such as
machine translation (Och & Ney, 2004). On a more
general level, learning constraints related to distances
between subsequences can boost the performance of
”short memory” models such as the HMM.
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Abstract

We provide a theoretical analysis of the
chance accuracies of large collections of clas-
sifiers. We show that on problems with small
numbers of examples, some classifier can per-
form well by random chance, and we derive
a theorem to explicitly calculate this accu-
racy. We use this theorem to provide a prin-
cipled feature selection criterion for sparse,
high-dimensional problems. We evaluate this
method on microarray and fMRI datasets
and show that it performs very close to the
optimal accuracy obtained from an oracle.
We also show that on the fMRI dataset this
technique chooses relevant features success-
fully while another state-of-the-art method,
the False Discovery Rate (FDR), completely
fails at standard significance levels.

1. Introduction

There are many real world problems in which a large
number of experts predict the outcome of a small num-
ber of events. For example, we may ask one hundred
football fans to predict the outcome of twenty games,
or we may ask fifty political pundits to predict the
outcome of ten elections.

With only a small number of events to predict, there
may be a reasonable chance that some expert may pre-
dict all the outcomes perfectly, even if the outcomes
are chosen at random.

For example, suppose we ask a person to predict the
outcome of five coin flips where the probability of ob-
taining heads is 0.5. Since the flips are independent,
this person has a (0.5)5 = 1

32 chance of guessing the
outcome of all flips correctly. Now, if we ask ten people
to predict the outcome of the five flips, there is a much

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

higher chance that someone will predict all outcomes
perfectly. With thirty-two people, someone would (in
expectation) guess correctly each time.

Suppose we repeated this experiment again but asked
our participants to predict the outcome of thirty coin
flips. In this case, the chance of obtaining a perfect
prediction would be nearly 1 in 1 billion. Given any
number of participants less than 1 billion, we would
not expect any participant to perfectly predict all the
outcomes. But some participant will predict a series
of outcomes that is most similar to the true flips.

How accurate should we expect this participant’s pre-

dictions to be?

We consider this question and its relevance to machine
learning. In our setting, we consider experts that are
not people, but rather classification algorithms that
predict labels for a set of examples.

When a large number of classifiers predict labels for a
small number of examples, some classifiers will predict
the labels well purely by random chance. This may
lead us to believe that a subset of the classifiers are
actually good predictors, when in fact they may be
just guessing randomly.

This effect is commonly seen in discriminative feature
selection, where a feature is selected based on the ac-
curacy of a classifier trained on that single feature
and tested on a held-out set of validation examples.
In modern high-dimensional machine learning appli-
cations such as fMRI or microarray analysis, there are
typically thousands of features with less than one hun-
dred examples. Classification tasks in such settings of-
ten have sparse solutions, meaning that only a small
subset of the features are useful for predicting the cor-
rect class.

To determine which features are relevant, it would be
useful to know how well some classifier could perform
if all classifiers just chose labels at random. We would
like to know how this accuracy changes with both the
number of features and number of examples. This pa-
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per poses and answers the following question:

Given M classifiers that each produce labels randomly

for N examples, what is the highest accuracy that we

would expect some classifier to achieve?

1.1. Related Work

Our work is closely related to the multiple-testing
problem in the statistics community. In statistics, hy-
pothesis tests are the standard way to test if some
assertion is true with high probability. While a sin-
gle test has a low probability of making an error,
when multiple hypothesis tests are performed simul-
taneously, the probability of at least one of the tests
making an error can be much higher. It is common to
correct the tests by making them more conservative to
compensate.

Two of the most popular methods for correcting mul-
tiple tests are the Bonferroni Correction and the False
Discovery Rate (Benjamini & Hochberg, 1995). We
can apply these methods to the problem of feature
selection, but in practice they are often too conser-
vative at standard significance levels (e.g. 5%). See
Wong et al. (2002) and Frank and Witten (1998).
With many high-dimensional classification problems
they may simply state that no feature is significant.
This is not particularly helpful when building a classi-
fier.

We could lower the significance level so more features
are considered relevant, but it is unclear what sig-
nificance level to choose. Since different learning al-
gorithms have different tolerances to noisy, irrelevant
features, there is no single significance level that is ap-
propriate for all learning algorithms.

This fact, along with the large number of available
tests and correction methods, makes hypothesis test-
ing a difficult task for non-experts.

In our work, we approach the problem of significance
from a different angle. Using order statistics, we ex-
plicitly model small chance events in a group setting.
These techniques are relatively unknown in the ma-
chine learning literature although the multiple compar-

ison procedures described in Jensen (2000) are similar
in spirit.

We feel an order statistic approach is much more in-
tuitive than hypothesis testing, and is well suited to
problems in machine learning.

One such problem is discriminative feature selection.
This feature selection technique is often called a wrap-

per method in contrast to more recent embedded meth-
ods like the L1 regularized Lasso (Tibshirani, 1996).

While a full comparison of wrapper and embedded
methods is beyond the scope of this paper, we be-
lieve that wrapped methods will continue to play a
role in machine learning due to their simplicity and
tractability. An excellent overview of the feature se-
lection literature is available in Guyon (2003).

The work most similar to ours is by Li and
Grosse (2003), which uses extreme value distribution
theory to choose a significance threshold for selecting
relevant features. While the general theme is similar,
we do not use asymptotic results of extreme value the-
ory, nor do we use simulation to compute moments of
order statistics. By contrast, we focus on classification
problems and show exact solutions that do not require
any simulation.

2. Preliminaries

2.1. Order Statistics

We use order statistics extensively in this paper, thus
we begin with a small introduction to define some basic
concepts and notation. Consider M samples (i.i.d.)
drawn from some distribution: X1, . . . , XM ∼ FX(x).
If we order these samples from smallest to largest we
obtain:

X(1) ≤ X(2) ≤ . . . ≤ X(M)

and we use the notation X(r) to denote the rth smallest

sample which we call the rth order statistic. X(1) and
X(M) have special meaning which we call the extreme

values:

X(1) = min(X1, X2, . . . , XM )

X(M) = max(X1, X2, . . . , XM )

Each order statistic X(r) is also a random variable and
can be described by a cumulative distribution func-
tion F(r)(x) or a density function f(r)(x). We will re-
fer to an order statistic’s parent distribution, which is
the original distribution from which the M unordered
samples were drawn. In our example this is FX(x).

We will use the notation µr:M to denote the mean of
the rth order statistic for M samples drawn from the
parent distribution.

3. Expected Chance Accuracies

Using order statistics we can now answer the question
we posed earlier:

Given M classifiers that each produce labels randomly

for N examples, what is the highest accuracy that we

would expect some classifier to achieve?
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To answer this question, first consider a classifier that
labels some collection of examples at random. If the
classifier labels an example incorrectly with probabil-
ity perr, we can model the number of errors the clas-
sifier makes as a binomial random variable. Formally,
let X be defined as the number of errors the classifier
makes on some true labeling of N examples. Then:

X ∼ Binomial(N, perr)

and the mean and variance of X are:

E [X] = N · perr

V [X] = N · perr · (1− perr)

Now, suppose instead we have M independent classi-
fiers where each produces a set of N labels at random.
Once again, the probability that each classifier makes
a mistake on a single example is perr. Let Xi be the
number of errors made by the ith classifier. We then
have:

X1, X2, . . . , XM ∼ Binomial(N, perr)

One of these classifiers will have the minimal number
of errors. Using our order statistic notation we have:

X(1) = min(X1, X2, . . . , XM )

and the expected minimum number of errors is:

µ1:M = E [X(1)]

If we knew the density function of X(1) for M samples
from a Binomial(N, perr) we could compute the mean
µ1:M directly:

µ1:M =

∞
∑

x=0

xf(1)(x)

If the parent distribution were a continuous variable,
obtaining f(1) would not be difficult and many refer-
ences show simple methods to compute the density for
any order statistic of a continuous distribution (Casella
& Berger, 2002). Since our parent distribution is the
discrete binomial, computing f(1) and more impor-
tantly µ1:M is more difficult.

We could resort to simulation to find the mean, but
this can be quite time consuming for large collections
of variables. We will show later, however, that an exact
solution does exist.

3.1. The Multiplicity Gap

For any problem with M classifiers and N examples
there is a risk that some classifier will perform well by
random chance.What is a good measure of this risk?

As we showed earlier, E [X(1)] is the minimum number
of errors that we should expect some classifier to make.
We also know that E [X] is the expected number of
errors an individual classifier will make.

Thus, one natural measure of this risk is the difference
between these two values. We define the multiplicity

gap GM,N for M classifiers and N examples as:

GM,N = E [X]− E [X(1)]

Reducing the number of examples N or increasing the
number of classifiers M increases the risk.

4. Derivation

Theorem 4.1. Highest Chance Accuracy

Consider a classification problem with M classifiers

and N examples. If the probability that a classifier

makes a mistake on a single example is perr, the high-

est expected accuracy AH of any classifier is given by:

E [AH ] = 1−
1

N

N−1
∑

i=0

Iperr
(i + 1, N − i)M (1)

where Ip(a, b) is the incomplete beta function1:

Ip(a, b) =
1

β(a, b)

∫ p

0

ta−1(1− t)b−1dt

Proof. Let Xi, (1 ≤ i ≤ M) be the total number of
errors classifier i makes on some true labeling of N
examples. If the probability that a classifier makes a
mistake on a single example is perr, then:

X1, X2, . . . , XM ∼ Binomial(N, perr)

Therefore, the expected minimum number of errors is:

µ1:M = E [X(1)]

To compute the value of µ1:M we utilize a useful result
from Feller (1957) that relates the mean of a discrete
random variable to its distribution function:

µX =

∞
∑

i=0

[1− FX(i)]

therefore

µ1:M =

∞
∑

i=0

[1− F(1)(i)]

1Some texts refer to this form as the regularized incom-
plete beta function.
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A result from David and Nagaraja (2003) shows that
is equivalent to:

µ1:M =

∞
∑

i=0

[1− FX(i)]M (2)

Now, for a Binomial(N, perr), FX(i) = 1 when i ≥ N .
Therefore, the upper limit of the sum becomes N − 1:

µ1:M =

N−1
∑

i=0

[1− FX(i)]M

Note that the incomplete beta function Ip(a, b) has an
expansion that looks similar to the distribution func-
tion of a binomial:

Ip(a, b) =

a+b−1
∑

j=a

(a + b− 1)!

j!(a + b− 1− j)!
pj(1− p)a+b−1−j

Using this expansion and a few algebraic manipula-
tions we can express the tail of the distribution func-
tion in terms of the incomplete beta function2:

1− FX(i) = P (X ≥ i + 1)

=
N

∑

j=i+1

N !

j!(N − j)!
(perr)

j(1− perr)
N−j

= Iperr
(i + 1, N − i)

Substituting this form into (2) we have:

µ1:M =

N−1
∑

i=0

Iperr
(i + 1, N − i)M

To put our answer in terms of accuracy rather than
errors we rearrange:

1

N
(N − µ1:M ) = 1−

1

N
µ1:M

= 1−
1

N

N−1
∑

i=0

Iperr
(i + 1, N − i)M

Note that this theorem depends on the number of
classes only through perr. It does not require any mod-
ification to adapt to many classes.

2We feel it is numerically advantageous to use the in-
complete beta function rather than computing the bino-
mial CDF directly. Many numerical computing environ-
ments have fast implementations of the incomplete beta
function Ip(a, b). For example, the betainc(p,a,b) com-
mand in MATLAB can implement Equation 1 in one line
of code.

0 100 200 300 400 500
50

55

60

65

70

75

80

85

90

95

100
Chance Accuracies for N examples and M classifiers

H
ig

he
st

 E
xp

ec
te

d 
C

ha
nc

e 
A

cc
ur

ac
y 

%

Number of Classifiers

 

 

10 Examples
20 Examples
30 Examples
40 Examples

Figure 1. The highest expected chance accuracy as a func-
tion of the number of examples and classifiers. Each line
represents a different number of examples. The x-axis is
the number of classifiers and the y-axis is the accuracy.

Example 4.1 Predicting NFL games
Consider an office football pool with 200 participants

betting on the outcome of 20 games. If each partici-

pant selects the outcome of a game according to a fair

coin flip, how well would we expect the “winner” to

perform?

To answer this question, we apply Equation 1 where
M = 200, N = 20, and perr = 0.5. In this case, the
highest expected accuracy of some participant is 80%.

Although the chance probability of obtaining a per-

fect labeling is extremely small, in this case only
1/220 = 1/1, 048, 576, the chance of obtaining a very

good labeling is much higher. Exactly 1,048,576 partic-
ipants would be needed for us to expect one to obtain
a perfect labeling. Yet, with only 200 participants, the
expected accuracy of the top performer is 80%.

This effect can be seen by plotting Equation 1 for a
two class problem where perr = 0.5 (see Figure 1).
The graph shows the highest expected chance accu-
racy (y-axis) for a given number of classifiers (x-axis).
Each line represents a different number of examples N .
As we increase the number of examples, the multiplic-

ity gap closes, and highest expected chance accuracy
for some classifier approaches the expected chance ac-
curacy for a single classifier.

With small numbers of examples and large numbers of

classifiers, the chance of obtaining a very good labeling

may be very high, even if the chance of obtaining a

perfect labeling is very low.
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5. Case Study: Discriminative Feature

Selection in Sparse,

High-Dimensional Problems

A simple and popular method for finding relevant fea-
tures in a classification task is discriminative feature
selection. This method evaluates how well individual
features discriminate between different classes and se-
lects features with high predictive accuracy.

For example, if we have M features in a classification
task, we train M distinct classifiers, where each clas-
sifier is trained using a single feature. After training,
we evaluate all the classifiers on a set of validation

examples and select the top performing features ac-
cording to some criterion. A final classifier is then
trained using only these top performing features, and
then evaluated on some set of test examples.

This method is popular because it is simple to imple-
ment and often performs well in practice. The main
difficulty is: What are appropriate criteria for select-

ing significant features?

One approach is to run a cross-validation loop, test-
ing different significance thresholds to find one that
has high empirical performance. This loop is compu-
tationally expensive and also requires additional vali-
dation examples. To avoid these difficulties in practice,
it is common to choose some arbitrary threshold, and
hope that performance is sufficient for the classifica-
tion task.

Besides being pedantically unsatisfying, choosing an
arbitrary threshold in a high-dimensional problem
with a small number of examples is very risky. For
example, a simple threshold might choose all features
that perform better than 80% accuracy. As we showed
earlier, many features may exceed this seemingly high
threshold purely by random chance.

In high-dimensional problems with small numbers of

examples, the accuracy required for statistical signifi-

cance is often much higher than intuition might sug-

gest.

A more principled approach for determining signifi-
cance is to use a hypothesis test. With a hypothe-
sis test, one tries to disprove a certain assertion. For
example, one might assume that a classifier performs
with a true accuracy of 50%. This assumption is called
the null hypothesis. The goal then is to reject the null
hypothesis if the evidence (e.g. the discriminative ac-
curacy) is sufficiently strong.

Hypothesis testing has a vast literature in the statis-
tics community. A good introduction can be found

in Wasserman (2005). The Wald, “t”, binomial, per-
mutation, and χ2 tests are just a few of the possible
testing methods available. It is difficult, however, for a
non-expert to know when to apply a particular test. To
complicate matters, adjustments must be made when
multiple tests are considered simultaneously. This is
known in the statistics community as the multiple test-

ing problem. Several methods such as the Bonferroni
correction, family-wise error rate, and the false discov-
ery rate (FDR) are used to compensate for multiple
tests (Benjamini & Hochberg, 1995).

For the problem of discriminative feature selection, the
use of a binomial test along with a false discovery rate
adjustment is an appropriate choice. As we mentioned
earlier, however, hypothesis tests require the choice of
a significance level α. As is common in the scientific
literature, the level α = 0.05 is typically considered
statistically significant.

For the purpose of feature selection, however, an ap-
propriate choice of α is highly dependent on the classi-
fication algorithm used. Some classifiers are more tol-
erant to irrelevant features than others. Thus, there
is no single α value appropriate for all classifiers. We
could use a cross-validation loop to search for an ap-
propriate α, but then we could have avoided the hy-
pothesis test altogether and searched empirically for
an appropriate threshold.

5.1. The Multiplicity Gap Midpoint (MGM)
Method

Earlier in Equation 1 we derived the highest expected
chance accuracy of some classifier assuming all classi-
fiers choose their labels according to random chance.
In some sense, this accuracy is a natural significance

threshold, since we would not expect any classifer to
perform better than this threshold by random chance.

While this may seem like an intuitive threshold for
feature selection, in practice the threshold is overly
conservative for several reasons. First, this threshold
assumes all features are independent. This rarely holds
in practice, and in many high-dimensional datasets it
is very common to see strong correlations between fea-
tures.

Further, the threshold assumes that all features are
irrelevant and produce labels at random. In practice,
some subset of the features will actually be significant,
thereby lowering the effective number of random fea-
tures. There is also no guarantee that errors for a fea-
ture can be modeled as a binomial random variable.

These violations of independence and irrelevance ef-
fectively lower the highest expected chance accuracy
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(and increase the expected minimum number of er-
rors). While this threshold may be overly conservative,
it effectively serves as an upper bound on the highest
expected chance accuracy.

At the other extreme, we might consider any fea-
ture significant that performs better than the expected
chance accuracy of a single feature. As we showed be-
fore, this will clearly allow many irrelevant features
to be considered significant. Note that these two ex-
tremes are the endpoints of the multiplicity gap that
we defined earlier. If we model the number of errors
made by a classifier as a binomial random variable,
and we have M classifiers and N examples then the
multiplicity gap GM,N = E [X]− E [X(1)]

We conjecture that the optimal threshold should fall

within the multiplicity gap.

In practice, we can choose any threshold between these
two extremes. If we believe that our classifier is sensi-
tive to irrelevant features, we should choose a thresh-
old closer to E [X(1)]. Similarly, if our classifier is ro-
bust to irrelevant features, we should choose a thresh-
old closer to E [X].

Without any knowledge of the particular classifier it is
impossible to know what the optimal threshold should
be. Therefore, as a simple heuristic we propose the
multiplicity gap midpoint method, which chooses the
midpoint of the extremes of the multiplicity gap. This
yields a threshold τMGM on the maximum number of
errors a classifier could make and still be considered
significant:

τMGM =

(

E [X] + E [X(1)]
)

2

where E [X(1)] is computed as in Equation 1:

E [X(1)] = µ1:M =
N−1
∑

i=0

Iperr
(i + 1, N − i)M

and E [X] is the number of examples N multiplied by
the probability perr that a classifier makes an error on
a particular example: E [X] = N · perr

To use this threshold, we perform a discriminative fea-
ture selection and select all features that make less
than τMGM errors on a validation set with N exam-
ples.

5.2. Experimental Methodology

We perform discriminative feature selection exper-
iments on two high-dimensional classification tasks
that have few relevant features and limited training
data:
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Figure 2. Accuracies for different feature selection methods
for two classification tasks: Cancer (left) fMRI (right). The
False Discovery Rate (FDR) method selected no features
in the fMRI task.

Task 1: Cognitive state classification us-
ing functional magnetic resonance imaging
(fMRI) In this task, we are given a time series of
neural activity from thirteen human subjects. Each
feature is the neuro-activation of a particular region
of the brain at a given time. The goal is to distinguish
between two cognitive states: reading a sentence, and
viewing a picture (Mitchell et al., 2004). Each subject
has ≈80,000 features and 40 examples.

Task 2: Colon cancer patient classification us-
ing microarray gene expression levels (Cancer)
In this task, the goal is to predict whether a patient is
diagnosed with colon cancer. The data are microarray
gene expression levels from tissue samples (Alon et al.,
1999). There are 2,000 features and 62 examples.

Testing Method In each experiment, we use a Gaus-
sian Naive Bayes classifier and perform a leave-one-
out-cross-validation. On each round, we leave out one
example, and split the remaining examples into equal
training and validation sets. We train using the first
set, and measure classification accuracy on the vali-
dation set. We select the best performing features ac-
cording to a specific criterion. After selecting features,
we retrain by combining the validation and training
sets. We then test the left out example. We repeat
the process for each example.

We tested five different feature selection criteria:

1. No feature selection Uses all features.
2. Highest Expected Chance Accuracy Selects

features that make fewer than E [X(1)] mistakes.
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3. Binomial Hypothesis Test with False Dis-
covery Rate correction We select a feature if
we reject the hypothesis that a classifier’s true ac-
curacy, trained on that feature, is 50%.3 We use
an α = 5% level in the tests.

4. Multiplicity Gap Midpoint (MGM)
method The method proposed in Section 5.1.

5. Oracle Threshold This is the threshold that
would have led to the optimal testing accuracy.

5.3. Results and Discussion

In Figure 2, we see the classification results of five
discriminative feature selection methods for both the
colon cancer and fMRI datasets (for the fMRI dataset,
we averaged the results of the 13 subjects together).

In both datasets, the threshold E [X(1)] yields an im-
provement over no feature selection. But the assump-
tions made in calculating that threshold, namely that
all features are independent and irrelevant, result in a
very conservative threshold which admits few features.

The multiplicity gap midpoint (MGM) method relaxes
these assumptions and performs significantly better.
This method comes closest to the accuracy that could
have been achieved had an oracle told us the optimal
threshold to use4.

As a state-of-the-art baseline, we tried a binomial hy-
pothesis test with a false discovery rate correction. As
is common in the statistical and scientific literature,
we chose a significance level α = 0.05. This method
completely failed to select any features for the fMRI
task, indicating that it is overly conservative for very
high-dimensional problems. The method performed
fairly well on the colon cancer dataset, but did so af-
ter selecting fewer than ten features.

It is worth noting that we could tune the α value of
the false discovery rate test to admit more features
and help performance. But the goal of the midpoint
heuristic is to avoid this tuning (in fact, if we were
to do tuning, it would make more sense to just tune
the threshold for selecting features directly). Thus we
feel the midpoint method provides a more appropriate
default threshold than a specific value of α would in a
classical test.

We chose the Gaussian Naive Bayes classifier because
it is extremely fast to train and test making it very
appropriate for use in a wrapped feature selector. This

3This is appropriate since both datasets have nearly
equal class priors.

4The oracle is determined by calculating the highest
accuracy on a test set for every possible “number of errors”
threshold on the validation set.

classifier is also robust to noise but is not entirely im-
mune to overfitting. We found that adding additional
features increased performance up to a point, but even-
tually noisy features overwhelmed the classifier, and
performance degraded.

Figure 3 shows this effect for three fMRI subjects and
the colon cancer dataset. The curves shows test accu-
racies at various feature selection thresholds. In each
plot, the x-axis is the number of errors allowed, and
the y-axis is the test accuracy of the resulting clas-
sifier. We mark the extremes of the multiplicity gap
E [X(1)] and E[X] on each plot. On all thirteen sub-
jects as well as the colon cancer dataset, the optimal
(oracle chosen) threshold falls within this gap.

5.4. Future Work

The goal of this paper was to show how order statistics
can be a useful tool for problems in machine learning.
While our initial work focused on accuracy, we feel
similar techniques can be applied to other measures
such as information gain, entropy, and AUC.

Also, in our initial analysis we compute a significance
threshold assuming that all features are independent.
One natural extension of this work is to develop a
method that adjusts for correlations between features.

6. Conclusion

We provided a theoretical analysis of the chance accu-
racy of large collections of classifiers. We showed that
on problems with small numbers of examples and large
numbers of features, we should expect some classifier
to be highly accurate by random chance. We derived
a theorem to directly calculate this accuracy.

We used this theorem to provide a principled feature
selection criterion for sparse, high-dimensional prob-
lems. This criterion is theoretically well-motivated,
simple to implement, and computationally inexpen-
sive.

We demonstrated this method on microarray and
fMRI datasets and showed that this method per-
forms very close to the optimal oracle accuracy. We
also showed that on the fMRI dataset this technique
chooses relevant features while another state-of-the-art
method, the False Discovery Rate (FDR), completely
fails at standard significance levels.
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Abstract
We show that linear value-function approxima-
tion is equivalent to a form of linear model ap-
proximation. We then derive a relationship be-
tween the model-approximation error and the
Bellman error, and show how this relationship
can guide feature selection for model improve-
ment and/or value-function improvement. We
also show how these results give insight into the
behavior of existing feature-selection algorithms.

1. Introduction
Broadly speaking, there are two types of reinforcement-
learning (RL) algorithms: model-free and model-based al-
gorithms. Model-free approaches typically use samples to
learn a value function, from which a policy is implicitly de-
rived. In contrast, model-based approaches build a model
of system behavior from samples, and the model is used to
compute a value function or policy. Both approaches have
advantages and disadvantages, and function approximation
can be applied to either, to represent a value function or a
model. Examples of function approximators include deci-
sion trees, neural networks, and linear functions.

The first contribution of this paper shows that, when linear
value-function approximation is used for policy evaluation
as in nominally model-free approaches such as linear TD
learning (Sutton, 1988) or LSTD (Bradtke & Barto, 1996),
the value function is precisely the same as the value func-
tion that results from an exact solution to a corresponding
approximate, linear model, where the value function and
linear model are defined over the same set of features.

This insight results in a novel view of the Bellman error

Appearing in Proceedings of the 25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

and a deeper understanding of the problem of feature selec-
tion when linear function approximation is used. Specifi-
cally, we show that the Bellman error can be decomposed
into two types of errors in the learned linear model: the re-
ward error and the feature error. This decomposition gives
insight into the behavior of existing approximation tech-
niques, suggests new views of feature selection, and ex-
plains the behavior of existing feature-selection algorithms.

2. Formal Framework and Notation
We are interested in both controlled and uncontrolled
Markov processes with a set S of states s and, when ap-
plicable, a set A of actions a. Our main results and experi-
ments consider the uncontrolled or policy-evaluation case,
but many of the ideas can be applied to the controlled case,
as is discussed in more detail in Section 3.2.

We refer to the uncontrolled case as a Markov reward pro-
cess (MRP): M = (S, P, R, γ), and the controlled case as
a Markov decision process (MDP): M = (S,A, P, R, γ).
Given a state si, the probability of a transition to a state sj

given action a is given by P a
ij and results in an expected

reward of Ra
i . In the uncontrolled case, we use Pij and Ri

to stand for the transitions and rewards.

We are concerned with finding value functions V that map
each state si to the expected total γ-discounted reward for
the process. In particular, we would like to find the solution
to the Bellman equation

V [si] = max
a

(Ra
i + γ

∑

j

P a
ijV [sj ])

in the controlled case (the “max” and a’s are eliminated
from the equation in the uncontrolled case).

For any matrix, A, we use AT to indicate the transpose of
A and span(A) to indicate the column space of A.
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2.1. Linear Value Functions

In cases where the value function cannot be represented ex-
actly, it is common to use some form of parametric value-
function approximation, such as a linear combination of
features or basis functions:

V̂ =
k∑

i=1

wiφi,

where Φ = {φ1, . . . , φk} is a set of linearly independent1

basis functions of the state, with φi(s) defined as the value
of feature i in state s. The vector w = {w1, . . . , wk} is a
set of scalar weights. We can think of Φ as a design matrix
with Φ[i, j] = φj(si), that is, the basis functions span the
columns of Φ and the states span the rows. Expressing the
weights w as a column vector, we have V̂ = Φw.

Methods for finding a reasonable w given Φ and a set of
samples include linear TD (Sutton, 1988), LSTD (Bradtke
& Barto, 1996) and LSPE (Yu & Bertsekas, 2006). If
the model can be expressed as a factored MDP, then the
weights can be found directly (Koller & Parr, 1999). We
refer to this family of methods as linear fixed-point meth-
ods because they all solve for the fixed point

V̂ = ΦwΦ = Πσ(R + γPΦwΦ), (1)

where Πσ is an operator that is the σ-weighted L2 pro-
jection into span(Φ), where σ is a state weighting dis-
tribution, typically the stationary distribution of P . If
Σ = diag(σ), Πσ = Φ(ΦT ΣΦ)−1ΦT Σ. In some cases,
an unweighted projection (uniform σ) or some other σ is
used. Most of our results do not depend upon the projec-
tion weights, so we shall assume uniform σ unless other-
wise stated. Solving for wΦ yields:

wΦ = (I − γ(ΦT Φ)−1ΦT PΦ)−1(ΦT Φ)−1ΦT R (2)

= (ΦT Φ− γΦT PΦ)−1ΦT R. (3)

In this paper, we assume that P is known and that Φ can
be constructed exactly, while in all but the factored model
case, these would be sampled. This assumption allows us
to characterize the representational power of the features as
a separate issue from the variance introduced by sampling.

2.2. Linear Models

As in the case of linear value functions, we assume
the existence of a set of linearly independent features

1Permitting linearly dependent basis functions would not
change our results, but would complicate exposition since the re-
sulting weight vectors would no longer be unique. In practice, one
may use SVD to enforce the selection of a unique solution when
features are linearly dependent.

φ1 . . . φk for representing transition and reward models,
with φi(s) defined as the value of feature i in state s.
While value-function approximation typically uses features
to predict values, we will consider the use of these fea-
tures to predict next features. For feature vector Φ(s) =
[φ1(s) . . . φk(s)]T , we define Φ(s′|s) as the random vector
of next features:

Φ(s′|s) s′∼P (s′|s)
= [φ1(s′), . . . , φk(s′)]T ,

our objective will be to produce a k × k matrix PΦ that
predicts expected next feature vectors,

PΦ
T Φ(s) ≈ Es′∼P (s′|s){Φ(s′|s)},

and minimizes the expected feature-prediction error:

PΦ = arg minPk

∑
s

‖PT
k Φ(s)− E{Φ(s′|s)}‖22. (4)

(For brevity, we shall henceforth leave s′ ∼ P (s′|s) im-
plicit). One way to solve the minimization problem in
Eq. (4) is to compute the expected next feature explicitly
as the n× k matrix PΦ and then find the least-squares so-
lution to the over-constrained system ΦPΦ ≈ PΦ, since
the ith row of ΦPΦ is PΦ’s prediction of the next feature
values for state i and the ith row of PΦ is the expected
value of these features. The least-squares solution is

PΦ = (ΦT Φ)−1ΦT PΦ, (5)

with approximate next feature values P̂Φ = ΦPΦ. To pre-
dict the reward model using the same features, we could
perform a standard least-squares projection into span(Φ)
to compute an approximate reward predictor:

rΦ = (ΦT Φ)−1ΦT R, (6)

with corresponding approximate reward: R̂ = ΦrΦ. As in
the value-function approximation case, it is possible to do
a weighted L2 projection, a straightforward generalization
that we omit for conciseness of presentation.

Classically, an advantage of learning a model and deriv-
ing values from the model (indirect learning) over using
samples to estimate the values (direct learning) is that such
a method can be very data efficient. On the other hand,
learning an accurate model can require a great deal of ex-
perience. Surprisingly, we find that the two approaches are
the same, at least in the linear approximation setting.

3. Linear Fixed-Point Solution =
Linear-Model Solution

The notion that linear fixed-point methods are implicitly
computing some sort of model has been recognized in vary-
ing degrees for several years. For example, Boyan (1999)
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considered the intermediate calculations performed by
LSTD in some special cases, and interpreted parts of the
LSTD algorithm as computing a compressed model. In
this section, we show that the linear fixed-point solution
for features Φ is exactly the solution to the linear model de-
scribed by PΦ and rΦ. We first prove it for the uncontrolled
case, and then generalize our result to the controlled case.
Our results concern unweighted projections, but generalize
readily to weighted projections.

3.1. The Uncontrolled Case

Recall that the approximate model transforms feature vec-
tors to feature vectors, so any k-vector is a state in the ap-
proximate model. If x is such a state, then, in the approxi-
mate model, rΦ

T x is the reward for this state and PΦ
T x is

the next state vector. The Bellman equation for state x is:

V [x] = rΦ
T x + γV [PΦ

T x] =
∞∑

i=0

γirΦ
T (PΦ

i)T x.

Expressed with respect to the original state space, the value
function becomes

V = Φ
∞∑

i=0

γiPΦ
irΦ,

which is a linear combination of the columns of Φ. Since
V = Φw for some w, the fixed-point equation becomes:

V = R̂ + γP̂Φw (7)
Φw = ΦrΦ + γΦPΦw (8)
w = (I − γPΦ)−1rΦ. (9)

We call the solution to the system above the linear model
solution. A solution will exist when PΦ has a spectral ra-
dius less than 1/γ. This condition is not guaranteed be-
cause PΦ is not necessarily a stochastic matrix; it is simply
a matrix that predicts expected next feature values. The
cases where the spectral radius of PΦ exceeds 1/γ corre-
spond to the cases where the value function defined by PΦ

and rΦ assigns unbounded value to some states.

Theorem 3.1 For any MRP M and set of features Φ, the
linear-model solution and the linear fixed-point solution
are identical.

Proof We begin with the expression for the linear-model
solution from Eq. (9) and then proceed by substituting the
definitions of PΦ and rΦ from Eq. (5) and Eq. (6), yielding:

w = (I − γPΦ)−1rΦ

= (I − γ(ΦT Φ)−1ΦT PΦ)−1(ΦT Φ)−1ΦT R

= wΦ.

This result demonstrates that for a given set of features Φ,
there is no difference between using the exact model to find
an approximate linear fixed-point value function in terms
of Φ and first constructing an approximate linear model in
terms of Φ and then solving for the exact value function of
the approximate model using Eq. (9). Although the model-
based view produces exactly the same value function as the
value-function-based view, the model-based view can give
a new perspective on error analysis and feature selection,
as shown in later sections.

3.2. The Controlled Case: LSPI

For the controlled case, we denote a policy as π : S 7→ A.
Since rewards and transitions are action dependent, the
value function is defined over state–action pairs and is
called a Q-function: For a fixed policy π, Qπ is the unique
fixed-point solution to the Bellman equation

Qπ[si, a] = Ra
i + γ

∑
j

P a
ijQ

π[sj , π(sj)].

As in Section 2.1, Qπ can be approximated by functions
in span(Φ): Q̂ =

∑k
i=1 wiφi, but now the basis functions

φi are defined over state–action pairs rather than states.

In the controlled case, the policy π can be refined itera-
tively, as in the Least-Squares Policy Iteration (LSPI) al-
gorithm (Lagoudakis & Parr, 2003). Starting with an arbi-
trary policy π1, LSPI performs two steps iteratively until
certain termination conditions are satisfied. In iteration i, it
first computes an approximate linear value function Q̂i for
the current policy πi (the policy-evaluation step), and then
computes a new policy πi+1 that is greedy with respect to
Q̂i (the policy-improvement step).

In the policy-evaluation step, an algorithm LSTDQ, which
is the Q-version of the LSTD algorithm, is used to com-
pute Q̂i. Since a Markov decision process controlled by a
fixed policy is equivalent to an induced Markov reward pro-
cess whose state space is S ×A, LSTDQ can be viewed as
LSTD running over this induced MRP. Due to Theorem 3.1,
LSTDQ effectively builds a least-squares linear model ap-
proximation and then finds the exact solution to this model.
Therefore, the intermediate value functions Q̂i found by
LSPI are the exact value functions of the respective approx-
imate linear models with the smallest (weighted) L2 error.

4. Analysis of Error: Uncontrolled Case
Value-function-based methods often analyze the error of a
value function V̂ in terms of the one-step lookahead error,
or Bellman error:

BE(V̂ ) = R + γP V̂ − V̂ .
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In the context of linear value functions and linear models,
we shall define the Bellman error for a set Φ of features as
the error in the linear fixed-point value function for Φ:

BE(Φ) = BE(ΦwΦ) = R + γPΦwΦ − ΦwΦ.

To understand the relationship between the error in the lin-
ear model and the Bellman error, we define two compo-
nents of the model error, the reward error:

∆R = R− R̂,

and the per-feature error:

∆Φ = PΦ− P̂Φ.

The per-feature error is the error in the prediction of the ex-
pected next feature values, so both terms can be thought of
as the residual error of the linear model. The next theorem
relates the Bellman error to these model errors.

Theorem 4.1 For any MRP M and features Φ,

BE(Φ) = ∆R + γ∆ΦwΦ. (10)

Proof Using the definitions of BE(Φ), ∆R, and ∆Φ:

BE(Φ) = R + γPΦwΦ − ΦwΦ

= (∆R + R̂) + γ(∆Φ + P̂Φ)wΦ − ΦwΦ

= (∆R + γ∆ΦwΦ) + R̂ + (γΦPΦ − Φ)wΦ

= (∆R + γ∆ΦwΦ) + R̂− Φ(I − γPΦ)wΦ

= (∆R + γ∆ΦwΦ) + R̂− ΦrΦ

= ∆R + γ∆ΦwΦ.

The final step follows from the definition of R̂, and the
penultimate step follows from Eq. (9) and Theorem 3.1.

This decomposition of the Bellman error lets us think of the
Bellman error as composed of two separate sources of er-
ror: reward error, and per-feature error. In the next section,
we show that this view can give insight into the problem
of feature selection, but we also caution that there can be
interactions between ∆R and ∆Φ. For example, consider
the basis composed of the single basis function Φ∗ = [V ∗].
Clearly, BE(Φ∗) = 0, but for any non-trivial problem and
approximate model, ∆R and ∆Φ will be nonzero and will
cancel each other out in Eq. (10).

A similar result may be possible for the controlled case,
but there are some subtleties. For example, there is not a
clean notion of a fixed point for the outer loop of the LSPI
algorithm since the algorithm is not guaranteed to converge
to a single policy or w.

5. Feature Selection
We present several insights on the problem of feature se-
lection that follow from the results presented above.

5.1. General Observations about ∆R and ∆Φ

The condition ∆R = ∆Φ = 0 is sufficient (but not nec-
essary) to achieve zero Bellman error and a perfect value
function. Specifically, it requires that the features of the ap-
proximate model capture the structure of the reward func-
tion, and that the features of the approximate model are suf-
ficient to predict expected next features. In the case where
Φ is a set of indicator functions over disjoint partitions of
S, these conditions are similar to those specified for model
minimization (Dean & Givan, 1997) in MDPs.

Features that are insufficient to represent the immediate re-
ward are likely to be problematic since any error in the pre-
diction of the immediate reward based upon the features
(∆R) can appear directly in the Bellman error through the
first summand of Eq. (10). This finding is consistent with
the observation of Petrik (2007) of the problems that arise
when the reward is orthogonal to the features.

For ∆Φ = 0, the Bellman error is determined entirely by
∆R, with no dependence on γ. This observation has some
interesting implications for feature selection and the anal-
ysis of the resulting approximate value function, topics we
address further in Section 5.3.

5.2. Incremental Feature Generation

This section presents two existing methods for incremen-
tally building a basis, the Krylov basis, and Bellman Error
Basis Functions (BEBFs). We also propose a new method
based upon the model error, Model Error Basis Functions
(MEBFs), then show that all three methods are equivalent
given the same initial conditions.

5.2.1. THE KRYLOV BASIS

The Krylov basis is defined in terms of powers of the tran-
sition matrix multiplied by R. We refer to the Krylov basis
with k basis functions, starting from X, as Krylovk(X),
with Krylovk(X) = {P i−1X : 1 ≤ i ≤ k}. For an MRP,
typically X = R. The Krylov basis, and Krylov methods
in general, are standard techniques for the iterative solu-
tion to systems of linear equations. Its relevance to feature
selection for RL was demonstrated by Petrik (2007).

5.2.2. BEBFS

Many researchers have proposed using features based upon
the residual error in the current feature set (Wu & Givan,
2004; Sanner & Boutilier, 2005; Keller et al., 2006). Parr
et al. (2007) describe this family of techniques as Bellman
Error Basis Functions (BEBFs), and analyze some of the
properties of this approach. More formally, if ΦkwΦk

is
the current value function, BEBF adds φk+1 = BE(Φk) as
the next basis function. We refer to the basis resulting from
k− 1 iterations of BEBF, starting from X, as BEBF k(X).
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Theorem 5.1 (Petrik2) For any k ≥ 1,

span(Krylovk(R)) = span(BEBF k(R)).

Proof The proof is by induction on k. For the basis:

Krylov1(R) = BEBF 1(R) = R.

For the inductive step, we assume equality up to k, so for
both methods the value function can be expressed as:

ΦkwΦk
=

k∑

i=1

wiP
i−1R.

Now, observe that:

BE(Φk) = R + γP (
k∑

i=1

wiP
i−1R)−

k∑

i=1

wiP
i−1R.

The only part of the above that is not already in the basis
is the contribution from P k+1R, which is precisely what is
added in Krylovk+1(R).

5.2.3. MEBFS

A natural generalization of BEBFs to the model-based view
would be to add features that capture the residual error
in the model. Starting from Φk, this technique (MEBF)
adds ∆R and ∆Φ (or the linearly independent components
thereof) to the basis at each iteration to create Φk+1. In
contrast to BEBFs, this method can add a large number
of basis functions at each iteration since ∆Φ has as many
columns as Φ. One might imagine that this process could
result in an exponential growth in the number of basis func-
tions. In fact, however, the number of new basis functions
added at each iteration will not grow since each new set
of basis functions that is added will drive the error in the
previous basis functions to 0.

We refer to the basis resulting from k − 1 iterations of
MEBF, starting from X, as MEBF k(X). For an initial ba-
sis of Φ, the MEBF basis expansion is guaranteed to con-
tain the BEBF basis expansion.

Theorem 5.2 span(BEBF 2(Φ)) ⊆ span(MEBF 2(Φ)).

Proof Follows immediately from Eq. (10).

Theorem 5.3 For k ≥ 1:

span(Krylovk(R)) = span(MEBF k(R)).

Proof The proof is by induction on k. For the basis:

Krylov1(R) = MEBF 1(R) = R.

2M. Petrik, personal communication, 2007.

For the inductive step, we assume equality up to k and con-
sider the behavior of MEBF. For k ≥ 1, ∆R = 0, since R
is the first basis function added. The basis Φk is equivalent
to a collection of basis functions of the form φi = P i−1R
for 1 ≤ i ≤ k. As a result, Pφi is already in the basis for
all 1 ≤ i < k. Thus, the only nonzero column of ∆Φ will
correspond to feature φk and will be P kR − PΦP k−1R.
Since PΦP k−1R is necessarily in span(Φk), the only new
contribution to the basis made by MEBF will be from P kR,
which is precisely what is added by Krylovk+1(R).

These results show that, starting from R, all three methods
will produce the same basis. An advantage of BEBF is that
it will produce orthogonal basis vectors. An advantage of
MEBF is that it can add multiple new basis vectors at each
iteration if it is initialized with a set of basis functions.

5.3. Invariant Subspaces of P

The form of the Bellman error in Eq. (10) suggests that
features for which ∆Φ = 0 are particularly interesting. If a
dictionary of such features were readily available, then the
feature-selection problem would reduce to the problem of
predicting the immediate reward using this dictionary.

The condition ∆Φ = 0 means that, collectively, the features
are a basis for a perfect linear predictor of their own next,
expected values. More formally, features Φ are subspace
invariant with respect to P if PΦ is in span(Φ), which
means that there exists a Λ such that PΦ = ΦΛ.

At first, it may seem like subspace invariance is an extraor-
dinary requirement that could hold only for a complete ba-
sis for P . It turns out, however, that there are many ways
to describe invariant subspaces of P . Any set of eigenvec-
tors of P forms an invariant subspace. For eigenvectors
X1 . . .Xk with eigenvalues λ1 . . . λk, Λ = diag(λ1 . . . λk).
The set of generalized eigenvectors corresponding to a par-
ticular eigenvalue λ of P is subspace invariant with re-
spect to P . For an eigenvalue λ with multiplicity i, there
will be i generalized eigenvectors, X1 . . .Xi satisfying
(P − λI)Xj = Xj−1 for 1 ≤ j ≤ i and (P − λI)jXj = 0
for 0 ≤ j ≤ i. More generally, if Φ1 and Φ2 are subspace
invariant with respect to P , then so is their union. Finally,
the Schur decomposition of a matrix P provides a set of
nested invariant subspaces of P .

In fairness, we point out that these methods all require
knowledge of P and superlinear computation time in the
dimension of P . We defer discussion of the practicality of
implementing these methods to Section 6 and Section 7.

Theorem 5.4 For any MRP M and subspace invariant
feature set Φ, ∆Φ = 0.

Proof First, we observe that PΦ has a particularly simple
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form as a consequence of subspace invariance:

PΦ = (ΦT Φ)−1ΦT PΦ = (ΦT Φ)−1ΦT ΦΛ = Λ.

Substituting into the definition of ∆Φ:

∆Φ = PΦ− P̂Φ = PΦ− ΦPΦ = ΦΛ− ΦΛ = 0.

Subspace invariant features have additional intriguing
properties. The resulting value function always exists and
can be interpreted as the result of using the true transition
model with the approximate reward function R̂.

Theorem 5.5 For any MRP M and subspace invariant
feature set Φ, wΦ always exists and

ΦwΦ = (I − γP )−1R̂.

Proof Starting with the form of wΦ from Eq. (7) and the
fact that ∆Φ = 0:

ΦwΦ = R̂ + γP̂ΦwΦ

= R̂ + γPΦwΦ

ΦwΦ − γPΦwΦ = R̂

ΦwΦ = (I − γP )−1R̂.

To confirm that such a wΦ actually exists, we note that R̂ ∈
span(Φ) by construction, and that (I − γP )−1 must exist
for the actual P and 0 ≤ γ < 1, allowing us to rewrite:

ΦwΦ =

∞∑
i=0

γiP iR̂,

which remains in span(Φ) because of Φ’s subspace invari-
ance with respect to P .

Our analysis has some similarities with that of
Petrik (2007). Petrik considered the eigenvalue de-
composition of P as a basis and considered the error in the
projection of V ∗ into this basis. Petrik also suggested the
use of the Jordan form, which would provide generalized
eigenvectors for matrices that are not diagonalizable. Our
analysis focuses on the Bellman error of the linear fixed-
point solution. Insights from the model-based view of
linear approximation architectures allow us to decompose
the error into distinct components corresponding to the
reward and transition models, making the role of invariant
subspaces particularly salient.

6. Experimental Results
We present policy-evaluation results on three different
problems. Our objective is to demonstrate how our theoret-
ical results can inform the feature-selection process and ex-
plain the behavior of known feature-selection algorithms.
We consider 4 algorithms:

PVF: This is the proto-value function (PVF) framework
described by Mahadevan and Maggioni (2007). PVFs use
eigenvalues of the Laplacian derived from an empirically
constructed adjacency matrix (from random walk trajecto-
ries), enumerated in increasing order of eigenvalue. We
reproduced their method as closely as possible, includ-
ing adding links to the adjacency matrix for all policies,
not just the policy under evaluation. Curiously, remov-
ing the off-policy links seemed to produce worse perfor-
mance. We avoided using samples to eliminate the con-
founding (for our purposes) issue of variance between ex-
periments. We used the combinatorial Laplacian for the
50-state and blackjack problems, but used the normalized
Laplacian in the two-room problem to match Mahadevan
and Maggioni (2007).

PVF-MP: This algorithm selects basis functions from the
set of PVFs, but selects them incrementally based upon the
Bellman error. Specifically, basis function k +1 is the PVF
that has highest dot product with the Bellman error result-
ing from the previous k basis functions. It can be inter-
preted as a form of matching pursuits (Mallat & Zhang,
1993) on the Bellman error with a dictionary of PVFs.

Eig-MP: This algorithm is similar to PVF-MP, but selects
from a dictionary of the eigenvectors of P . Both Eig-MP
and PVF-MP are similar in spirit to Petrik’s WL algorithm.

BEBF: This is the BEBF algorithm starting with Φ0 = R,
as described in Section 5.2.

Our experiments performed unweighted L2 projection and
report unweighted L2 norm error. We also considered L∞
error and L2 projections weighted by stationary distribu-
tions, but the results were not qualitatively different. We
report the Bellman error, the reward error, and the feature
error, which is the contribution of the per-feature errors to
the Bellman error: γ∆ΦwΦ. These metrics are presented
as a function of the number of basis functions.

6.1. 50-state Chain

We applied all 4 algorithms to the 50-state chain problem
from Lagoudakis and Parr (2003), with the results shown in
Figure 1(a–c). As demanded by theory, Eig-MP has 0 fea-
ture error, which means that the entirety of the Bellman er-
ror is expressed in ∆R. BEBFs represent the other extreme
since ∆R = 0 after the first basis function is added and the
entirety of the Bellman error is expressed through ∆Φ. For
this problem, PVFs appear to be approximately subspace
invariant, resulting in low ∆Φ. However, both Eig-MP and
the PVF methods do poorly because the reward is not eas-
ily expressed as linear combination of a small number of
PVFs. PVF-MP does better than plain PVFs because it is
actively trying to reduce the error, while plain PVFs choose
basis functions in an order that ignores the reward.
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6.2. Two-room Problem

We tried all four algorithms on an optimal policy for the
two-room navigation problem from Mahadevan and Mag-
gioni (2007). The transition matrix for this problem is not
diagonalizable and typical methods for extracting gener-
alized eigenvectors proved unreliable, so we do not show
results for the Eig-MP method. Figure 1(d–f) shows the
breakdown of error for the remaining algorithms. In this
case, the Laplacian approach produces features that behave
less like an invariant subspace, resulting in high ∆R and
∆Φ. However, there is some cancellation between them.

6.3. Blackjack

We tested a version of the bottomless-deck blackjack prob-
lem from Sutton and Barto (1998), evaluating the policy
they propose. For the model described in the book, all
methods except BEBF performed extremely poorly. To
make the problem more amenable to eigenvector-based
methods, we implemented an ergodic version that resets
to an initial distribution over hands with a value of 12 or
larger and used a discount of 0.999. The breakdown of
error for the different algorithms is shown in Figure 1(g–
i), where we again omit Eig-MP. As expected, BEBFs ex-
hibit ∆R = 0, and drive the Bellman error down fairly
rapidly. PVFs exhibit some interesting behaviors: When
the PVFs are enumerated in order of increasing eigenvalue,
they form an invariant subspace. As a result, the feature
error for PVFs hugs the abscissa in Figure 1(i). However,
this ordering completely fails to match R until the very last
eigenvectors are added, resulting in very poor performance
overall. In contrast, PVF-MP adds basis eigenvectors in an
order that does not result in subspace invariant features sets,
but that does match R earlier, resulting in a more consistent
reduction of error.

7. Discussion and Future Work
A significant finding in our work is the close relationship
between value-function approximation and model-based
learning. Our experimental results illustrate the relation-
ship between the power of the features to represent an ap-
proximate model and the Bellman error.

While features that represent feature transitions accurately
have highly desirable properties, both components of the
model, the reward function and the transition function,
should be respected by the features. Both a strength
and weakness of the BEBF/MEBF/Krylov methods is
their connection to specific policies and reward structures.
Our results are consonant with those of Petrik (2007),
which showed good performance for the Krylov basis and
some surprisingly weak performance for eigenvector-based
methods despite their appealing properties.

To focus on the expressive power of the features, our re-
sults in this paper do not directly consider sampled data, the
regime in which linear fixed-point methods are most often
employed. Some initial results on the effects of noise in
feature generation for BEBF/MEBF/Krylov methods can
be found in Parr et al. (2007), however further analysis
would still be helpful. For eigenvector-based methods,
there are some questions about the cost of estimating eigen-
vectors of P , or an approximation to P via the Laplacian.
Computing eigenvectors can be computationally intensive
and, for general P , prone to numerical instabilities.

An important direction for future work is seeking a deeper
understanding of the interaction between feature-selection
and policy-improvement algorithms such as LSPI.

8. Conclusion
This paper demonstrated a fundamental equivalence be-
tween linear value-function approximation and linear
model approximation for RL. This equivalence led to a
novel view of the Bellman error, which then gave insight
into the problem of feature selection. These insights were
used to explain the behavior of existing feature-selection
algorithms on some sample problems. While this research
has not, yet, led to a novel algorithmic approach, we believe
that it helps address fundamental questions of representa-
tion and feature selection encountered by anyone wishing
to solve real RL problems.
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Figure 1. Decomposition of the Bellman error for three different problems. First row: 50-state chain; Second row: Two-room problem;
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Abstract

In the absence of explicit queries, an alterna-
tive is to try to infer users’ interests from im-
plicit feedback signals, such as clickstreams
or eye tracking. The interests, formulated as
an implicit query, can then be used in fur-
ther searches. We formulate this task as a
probabilistic model, which can be interpreted
as a kind of transfer or meta-learning. The
probabilistic model is demonstrated to out-
perform an earlier kernel-based method in a
small-scale information retrieval task.

1. Introduction

The classic problem in information retrieval (IR) is to
rank a set of documents according to the user’s current
interest, with the documents most relevant for the user
ranked among the first. The same theme recurs cur-
rently in other applications of machine learning such as
recommender systems. Current IR systems rely mostly
on explicit, typed queries to perform the ranking.

The main problem in this traditional IR scenario is
that it is difficult even for experienced users to for-
mulate good textual queries (Turpin & Scholer, 2006),
and therefore user’s interest needs to be inferred partly
from other sources. A straightforward way is to collect
explicit feedback, that is, the user labels some of the
documents relevant or irrelevant for her interests. Giv-
ing explicit feedback is however laborious. It would be
ideal if the IR system would be able to unobtrusively
collect and use implicit feedback to infer the interest of
the user while she works and use this information to
improve the quality of the search results. We call this
task proactive information retrieval.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

Several forms of implicit feedback, such as click-
stream data, time spent during reading, and amount
of scrolling and exit behaviour, have been used with
some success (Kelly & Teevan, 2003; Claypool et al.,
2001; Fox et al., 2005; Joachims et al., 2005; Joachims
& Radlinski, 2007). While these sources of feedback
are often readily available, they offer only limited in-
formation of users’ interests.

Gaze patterns are a promising source of information
about the attention of the user, and hence of implicit
feedback. They have been used for information re-
trieval in two papers (Puolamäki et al., 2005; Hardoon
et al., 2007). In the latter, eye tracking-based feed-
back improved information retrieval performance in
an experiment where no explicit queries were avail-
able, and everything was inferred from the eye move-
ments and the texts. The setup was slightly different
from standard IR. The users saw sets of ten simpli-
fied (Wikipedia) documents, about half of which were
relevant to a topic given to them beforehand, while
the remaining documents were of other randomly se-
lected topics. Based on the gaze pattern, an implicit
query was constructed and used to rank unseen docu-
ments. The results were significantly better than ran-
dom rankings.

We extend these results in two ways. First, we will
use the eye tracking-based feedback in a more realistic
IR scenario. Instead of randomly sampled documents,
the user is shown a ranked list of top-5 results, and
the task of the system is to improve the ranking of the
yet unseen documents. Second, we will improve on the
methodology. In (Hardoon et al., 2007) we introduced
a two-stage prediction algorithm (“SVM model” in the
following), where the latter stage was an SVM which
classified new documents into relevant and irrelevant,
given a parameter vector that consists of a weight for
each word. The parameter vector was inferred with a
regressor which had been trained to predict the weight
of a word based on the eye movement pattern on the
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word. The problem with this method is that learning
of the regressor requires a ground truth which is tricky.
In the earlier paper we used the parameter vector of
an SVM taught to classify the relevant and irrelevant
documents in the off-line learning stage, based on their
textual content. This is intuitively a sensible strat-
egy, and the experimental results validated it, but the
choice is unlikely to be optimal.

In this paper, we introduce a probabilistic model for
inferring relevance of the documents. Incorporating
both of the two stages, inference of the relevance of a
new document and inference of the implicit query, into
a single generative model solves rigorously the prob-
lem of getting the ground truth and the learning pro-
cedure will be optimal for the task, given our modeling
assumptions. The method indeed outperforms the ear-
lier one (Hardoon et al., 2007).

Learning of the probabilistic model is related to trans-
fer learning and meta-learning. The implicit query
is expressed in the model as latent variables shared
within each search task. The central task is to learn
an implicit query for a topic unseen in the original
training phase, which translates to transfer learning.
The eye movements from which the implicit query is
inferred can be considered as meta-data for the docu-
ments.

We test the method in an experimental scenario de-
signed to closely resemble a real information retrieval
setup. The user makes a query within a restricted
Wikipedia corpus located in our customized Wikipedia
server. A search engine then ranks the top-10 doc-
uments for this query, and the first five are shown
sequentially to the user using a web browser. The
browser has been modified to record and transmit
the eye movement measurements to the Wikipedia
server. We rank the remaining 5 documents by our eye
movement-based model and aggregate the new and the
original ranking to produce an ordering for the remain-
ing 5 documents. Average precision in the re-ranked 5
documents was used as the goodness criterion.

Our method, once trained, consists only of a linear
discriminator applied to term-specific gaze and term
features. Therefore, the method can be applied effi-
ciently in linear time whenever the eye tracking data
is available.

2. The Information Retrieval Task

The usual approach in IR is to rank the documents
based on their match to a textual query (Baeza-Yates
& Ribeiro-Neto, 1999). In our setup the user types in
a textual query that reflects her interest but is typi-

cally an incomplete description. Then the search en-
gine shows her the top-ranked documents. The eye
movements of the user are measured while she reads
the documents presented sequentially in the ranked
order. Our objective is to use the gaze patterns to im-
prove the ranking of the yet unseen documents. These
documents are consequently shown to the user in an
order modified using the implicit query inferred from
the gaze patterns. In doing so the relevant documents
are hopefully shown to the user earlier, that is, the
average precision of the search result is improved.

2.1. Okapi BM25 Ranking Function

A widely used ranking function is given by Okapi
BM25 (Robertson & Walker, 1994; Robertson &
Zaragoza, 2007), which is also used as a baseline
method throughout this paper. Okapi BM25 ranks
the documents given a textual query q that is a set
of terms. Our approach is independent of the actual
ranking function, however; indeed, in this work, we
could replace Okapi BM25 with any information re-
trieval system that outputs a ranking of documents
for a given query.

Consider a document collection C where each docu-
ment d = {tf t}t∈V in the collection is a vector of term
frequencies, where tf t is the frequency of term t in the
document and V is the vocabulary. For ad hoc re-
trieval the BM25 weighting function can be expressed
as

wt(d, C) =

(1 + k1)tf t

k1

(
(1− b) + b dl

avdl

)
+ tf t

log
|C| − dft + 1

2

dft + 1
2

, (1)

where dft is the document frequency of term t, dl is
the document length and avdl is the average document
length across the collection. The k1 and b are free pa-
rameters which we for the purposes of this paper fix to
k1 = 1.2 and b = 0.75, as suggested by Robertson and
Walker (1999). The documents are ranked according
to the sum of the weights of the terms in query q:

W (d, q, C) =
∑
t∈q

wt(d, C). (2)

2.2. Metasearch

We have at our disposal a separate and independent
ranking system, described in detail in Section 3, that
ranks the yet unseen documents based on the gaze pat-
terns of the users. In effect, we have two rankings: the
ranking derived from the textual query and given by
the Okapi BM25 ranking function described in Section
2.1, and the ranking derived from the gaze patterns.
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The problem of combining multiple search engine rank-
ings into one is known as metasearch and it has been
studied extensively during the past years (see, for ex-
ample, Cohen et al., 1998; Aslam & Montague, 2001).
Because in this work we aim for simplicity and robust-
ness, we use a straightforward linear combination of
rankings. Another reason for this choice is that we
want our approach to work also with a “black box”
search engine which only gives us a ranking of the
documents, without any probability of relevance as-
sociated with the documents.

In more detail, let rBM25(d) and rEY E(d) be the ranks
of the document d given by the Okapi BM25 ranking
function and the eye movement model, respectively.
We re-rank the yet unseen documents using score(d)
defined by

score(d) = γrBM25(d) + (1− γ)rEY E(d), (3)

with the document having the smallest score(d)
ranked first. Here γ is a constant between zero and
one.

3. Learning to Learn: A Probabilistic
Model

In this section we introduce a probabilistic model that
can be used to infer the ranking of yet unseen docu-
ments for a new and unknown query, given how the
user has viewed a set of documents. In practice, the
viewed documents are the highest-ranked documents
for a given unknown query, and the inferred ranking
is used to modify the order in which the further docu-
ments are presented.

3.1. Probabilistic Model

The available data is a collection of documents, en-
coded as TFIDF vectors d, where the component cor-
responding to term t is

dt = tf t log
|C|
dft

.

For the viewed documents we additionally have eye
movement features. The feature vector eit contains
feature values for term t in document i. There are
two types of features: eye movement features that are
computed from the eye movement pattern over the
term, and textual features that depend only on the
term and its location in the document. The features
are described in Section 4.3.

In the model, the relevancy r of a document is assumed
to depend on the TFIDF vector d of the document
and a search task specific query vector w. Our main

assumption is that the importance of a certain term
for a search query depends only on the way the term is
viewed, not on the meaning of the term. This allows us
to learn global parameters α and β, which are common
for all search tasks, for the mapping from the features
e to the term’s weights wt. The model is illustrated in
Figure 1.

d

e

r

α

β

w

κ

Q

D

V

Figure 1. Graphical representation for the generative pro-
cess for learning to learn. The plates are repeated the
number of times shown in their bottom right corner; V is
the number of terms in the vocabulary, Q of search tasks,
and D of documents in the collection. The d is the TFIDF
representation of the document and r is the 0–1 relevance
of a document in a given search task. The e are the term-
specific eye movement and text features and w is the query
inferred from the eye movement features. The α and β are
parameters shared by all search tasks, and κ is a prior pa-
rameter.

The query vector w of a search task is a vector in R|V |,
where |V | is the number of terms in the vocabulary.
The entries in the query vector can be interpreted as
the relative importance of the terms for the query. We
assume that the entries in the query vector are nor-
mally distributed, with the mean depending on the eye
movement features during the search task. We further
assume that the mapping from the eye movements to
the query weights is universal in the sense that the pa-
rameters of the mapping depend neither on the search
task nor on the specific term.

The query weight wqt for term t in the search task q
depends on the viewed documents (in our experiments
top-k with k = 5) in the search task, denoted by Dq,
and on all term features in the search task, denoted
collectively by Eq. We assume that the dependency is
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linear,

p(wqt|Eq,β,β′) =

N

 1
|Dq|

∑
i∈Dq

(
βT eitIit + β′T eit(1− Iit)

)
, σ2

 ,

(4)

where the indicator variable Iit = 1 if term t is viewed
in document i, and 0 otherwise. If a term appears
in the document but is not viewed only the textual
features have non-zero values. If a word t does not
appear in document i, the term’s features are set to
zero: eit = 0. The two regression coefficient vectors β
and β′, for viewed and unviewed terms, respectively,
are common for all tasks. For notational simplicity we
denote both of these parameters by β in the following.

For the probability of relevance r of a document in
a search task q we assume the functional form of lo-
gistic regression. The probability is assumed to be a
sigmoidal function of the dot product of the document
TFIDF vector d and the query vector wq,

p(r|d,wq, α) =
1

1 + e−(α+dT wq)
. (5)

The parameter α is common for all tasks.

We assume availability of a collection of background
tasks for learning. Each background task is a search
session where we know the relevances of the displayed
documents, and have observed users’ eye movements.
The background tasks are used to learn the shared
parameters.

The hyperparameters of the model, α and β on which
the transfer learning is based, are estimated by maxi-
mizing the posterior from which all other parameters
have been marginalized out. The logarithm of the
marginalized posterior to be maximized is

L =
∑

i∈DBG

log p(ri|di, α,β) + log p(β|κ)

=
∑

i∈DBG

log
∫

p(ri|di,wq(i), α)p(wq(i)|Eq(i),β)dwq(i)

+ log p(β|κ)

≈
∑

i∈DBG

log p(ri|di, ŵ(q(i),β), α) + log p(β|κ),

where q(i) is the index of the background task during
which document i was shown, DBG is the set of all top-
k documents in background tasks, and log p(β|κ) =
−κ/2βT β is a Gaussian prior for β. We assume a
uniform prior for α. In the last step, the integral is

approximated for computational reasons by a point
estimate evaluated at the mode ŵ of p(wq(i)|Eq(i),β);
the entries of the mode are

ŵt(q, β) = arg max
wqt

p(wqt|Eq,β)

=
1

|Dq|
∑
i∈Dq

(
βT eitIit + β′T eit(1− Iit)

)
. (6)

Here |Dq| = k is the number of viewed documents
(top-k documents) in the search task q.

The learned values of the hyperparameters α and β
are used to transfer knowledge from the old tasks to
a new one. For the new task, we observe only eye
movements on a small number of documents; we do
not know the relevances of the documents as in the
learning phase. The best prediction of relevance would
result by integrating over the potential query vectors,
but for computational reasons we again estimate the
integral by the mode of p(wq(i)|Eq(i),β). The mode
can be interpreted as the estimated query vector wnew,
estimated using the equation (6), where the sum now
is over the documents in the new task.

The ultimate goal is to find documents which are rele-
vant to the new query. We rank the test set of unseen
documents according to the probabilities (5) computed
using wnew.

3.2. SVM Model

The probabilistic model was motivated by the model
(denoted by “SVM model”) of Hardoon et al. (2007);
we compared our model with the linear variant of the
SVM model that performed almost as well as the best
one in the original paper.

The main difference between our probabilistic model
and the SVM model is that we have a full generative
framework for all observations. A useful consequence
of this is that we have a principled way for generating
the search task specific implicit query w from the term-
specific eye movements patterns. In the SVM model
this step was somewhat ad hoc; the ground truth was
obtained by classifying relevant vs. irrelevant docu-
ments in the training data. The regressor then tried
to predict the SVM discriminator weights from eye
tracking data. There is no guarantee that the discrim-
inator weights used by the SVM are optimal, or even
always good, targets taking into account uncertainties
stemming from the noisy eye movements.

Note that in this paper we used fairly simple computa-
tional approximations for generating the task-specific
implicit queries w. The fact that the results are still
good gives the model further support; if necessary,
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more accurate approximations can be developed later.

3.3. Connection to Transfer Learning and
Meta-Learning

In our problem we need to learn to learn an implicit
query from the text of the document and gaze pattern.
This needs to be done for search topics unseen in the
training phase. Each search topic has a hidden rep-
resentation that we have to learn, namely the query
vector w. We have additionally introduced hyperpa-
rameters, namely the α and β, that are shared across
all search tasks. The shared parameters contain infor-
mation that is needed to learn the search task-specific
query vector.

Our modeling assumption is that there exists infor-
mation in the gaze pattern that is independent of the
actual semantic content of the words and of the spe-
cific query. We encode independence of the specific
query by introducing the parameters α and β that
are shared across the search tasks. Independence of
the semantic content is achieved by constructing the
model so that the query vector w depends only on text
and eye movement features associated with a specific
term, but not on the semantic content of the terms.
In other words, the model is invariant with respect to
any permutation of term labels.

The learning process, described in Section 3.1, can be
interpreted to have two phases: in the first phase the
parameters α and β that are shared across all search
tasks are learned using several background search
tasks. In the second “on-line” phase a search task-
specific query vector w (for a previously unseen search
task) is estimated using the shared parameters.

Our problem is related to transfer learning and meta-
learning (Thrun, 1996; Baxter, 2004; Caruana, 1997;
Ando & Zhang, 2005; Thrun, 1998; Pratt & Thrun,
1997; Vilalta & Drissi, 2002; Giraud-Carrier et al.,
2004). Transfer learning and meta learning utilize data
from other “similar” learning tasks and from multi-
ple applications of the learning system. For example,
learning to recognize objects in cartoons might help to
recognize objects in photographs (Elidan et al., 2006);
or in our case, learning to infer query vectors in search
tasks helps in learning a query vector in a yet unseen
search task. We can think that in our case the induc-
tive bias extracted is parametrized by α and β and
fixed when these parameters are learned. When we
observe a new search task we can then use the infor-
mation coded in α and β to learn the task-specific
query vector w that can finally be used to predict the
relevance of a given document.

4. Experiments

We conducted small scale eye tracking experiments to
validate the proposed model. The experiments were
designed to simulate the common case where some
keywords are available but they are not a sufficient
description of the interests.

4.1. Search Tasks

We constructed 13 search tasks for text documents (see
Table 1). The search tasks were chosen prior to doing
any experiments. The criteria for selecting the search
tasks were that there should be several relevant doc-
uments for each task and, furthermore, that the orig-
inal query should also suggest irrelevant documents.
That is, there should be irrelevant documents which
are ranked quite high. This is why the search terms
were purposefully ambiguous.

For example, in search task number 3 the task was
to find information about “ancient Rome.” The user
would be instructed to find documents that would tell
about ancient Rome. The textual search query, forced
by us, was “Rome.” As a result, the search results
included articles also, for example, of modern Rome.
Our purpose was to see whether the gaze pattern could
be used to infer a new query. Intuitively, the query vec-
tor w inferred from the eye movements could include
with positive weight terms related to ancient Rome,
such as “ancient”, “Caesar” and “Carthage”; and pos-
sibly with negative weight terms related to the modern
times, such as “airport” or “president”.

The document corpus consisted of articles downloaded
from Wikipedia. Only the lead section of the docu-
ments before the first section header was shown to the
user and used in the experiments. For each search task,
we selected 10 documents having the highest BM25
score.

4.2. Experimental Procedure

There were three participants in the experiments, one
female and two males. The test subjects were volun-
tary under and post-graduate researchers (the authors
were not included).

The participants were asked to search for documents of
a given topic using a web search engine. They were ad-
vised to act as if they were collecting the relevant doc-
uments of the topic for later reading, that is, they were
supposed to stop reading the document once they had
determined whether the document was relevant. Each
task was started by clicking a search button which sub-
mitted the pre-entered search term to a custom server.
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Table 1. The search tasks and the given search terms.
Task Search

number Desired topic term
1 American football football
2 Alternative medicine medicine
3 Ancient Rome Rome
4 Adhesive tape tape
5 Environmental conservation conservation
6 Seal (marine mammal) seal
7 Extra-solar planets planets
8 Visual nervous system vision
9 Internet forums forum
10 Marketing strategies strategies
11 National libraries libraries
12 British Royal Navy navy
13 Space shuttles shuttle

Our search engine did not return a list of the most rele-
vant documents as search engines usually do. Instead,
it returned the most relevant document directly. In the
bottom of each document there were two links which
were used for marking the document as either relevant
or not relevant. Clicking one of these links retrieved
the next document. All other links were removed from
the documents. The search engine returned the docu-
ments in the order determined by the BM25 algorithm.
Each search session included 10 documents. After fin-
ishing one session the test subject was automatically
given a topic and search terms for the next task.

The relevance judgements given by the users were used
as ground truth during the training phase of the model.
In testing phase they were used to validate the results.

During the search tasks the users’ eye movements were
recorded with a Tobii 1750 eye tracker. Tobii tracks
gaze location by measuring the reflection pattern on
the cornea of eye. It does not require wearing a helmet
or a headrest. The users were sitting 60 cm away from
a 17 inch computer screen. The system was calibrated
once in the beginning of the experiment.

4.3. Term Features

The eye tracker and the browser recorded the sequence
of fixations; it was then transmitted to the Wikipedia
document server when the user clicked any link. A part
of the gaze trajectory was considered a fixation if the
gaze stayed inside a 30 pixel square (about 0.6 visual
angle) for more than 100 ms. Fixations that appeared
outside the bounding boxes of vocabulary words were
ignored. The vocabulary consisted of stemmed words,
with stop words removed. The size of the vocabulary
was 3030 words.

For each term t, we extracted 19 eye movement fea-
tures and 3 text features, denoted collectively by et.
We used the same eye movement features, such as
number of fixations, absolute, relative and mean fixa-
tion durations, used by Hardoon et al. (2007) as well.
The 3 text features were independent of the actual
search task; they are the number of characters in the
word, the relative position of the word in the docu-
ment, and the inverse document frequency of the word.

4.4. Combination of Textual and Eye
Movement Based Searches

We show that a simple combination of our eye
movement-based ranking and a ranking by a state-of-
the-art textual IR algorithm has higher precision than
the textual search alone. For the textual search we use
BM25, a well-known bag-of-words ranking function.

We measured the eye movements while the users were
reading top-5 documents as returned by BM25. The
documents below the rank 5 were used for testing. We
ranked the test documents with our method thus get-
ting a second ranking in addition to the original BM25
ranking. We combined the two rankings by reordering
the documents according to the weighted average (3).

To compare the original BM25 ranking and the com-
bined ranking, we compare their average precision, a
common measure for evaluating search results. It is
computed as the average of the precisions at positive
rankings: 1

R

∑R
i=1

i
ri

, where R is the total number of
relevant documents, and the ri are the rankings of the
positive documents such that ri < ri+1. The best pos-
sible average precision is one, which corresponds to all
relevant documents being ranked in the first positions.

We learn the query vector for each search task by leav-
ing the data for that task out and using the remain-
ing tasks as background tasks in the first phase of the
training, as was discussed in Section 3.1. In the “on-
line” phase we use the top-5 documents from the left-
out task to infer the query vector.

We combine BM25 and the probabilistic model by us-
ing equation (3). For that purpose we need to decide a
value for the weighting factor γ. We compare the mean
average precision of the plain BM25 and the combina-
tion of BM25 and the proposed probabilistic model for
documents that are ranked 6–10 in each background
task for several discrete values of γ, and for each task
select the γ value that has the best mean improvement
in average precision. We use the average of these task-
specific best values of γ in order to obtain a common
value of γ = 0.2, which is then the value used in all
of the experiments. The value κ = 1 for the prior pa-
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rameter is selected in an analogous fashion at the same
time.

The results are shown in Table 2. On the test set, in 9
search tasks out of 13 the mean average precision of the
combined ranking across test subjects outperformed
the baseline BM25 ranking. The difference in average
precision is statistically significant (p = 0.047, one-
tailed Wilcoxon Signed Rank Test).

The worst performance is shown by task 6 in which the
only relevant document in ranks 6–10 (according to the
users’ relevance judgement) was moved from being 6th
to 10th, thus reducing the average precision for docu-
ments in ranks 6–10 from unity of the BM25 baseline
down to 0.29. In all the other tasks the performance
either improved clearly, or for some degraded slightly.

In order to examine the relative contributions of the
eye movement and textual features we compared two
probabilistic models, one using just the text features
(of all words, irrespective of whether they were looked
at or not) and one using all the features. The mean
average precision of the latter was 6.3 percentage units
higher but for this amount of data the difference was
not statistically significant (p = 0.22).

4.5. Comparison to the SVM Model

We compared the performance of the combination of
BM25 and the probabilistic model to an analogous
combination of BM25 and the SVM (of Section 3.2).
The SVM model is trained using the eye movements
on the training documents, as described in (Hardoon
et al., 2007), and the resulting ranking is combined to
the BM25 ranking identically as was done above for
the probabilistic model.

The mean average precision of the combination of
BM25 and the SVM is worse than the average pre-
cision of BM25 for all values of the weighting param-
eter γ. The bad performance of the SVM model here
is probably due to the fact that the ground truth for
the query vectors, estimated with SVM from the very
small data sets, is likely to be very noisy. It is also pos-
sible that the probabilistic model is otherwise better
suited for the relatively small training set sizes.

5. Discussion

We introduced a generative model of how the relevance
of documents is related to the viewing patterns of peo-
ple during a search task. The model is trained in two
phases. In the first phase, the hyperparameters that
are independent of the search topic are learned. In
the second “on-line” phase, the learned parameters are

used to infer an implicit query from the gaze patterns
during a new search session.

The system is realistically applicable; we have indeed
implemented it using a standard web browser that has
been modified to record and transmit the information
about the gaze patterns to the web server. The docu-
ment corpus used in the experiments consisted of ab-
stracts of Wikipedia articles.

Our results imply that the performance of the method
correlates with the search task; in particular, there are
some tasks for which the methods seems to perform
quite badly although on average it clearly improves
the results. It needs to be investigated more carefully
later, which kinds of search tasks the eye movements
are helpful in, and whether different types of models
are useful for different kinds of tasks.
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Abstract
Compressive sensing (CS) is an emerging £eld
that, under appropriate conditions, can signi£-
cantly reduce the number of measurements re-
quired for a given signal. In many applications,
one is interested in multiple signals that may
be measured in multiple CS-type measurements,
where here each signal corresponds to a sensing
“task”. In this paper we propose a novel multi-
task compressive sensing framework based on a
Bayesian formalism, where a Dirichlet process
(DP) prior is employed, yielding a principled
means of simultaneously inferring the appropri-
ate sharing mechanisms as well as CS inversion
for each task. A variational Bayesian (VB) infer-
ence algorithm is employed to estimate the full
posterior on the model parameters.

1. Introduction
Over the last two decades researchers have considered
sparse signal representations in terms of orthonormal basis
functions (e.g., the wavelet transform). For example, con-
sider an m-dimensional real-valued signalu and assume an
m £m orthonormal basis matrix Ψ; we may then express
u = Ψθ, where θ is an m-dimensional column vector of
weighting coef£cients. For most natural signals there ex-
ists an orthonormal basis Ψ such that θ is sparse. Consider
now an approximation to u, û = Ψθ̂, where θ̂ approxi-
mates θ by retaining the largest N coef£cients and setting
the remaining m¡N coef£cients to zero; due to the afore-
mentioned sparseness properties, ||u¡û||2 is typically very

Appearing in Proceedings of the 25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

small even for N ¿ m. Conventional techniques require
one to measure the m-dimensional signal u but £nally dis-
card m ¡ N coef£cients (Charilaos, 1999). This sample-
then-compress framework is often wasteful since the sig-
nal acquisition is potentially expensive, and only a small
amount of data N is eventually required for the accurate
approximation û. One may therefore consider the follow-
ing fundamental question: Is it possible to directly measure
the informative part of the signal? Recent research in the
£eld of compressive sensing shows that this is indeed pos-
sible (Candes, 2006)(Donoho, 2006).

Exploiting the same sparseness properties of u employed
in transform coding (u = Ψθ with θ sparse), in com-
pressive sensing one measures v = Φθ, where v is an
n-dimensional vector with n < m, and Φ is the n £ m
sensing matrix. There are several ways in which Φ may
be constituted, with the reader referred to (Donoho, 2006)
for details. In most cases Φ is represented as Φ = TΨ,
where T is an n £m matrix with components constituted
randomly (Tsaig & Donoho, 2006); hence, the CS mea-
surements correspond to projections of u with the rows
of T : v = Tu = TΨθ = Φθ, which is an under-
determined problem. Assuming the signal u is N -sparse
in Ψ, implying that the coef£cients θ only have N nonzero
values (Candes, 2006) (Donoho, 2006), Candès, Romberg
and Tao in (Candes et al., 2006) show that, with over-
whelming probability, θ (and hence u) is recovered via

min ||θ||l1 , s.t., v = Φθ, (1)

if the number of CS measurements n > C ¢N ¢log m (C is a
small constant); if N is small (i.e., if u is highly compress-
ible in the basis Ψ) then n ¿ m. In practice the signal
u is not exactly sparse, but a large number of coef£cients
in the basis Ψ may be discarded with minimal error in re-
constructing u; in this practical case the CS framework has
also been shown to operate effectively.
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The problem in (1) may be solved by linear program-
ming (S. Chen & Saunders, 1999) and greedy algo-
rithms (Tropp & Gilbert, 2005) (Donoho et al., 2006). A
Bayesian compressive sensing (BCS) methodology is pro-
posed in (Ji et al., 2007b), by posing the CS inversion prob-
lem as a linear-regression problem with a sparseness prior
on the regression weights θ. One advantage of BCS is that
this framework may be extended to multi-task compressive
sensing (Ji et al., 2007a), in which each CS measurement
vi = Φiθi represents a sensing “task” and the objective is
to jointly invert for all {θi}i=1,M , through an appropriate
sharing of information between the M data collections. In
multi-task CS, one may potentially reduce the number of
measurements required for each task by exploiting the sta-
tistical relationships among the tasks, for example, “Dis-
tributed Compressed Sensing” (DCS) (Baron et al., 2005),
an empirical Bayesian strategy “Simultaneous Sparse Ap-
proximation” in (Wipf & Rao, 2007), and a hierarchical
Bayesian model for multi-task CS (Ji et al., 2007a). How-
ever, these multi-task algorithms assume all tasks are ap-
propriate for sharing, which may not be true in many prac-
tical applications. In this paper we introduce a Dirichlet
process (DP) prior (West et al., 1994) to the hierarchical
BCS model, which can simultaneously perform the inver-
sion of the underlying signals and infer the appropriate
sharing/clustering structure across the M tasks.

As detailed below, an important property of DP for the
work presented here is that it provides a tool for semi-
parametric clustering (i.e., the number of clusters need
not be set in advance). The DP-based hierarchical model
is employed to realize the desired property of simultane-
ously clustering and CS inversion of the M measurements
{vi}i=1,M . A variational Bayes (Blei & Jordan, 2004) in-
ference algorithm is considered, yielding a full posterior
over the model parameters θi.

2. Multi-Task CS Modeling with DP Priors
2.1. Multi-Task CS Formulation for Global Sharing

Let vi represent the CS measurements associated with task
i, and assume a total of M tasks. The i-th CS measurement
may be represented as

vi = Φiθi + εi, (2)

where the CS measurements vi are characterized by an ni-
dimensional real vector, the sensing matrix Φi correspond-
ing to task i is of size ni £m, and θi is the set of (sparse)
transform coef£cients associated with task i. The j th co-
ef£cient of θ i is denoted µi,j . The residual error vector
εi ∈ R

ni is modeled as ni i.i.d. draws from a zero-mean
Gaussian distribution with an unknown precision ®0 (vari-
ance 1/®0); the residual corresponds to the error imposed
by setting the small transform coef£cients exactly to zero

when performing the CS inversion.

We impose a hierarchical sparseness prior on the parame-
ters θi, the lower level of which is

p(θi|αi) =
m
∏

j=1

N (µi,j |0, ®
−1
i,j ), (3)

where ®i,j is the j th component of the vector αi. To im-
pose sparseness, on a layer above a Gamma hyperprior is
employed independently on the precisions ®i,j . The likeli-
hood function for the parameters θi and ®0, given the CS
measurements vi, may be expressed as

p(vi|θi, ®0) = (
2¼

®0
)−

n
i

2 exp(¡
®0

2
‖vi ¡Φiθi‖

2
2). (4)

Concerning the aforementioned hyperprior, for the multi-
task CS model proposed in (Ji et al., 2007a), the parame-
ters αi = α, for i = 1, ¢ ¢ ¢ ,M , and α »

∏m

j=1 Ga(c, d).
In this framework the CS data from all M tasks are used
to jointly infer the hyper-parametersα (global processing).
However, the assumption in such a setting is that it is ap-
propriate to employ all of the M tasks jointly to infer the
hyper-parameters. One may envision problems for which
the M tasks may be clustered into several sets of tasks
(with the union of these sets constituting the M tasks),
and data sharing may only be appropriate within each clus-
ter. Through use of the Dirichlet process (DP) (Escobar &
West, 1995) employed as the prior over αi, we simultane-
ously cluster the multi-task CS data, and within each cluster
the CS inversion is performed jointly. Consequently, we no
longer need assume that all CS data from the M tasks are
appropriate for sharing.

2.2. Dirichlet Process for Clustered Sharing

The Dirichlet process, denoted as DP (λ,G0), is a measure
on measures, and is parameterized by a positive scaling pa-
rameter λ and the base distribution G0. Assume we have
{αi}i=1,M and eachαi is drawn identically from G, and G
itself is a random measure drawn from a Dirichlet process,

αi|G
iid
» G, i = 1, ¢ ¢ ¢ ,M,

G » DP (λ,G0), (5)

where G0 is a non-atomic base measure.

Sethuraman (Sethuraman, 1994) provides an explicit char-
acterization of G in terms of a stick-breaking construction.
Consider two in£nite collections of independent random
variables ¼k and α∗

k, k = 1, 2, ¢ ¢ ¢ ,∞, where the ¼k are
drawn i.i.d. from a Beta distribution, denoted Beta(1, λ),
and the α∗

k are drawn i.i.d. from the base distribution G0.
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The stick-breaking representation of G is then de£ned as

G =

∞
∑

k=1

wkδα∗

k

, with (6)

wk = ¼k

k−1
∏

i=1

(1¡ ¼i), (7)

where ¼k|λ
iid
» Beta(1, λ) and α∗

k|G0
iid
» G0. This repre-

sentation makes explicit that the random measure G is dis-
crete with probability one and the support of G consists of
an in£nite set of atoms located at α∗

k, drawn independently
from G0. The mixing weights wk for atomα∗

k are given by
successively breaking a unit length “stick” into an in£nite
number of pieces, with 0 ≤ wk ≤ 1 and

∑

∞

k=1 wk = 1.

2.3. Multi-Task CS with DP Priors

We employ a DP prior with stick-breaking representation
for αi in the model in (3), which assumes that αi|G » G
and G =

∑

∞

k=1 wkδα∗

k

. The base distribution G0 cor-
responds to the sparseness promoting representation dis-
cussed in Sec 2.1. To facilitate posterior computation we
introduce an indicator variable zi with zi = k indicating
αi = α∗

k. Therefore the DP multi-task CS model is ex-
pressed as

vi|θi, ®0 » N (Φiθi, ®
−1
0 I),

µi,j |zi, {α
∗

k}k=1,K » N (0, ®∗

zi,j
−1),

zi|{wk}k=1,K
iid
» Multinomial({wk}k=1,K),

wk = ¼k

k−1
∏

l=1

(1¡ ¼l),

¼k
iid
» Beta(1, λ),

λ|e, f » Ga(e, f),

α∗

k|c, d
iid
»

m
∏

j=1

Ga(c, d),

®0 » Ga(a, b), (8)

where i = 1, ¢ ¢ ¢ ,M , j = 1, ¢ ¢ ¢ ,m, k = 1, ¢ ¢ ¢ ,K,
1 ≤ K ≤ ∞, and ®i,j is the j-th element of αi. For
convenience, we denote the model in (8) as DP-MT CS.
In practice K is chosen as a relatively large integer (e.g.,
K = M if M is relatively large) which yields a negligi-
ble difference compared to the true DP (Ishwaran & James,
2001), while making the computation practical.

The choice of G0 here is consistent with the sparseness-
promoting hierarchical prior discussed in Section II-A.
Consider task i and assume αi takes value α∗

k; the prior

distribution over θi is then

p(θi|c, d) =

m
∏

j=1

∫

N (µi,j |0, ®
∗

k,j
−1)Ga(®∗

k,j |c, d)d®∗

k,j .

(9)
Equation (9) is a type of automatic relevance determination
(ARD) prior which enforces the sparsity over θi (Tipping,
2001). We usually set c and d very close to zero (e.g., 10−4)
to make a broad prior over α∗

k, which allows the posteriors
on many of the elements of α∗

k to concentrate at very large
values, consequently the posteriors on the associated ele-
ments of θi concentrate at zero, and therefore the sparse-
ness of θi is achieved (MacKay, 1994) (Neal, 1996). Since
these posteriors have “heavy tails” compared to a Gaussian
distribution, they allow for more robust shrinkage and bor-
rowing of information. Similarly, hyper-parameters a, b, e,
and f are all set to a small value to have a non-informative
prior over ®0 and λ respectively.

3. Variational Bayesian Inference
One may perform inference via MCMC (Gilks et al., 1996),
however this requires vast computational resources and
MCMC convergence is often dif£cult to diagnose (Gilks
et al., 1996). Variational Bayes inference is therefore in-
troduced as a relatively ef£cient method for approximating
the posterior. From Bayes’ rule, we have

p(H|V,Υ) =
p(V|H)p(H|Υ)

∫

p(V|H)p(H|Υ)dH
, (10)

where V = {vi}i=1,M are CS measurements from
M CS tasks, H = {®0, λ,π, {zi}i=1,M , {θi}i=1,M ,
{α∗

k}k=1,K} are hidden variables (with π = {¼k}k=1,K)
and Υ = {a, b, c, d, e, f} are known hyper-parameters.
The integration in the denominator of (10), called the
marginal likelihood, or “evidence” (Beal, 2003), is gener-
ally intractable to compute analytically. Instead of directly
estimating p(H|V,Υ), variational methods seek a distri-
bution q(H) to approximate the true posterior distribution
p(H|V,Υ). Consider the log marginal likelihood

log p(V|Υ) = F(q(H)) +DKL(q(H)||p(H|V,Υ)),
(11)

where

F(q(H)) =

∫

q(H) log
p(V|H|,Υ)p(H,Υ)

q(H)
dH, (12)

and DKL(q(H)||p(H|V,Υ)) is the KL divergence be-
tween q(H) and p(H|V,Υ). The approximation of
p(H|V,Υ) using q(H) can be achieved by maximizing
F(q(H)), which forms a strict lower bound on log p(V|Υ).
In this way estimation of q(H) may be made computation-
ally tractable. In particular, for computational convenience,
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q(H) is expressed in a factorized form, with the same func-
tional form as the priors p(H|Υ). For the model in (8), we
assume

q(H) = q(®0)q(λ)q(π)

M
∏

i=1

q(zi)

M
∏

i=1

q(θi)

K
∏

k=1

q(α∗

k),

(13)
where q(®0) » Ga(ã, b̃), q(λ) » Ga(ẽ, f̃), q(π) »
∏K−1

k=1 Beta(¿1k, ¿2k), q(zi) » Multinomial(w),
q(θi) » N (¹i,Γi), q(α∗

k) »
∏m

j=1 Ga(®∗

k,j |c̃k,j , d̃k,j),
with w = {wk}k=1,K .

By substituting (13) and (8) into (12), the lower bound
F(q) is readily obtained. The optimization of the lower
bound F(q) is realized by taking functional derivatives
with respect to each of the q(¢) distributions while £xing
the other q distributions, and setting ∂F(q)/∂q(¢) = 0 to
£nd the distribution q(¢) that increases F (Beal, 2003). The
update equations for the variational posteriors are summa-
rized in the Appendix. The convergence of the algorithm is
monitored by the increase of the lower bound F . One prac-
tical issue of the variational Bayesian inference is that the
VB algorithm converges to a local maximum of the lower
bound of the marginal log-likelihood since the true poste-
rior usually is multi-modal. Therefore the average of multi-
ple runs of the algorithm from different starting points may
avoid this issue and yield better performance.

4. Experimental Results
4.1. Synthetic data

In the £rst set of examples we consider synthesized data to
examine the sharing mechanisms associated with the DP-
MT CS inversion. In the £rst example we generate data
with 10 underlying clusters. Figure 1 shows ten “tem-
plates”, each corresponding to a 256-length signal, with 30
non-zero components (the values of those non-zero com-
ponents are randomly drawn from N (0, 1)). The non-zero
locations are chosen randomly for each template such that
the correlation between these sparse templates is zero. For
each template, £ve sparse signals (each with 256 samples)
are generated by randomly selecting three non-zero ele-
ments from the associated template and setting the coef-
£cients to zero, and three zero-amplitude points in the tem-
plate are randomly now set to be non-zero (each of these
three non-zero values again drawn from N (0, 1)). In this
manner the sparseness properties of the £ve signals gener-
ated from a given template are highly related, and the ten
clusters of sparse signals have distinct sparseness proper-
ties. For each sparse signal a set of CS random projections
are performed, with the components of each projection vec-
tor drawn randomly from N (0, 1)(Donoho, 2006). The re-
construction error is de£ned as ||û ¡ u||2/||u||2, where û
is the recovered signal and u is the original one.

0 100 200
−2

0

2

0 100 200
−2

0

2

0 100 200
−2

0

2

0 100 200
−2

0

2

0 100 200
−2

0

2

0 100 200
−2

0

2

0 100 200
−2

0

2

0 100 200
−2

0

2

0 100 200
−2

0

2

0 100 200
−2

0

2

Figure 1. Ten template signals for 10-cluster case.
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Figure 2. Multi-task CS inversion error (%) for DP-MT and MT¤

CS for the ten-cluster case. (a) Reconstruction errors, (b) his-
tograms of the number of clusters yielded by DP-MT.

Figure 2 shows the reconstruction errors of the CS inver-
sion by DP-MT CS as well as the global-sharing MT CS
discussed in Sec 2.1 (denoted as MT∗ CS for simplicity), as
a function of the number of CS measurements. Both CS al-
gorithms are based on the VB DP-MT algorithm described
in Sec 3, however for MT∗, we set κi,1 = 1, and κi,k = 0
for k > 1 for all tasks and £x the values of κi,k in each it-
eration without update. The experiment was run 100 times
(with 100 different random generations of random projec-
tion as well as initial membership), and the error bars in
Figure 2 represent the standard deviation about the mean.
From Figure 2 the advantage of the DP-based formulation
is evident. In Figure 2 we also present histograms for the
number of different clusters inferred by the DP-MT CS. It
is clear from Figure 2 that the algorithm tends to infer about
10 clusters, but there is some variation, with the variation in
the number of clusters increasing with decreasing number
of CS measurements.

To further examine the impact of the number of underlying
clusters, we now consider examples for which the data are
generated for 5, 3, 2 and 1 underlying. For each of tem-
plates, £ve sparse signals are generated randomly, in the
manner discussed above for the ten-cluster case. In Fig-
ures 3-6 are shown results in the form considered in Fig-
ure 2, for the case of 5, 3, 2 and 1 underlying clusters for
data generation. One notes the following phenomenon: As
the number of underlying clusters diminishes, the differ-
ence between DP-MT and MT∗ CS algorithms diminishes,
with almost identical performance witnessed for the case
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Figure 3. Multi-task CS inversion error (%) for DP-MT and MT¤

CS for the £ve-cluster case. (a) Reconstruction errors, (b) his-
tograms of the number of clusters yielded by DP-MT.

of three and two clusters; this phenomenon is particularly
evident as the number of CS measurements increases. As
an aside, we also note that the DP-based inference of the
number of underlying clusters adapts well to the underly-
ing data generation.

We now provide an explanation for the relationships be-
tween the DP-MT and MT∗ CS algorithms. For two sparse
signals like those in Figure 1, they have distinct non-zero
coef£cients and therefore one would typically infer that
they have dissimilar sparseness properties. However, they
share many zero-amplitude coef£cients. If we consider M
sparse signals, and if all of the M signals share the same
large set of zero-amplitude coef£cients, then they are ap-
propriate for sharing even if the associated (small number
of) non-zero coef£cients are entirely distinct. For the 10-
cluster case, because of the large number of clusters, the
templates do not cumulatively share the same set of zero-
amplitude coef£cients; in this case global sharing for CS
inversion is inappropriate, and the same is true for the 5-
cluster case. However, for the 3 and 2 cluster cases, the
templates share a signi£cant number of zero-amplitude co-
ef£cients, and therefore global sharing is appropriate. This
underscores that global sharing across M tasks is appro-
priate when there is substantial sharing of zero-amplitude
coef£cients, even when all of the non-zero-amplitude coef-
£cients are distinct. However, one typically does not know
a priori if global sharing is appropriate (as it was not in
Figures 2 and 3), and therefore the DP-based formulation
offers generally high-quality results when global sharing is
appropriate and when it is not.

We consider the sharing mechanisms manifested for two
examples from the three-cluster case considered in Figure
4. The truncation level K can be set either to a large num-
ber or be estimated in principle by increase the number of
sticks included until the log-marginal likelihood (the lower
bound) in the VB algorithm starts to decrease. In this exam-
ple we choose the number of sticks in the DP formulation
to K = 8 which corresponds to the upper bound of the log-
marginal likelihood, and we show the stick (cluster) with
which each of the 15 tasks were grouped at the end of the
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Figure 4. Multi-task CS inversion error (%) for DP-MT and MT¤

CS for the three-cluster case. (a) Reconstruction errors, (b) his-
tograms of the number of clusters yielded by DP-MT.

90 100 110 120 130 140 150

0 

0.1

0.2

0.3

0.4

0.5

0.6

0.7 

0.8

0.9

1

# of measurements

A
vg

. 
re
co

n
. 
e
rr
o
r 
(%

)

DPMT CS

MT* CS

   (a)                                            (b)

0 1 2 3 4 5
0

50

100
# of Measurements=100

0 1 2 3 4 5
0

50
100

# of Measurements=110

0 1 2 3 4 5
0

50
100

# of Measurements=120

0 1 2 3 4 5
0

50
100

# of Measurements=130

0 1 2 3 4 5
0

50
100

# of Measurements=140

# of clusters

Figure 5. Multi-task CS inversion error (%) for DP-MT and MT¤

CS for the two-cluster case. (a) Reconstruction errors, (b) his-
tograms of the number of clusters yielded by DP-MT.
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Figure 6. Multi-task CS inversion error (%) for DP-MT and MT¤

CS for the one-cluster case. (a) Reconstruction errors, (b) his-
tograms of the number of clusters yielded by DP-MT.

inference process. These examples were selected because
they both yielded roughly the same average CS inversion
accuracy across the 15 CS inversions (0.40% and 0.38%
error), but these two runs yield distinct clusterings. This ex-
ample emphasizes that because the underlying signals are
very sparse and they have signi£cant overlap in the set of
zero-amplitude coef£cients, the particular clustering mani-
fested by the DP formulation is not particularly important
for the £nal CS-inversion quality.

4.2. Real images

In the following examples, applied to imagery, we perform
comparisons between DP-MT, MT∗, and also a single-task
Bayesian CS (ST), in which the CS inversion is performed
independently on each of the tasks. ST CS is realized with
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Figure 7. 2 example runs of the DP-MT CS clustering for the 3-
cluster case (100 CS measurements). The grey scale denotes the
probability that a given task is associated with a particular cluster.
(a) Reconstruction error was 0.40%, (b) reconstruction error of
0.38%.

the same algorithm as DP-MT and MT∗, but set κi,1 = 1,
and κi,k = 0 for k > 1, and consider only one CS task at a
time (M = 1)..

We conduct two examples on CS reconstruction of typical
imagery from “natural” scenes. All the images in these ex-
amples are of size 256 £ 256 and are highly compressible
in a wavelet basis. We choose the “Daubechies 8” wavelet
as our orthonormal basis, and the sensing matrix Φ is con-
structed in the same manner as in Sec 4.1. In this exper-
iment we adopt a hybrid CS scheme, in which using CS
we measure only £ne-scale wavelet coef£cients, while re-
taining all coarse-scale coef£cients (no compression in the
coarse scale) (Tsaig & Donoho, 2006). We also assume all
the wavelet coef£cients at the £nest scale are zero and only
consider (estimate) the other 4096 coef£cients. In both ex-
amples, the coarsest scale is j0 = 3, and the £nest scale is
j1 = 6. We use the mean of the posterior over θ to per-
form the image reconstruction. The reconstruction error is
de£ned as ||û ¡ u||2/||u||2, where û is the reconstructed
image and u is the original one.

In the £rst example, we choose 12 images from three differ-
ent scenes. To reconstruct the image, we perform an inverse
wavelet transform on the CS-estimated coef£cients. In Fig-
ure 8 (a) we show the reconstructed images with all 4096
measurements using linear reconstruction (θ = ΦTv),
which is the best possible performance. Figure 8 (b)-(d)
represent the reconstructed images by the DP-MT, MT∗,
and the ST algorithms, respectively, with the number of
CS measurements n = 1764 (1700 measurements in the
£ne scales and 64 in the coarse scale) for each task. The
reconstruction errors for these four methods are compared
in Table 1. We notice that the DP-MT algorithm reduces
the reconstruction error compared to the ST method, which
indicates that the multi-task CS inversion shares informa-
tion among tasks and therefore requires less measurements
than the single task learning does to achieve the same per-
formance. In addition to the CS inversion, the DP-MT also
yield task clustering, with this inferred simultaneously with
the CS inversion; while this clustering is not the £nal prod-
uct of interest, it is informative, with results shown in Fig-
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Figure 8. CS recon., (a) Linear, (b) DP-MT, (c) MT¤, (d) ST
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Figure 9. Sharing mechanism for 12 tasks in Figure 8 yielded by
DP-MT CS.

ures 9. Note that the algorithms infer three clusters, each
corresponding to a particular class of imagery. By con-
trast the MT∗ algorithm imposes complete sharing among
all tasks, and the results in Table I indicate that this under-
mines performance.
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Table 1. Reconstruction error (%) for the example in 8.
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Task 11 Task 12

DP-MT 8.79 7.89 9.69 8.04 14.33 13.22 15.18 14.54 15.51 16.71 16.11 15.19
MT∗ 10.19 9.14 11.49 9.18 16.94 15.59 17.46 16.50 18.62 19.82 19.34 18.03
ST 10.28 10.37 12.81 10.28 18.37 16.18 18.65 17.67 20.77 22.24 21.19 19.59

Linear 6.66 6.20 7.08 6.14 12.41 11.70 12.43 11.99 13.83 14.41 14.10 13.53

In the second example we consider 11 images from three
scenes. The reconstructed images are shown in Figure 10
by the linear reconstruction, DP-MT, MT∗ and ST algo-
rithms; the reconstruction errors are listed in Table 2 for
all four methods. As expected, the multi-task CS inversion
algorithm yields smaller reconstruction error than the sin-
gle task algorithm. The clustering result is shown in Figure
11, in which images 1-4 and 9-11 are clustered together by
DP-MT. However, recall the simple example considered in
Figure 7. The DP-based algorithm seeks to share the un-
derlying sparseness of the images, even though the images
themselves may appear distinct. In fact, the results in Fig-
ure 11 motivated the simple example considered in Figure
7.

5. Conclusions
Hierarchical Dirichlet process (DP) priors are considered
for the imposition of sparseness on the transform coef-
£cients in the context of inverting multiple CS measure-
ments. An independent zero-mean Gaussian prior is placed
on each transform coef£cient of each CS task and the task-
dependent precision parameters are assumed drawn from
a distribution G, where G is drawn from a Dirichlet pro-
cess (DP); the base distribution of the DP is a product of
Gamma distributions. The DP framework imposes the be-
lief that many of the tasks may share underlying sparseness
properties, and the objective is to cluster the CS measure-
ments, where each cluster constitutes a particular form of
sparseness. The DP formulation is non-parametric, in the
sense that the number of clusters is not set a priori and is
inferred from the data. A computationally ef£cient varia-
tional Bayesian inference has been considered on all model
parameters. For all examples considered, the DP-MT CS
inversion performed at least as well as ST CS inversion
and CS inversion based on global sharing. Especially when
global sharing was inappropriate, the DP-based inversion is
signi£cantly better.

In future research, we may consider correlation between
spatially and spectrally adjacent transformation coef£cients
and remove the assumption of exchangeability employed
within the DP, which in practice may not be true.

Appendix: Update Equations in VB DP MT
The updated hyperparameters for all q(¢) in Sec 3 are
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Figure 10. CS recon. (a) Linear, (b) DP-MT, (c) MT¤, (d) ST

• ã = a + 1
2

∑M

i=1 ni and b̃ = b +
1
2

∑M

i=1

[

tr(ΦiΓ
−1
i ΦT

i )+(Φiµi¡vi)
T (Φiµi¡vi)

]

.

• ẽ = e+K¡1 and f̃ = f¡
∑K−1

k=1

[

ψ(¿2k)¡ψ(¿1k +

¿2k)
]

, where ψ(x) = ∂
∂x

log Γ(x).
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Table 2. Reconstruction Error (%) for the example in Figure 10
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Task 11

DP-MT 6.50 6.41 6.89 6.86 15.81 15.09 15.91 14.74 7.74 8.05 8.50
MT∗ 7.79 7.76 8.12 8.32 18.17 17.70 18.66 17.13 8.87 9.16 9.97
ST 8.31 8.23 8.81 9.23 19.79 19.74 20.36 18.88 8.77 9.58 9.62

Linear 4.78 4.77 5.01 5.15 15.39 14.49 15.18 14.06 6.10 5.72 6.72
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Figure 11. Sharing mechanism for 11 tasks in Figure 10 yielded
by DP-MT

• ¿1k = 1 +
∑M

i=1 κi,k and ¿2k = ẽ

f̃
+

∑M

i=1

∑K

l=k+1 κi,k , where κi,k = q(zi = k).

• c̃k,j = c + 1
2

∑M

i=1 κi,k and d̃k,j = d +
1
2

∑M

i=1 κi,k(σi,j + ¹2
i,k,j), where [σi,1, ¢ ¢ ¢ , σi,m] is

the diagonal elements of Γ−1
i and ¹i,k,j is the j th ele-

ment of vector µi.

• Γi =
∑K

k=1 κi,kΛk+ ã

b̃
ΦT

i Φi andµi = ã

b̃
Γ−1

i ΦT
i vi,

where Λk = diag(c̃k,1/d̃k,1, ¢ ¢ ¢ , c̃k,m/d̃k,m) is a di-
agonal matrix of m£m.

• κi,k = e
λ

i,k

∑

K

l=1
e

λ
i,l

, where λi,k =
∑k−1

l=1

[

ψ(¿2l) ¡

ψ(¿1l + ¿2l)
]

+
[

ψ(¿1k) ¡ ψ(¿1k + ¿2k)
]

¡
1
2

{

∑m

j=1

[

ln 2¼¡ψ(c̃k,j)+ln(d̃k,j)
]

+tr(Γ−1
i Λk)+

µT
i Λkµi

}

.
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Abstract

Consider the following problem: given sets of
unlabeled observations, each set with known
label proportions, predict the labels of an-
other set of observations, also with known
label proportions. This problem appears in
areas like e-commerce, spam filtering and im-
proper content detection. We present con-
sistent estimators which can reconstruct the
correct labels with high probability in a uni-
form convergence sense. Experiments show
that our method works well in practice.

1 Introduction

Assume that a web services company wants to increase
its profit in sales. Obviously sending out discount
coupons will increase sales, but sending coupons to
customers who would have purchased the goods any-
way decreases the margins. Alternatively, failing to
send coupons to customers who would only buy in case
of a discount reduces overall sales. We would like to
identify the class of would-be customers who are most
likely to change their purchase decision when receiv-
ing a coupon. The problem is that there is no direct
access to a sample of would-be customers. Typically
only a sample of people who buy regardless of coupons
(those who bought when there was no discount) and a
mixed sample (those who bought when there was dis-
count) are available. The mixing proportions can be
reliably estimated using random assignment to control
and treatment groups. How can we use this informa-
tion to determine the would-be customers?

Likewise, consider the problem of spam filtering.
Datasets of spam are likely to contain almost pure

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

spam (this is achieved e.g. by listing e-mails as spam
bait), while user’s inboxes typically contain a mix of
spam and non-spam. We would like to use the inbox
data to improve estimation of spam. In many cases
it is possible to estimate the proportions of spam and
non-spam in a user’s inbox much more cheaply than
the actual labels. We would like to use this informa-
tion to categorize e-mails into spam and non-spam.

Similarly, consider the problem of filtering images with
“improper content”. Datasets of such images are read-
ily accessible thanks to user feedback, and it is rea-
sonable to assume that this labeling is highly reliable.
However the rest of images on the web (those not la-
beled) is a far larger dataset, albeit without labels (af-
ter all, this is what we would like to estimate the labels
for). That said, it is considerably cheaper to obtain a
good estimate of the proportions of proper and im-
proper content in addition to having one dataset of
images being of likely improper content. We would
like to obtain a classifier based on this information.

In this paper we present a method to estimate labels
directly in such situations, assuming that only label
proportions be known. In the above examples, this
would be helpful in identifying potential customers,
spam e-mails and improper images. We prove bounds
indicating that the estimates obtained are close to
those from a fully labeled scenario. The formal setting
though is more general than the above examples might
suggest: we do not require any label to be known, only
their proportions within each of the involved datasets.
Also we are not restricted to the binary case but in-
stead can deal with large numbers of classes.

Problem Formulation Assume that we have n sets
of observations Xi =

{
xi

1, . . . , x
i
mi

}
of respective sam-

ple sizes mi (our calibration set) as well as a set
X = {x1, . . . , xm} (our test set). Moreover, assume
that we know the fractions πiy of patterns of labels
y ∈ Y (|Y| ≤ n) contained in each set Xi and assume
that we also know the marginal probability p(y) of the
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Table 1. Notation Conventions

Xi ith set of observations: Xi = {xi
1, . . . , x

i
mi
}

mi number of observations in Xi

X test set of observations: X = {x1, . . . , xm}
Y test set of labels: Y = {y1, . . . , ym}
m number of observations in the test set X
πiy proportion of label y in set i
φ(x, y) map from (x, y) to a Hilbert Space

Table 2. Major quantities of interest in the paper

Numbers on the left represent the order in which the cor-
responding quantity is computed in the algorithm (let-
ters denote the variant of the algorithm: ‘a’ for general
feature map φ(x, y) and ‘b’ for factorizing feature map
φ(x, y) = ψ(x)⊗ϕ(y)). Lowercase subscripts refer to model
expectations, uppercase subscripts are sample averages.

Expectations with respect to the model:
µxy := E(x,y)∼p(x,y)[φ(x, y)]

µclass
x [y, y′] := E(x)∼p(x|y)[φ(x, y′)]
µset

x [i, y′] := E(x)∼p(x|i)[φ(x, y′)]

µclass
x [y] := E(x)∼p(x|y)[ψ(x)]
µset

x [i] := E(x)∼p(x|i)[ψ(x)]

Expectations with respect to data:
µXY := 1

m

Pm
i=1 φ(xi, yi)

(1a) µset
X [i, y′] := 1

mi

P
x∈Xi

φ(x, y′) (known)

(1b) µset
X [i] := 1

mi

P
x∈Xi

ψ(x) (known)

Estimates:
(2) µ̂class

x = (π>π)−1π>µset
X

(3a) µ̂XY =
P

y∈Y p(y)µ̂
class
x [y, y]

(3b) µ̂XY =
P

y∈Y p(y)ϕ(y)⊗ µ̂class
x [y]

(4) θ̂∗ solution of (5) for µXY = µ̂XY .

test set X.1 It is our goal to design algorithms which
are able to obtain conditional class probability esti-
mates p(y|x) solely based on this information. As an
illustration, take the spam filtering example. We have
X1 = “mail in spam box” (only spam) and X2 = “mail
in inbox” (spam mixed with non-spam). The test set
X then may be X2 itself, for example. The goal is to
find p(spam|mail) in X2. Note that (for general πiy)
this is more difficult than transduction, where we have
at least one dataset with actual labels plus an unla-
beled test set where we might have an estimate as to
what the relative fractions of class labels might be.

2 Mean Operators

Our idea relies on uniform convergence properties of
the expectation operator and of corresponding risk
functionals (Altun & Smola, 2006). In doing so, we
are able to design estimators with the same perfor-
mance guarantees in terms of uniform convergence as
those with full access to the label information.

1Label dictionaries Yi do not need to be the same across
all sets i: define Y := ∪i Yi and allow for πiy = 0 as needed.

2.1 Exponential Families

Denote by X the space of observations and let Y be the
space of labels. Moreover, let φ(x, y) : X×Y → H be a
feature map into a Reproducing Kernel Hilbert Space
(RKHS) H with kernel k((x, y), (x′, y′)). In this case
we may state conditional exponential models via

p(y|x, θ) = exp (〈φ(x, y), θ〉 − g(θ|x)) with (1)

g(θ|x) = log
∑
y∈Y

exp 〈φ(x, y), θ〉 , (2)

where the normalization g is called the log-partition
function. For {(xi, yi)} drawn iid from a distribution
p(x, y) on X× Y the conditional log-likelihood is

log p(Y |X, θ) =
m∑

i=1

[〈φ(xi, yi), θ〉 − g(θ|xi)] (3)

= m 〈µXY , θ〉 −
m∑

i=1

g(θ|xi)

where µXY is defined as in Table 2. In order to avoid
overfitting one commonly maximizes the log-likelihood
penalized by a prior p(θ). This means that we need to
solve the following optimization problem

θ∗ := argmin
θ

[− log p(Y |X, θ)p(θ)] . (4)

For instance, for a Gaussian prior on θ, i.e. for
− log p(θ) = λ ‖θ‖2 + const. we have

θ∗ = argmin
θ

[
m∑

i=1

g(θ|xi)−m 〈µXY , θ〉+ λ ‖θ‖2

]
.(5)

The problem is that in our setting we do not know
the labels yi, so the sufficient statistics µXY cannot
be computed exactly. The only place where the labels
enter the estimation process is via the mean µXY . Our
strategy is to exploit the fact that this quantity, how-
ever, is statistically well behaved and converges under
relatively mild technical conditions at rate O(m− 1

2 ) to
its expected value (see Theorem 2)

µxy := E(x,y)∼p(x,y)[φ(x, y)]. (6)

Our goal therefore will be to estimate µxy and use it as
a proxy for µXY , and only then solve (5) with the es-
timated µ̂XY instead of µXY . We will discuss explicit
convergence guarantees in Section 3 after describing
how to compute the mean operator in detail.

2.2 Estimating the Mean Operator

In order to obtain θ∗ we would need µXY , which is
impossible to compute exactly, since we do not have
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Y . However, we know that µXY and µxy are close.
Hence, if we are able to approximate µxy this, in turn,
will be a good estimate for µXY .

Our quest is therefore as follows: express µxy as a
linear combination over expectations with respect to
the distributions on the datasets X1, . . . , Xn (where
n ≥ |Y|). Secondly, show that the expectations of the
distributions having generated the sets Xi (µset

x [i, y′],
see Table 2) can be approximated by empirical means
(µset

X [i, y′], also see Table 2). Finally, we need to com-
bine both steps to provide guarantees for µXY .

It will turn out that in certain cases some of the al-
gebra can be sidestepped, in particular whenever we
may be able to identify several sets with each other
(e.g. the test set X is one of the training datasets Xi)
or whenever φ(x, y) factorizes into ψ(x)⊗ ϕ(y).

Mean Operator: Since µxy is a linear operator map-
ping p(x, y) into a Hilbert Space we may expand µxy

µxy =
∑
y∈Y

p(y)Ex∼p(x|y)[φ(x, y)] =
∑
y∈Y

p(y)µclass
x [y, y]

where the shorthand µclass
x [y, y] is defined in Table 2.

This means that if we were able to compute µclass
x [y, y]

we would be able to “reassemble” µxy from its indi-
vidual components. We now show that µclass

x [y, y] can
be estimated directly.

Key to our assumptions is that p(x|y, i) = p(x|y). In
other words, we assume that the conditional distribu-
tion of x is independent of the index i, as long as we
know the label y. This yields the following:

p(x|i) =
∑

y

p(x|y)πiy. (7)

This allows us define the following means

µset
x [i, y′] := Ex∼p(x|i)[φ(x, y′)]

(7)
=

∑
y

πiyµ
class
x [y, y′].

Note that in order to compute µset
x [i, y′] we do not need

any label information with respect to p(x|i). However,
since we have at least |Y| of those equations and we
assumed that π has full rank, they allow us to solve
a linear system of equations and compute µclass

x [y, y]
from µset

x [i, y′] for all i. That is, we may use

µset
x = πµclass

x and hence µclass
x = (π>π)−1π>µset

x (8)

to compute µclass
x [y, y] for all y ∈ Y. Whenever

π ∈ Rn×n is invertible (8) reduces to µclass
x = π−1µset

x .
With some slight abuse of notation we have µclass

x and
µset

x represent the matrices of terms µclass
x [y, y′] and

µset
x [i, y′] respectively.

Algorithm 1
Input datasets X, {Xi}, probabilities πiy and p(y)
for i = 1 to n and y′ ∈ Y do

Compute empirical means µset
X [i, y′]

end for
Compute µ̂class

x = (π>π)−1π>µset
X

Compute µ̂XY =
∑

y∈Y p(y)µ̂
class
x [y, y]

Solve the minimization problem

θ̂∗ = argmin
θ

[
m∑

i=1

g(θ|xi)−m 〈µ̂XY , θ〉+ λ ‖θ‖2

]
Return θ̂∗.

Obviously we cannot compute µset
x [i, y′] explicitly,

since we only have samples from p(x|i). However the
same convergence results governing the convergence of
µXY to µxy also hold for the convergence of µset

X [i, y′]
to µset

x [i, y′]. Hence we may use the empirical average
µset

X [i, y′] as the estimate for µset
x [i, y′] and from that

find an estimate for µXY (see Algorithm 1).

2.3 Special Cases

In some cases the calculations described in Algorithm 1
can be carried out more efficiently.

Minimal number of sets, i.e. |Y| = n: Provided
that π has full rank, (π>π)−1π> = π−1. This means
that the inverse can be computed more directly.

Testing on one of the calibration sets, i.e. X =
Xi: This means that X is one of the training sets.
We only need one less set of observations. This is
particularly useful for factorizing feature maps.

Special feature map φ(x, y) = ψ(x)⊗ ϕ(y): In this
case the calculations of µ̂class

x [y, y′] and µset
X [i, y′] are

greatly simplified, since we may pull the dependency
on y out of the expectations. Defining µclass

x [y], µset
x [i],

and µset
X [i] as in Table 2 allows us to simplify

µ̂XY =
∑
y∈Y

p(y)ϕ(y)⊗ µ̂class
x [y] (9)

where µ̂class
x = (π>π)−1π>µset

X . (10)

A significant advantage of (10) is that we only need
to perform O(n) averaging operations rather than
O(n·|Y|). Obviously the cost of computing (π>π)−1π>

remains unchanged but the latter is negligible in com-
parison to the operations in Hilbert Space.

Binary classification: One may show that the fea-
ture map φ(x, y) takes on a particularly appealing form
of φ(x, y) = yψ(x) where y ∈ {±1}. This follows since
we can always re-calibrate 〈φ(x, y), θ〉 by an offset in-
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dependent of y such that φ(x, 1) + φ(x,−1) = 0.

If we moreover assume that X1 only contains class 1
and X2 = X contains a mixture of classes with labels
1 and −1 with proportions p(1) =: ρ and p(−1) = 1−ρ
respectively, we obtain the mixing matrix

π =
[

1 0
ρ 1− ρ

]
⇒ π−1 =

[
1 0
−ρ
1−ρ

1
1−ρ

]
Plugging this into (10) and the result in (9) yields

µ̂XY = ρµset
X [1]− (1− ρ)

[
−ρ
1−ρµ

set
X [1] + 1

1−ρµ
set
X [2]

]
= 2ρµset

X [1]− µset
X [2]. (11)

Consequently taking a simple weighted difference be-
tween the averages on two sets, e.g. one set containing
spam whereas the other one containing an unlabeled
mix of spam and non-spam allows one to obtain the
sufficient statistics needed for estimation.

3 Convergence Bounds

The obvious question is how well µ̂XY manages to ap-
proximate µXY and secondly, how badly any error in
estimating µXY would affect the overall quality of the
solution. We approach this problem as follows: first we
state the uniform convergence properties of µXY and
similar empirical operators relative to µxy. Secondly,
we apply those bounds to the cases discussed above,
and thirdly, we show that the approximate minimizer
of the log-posterior has a bounded deviation from what
we would have obtained by knowing µXY exactly.

3.1 Uniform Convergence for Mean Operators

In order to introduce the key result we need to intro-
duce Rademacher averages:

Definition 1 (Rademacher Averages) Let X be a
domain and p a distribution on X and assume that
X := {x1, . . . , xm} is drawn iid from p. Moreover, let
F be a class of functions X → R. Furthermore denote
by σi Rademacher random variables, i.e. {±1} valued
with zero mean. The Rademacher average is

Rm(F, p) := EXEσ

[
sup
f∈F

∣∣∣∣∣ 1
m

m∑
i=1

σif(xi)

∣∣∣∣∣
]
. (12)

This quantity measures the flexibility of the function
class F — in our case linear functions in φ(x, y).

Theorem 2 (Convergence of Empirical Means)
Denote by φ : X → B a map into a Banach space
B, denote by B∗ its dual space and let F the class of
linear functions on B with bounded B∗ norm by 1.

Let R > 0 such that for all f ∈ F we have |f(x)| ≤ R.
Moreover, assume that X is an m-sample drawn from
p on X. For ε̄ > 0 we have that with probability at
least 1− exp(−ε̄2m/2R2) the following holds:

‖µX − µx‖B ≤ 2Rm(F, p) + ε̄ (13)

For k ≥ 0 we only have a failure probability of 1 −
exp(−ε̄2m/R2).

Theorem 3 (Bartlett & Mendelson (2002))
Whenever B is a Reproducing Kernel Hilbert Space
with kernel k(x, x′) the Rademacher average can be
bounded from above by Rm(F) ≤ m− 1

2 [Ex[k(x, x)]]
1
2

Our approximation error can be bounded as follows.
From the triangle inequality we have:

‖µ̂XY − µXY ‖ ≤ ‖µ̂XY − µxy‖+ ‖µxy − µXY ‖ .

For the second term we may employ Theorem 2 di-
rectly. To bound the first term note that by linearity

ε := µ̂XY − µxy =
∑

y

p(y)
[
(π>π)−1π>ε̂

]
y,y

(14)

where we define the matrix of coefficients

ε̂ [i, y′] := µset
x [i, y′]− µset

X [i, y′]. (15)

Now note that all ε̂ [i, y′] also satisfy the conditions of
Theorem 2 since the sets Xi are drawn iid from the
distributions p(x|i) respectively. We may bound each
term individually in this fashion and subsequently ap-
ply the union bound to ensure that all n · |Y| com-
ponents satisfy the constraints. Hence each of the
terms needs to satisfy the constraint with probability
1− δ/(n|Y|) to obtain an overall bound with probabil-
ity 1 − δ. To obtain bounds we would need to bound
the linear operator mapping ε̂ into ε.

3.2 Special Cases

A closed form solution in the general case is not par-
ticularly useful. However, we give an explicit analy-
sis for two special cases: firstly the situation where
φ(x, y) = ψ(x) ⊗ ϕ(y) and secondly, the binary clas-
sification setting where φ(x, y) = yψ(x) and Xi = X,
where much tighter bounds are available.

Special feature map We only need to deal with n
rather than with n×|Y| empirical estimates, i.e. µset

X [i]
vs. µset

X [i, y′]. Hence (14) and (15) specialize to

ε =
∑

y

p(y)
n∑

i=1

ϕ(y)⊗
[
(π>π)−1π>

]
yi
ε̂[i] (16)

ε̂ [i] := µset
x [i]− µset

X [i]. (17)

779



Estimating Labels from Label Proportions

Assume that with high probability each ε̂[i] satisfies
‖ε̂[i]‖ ≤ ci (we will deal with the explicit constants ci
later). Moreover, assume for simplicity that |Y| = n
and that π has full rank (otherwise we need to follow
through on our expansion using (π>π)−1π> instead of
π−1). This implies that

‖ε‖2 =
∑
i,j

〈ε̂[i], ε̂[j]〉 ×

∑
y,y′

p(y)p(y′)k(y, y′)
[
π−1

]
yi

[
π−1

]
y′j

≤
∑
i,j

cicj

∣∣∣[π−1
]>
Ky,pπ−1

∣∣∣
ij

(18)

where Ky,p
y,y′ = k(y, y′)p(y)p(y′). Combining several

bounds we have the following theorem:

Theorem 4 Assume that we have n sets of observa-
tions Xi of size mi, each of which drawn from distri-
butions with probabilities πiy of observing data with
label y. Moreover, assume that k((x, y), (x′, y′)) =
k(x, x′)k(y, y′) ≥ 0 where k(x, x) ≤ 1 and k(y, y) ≤ 1.
Finally, assume that m = |X|. In this case the mean
operator µXY can be estimated by µ̂XY with probability
at least 1− δ with precision

‖µXY − µ̂XY ‖ ≤
[
2 +

√
log((n+ 1)/δ)

]
×[

m− 1
2 +

[∑
i,j

m
− 1

2
i m

− 1
2

j

∣∣∣[π−1
]>
Ky,pπ−1

∣∣∣
ij

] 1
2
]

Proof We begin our argument by noting that both
for φ(x, y) and for ψ(x) the corresponding Rademacher
averages Rm for functions of RKHS norm bounded by
1 is bounded by m− 1

2 . This is a consequence of all
kernels being bounded by 1 in Theorem 3 and k ≥ 0.

Next note that in Theorem 2 we may set R = 1, since
for ‖f‖ ≤ 1 and k((x, y), (x, y)) ≤ 1 and k(x, x) ≤ 1
it follows from the Cauchy Schwartz inequality that
|f(x)| ≤ 1. Solving δ ≤ exp−mε2 for ε yields ε ≤
m− 1

2

[
2 +

√
log (1/δ)

]
.

Finally, note that we have n + 1 deviations which
we need to bound: one between µXY and µxy,
and n for each of the ε[i] respectively. Dividing
the failure probability δ into n + 1 cases yields
bounds of the form m− 1

2

[
2 +

√
log ((n+ 1)/δ)

]
and

m
− 1

2
i

[
2 +

√
log ((n+ 1)/δ)

]
respectively. Plugging all

error terms into (18) and summing over terms yields
the claim and substituting this back into the triangle
inequality proves the claim.

Binary Classification Next we consider the special
case of binary classification where X2 = X. Using (11)
we see that the corresponding estimator is given by

µ̂XY = 2ρµset
X [1]− µset

X [2]. (19)

Since µ̂XY shares a significant fraction of terms with
µXY we are able to obtain tighter bounds as follows:

Theorem 5 With probability 1 − δ (for 1 > δ > 0)
the following bound holds:

‖µ̂XY − µXY ‖ ≤ 2ρ
[
2 +

√
log(2/δ)

] [
m
− 1

2
1 +m

− 1
2

+

]
m+ is the number of observations with y = 1 in X2.

Proof Denote by µ[X+] and µ[X−] the averages over
the subsets of X2 with positive and negative labels
respectively. By construction we have that

µXY = ρµ[X+]− (1− ρ)µ[X−]

µ̂XY = 2ρµset
X [1]− ρµ[X+]− (1− ρ)µ[X−]

Taking the difference yields 2ρ [µset
X [1]− µ[X+]]. To

prove the claim note that we may use Theo-
rem 2 both for

∥∥µset
X [1]−Ex∼p(x|y=1)[ψ(x)]

∥∥ and
for

∥∥µ[X+]−Ex∼p(x|y=1)[ψ(x)]
∥∥. Taking the union

bound and summing over terms proves the claim.

The bounds we provided show that µ̂XY converges at
the same rate to µxy as µXY does, assuming that the
sizes of the sets Xi increase at the same rate as X.

3.3 Stability Bounds

To complete our reasoning we need to show that those
bounds translate in guarantees in terms of the mini-
mizer of the log-posterior. In other words, estimates
using the correct mean µXY vs. its estimate µ̂XY do
not differ by a significant amount. For this purpose we
make use of (Altun & Smola, 2006, Lemma 17).

Lemma 6 Denote by f a convex function on H and
let µ, µ̂ ∈ H. Moreover let λ > 0. Finally denote by
θ∗,∈ H the minimizer of

L(θ, µ) := f(θ)− 〈µ, θ〉+ λ ‖θ‖2 (20)

with respect to θ and θ̂∗ the minimizer of L(θ̂, µ̂) re-
spectively. In this case the following inequality holds:∥∥θ∗ − θ̂∗

∥∥ ≤ λ−1 ‖µ− µ̂‖ . (21)

This means that a good estimate for µ immediately
translates into a good estimate for the minimizer of the
approximate log-posterior. This leads to the following
bound on the risk minimizer.
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Corollary 7 The deviation between θ∗, as defined in
(4) and θ̂∗, the minimizer of the approximate log-
posterior using µ̂XY rather than µXY , is bounded by
O(m− 1

2 +
∑

im
− 1

2
i ).

Finally, we may use (Altun & Smola, 2006, Theorem
16) to obtain bounds on the quality of θ̂∗ when con-
sidering how well it minimizes the true negative log-
posterior. Using the bound

L(θ̂∗, µ)− L(θ∗, µ) ≤
∥∥θ̂∗ − θ∗

∥∥ ‖µ̂− µ‖ (22)

yields the following bound for the log-posterior:

Corollary 8 The minimizer θ̂∗ of the approximate
log-posterior using µ̂XY rather than µXY incurs a
penalty of at most λ−1 ‖µ̂XY − µXY ‖2.

4 Extensions

Note that our analysis so far focused on a specific set-
ting, namely maximum-a-posteriori analysis in expo-
nential families. While this is a common and popular
setting, the derivations are by no means restricted to
this. We have the entire class of (conditional) models
described by Altun & Smola (2006); Dud́ık & Schapire
(2006) at our disposition. They are characterized via

minimize
p

−H(p) subject to ‖Ez∼p [φ(z)]− µ‖ ≤ ε

Here p is a distribution, H is an entropy-like quantity
defined on the space of distributions, and φ(z) is some
evaluation map into a Banach space. This means that
the optimization problem can be viewed as an approxi-
mate maximum entropy estimation problem, where we
do not enforce exact moment matching of µ but rather
allow ε slack. In both Altun & Smola (2006) and Dud́ık
& Schapire (2006) the emphasis lay on unconditional
density models: the dual of the above optimization
problem. In particular, it follows that for H being
the Shannon-Boltzmann entropy, the dual optimiza-
tion problem is the maximum a posteriori estimation
problem, which is what we are solving here.

In the conditional case, p denotes the collection of
probabilities p(y|xi) and the operator Ez∼p [φ(z)] =
1
m

∑m
i=1 Ey|p(y|xi) [φ(xi, y)] is the conditional expec-

tation operator on the set of observations. Finally,
µ = 1

m

∑m
i=1 φ(xi, yi), that is, it describes the empiri-

cal observations. We have two design parameters:

Function Space: Depending on which Banach Space
norm we may choose to measure the deviation between
µ and its expectation with respect to p in terms of e.g.
the `2 norm, the `1 norm or the `∞ norm. The latter
would lead to sparse coding and convex combinations.

Entropy and Regularity: Depending on the choice
of entropy and divergence functionals we obtain a
range of diverse estimators. For instance, if we were
to choose the unnormalized entropy instead of the en-
tropy, we would obtain AdaBoost style problems. We
may also use Csiszar and Bregmann divergences.

The key point is that our reasoning of estimating µXY

based on an aggregate of samples with unknown la-
bels but known label proportions is still applicable.
This means that it should be possible to design boost-
ing algorithms and sparse coding methods which could
operate on similarly restricted sets of observations.

5 Related Work and Alternatives

Transduction Gärtner et al. (2006) and Mann & Mc-
Callum (2007) performed transduction by enforcing a
proportionality constraint on the unlabeled data via a
Gaussian Process model. At first glance these methods
might seem applicable for our problem but as stated
in Section 1, they do require that we have at least
some labeled instances of all classes at our disposition
which need to be drawn in an unbiased fashion. This
is clearly not the case in our setting.

Self consistent proportions Kück & de Freitas
(2005) introduced a more informative variant of the
binary multiple-instance learning, in which groups of
instances are given along with estimates of the fraction
of positively-labeled instances per group. This is then
used to design a hierarchical probabilistic model which
will generate consistent fractions. The optimization is
solved via a MCMC sampler. While only described for
a binary problem it could be easily extended to multi-
class settings. Chen et al. (2006) and Musicant et al.
(2007) use a similar approach with similar drawbacks,
since we typically only have as many sets as classes.

Conditional Probabilities A seemingly valid alter-
native approach is to try building a classifier for p(i|x)
and subsequently recalibrating the probabilities to ob-
tain p(y|x). At first sight this may appear promising
since this method is easily applicable in conjunction
with most discriminative methods. The idea would be
to reconstruct p(y|x) by

p(y|x) =
∑

i

πiyp(i|x). (23)

However, this is not a useful estimator in our setting
for a simple reason: it assumes the conditional inde-
pendence y ⊥⊥ x | i, which obviously does not hold.

A simple example illustrates the problem. Assume
that X,Y = {1, 2} and that p(y = 1|x = 1) = p(y =
2|x = 2) = 1. In other words, the estimation problem
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is solvable since the classes are well separated. More-
over, assume that π is given by

π =
[

0.5− ε 0.5 + ε
0.5 0.5

]
for 0 < ε� 1.

Here, p(i|x) is useless for estimating p(y|x), since we
will only exceed random guessing by at most ε.

Reduction to Binary For binary classification and
real-valued classification scores we may resort to yet
another fairly straightforward method: build a classi-
fier which is able to distinguish between the sets X1

and X2 and subsequently threshold labels such that
the appropriate fraction of observations in X1 and
X2 respectively has its proper labels. Unfortunately,
multi-class variants of this reduction are nontrivial and
experiments show that even for the binary case this
method is inferior to our approach.

Density Estimation Finally, one way of obtaining
the probabilities p(x, y|i) is to perform density estima-
tion for each set of observations Xi. Subsequently we
may use

p(x|y) =
∑

i

[
π−1

]
yi
p(x, y|i) (24)

to re-calibrate the probability estimates. Bayes’ theo-
rem is finally invoked to compute posterior probabili-
ties. This tends to fail for high-dimensional data due
to the curse of dimensionality in density estimation.

6 Experiments

Datasets: We use binary and three-class classifica-
tion datasets from the UCI repository2 and the Lib-
SVM site.3 If separate training and test sets are avail-
able, we merge them before performing nested 10-fold
cross-validation. Since we need to generate as many
splits as classes, we limit ourselves to three classes.

For the binary datasets we use half of the data for X1

and the rest for X2. We also remove all instances of
class 2 from X1. That is, the conditional class proba-
bilities in X2 match those from the repository, whereas
in X1 their counterparts are deleted.

For three-class datasets we investigate two different
partitions. In scenario A we use class 1 exclusively in
X1, class 2 exclusively in X2, and a mix of all three
classes weighted by (0.5 · p(1), 0.7 · p(2), 0.8 · p(3)) to

2http://archive.ics.uci.edu/ml/
3http://www.csie.ntu.edu.tw/∼cjlin/

libsvmtools/

generate X3. In scenario B we use the following splits c1 · 0.4 · p(1) c1 · 0.15 · p(2) c1 · 0.14 · p(3)
c2 · 0.1 · p(1) c2 · 0.15 · p(2) c2 · 0.06 · p(3)
c3 · 0.5 · p(1) c3 · 0.7 · p(2) c3 · 0.8 · p(3)


Here the constants c1, c2 and c3 are chosen such that
the probabilities are properly normalized. As before,
X3 contains half of the data.

Model Selection: As stated, we carry out
a nested 10-fold cross-validation procedure: 10-fold
cross-validation to assess the performance of the es-
timators; within each fold, 10-fold cross-validation is
performed to find a suitable value for the parameters.

For supervised classification, i.e. discriminative sort-
ing, such a procedure is quite straightforward be-
cause we can directly optimize for classification error.
For kernel density estimation (KDE), we use the log-
likelihood as our criterion.

Due to the high number of hyper-parameters (at least
8) in MCMC, it is difficult to perform nested 10-fold
cross-validation. Instead, we choose the best parame-
ters from a simple 10-fold crossvalidation run. In other
words, we are giving the MCMC method an unfair ad-
vantage over our approach by reporting the best per-
formance during the model selection procedure.

Finally, for the re-calibrated sufficient statistics µ̂XY

we use the estimate of the log-likelihood on the valida-
tion set as the criterion for cross-validation, since no
other quantity, such as classification errors is readily
available for estimation.

Algorithms: For discriminative sorting we use an
SVM with a Gaussian RBF kernel whose width is set to
the median distance between observations (Schölkopf,
1997); the regularization parameter is chosen by cross-
validation. The same strategy applies for our algo-
rithm. For KDE, we use Gaussian kernels with diag-
onal densities. Cross-validation is performed over the
kernel width. For MCMC, 103 samples are generated
after a burn in period of 103 steps (Kück & de Freitas
(2005)).

Optimization: Bundle methods (Smola et al., 2007;
Teo et al. , 2007) are used to solve the optimization
problem in Algorithm 1.

Results: The experimental results are summarized in
Table 3. Our method outperforms KDE and discrimi-
native sorting. In terms of computation, our approach
is somewhat more efficient, since it only needs to deal
with a smaller sample size (only X rather than the
union of all Xi). The training time for our method is
less than 2 minutes for all cases, whereas MCMC on
average takes 15 minutes and maybe even much longer
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when the number of active kernels and/or observations
are high. However, for large number of partitions n,
the MCMC procedure might potentially have an edge
over our method as we do not take full advantage of
this setting. However, this can be achieved easily by
optimizing the condition number of the pseudoinverse
of the redundant system of linear equations.

Our method also performs well on multiclass datasets.
As described in Section 3.2, the quality of our mini-
mizer of the log-posterior depends on the mixing ma-
trix and this is noticeable in the reduction of perfor-
mance for the dense mixing matrix (scenario B) in
comparison to the better conditioned sparse mixing
matrix (scenario A). In other words, for ill conditioned
π even our method has its limits, simply due to numer-
ical considerations of effective sample size.

7 Conclusion

We have showed a rather surprising result, namely that
it is possible to consistently reconstruct the labels of
a dataset if we can only obtain information about the
proportions of occurrence of each class (in at least as
many data aggregates as there are classes). In par-
ticular, we prove that up to constants, our algorithm
enjoys the same rates of convergence afforded to meth-
ods which have full access to all label information.

This has a range of potential applications in e-
commerce, spam filtering and improper content de-
tection. It also suggests that techniques used to
anonymize observations, e.g. demographic data, may
not be really safe. Experiments show our algorithm is
fast and outperforms competitive methods.
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Table 3. Classification error on UCI/LibSVM datasets
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best result and those not significantly worse than it,
are highlighted in boldface. We use a one-sided paired
t-test with 95% confidence.
MM: Mean Map (our method); KDE: Kernel Density Es-
timation; DS: Discriminative Sorting (only applicable
for binary classification); MCMC: the sampling method;
BA: Baseline, obtained by predicting the major class. †:
Program fails (too high dimensional data - only KDE).
‡: Program fails (large datasets - only MCMC).
Data MM KDE DS MCMC BA
iono 18.4±3.2 17.5±3.2 12.2±2.6 18.0±2.1 35.8
iris 10.0±3.6 16.8±3.4 15.4±1.1 21.1±3.6 29.9
optd 1.8±0.5 0.7±0.4 9.8±1.2 2.0±0.4 49.1
page 3.8±2.3 7.1±2.8 18.5±5.6 5.4±2.8 43.9
pima 27.5±3.0 34.8±0.6 34.4±1.7 23.8±1.8 34.8
tic 31.0±1.5 34.6±0.5 26.1±1.5 31.3±2.5 34.6
yeast 9.3±1.5 6.5±1.3 25.6±3.6 10.4±1.9 39.9
wine 7.4±3.0 12.1±4.4 18.8±6.4 8.7±2.9 40.3
wdbc 7.8±1.3 5.9±1.2 10.1±2.1 15.5±1.3 37.2
sonar 24.2±3.5 35.2±3.5 31.4±4.0 39.8±2.8 44.5
heart 30.0±4.0 38.1±3.8 28.4±2.8 33.7±4.7 44.9
brea 5.3±0.8 14.2±1.6 3.5±1.3 4.8±2.0 34.5
aust 17.0±1.7 33.8±2.5 15.8±2.9 30.8±1.8 44.4
svm3 20.4±0.9 27.2±1.3 25.5±1.5 24.2±0.8 23.7
adult 18.9±1.2 24.5±1.3 22.1±1.4 18.7±1.2 24.6
cleve 19.1±3.6 35.9±4.5 23.4±2.9 24.3±3.1 22.7
derm 4.9±1.4 27.4±2.6 4.7±1.9 14.2±2.8 30.5
musk 25.1±2.3 28.7±2.6 22.2±1.8 19.6±2.8 43.5
ger 32.4±1.8 41.6±2.9 37.6±1.9 32.0±0.6 32.0
cove 37.1±2.5 41.9±1.7 32.4±1.8 41.1±2.2 45.9
spli 25.2±2.0 35.5±1.5 26.6±1.7 28.8±1.6 48.4
giss 10.3±0.9 † 12.2±0.8 50.0±0.0 50.0
made 44.1±1.5 † 46.0±2.0 49.6±0.2 50.0
cmc 37.5±1.4 43.8±0.7 45.1±2.3 46.9±2.6 49.9
bupa 48.5±2.9 50.8±5.1 40.3±4.9 50.4±0.8 49.7

protA 44.6±0.3 60.2±0.1 N/A 65.3±1.9 61.2
protB 45.7±0.6 61.2±0.0 N/A 67.7±1.8 61.2
dnaA 16.6±1.0 30.7±0.8 N/A 37.7±0.8 40.5
dnaB 29.1±1.0 33.0±0.7 N/A 40.5±0.0 40.5
sensA 19.8±0.1 43.1±0.0 N/A ‡ 43.2
sensB 21.0±0.1 43.1±0.0 N/A ‡ 43.2
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Abstract

Algorithms for learning to rank Web docu-
ments usually assume a document’s relevance
is independent of other documents. This
leads to learned ranking functions that pro-
duce rankings with redundant results. In
contrast, user studies have shown that di-
versity at high ranks is often preferred. We
present two online learning algorithms that
directly learn a diverse ranking of documents
based on users’ clicking behavior. We show
that these algorithms minimize abandon-
ment, or alternatively, maximize the proba-
bility that a relevant document is found in
the top k positions of a ranking. Moreover,
one of our algorithms asymptotically achieves
optimal worst-case performance even if users’
interests change.

1. Introduction

Web search has become an essential component of the
Internet infrastructure, and has hence attracted sig-
nificant interest from the machine learning community
(e.g. Herbrich et al., 2000; Burges et al., 2005; Radlin-
ski & Joachims, 2005; Chu & Ghahramani, 2005; Met-
zler & Croft, 2005; Yue et al., 2007; Taylor et al.,
2008). The conventional approach to this learning-
to-rank problem has been to assume the availability
of manually labeled training data. Usually, this data
consists of a set of documents judged as relevant or not
to specific queries, or of pairwise judgments compar-
ing the relative relevance of pairs of documents. These
judgments are used to optimize a ranking function off-
line, to a standard information retrieval metric, then
deploying the learned function in a live search engine.

We propose a new learning to rank problem formu-
lation that differs in three fundamental ways. First,
unlike most previous methods, we learn from usage

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

data rather than manually labeled relevance judg-
ments. Usage data is available in much larger quan-
tities and at much lower cost. Moreover, unlike man-
ual judgments, which need to be constantly updated
to stay relevant, usage data naturally reflects current
users’ needs and the documents currently available.
Although some researchers have transformed usage
data into relevance judgments, or used it to generate
features (e.g. Joachims, 2002; Radlinski & Joachims,
2005; Agichtein et al., 2006), we go one step further
by directly optimizing a usage-based metric.

Second, we propose an online learning approach for
learning from usage data. As training data is being
collected, it immediately impacts the rankings shown.
This means the learning problem we address is regret
minimization, where the goal is to minimize the total
number of poor rankings displayed over all time. In
particular, in this setting there is a natural tradeoff be-
tween exploration and exploitation: It may be valuable
in the long run to present some rankings with unknown
documents, to allow training data about these docu-
ments to be collected. In contrast, in the short run
exploitation is typically optimal. With only few ex-
ceptions (e.g. Radlinski & Joachims, 2007), previous
work does not consider such an online approach.

Third and most importantly, except for (Chen &
Karger, 2006), previous algorithms for learning to rank
have considered the relevance of each document in-
dependently of other documents. This is reflected in
the performance measures typically optimized, such
as Precision, Recall, Mean Average Precision (MAP)
(Baeza-Yates & Ribeiro-Neto, 1999) and Normalized
Discounted Cumulative Gain (NDCG) (Burges et al.,
2006). In fact, recent work has shown that these mea-
sures do not necessarily correlate with user satisfaction
(Turpin & Scholer, 2006). Additionally, it intuitively
stands to reason that presenting many slight varia-
tions of the same relevant document in web search re-
sults may increase the MAP or NDCG score, yet would
be suboptimal for users. Moreover, web queries often
have different meanings for different users (a canonical
example is the query jaguar) suggesting that a ranking
with diverse documents may be preferable.
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We will show how clickthrough data can be used to
learn rankings maximizing the probability that any
new user will find at least one relevant document high
in the ranking.

2. Related Work

The standard approach for learning to rank uses train-
ing data, in the form of judgments assessing the rele-
vance of individual documents to a query, to learn pa-
rameters θ for a scoring function f(q, di, θ). Given a
new query q, this function computes f(q, di, θ) for each
document di independently and ranks documents by
decreasing score (e.g. Herbrich et al., 2000; Joachims,
2002; Burges et al., 2005; Chu & Ghahramani, 2005).
This also applies to recent algorithms that learn θ
to maximize nonlinear performance measures such as
MAP (Metzler & Croft, 2005; Yue et al., 2007) and
NDCG (Burges et al., 2006; Taylor et al., 2008).

The theoretical model that justifies ranking docu-
ments in this way is the probabilistic ranking principle
(Robertson, 1977). It suggests that documents should
be ranked by their probablility of relevance to the
query. However, the optimality of such a ranking relies
on the assumption that there are no statistical depen-
dencies between the probabilities of relevance among
documents – an assumption that is clearly violated in
practice. For example, if one document about jaguar
cars is not relevant to a user who issues the query
jaguar, other car pages become less likely to be rele-
vant. Furthermore, empirical studies have shown that
given a fixed query, the same document can have dif-
ferent relevance to different users (Teevan et al., 2007).
This undermines the assumption that each document
has a single relevance score that can be provided as
training data to the learning algorithm. Finally, as
users are usually satisfied with finding a small number
of, or even just one, relevant document, the usefulness
and relevance of a document does depend on other
documents ranked higher.

As a result, most search engines today attempt to elim-
inate redundant results and produce diverse rankings
that include documents that are potentially relevant to
the query for different reasons. However, learning op-
timally diverse rankings using expert judgments would
require document relevance to be measured for differ-
ent possible meanings of a query. While the TREC
interactive track1 provides some documents labeled in
this way for a small number of queries, such document
collections are even more difficult to create than stan-
dard expert labeled collections.

1http://trec.nist.gov/data/t11 interactive/t11i.html

Several non-learning algorithms for obtaining a diverse
ranking of documents from a non-diverse ranking have
been proposed. One common one is Maximal Marginal
Relevance (MMR) (Carbonell & Goldstein, 1998).
Given a similarity (relevance) measure between docu-
ments and queries sim1(d, q) and a similarity measure
between pairs of documents sim2(di, dj), MMR iter-
atively selects documents by repeatedly finding di =
argmaxd∈D λsim1(d, q) − (1 − λ) maxdj∈S sim2(d, dj)
where S is the set of documents already selected and
λ is a tuning parameter. In this way MMR selects the
most relevant documents that are also different from
any documents already selected.

Critically, MMR requires that the relevance function
sim1(d, q), and the similarity function sim2(di, dj) is
known. It is usual to obtain sim1 and sim2 using al-
gorithms such as those discussed above. The goal of
MMR is to rerank an already learned ranking (that of
ranking documents by decreasing sim1 score) to im-
prove diversity. All previous approaches of which we
are aware that optimize diversity similarly require a
relevance function to be learned prior to performing
a diversification step (Zhu et al., 2007; Zhang et al.,
2005; Zhai et al., 2003), with the exception of Chen
and Karger (2006). Rather, they require that a model
for estimating the probability a document is relevant,
given a query and other non-relevant documents, is
available. In contrast, we directly learn a diverse rank-
ing of documents using users’ clicking behavior.

3. Problem Formalization

We address the problem of learning an optimally diver-
sified ranking of documents D = {d1, . . . , dn} for one
fixed query. Suppose we have a population of users,
where each user ui considers some subset of documents
Ai ⊂ D as relevant to the query, and the remainder of
the documents as non-relevant. Intuitively, users with
different interpretations for the query would have dif-
ferent relevant sets, while users with similar interpre-
tations would have similar relevant sets.

At time t, we interact with user ut with relevant
set At. We present an ordered set of k documents,
Bt = (b1(t), . . . , bk(t)). The user considers the results
in order, and clicks on up to one document. The prob-
ability of user ut clicking on document di (conditional
on the user not clicking on a document presented ear-
lier in the ranking) is assumed to be pti ∈ [0, 1]. We
refer to the vector of probabilities (pti)i∈D as the type
of user ut. In the simplest case, we could take pti = 1
if di ∈ At and 0 otherwise, in which case the user
clicks on the first relevant document or does not click
if no documents in Bt are relevant. However, in reality
clicks tend to be noisy although more relevant docu-
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Algorithm 1 Ranked Explore and Commit
1: input: Documents (d1, .., dn), parameters ε, δ, k.
2: x← d2k2/ε2 log(2k/δ)e
3: (b1, . . . , bk)← k arbitrary documents.
4: for i=1 . . . k do At every rank

5: ∀j. pj ← 0
6: for counter=1 . . . x do Loop x times

7: for j=1 . . . n do over every document dj

8: bi ← dj
9: display {b1, . . . , bk} to user; record clicks

10: if user clicked on bi then pj ← pj + 1
11: end for
12: end for
13: j∗ ← argmaxj pj Commit to best document at this rank

14: bi ← dj∗
15: end for

ments are more likely to be clicked on. In our analysis,
we will take pti ∈ [0, 1].

We get payoff 1 if the user clicks, 0 if not. The goal is
to maximize the total payoff, summing over all time.
This payoff represents the number of users who clicked
on any result, which can be interpreted as the user
finding at least one potentially relevant document (so
long as pti is higher when di∈At than when di /∈At).

The event that a user does not click is called aban-
donment since the user abandoned the search results.
Abandonment is an important measure of user satis-
faction because it indicates that users were presented
with search results of no potential interest.

4. Learning Algorithms

We now present two algorithms that directly mini-
mize the abandonment rate. At a high level, both
algorithms learn a marginal utility for each document
at each rank, displaying documents to maximize the
probability that a new user of the search system would
find at least one relevant document within the top k
positions. The algorithms differ in their assumptions.

4.1. Ranked Explore and Commit

The first algorithm we present is a simple greedy strat-
egy that assumes that user interests and documents
do not change over time. As we will see, after T
time steps this algorithm achieves a payoff of at least
(1−1/e−ε)OPT −O(k3n/ε2 ln(k/δ)) with probability
at least 1− δ. OPT denotes the maximal payoff that
could be obtained if the click probabilities pti were
known ahead of time for all users and documents, and
(1− 1/e)OPT is the best obtainable polynomial time
approximation, as will be explained in Section 5.1.

As described in Algorithm 1, Ranked Explore and

Algorithm 2 Ranked Bandits Algorithm
1: initialize MAB1(n), . . . ,MABk(n) Initialize MABs

2: for t = 1 . . . T do
3: for i = 1 . . . k do Sequentially select documents

4: b̂i(t)← select-arm (MABi)
5: if b̂i(t)∈{b1(t), .., bi−1(t)} then Replace repeats

6: bi(t)← arbitrary unselected document
7: else
8: bi(t)← b̂i(t)
9: end if

10: end for
11: display {b1(t), . . . , bk(t)} to user; record clicks
12: for i = 1 . . . k do Determine feedback for MABi

13: if user clicked bi(t) and b̂i(t) = bi(t) then
14: fit = 1
15: else
16: fit = 0
17: end if
18: update (MABi, arm = b̂i(t), reward = fit)
19: end for
20: end for

Commit (REC) iteratively selects documents for each
rank. At each rank position i, every document dj is
presented a fixed number x times, and the number of
clicks it receives during these presentations is recorded.
After nx presentations, the algorithm permanently as-
signs the document that received the most clicks to
the current rank, and moves on to the next rank.

4.2. Ranked Bandits Algorithm

Ranked Explore and Commit is purely greedy, mean-
ing that after each document is selected, this deci-
sion is never revisited. In particular, this means that
if user interests or documents change, REC can per-
form arbitrarily poorly. In contrast, the Ranked Ban-
dits Algorithm (RBA) achieves a combined payoff of
(1−1/e)OPT−O(k

√
Tn log n) after T time steps even

if documents and user interests change over time.

This algorithm leverages standard theoretical results
for multi-armed bandits. Multi-armed bandits (MAB)
are modeled on casino slot machines (sometimes called
one-armed bandits). The goal of standard MAB algo-
rithms is to select the optimal sequence of slot ma-
chines to play to maximize the expected total reward
collected. For further details, refer to (Auer et al.,
2002a). The ranked bandits algorithm runs an MAB
instance MABi for each rank i. Each of the k copies of
the multi-armed bandit algorithm maintains a value
(or index) for every document. When selecting the
ranking to display to users, the algorithm MAB1 is
responsible for choosing which document is shown at
rank 1. Next, the algorithm MAB2 determines which
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document is shown at rank 2, unless the same docu-
ment was selected at the highest rank. In that case,
the second document is picked arbitrarily. This pro-
cess is repeated to select all top k documents.

Next, after a user considers up to the top k documents
in order and clicks on one or none, we need to update
the indices. If the user clicks on a document actually
selected by an MAB instance, the reward for the arm
corresponding to that document for the multi-armed
bandit at that rank is 1. The reward for the arms
corresponding to all other selected documents is 0. In
particular, note that the RBA treats the bandits corre-
sponding to each rank independently. Precise pseudo-
code for the algorithm is presented in Algorithm 2.
A generalization of this algorithm, in an abstract set-
ting without the application to Information Retrieval,
was discovered independently by Streeter and Golovin
(2007).

The actual MAB algorithm used for each MABi in-
stance is not critical, and in fact any algorithm for the
non-stochastic multi-armed bandit problem will suf-
fice. Our theoretical analysis only requires that:

• The algorithm has a set S of n strategies.
• In each period t a payoff function ft : S → [0, 1] is

defined. This function is not revealed to the algo-
rithm, and may depend on the algorithm’s choices
before time t.

• In each period the algorithm chooses a (random)
element yt ∈ S based on the feedback revealed in
prior periods.

• The feedback revealed in period t is ft(yt).
• The expected payoffs of the chosen strategies sat-

isfy:
T∑
t=1

E[ft(yt)] ≥ max
y∈S

T∑
t=1

E[ft(y)] − R(T )

where R(T ) is an explicit function in o(T ) which
depends on the particular multi-armed bandit al-
gorithm chosen, and the expectation is over any
randomness in the algorithm. We will use the
Exp3 algorithm in our analysis, where R(T ) =
O
(√
Tn log n

)
(Auer et al., 2002b).

We will also later see that although these conditions
are needed to bound worst-case performance, better
practical performance may be obtained at the expense
of worst-case performance if they are relaxed.

5. Theoretical Analysis

We now present a theoretical analysis of the algorithms
presented in Section 4. First however, we discuss the
offline version of this optimization problem.

5.1. The Offline Optimization Problem

The problem of choosing the optimum set of k docu-
ments for a given user population is NP-hard, even if
all the information about the user population (i.e. the
set of relevant documents for each user) is given offline
and we restrict ourselves to pij ∈ {0, 1}. This is be-
cause selecting the optimal set of documents is equiva-
lent to the maximum coverage problem: Given a posi-
tive integer k and a collection of subsets S1, S2, . . . , Sn
of an m-element set, find k of the subsets whose union
has the largest possible cardinality.

The standard greedy algorithm for the maximum cov-
erage problem, translated to our setting, iteratively
chooses the document that is relevant to the most users
for whom a relevant document has not yet been se-
lected. This algorithm is a (1− 1/e)-approximation
algorithm for this maximization problem (Nemhauser
et al., 1978). The (1 − 1/e) factor is optimal and
no better worst-case approximation ratio is achievable
in polynomial time unless NP ⊆ DTIME

(
nlog logn

)
(Khuller et al., 1997).

5.2. Analysis of Ranked Bandits Algorithm

We start by analyzing the Ranked Bandits Algorithm.
This algorithm works by simulating the offline greedy
algorithm, using a separate instance of the multi-
armed bandit algorithm for each step of the greedy
algorithm. Except for the sublinear regret term, the
combined payoff is as high as possible without violat-
ing the hardness-of-approximation result stated in the
preceding paragraph.

To analyze the RBA, we first restrict ourselves to users
who click on any given document with probability ei-
ther 0 or 1. We refer to this restricted type of user as a
deterministic user ; we will relax the requirement later.
Additionally, this analysis applies to a worst case (and
hence fixed) sequence of users.

Further, it is useful to introduce some notation. For a
set A and a sequence B = (b1, b2, . . . , bk), let

Gi(A,B) =
{

1 if A intersects {b1, . . . , bi}
0 otherwise

gi(A,B) = Gi(A,B)−Gi−1(A,B)

Recalling that At is the set of documents relevant to
user ut, we see that Gk(At, B) is the payoff of present-
ing B to the user ut. Let

B∗ = argmax
B

T∑
t=1

Gk(At, B),

OPT =
T∑
t=1

Gk(At, B∗).
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Recall that (b̂1(t), . . . , b̂k(t)) is the sequence of docu-
ments chosen by the algorithms MAB1, . . . ,MABk at
time t, and that (b1(t), . . . , bk(t)) is the sequence of
documents presented to the user. Define the feedback
function fit for algorithm MABi at time t, as follows:

fit(b) =
{

1 if Gi−1(At, Bt) = 0 and b ∈ At
0 otherwise .

Note that the value of fit defined in the pseudocode for
the Ranked Bandits Algorithms is equal to fit(b̂i(t)).

Lemma 1. For all i,

E

[
T∑
t=1

gi(At, Bt)

]

≥ 1
k

E

[
T∑
t=1

(Gk(At, B∗)−Gi−1(At, Bt))

]
−R(T )

=
1
k
OPT − 1

k
E

[
T∑
t=1

Gi−1(At, Bt)

]
−R(T ).

Proof. First, note that
gi(At, Bt) ≥ fit(b̂i(t)). (1)

This is trivially true when fit(b̂i(t)) = 0. When
fit(b̂i(t)) = 1, Gi−1(At, Bt) = 0 and b̂i(t) ∈ At. This
implies that bi(t) = b̂i(t) and that gi(At, Bt) = 1.

Now using the regret bound for MABi we obtain
T∑
t=1

E[fit(b̂i(t))] ≥ max
b

T∑
t=1

E[fit(b)]−R(T )

≥ 1
k

E

[∑
b∈B∗

T∑
t=1

fit(b)

]
−R(T ). (2)

To complete the proof of the lemma, we will prove that∑
b∈B∗

fit(b) ≥ Gk(At, B∗)−Gi−1(At, Bt). (3)

The lemma follows immediately by combining (1)-(3).
Observe that the left side of (3) is a non-negative
integer, while the right side takes one of the values
{−1, 0, 1}. Thus, to prove (3) it suffices to show that
the left side is greater than or equal to 1 whenever the
right side is equal to 1. The right side equals 1 only
when Gi−1(At, Bt) = 0 and At intersects B∗. In this
case it is clear that there exists at least one b ∈ B∗

such that fit(b) = 1, hence the left side is greater than
or equal to 1.

Theorem 1. The algorithm’s combined payoff after T
rounds satisfies:

E

[
T∑
t=1

Gk(At, Bt)

]
≥
(

1− 1
e

)
OPT − kR(T ). (4)

Proof. We will prove, by induction on i, that

OPT−E

[
T∑
t=1

Gi(At, Bt)

]
≤
(

1− 1
k

)i
OPT+iR(T ).

(5)
The theorem follows by taking i = k and using the
inequality

(
1− 1

k

)k
< 1

e .

In the base case i = 0, inequality (5) is trivial. For the
induction step, let

Zi = OPT −E

[
T∑
t=1

Gi(At, Bt)

]
.

We have

Zi = Zi−1 −E

[
T∑
t=1

gi(At, Bt)

]
, (6)

and Lemma 1 says that

E

[
T∑
t=1

gi(At, Bt)

]
≥ 1

k
Zi−1 −R(T ). (7)

Combining (6) with (7), we obtain

Zi ≤
(

1− 1
k

)
Zi−1 +R(T ).

Combining this with the induction hypothesis proves
(5).

The general case, in which user ui’s type vector
(pij)j∈D is an arbitrary element of [0, 1]D, can be re-
duced via a simple transformation to the case of de-
terministic users analyzed above. We replace user ui
with a random deterministic user ûi whose type vector
p̂i ∈ {0, 1}D is sampled using the following rule: the
random variable p̂ij has distribution

p̂ij =
{

1 with probability pij
0 with probability 1− pij ,

and these random variables are mutually independent.
Note that the clicking behavior of user ui when pre-
sented with a ranking B is identical to the clicking
behavior observed when a random user type ûi is sam-
pled from the above distribution, and the ranking B
is presented to this random user. Thus, if we apply
the specified transformation to users u1, u2, . . . , uT ,
obtaining a random sequence û1, û2, . . . , ûT of deter-
ministic users, this transformation changes neither the
algorithm’s expected payoff nor that of the optimum
ranking B∗. Thus, Theorem 1 for general users can
be deduced by applying the same theorem to the ran-
dom sequence û1, . . . , ûT and taking the expectation of
the left and right sides of (4) over the random choices
involved in sampling û1, . . . , ûT .
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Note also that B∗ is defined as the optimal subset of
k documents, and OPT is the payoff of presenting B∗,
without specifying the order in which documents are
presented. However, the Ranked Bandits Algorithm
learns an order for the documents in addition to iden-
tifying a set of documents. In particular, given k′ < k,
RBA(k′) would receive exactly the same feedback as
the first k′ instances of MABi receive when running
RBA(k). Hence any k′ sized prefix of the learned rank-
ing also has the same performance bound with respect
the appropriate smaller set B′∗.

Finally, it is worth noting that this analysis cannot
be trivially extended to non-binary payoffs, for exam-
ple when learning a ranking of web advertisements.
In particular, the greedy algorithm on which RBA is
based in the non-binary payoff case can obtain a payoff
that is a factor of k − ε below optimal, for any ε > 0.

5.3. Analysis of Ranked Explore and Commit

The analysis of the Ranked Explore and Commit
(REC) algorithm is analogous to that of the Ranked
Bandits algorithm, except that the equivalents of
Lemma 1 and Theorem 1 are only true with high prob-
ability after t0 = nxk time steps of exploration have
occurred. Let B denote the ranking selected by REC.
Lemma 2. Let x = 2k2/ε2 log(2k/δ). Assume At is
drawn i.i.d. from a fixed distribution of user types. For
any i, with probability 1− δ/k,

E

[
T∑
t=t0

gi(At, B)

]

≥ 1
k

E

[
T∑
t=t0

(Gk(At, B∗)−Gi−1(At, B))

]
− ε

k
T.

Proof Outline. First note that in this setting, B∗ and
OPT are defined in expectation over the At drawn.
For any document, by Hoeffding’s inequality, with
probability 1− δ/2k the true payoff of that document
explored at rank i is within ε/2k of the observed mean
payoff. Hence the document selected at rank i is within
ε/k of the payoff of the best document available at
rank i. Now, the same proof as for Lemma 1 applies,
although with a different regret R(T ).

Theorem 2. With probability (1− δ), the algorithm’s
combined payoff after T rounds satisfies:

E

[
T∑
t=1

Gk(At, B)

]
≥
(

1− 1
e

)
OPT − εT − nkx (8)

Proof Outline. Applying Lemma 2 for all i ∈ {1, .., k},
with probability (1− kδ/k) = (1 − δ) the conclusion
of the Lemma holds for all i.

Next, an analogous proof as for Theorem 1 applies,
except replacing R(T ) with ε

kT and noting that the
regret during the nkx exploration steps is at most 1
for every time step.

It is interesting to note that, in contrast to the Ranked
Bandits Algorithm, this algorithm can be adapted to
the case where clicked documents provide real valued
payoffs. The only modification necessary is that docu-
ments should always be presented by decreasing payoff
value. However, we do not address this extension fur-
ther due to space constraints.

6. Evaluation

In this section, we evaluate the Ranked Bandits and
Ranked Explore and Commit algorithms, as well as
two variants of RBA, with simulations using a user
and document model.

We chose a model that produces a user population and
document distribution designed to be realistic yet al-
low us to evaluate the performance of the presented
algorithms under different levels of noise in user click-
ing behavior. Our model first assigns each of 20 users
to topics of interest using a Chinese Restaurant Pro-
cess (Aldous, 1985) with parameter θ = 3. This led
to a mean of 6.5 unique topics, with topic popularity
decaying according to a power law. Taking a collection
of 50 documents, we then randomly assigned as many
documents to each topic as there were users assigned
to the topic, leading to topics with more users having
more relevant documents. We set each document as-
signed to a topic as relevant to all users assigned to
that topic, and all other documents as non relevant.
The probabilities of a user clicking on relevant and
non-relevant documents were set to constants pR and
pNR respectively.

We tested by drawing one user uniformly from the
user population at each time step, and presented this
user with the ranking selected by each algorithm, using
k = 5. We report the average number of time steps
where the user clicked on a result, and the average
number of time steps where at least one of the pre-
sented documents was relevant to the user. All num-
bers we report are averages over 1,000 algorithm runs.

6.1. Performance Without Click Noise

We start by evaluating how well the REC and RBA
algorithms maximize the clickthrough rate in the sim-
plest case when pR = 1 and pNR = 0. We also compare
their performance to the clickthrough rate that the
same users would generate if presented with a static
system that orders documents by decreasing true prob-
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Figure 1. Clickthrough rate of the learned ranking as a
function of the number of times the ranking was presented
to users.

ability of relevance to the users assuming document
relevances are independent. Figure 1 shows that both
REC and RBA perform well above the static baseline
and well above the performance guarantee provided by
the theoretical results. This is not surprising, as the
(1 − 1/e)OPT bound is a worst-case bound. In fact,
we see that REC with x = 1000 nearly matches the
performance of the best possible ranking after finish-
ing its initial exploration phase. We also see that the
exploration parameter of REC plays a significant role
in the performance, with lower exploration leading to
faster convergence but slightly lower final performance.
Note that despite REC performing best here, the rank-
ing learned by REC is fixed after the exploration steps
have been performed. If user interests and documents
change over time, the performance of REC could fall
arbitrarily. In contrast, RBA is guaranteed to remain
near or above the (1− 1/e)OPT bound.

6.2. Effect of Click Noise

In Figure 1, the clickthrough rate and fraction of users
who found a relevant document in the top k positions
is identical (since users click if and only if they are
presented with a relevant document). In contrast,
Figure 2 shows how the fraction of users who find
a relevant document decays as the probability of a
user clicking becomes noisier. The figure presents the
performance lines for REC and RBA across a range
of click probabilities, from (pR = 1, pNR = 0) to
(pR = 0.7, pNR = 0.3). We see that both algorithms
decay gracefully: as the clicks become noisier noisy,
the fraction of users presented with a relevant docu-
ments decays slowly.

6.3. Optimizing Practical Effectiveness

Despite the theoretical results shown earlier, it would
be surprising if an algorithm designed for the worst
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Figure 2. Effect of noise in clicking behavior on the quality
of the learned ranking.

case had best average case performance. Figure 3
shows the clickthrough rate (which the algorithms op-
timize), and fraction of users who find relevant doc-
uments (which is of more interest to information re-
trieval practitioners), for variants building on the in-
sights of the ranked bandits idea. Specifically, two
variants of RBA that have the best performance we
could obtain in our simulation are shown. We found
that using a UCB1-based multi-armed bandit algo-
rithm (Auer et al., 2002a) in place of EXP3 improves
the performance of RBA substantially when user inter-
ests are static. Note however, that UCB1 does not sat-
isfy the constraints presented in Section 4.2 because it
assumes rewards are identically distributed over time,
an assumption violated in our setting when changes in
the documents presented above rank i alter the reward
distribution at rank i. Nevertheless, we see that this
modification substantially improves the performance
of RBA. We expect such an algorithm to perform best
when few documents are prone to radical shifts in pop-
ularity.

7. Conclusions and Extensions

We have presented a new formulation of the learning
to rank problem that explicitly takes into account the
relevance of different documents being interdependent.
We presented, analyzed and evaluated two algorithms
and two variants for this learning setting. We have
shown that the learning problem can be solved in a
theoretically sound manner, and that our algorithms
can be expected to perform reasonably in practice.

We plan to extend this work by addressing the non-
binary document relevance settings, and perform em-
pirical evaluations using real users and real documents.
Furthermore, we plan to investigate how prior knowl-
edge can be incorporated into the algorithms to im-
prove speed of convergence. Finally, we plan to inves-
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Figure 3. In a practical setting, it may be beneficial to use a
variant of RBA to obtain improved performance at the cost
of weaker theoretical guarantees. Performance is shown in
realistic settings pR = 0.8, pNR = 0.2.

tigate if the bandits at different ranks can be coupled
to improve the rate at which RBA converges.
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Abstract

Finding good representations of text docu-
ments is crucial in information retrieval and
classification systems. Today the most pop-
ular document representation is based on a
vector of word counts in the document. This
representation neither captures dependencies
between related words, nor handles synonyms
or polysemous words. In this paper, we pro-
pose an algorithm to learn text document
representations based on semi-supervised au-
toencoders that are stacked to form a deep
network. The model can be trained efficiently
on partially labeled corpora, producing very
compact representations of documents, while
retaining as much class information and joint
word statistics as possible. We show that it
is advantageous to exploit even a few labeled
samples during training.

1. Introduction

Document representations are a key ingredient in all
information retrieval and processing systems. The goal
of the representation is to make certain aspects of the
document readily accessible, e.g. the document topic.
To identify a document topic, we cannot rely on specific
words in the document, as it may use other synonymous
words or misspellings. Likewise, the presence of a word
does not warrant that the document is related to it,
as it may be taken out of context, or polysemous, or
unimportant to the document topic.

The most widespread representations for document
classification and retrieval today are based on a vec-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

tor of counts. These include various term-weighting
retrieval schemes, such as tf-idf and BM25 (Robertson
and Walker, 1994), and bag-of-words generative mod-
els such as naive Bayes text classifiers. The pertinent
feature of these representations is that they represent
individual words. A serious drawback of the basic tf-
idf and BM25 representations is that all dimensions
are treated as independent, whereas in reality word
occurrences are highly correlated.

There have been many attempts at modeling word
correlations by rotating the vector space and project-
ing documents onto principal axes that expose related
words. Methods include LSI (Deerwester et al., 1990)
and pLSI (Hofmann, 1999). These methods constitute
a linear re-mapping of the original vector space, and
while an improvement, still can only capture very lim-
ited relations between words. As a result they need a
large number of projections in order to give an appro-
priate representation.

Other models, such as LDA (Blei et al., 2003), have
shown superior performance over pLSI and LSI. How-
ever, inferring the representation is computationally
expensive because of the “explaining away” effect that
plagues all directed graphical models.

More recently, a number of authors have proposed
undirected graphical models that can make inference
efficient at the cost of more complex learning due to
a global (rather than local) partition function whose
exact gradient is intractable. These models build on
Restricted Boltzmann Machines (RBMs) by adapting
the conditional distribution of the input visible units to
model discrete counts of words (Hinton and Salakhut-
dinov, 2006; Gehler et al., 2006; Salakhutdinov and
Hinton, 2007a,b). These models have shown state-of-
the-art performance in retrieval and clustering, and can
be easily used as a building block for deep multi-layer
networks (Hinton et al., 2006). This might allow the
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top-level representation to capture high-order corre-
lations that would be difficult to efficiently represent
with similar but shallow models (Bengio and LeCun,
2007). Many authors have pointed out that RBMs are
robust to uncorrelated noise in the input since they
model the distribution of the input data, and they im-
plicitly perform automatic model selection by not using
unnecessary hidden units. But they are also somewhat
cumbersome to train, relying on two disparate steps:
unsupervised pre-training using an approximate sam-
pling technique such as contrastive divergence (Hinton,
2000), followed by supervised back-propagation. It is
rather difficult to predict when training can be stopped
and how long the Markov Chain has to run. An alter-
native is to replace RBMs with autoencoders (Bengio
et al., 2006), or special autoencoders that produce
sparse representations (Ranzato et al., 2007b). Ac-
cording to these authors, the performance of RBMs
and standard autoencoders is quite similar as long as
the dimensionality of the latent space is smaller than
the input. Seeking an algorithm that can be trained
efficiently, and that can produce a representation with
just a few matrix multiplications, we propose a deep
network whose building blocks are autoencoders, with
a specially designed first layer for modeling discrete
counts of words.

Previously, deep networks have been trained either
from fully labeled data, or purely unlabeled data. Nei-
ther method is ideal, as it is expensive to label large
collections, whereas purely unsupervised learning may
not capture the relevant class information in the data.
Inspired by the experiments by Bengio, Lamblin et
al. (2006), we learn the parameters of the model by us-
ing both a supervised and an unsupervised objective. In
other words, we require the representation to produce
good reconstructions of the input documents and, at
the same time, to give good predictions of the document
class labels. Besides demonstrating better accuracy in
retrieval, we also extend the deep network framework to
a semi-supervised setting where we deal with partially
labeled collections of documents. This allows us to use
relatively few labeled documents yet leverage language
structure learned from large corpora, see Sec. 3.1.

Finally, we study the relative advantages of different
deep models. For instance, we investigate when deep
models are better than shallow ones. Our experiments
in Sec. 3.2 show that for learning compact representa-
tions of documents, deep architectures greatly outper-
form shallow models. Compact representations are ben-
eficial because they require less storage (an important
consideration for large search engines), and they are
more computationally efficient when used in indexing.
We also explored the possibility to use deep networks to

Encoder 1
Input count

Decoder 1

Classifier 1

Encoder 2

Decoder 2

Classifier 2

Encoder 3

Decoder 3

Classifier 3

Code 1

Code 2
Code 3

Figure 1. Architecture of a model with three stages. The
system is trained layer by layer. During the training of
the n-th layer, the n-th encoder is coupled with the n-th
decoder and classifier (shown in dashed line). The n-th
encoder will provide the codes to train the layer above. After
training, the feedback decoding modules are discarded and
the system is used to produce very compact codes by a
feed-forward pass through the chain of encoders.

learn binary high-dimensional representations instead
of compact representations. These high-dimensional
representations were trained using the Symmetric En-
coding Sparse Machine (SESM) (Ranzato et al., 2007b).
However, the compact representations proved to be far
more efficient in terms of memory usage and CPU time,
as described in Sec. 3.3. Also, training is more com-
putationally efficient than for related models such as
RBMs.

2. The model

The input to the system is a bag of words representation
of each text document in the form of a count vector.
The length of the vector equals the number of unique
words in the collection, and its i-th entry stores the
number of times the corresponding word occurs in
the document. The goal of the system is to extract a
compact representation from this very high-dimensional
but sparse input vector. A compact representation is
good because it requires less storage, and allows fast
index lookup. Since the representation is produced by a
deep multi-layer model, it can efficiently discover latent
topics by grouping similar words and by activating
features whenever some “interesting” combination of
words is detected (see visualization in Sec. 3.4).

We propose a system that is composed of multiple
layers. Each layer computes a weighted sum of its
input followed by a logistic nonlinearity. Each layer
can be seen as an encoder producing a representation,
or code, from its input. This code will be propagated
and used as the input to the next layer of the model.
This architecture is quite similar to a neural network
model, but is trained differently and has a special first
layer able to encode discrete count data. The goal of
training is to find the parameters in each layer.
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In order to successfully learn the parameters we follow
the strategy advocated by recent work (Hinton et al.,
2006; Hinton and Salakhutdinov, 2006; Bengio et al.,
2006) on deep multi-layer models. Learning proceeds
greedily layer by layer. When the parameters of one
layer have been found, the data is fed through that
layer and the output becomes the input for the next
layer, which is trained subsequently.

Let us consider a generic layer in the model, and let x

be its input and let z be the representation produced
by the layer. In order to warrant the fidelity of the
code z, we attach a feedback module which aims to
reconstruct the input x from the code z. The reason is
that if the model achieves a good reconstruction from
the code z, then we can be sure that the representation
has preserved most of the information from x. The
original layer can then be interpreted as an encoder
that computes a code from the input, while the feed-
back module can be seen as a decoder that reconstructs
the input x from the code z. Learning consists of min-
imizing a reconstruction error ER with respect to the
parameters in the encoder and decoder when the input
x is drawn from the training dataset. Since we learn
by stochastic gradient descent, any type of encoder and
decoder is allowed as long as it is differentiable.

Some inputs may have labels specifying the class to
which they belong. In order to incorporate this infor-
mation, we add another module to the decoder. The
feedback module now not only has a decoder recon-
structing the input x, but also a classifier predicting
the label y from the code z, see Fig. 1. During training
the parameters of the encoder, classifier and decoder
are learned by minimizing the loss

L = ER + αcEC , (1)

where ER and EC are terms measuring the reconstruc-
tion and classification error respectively, and αc is a
coefficient balancing them. The first term is common
to many unsupervised learning algorithms and makes
the system model the structure and the dependencies
among the input components of x. The second term
represents the supervised goal ensuring that codes are
also going to be good for discriminating between classes.

For the classifier module we used a linear classifier
trained by cross-entropy error EC . Denoting with
(WC)i the i-th row of the classifier weight matrix, with
bCi the i-th bias of the classifier, and with hj the j-th
output unit of the classifier passed through a soft-max:

hj =
exp((WC)j · z + bCj)

∑

i exp((WC)i · z + bCi)
,

we define EC = −
∑

i yi log hi, where y is a 1-of-N
encoding of the target class label.

c
a

WE WD

WC

log exp

softmax

logistic NLL+
Input

count x

1
z rate

CE

+
loss

Label y

Code

Figure 2. The architecture of the first stage has three com-
ponents: (1) an encoder, (2) a decoder (Poisson regressor),
and (3) a classifier. The loss is the weighted sum of cross-
entropy (CE) and negative log-likelihood (NLL) under the
Poisson model.

2.1. Training the First Stage

The first stage is special because the input x is a
discrete vector of word counts, with xi counting the
number of occurrences of the i-th word in the document.
The decoder is a Poisson regression model aiming to
predict x from the code z. A Poisson regressor is a
log-linear model which assigns the following probability
to an observed x:

P (x) =
∏

i

P (xi) =
∏

i

e−λi
λxi

i

xi!
, (2)

where the set of rates is given by λ = βeWDz+bD , with
a decoder weight matrix WD, decoder biases bD, and a
constant β proportional to the document length. This
normalization handles documents of different lengths
and makes learning stable. The reconstruction error
ER minimized at the first stage (eq. 1) is the negative
log-likelihood of the data

ER =
∑

i

(βe((WD)i·z+bDi)−xi(WD)i·z−xibDi+log xi!),

(3)
averaged over the samples x in the training dataset.

We design the encoder by “reverse-engineering” the
decoder to make the machine symmetric. Since the
decoder computes an exponential of a weighted sum,
the encoder performs a weighted sum of the log-
transformed input x. In addition to this, the encoder
applies a logistic nonlinearity. Hence, the code z is
given by z = σ(WE log(x) + bE), where WE and bE

are the weight matrix and the biases in the encoder,
and σ is the logistic. Since many components in x are
zero (because only a few dictionary words are actually
present in a given document), and since the rate at
which a word might appear is generally fairly low, this
architecture is prone to numerical problems in the eval-
uation of the logarithm, and would possibly require
large negative weights in WD (in order to make the
rate λ small). Thus, we shift the Poisson regression by
adding one to the input. As a result, if a word does not
occur in the document, the input to the encoder weight
matrix WE will be zero (and not minus infinity), and
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if a word is rare its rate will be one forcing the corre-
sponding weights in WD to be close to zero (and not
to minus infinity). Fig. 2 shows the final architecture
of the first stage.

2.2. Training the Upper Stages

The outputs of earlier layers are fed as inputs of subse-
quent layers. The architecture of the subsequent layers
differs from the first one in that the decoder uses a
Gaussian regressor instead of a Poisson regressor. Ac-
cordingly, the encoder computes a weighted sum of its
input and applies a logistic nonlinearity. This architec-
ture is similar to an autoencoder neural network, but
here the feedback layer also includes a supervised clas-
sifier. If z(n−1) is the input to the n-th layer, the code
z(n) produced at this stage is z(n) = σ(WEz(n−1)+bE).
The reconstruction error ER in the loss of eq. 1 can be
written as ER = ‖z(n−1) −WDz(n) − bD‖

2
2.

2.3. Training the Whole Model

Learning consists of determining the parameters at
each layer of the deep model. The algorithm proceeds
as follows:
(1) attach a Poisson regressor and a linear classifier
to the first layer, and minimize the loss in eq. 1 with
respect to the parameters (WE , bE , WD, bD, WC , bC) by
stochastic gradient descent;
(2) transform the training samples x into codes z(1)

using the trained encoder of the first layer;
(3) train the second layer by attaching a Gaussian
regressor and a linear classifier to the encoder, using
the codes z(1) as input;
(4) use the trained encoder of the second layer to
transform the codes z(1) into the higher-level codes
z(2);
(5) repeat the previous two steps for as many layers as
desired.

When the input sample is not accompanied by a label,
the classifier is not updated and the loss function simply
reduces to L = ER. In order to minimize the loss with
respect to the parameters we use stochastic gradient
descent and we back-propagate the derivatives through
the decoder, classifier and encoder (LeCun et al., 1998).

The learning algorithm is particularly efficient. The
computational cost of learning is linear in the number
of training samples (sublinear for redundant datasets,
which are frequent). For each training document at any
given layer, the cost is given by a forward and backward
pass through encoder, decoder and classifier. Each
pass is dominated by a matrix-vector multiplication
whose complexity depends on the size of the matrix.
Since at each layer we reduce the dimensionality of the

input, the first layer dominates the computational cost.
However, the sparsity of the input count vector can be
exploited to speed-up the computation by taking into
account only those rows in WE that are involved in
the computation. In general, the computational cost at
a given layer scales as 4MN + 2NK, where M is the
dimensionality of the input, N is the dimensionality of
the code, and K is the number of classes.

If we are interested in classification we can also use
the trained classifier to predict the labels from the
features (at any layer), without training a separate
supervised system (see Sec. 3.1 for an example). Also,
our experiments show that there is not much advan-
tage in “fine-tuning” the parameters by doing global
non-greedy supervised training of the machine as per-
formed by Hinton et al. (2006). The label injection
during the greedy training of each layer renders this
final supervised training stage unnecessary. This saves
a lot of time because it is expensive to do forward
and backward propagation through a large and deep
network.

Inference is also very efficient. Once the model is
trained the encoders are stacked and the decoder and
classifier modules are removed. A feature vector is
computed by a forward propagation of the input sparse
count vector through the sequence of encoders. This
computation requires a few matrix vector multiplica-
tions, where the most expensive one is at the first layer,
which can benefit further from a sparse computation.

3. Experiments

In our experiments we considered three standard
datasets: 20 Newsgroups, Reuters-21578, and
Ohsumed1. The 20 Newsgroups dataset contains 18845
postings taken from the Usenet newsgroup collection.
Documents are partitioned into 20 topics. The dataset
is split into 11314 training documents and 7531 test
documents. Training and test articles are separated in
time. Reuters has a predefined ModApte split of the
data into 11413 training documents and 4024 test doc-
uments. Documents belong to one of 91 topics. The
Ohsumed dataset has 34389 documents with 30689
words and each document might be assigned to more
than one topic, for a total of 23 topics. The dataset is
split into training and test by randomly selecting the
67% and the 33% of the data. Rainbow2 was used to
pre-process these datasets by stemming the documents,

1These corpora were downloaded from http://people.
csail.mit.edu/jrennie/20Newsgroups, and http://www.
kyb.mpg.de/bs/people/pgehler/rap

2Rainbow is available at http://www.cs.cmu.edu/

~mccallum/bow/rainbow
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Figure 3. SVM classification of documents from the 20
Newsgroups dataset (2000 word vocabulary) trained with
between 2 and 50 labeled samples per class. The SVM was
applied to representations from the deep model trained in
a semi-supervised or unsupervised way, and to the tf-idf
representation. The numbers in parentheses denote the
number of code units. Error bars indicate one standard
deviation. The fourth layer representation has only 20 units,
and is much more compact and computationally efficient
than all the other representations.

removing stop words and words appearing less than
three times or in only a single document, and retain-
ing between 1000 and 30,000 words with the highest
mutual information.

Unless stated otherwise, we trained each layer of the net-
work for only 4 epochs over the whole training dataset.
Convergence took only a couple of epochs, and was
robust to the choice of the learning rate. This was
set to about 10−4 when training the first layer, and
to 10−3 when training the layers above. The learning
rate was exponentially decreased by multiplying it by
0.97 every 1000 samples. A small L1 regularizer on
the parameters was added to the loss. Each weight
was randomly initialized, and was updated by taking a
gradient step with a regularizer given by the value of
the learning rate times 5 · 10−4 the sign of the weight.
The value of αc in eq. 1 was set to the ratio between
the number of input units in the layer and the number
of classes in order to make the two error terms ER

and EC comparable. Its exact value did not affect
the performance as long as it had the right order of
magnitude.

3.1. The Value of Labels

In order to assess whether semi-supervised training was
better than purely unsupervised training, we trained
the deep model on the 20 Newsgroup dataset using only
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Figure 4. Precision-recall curves for the Reuters dataset
comparing a linear model (LSI) to the nonlinear deep model
with the same number of code units (in parentheses). Re-
trieval is done using the k most similar documents according
to cosine similarity, with k ∈ [1 . . . 4095].

2, 5, 10, 20 and 50 samples per class. During train-
ing we showed the system 10 labeled samples every
100 examples by sweeping more often over the labeled
data. This procedure was repeated at each layer dur-
ing training. We trained 4 layers for 10 epochs with
an architecture of 2000-200-100-50-20, denoting 2000
inputs, 200 hidden units at the first layer, 100 at the
second, 50 at the third, and 20 at the fourth. Then,
we trained a Support Vector Machine3 (SVM) with a
Gaussian kernel on (1) the codes that corresponded to
the labeled documents, and we compared the accuracy
of the semi-supervised model to the one achieved by
a Gaussian SVM trained on the features produced by
(2) the same model but trained in an unsupervised
way, and by (3) the tf-idf representation of the same
labeled documents. The SVM was generally tuned
by five-fold cross validation on the available labeled
samples (but two-fold cross validation when using only
two samples per class). Fig. 3 demonstrates that the
learned features gave much better accuracy than the tf-
idf representation overall when labeled data was scarce.
The model was able to exploit the very few labeled
samples producing features that were easier to discrim-
inate. The performance actually improved when the
dimensionality of the code was reduced and only 2 or
5 labeled samples per class were available, probably
because a more compact code implicitly enforces a
stronger regularization. Semi-supervised training out-
performed unsupervised training, and the gap widened
as we increased the number of labeled samples, indicat-

3We used libsvm package available at http://www.csie.
ntu.edu.tw/~cjlin/libsvm
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Figure 5. Precision-recall curves for the Reuters dataset
comparing one-layer models (shallow) to deep models with
the same numbers of code units. The deep models are more
accurate overall when the codes are extremely compact.
This also suggests that the number of hidden units has to
be gradually decreased from layer to layer.

ing that the unsupervised method had failed to model
information relevant for classification when compress-
ing to a low-dimensional space.

Interestingly, if we classify the data using the classi-
fier of the feedback module we obtain a performance
similar to the one achieved by the Gaussian SVM. For
example, when all training samples are labeled the
classifier at the first stage achieves accuracy of 76.3%
(as opposed to 75.5% of the SVM trained either on the
learned representation or on tf-idf), while the one on
the fourth layer achieves accuracy of 74.8%. Hence,
the training algorithm provides an accurate classifier
as a side product of the training, reducing the overall
learning time.

3.2. Deep or Shallow?

In all the experiments discussed in this section the
model was trained using fully labeled data (still, train-
ing also includes an unsupervised objective as discussed
earlier). In order to retrieve documents after training
the model, all documents are mapped into the latent
low-dimensional space, the cosine similarity between
each document in the test dataset and each document
in the training dataset is measured, and the k most
similar documents are retrieved. k is chosen to be equal
to 1, 3, 7, ..., 4095. Based on the topic label of the
documents, we assess the performance by computing
the recall and the precision averaged over the whole
test dataset.

In the first experiment, we compared the linear map-
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Figure 6. Precision-recall curves for the 20 Newsgroups
dataset comparing the performance of tf-idf versus a one-
layer shallow model for varying sizes of the word dictionary
(from 1000 to 10000 words).

ping produced by LSI to the nonlinear mapping pro-
duced by our model. We considered the Reuters dataset
with a 12317 word vocabulary and trained a network
with 3 layers. The first layer had 100 code units, the
second layer had 40 units in one experiment and 10
in another, the third layer was trained with either 3
or 2 code units. As shown in Fig. 4, the nonlinear
representation is more powerful than the linear one,
when the representation is very compact.

Another interesting question is whether adding layers
is useful. Fig. 5 shows that for a given dimensionality
of the output latent space the deep architecture outper-
forms the shallow one. The deep architecture is capable
of capturing more complex dependencies among the
input variables than the shallow one, while the repre-
sentation remains compact. The compactness allows us
to efficiently handle very large vocabularies (more than
30,000 words for the Ohsumed, see Sec. 3.4). Fig. 6
shows that increasing the number of words (i.e. the
dimensionality of the input) does give better retrieval
performance.

3.3. Compact or Binary High-Dimensional?

The most popular representation of documents is tf-
idf, a very high-dimensional and sparse representa-
tion. One might wonder whether we should learn a
high-dimensional representation instead of a compact
representation. Unfortunately, the autoencoder based
learning algorithm forces us to map data into a lower-
dimensional space at each layer, as without additional
constraints (Ranzato et al., 2007a) the trivial identity
function would be learned. We used the sparse encod-
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Figure 7. Precision-recall curves comparing compact rep-
resentations vs. high-dimensional binary representations.
Compact representations can achieve better performance
using less memory and CPU time.

ing symmetric machine (SESM) (Ranzato et al., 2007b)
as a building block for training a deep network produc-
ing sparse features. SESM is a symmetric autoencoder
with a sparsity constraint on the representation, and it
is trained unsupervised. In order to make the sparse
representation at the final layer computationally appeal-
ing we thresholded it to make it binary. We trained a
2000-1000-1000 SESM network on the Reuters dataset.
In order to make a fair comparison with our compact
representation, we fixed the information content of the
code in terms of precision4 at k = 1. We measured
the precision and recall of the binary representation of
a test document by computing its Hamming distance
from the representation of the training documents. We
then trained our model with the following number of
units 2000-200-100-7. The last number of units was set
to match the precision of the binary representation at
k = 1. Fig. 7 shows that our compact representation
outperforms the high-dimensional and binary represen-
tation at higher values of k. Just 7 continuous units
are able to achieve better retrieval than 1000 binary
units! Storing the Reuters dataset with the compact
representation takes less than half the memory space
than using the binary representation, and comparing
a test document against the whole training dataset is
five times faster with the compact representation. The
best accuracy for our model is given with a 20-unit
representation. Fig. 7 shows the performance of a rep-
resentation with the same number of units learned by
a deep belief network (DBN) following Salakhutdinov
and Hinton’s constrained Poisson model (2007). Their

4The entropy of the representation would be more natu-
ral, but its value depends on the quantization level.

model was greedily pre-trained for one epoch in an
unsupervised way (200 pre-training epochs gave similar
fine-tuned accuracy), and then fine-tuned with super-
vision for 100 epochs. While fine-tuning does not help
our model, it significantly improves the DBN which
eventually achieves the same accuracy as our model.
Despite the similar accuracy, the computational cost of
training a DBN (with our implementation using conju-
gate gradient on mini-batches) is several times higher
due to this supervised training through a large and
deep network. By looking at how words are mapped

Table 1. Neighboring word stems for the model trained on
Reuters. The number of units is 2000-200-100-7.

Word stem Neighboring word stems

livestock beef, meat, pork, cattle
lend rate, debt, bond, downgrad
acquisit merger, stake, takeov
port ship, port, vessel, freight
branch stake, merger, takeov, acquisit
plantat coffe, cocoa, rubber, palm
barrel oil, crude, opec, refineri
subcommitte bill, trade, bond, committe
coconut soybean, wheat, corn, grain
meat beef, pork, cattl, hog
ghana cocoa, buffer, coffe, icco
varieti wheat, grain, agricultur, crop
warship ship, freight, vessel, tanker
edibl beef, pork, meat, poultri

to the top-level feature space, we can get an intuition
about the learned mapping. For instance, the code
closest to the representation of the word “jakarta” cor-
responds to the word “indonesia”, similarly,“meat” is
closest to “beef” (table 1). As expected, the model
implicitly clusters synonymous and related words.

3.4. Visualization

The deep model can also be used to visualize documents.
When the top layer is two-dimensional we can visualize
high-dimensional nonlinear manifolds in the space of
bags of words. Fig. 8 shows how documents in the
Ohsumed test set are mapped to the plane. The model
exposes clusters documents according to the topic class,
and places similar topics next to each other. The
dimensionality reduction is extreme in this case, from
more than 30000 to 2.

4. Conclusions

We have proposed and demonstrated a simple and effi-
cient algorithm to learn document representations from
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Figure 8. Two-dimensional codes produced by the deep
model 30689-100-10-5-2 trained on the Ohsumed dataset
(only the 6 most numerous classes are shown). The codes
results from propagating documents in the test set through
the four-layer network.

partially labeled datasets. The representation is rich
in that it can model complex dependencies between
words, which allows us to capture higher-level seman-
tic aspects of documents than is possible with linear
models. Capturing such complex structure would not
be possible based on labeled data alone; by leveraging
unlabeled documents we get access to a much larger
amount data.

This algorithm trains faster than a similar model based
on RBMs, and it finds more efficient representations
than a network trained with SESMs that produce high-
dimensional binary features. We have shown that these
deep models greatly outperform similar but shallow
models when the learning task is very hard, such as
learning very compact representations. Compact rep-
resentations are very important for search engines be-
cause they are cheap to store, and fast to compute
and to compare. Also, we have shown that even a
few labels can be exploited to make the features more
discriminative.

For future work, we are interested in applying the
representation for clustering and ranking. It would also
be interesting to go beyond the bag of words model to
capture word proximity.
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Abstract

A large body of past work has focused on the
first-order tree-based LP relaxation for the
MAP problem in Markov random fields. This
paper develops a family of super-linearly con-
vergent LP solvers based on proximal mini-
mization schemes using Bregman divergences
that exploit the underlying graphical struc-
ture, and so scale well to large problems. All
of our algorithms have a double-loop char-
acter, with the outer loop corresponding to
the proximal sequence, and an inner loop of
cyclic Bregman divergences used to compute
each proximal update. The inner loop up-
dates are distributed and respect the graph
structure, and thus can be cast as message-
passing algorithms. We establish various con-
vergence guarantees for our algorithms, il-
lustrate their performance, and also present
rounding schemes with provable optimality
guarantees.

1. Introduction

A key computational challenge associated with dis-
crete Markov random fields (MRFs) is the problem
of maximum a posteriori (MAP) estimation: comput-
ing the most probable configuration(s). For general
graphs, this MAP problem includes a large number of
classical NP-complete problems, including MAX-CUT
independent set, and satisfiability problems, among
various others.

This intractability motivates the development and
analysis of methods for obtaining approximate solu-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

tions. The ordinary max-product algorithm is a form
of non-serial dynamic-programming, exact for trees,
and also widely used as a heuristic for obtaining ap-
proximate solutions to the MAP problem, but it suf-
fers from convergence failures, and despite some local
optimality results (Freeman & Weiss, 2001), it has no
general correctness guarantees. For certain MRFs aris-
ing in computer vision, Boykov et al. (2001) studied
graph-cut based search algorithms that compute a lo-
cal maximum over two classes of moves. A related class
of methods are those based on various types of convex
relaxations, in which the discrete MAP problem is re-
laxed some type of convex optimization problem over
continuous variables. Examples include linear pro-
gramming (LP) relaxations (Wainwright et al., 2005;
Chekuri et al., 2005), as well as quadratic, semidefinite
and other conic programming relaxations (Ravikumar
& Lafferty, 2006; Kumar et al., 2006; Wainwright &
Jordan, 2003).

Among convex relaxations, LP relaxation is the least
computationally expensive and best understood. The
primary focus of this paper is a well-known tree-based
LP relaxation (Chekuri et al., 2005; Wainwright et al.,
2005) of the MAP estimation problem for pairwise
Markov random fields, based on optimizing over a set
of locally consistent pseudomarginals on edges and ver-
tices of the graph. In principle, this LP relaxation
can be solved by any standard solver, including sim-
plex or interior-point methods (Bertsimas & Tsitsik-
ilis, 1997). However, such generic methods fail to ex-
ploit the graph-structured nature of the LP, and hence
do not scale favorably to large-scale problems.

Wainwright et al. (2005) established a connection be-
tween this tree-based LP relaxation and the class of
tree-reweighted max-product (TRW-MP) algorithms,
showing that suitable TRW-MP fixed points specify
optimal solutions to the LP relaxation. Subsequent
work has extended this basic connection in various in-
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teresting ways. For instance, Kolmogorov (2005) de-
veloped a serial form of TRW-MP with some conver-
gence properties but as with the ordinary TRW-MP
updates, no guarantees of LP optimality. Weiss et
al. (2007) connected convex forms of sum-product
and exactness of reweighted max-product algorithms.
Globerson and Jaakkola (2007) developed a conver-
gent dual-ascent algorithm, but its fixed points are
guaranteed to be LP-optimal only for binary problems,
as is also the case for the TRW-MP algorithm (Kol-
mogorov & Wainwright, 2005), and the rate of con-
vergence is not analyzed. Other authors (Komodakis
et al., 2007; Feldman et al., 2002) have proposed sub-
gradient methods, but such methods typically have
sub-linear convergence rates.

The goal of this paper is to develop and analyze vari-
ous classes of message-passing algorithms that always
solve the LP, and are provably convergent with at least
a geometric rate. The methods that we develop are
flexible, in that new constraints can be incorporated
in a relatively seamless manner, with new messages
introduced to enforce them. All of the algorithms in
this paper are based on the notion of proximal mini-
mization: instead of directly solving the original linear
program itself, we solve a sequence of so-called prox-
imal problems, with the property that the sequence
of associated solutions is guaranteed to converge to
the LP solution. We describe different classes of al-
gorithms, based on different choices of the proximal
function: quadratic, entropic, and reweighted Bethe
entropies. For all choices, we show how the interme-
diate proximal problems can be solved by message-
passing updates on the graph, guaranteed to converge
but with a distributed nature that scales favorably.
An additional desirable feature, given the wide variety
of lifting methods for further constraining LP relax-
ations (Wainwright & Jordan, 2003), is that additional
constraints are easily incorporated within the frame-
work.

2. Background

We begin by introducing some background on Markov
random fields, and the LP relaxations that are the
focus of this paper. Given a discrete space X =
{0, 1, 2, . . . ,m}, let X = {X1, . . . ,Xp} ∈ X p de-
note a p−dimensional discrete random vector. We
assume that its distribution P is a Markov random
field, meaning that it factors according to the struc-
ture of an undirected graph G = (V,E), with each
variable Xs associated with one node s ∈ V , in the
following way. Letting θs : X → and θst : X × X →
be singleton and edgewise potential functions respec-

tively, we assume that the distribution takes the form
P(x; θ) ∝ exp

{ ∑

s∈V θs(xs) +
∑

(s,t)∈E θst(xs, xt)
}
.

The problem of maximum a posteriori (MAP) esti-
mation is to compute a configuration with maximum
probability—i.e., an element

x∗ ∈ arg max
x∈Xp

{ ∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
}

(1)

This problem is an integer program, since it involves
optimizing over the discrete space X p. The functions
θs(·) and θst(·) can always be represented in the form

θs(xs) =
∑

j∈X

θs;jI[xs = j] (2a)

θst(xs, xt) =
∑

j,k∈X

θst;jkI[xs = j; xt = k], (2b)

where the m-vectors {θs;j , j ∈ X} and m×m matrices
{θst;jk, (j, k) ∈ X × X} parameterize the problem.

The basic linear programming (LP) relaxation of this
problem is based on a set of pseudomarginals µs and
µst, associated with the nodes and vertices of the
graph. These pseudomarginals are constrained to be
non-negative, as well to normalize and be locally con-
sistent in the following sense:

∑

xs

µs(xs) = 1, for all s ∈ V (3a)

∑

xt

µst(xs, xt) = µs(xs) for all (s, t) ∈ E.

The polytope defined in this way is denoted
LOCAL(G), or L(G) for short. The LP relaxation
is based on solving maximizing the linear function
∑

s

∑

xs

θs(xs)µs(xs)+
∑

(s,t)∈E

∑

xs,xt

θst(xs, xt)µst(xs, xt),

subject to the constraint µ ∈ L(G). In the se-
quel, we write this LP more compactly in the form
maxµ∈L(G) θT µ. By construction, this relaxation is
guaranteed to be exact for any problem on a tree-
structured graph (Wainwright et al., 2005), so that
it can be viewed as a tree-based relaxation. The
main goal of this paper is to develop efficient and dis-
tributed algorithms for solving this LP relaxation, as
well as strengthenings based on additional constraints.
For instance, one natural strengthening is by “lift-
ing”: view the pairwise MRF as a particular case of
a more general MRF with higher order cliques, define
higher-order pseudomarginals on these cliques, and use
them to impose higher-order consistency constraints.
This particular progression of tighter relaxations un-
derlies the Bethe to Kikuchi (sum-product to general-
ized sum-product) hierarchy.
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3. Proximal Minimization Schemes

We begin by defining the notion of a proximal min-
imization scheme, and the Bregman divergences that
we use to define our proximal sequences. Instead of re-
ferring to the maximization problem maxµ∈L(G) θT µ,
it is convenient to consider the equivalent minimiza-
tion problems minµ∈L(G) −θT µ.

3.1. Proximal Minimization

The class of methods that we develop are based on the
notion of proximal minimization (Bertsekas & Tsitsik-
lis, 1997). Instead of attempting to solve the LP di-
rectly, we solve a sequence of problems of the form

µn+1 = arg min
µ∈L(G)

{

−θT µ +
1

ωn
Df (µ ‖µn)

}

, (4)

where for each n = 0, 1, 2, . . ., µn denotes current iter-
ate, {ωn} denotes a sequence of positive weights, and
Df is a certain type of generalized distance, known
as the proximal function. The purpose of introducing
the proximal function is to convert the original LP—a
convex optimization problem but non-differentiable in
dual space —into a strictly convex optimization prob-
lem that can be solved relatively easily. This scheme
appears similar to an annealing scheme, in that it in-
volves a choice of weights {ωn}. However, although
the weights {ωn} can be adjusted for faster conver-
gence, they can also be set to a constant, unlike for
annealing procedures, which would typically require
that 1/ωn → 0. The reason is that Df (µ ‖µ(n)), as
a generalized distance, itself converges to zero when
the method gets closer to the optimum, thus provid-
ing an “adaptive” annealing. For appropriate choice of
weights and proximal functions, these proximal min-
imization schemes converge to the LP optimum with
at least geometric and possibly superlinear rates (Bert-
sekas & Tsitsiklis, 1997; Iusem & Teboulle, 1995).

In this paper, we focus exclusively on proximal func-
tions that are Bregman divergences (Censor & Zenios,
1997), a class that includes various well-known diver-
gences (e.g., quadratic norm, Kullback-Leibler diver-
gence etc.). More specifically, we say that a function
f is a Bregman function if it is continuously differen-
tiable, strictly convex, and has bounded level sets. It
then induces a Bregman divergence

Df (µ ‖ ν) := f(µ) − f(ν) − 〈∇f(ν), µ − ν〉 (5)

This function satisfies Df (µ ‖ ν) ≥ 0 with equality iff
µ = ν, but need not be symmetric or satisfy the trian-
gle inequality, so it is known as a generalized distance.

We study the sequence {µn} of proximal iterates (4)
for the following choices of Bregman divergences.

Quadratic Distances: This choice is the simplest,
corresponding to the quadratic norm across nodes and
edges

Q(µ ‖ ν) :=
∑

s∈V

‖µs − νs‖2 +
∑

(s,t)∈E

‖µst − νst‖2,

(6)

where we have used the shorthand

‖µs − νs‖2 =
∑

xs

|µs(xs) − νs(xs)|2,

and similarly for the edges. The Bregman function
this corresponds to is the quadratic function,

f(µ) =
1

2

{
∑

s,xs

µ2
s(xs) +

∑

s,t,xs,xt

µ2
st(xs, xt)

}

(7)

Weighted Entropic Distances: Here we consider
a (possibly weighted) sum of Kullback-Leibler (KL)
divergences across the nodes and edges:

D(µ ‖ ν) =
∑

s∈V

ρsD(µs ‖ νs) +
∑

s,t

ρstD(µst ‖ νst) (8)

where D(p ‖ q) :=
∑

x

(
p(x) log p(x)

q(x) −
[
p(x)−q(x)

])
is

the KL divergence, and {ρs, ρst} are positive node and
edge weights, respectively. An advantage of the KL
distance, in contrast to the quadratic norm, is that
it automatically acts to enforce non-negativity con-
straints on the pseudomarginals. The Bregman func-
tion this corresponds to is the entropy function,

f(µ) =
∑

s

Hs(µs) +
∑

s,t

Hst(µst) (9)

where Hs and Hst are singleton and edge-based en-
tropies, respectively.

An extension of define a Bregman function based on
a convex combination of tree-structured entropy func-
tions (Wainwright & Jordan, 2003), and using expres-
sions such as the reweighted Bethe entropy which are
equivalent to the convex combination of tree entropies
within the local polytope, we can derive an iterative
procedure involving tree-reweighted message passing
to solve the outer proximal steps. We defer further
details to a full-length version.

3.2. Proximal Sequences via Bregman

Projection

The key in designing an efficient proximal minimiza-
tion scheme is ensuring that the proximal sequence
{µn} can be computed efficiently. In this section, we
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first describe how the sequence of each proximal mini-
mization can be reformulated as a particular Bregman
projection. We then describe how this Bregman pro-
jection can itself be computed iteratively, in terms of a
sequence of cyclic Bregman projections based on a de-
composition of the constraint set LOCAL(G). In the
sequel, we then show how this cyclic Bregman projec-
tions reduce to very simple message-passing updates.

Given a Bregman divergence D, the Bregman projec-
tion of the vector ν onto a convex set C is given by

µ̂ : = arg min
µ∈C

Df (µ ‖ ν) (10)

By taking derivatives and using standard conditions
for optima over convex sets (Bertsekas & Tsitsiklis,
1997), the defining optimality condition for µ̂ is

(
∇f(µ̂) −∇f(ν)

)T (
µ − µ̂

)
≥ 0 (11)

for all µ ∈ C. Now consider the proximal minimization
problem to be solved at step n, namely the strictly
convex problem

min
µ∈L(G)

{

−θT µ +
1

ωn
Df (µ ‖µn)

}

. (12)

By taking derivatives and using the same convex op-
timality, we see that the optimum µn+1 is defined by
the conditions

(
∇f(µn+1) −∇f(µn) − ωnθ

)T
(µ − µn+1) ≥ 0

for all µ ∈ C. Note that these optimality conditions
are of the same form as the Bregman projection con-
ditions (11), with the vector ∇f(µn) + ωnθ taking the
role of ∇f(ν); in other words, with (∇f)−1(∇f(µ) +
ωnθ) being substituted for ν. Consequently, efficient
algorithms for computing the Bregman projection (11)
can be leveraged to compute the proximal update (12).
In particular, our algorithms leverage the fact that
Bregman projections can be computed efficiently in a
cyclic manner—that is, by decomposing the constraint
set C = ∩iCi into an intersection of simpler constraint
sets, and then performing a sequence of projections
onto these simple constraint sets (Censor & Zenios,
1997).

To simplify notation, for any Bregman function f , let
us define the operator

Jf (µ, ν) = (∇f)−1(∇f(µ) + ν)

and for any Bregman divergence D with Bregman
function f and any convex set C, define the projec-
tion operator

ΠDf
(γ;C) := arg min

µ∈C
Df (µ ‖ γ)

With this notation, we can write the proximal update
in a compact manner as a type of projection

µn+1 = ΠDf
(Jf (µn, ωnθ); L(G)) .

Now consider a decomposition of the constraint set
as an intersection—say L(G) = ∩T

k=1Lk(G). By
the method of cyclic Bregman projections (Censor &
Zenios, 1997), we can compute µn+1 in an iterative
manner, by performing the sequence of projections
onto the simpler constraint sets, initializing µn,0 = µn

and updating from µn,τ 7→ µn,τ+1 by projecting µn,τ

onto constraint set Li(τ)(G), where i(τ) = τ mod T ,
for instance. This procedure is summarized in Algo-
rithm 1.

Algorithm 1 Basic proximal-Bregman LP solver

Given a Bregman distance D, weight sequence {ωn}
and problem parameters θ:

• Initialize µ
(0)
s (xs) = 1

m , µ
(0)
st (xs, xt) = 1

m2 .

• Outer loop: For iterations n = 0, 1, 2, . . .,
update µn+1 = ΠD (Jf (µn, ωnθ); L(G)).

– Solve outer loop via Inner loop:

(a) Initialize µn,0 = Jf (µn, ωnθ).

(b) For τ = 0, 1, 2, . . ., set i(τ) = τ mod T .

(c) Set µn,τ+1 = ΠD

(
µn,τ ; Li(τ)(G)

)
.

As shown in the following sections, by using a de-
composition of L(G) over the edges of the graph,
the inner loop steps correspond to local message-
passing updates, slightly different in nature depend-
ing on the choice of Bregman distance. Iterating the
inner and outer loops yields a provably convergent
message-passing algorithm for the LP. Convergence
follows from the convergence properties of proximal
minimization (Bertsekas & Tsitsiklis, 1997), combined
with convergence guarantees for cyclic Bregman pro-
jections (Censor & Zenios, 1997). In the following
section, we derive the message-passing updates corre-
sponding to various Bregman functions of interest. We
also give rates of convergence for the cyclic projection
updates in the inner loop.

3.3. Quadratic Projections

Consider the proximal sequence with the quadratic
distance Q from equation (6); the Bregman function
inducing this distance is the quadratic function
f(y) = 1

2y2, whose gradient is given by ∇f(y) = y.

The Map ν = Jf (µ, ωθ): In this case, it can
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be derived as,

∇f(ν) = ∇f(µ) + ωθ (13)

⇒ ν = µ + ωθ (14)

whence we get the initialization in Equation 18.

The Projections µn,τ+1 = ΠQ(µn,τ , Li(G)):
onto the individual constraints Li(G); the associated
local update takes the form

µn,τ+1 = min
α∈Li(G)

{f(α) − α⊤∇f(µn,τ )} (15)

Consider the edge marginalization constraint for edge
(s, t), Li(G) ≡ ∑

xt
µst(xs, xt) = µs(xs). Denoting

the dual (Lagrange) parameter corresponding to the
constraint by λst(xs), the KKT conditions for (15) are
given by

∇f(µn,τ+1
st (xs, xt)) = ∇f(µn,τ

st (xs, xt)) + λst(xs)

∇f(µn,τ+1
s (xs)) = ∇f(µn,τ

s (xs)) − λst(xs)

µ
n,τ+1
st (xs, xt) = µ

n,τ
st (xs, xt) + λst(xs)

µn,τ+1
s (xs) = µn,τ

s (xs) − λst(xs),

while the constraint itself gives
∑

xt

µ
n,τ+1
st (xs, xt) = µn,τ

s (xs) (17)

Solving for λst(xs) yields equation (20). The node
marginalization follows similarly, so that overall, we
obtain message-passing algorithm (2) for the inner
loop.

3.4. Entropic Projections

Consider the proximal sequence with the Kullback-
Leibler distance D(µ ‖ ν) defined in equation (8); the
Bregman function inducing the distance is a sum of
negative entropy functions f(µ) = µ log µ, and its
gradient is given by ∇f(µ) = log(µ) + 1.

The derivation of the updates mirrors the previ-
ous section, and defering the details to a full-length
version, we get the message passing algorithm (3) for
the inner loop.

There are also interesting similarities between our cor-
responding dual updates and sum-product updates—
which are updates to the dual parameters—details of
which we defer to a full-length version of this paper
due to lack of space.

3.5. Reweighted Entropy Projections

The message passing updates here are “reweighted”
versions of those in the previous section for the un-
weighted entropy induced Kullback-Leibler divergence

Algorithm 2 Quadratic Messages for µn+1

Initialization:

µ
(n,0)
st (xs, xt) = µ

(n)
st (xs, xt) + wnθst(xs, xt) (18)

µ(n,0)
s (xs) = µ(n)

s (xs) + wnθs(xs) (19)

repeat

for each edge (s, t) ∈ E do

µ
(n,τ+1)

st (xs, xt) = µ
(n,τ)

st (xs, xt)+ (20)

(1/L + 1)

 

µ
(n,τ)

s (xs) −
X

xt

µ
(n,τ)

st (xs, xt)

!

µ
(n,τ+1)

s (xs) = µ
(n,τ)

s (xs)+ (21)

(1/L + 1)

 

−µ
(n,τ)

s (xs) +
X

xt

µ
(n,τ)

st (xs, xt)

!

end for

for each node s ∈ V do

µ
(k+1)

s (xs) = µ
(k)

s (xs) +
1

L
(1 −

X

xs

µ
(k)

s (xs))

µ
(k+1)

s (xs) = max(0, µ
(k+1)

s (xs))

end for

until convergence

proximal iterates.

Initialization of Proximal Steps:

µ
(n,0)
st (xs, xt) = µ

(n)
st (xs, xt) exp(ωn/ρstθst(xs, xt))

µ(n,0)
s (xs) = µ(n)

s (xs) exp(ωn/ρsθs(xs)).

Projections: The node normalization update re-
mains the same as in the previous section, while the
marginalization update changes as,

µ
(n,τ+1)

st (xs, xt) = µ
(n,τ)

st (xs, xt)

 

µ
(n,τ)

s (xs)
P

xt
µ

(n,τ)

st (xs, xt)

!

ρs

ρs+ρst

µ
(n,τ+1)

s (xs) = µ
(n,τ)

s (xs)
ρs

ρs+ρst

 

X

xt

µ
(n,τ)

st (xs, xt)

!

ρst

ρs+ρst

4. Rounding with Optimality

Certificates

A key practical issue in applying LP relaxation is how
round the fractional solution; a standard approach is
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Algorithm 3 Entropic Messages for µn+1

Initialization:

µ
(n,0)
st (xs, xt) = µ

(n)
st (xs, xt) exp(ωnθst(xs, xt))

µ(n,0)
s (xs) = µ(n)

s (xs) exp(ωnθs(xs))

repeat

for each edge (s, t) ∈ E do

µ
(n,τ+1)

st (xs, xt) = µ
(n,τ)

st (xs, xt)

v

u

u

t

µ
(n,τ)

s (xs)
P

xt
µ

(n,τ)

st (xs, xt)

µ
(n,τ+1)

s (xs) =

s

µ
(n,τ)

s (xs)
X

xt

µ
(n,τ)

st (xs, xt)

end for

for each node s ∈ V do

µ(n,τ+1)
s (xs) =

µ
(n,τ)
s (xs)

∑

xs
µ

(n,τ)
s (xs)

end for

until convergence

to round the node marginals to the nearest integer so-
lution. However, in general, such rounding procedures
need not always output the optimal integer configura-
tion. An attractive feature of our proximal Bregman
procedures is the existence of rounding schemes which,
assuming that the LP relaxation is tight, can produce
the LP integral optimum and certify that it is correct,
even before the pseudomarginals converge to the LP
solution. Here we describe two rounding schemes, and
state the optimality certificate associated with each.

Node-based Rounding: This method applies to
any of our proximal schemes. Given the vector µn

of pseudomarginals at iteration n, define an integer
configuration xn by choosing, for each vertex s ∈ V , a
value xn

s ∈ arg maxxs
µn

s (xs). Say that such a round-
ing is edgewise-consistent if for all edges (s, t) ∈ E,
we have (xn

s , xn
t ) ∈ arg max

(xs,xt)
µn

st(xs, xt).

Tree-based Rounding: We describe this method in
application to the unweighted entropic proximal up-
dates. Let T1, . . . , TM be a set of spanning trees that
cover the graph (meaning that each edge appears in
at least one tree); for each edge (s, t), define the edge

weight αst = 1
M

∑M
i=1 I[(s, t) ∈ Ti]. Then for each tree

i = 1, . . . ,M :

(a) Define the tree-structured energy function Ei(x) :
=

∑

s µn(xs) +
∑

(s,t)∈E(Ti)
1

αst

µn
st(xs, xt).

(b) Run the ordinary max-product problem on en-
ergy Ei(x) to find a MAP-optimal configuration
xn(Ti).

Say that such a rounding is tree-consistent if the tree
MAP solutions {xn(Ti), i = 1, . . . ,M} are all equal.

The following result characterizes the optimality guar-
antees associated with these rounding schemes:

Theorem 1 (Rounding with optimality certificates).
At any iteration n = 1, 2, . . ., any edge-consistent con-
figuration obtained from node-rounding, or any tree-
consistent configuration obtained from tree-rounding is
guaranteed to be MAP optimal for the original prob-
lem.

The proof is based on a certain energy-invariance prop-
erty of the proximal updates; in particular, at any it-
eration n, the pseudomarginals µn have an associated
function F (x;µn) which is proportional to the energy
E(θ;x) =

∑

s θs(xs) +
∑

st θst(xs, xt) of the graph-
ical model. For instance, for the entropic proximal
scheme, at any iteration n, the function F (x;µn) :
=

∏

s∈V µn
s (xs)

∏

(s,t)∈E µn
st(xs, xt) is proportional

to the exponential of E(θ;x). (See the technical re-
port (Ravikumar et al., 2008) for full details.)

Both rounding schemes require relatively little compu-
tation. Of course, the node-rounding scheme is purely
local, and so trivial to implement. With reference to
the tree-rounding scheme, many graphs can be cov-
ered with a small number M of trees (e.g. M = 2
for grid graphs). Consequently, the tree-rounding
scheme requires running the ordinary max-product al-
gorithm twice, certainly more expensive than node-
rounding but doable. In practice, we find that tree-
rounding tends to find LP optima more quickly than
node rounding.

5. Convergence Rates

The convergence of our message passing updates fol-
lows from two sets of results: (a) convergence of prox-
imal algorithms (Bertsekas & Tsitsiklis, 1997) and (b)
convergence of cyclic Bregman projections (Censor &
Zenios, 1997). Our outer loop is a proximal algorithm;
which has been well-studied in the optimization liter-
ature. A sequence µ(t) is said to have superlinear con-

vergence to the optimum µ∗ if limk→∞
‖µ(t+1)−µ∗‖
‖µ(t)−µ∗‖

= 0.

Note that such convergence is faster than a multi-

plicative contraction (limk→∞
‖µ(t+1)−µ∗‖
‖µ(t)−µ∗‖

≤ α < 1).

Bertsekas and Tsistiklis (1997) show that a proximal
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algorithm with a quadratic proximity has a superlin-
ear convergence under mild conditions, whereas Iusem
and Teboulle (1995) show the same for the entropy
proximity. Under the assumption that inner loops are
solved exactly, these convergence results then show
that our outer iterates converge superlinearly. Our in-
ner loop message updates use cyclic Bregman projec-
tions; Censor and Zenios (1997) show that with dual
feasibility correction, projections onto general convex
sets are convergent. For Euclidean (quadratic) projec-
tions onto linear constraints (half-spaces), Deutsch et
al. (2006) establish a geometric rate of convergence,
dependent on angles between the half-spaces. The in-
tuition is that the more orthogonal the half-spaces are,
the faster the convergence; for instance, a single it-
eration suffices for completely orthogonal constraints.
Our inner updates thus converge geometrically to an
ǫ−suboptimal solution for any outer proximal step.
As noted earlier, the proximal convergence results as-
sume that the inner loop has been solved exactly, while
the Bregman projection results yield geometric conver-
gence to but an ǫ−suboptimal solution. While with ǫ

small enough, e.g. 10−6 as in our experiments, this
issue might not be practically relevant, there has been
some recent work, e.g. (Solodov & Svaiter, 2001),
showing that under mild conditions, superlinear rates
still hold for ǫ−suboptimal proximal iterates.

6. Experiments

We performed experiments on a 4-nearest neighbor
grid graphs with sizes varying from p = 100 to p = 900,
in all cases using models with 5 labels. The edge
potentials were set to Potts functions, θst(xs, xt) =
βst I[xs = xt], which penalize disagreement of labels
by βst. The Potts weights on edges βst were chosen
randomly as Uniform(−1,+1), while the node poten-
tials θs(xs) were set as Uniform(−SNR,SNR), where
the parameter SNR ≥ 0 controls the ratio of node
to edge strengths, and thus corresponds roughly to a
signal-to-noise ratio.

Figure 1 shows plots of the logarithmic distance be-
tween the current iterate µn and the LP optimum µn

for grids of different sizes. In all cases, note how the
curves have an inverted quadratic shape, correspond-
ing to superlinear convergence.

Figure 2 shows the fraction of edges for which the
node-based rounding is edgewise inconsistent for grids
of different sizes. Note how the fraction converges to
zero in a small number of iterations. Figure 3 shows
the fraction of the energy of the rounded solution to
the energy of the MAP optimum, or the suboptimality
factor. Note again, the small number of iterations for
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Figure 1. Plot of distance log
10

‖µn − µ∗‖2 be-
tween the current iterate µn and the LP opti-
mum µ∗ versus iteration number for Potts mod-
els on grids with p ∈ {100, 400, 900} vertices, and
SNR = 1. Note the superlinear rate of convergence.

convergence.

7. Discussion

In this paper, we have developed distributed algo-
rithms, based on the notion of proximal sequences, for
solving graph-structured linear programming (LP) re-
laxations. Our methods respect the graph structure,
and so can be scaled to large problems, and they ex-
hibit a superlinear rate of convergence. We also devel-
oped rounding schemes that can be used to generate
integral solutions along with a certificate of optimality.
These optimality certificates allow the algorithm to be
terminated in a finite number of iterations.

The structure of our algorithms naturally lends it-
self to incorporating additional constraints, both linear
and other types of conic constraints. It would be inter-
esting to develop an adaptive version of our algorithm,
which selectively incorporated new constraints as nec-
essary, and then used the same proximal schemes to
minimize the new conic program.
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Abstract

We propose a novel Bayesian multiple in-
stance learning (MIL) algorithm. This al-
gorithm automatically identifies the relevant
feature subset, and utilizes inductive trans-
fer when learning multiple (conceptually re-
lated) classifiers. Experimental results indi-
cate that the proposed MIL method is more
accurate than previous MIL algorithms and
selects a much smaller set of useful features.
Inductive transfer further improves the accu-
racy of the classifier as compared to learning
each task individually.

1. Multiple Instance Learning

In a single instance learning scenario we are given a
training set D = {(xi, yi)}Ni=1 containing N instances,
where xi ∈ X is an instance (the feature vector) and
yi ∈ Y = {0, 1} is the corresponding known label. The
task is to learn a classification function f : X → Y.

In the multiple instance learning framework the train-
ing set consists of bags. A bag contains many instances.
All the instances in a bag share the same bag-level la-
bel. A bag is labeled positive if it contains at least
one positive instance. A negative bag means that all
instances in the bag are negative. The goal is to learn
a classification function that can predict the labels of
unseen instances and/or bags.

MIL is a natural framework to model many real-life
tasks like drug activity prediction (Dietterich et al.,
1997), image retrieval (Andrews et al., 2002), face

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

detection (Viola et al., 2006), scene classification,
text categorization, etc and is often found to be su-
perior than a conventional supervised learning ap-
proaches (Ray & Craven, 2005). The concept of MIL
was first introduced by (Dietterich et al., 1997) in the
context of drug activity prediction. (Maron & Lozano-
Perez, 1998) proposed a framework called Diverse Den-
sity algorithm. Since then various variants of stan-
dard single instance learning algorithms like Boost-
ing (Xin & Frank, 2004; Viola et al., 2006), SVMs (An-
drews et al., 2002; Fung et al., 2007), Logistic Regres-
sion (Ray & Craven, 2005; Settles et al., 2008), nearest
neighbor (Wang & Zucker, 2000) etc. have been mod-
ified to adapt to the MIL scenario.

Our motivation for this work comes from the area of
computer aided diagnosis (CAD) (see section § 10)–
where the task is to build a classifier to predict whether
a suspicious region (instance) on a computed tomogra-
phy (CT) scan is a pulmonary embolism/nodule/lesion
or not. This was proposed as a MIL problem by (Fung
et al., 2007) by recognizing the fact that all instances
which are within a certain distance to a radiologist
mark (ground truth) can be considered as a positive
bag. A requirement is that run time of the classifier
during testing be as small as possible. Hence we would
like the final classifier to use as few features as possible.

In this paper we propose a novel multiple instance
algorithm which performs automatic feature selection
and classifier design jointly. In particular we start out
with the well-known logistic regression as our classi-
fier and demonstrate how it can be modified for the
MIL framework (§ 3–6). We use the feature selection
method originally proposed for the relevance vector
machine (RVM) (Tipping, 2001) single-instance clas-
sifier, in a manner that is optimal for multiple-instance
classification(§ 7). We extend the algorithm to handle
multi-task learning in § 8.
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2. Novel Contributions

Our method differs from the substantial body of previ-
ous literature on MIL in the following crucial aspects.

a. Baseline-model: We use Logistic Regression as
our baseline (single instance) classifier, similar to two
previous papers. However, our model for combin-
ing the positive instances is quite different from the
soft-max (Ray & Craven, 2005) or the averaging ap-
proach (Xin & Frank, 2004) used by others. We di-
rectly enforce the definition that at least one of the
instances in a positive bag is positive.

b. Feature selection: Relying on the Bayesian auto-
matic relevance determination paradigm, our learning
algorithm selects the relevant subset of features that
is most useful for accurate multiple instance classifica-
tion. Experimental results demonstrate that the num-
ber of features chosen for optimizing the accuracy of
multiple-instance classification is much smaller than
that selected in a corresponding single instance learn-
ing algorithm. While MI Boost (Xin & Frank, 2004)
also does feature selection, results indicate that our
our approach is more accurate than MI Boost.

c. Inductive transfer: The proposed method is eas-
ily extended to statistically exploit information from
other data sets while learning multiple related classi-
fiers. This inductive-transfer approach results in sub-
stantial improvements in accuracy in real-life problems
with limited training data. We are not aware of previ-
ous work which accomplishes inductive transfer in the
context of multiple-instance classification.

3. Notation

We represent an instance as a feature vector x ∈ Rd. A
bag which contains K instances is denoted by boldface
x = {xj ∈ Rd}Kj=1. The label of a bag is denoted by
y ∈ {0, 1}.

Training Data The training data D consists of N
bags D = {xi, yi}Ni=1, where xi = {xij ∈ Rd}Ki

j=1 is a
bag containing Ki instances that share the same label
yi ∈ {0, 1}.

Classifier We consider the family of linear discrimi-
nating functions: F = {fw}, where for any x,w ∈ Rd

, fw(x) = wTx. The final classifier can be written in
the following form

y =
{

1 if wTx > θ
0 if wTx < θ

. (1)

Ties are resolved by flipping a fair coin. The thresh-
old parameter θ determines the operating point of the
classifier. The ROC curve is obtained as θ is swept

from −∞ to ∞. A bag is labeled positive if at least
one instance is positive and negative if all instances
are negative. Learning a classifier implies choosing the
weight vector w given the training data D.

4. Logistic Generalized Linear Model

The posterior probability for the positive class is mod-
eled as a logistic sigmoid acting on the linear classifier
fw, i.e., p(y = 1|x) = σ(w>x). The logistic sigmoid
function is defined as σ(z) = 1/(1 + e−z). This clas-
sification model is known as logistic regression in the
statistics community. Also p(y = 0|x) = 1 − p(y =
1|x) = 1− σ(w>x).

4.1. Logistic Model for MIL

In the MIL framework we have the concept of bags–
where all the examples in a bag share the same label.
A positive bag means at least one example in the bag
is positive. The probability that a bag contains at
least one positive instance is one minus the probability
that all of them are negative. Hence the posterior
probability for the positive bag can be written as

p(y = 1|x) = 1−
K∏

j=1

[
1− σ(w>xj)

]
, (2)

where the bag x = {xj}Kj=1 contains K examples.This
model is sometimes referred to as the noisy−OR and
has been previously used by (Viola et al., 2006) in
a boosting framework and (Maron & Lozano-Perez,
1998) in the Diverse Density algorithm. We use this
model for Logistic Regression. A negative bag means
that all examples in the bag are negative. Hence

p(y = 0|x) =
K∏

j=1

[
1− σ(w>xj)

]
. (3)

5. Maximum Likelihood Estimator

Given the training data D the maximum likelihood
(ML) estimate for w is given by

ŵML = arg max
w

p(D/w) = arg max
w

[log p(D/w)] . (4)

Define pi = p(yi = 1|xi) = 1 −
∏Ki

j=1

[
1− σ(w>xij)

]
–

the probability that the ith bag xi is positive. Assum-
ing that the training bags are independent the log-
likelihood can be written as

log p(D/w) =
N∑

i=1

yi log pi + (1− yi) log(1− pi). (5)
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A similar likelihood was also maximized by (Viola
et al., 2006) using the AnyBoost framework, which
views boosting as gradient descent in function space.

6. The MAP Estimator

The ML solution in practice can exhibit severe over-
fitting especially for high-dimensional data. This can
be addressed by using a prior on w.

Prior We will assume zero mean Gaussian prior
(N (w|0,A−1)) on the weights w with inverse covari-
ance matrix A = diag(α1 . . . αd) (also referred to as
the hyper-parameters).

p(w) = (2π)−d/2|A−1|−1/2
exp

(
−w

>Aw
2

)
. (6)

This encapsulates our prior belief that the individual
weights in w are independent and close to zero with a
variance parameter 1/αi.

Posterior Once we observe the training data D we
will update the prior to compute the posterior p(w/D),
which can be written as follows (using Bayes’s rule)–
p(w/D) = p(D/w)p(w)/

∫
p(D/w)p(w)dw. This pos-

terior can then be used to compute predictive distri-
butions, which will typically involve high dimensional
integrals. For computational efficiency we could use
point estimates of w. In particular the maximum a-
posteriori (MAP) estimate is given by

ŵMAP = arg max
w

[log p(D/w) + log p(w)] . (7)

Substituting for the log likelihood and the prior we
have ŵMAP = arg maxw L(w), where

L(w) =

[
N∑

i=1

yi log pi + (1− yi) log(1− pi)

]
− w

>Aw
2

.

(8)

Optimization Due to the non-linearity of the sigmoid
we do not have a closed form solution and we have to
use gradient based optimization methods. We use the
Newton-Raphson update given by wt+1 = wt−ηH−1g,
where g is the gradient vector, H is the Hessian matrix,
and η is the step length. The gradient is given by

g(w) =
N∑

i=1

[yiβi − (1− yi)]
Ki∑
j=1

xijσ(w>xij)−Aw, (9)

where βi = 1−pi

pi
. Note that βi = 1 corresponds to the

derivatives of the standard logistic regression updates.
These term βi can be thought of as the bag weight by
which each instance weight gets modified. The Hessian

matrix is given by

H(w) =
N∑

i=1

[yiβi − (1− yi)]
Ki∑
j=1

xijx
T
ijσ(w>xij)

σ(−w>xij)−
N∑

i=1

yiβi(βi + 1)

 Ki∑
j=1

xijσ(w>xij)


 Ki∑

j=1

xijσ(w>xij)

T

−A. (10)

Note that the Hessian matrix depends on the class
labels also–unlike in regular logistic regression.

7. Bayesian MIL: Feature Selection

We imposed a prior of the form p(w) =
N (w|0,A−1), parameterized by d hyper-parameters
A = diag(α1 . . . αd). Clearly, as the precision αk →
∞, i.e, the variance for wk tends to zero (thus concen-
trating the prior sharply at zero). Hence, regardless
of the evidence of the training data, the posterior for
wk will also be sharply concentrated on zero, thus that
feature will not affect the classification result-hence, it
is effectively removed out via feature selection. There-
fore, the discrete optimization problem corresponding
to feature selection (should each feature be included or
not?), can be more easily solved via an easier continu-
ous optimization over hyper-parameters . If one could
maximize the marginal likelihood p(D|A) this would
perform optimal feature selection. This approach is
also known as the type-II maximum likelihood method
in the Bayesian literature.

We choose the hyper-parameters to maximize the
marginal likelihood.

Â = arg max
A

p(D|A) = arg max
A

∫
p(D|w)p(w|A)dw.

(11)
Since this integral is not easy to compute for our MIL
model we use an approximation to the marginal likeli-
hood via the Taylor series expansion. The marginal
likelihood p(D|A) can be written as p(D|A) =∫
eΨ(w)dw, where Ψ(w) = log p(D|w) + log p(w|A).

Approximating Ψ using a second order Taylor series
around ŵMAP,

Ψ(w) ≈ Ψ(ŵMAP)+
1
2

(w−ŵMAP)H(ŵMAP,A)(w−ŵMAP)>.

(12)
Hence we have the following approximation to the
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Input: {xi, yi}Ni=1, where xi = {xij ∈ Rd}Ki
j=1 is a

bag containing Ki instances that share the same
label yi ∈ {0, 1}.

Output: A list of selected features and weight
vector w for the linear classifier.

Initialize αi = 1 and wi = 0 for i = 1, . . . , d.
repeat

If αi > τ remove feature wi.

MAP estimate using the selected features.

repeat
Compute the gradient vector g. (Eq. 9)
Compute the Hessian matrix H. (Eq. 10)
Determine η using a line search.
Update w ← w − ηH−1g.

until ‖g‖/d < ε1

Update the hyper-parameters using
αi ← 1/(w2

i + Σii). (Eq. 17)
until maxi | logαcurr

i − logαprev
i | < ε2

In the experiments reported in this paper we use τ = 1012,

ε1 = 10−5, and ε2 = 10−3.

Algorithm 1: The proposed algorithm

marginal likelihood

p(D|A)

≈ eΨ(ŵMAP)

∫
e

1
2 (w−ŵMAP)H(ŵMAP,A)(w−ŵMAP)>dw

≈ p(D|ŵMAP)p(ŵMAP|A)(2π)d/2| −H−1(ŵMAP,A)|1/2

(13)

Using the prior p(w|A) = N (w|0,A−1), the log
marginal likelihood can be written as

log p(D|A) ≈ log p(D|ŵMAP)− 1
2
ŵ>MAPAŵMAP

+
1
2

log |A| − 1
2

log | −H(ŵMAP,A)|.

(14)

The hyper-parameters A are found by maximizing this
approximation to the log marginal likelihood. There is
no closed-form solution for this. Hence we use a iter-
ative re-estimation method by setting the first deriva-
tive to zero. The derivative can be written as

∂ log p(D|A)
∂A

= −1
2
ŵMAPŵ

>
MAP +

1
2
A−1

− 1
2
H−1(ŵMAP,A). (15)

Since A = diag(α1 . . . αd), we can further simplify

∂ log p(D|A)
∂αi

= −1
2
ŵ2

i +
1

2αi
− 1

2
Σii, (16)

where Σii is the ith diagonal element of
H−1(ŵMAP,A). Assuming Σii does not depend

α

X1 w1

Y1

X2 w2

Y2Task 1 Task 2

Figure 1. In multi-task learning tasks share the same prior.

on A a simple update rule for the hyper-parameters
can be written by equating the first derivative to zero.

αnew
i =

1
w2

i + Σii
. (17)

The final algorithm has two levels of iterations (see
Algorithm 1): in an outer loop we update the hyper-
parameters αi and in an inner loop we find the MAP
estimator ŵMAP given the hyper-parameters. After a
few iterations we find that the hyper-parameters–the
inverse variances of the priors–for several features tend
to infinity causing numerical problems in implementa-
tion. This means that those wi → 0 we can simply
remove those irrelevant features from further consid-
eration in future iterations. The proposed algorithm
with feature selection can be considered as the exten-
sion of the Relevance Vector Machine (RVM) (Tipping,
2001) to multiple-instance learning framework.

8. Multi-task Learning

We are often faced with a shortage of training data for
learning classifiers for a task. However we may have
additional data for closely related, albeit non-identical
tasks. For example in our CAD applications where we
have to identify early stage cancers from CT scans, our
data set includes images from CT scanners with two
different reconstruction kernels–B50 and B60.

While training the classifier we could ignore this infor-
mation and pool all the data together. However, there
are some systematic differences that make the feature
distributions slightly different. Alternatively, we could
train a separate classifier for each kernel, but a large
part of our data set is from one particular kernel (B60)
and we have a smaller data set for the other (B50).

Here, we discuss another approach–multi-task learn-
ing (Caruana, 1997)– that tries to estimate models
wj for several classification tasks j in a joint man-
ner. Multi-task learning can compensate for small
sample size by using additional samples from related
tasks, and exchanging statistical information between
tasks. In a hierarchical Bayesian approach, the clas-
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Table 1. Datasets used in our MIL experiments. d is the
number of features.

Dataset d positive negative
examples bags examples bags

Musk1 166 207 47 269 45
Musk2 166 1017 39 5581 63

Elephant 230 762 100 629 100
Tiger 230 544 100 676 100

sifiers share a common prior p(wj |A) (See Figure 1).
A separate classifier is trained for each task. However
the optimal hyper-parameters of the shared prior are
estimated from all the data sets simultaneously during
the training. The update equation becomes (in place
of Eq. 17): αnew

i = 1/
∑

taskj(ŵj
i )2 + Σj

ii.

9. Experimental Results

9.1. Datasets

Experiments were performed on four common bench-
mark data sets from the MIL literature (see Table 1).

Musk1 and Musk2 (Asuncion & Newman, 2007) The
task is to predict whether a new drug molecule will
bind to a target protein. However each molecule (bag)
can have many different low energy shapes (instances)
of which only one can actually bind with the target.

Elephant and Tiger The task is to search a repository
to find images that contain objects of interest. An
image is represented as a bag. An instance in a bag
corresponds to a segment in the image; the object of
interest is contained in at least one segment.

9.2. Competing Algorithms

Various learning algorithms have been adapted to the
multiple learning scenario. We compare our proposed
algorithm with a variant of Boosting, SVM, and Lo-
gistic Regression. Specifically we perform our experi-
mental comparison for the following algorithms.

MI RVM The proposed multiple-instance algorithm
with feature selection. This is completely automatic
and does not require tuning any parameters.

RVM The proposed algorithm without multiple in-
stance learning. This is same as MI RVM but every
example is assigned to a unique bag.

MI The proposed multiple-instance algorithm with-
out feature selection. We set A = λI, where I is
the identity matrix and λ is chosen by five-fold cross-
validation.

MI Boost (Xin & Frank, 2004) This is a variant of the
AdaBoost algorithm adapted for the multiple instance

Table 2. The AUC for different algorithms and datasets.

Set MIRVM RVM MIBoost MILR MISVM MI

Musk1 0.942 0.951 0.899 0.846 0.899 0.922
Musk2 0.987 0.985 0.964 0.795 - 0.982
Elephant 0.962 0.979 0.828 0.814 0.959 0.953
Tiger 0.980 0.970 0.890 0.890 0.945 0.956

Table 3. The average number of features selected per fold
by different algorithms.

Dataset Number selected by selected by selected by
of features RVM MI RVM MI Boost

Musk1 166 39 14 33
Musk2 166 90 17 32

Elephant 230 42 16 33
Tiger 230 56 19 37

learning scenario. We boosted for 50-100 rounds.

MI SVM (Andrews et al., 2002) This is a bag-level
SVM variant for MIL. We used the implementation
publicly available at (Yang, 2006). We used a linear
kernel and the regularization parameters was chosen
by 5-fold cross-validation.

MI LR (Settles et al., 2008; Ray & Craven, 2005) This
is a variant of Logistic Regression which uses the soft-
max function to combine posterior probabilities over
the instances of a bag. We used α = 3 in the soft-max
function. Non-linear conjugate gradient with tolerance
set at 10−3 was used as the optimization routine.

Of all the above algorithms only our proposed method
and the boosting one does automatic feature selection.
We are not aware of any other multiple-instance algo-
rithms which does automatic feature selection.

9.3. Evaluation Procedure

The results are shown for a 10-fold stratified cross-
validation. The folds are split at the positive bag level,
so that examples in the same positive bag will not be
split. We plot the Receiver Operating Characteris-
tics (ROC) curve for various algorithms (see Figure 2).
The ROC curve is a plot of False Positive Rate (FPR)
vs True Positive Rate (TPR) as the decision threshold
of the classifier θ is varied from ∞ to −∞. The TPR
is computed on a bag level–i.e., a bag is predicted as
positive if at least one on the instances in classified
as positive. The ROC curve is plotted by pooling the
prediction of the algorithm across all folds as in (Ray
& Craven, 2005). We also report the area under the
ROC curve (AUC) in Table 2.

9.4. Results

Comparison with other methods. From Figure 2
and Table 2 we see that among other MIL algorithms
the ROC for the proposed method clearly dominates
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Figure 2. The ROC Curves for the different data sets and the different algorithms.

the other methods. However it is interesting to note
that plain RVM is better than MI RVM for Musk 1
and Elephant data sets. This confirms the surprising
observation in (Ray & Craven, 2005) that for some
MIL benchmarks standard supervised learning algo-
rithm may be more accurate than MIL algorithms.

Number of features selected. Table 3 compares
the number of features selected by MI RVM, RVM,
and the MI Boost algorithm. It can be seen that the
proposed MI RVM algorithm selects the least number
of features. Selecting features in a multiple instance
setting reduces the number of features selected by half.

Does feature selection help? From Table 2 we see
that the AUC with feature selection is higher than that
without feature selection. Thus we are able to achieve
better performance and at the same time use a smaller
set of features.

Runtime The proposed algorithm and the MI Boost
are orders of magnitude faster than other MIL meth-
ods. As a result MI SVM and MI LR could not be run
on our CAD experiments described in the next section.
Also the proposed method has no free parameters to
tune. The runtime of our algorithm scales as O(d3)
with the number of features. This is because we need
to compute the inverse of the d× d Hessian matrix.

10. Computer Aided Diagnosis

In computer aided diagnosis (CAD) the goal is to de-
tect potentially malignant nodules, tumors, emboli, or
lesions in medical images like computed tomography
(CT), X-ray, MRI etc. A CAD system aids the radi-
ologist by marking the location of likely anomaly on
a medical image. Figure 3 shows two pulmonary em-
boli (PE) in a CT scan. PE (blood clots in the lung),
is a potentially life-threatening condition. An early
and accurate diagnosis is the key to survival. Com-
puted tomography angiography (CTA) has emerged
as an accurate diagnostic tool.

Figure 3. Sample pulmonary emboli in a Lung CT scan
along with the candidates which point to it.

Most CAD systems consist of the following three
steps–(1) Candidate generation–this step identifies po-
tentially unhealthy regions of interest. While this step
can detect most of the anomalies, the number of false
positives will be extremely high (60-100 false positives/
patient). (2) Feature computation–computation of a
set of descriptive morphological features for each of the
candidates. (3) Classification–labeling of each candi-
date as a nodule or not by a classifier. The goal of
the classifier is to reduce the number of false positives
without appreciable decrease in the sensitivity.

In order to train a classifier, a set of CT scans is col-
lected from hospitals. These scans are then read by
expert radiologists who mark the pulmonary emboli
locations–this constitutes our ground truth for learn-
ing. The candidate generation step generates a lot
of potential candidates. Any candidate which is close
to the radiologist mark (for example within a certain
distance) is considered a positive example for training
and the rest of the candidates are considered as neg-
ative examples. Based on a set of features computed
for these candidates we intend to train a classifier.
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Table 4. Datasets used in our PE CAD MIL experiments.

Dataset Features positive negative
examples bags examples

Training 134 514 312 4619
Validation 134 305 214 3246

10.1. Multiple Instance Learning for CAD

The candidate generation step very often produces a
lot of candidates which are spatially close to each other
(See Figure 3 for two PE appearing in a CT scan). All
these candidates point to the same ground truth and
can considered to share the same label for training.
A single instance classifier can be trained using the
labeled candidates. In this work we use the multi-
ple instance learning algorithm by recognizing the fact
that all candidates which point to the same radiolo-
gist mark can be considered as a positive bag (Fung
et al., 2007). There is another important reason why
MIL is a natural framework for CAD. The candidate
generation algorithm produces a lot of spatially close
candidates. Even if one of these is highlighted to the
radiologist and other adjacent or overlapping candi-
dates are missed, the underlying embolism would still
have been detected. Hence while evaluating the perfor-
mance of CAD systems we use the bag level sensitivity,
i.e., a classifier is successful in detecting an embolism
if at least one of the candidates pointing to it is pre-
dicted as a PE. MIL naturally lends itself to model our
desired accuracy measure during training itself.

Another important requirement is that run time of the
classifier during testing should be as small as possi-
ble. The candidate generation step generally produces
thousands of candidates for a CT scan. Computing
all the features can be very time-consuming. Hence it
is imperative that the final classifier uses as few fea-
tures as possible without any decrease in the sensi-
tivity. The proposed classifier automatically selects
features for multiple-instance classification.

10.2. Experiments

Table 4 summarizes the PE CAD data sets we use in
our experiments. Note that unlike the previous four
data sets we do not have negative bags. Every negative
example is considered a negative bag. The classifier is
trained on the training set and tested on a separate
validation set. Since we are interested in the number
of False Positives per volume (patient) we plot Free re-
sponse ROC (FROC) curves for the validation set (see
Figure 4). MI RVM gives a substantial improvement
over the single instance RVM approach and also the
MI Boost method. The MI SVM and MI LR could
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Figure 4. The bag level FROC curve for the PECAD vali-
dation set.

not be run for the large CAD data set. MI RVM algo-
rithm selected 21 features in contrast to the 34 features
selected by the single instance RVM algorithm

10.3. Multi-task Learning Experiments

Lung cancer is a leading cause of cancer related death
in western countries. However early detection can sub-
stantially improve survival. Automatic CAD systems
can be developed to identify suspicious regions such
as solid nodules or ground-glass opacities (GGO) in
CT scans of the lung. A solid nodule is defined as an
area of increased opacity more than 5mm in diameter
which completely obscures underlying vascular mark-
ing. Ground-glass opacity(GGO) is defined as an area
of a slight, homogenous increase in density, which did
not obscure underlying bronchial and vascular mark-
ings. Figure 5 shows an example nodule and GGO.

Detecting nodules and GGOs are two closely related
tasks although each has its own respective character-
istics. Hence multi-task learning is likely to be ben-
eficial, even when building a specific model for each
task. To train such a system we used 15 CT scans
which included GGOs and 23 CT scans that included
nodules. The model accuracy was validated on a held
out set of 86 CT scans that included nodules. Fig-
ure 6 compares the FROC curves for nodule detection
system designed in two different ways. (1) Single task
learning: the classifier was learnt only using nodule
data. (2) Multi-task learning: the classifier was learnt
using nodule data and GGO data. As Figure 6 shows,
inductive transfer using the proposed scheme the im-
proves accuracy of the multiple instance learning sys-
tem, when we have a limited amount of training data.

11. Conclusion

In this paper we proposed a novel MIL algorithm that
automatically selects the features relevant for multi-
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Figure 5. Lung CT image showing a sample (a)nodule and
(b) GGO. Figure reprinted from (Suzuki et al., 2006).

ple instance classification. The proposed algorithm is
more accurate than other competing MIL methods,
both on benchmark data sets and on real life CAD
problems. Our experiments also validate the previ-
ous observation of (Ray & Craven, 2005) that on some
multiple instance benchmarks the single instance clas-
sifier is slightly more accurate. For all domains, the
number of features selected by our algorithm is much
smaller than that for the corresponding single instance
classifier. Inductive transfer improves accuracy in data
poor CAD applications.
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Abstract
Kernel-based Bayesian methods for Reinforce-
ment Learning (RL) such as Gaussian Process
Temporal Difference (GPTD) are particularly
promising because they rigorously treat uncer-
tainty in the value function and make it easy to
specify prior knowledge. However, the choice of
prior distribution significantly affects the empir-
ical performance of the learning agent, and lit-
tle work has been done extending existing meth-
ods for prior model selection to the online set-
ting. This paper develops Replacing-Kernel RL,
an online model selection method for GPTD us-
ing sequential Monte-Carlo methods. Replacing-
Kernel RL is compared to standard GPTD and
tile-coding on several RL domains, and is shown
to yield significantly better asymptotic perfor-
mance for many different kernel families. Fur-
thermore, the resulting kernels capture an intu-
itively useful notion of prior state covariance that
may nevertheless be difficult to capture manually.

1. Introduction
Bayesian methods are a natural fit for Reinforcement
Learning (RL) because they represent prior knowledge
compactly and allow for rigorous treatment of value func-
tion uncertainty. Modeling such uncertainty is important
because it offers a principled solution for balancing explo-
ration and exploitation in the environment. One particu-
larly elegant Bayesian RL formulation is Gaussian Process
Temporal Difference (GPTD) (Engel et al., 2005). GPTD
is an efficient adaptation of Gaussian processes (GPs) to the
problem of online value-function estimation. In GPs, prior
knowledge in the form of value covariance across states
is represented compactly by a Mercer kernel (Rasmussen
& Williams, 2006), offering a conceptually simple method

Appearing in Proceedings of the 25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

for biasing learning.

An important open question for Bayesian RL is how to
perform model selection efficiently and online. In GPTD,
model selection determines the particular form of the prior
covariance function and the settings of any hyperparame-
ters. This paper contributes towards answering this ques-
tion in two ways: (1) It demonstrates empirically the im-
portance of model selection in Bayesian RL; and (2) it out-
lines Replacing-Kernel Reinforcement Learning (RKRL), a
simple and effective sequential Monte-Carlo procedure for
selecting the model online. RKRL not only improves learn-
ing in several domains, but does so in a way that cannot be
matched by any choice of standard kernels.

Although conceptually similar to methods combining evo-
lutionary algorithms and RL (Whiteson & Stone, 2006),
RKRL is novel for two reasons: (1) The sequential Monte-
Carlo technique employed is simpler and admits a clear em-
pirical Bayesian interpretation (Bishop, 2006), (2) Since
GPs are nonparametric, it is possible to replace kernels on-
line during learning without discarding any previously ac-
quired knowledge, simply by maintaining the dictionary
of saved training examples between kernel swaps. This
online replacing procedure significantly improves perfor-
mance over previous methods, because learning does not
need to start from scratch for new kernels.

This paper is divided into seven main sections: Section
2 introduces GPTD, Section 3 describes RKRL, Section 4
details the experimental setup using Mountain Car, Ship
Steering and Capture Go as example domains, and the last
three sections give results, future work and conclusions.

2. Gaussian Process Reinforcement Learning
In RL domains with large or infinite state spaces, func-
tion approximation becomes necessary as it is impractical
or impossible to store a table of all state values (Sutton &
Barto, 1998). Gaussian Processes (GPs) have emerged as a
principled method for solving regression problems in Ma-
chine Learning (Rasmussen & Williams, 2006), and have
recently been extended to performing function approxima-
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tion in RL as well (Engel et al., 2005). In this section, we
briefly review GPs and their application to temporal differ-
ence learning.

GPs are a class of statistical generative models for Bayesian
nonparametric inference. Instead of relying on a fixed func-
tional form as in parametric model, GPs are defined directly
in some (infinite-dimensional) function space (Rasmussen
& Williams, 2006). Specifically, an indexed collection of
random variables V : X → < over a common probabil-
ity space is a GP if the distribution of any finite subset of
V is Gaussian. Gaussian processes are completely speci-
fied by prior mean and covariance functions. In this paper,
the mean function is assumed to be identically zero and
the prior covariance function is specified as a Mercer ker-
nel k(·, ·). Mechanistically, a GP is composed of the set of
training data and a prior covariance function (kernel) that
defines how to interpolate between those points.

Following the formulation of (Engel, 2005), consider a sta-
tistical generative model of the form

R(x) = HV (x) +N(x), (1)

where V is the unknown function to be estimated, N
is a noise model, H is a linear transformation, and R
is the observed regression function. Given a set of
data D = {(xi, yi)}ti=0, the model reduces to a sys-
tem of linear equations Rt = HtVt + Nt, where Rt =
(R(x0), . . . , R(xt))>, Vt = (V (x0), . . . , V (xt))>, and
Nt = (N(x0), . . . , N(xt))>.

Assuming that V ∼ N (0,Kt) is a zero-mean GP with
[Kt]i,j

def= k(xi,xj) for xi,xj ∈ D and N ∼ N (0,Σt),
then the Gauss-Markov theorem gives the posterior distri-
bution of V conditional on the observed R:

V̂t(x) = kt(x)>αt, (2)
Pt(x) = k(x,x)− kt(x)>Ctkt(x), (3)

where

αt = H>t (HtKtH>t + Σ)−1rt−1,

Ct = H>t (HtKtH>t + Σ)−1Ht,

and kt(x) def= (k(x,x1), . . . , k(x,xt))>. This closed-form
posterior can be used to calculate the predicted value of
V at some new test point x∗. In RL, the sequence of ob-
served reward values are assumed to be related by some
(possibly stochastic) environment dynamics that are cap-
tured through the matrix H.

In order to adapt GPs to RL, the standard Markov Decision
Process (MDP) framework needs to first be formalized as
follows. LetX and U be the state and action spaces, respec-
tively. Define R : X → < to be the reward function and let
p : X ×U×X → [0, 1] be the state transition probabilities.

A policy µ : X × U → [0, 1] is a mapping from states to
action selection probabilities. The discounted return for a
state x under policy µ is defined as

D(x) =
∞∑
i=0

γiR(xi)|x0 = x,

where xi+1 ∼ pµ(·|xi), the policy-dependent state transi-
tion probability distribution, and γ ∈ [0, 1] is the discount
factor. The goal of RL is to compute a value function that
estimates the discounted reward for each state under a pol-
icy µ, V (x) = Eµ[D(x)].

GPs can be used to model the latent value function given
a sequence of observed rewards and an appropriate noise
model. Reward is related to value by

R(x) = V (x)− γV (x′) +N(x,x′),

where x′ ∼ pµ(·|x). Extending this model temporally to
a series of states x0,x1, . . . ,xt yields the system of equa-
tions Rt−1 = HtVt + Nt, where R and V are defined as
before, and

Nt = (N(x0,x1), . . . , N(xt−1,xt))>,

Ht =


1 −γ 0 . . . 0
0 1 −γ . . . 0
...

...
0 0 . . . 1 −γ


and Nt ∼ N (0,Σt). If the environment dynamics are
assumed to be deterministic, the covariance of the state-
dependent noise can be modeled as Σt = σ2I. For stochas-
tic environments, the noise model Σt = σ2Ht+1H>t+1 is
more suitable. See (Engel, 2005) for a complete derivation
for these models.

Given Ht, Σt, and a sequence of states and reward val-
ues, the posterior moments V̂t and Pt can be computed to
yield value function estimates. Thus GPs fit naturally into
the RL framework: Learning is straightforward and does
not require setting unintuitive parameters such as α or λ;
prior knowledge of the problem can be built in through the
covariance function; the full distribution of the posterior is
available, making it possible to select actions in more com-
pelling ways, e.g. via interval estimation. Furthermore, the
value estimator V̂t and covariance Pt can be computed in-
crementally online as each new state action pair is sampled,
without having to invert a t× t matrix at each step. For de-
tails of this procedure, see (Engel et al., 2005).

One issue with using GPs for RL is that the size of Kt, k(·),
Ht and rt each grow linearly with the number of states vis-
ited, yielding a computational complexity of O(|D|2) for
each step. Since it is not practical to remember every single
experience in online settings, the GP dictionary size must
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be limited in some way. To this end, Engel et al. derive
a kernel sparsification procedure based on an approximate
linear dependence (ALD) test. As the number of observed
training examples tends to infinity, the number of examples
that need to be saved tends to zero (Engel et al., 2005). A
matrix At contains approximation coefficients for the ALD
test and a parameter ν controls how “novel” a particular
training example must be before it is remembered by the
GP, making it possible to tune how compact and computa-
tionally efficient the value function representation is.

Finally, note that GPTD can be extended to the case where
no environment model is available, simply by defining the
covariance function over state-action pairs k(x,u,x′,u′).
This procedure will be termed GP-SARSA in this paper.

GPTD has been shown to be successful, but in practice per-
formance relies on a good choice of kernel. The next sec-
tion will focus on a particular online method for performing
such kernel selection.

3. Online Model Selection
A common requirement in RL is that learning take place
online, e.g. the learner must maximize total reward ac-
crued. However, traditional model selection techniques ap-
plied to GPs, such as cross-validation, or Bayesian Model
Averaging, are not designed to address this constraint. The
main contribution of this paper is to introduce Replacing-
Kernel Reinforcement Learning (RKRL), an online proce-
dure for model selection in RL. In section 3.1 an online
sequential Monte-Carlo method developed and used to im-
plement RKRL, as described in section 3.2.

3.1. Sequential Monte-Carlo Methods

Given a set of kernels {kθ(·, ·)|θ ∈ M} parameterized by
a random variable θ and a prior p(θ) over these parame-
terizations, a fully Bayesian approach to learning involves
integrating over all possible settings of θ, yielding the pos-
terior distribution

p(R|D) =
∫∫

p(R|V,D,θ)p(V |D,θ)p(θ)dV dθ.

The integration over V given θ is carried out implicitly
when using GPs, however, the remaining integral over θ
is generally intractable for all but the most simple cases.
Instead of integrating over all possible model settings θ,
we can use the data distribution D to infer reasonable set-
tings for θ via p(θ|D). Such evidence approximation can
is more computationally efficient and is an example of an
empirical Bayes approach, where likelihood information is
used to guide prior selection (Bishop, 2006).

Monte-Carlo methods can be used to sample from p(θ|D),
however, such methods assume that this distribution is sta-

Algorithm 1 Sequential Monte Carlo
Parameters: n, µ, τ , Λ

1: Draw {θ(0)
i }ni=1 ∼ p(θ)

2: for t = 0, 1, . . . do
3: Calculate {w(t)

i }ni=1 from equation 4.

4: Draw {θ̃
(t+1)

i }ni=1 by resampling {(θ(t)
i , w

(t)
i )}ni=1.

5: θ
(t+1)
i ← θ̃

(t+1)

i + (c0φ0, . . . , ckφk)> where ck ∼
Bernoulli(µ) and φk ∼ N (0, 1).

6: end for

tionary (Bishop, 2006). In the RL case, stationarity implies
that when evaluating θ, previous data acquired while eval-
uating θ′ cannot be used. To avoid this inefficiency, we
instead employ a sequential Monte-Carlo (SMC) method
adapted from (Gordon et al., 1993) that relaxes the station-
arity assumption.

SMC approximates the posterior distribution p(θ|D) at
time t empirically via a set of n samples and weights
{(θ(t)

i , w
(t)
i )}ni=1 where

wi
def=

p(D|θ(t)
i )p(θ(t)

i )∑
m p(D|θ

(t)
m )p(θ(t)

m )
, (4)

where p(D|θ(t)
i ) is the likelihood of θ

(t)
i and p(θ(t)

i ) is
the prior. Inference proceeds sequentially with samples for
time t+ 1 drawn from the empirical distribution

p(θ(t+1)|D) =
∑
l

w
(t)
l p(θ(t+1)|θ(t)

l ), (5)

where p(θ(t+1)|θ(t)) is the transition kernel, defining how
the hyperparameter space should be explored. In this pa-
per, the prior over models p(θ) is the uniform distribution
over [0, 1] for each of the kernel hyperparameters (listed in
table 1) and the transition kernel p(θ(t+1)|θ(t)) is defined

mechanistically as θ(t+1) ← θ̃
(t+1)

+ (c0φ0, . . . , ckφk)>

where ck ∼ Bernoulli(µ) and φk ∼ N (0, 1). Pseudocode
for this procedure is given in algorithm 1.

3.2. Replacing-Kernel Reinforcement Learning

In Replacing-Kernel Reinforcement Learning (RKRL),
SMC is used to select good kernel hyperparameter settings.
Rather than calculating the true model likelihood p(D|θi)
in equation 4, RKRL instead weights models based on their
relative predictive likelihood, p̃(D|θi), where

log p̃(D|θi)
def= τ−1

∑
t

rt,

and (r0, r1, . . .) is the sequence of rewards obtained by
evaluating the hyperparameter setting θi for Λ episodes.
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Table 1. Basic kernel functions and the corresponding extended parameterizations.

KERNEL BASIC EXTENDED

NORM k(x,x′) = 1− ||x−x′||2
α

k(x,x′) = 1−
P
i wi(xi − x

′
i)

2

GAUSSIAN k(x,x′) = exp
h
−||x−x′||2

σ2

i
k(x,x′) = exp

ˆ
−
P
i wi(xi − x

′
i)

2
˜

POLYNOMIAL k(x,x′) = (〈x,x′〉+ 1)d k(x,x′) = (
P
i wixix

′
i + 1)d

TANH NORM k(x,x′) = tanh(v||x− x′||2 − c) k(x,x′) = tanh(
P
i wi(xi − x

′
i)

2 − 1)

TANH DOT k(x,x′) = tanh(v〈x,x′〉 − c) k(x,x′) = tanh(
P
i wixix

′
i − 1)

The parameter τ is introduced to control how strongly
model search should focus on hyperparameter settings that
yield high reward. Maximizing predictive ability directly is
preferable as it is more closely related to the goal of learn-
ing than maximizing the fit to the observed data. In tabular
methods these two approaches indeed coincide in the limit
of large data, however when using function approximation,
they may differ.

When using GPTD, the current value function estimate is
formed from the combination of the kernel parameteriza-
tion θ determining the prior covariance function and the
dictionary D̃ ⊆ D gathered incrementally from observing
state transitions. In this paper we consider two variants of
RKRL: Standard RKRL and Experience-Preserving RKRL
(EP-RKRL) that differ based on their treatment of the saved
experience D̃. In Standard RKRL, D̃ is discarded at the start
of each new kernel evaluation (making p(θ|D) stationary).
In contrast, in EP-RKRL each kernel parameterization sam-
ple θ(t) inherits D̃1 from the sample θ(t−1) that generated
it in equation 5.

RKRL naturally spends more time evaluating hyperparam-
eter settings that correspond to areas with high predictive
likelihood, i.e. maximizes online reward. Each sampling
step increases information about the predictive likelihood
in the sample (exploitation), while sampling from the tran-
sition kernel reduces such information (exploration).

4. Experimental Setup
Standard RKRL and EP-RKRL are compared against GP-
SARSA on three domains. This section gives the parameter
settings, kernel classes and domains used.

4.1. Parameters

In all experiments, the TD discount factor was fixed at
γ = 1.0 and ε-greedy action selection was employed with
ε = 0.01. The GP-SARSA parameters for prior noise vari-
ance (σ) and dictionary sparsity (ν) were σ = 1.0 and

1For efficiency the sufficient statistics α̃ and C̃ for sparsified
GP-SARSA are also inherited, though they can be recalculated.
The matrix of approximation coefficients At is not recalculated,
although doing so should lead to be better performance in general.

ν = 0.001. For each RKRL evaluation, GP-SARSA is run
for Λ episodes using the specified kernel parameterization.
The RKRL parameters were set to n = 25, µ = 0.01 and
τ = 0.5. Performance of RKRL is insensitive to changes
doubling Λ or µ. Higher settings of n improve the initial
performance, but reduce the total number of epochs possi-
ble given a fixed number of episodes. The setting of τ sig-
nificantly impacts performance, although the main results
of this paper are insensitive for 0.25 ≤ τ ≤ 1.0. All ker-
nels are extended to functions of both the state and action,
with actions treated as extra state variables.

4.2. Kernels

Although RKRL automates the choice of kernel hyperpa-
rameters, there is still a need to choose a set of kernels
that represents the search space for RKRL. General ker-
nel classes are derived from basic classes commonly found
in the literature (table 1) by replacing the standard inner
products and norms with weighted variants (cf. automatic
relevance determination), yielding kernel classes with sig-
nificantly more hyperparameters. Setting these hyperpa-
rameters is the model selection task; as more hyperparam-
eters are added, the model becomes more general, but the
corresponding difficulty of inferring the model parameters
increases as well.

In order to give a fair baseline GP-SARSA comparison, the
best hyperparameter setting for each basic kernel class was
derived manually for each domain using grid search. Note
that although they are common, the hyperbolic tangent ker-
nels are not positive semi-definite; however they still yield
good performance in practice (Smola & Schölkopf, 2004).

4.3. Test Domains

GP-SARSA, RKRL and EP-RKRL are compared across three
domains: Mountain Car, Ship Steering and Capture Go.
Each domain highlights a different aspect of complexity
found in RL problems: Mountain Car and Ship Steer-
ing have continuous state spaces and thus require function
approximation, Ship Steering also has a large (discrete)
action space, and Capture Go is stochastic with a high-
dimensional state space.
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4.3.1. MOUNTAIN CAR

In Mountain Car, the learning agent must drive an under-
powered car up a steep hill (Sutton & Barto, 1998). The
available actions are a ∈ {−1, 0, 1}, i.e., brake, neutral and
accelerate. The state xt = (xt, ẋt) ∈ <2 is comprised of
the position and velocity. The environment is deterministic
with state evolution governed by

xt+1 = xt + ẋt+1

ẋt+1 = ẋt + 0.001at +−0.0025 cos (3xt)

where −1.2 ≤ x ≤ 0.5 and |ẋ| ≤ 0.07. Reward is −1 for
each time step the car has not passed the goal at x = 0.5.
In all RKRL experiments with Mountain Car, Λ = 100 (100
episodes per epoch) and each episode is limited to 1000
steps to reduce computation time.

4.3.2. SHIP STEERING

In Ship Steering, the learning agent must properly orient
a sailboat to a specific heading and travel as fast as pos-
sible (White, 2007). Actions are two-dimensional rudder
position (degrees) and thrust (Newtons), at = (rt, Tt) ∈
[−90, 90]× [−1, 2]. Possible rudder settings are discretized
at 3-degree increments and thrust increments are 0.5 New-
tons, yielding 427 possible actions. The state is a 3-tuple
consisting of the heading, angular velocity and velocity
xt = (θt, θ̇t, ẋt) ∈ <3. State evolution is described by

ẋt+1 = ẋt +
1

250
(30Tt − 2ẋt − 0.03ẋt(5θt + r2t ))

θ̇t+1 = θ̇t +
ẋtrt + ẋt

1000
θt+1 = θt + 0.5(θ̇t+1 + θ̇t)

Reward at time step t is equal to ẋt if |θt| < 5 and zero
otherwise. In all RKRL experiments with Ship Steering,
Λ = 1. By comparing results in Ship Steering to Moun-
tain Car, it is possible to elucidate how the learner’s perfor-
mance depends on the size of the action space.

4.3.3. CAPTURE GO

The third domain used in this paper is Capture Go, a sim-
plified version of Go played where the first player to make a
capture wins.2 The learner plays against a fixed random op-
ponent on a 5×5 board, and receives reward of -1 for a loss
and +1 for a win. The board state xt ∈ {−1, 0, 1}25 is en-
coded as a vector where -1 entries correspond to opponent
pieces, 0 entries correspond to blank territory and 1 entries
correspond to the agent’s pieces. The agent is given knowl-
edge of afterstates, that is, knowledge of how its moves
affect the state. In all RKRL experiments using Capture Go,

2http://www.usgo.org/teach/capturegame.
html

Table 2. Asymptotic performance on Mountain car. Bold num-
bers represent statistical significance.

KERNEL GP-SARSA RKRL EP-RKRL

POLYNOMIAL -67.6 ±0.3 -149 ±5.5 -63.7 ±0.3
GAUSSIAN -230 ±16 -521 ±84 -66.9 ±0.9
TANH NORM -638 ±72 -569 ±41 -130 ±8.7
TANH DOT -482 ±37 -532 ±113 -97.0 ±2.0

Table 3. Asymptotic performance (×102) on Ship Steering.

KERNEL GP-SARSA RKRL EP-RKRL

POLYNOMIAL 34.0 ±1.0 3.3 ±0.7 171 ±241
GAUSSIAN 2.5 ±0.3 5.0 ±0.6 12.9 ±9.1
TANH NORM 2.1 ±0.8 4.5 ±0.7 662 ±183
TANH DOT 2.9 ±0.6 3.0 ±0.8 19.5 ±15.3

Table 4. Asymptotic performance (% wins) on Capture Go.

KERNEL GP-SARSA RKRL EP-RKRL

NORM 90.9 ±0.2 76.1 ±4.4 94.3 ±0.5
POLYNOMIAL 89.7 ±0.4 69.5 ±1.1 92.6 ±1.3
GAUSSIAN 90.3 ±0.5 78.3 ±0.7 93.3 ±0.1
TANH NORM 55.7 ±0.2 78.7 ±3.7 94.5 ±0.6
TANH DOT 62.4 ±2.8 70.5 ±1.5 89.1 ±1.1

Λ = 1000. This domain was chosen because it has a high
dimensional state vector and stochastic dynamics.

5. Results
GP-SARSA, RKRL and EP-RKRL were applied to three RL
domains. Section 5.1 summarizes asymptotic performance
in the three domains, Section 5.2 compares asymptotic dic-
tionary sizes, Section 5.3 evaluates the learned kernel per-
formance as a stand-alone static kernel and Section 5.4 ana-
lyzes the learned kernel hyperparameter settings in Capture
Go.

5.1. Asymptotic Reward

Asymptotic performance is evaluated across three domains:
Mountain Car, Ship Steering and Capture Go. In each do-
main EP-RKRL significantly outperforms both GP-SARSA
and RKRL over most kernel classes.

5.1.1. MOUNTAIN CAR

In Mountain Car, learning trials are run for 125,000
episodes and asymptotic performance is measured as the
average reward over the last 100 episodes. EP-RKRL sig-
nificantly outperforms both GP-SARSA and RKRL across all
kernel classes asymptotically (table 2). GP-SARSA perfor-
mance using the POLYNOMIAL kernel reaches a peak at
−51.6 after 33 episodes, which is significantly better than
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EP-RKRL (p < 10−5). However, performance degrades
significantly with more episodes. This is a phenomenon
common to neural-network based function approximators
(Sutton & Barto, 1998).

The Mountain Car problem has been studied extensively
in RL literature. The best asymptotic results from the
Reinforcement Learning Library stand at −53.92 (White,
2007). NEAT+Q, a similar method for combining TD
and evolutionary algorithms, achieves −52.0 (Whiteson &
Stone, 2006). However, in the former case, different values
for ε and γ are used and in the latter case, the learner is
run for significantly more episodes, making direct compar-
ison difficult. Running Mountain Car using a standard tile-
coding function approximator (Sutton & Barto, 1998) with
8 tilings and the same RL parameter settings yields asymp-
totic performance of −108.9, significantly better than GP-
SARSA across all kernels except POLYNOMIAL, but signifi-
cantly worse than EP-RKRL under all kernels except TANH
NORM.

Note that EP-RKRL significantly outperforms RKRL be-
cause it discards less experience over the course of learn-
ing. Since kernels can only describe smoothness proper-
ties of the value functions, the data points themselves be-
come more important for learning; hence discarding them
at each model selection step significantly reduces perfor-
mance. This contrasts with Whiteson’s NEAT+Q work pre-
cisely because neural networks are more expressive.

5.1.2. SHIP STEERING

In Ship Steering, each learner trains for 2500 episodes
(1000 steps each) and the asymptotic performance is mea-
sured as the average reward obtained in the last 10 episodes.
EP-RKRL significantly outperforms GP-SARSA and RKRL
in all kernel classes except GAUSSIAN (table 3). In the re-
maining three cases, however, EP-RKRL outperforms both
methods by several orders of magnitude. Tile coding with 8
tilings yields asymptotic performance of 0.17, significantly
higher performance than GP-SARSA in all cases3 except for
the POLYNOMIAL kernel class (p < 10−9), but signifi-
cantly worse than EP-RKRL in all cases.

5.1.3. CAPTURE GO

In Capture Go, each learner trains for 3.75 · 106 episodes,
and asymptotic performance is measured as the average
number of wins over the last 1000 episodes. EP-RKRL out-
performs GP-SARSA and RKRL across all kernel classes
(table 4). GP-SARSA’s average reward peaks early and
declines under the TANH DOT kernel, achieving a max-
imum of 78.7% wins after 10,000 episodes, still signifi-
cantly lower than EP-RKRL (p < 10−6).

3Performance values in table 3 are scaled by a factor of 100.

Table 5. Asymptotic dictionary size for Mountain Car. Bold num-
bers indicate statistical significance.

KERNEL GP-SARSA RKRL EP-RKRL

POLYNOMIAL 21.6 ±0.4 10.3 ±0.5 13.6 ±0.2
GAUSSIAN 29.6 ±0.5 7.2 ±0.6 12.5 ±0.2
TANH NORM 2.5 ±0.1 8.5 ±0.8 12.6 ±0.2
TANH DOT 7.7 ±0.7 5.1 ±0.4 11.7 ±0.4

Table 6. Asymptotic dictionary size for Ship steering.

KERNEL GP-SARSA RKRL EP-RKRL

POLYNOMIAL 15.3 ±0.8 4.0 ±0.1 6.2 ±0.3
GAUSSIAN 12.3 ±0.5 15.5 ±0.3 13.7 ±0.1
TANH NORM 3.8 ±0.6 5.1 ±0.2 12.3 ±1.0
TANH DOT 7.7 ±0.8 3.2 ±0.1 5.3 ±0.2

Table 7. Asymptotic dictionary size for Capture Go.

KERNEL GP-SARSA RKRL EP-RKRL

NORM 28.5 ±0.2 5.9 ±ε 3.0 ±ε
POLYNOMIAL 147.1 ±3.3 25.2 ±1.4 40.4 ±1.4
GAUSSIAN 66.1 ±0.5 71.7 ±3.4 91.9 ±6.1
TANH NORM 62.0 ±1.1 19.6 ±0.4 17.5 ±0.7
TANH DOT 329.6 ±14.4 25.6 ±1.5 28.7 ±1.2

5.2. Dictionary Size

RKRL and GP-SARSA can be compared in terms of compu-
tational complexity by measuring the final dictionary sizes
|D̃| of each learning agent. At each decision point, the com-
putational complexity of GPTD is O(|D̃|2), arising from
matrix-vector multiplications and partitioned matrix inver-
sion (Engel, 2005). Furthermore, in practice the O(|D̃|)
cost of computing k(x) def= (k(x,x1), . . . , k(x,xt))> for
xi ∈ D̃ can carry a high constant overhead for complex
kernels. Thus, keeping |D̃| small is critical for online per-
formance.

The dictionary sizes for each kernel and learning algorithm
pair is given in table 5. In eight of the thirteen cases, EP-
RKRL kernels generate significantly smaller dictionaries for
ν = 0.001 than GP-SARSA kernels, and likewise in ten of
the thirteen cases RKRL generates significantly smaller dic-
tionaries. Thus in the majority of cases employing model
selection yields faster learning both in terms of episodes
and in terms of computation. However, these dictionary
sizes never differ by more than a single order of magni-
tude, with the largest difference being between RKRL and
GP-SARSA the TANH DOT kernel for Capture Go.

5.3. Generalization

How well a particular kernel hyperparameter setting found
by EP-RKRL performs depends on what training examples
it encounters during learning. Determining to what degree
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Table 8. Generalization performance of EP-RKRL kernel parame-
terizations for Capture Go. In all cases asymptotic performance
declines after the original dictionary is discarded.

KERNEL BASELINE RELEARNED

NORM 94.3 ±0.5 68.6 ±1.7
POLYNOMIAL 92.6 ±1.3 72.5 ±0.8
GAUSSIAN 93.3 ±0.1 81.1 ±1.0
TANH NORM 94.5 ±0.6 90.7 ±1.9
TANH DOT 89.1 ±1.1 74.6 ±0.7

this performance depends on the exact set of saved train-
ing examples yields a notion of how general the kernel
parameterization is. In order to evaluate this generaliza-
tion in EP-RKRL, final kernel parameterizations for Capture
Go were saved and all stored training examples were dis-
carded. Learning was then restarted with the kernel param-
eterization fixed. Table 8 summarizes the results. Across
all kernels, the asymptotic performance decreases signif-
icantly. Because most training examples are acquired in
the first several hundred episodes, this result indicates that
the kernel hyperparameter settings are perhaps overfitting
to the particular dictionary of saved experience. In other
words RKRL is exploiting the acquired data to pick a highly
biased covariance function that has low generalization error
given that particular set of stored experience.

Although kernels learned through RKRL overfit the dic-
tionary, this is not a serious problem as it improves gen-
eralization performance. Overfitting in this nonparametric
case simply means that the learned parameterizations are
not transferable between agents with different experience.
Thus the saved dictionary should be considered part of the
model parameters being optimized.

5.4. Analysis of Learned Kernels

Because the hyperparameter space for kernels in Capture
Go is high dimensional, RKRL can exploit many kinds of
symmetries and patterns in the value function. It is en-
lightening to analyze whether the learned kernel parame-
ter settings correspond to intuitively meaning covariance
functions. Figure 1 plots the 25 hyperparameter values for
the TANH NORM kernel averaged over the entire sample for
both RKRL and EP-RKRL. The average pattern of weights at
the final epoch differs significantly from the expected aver-
age over the prior p(θ). Furthermore, the pattern learned in
EP-RKRL has a regular structure: Each weight correspond-
ing to a particular board location takes the opposite sign of
its neighbors, yielding a regular “checkerboard” pattern of
positive and negative weights. This pattern enforces a sim-
ple strategy whereby the learner plays to capture isolated
stones. Such a strategy is effective against opponents that
do not pay attention to stones in danger of being captured.

EP-RKRLRKRL

Figure 1. “Hinton diagram” of the average learned hyperparam-
eters by board position for the TAHN NORM kernel in Capture
Go. Filled boxes correspond to positive weights and white boxes
to negative; box area is proportional to the weight. The param-
eterization generated by EP-RKRL shows a significant amount of
structure, biasing play towards moves that surround single stones.

To further elucidate this result, a second trial was run us-
ing the same kernel class, but with only two hyperparame-
ters, corresponding to the positive and negative parameter
settings observed above. This translation invariant TANH
NORM kernel k(x,x′) = tanh(

∑25
i=0 wi mod 2(xi−x′i)2−

1) can express the same alternating positive and negative
weights in a more compact form, thus trading off general-
ity compared to the original parameterization. Under the
same experimental setup, the translation invariant kernel
only reaches an asymptotic performance of 88.6% wins,
compared to 94.5% wins with the more general parame-
terization (p < 10−7). Furthermore, the resulting dictio-
nary size of the translation invariant kernel is 32.4, sig-
nificantly larger than more general parameterization (17.4;
p < 0.001). The general TANH NORM kernel parameteriza-
tion also outperforms a variant with built-in rotational sym-
metry. The rotationally symmetric TANH NORM kernel ob-
tains asymptotic performance of 89.3% wins (p < 10−4).
Taken together these results highlight some of the difficul-
ties of manually building in prior knowledge.

6. Related and Future Work
This paper has presented an efficient and conceptually sim-
ple online method for selecting kernels in Bayesian RL.
There is a growing body of model selection literature in
machine learning and statistics, both on theory and appli-
cations, e.g. (Hastie et al., 2001; Seeger, 2001). In RL,
model selection has been performed previously using reg-
ularization (Jung & Polani, 2006; Loth et al., 2007) and
evolutionary methods (Whiteson & Stone, 2006). RKRL is
most similar to the latter approach, differing in its use of
GPs, ability to save training data across lineages, and sim-
pler hyperparameter optimization procedure.

There are several interesting areas of future work. First,
RKRL can be naturally applied to more general kernel
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classes, e.g. the Matérn kernels, that admit many basic ker-
nels as special cases (Genton, 2002). In particular, the
tradeoff between kernel class complexity and performance
should be explored.

Second, the learned kernel parameterizations acquired un-
der one dictionary do not perform well under different dic-
tionaries, indicating that the dictionaries themselves can be
thought of as hyperparameters to be optimized. Developing
such a theory of nonparametric sparsification in RL may
lead to significantly better value function approximations.

Third, it is possible to derive a full kernel-replacing pro-
cedure where all covariance function evaluations share the
same accumulated learning, updated after every fitness
evaluation of every individual. Such an approach would
further reduce the sample complexity of RKRL, and also
makes possible the use of Bayesian Model Averaging tech-
niques within a single learning agent, i.e. averaging over an
ensemble of GP value functions weighted by their predic-
tive likelihoods (Hastie et al., 2001).

Finally, there is a deep connection between action ker-
nels and the concept of Relocatable Action Models (Leffler
et al., 2007). It may be possible to cast the latter in terms
of state-independent prior covariance functions, yielding a
powerful framework for model selection.

7. Conclusion
This paper developed RKRL, a simple online procedure for
improving the performance of Gaussian process temporal
difference learning by automatically selecting the prior co-
variance function. In several empirical trials, RKRL yielded
significantly higher asymptotic reward than the best hand-
picked parameterizations for common covariance func-
tions, even in cases where a large number of hyperparame-
ters must be adapted. Furthermore, the learned covariance
functions exhibit highly structured knowledge of the task
that would have been difficult to build in a priori without
significant knowledge of the domain. Overall these initial
results are promising, and suggest that leveraging work in
statistical model selection will significantly improve online
learning.
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Abstract

The dynamic hierarchical Dirichlet process
(dHDP) is developed to model the time-
evolving statistical properties of sequential
data sets. The data collected at any time
point are represented via a mixture associ-
ated with an appropriate underlying model,
in the framework of HDP. The statistical
properties of data collected at consecutive
time points are linked via a random parame-
ter that controls their probabilistic similar-
ity. The sharing mechanisms of the time-
evolving data are derived, and a relatively
simple Markov Chain Monte Carlo sampler
is developed. Experimental results are pre-
sented to demonstrate the model.

1. Introduction

The Dirichlet process (DP) mixture model (Escobar &
West, 1995) has been widely used to perform density
estimation and clustering, by generalizing finite mix-
ture models to (in principle) infinite mixtures. In order
to “share statistical strength” across different groups
of data, the hierarchical Dirichlet process (HDP) (Teh
et al., 2005) has been proposed to model the depen-
dence among groups through sharing the same set
of discrete parameters (“atoms”), and the mixture
weights associated with different atoms are varied as a
function of the data group. In the HDP, it is assumed
that the data groups are exchangeable. However, in
many real applications, such as seasonal market anal-
ysis and gene investigation for disease, data are mea-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

sured in a sequential manner, and there is information
in this temporal character that should ideally be ex-
ploited; this violates the aforementioned assumption
of exchangeability.

Developing models for time-evolving data has recently
been the focus of significant interest, and researchers
have proposed various solutions directed toward spe-
cific applications. An early example is the order-based
dependent DP (Griffin & Steel, 2006), in which the
model is time-reversible but is not Markovian, and it
requires one to specify how the mixture weights change
through time. Another related work is the time-
varying Dirichlet process mixture model (Caron et al.,
2007) based on a modified Polya urn scheme (Black-
well & MacQueen, 1973), implemented by changing
the number and locations of clusters over time. This
method is easy to understand intuitively but has com-
putational challenges for large data sets. To exam-
ine the temporal dynamics of scientific topics, latent
Dirichlet allocation (Blei et al., 2003) (Griffiths &
Steyvers, 2004) has been used as a generative model for
analysis of documents. In order to explicitly model the
dynamics of the underlying topics, Blei (Blei & Laf-
ferty, 2006) proposed a dynamic topic model, in which
the parameter at the previous time t− 1 is the expec-
tation for the distribution of the parameter at the next
time t, and the correlation of the samples at adjacent
times is controlled through adjusting the variance of
the conditional distribution. Unfortunately, the non-
conjugate form of the conditional distribution requires
approximations in the model inference.

Recently Dunson (Dunson, 2006) proposed a Bayesian
dynamic model to learn the latent trait distribution
through a mixture of DPs, in which the latent variable
density changes dynamically in location and shape
across levels of predictors. This dynamic structure is
considered in this paper to extend HDP to incorpo-
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rate time dependence, and has the following features:
(i) two data samples drawn at proximate times have
a higher probability of sharing the same underlying
model parameters (atoms) than parameters drawn at
disparate times; and (ii) there is a possibility that tem-
porally distant data samples may also share model pa-
rameters, thereby accounting for possible distant rep-
etition in the data.

2. Dynamic HDP

2.1. Background

A Dirichlet process is a measure on a measure G and
is parameterized as G ∼ DP (α0, G0), in which G0 is a
base measure and α0 is a positive “precision” param-
eter. To provide an explicit form for a G drawn from
DP (α0, G0), Sethuraman (Sethuraman, 1994) devel-
oped a stick-breaking construction:

G =
∞∑

k=1

πkδθ∗k , πk = π̃k

k−1∏

i=1

(1− π̃i) (1)

where {θ∗k}∞k=1 represent a set of atoms drawn i.i.d.
from G0 and {πk}∞k=1 represent a set of weights, with
the constraint

∑∞
k=1 πk = 1; each π̃k is drawn i.i.d.

from Be(1, α0). According to the construction in (1), a
draw G from a DP (α0, G0) is discrete with probability
one. Based on this important property, Teh (Teh et al.,
2005) proposed a hierarchical Dirichlet process (HDP)
to link the group-specific Dirichlet processes, learning
the models jointly across multiple data sets.

Assume we have J groups of data and the jth data
set (group) is denoted as {xj,i}i=1,...,Nj . For each of

these data sets, xj,i is drawn from the model xj,i
ind∼

F (θj,i) with parameters θj,i
iid∼ Gj , and the parame-

ters {θj,i}i=1,...,Nj
are likely to assume the atoms θ∗k

for which the associated sticks πj,k are large, as a con-
sequence of the form of Gj given by (1); for the J
data sets, different group-specific Gj are drawn from
DP (αj0, G0), in which G0 is drawn from another DP.
The generative model for HDP is represented as:

xj,i
ind∼ F (θj,i)

θj,i
iid∼ Gj

Gj
ind∼ DP (αj0, G0)

G0 ∼ DP (γ, H)

(2)

where j = 1, . . . , J and i = 1, . . . , Nj .

Under this hierarchical structure, not only can differ-
ent observations xj,i and xj,i′ in the same group share
the same parameters θ∗ based on the stick weights rep-
resented by Gj , but also the observations across differ-
ent groups might share parameters as a consequence

of the discrete form of G0 (all Gj are composed of
the same set of atoms {θ∗k}∞k=1). The clusters in each
group j, assumed by the set {θj,i}i=1,...,Nj , are inferred
via the posterior density function on the parameters,
with the likelihood function selecting the set of discrete
parameters {θ∗k}∞k=1 most consistent with the data
{xj,i}i=1,...,Nj

. Meanwhile, clusters (and, hence, asso-
ciated cluster parameters {θ∗k}∞k=1) are shared across
multiple data sets, as appropriate.

Although the HDP introduces a dependency between
the J groups, the data sets are assumed exchangeable.
However, in many applications, the data may be col-
lected sequentially, and one may have a prior belief
that sharing of data is more probable when the data
sets are collected at similar points in time. The pur-
pose of this paper is to extend the HDP to account for
such temporal information.

Before proceeding, it will prove useful to consider an
alternative form of the HDP model, as derived in (Teh
et al., 2005). Specifically, each draw Gj may be ex-
pressed as:

Gj =
∞∑

k=1

πj,kδθ∗k

πj
ind∼ DP (α0j , β)
β ∼ Stick(γ)

θ∗k
iid∼ H

(3)

where Stick(γ) stochastically generates an infinite set
of sticks {β1, β2, . . .}, based on a stick-breaking process
of the form in (1), here with parameter γ, satisfying
the constraint

∑∞
i=1 βi = 1.

2.2. Bayesian Dynamic Structure

Similar to HDP, we again consider J data sets but
now using an explicit assumption that the data sets
are collected sequentially, with {x1,i}i=1,...,N1 col-
lected first, {x2,i}i=1,...,N2 collected second, and with
{xJ,i}i=1,...,NJ

collected last. Since our assump-
tion is that a time evolution exists between adja-
cent data groups, the distribution Gj−1, from which
{θj−1,i}i=1,...,Nj−1 are drawn, is likely related to Gj ,
from which {θj,i}i=1,...,Nj are drawn.

To specify explicitly the dependence between Gj−1 and
Gj , Dunson (Dunson, 2006) proposed a Bayesian dy-
namic mixture DP (DMDP), in which Gj shares fea-
tures with Gj−1 but some innovation may also occur.
The DMDP has the drawback that mixture compo-
nents can only be added over time, so that one ends
up with more components at later times as an artifact
of the model.
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In the dHDP, we have

Gj = (1− w̃j−1)Gj−1 + w̃j−1Hj−1 (4)

where G1 ∼ DP (α01, G0), Hj−1 is called an in-
novation distribution drawn from DP (α0j , G0), and
w̃j−1 ∼ Be(aw(j−1), bw(j−1)). In this way, Gj is modi-
fied from Gj−1 by introducing a new innovation distri-
bution Hj−1, and the random variable w̃j−1 controls
the probability of innovation (i.e., it defines the mix-
ture weights). As a result, the relevant atoms adjust
with time, and it is probable that proximate data will
share the same atoms, but with the potential for tran-
sient innovation.

Additionally, we assume that G0 ∼ DP (γ, H) as in
the HDP to enforce that G0 is discrete, which mani-
fests another important aspect of the dynamic HDP:
the same atoms are used for all Gj , but with different
time-evolving weights. Consequently, the model en-
courages sharing between temporally proximate data,
but it is also possible to share between data sets widely
separated in time.

Providing now more model details, the discrete base
distribution drawn from DP (γ, H) may be expressed
as:

G0 =
∞∑

k=1

βkδθ∗k (5)

where {θ∗k}k=1,2,...,∞ are the global parameter com-
ponents (atoms), drawn independently from the base
distribution H and {βk}k=1,2,...,∞ are drawn from a
stick-breaking process β ∼ Stick(γ), defined as:

βk = β̃k

∏

l<k

(1− β̃l) β̃k
iid∼ Be(1, γ) (6)

We also have J groups of data. Gj represents the prior
for the mixture distribution associated with the global
components in group j, Hj−1 represents the associated
prior for the innovation mixture distribution, and this
yields the explicit priors used in (4):

G1 =
∞∑

k=1

π1,kδθ∗k ,H1 =
∞∑

k=1

π2,kδθ∗k , . . . ,

HJ−1 =
∞∑

k=1

πJ,kδθ∗k

(7)

where, analogous to the discussion at the end of Sec-
tion 2.1, the different weights πj are independent given
β since G1,H1, . . . ,HJ−1 are independent given G0;
the relationship between πj and β is proven (Teh et al.,
2005) to be

πj |α0j , β ∼ DP (α0j , β) (8)

To further develop the dynamic relationship from G1

to GJ , we extend the mixture structure in (4) from
group to group:

Gj = (1− w̃j−1)Gj−1 + w̃j−1Hj−1

=
j−1∏

l=1

(1− w̃l)G1 +
j−1∑

l=1

{
j−1∏

m=l+1

(1− w̃m)}w̃lHl

= wj1G1 + wj2H1 + . . . + wjjHj−1

(9)

where wjl = w̃l−1

∏j−1
m=l(1 − w̃m), for l = 1, 2, . . . , j,

with w̃0 = 1. It can be easily verified that
∑j

l=1 wjl =
1 for each wj , which is the prior probability that the
data in group j will be drawn from the mixture dis-
tribution: G1,H1, . . . ,Hj−1. If all w̃j = 0, all of the
groups share the same mixture distribution G1 and
the model reduces to a Dirichlet mixture model, and if
all w̃j = 1 the model reduces to the HDP. Therefore,
the dynamic HDP is more general than both DP and
HDP, with each a special case. A visual representation
of the model is depicted in Figure 1.
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Figure 1. General graphical model for the dynamic HDP.

According to (9), the observation xj,i will choose a
mixture distribution from π1:j based on Mult(wj)
to be drawn from the global parameter components
{θ∗k}∞k=1. We let rj,i be a variable to indicate which
mixture distribution is taken from π1:j to draw the ob-
servation xj,i; zj,i is a parameter component indicator
variable. An alternative form of the dHDP model is
represented as:

θ∗k|H ∼ H, β|γ ∼ Stick(γ)
w̃j |awj , bwj ∼ Be(w̃j |awj , bwj), rj,i|w̃ ∼ wj

πj |α0j ,β ∼ DP (α0j , β), zj,i|π1:j , rj,i ∼ πrj,i

xj,i|zj,i, (θ∗k)∞k=1 ∼ F (θ∗zj,i
),

(10)
and a graphical representation is shown in Figure 2, in
which we add a gamma prior for γ and for the com-
ponents of the vector α0: Pr(γ) = Ga(γ; γ01, γ02) and
Pr(α0) =

∏J
j=1 Ga(α0j ; c0, d0). The form of the para-

metric model F (·) may be varied depending on the
application.
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Figure 2. Graphical representation of the dHDP from a stick-
breaking view.

2.3. Sharing Properties

To see the mixture structure in a discrete partition
space A = (A1, . . . , AK), we consider

Gj(A1, . . . , AK)|Gj−1, w̃j−1 ∼
(1−w̃j−1)Gj−1(A1, . . . , AK)+w̃j−1Hj−1(A1, . . . , AK)

, Gj−1(A1, . . . , AK) +4j(A1, . . . , AK) (11)

where 4j(A1, . . . , AK) = w̃j−1{Hj−1(A1, . . . , AK) −
Gj−1(A1, . . . , AK)} is the random deviation from Gj−1

to Gj .

Theorem 1. Given any discrete partition A, we have:

E{4j(A)|Gj−1, w̃j−1,H, γ, α0j}
=w̃j−1{H(A)−Gj−1(A)} (12)

V {4j(A)|Gj−1, w̃j−1,H, γ, α0j}

=w̃2
j−1

(1 + γ + α0j)H(A)(1−H(A))
(1 + α0j)(1 + γ)

(13)

According to Theorem 1, given the previous mixture
distribution Gj−1, the expectation of the deviation
from Gj−1 to Gj is controlled by w̃j−1. Meanwhile, the
variance of the deviation is both related with w̃j−1 and
the precision parameters γ, α0j . To consider limiting
cases, we observe the following:

• if w̃j−1 → 0, Gj = Gj−1;

• if Gj−1 → H, E(Gj(A)|Gj−1, w̃j−1,H, γ, α0j) =
Gj−1(A);

• if γ →∞ and α0j →∞,
V (4j(A)|Gj−1, w̃j−1,H, γ, α0j) → 0.

These limiting cases yield insights on the underlying
dependence between adjacent groups.

Theorem 2. The correlation coefficient of the distri-
butions between two adjacent groups Gj−1 and Gj for

j = 2, . . . , J is

Corr(Gj−1, Gj)

=
E{Gj(A)Gj−1(A)} − E{Gj(A)}E{Gj−1(A)}

[V {Gj(A)}V {Gj−1(A)}]1/2

=

∑j−1
l=1

wjlwj−1,l

1+α0l
· α0l+γ+1

γ+1

[
∑j

l=1

w2
jl

1+α0l
· α0l+γ+1

γ+1 ]1/2[
∑j−1

l=1

w2
j−1,l

1+α0l
· α0l+γ+1

γ+1 ]1/2

(14)

To compare the similarity of two data groups, the cor-
relation coefficient defined in Theorem 2 can be calcu-
lated from the posterior expectation of w, α0 and γ
as a local similarity measure.

2.4. Posterior Computation

A modification of the block Gibbs sampler (Ishwaran
& James, 2001) is proposed for dHDP inference. Since
in practice the {πk}∞k=1 in (1) diminish quickly with
increasing k, a truncated stick-breaking process (Ish-
waran & James, 2001) is employed here, with a large
truncation level K, to approximate the infinite stick
breaking process. In the dHDP, the second level of
DPs associated with the dynamic structure is the only
part different from HDP (see Figure 2). Due to the
limited space, we only give the conditional posterior
distributions for w̃, π̃, r and z.
The conditional distribution of w̃l, for l = 1, . . . , J − 1
has the simple form:

(w̃l| · · · ) ∼ Be(aw +
J∑

j=l+1

nj,l+1, bw +
J∑

j=l+1

l∑

h=1

njh)

(15)
where njh =

∑Nj

i=1 δ(rji = h). In (15) and in the
results that follow, for simplicity, the distributions
Be(awj , bwj) are set with fixed parameters awj = aw

and bwj = bw for all time samples.
The conditional distribution of π̃lk, for l = 1, . . . , J
and k = 1, . . . ,K, is updated under the conjugate
prior: π̃lk ∼ Be(α0,lβk, α0,l(1 −

∑k
m=1 βm)), which is

specified in (Teh et al., 2005). Then the conditional
posterior of π̃lk has the form

(π̃lk| · · · ) ∼ Be(α0lβk +
J∑

j=1

Nj∑

i=1

δ(rji = l, zji = k),

α0l(1−
k∑

l=1

βl) +
J∑

j=1

Nj∑

i=1

K∑

k′=k+1

δ(rji = l, zji = k′))

(16)

The update of the indicator variables rji and zji, for
j = 1, . . . , J and i = 1, . . . , Nj are completed by gen-
erating samples from multinomial distributions with
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entries as follows:

Pr(rji = l| · · · ) ∝

w̃l−1

j−1∏

m=l

(1− w̃m) · π̃lzji

zji−1∏
q=1

(1− π̃lq) · Pr(xji|θ∗zji
)

(17)

where l = 1, . . . , j. The posterior probability Pr(rji =
l) is normalized so that

∑j
l=1 Pr(rji = l) = 1.

Pr(zji = k| · · · ) ∝ π̃rjik

k−1∏

k′=1

(1− π̃rjik′) · Pr(xji|θ∗k)

(18)
where k = 1, . . . , K and the posterior is also normal-
ized by a constant

∑K
k=1 Pr(zji = k).

The remaining variables specified in (10) are sampled
in the same ways as in HDP (Teh et al., 2005). The
component parameters θ∗k for k = 1, . . . , K are consid-
ered for different model forms depending on the spe-
cific applications. For the results that follow, it is of
interest to consider a hidden Markov model (HMM)
mixture (Qi et al., 2007) and Gaussian mixture model
(GMM), in which θ∗k respectively represent the state-
transition matrix, the observation matrix, the initial-
state distribution for the HMM and the mean vec-
tor and covariance matrix for GMM. For more details
about sampling for such models, see (Qi et al., 2007)
and (Escobar & West, 1995). The Gibbs sampling al-
gorithm was tested carefully under different initializa-
tions and the diagnostic method in (Raftery & Lewis,
1992) is used to demonstrate rapid convergence and
good mixing (for the results considered, convergence
based on this method was observed for a burn-in of
200 samples, followed by a subsequent 4000 samples).

3. Experimental Results

3.1. Music Segmentation

It is of interest to segment music, to infer inter-
relationships between different parts of a given piece,
as well as between different pieces. Here we consider
segmentation of music, where a given piece is divided
into contiguous subsequences, with each subsequence
modeled via a hidden Markov model (HMM). The
dHDP model is useful in this application in enforc-
ing the idea that contiguous subsequences are likely
to be within the same music segment, and therefore
are likely to share HMM parameters. However, when
the segment changes, these changes are detected via
innovation within the dHDP.

The music under consideration is the first movement
“Largo - Allegro” from the Beethoven piano Sonata

No. 17 (Newman, 1972). As is widely employed for
analysis of such audio data, MFCC features are ex-
tracted and discretized with vector quatization (Qi
et al., 2007); each of the aforementioned subsequences
corresponds to a sequence of codewords (we here em-
ploy a discrete HMM). The basic form of the Bayesian
representation of a discrete HMM is as discussed in (Qi
et al., 2007). The piece is transformed into 4980 dis-
crete symbols, divided into 83 subsequences of equal
length (the codebook has 16 codes, and 8 states are
employed for each HMM); each subsequence corre-
sponds to 6 secs in the music. To model the time
dependence between adjacent subsequences, each sub-
sequence corresponds to one group in the dHDP HMM
mixture and will choose one set of HMM parameters
according to the corresponding mixture weights. In
the dHDP framework, one subsequence can share the
old DP mixture distributions with the previous ones
or it might be drawn from an innovation DP mixture,
which may be also shared by the following time se-
ries in a similar manner. To encourage that adjacent
subsequences be shared, the prior for w̃ is specified
as E(w̃) < 0.5. The product of most interest here is
the segmentation of the music, with the specific HMM
parameters of secondary importance.
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Figure 3. Similarity matrix E(z′z) from HMM mixture
modeling of the Sonata. (a) dHDP-HMM, (b) HDP-
HMMs.

To represent the time dependence of the piece, the
similarity measure E(z′z) (see z in Eq. (18)) is com-
puted across each pair of subsequences, as shown in
Figure 3, in which larger values represent higher prob-
ability of the two corresponding subsequences being
shared during parameter inference. Based upon a
discussion in (Newman, 1972), the movement alter-
nates seeming peacefulness with sudden turmoil (1st-
6th subsequences), after some time expanding into a
haunting “storm” in which the peacefulness is lost
(7th-21st subsequences). After the recurrence of the
same pattern (22nd-42nd subsequences) and a small
transition, the movement starts a long recitative sec-
tion in a slow tone (53rd-69th subsequences). Then
through the crescendo, previous disturbed tones come
back again until the music goes to the peaceful epilogue
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(after the 70th subsequence). See (Newman, 1972) for
more details on the Sonata. This is deemed to be an
interesting piece for study because it is well charac-
terized in the music literature, as briefly summarized
above, and because it is anticipated to have repeated
segments over the length of the piece. In Figures 3(a)
and (b) we compare the dHDP and HDP, respectively,
the latter computed by fixing all w̃ = 1 in the dHDP
model. The dHDP and HDP yield related results, but
the former yields a smoother segmentation, in good
agreement with the music theory discussed above.
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Figure 4. Segmentation of the Beethoven piano music from
the dHDP HMMs (red dash lines represent segment posi-
tions and blue curves represent the auditory waveform).

Based on the results from the dHDP HMM, which ef-
fectively yields a model with smoothly time-evolving
statistics, we segment the music and present the asso-
ciated auditory waveform in Figure 4. By examining
the waveform and the results in Figure 3, we note that
the dHDP segments the music into dominant auditory
phenomena, but it is less sensitive to noticeable but
temporally localized events in the music, yielding a
segmentation that is consistent with the music theory.
By contrast, the HDP results in Figure 3(b) are evi-
dently more sensitive to these local temporal bursts in
the waveform.

3.2. Gene Expression Data

As a second example, we consider the time-evolving
characteristics of gene-expression data, here for a
Dengue virus study (Hibberd et al., 2006). Concern-
ing a model for the gene-expression data at one time
snapshot, Dunson (Dunson, 2006) proposed a latent
response model based on a linear regression structure;
we extend this model for time-evolving gene-expression
data via dHDP (with comparison as well to HDP).

Assume yji is a feature vector with dimension p for
j = 1, . . . , J and i = 1, . . . , Nj (index j corresponds to
time, i represents a particular cell from which a sample
is collected, and p denotes the number of genes being
modeled). Each yji is represented as

yji = µ + ληji + εji (19)

where µ = (µ1, . . . , µp)′ is the intercept vector and
λ = (λ1, . . . , λp)′ represents factor loadings. We de-
fine a hidden variable ηji underlying the observation

yji to be associated with the ith sample at time tj .
The error term εji is also a vector of dimension p and
each coefficient εji,d is independently drawn from a
Student-t distribution. To eliminate the problem of
model identifiability, we incorporate the constraints
that µ1 = 0 and λ1 = 1, as (Dunson, 2006) discusses.
In the present model, one cannot explicitly associate
η exclusively with the virus; however, since these are
cell data, it is anticipated that the virus represents the
dominant phenomena.

We have access to expressions of thousands of genes
from each sample (cell) for multiple consecutive times
t1, t2, . . . , tJ . For each time tj , there are Nj samples
measured from different cells (Hibberd et al., 2006).
Although these samples may have different observa-
tions in gene expressions at the same time, due to
individual diversity, the hidden variable η (see (19))
underlying the observations may have similar charac-
teristics. Based on this consideration, the η under-
lying the observations in one group corresponding to
one time are assumed to be drawn from a Gaussian
mixture model. They may also share the same mix-
ture distribution for proximate time points, under the
assumption of the dHDP model.

The Dengue gene expression data (Hibberd et al.,
2006) are divided into six groups of samples measured
at different times and the number of samples in each
group are 10, 12, 12, 10, 12, 9 (the specific time
points associated with these data are respectively 3,
6, 12, 24, 48 and 72 hours); each sample has 19,143
genes. To deal with such high-dimensional data, the
Fisher score (Duda & Hart, 1973) is used to prelimi-
narily select p = 5000 genes as being the most relevant
(variable across time and cell), and then we use the
dHDP mixture model discussed above to analyze the
time evolution existing in these gene samples.
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Figure 5. Median values and associated uncertainty based on
posterior distributions of the hidden variables η.

Based on the samples collected from the Gibbs sam-
pling after burn-in, the posterior distributions (includ-
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Figure 6. The dHDP GMM modeling for the gene expres-
sion data. (a) The posterior distribution of r. (b) The
similarity matrix E[z′z].
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Figure 7. The first ten inferred important genes (color red
and blue) and the relatively unrelated genes (color green).

ing the minimum, median, maximum, 25th and 75th
percentiles of the values) for all components of η un-
derlying these samples at different times are shown
in Figure 5. Time points 3hr, 6hr and 12hr appear
to share a similar pattern, but the ηt=12 seem to have
smaller diversity among different samples. From 24hrs,
η drops slightly to a new pattern and they drop signif-
icantly again at 48hr. The posterior of indicator r is
plotted in Figure 6(a) to show the mixture-distribution
sharing relationship across different groups. Figure
6(b) shows the similarity measure E(z′z) across ev-
ery pair of samples; here zji is the indicator variable
for the ηji associated with time tj (see Eq. (18)).

Consider the factor loadings vector λ, which has com-
ponents linked to the p genes under consideration. The
larger the value of |λd|, the more influence the pattern
contained in η has on the corresponding gene at the
dth dimension. Therefore, according to the posterior
mean of |λd| for all d from the Gibbs sampling we rank
the genes based on their importance.

In Figure 7 we plot the expression levels over time for
the 10 most important and 10 least important genes.
The red and blue curves show two different time pat-
terns and their values have either an increasing or a
decreasing trend with time, depending on whether the
associated λ is positive or negative. The green curves
represent the genes with no apparent relation to the

virus (as determined by the analysis) due to the lack
of a systematic trend over time.

As discussed in Section 2.2, if all w̃j are set to one for
j = 1, . . . , J − 1, the dHDP reduces to HDP and all
the temporal groups are conditionally exchangeable.
It is of interest to compare the dHDP with HDP both
in the sharing mechanism and parameter estimation.
In practice, acquisition of the gene-expression data is
expensive, and it is desirable to reduce the number of
samples required. To consider this issue, we reduced
the samples size to four at each time point, and plot
the data similarity matrix E[z′z] for HDP and dHDP
respectively in Figures 8(a) and (b).
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Figure 8. Similarity matrix E[z′z] with four samples for
each temporal group. (a) HDP, (b) dHDP.
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Figure 9. Comparison of dHDP and HDP with box plots of
the hidden variables η as the sample size is reduced to four
for each temporal group (the standard deviation based on
dHDP is 12.1% reduced on average relative to HDP; the
means are very similar).

Compared with HDP, dHDP has more sharing between
the related groups (as expected from model construc-
tion), and despite the reduced data samples the dHDP
yields an inter-relationship between the different times
that is consistent with that in Figure 6(b) which em-
ploys all of the available data. In Figure 9 we compare
dHDP and HDP estimation of η based on four sam-
ples per time point. These results show that dHDP
has a smaller estimation uncertainty for most η rela-
tive to HDP, which is attributed to proper temporal
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sharing explicitly imposed by dHDP. As the sample
size is increased, the differences between dHDP and
HDP diminish.

Finally, correlation coefficients between two groups are
calculated from the samples drawn from the Gibbs
sampler, according to (14) and plotted as a matrix
in Figure 10; this representation is an additional bene-
fit of the dynamic structure explicitly imposed within
dHDP (of potential biological interest). The size of
each small block at the ith row and jth column is pro-
portional to the value of the correlation coefficient as-
sociated with group i and group j. We note based on
Figure 10 that such inference appears to be accurate
(or at least consistent) even with diminished sample
size.
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Figure 10. Similarity matrix between data at different time
points based on the correlation coefficients (14), as com-
puted from the dHDP posterior. (a) using all available
data, (b) using four samples for each temporal group.

4. Conclusions

The proposed dynamic hierarchical Dirichlet process
(dHDP) extends the HDP (Teh et al., 2005), imposing
a dynamic time dependence so that the initial mix-
ture model and the subsequent time-dependent mix-
tures share the same set of components (atoms). The
experiments indicate that the dHDP is an effective
model for analysis of time-evolving data. Concern-
ing future research, more efficient inference methods
will be considered, such as collapsed sampling (Welling
et al., 2007) and variational Bayesian inference (Blei
& Jordan, 2004).
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Abstract

We propose a family of supervised dimension-
ality reduction (SDR) algorithms that com-
bine feature extraction (dimensionality re-
duction) with learning a predictive model
in a unified optimization framework, using
data- and class-appropriate generalized lin-
ear models (GLMs), and handling both clas-
sification and regression problems. Our ap-
proach uses simple closed-form update rules
and is provably convergent. Promising em-
pirical results are demonstrated on a variety
of high-dimensional datasets.

1. Introduction

Dimensionality reduction (DR) is a popular data-
processing technique that serves the following two
main purposes: it helps to provide a meaningful in-
terpretation and visualization of the data, and it also
helps to prevent overfitting when the number of di-
mensions greatly exceeds the number of samples, thus
working as a form of regularization.

When our goal is prediction rather than an (unsu-
pervised) exploratory data analysis, supervised dimen-
sionality reduction (SDR) that combines DR with si-
multaneously learning a predictor can significantly out-
perform a simple combination of unsupervised DR
with a subsequent learning of a predictor on the result-
ing low-dimensional representation (Pereira & Gor-
don, 2006; Sajama and Alon Orlitsky, 2005). The

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

problem of supervised dimensionality reduction can
be viewed as finding a predictive structure, such as a
low-dimensional representation, which captures the in-
formation about the class label contained in the high-
dimensional feature vector while ignoring the “noise”.

However, existing SDR approaches are often restricted
to specific settings, and can be viewed as jointly
learning a particular mapping (most commonly, a lin-
ear one) from the feature space to a low-dimensional
hidden-variable space, together with a particular pre-
dictor that maps the hidden variables to the class label.
For example, SVDM (Pereira & Gordon, 2006) learns
a linear mapping from observed to hidden variables,
effectively assuming Gaussian features when minimiz-
ing sum-squared reconstruction loss; on the prediction
side, it focuses on SVM-like binary classification using
hinge loss. SDR-MM method of (Sajama and Alon
Orlitsky, 2005) treats various types of features (e.g.,
binary and real-valued) but is limited to discrete clas-
sification problems, i.e. is not suitable for regression.
Recent work on distance metric learning (Weinberger
et al., 2005; Weinberger & Tesauro, 2007) treats both
classification and regression settings, but is limited,
like SVDM, to Gaussian features and linear mappings
when learning Mahalanobis distances.

This paper approaches SDR in a more general frame-
work that views both features and class labels as
exponential-family random variables, and allows to
mix-and-match data- and label-appropriate general-
ized linear models, thus handling both classification
and regression, with both discrete and real-valued
data1. It can be viewed as a discriminative learn-

1In other words, the proposed framework provides non-
linear dimensionality reduction methods based on mini-
mizing Bregman divergences that correspond to particular
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ing based on minimization of conditional probability of
class given the hidden variables, while using as a regu-
larizer the conditional probability of the features given
the low-dimensional hidden-variable “predictive” rep-
resentation.

The main advantage of our approach, besides being
more general, is using simple closed-form update rules
when performing its alternate minimization procedure.
This method yields a short Matlab code, fast perfor-
mance, and is guaranteed to converge. The conver-
gence property, as well as closed form update rules, re-
sult from using appropriate auxiliary functions bound-
ing each part of the objective function (i.e., reconstruc-
tion and prediction losses). We exploit the additive
property of auxiliary functions in order to combine
bounds on multiple loss functions.

We perform a variety of experiments, both on sim-
ulated and real-life problems. Results on simulated
datasets convincingly demonstrate that our SDR ap-
proach can discover underlying low-dimensional struc-
ture in high-dimensional noisy data, while outperform-
ing SVM and SVDM, often by far, and practically al-
ways beating the unsupervised DR followed by learn-
ing a predictor. On real-life datasets, SDR approaches
continue to beat the unsupervised DR by far, while
often matching or somewhat outperforming SVM and
SVDM.

2. SDR-GLM: Hidden-Variable Model

Let X be an N ×D data matrix with entries denoted
Xnd where N is the number of i.i.d. samples, and n-
th sample is a D-dimensional row vector denoted xn.
Let Y be an N ×K matrix of class labels for K sep-
arate prediction problems (generally, we will consider
K > 1), where j-th column, 1 ≤ j ≤ K, provides
a set of class labels for the j-th prediction problem.
Our supervised dimensionality approach relies on the
assumption that each data point xn, n = 1, ..., N , is
a noisy version of some “true” data point θn which
lives in a low-dimensional space, and that this hidden
representation of the noisy data is actually predictive
about the class label.

We will also assume, following ePCA (Collins et al.,
2001), (GL)2M(Gordon, 2002), logistic PCA (Schein
et al., 2003) and related extensions of PCA, that noise
in the features follows exponential-family distributions
with natural parameters θn, with different members of

members of the exponential family of distribution, includ-
ing linear (PCA-like) dimensionality reduction as a partic-
ular case for Gaussian variables.

the exponential family used for different dimensions2,
and that the noise is applied independently to each
coordinate of xn. Namely, it is assumed that N × D
parameter matrix Θ can be represented by a linear
model in an L-dimensional (L < D) space:

Θnd =
L∑

l=1

UnlVld + ∆Xd
,

where the rows of the L ×D matrix V correspond to
the basis vectors, the columns of the N × L matrix
U correspond to the coordinates of the “true points”
θn, n = 1, ...N in the L-dimensional space spanned by
those basis vectors, and ∆X is the bias vector (cor-
responding to the empirical mean in PCA). However,
to simplify the notation, we will include ∆X as the
(L + 1)’s row of the matrix V (i.e., VL+1 = ∆X),
and add the (L + 1)’s column of 1’s to U , so that we
can write ΘX as a product of two matrices, ΘXnd

=
(UV )nd =

∑L+1
l=1 UnlVld.

Given the natural parameter Θnd, an exponential-
family noise distribution is defined for each Xnd by

log P (Xnd|ΘXnd
) = XndΘXnd

−G(ΘXnd
)+log P0(Xnd),

where Gx(Θnd) is the cumulant or log-partition func-
tion that ensures that P (Xnd|Θnd) sums (or inte-
grates) to 1 over the domain of Xnd. This function
uniquely defines a particular member of the exponen-
tial family, e.g., Gaussian, multinomial, Poisson, etc.

We can now view each row Un as a “compressed” rep-
resentation of the corresponding data sample xn that
will be used to predict the class labels. We will again
assume a noisy linear model for each class label Yk

(column-vector in Y ) where the natural parameter is
represented by linear combination

ΘYnk
=

L∑

l=1

UnlWlk + ∆Yk

with linear coefficients w = (w1, ..., wL) and K-
dimensional bias vector ∆Y . As for ΘXnd

, we
will simplify the notation by including ∆Y as the
(L + 1)’s row of the matrix W , and write ΘYnk

=
(UW )nk =

∑L+1
l=1 UnlWlk. Using an appropriate type

of exponential-family noise P (Ynk|ΘYnk
), we can han-

dle both classification and regression problems. For
2It is important to note that in case of standard (linear)

PCA corresponding to Gaussian noise the parameters θn

live in a linear subspace in the original data space, but for
other types of exponential-family noise the low-dimensional
space of parameters is typically a nonlinear surface in the
original data space.
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example, in case of binary classification, we can model
Ynk as a Bernoulli variable with parameter pnk and the
corresponding natural parameter Θnk = log( pnk

1−pnk
),

and use logistic function σ(x) = 1
1+e−x to write the

Bernoulli distribution for Ynk as

P (Ynk|ΘYnk
) = σ(ΘYnk

)Ynkσ(−ΘYnk
)1−Ynk .

In case of regression, Ynk will be a Gaussian variable
with the expectation parameter coinciding with the
natural parameter ΘYnk

.

In other words, we will use a generalized linear model
(GLM) E(Xd) = f−1

d (UVd) for each feature Xd (d-th
column in X, 1 ≤ d ≤ D), and yet another set of
GLMs E(Yk) = f−1

k (UW ) for each class label Yk (k-th
column in Y , 1 ≤ k ≤ K), with possibly different link
functions fd and fk (e.g., the logit link function f(µ) =
ln µ

1−µ = σ−1(θ) is used for binary classification, and
identity link function f(µ) = µ is used for real-valued
regression with Gaussian output).

SDR-GLM optimization problem. We formulate
SDR as joint optimization of two objective functions
corresponding to the reconstruction accuracy (data
likelihood) and the prediction accuracy (class likeli-
hood):

LX(ΘX) =
∑

nd

log P (Xnd|ΘXnd
), (1)

LY (ΘY ) =
∑

nk

log P (Ynk|ΘYnk
), (2)

where ΘX = UV , ΘY = UW , and the likelihoods
above correspond to particular members of exponen-
tial family. Then the SDR optimization problem is

max
U,V,W

αLX(UV ) + LY (UW ) (3)

where the data likelihood can be viewed as a regu-
larization added on top of the class likelihood maxi-
mization objective, with the regularization constant α
controlling the trade-off between the two likelihoods 3.

Comparison with SVDM. Note that the idea of
combining loss functions for SDR was also proposed
before in SVDM (Pereira & Gordon, 2006), where,
similarly to SVD, quadratic loss ||X−UV ||22 was used
for data reconstruction part of the objective, while the
hinge loss was used for the prediction part (using U as
the new data matrix). Herein, we generalize SVDM’s
sum-squared reconstruction loss to log-likelihoods of

3In our implementation, an L2-norm regularization was
also added on all matrices U, V, W with small regulariza-
tion constants (0.01), effectively corresponding to assuming
Gaussian priors on those matrices.

exponential family, similarly to ePCA(Collins et al.,
2001) and G2L2M(Gordon, 2002), replace hinge loss
by the loglikelihoods corresponding to exponential-
family class variables, and provide closed-form update
rules rather than perform optimization at each iter-
ation, which results into a significant speed up when
compared with SVDM.

3. Combining Auxiliary Functions

Since the above problem (eq. 3) is not jointly convex
in all parameters, finding a globally optimal solution is
nontrivial. Instead, we can employ the auxiliary func-
tion approach commonly used in EM-style algorithms,
and using auxiliary function of a particular form, de-
rive closed-form iterative update rules that are guar-
anteed to converge to a local minimum. We show that
an auxiliary function for the objective in eq. 3 can
be easily derived for an arbitrary pair of LX and LY

provided that we know their corresponding auxiliary
functions.

Auxiliary functions. Given a function L(θ) to be
maximized, a function Q(θ̂, θ) is called an auxiliary
function for L(θ) if L(θ) = Q(θ, θ) and L(θ̂) ≥ Q(θ̂, θ)
for all θ̂. It is easy to see that L(θ) is non-decreasing
under the update

θt+1 = arg max
θ̂

Q(θ̂, θt),

i.e., L(θt+1) ≥ L(θt), and thus an iterative application
of such updates is guaranteed to converge to a local
maximum of L under mild conditions on L and Q.

We will make use of the following properties of auxil-
iary functions:

Lemma 1 Let Q1(θ̂, θ) and Q2(θ̂, θ) be auxiliary func-
tions for L1(θ) and L2(θ), respectively. Then

Q(θ̂, θ) = α1Q1(θ̂, θ) + α2Q2(θ̂, θ) (4)

is an auxiliary function for L(θ) = α1L1(θ)+α2L2(θ),
where αi > 0 for i = 1, 2.

Proof. Q(θ̂, θ) = α1Q1(θ̂, θ)+α2Q2(θ̂, θ) ≤ α1L1(θ̂)+
α2L2(θ̂) = L(θ̂), and Q(θ, θ) = α1Q1(θ, θ) +
α2Q2(θ, θ) = α1L1(θ) + α2L2(θ) = L(θ).

Also, it is obvious that a function is an auxiliary for
itself, i.e. Q(θ̂, θ) = L(θ̂) is an auxiliary function for
L(θ). This observations allows us to combine vari-
ous dimensionality reduction approaches with appro-
priate predictive loss functions, given appropriate aux-
iliary functions for both (next section discusses two
such combinations). When optimization of an auxil-
iary functions yields an analytical solution (e.g., for
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quadratic functions), it is easy to obtain closed-form
update rules for alternating minimization.

4. Iterative Update Rules

Recall that natural parameters for Xnd and Ynk

variables are represented by ΘXnd
=

∑L+1
l=1 UnlVld

and ΘYnk
=

∑L+1
l=1 UnlWlk. Let QX(Θ̂X , ΘX)

and QY (Θ̂Y , ΘY ) be the auxiliary functions for
the corresponding loglikelihoods in eq. 2, then
Q(Θ̂X , ΘX , Θ̂Y , ΘY ) =

= αQX(Θ̂X , ΘX) + QY (Θ̂Y , ΘY ) (5)

is an auxiliary function for the combined log-likelihood
in eq. 3 when we fix two out of three parameters and
optimize over the remaining one. The update rules for
Ûnl, V̂ld and Ŵnk are obtained by solving

∂Q

∂Ûnl

= 0,
∂QX

∂V̂ld

= 0,
∂QY

∂Ŵnk

= 0, where

∂Q

∂Ûnl

= α
∑

d

∂Q

∂Θ̂Xnd

Θ̂Xnd

∂Ûnl

+
∑

k

∂Q

∂Θ̂Ynk

Θ̂Ynk

∂Ûnl

.

Note that we get simpler expressions for V and W
since they appear only in QX or only in QY parts of
eq. 5, respectively.

Auxiliary functions for Bernoulli and Gaussian
log-likelihoods. For a Bernoulli variable s with nat-
ural (log odds) parameter θ we use the variational
bound on log-likelihood L(θ) = log P (s|θ) proposed by
(Jaakkola & Jordan, 1997) and used later by (Schein
et al., 2003)

L(θ̂) ≥ Q(θ̂, θ) = log 2− log cosh(θ/2) +

+
Tθ2

4
+

(2s− 1)θ̂
2

− T θ̂2

4
, (6)

where T = tanh(θ/2)
θ . Note that the auxiliary function

is quadratic in θ and taking its derivatives leads to
simple closed-form iterative update rules for U , V and
W . For multinomial variables, one can use a recent
extension of the above bound to multinomial logistic
regression proposed by (Bouchard, 2007).

For a Gaussian variable s with natural parameter θ
that coincides with the mean parameter (identity link
function) we do not really have to construct an aux-
iliary function, since we can simply use the negative
squared loss proportional to the Gaussian loglikelihood
as an auxiliary function itself, i.e.

L(θ̂) = Q(θ̂, θ) = −c(s− θ)2, (7)

where c = (2σ)−1 is a constant, assuming a fixed stan-
dard deviation that will not be a part of our estimation

procedure here, similarly to the approach of (Collins
et al., 2001) and related work; c can be ignored since
it will be subsumed by the parameter α.

Using the above auxiliary functions, we can combine
them into joint auxiliary functions as in eq. 5 for var-
ious combinations of Bernoulli and Gaussian variables
Xnd and Ynk. Namely, assuming all Xnd are Bernoulli,
we get (Schein et al., 2003):

QBer
X (Θ̂Xnd

,ΘXnd
) =

∑

nd

log cosh(ΘXnd
/2) +

+
TΘ2

Xnd

4
+

(2Xnd − 1)Θ̂Xnd

2
− T Θ̂2

Xnd

4
, (8)

while assuming all Xnd are Gaussian, we get

QGauss
X (Θ̂Xnd

, ΘXnd
) = −

∑

nd

(Xnd − Θ̂Xnd
)2. (9)

Note that QY (Θ̂Ynk
, ΘYnk

) for all-Bernoulli or all-
Gaussian Ynk is obtained by replacing X with Y , V
with W , and d with k in eq. 8 and 9, respectively.

Due to lack of space, we omit the derivation of the it-
erative update rules for the four versions of SDR-GLM
that we experimented with (for more detail, see (Rish
et al., 2008)): Gaussian-SDR, that assumes Gaus-
sian Xnd and Bernoulli Ynk, Bernoulli-SDR in case
of Bernoulli Xnd and Bernoulli Ynk, Gaussian-SDR-
Regression and Bernoulli-SDR-Regression in case of
Gaussian Ynk (appropriate for real-valued label, i.e.
for the regression problem).

Prediction step. Once we learn the parameters U ,
V and W , and thus ΘX and ΘY , we can use them
on test data in order to predict labels for previously
unseen data. Given the test data Xtest, we only need
to find the corresponding low-dimensional representa-
tion U test by performing the corresponding iterative
updates only with respect to U , keeping V and W
fixed. Once U test is found, we predict the class labels
as Y test = U testW .

5. Empirical Evaluation

We evaluated our SDR-GLM methods on both sim-
ulated and real-life datasets, in both classifica-
tion and regression settings. We varied the low-
dimensionality parameter L from 2 to 10, and eval-
uated a range of regularization parameters α =
0.0001, 0.001, 0.01, 0.1, 1, 10, 100, selecting those giving
the best average error among several dimensions4.

4Selecting the best α separately for each dimension can
only improve the results, but would be more computation-
ally intensive.
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5.1. Classification Problems

In the classification setting, we compared Bernoulli-
SDR and Gaussian-SDR versus linear SVM5 and ver-
sus unsupervised dimensionality reduction followed by
SVM and by logistic regression, which we refer to as
SVM-UDR and Logistic-UDR, respectively. In both
cases, unsupervised dimensionality reduction is per-
formed first using the data-appropriate DR method
(i.e., PCA for real-valued data and Logistic-PCA for
binary data; this is equivalent to removing the predic-
tion loss in eq. 3); then SVM or logistic regression are
performed on the low-dimensional data representation
U . For datasets with real-valued features, we also com-
pared the above methods to SVDM (Pereira & Gor-
don, 2006). We performed k-fold cross-validation with
k = 10 on the datasets with less than 1000 dimensions,
and with k = 5 otherwise.

Simulated data. In order to test our methods first on
the data with controllable low-dimensional structure,
we simulated high-dimensional datasets that indeed
were noisy versions of some underlying easily-separable
low-dimensional data. Particularly, a set of N = 100
samples from two classes was generated randomly in
two-dimensional space so that the samples were lin-
early separable with a large margin.

Next, we simulated two sets of exponential-family ran-
dom variables Xnd, a Bernoulli set and a Gaussian set,
using the coordinates of the above points for natu-
ral parameters Θnd, where the number of samples was
N = 100 and the dimensionality of a “noisy” dataset
varied from D = 100 to D = 1000. We then com-
bined the data with the labels generated in the low-
dimensional space and provided them as an input to
our algorithms.

Simulated data: Bernoulli noise. Figures 1a summa-
rize the results for Bernoulli-noise dataset. Supervised
DR methods (Bernoulli-SDR and Gaussian-SDR) ver-
sus SVM and versus unsupervised DR followed by
learning a predictor (Logistic-UDR and SVM-UDR);
the reduced dimensionality parameters is set to L =
2 and the regularization constant is α = 0.0001
(the choice of those parameters is discussed below).
We can see that Bernoulli-SDR significantly outper-
forms all other methods, including SVM, and both
Bernoulli-SDR and Gaussian-SDR also outperform the
unsupervised DR followed by either logistic regres-
sion or SVM. Apparently, Bernoulli-SDR is able to
reconstruct correctly the underlying separable two-
dimensional dataset and is robust to noise, as its error

5We used the SVM code by A. Schwaighofer available
at http://ida.first.fraunhofer.de/˜anton/software.html.

remains zero for up to 700 dimensions, and only in-
creases slightly up to 0.05 for 1000 dimensions. On
the other hand, SVM has zero-error prediction only in
the lowest-dimensional case (D = 100), and is much
more sensitive to noise when the dimensionality of the
data increases, making incorrect predictions in up to
14% to 21% cases when the dimensionality increases
above D = 300. Apparently, SVM was not able to ex-
ploit the underlying separable low-dimensional struc-
ture disturbed by high-dimensional noise, while su-
pervised dimensionality reduction easily detected this
structure.

Also, using the Bernoulli model instead of Gaussian
when features are binary is clearly beneficial, and
thus, as noted previously, proper extensions of PCA to
exponential-family data must be used (Collins et al.,
2001; Schein et al., 2003). However, previous work
on logistic PCA by (Schein et al., 2003) demonstrated
advantages of using the Bernoulli vs Gaussian assump-
tion only for reconstruction of the original data, while
this paper investigates the impact of such assumptions
on the generalization error in supervised learning case.
This is less obvious, since a good fit to the training
data does not necessarily imply a good generalization
ability, as shown by our experiments with unsuper-
vised dimensionality reduction followed by learning a
classifier.

Regarding the choice of the regularization parameter
α, we experimented with a range of values from 0.0001
to 10, and concluded that the smallest value was the
most beneficial for both SDR algorithms; this is in-
tuitive since it effectively puts most of the weight on
the predictive loss. There is a clear trend (Figure 1b)
in error decrease with the parameter decrease, where
sufficiently low values of α ≤ 0.1 yield quite similar
low errors, but increasing α further, especially above
1, leads to a drastic increase in the classification error,
especially in higher-dimensional cases. Note, however,
that such tendency is not present in the other datasets
we experimented with, where the effect of regulariza-
tion constant can be non-monotonic, and thus under-
scores the importance of using cross-validation or other
parameter-tuning approaches6.

Regarding the choice of the reduced-dimensionality pa-
rameter L, for low values of α, we did not observe any
significant variation in the results with increasing this
parameter up to L = 10, e.g. the results for different
L were practically identical when α ≤ 0.1, while for
higher values variance was more significant.

6Bayesian approach to selecting regularization parame-
ter may prove beneficial, as shown, for example, in (Y. Lin
and D. Lee, 2006)
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Figure 1. (a) Results for Bernoulli noise. (b) Effects of the regularization parameter α (the weight on the data recon-
struction loss) - Bernoulli noise. (c) Results for Gaussian noise.

Simulated data: Gaussian noise. Figure 1c shows the
results for the Gaussian noise: supervised dimension-
ality reduction provides a clear advantage over unsu-
pervised ones, although the performance of SDR ver-
sus SVM is somewhat less impressive, as Gaussian-
SDR is comparable to SVM. However, Gaussian-SDR
seems to outperform considerably another supervised
dimensionality method, SVDM, proposed by (Pereira
& Gordon, 2006). SVDM was used with its regular-
ization constant set to 100 since it provided the best
SVDM performance among the same values of α as be-
fore. Interestingly, the performance of SVDM does not
show any monotonic dependence on this parameter.

Real-life datasets. First, we considered several
datasets with binary features, such as a 41-dimensional
Sensor network dataset where the data represent con-
nectivity (0 or 1) between all pairs of sensor nodes
in a network of 41 light sensors (see Table 1). Note
that Bernoulli-SDR with L = 10 and regularization
parameter α = 0.1 outperformed SVM, Gaussian-SDR
with L = 8, 10 and same α = 0.1 matched SVM per-
formance, while both the unsupervised dimensionality
reduction methods followed by SVM and logistic re-
gression - SVM-UDR and Logistic-UDR, respectively -
performed worse. (Best results for each method are
shown in the boldface.) Also, using the Bernoulli
model for binary data instead of Gaussian seems to pay
off: Bernoulli-SDR performs somewhat better than
Gaussian-SDR. It is interesting to note that for really
low dimensionality L = 2, all of the above methods
have same error of 0.2, while increasing the dimen-
sionality allows for much better performance, although
this effect is non-monotonic.

Another dataset related to network performance
management, of somewhat larger dimensionality

Table 1. Results for Sensor network dataset (N = 41, D =
41): classification errors of different methods for different
reduced dimension parameter, L.

method\ L 2 4 6 8 10
Bernoulli-SDR 0.20 0.24 0.27 0.15 0.12
Gaussian-SDR 0.20 0.22 0.22 0.17 0.17
Logistic-UDR 0.20 0.22 0.20 0.20 0.24
SVM-UDR 0.20 0.27 0.22 0.27 0.24

SVM 0.17

Table 2. Results for PlanetLab dataset (N = 169, D =
168): classification errors of different methods for differ-
ent reduced dimension parameter, L.

method\ L 2 4 6 8 10
Bernoulli-SDR 0.10 0.07 0.10 0.12 0.15
Gaussian-SDR 0.10 0.11 0.08 0.07 0.08
Logistic-UDR 0.11 0.10 0.08 0.09 0.10
SVM-UDR 0.10 0.09 0.08 0.08 0.07

SVM 0.10

(N = 169, D = 168), contains pairwise end-
to-end network latency (ping round-trip times)
collected by the PlanetLab measurement project
(http://www.pdos.lcs.mit.edu/∼simstrib/pl app) dis-
cretized by applying a threshold as follows: above
the average latency is considered “bad” (1) while the
below-average latency is considered “good” (0). We
selected the first column (latencies of all 169 nodes to-
wards the node 1) as the label, and predicted them
given the remaining data. The results are shown in
Table 2. The regularization parameters α selected by
cross-validation were different here for different SDR
methods: for Bernoulli-SDR, α = 100 turned out to be
the best, while Gaussian-SDR performed better with
α = 1. Overall, the results for different methods and
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Table 3. Results for Mass-spectrometry dataset (N =
50, D = 38573): classification errors of different methods
for different reduced dimension parameter, L.

method\ L 2 4 6 8 10
Gaussian-SDR 0.04 0.02 0.02 0.02 0.02
Logistic-UDR 0.5 0.18 0.08 0.04 0.02
SVM-UDR 0.54 0.2 0.02 0.06 0.02

SVDM 0.42 0.04 0.02 0.06 0.04
SVM 0.02

Table 4. Results for fMRI dataset (N = 84, D = 14043):
classification errors of different methods for different re-
duced dimension parameter, L.

method\ L 5 10 15 20 25
Gaussian-SDR 0.21 0.26 0.23 0.20 0.23
Logistic-UDR 0.44 0.42 0.29 0.30 0.26
SVM-UDR 0.49 0.52 0.56 0.57 0.55

SVDM 0.32 0.25 0.21 0.23 0.23
SVM 0.21

varying dimensions L were surprisingly similar to each
other, with both SDR methods achieving the lowest er-
ror of 0.07 for L = 4 and L = 8, respectively, that was
also achieved by SVM-UDR at L = 10, slightly out-
performing SVM (0.10 error). Very similar results (not
shown here due to lack of space) were also obtained on
the Advertisement dataset from UCI ML repository.

We experimented next with several extremely high-
dimensional datasets from biological experiments that
had real-valued features. The first dataset, called here
Proteomics data, containing mass-spectrometry data
for D = 38573 proteins (features), showing their “ex-
pression levels” in N = 50 female subjects (examples),
25 of which were pregnant (class 1), and the others
were not (class 0). The results are shown in Table 3,
comparing Gaussian-SDR with α = 0.001 (that yields
lowest average SVDM error (among all dimensions) on
this dataset) versus SVM, Logistic-UDR, SVM-UDR
(both using the Gaussian assumption, i.e. PCA, for
dimensionality reduction), and SVDM with its best-
performing parameter 0.01. Despite its very high di-
mensionality, this dataset turned out to be easy: both
SVM and Gaussian-SDR achieved an error of 0.02, and
Gaussian-SDR used only L = 4 dimensions to achieve
it. On the contrary, unsupervised DR followed by pre-
dictor learning (Logistic-UDR and SVM-UDR), suf-
fered from really high errors at low dimensions, and
only managed to achieve same low error at L = 10.
SVDM was able to reach its lowest error (same 0.02)
a bit earlier (L = 6), although for L = 2 it incurred a
huge error of 0.42, while Gaussian-SDR had 0.04 error
at that same level of reduced dimensionality.

Another truly high-dimensional dataset we used con-
tained the fMRI recordings of subject’s brain activ-
ity (measured using changes in the brain oxygenation
levels) while the subject was observing on a screen
words of two types, representing tools or buildings (see
(Pereira & Gordon, 2006) for details). The task was
to learn a mind-reading classifier that would predict,
given the fMRI data, what type of the word the subject
was looking at. The features here correspond to fMRI
voxels (D = 14043 voxels were selected after some pre-
processing of the data, as described in (Pereira & Gor-
don, 2006)), and there are N = 84 samples (i.e., word
instances presented to a subject). This dataset was
clearly more challenging then the previous one (both
SVM’s and SDR’s errors were around 0.2).

The results for all methods are shown in Table 4; for
Gaussian-SDR we used α = 0.0001, while SVDM was
best at 0.001 (as before, we used the average error over
all dimensions to select best α). For those values of
α parameter, Gaussian-SDR matches SVM’s errors of
0.21 using just five dimensions (L = 5), while SVDM
reaches same error at L = 15 dimensions. Again,
learning a predictor on “compressed” data obtained
via unsupervised dimensionality reduction was consis-
tently worse than both supervised methods.

5.2. Regression Problems

Finally, we did some preliminary experiments with
the regression version of our SDR approach that
makes Gaussian assumption about the label (re-
sponse variable) Y and thus uses sum-squared predic-
tive LY (UW ) loss in equation 3, comparing it with
the state-of-art sparse-regression technique called the
Elastic Net, which was shown to improve over both
Lasso and ridge regression using a convex combination
of the L1- and L2-norm regularization terms (Zou &
Hastie, 2005).

We used the fMRI data from the 2007 Pitts-
burgh Brain Activity Interpretation Competition
(PBAIC)(Pittsburgh EBC Group, 2007), where the
fMRI data were recorded while subjects were play-
ing a videogame, and the task was to predict several
real-valued response variables, such as level of anxi-
ety the subject was experiencing etc. We used the
data for the two runs (games) by the first subject,
and for the Instructions response variable, learning
from run 1 and predicting on run 2. The dataset con-
tained N = 704 samples (measurements over time)
and approximately D = 33, 000 features (voxels). Fig-
ure 2 compares the performance of Elastic Net and
Gaussian-SDR-Regression, where the L parameter de-
notes the number of active variables (voxels selected)
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by the sparse EN regression. We can see that SDR
regression is comparable with the state-of-the art EN
(or even slightly better) when the number of hidden
dimensions is not too low.
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Figure 2. Results for the fMRI dataset from PBAIC. Per-
formance is measured by correlation between the actual
and predicted response variable (Instructions, in this case).

6. Conclusions and Future Work

This paper proposes a family of SDR algorithms that
use generalized linear models to handle various types
of features and labels, thus generalizing previous ap-
proaches in a unifying framework. Our SDR-GLM ap-
proach is fast and simple: it uses closed-form update
rules at each iteration of alternating minimization pro-
cedure, and is always guaranteed to converge. Experi-
ments on a variety of datasets show that this approach
is clearly promising, although more empirical investi-
gation is needed in case of SDR-regression.

Although we only tested our approach with Gaussian
and Bernoulli variables, it can be easily extended to
multinomial variables (and thus to multiclass classi-
fication) using a recent extension of the variational
bound proposed in (Jaakkola & Jordan, 1997) to
multinomial logistic regression (soft-max)(Bouchard,
2007). Deriving closed-form update rules for other
members of the exponential family (e.g., Poisson) re-
mains a direction of future work. Another possible
extension is to obtain closed-form SDR update rules
for alternative DR methods, such as non-negative ma-
trix factorization (NMF)(Lee & Seung, 2000), simply
plugging in NMF’s auxiliary function instead of (un-
constrained) PCA-like quadratic-loss.

Other potential applications of our approach in-
clude dimensionality reduction on mixed-type data,
weighted dimensionality reduction schemes (e.g., as-
signing different weight to reconstruction error of dif-
ferent coordinates in PCA and similar DR techniques),

multitask learning, as well as semi-supervised learning,
including only the reconstruction loss part of the ob-
jective for unlabeled date, while keeping both recon-
struction and prediction losses for the labeled ones.
Finally, a more principled selection of the regulariza-
tion constant α (e.g., using Bayesian approaches) is
another open research direction.
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Abstract

Modeling of conditional quantiles requires
specification of the quantile being estimated
and can thus be viewed as a parameterized
predictive modeling problem. Quantile loss
is typically used, and it is indeed parameter-
ized by a quantile parameter. In this paper
we show how to follow the path of cross val-
idated solutions to regularized kernel quan-
tile regression. Even though the bi-level op-
timization problem we encounter for every
quantile is non-convex, the manner in which
the optimal cross-validated solution evolves
with the parameter of the loss function al-
lows tracking of this solution. We prove this
property, construct the resulting algorithm,
and demonstrate it on data. This algorithm
allows us to efficiently solve the whole family
of bi-level problems.

1. Introduction

In the standard predictive modeling setting,
we are given a training sample of n examples
{x1, y1}, ..., {xn, yn} drawn i.i.d from a joint distribu-
tion P (X, Y ), with xi ∈ Rp and yi ∈ R for regression,
yi ∈ {0, 1} for two-class classification. We aim to
utilize these data to build a model Ŷ = f̂(X) to
describe the relationship between X and Y , and later
use it to predict the value of Y given new X values.
This is often done by defining a family of models
F and finding (exactly or approximately) the model
f ∈ F which minimizes an empirical loss function:∑n

i=1 L(yi, f(xi)). Examples of such algorithms
include linear and logistic regression, empirical risk
minimization in classification and others.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

If F is complex, it is often desirable to add regular-
ization to control model complexity and overfitting.
The generic regularized optimization problem can be
written as:

f̂ = arg min
f∈F

n∑

i=1

L(yi, f(xi)) + λJ(f)

where J(f) is an appropriate model complexity
penalty and λ is the regularization parameter. Given
a loss and a penalty, selection of a good value of λ is
a model selection problem. Popular approaches that
can be formulated as regularized optimization prob-
lems include all versions of support vector machines,
ridge regression, the Lasso and many others. For an
overview of predictive modeling, regularized optimiza-
tion and the algorithms mentioned above, see for ex-
ample Hastie et al. (2001).

In this paper we are interested in a specific setup where
we have a family of regularized optimization prob-
lems, defined by a parameterized loss function and a
regularization term. A major motivating example for
this setting is regularized quantile regression (Koenker,
2005):

β̂(τ, λ) = arg min
β

n∑

i=1

Lτ (yi − βTxi) + λ‖β‖q
q (1)

for 0 < τ < 1, 0 ≤ λ < ∞
where Lτ , the parameterized quantile loss function,
has the form:

Lτ (r) =
{

rτ r ≥ 0
−r(1− τ) r < 0

and is termed τ -quantile loss because its population
optimizer is the appropriate quantile (Koenker, 2005):

arg min
c

E(Lτ (Y − c)|X) = quantile τ of P (Y |X) (2)

Because quantile loss has this optimizer, the solution
of the quantile regression problems for the whole range
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0 < τ < 1 has often been advocated as an approach to
estimating the full conditional probability of P (Y |X)
(Koenker, 2005; Perlich et al., 2007). Much of the in-
teresting information about the behavior of Y |X may
lie in the details of this conditional distribution, and
if it is not nicely behaved (i.i.d Gaussian noise being
the most commonly used concept of nice behavior),
just estimating a conditional mean or median is often
not sufficient to properly understand and model the
mechanisms generating Y . The importance of estimat-
ing a complete conditional distribution, and not just
a central quantity like the conditional mean, has long
been noted and addressed in various communities, like
Econometrics, Education and Finance (Koenker, 2005;
Buchinsky, 1994; Eide & Showalter, 1998). There has
also been a surge of interest in the Machine Learning
community in conditional quantile estimation in re-
cent years (Meinshausen, 2006; Takeuchi et al., 2006).
Figure 1 shows a graphical representation of Lτ for
several values of τ , and a demonstration of the con-
ditional quantile curves in a univariate regression set-
ting, where the linear model is correct for the median,
but the noise has a non-homoscedastic distribution.

On the penalty side, we typically use the `q norm of the
parameters with q ∈ {1, 2}. Adding a penalty can be
thought of as shrinkage, complexity control or putting
a prior to express our expectation that the β’s should
be small.

As has been noted in the literature (Rosset & Zhu,
2007; Hastie et al., 2004; Li et al., 2007) if q ∈ {1, 2}
and if we fix τ = τ0, we can devise path following
(AKA parametric programming) algorithms to effi-
ciently generate the 1-dimensional curve of solutions
{β̂(τ0, λ) : 0 ≤ λ < ∞} . Although it has not been
explicitly noted by most of these authors, it naturally
follows that similar algorithms exist for the case that
we fix λ = λ0 and are interested in generating the
curve {β̂(τ, λ0) : 0 < τ < 1}.
In addition to parameterized quantile regression, there
are other modeling problems in the literature which
combine a parameterized loss function problem with
the existence of efficient path following algorithms.
These include Support vector regression (SVR, Smola
and Schölkopf (2004), see Gunther and Zhu (2005) for
path following algorithm) with `1 or `2 regularization,
where the parameter ε determines the width of the
don’t care region around 0.

An important extension of the `2-regularized optimiza-
tion problem is to non-linear fitting through kernel
embedding (Schölkopf & Smola, 2002). The kernel-

ized version of problem (1) is:

f̂(τ, λ) = arg min
f

∑

i

Lτ (yi − f(xi)) +
λ

2
‖f‖2HK

(3)

where ‖ · ‖HK is the norm induced by the positive-
definite kernel K in the Reproducing Kernel Hilbert
Space (RKHS) it generates. The well known repre-
senter theorem (Kimeldorf & Wahba, 1971) implies
that the solution of problem (3) lies in a low dimen-
sional subspace spanned by the representer functions
{K(·,xi), i ∈ 1, ..., n}. Following the ideas of Hastie
et al. (2004) for the support vector machine, Li et al.
(2007) have shown that λ-path of solutions to problem
(3) when τ is fixed can also be efficiently generated.

It is important to note the difference in the roles of
the two parameters τ, λ. The former defines a family
of loss functions, in our case leading to estimation of
different quantiles. Thus we would typically want to
build and use a model for every value of τ . The latter
is a regularization parameter, controlling model com-
plexity with the aim of generating a better model and
avoiding overfitting, and is not part of the prediction
objective (at least as long as we avoid the Bayesian
view). We would therefore typically want to generate
a set of models β∗(τ) (or f∗(τ) in the kernel case), by
selecting a good regularization parameter λ∗(τ) for ev-
ery value of τ , thus obtaining a family of good models
for estimating the range of conditional quantiles, and
consequently the whole conditional distribution.

This problem, of model selection to find a good
regularization parameter, is often handled through
cross-validation. In its simplest form, cross-validation
entails having a second, independent set of data
{x̃i, ỹi}N

i=1 (often referred to as a validation set), which
is used to evaluate the performance of the models and
select a good regularization parameter. For a fixed
τ , we can write our model selection problem as a Bi-
level programming extension of problems (1, 3), where
f∗(τ) = f̂(τ, λ∗) and λ∗ solves:

min
λ

N∑

i=1

Lτ (ỹi, f̂(τ, λ)Tx̃i) (4)

s.t. f̂(τ, λ) solves problem (3)

The objective of this minimization problem is not con-
vex as a function of λ. A similar non-convex opti-
mization problem has been tackled by Kunapuli et al.
(2007). The fundamental difference between their set-
ting and ours is that they had a single bi-level op-
timization problem, while we have a family of such
problems, parameterized by τ . This allows us to take
advantage of internal structure to solve the bi-level
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Figure 1. Quantile loss function for some values of τ (left) and an example where the median of Y is linear in X but the
quantiles of P (Y |X) are not because the noise is not identically distributed (right).

problem for all values of τ simultaneously (or more
accurately, in one run of our algorithm).

The concept of a parameterized family of bi-level reg-
ularized quantile regression problems is demonstrated
in Figure 2, where we see the cross-validation curves
of the objective of (4) as a function of λ for several
values of τ on the same dataset. As we can see, the
optimal level of regularization varies with the quantile,
and correct choice of the regularization parameter can
have a significant effect on the success of our quantile
prediction model.

The main goal of this paper is to devise algorithms for
following the bi-level optimal solution path f∗(τ) as a
function of τ , and demonstrate their practicality. We
show that this non-convex family of bi-level programs
can be solved exactly, as the optimum among the so-
lutions of O(n + N) standard (convex) path-following
problems, with some additional twists. This result is
based on a characterization of the evolution of the so-
lution path f̂(τ, ·) as τ varies, and on an understand-
ing of the properties of optimal solutions of the bi-
level problem, which can only occur at a limited set
of points. We combine these insights to formulate an
actual algorithm for solving this family of bi-level pro-
grams via path-following.

The rest of this paper is organized as follows. In Sec-
tion 2 we discuss the properties of the quantile regres-
sion solution paths f̂(τ, λ) and their evolution as τ
changes. We then discuss in Section 3 the properties of
the bi-level optimization problem (4) and demonstrate
that the solutions change predictably with τ . Bring-
ing together all our insights leads us to formulate an
algorithm in Section 4, which allows us to follow the
path of solutions {f∗(τ) , 0 < τ < 1} and only requires
following a large but manageable number of solution

paths of problem (3) simultaneously. We demonstrate
our methods with a simulated data study in Section
5, where we demonstrate the computational efficiency
of our approach and the ability of KQR to capture
non-standard conditional distributions P (Y |X).

This paper is a short version of Rosset (2008), and
we defer the proofs, some of the technical details and
much of the discussion to that version.

2. Quantile Regression Solution Paths

We concentrate our discussion on the kernel quantile
regression (KQR) formulation in (3), with the un-
derstanding that it subsumes the linear formulation
(1) with `2 regularization by using the linear kernel
K(x, x̃) = xTx̃.

We briefly survey the results of Li et al. (2007) regard-
ing the properties of f̂(τ, ·), the optimal solution path
of (3), with τ fixed. The representer theorem (Kimel-
dorf & Wahba, 1971) implies that the solution can be
written as:

f̂(τ, λ)(x) =
1
λ

[
β̂0 +

n∑

i=1

θ̂iK(x,xi)

]
(5)

For a proposed solution f(x) define:

• E = {i : yi − f(xi) = 0} (points on elbow of Lτ )

• L = {i : yi − f(xi) < 0} (left of elbow)

• R = {i : yi − f(xi) > 0} (right of elbow)

Then Li et al. (2007) show that the Karush-Kuhn-
Tucker (KKT) conditions for optimality of a solution
f̂(τ, λ) of problem (3) can be phrased as:
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Figure 2. Estimated prediction error curves of Kernel Quantile Regression for some quantiles on one dataset. The errors
are shown as a function of the regularization parameter λ

• i ∈ E ⇒ −(1− τ) ≤ θ̂i ≤ τ

• i ∈ L ⇒ θ̂i = −(1− τ)

• i ∈ R ⇒ θ̂i = τ

• ∑
i θ̂i = 0

with some additional algebra they show that for a fixed
τ , there is a series of knots, 0 = λ0 < λ1 < ... < λm <
∞ such that for λ ≥ λm we have f̂(τ, λ) = constant
and for λk−1 < λ ≤ λk we have:

f̂(τ, λ)(x) =
1
λ

(
λkf̂(τ, λk)(x) + (λ− λk)hk(x)

)
(6)

where hk(x) = bk
0 +

∑
i∈Ek

bk
i K(x,xi) can be thought

of as the direction in which the solution is moving for
the region λk−1 < λ ≤ λk. The knots λk are points on
the path where an observation passes between E and
either L or R, that is ∃i ∈ E such that exactly θi = τ
or θi = −(1− τ). These insights lead Li et al. (2007)
to an algorithm for incrementally generating f̂(τ, λ) as
a function of λ for fixed τ , starting from λ = ∞ (where
the solution only contains the intercept β0).

Although Li et al. (2007) suggest it is a topic for fur-
ther study, it is in fact a reasonably straight forward
extension of their results to show that a similar sce-
nario holds when we fix λ and allow τ only to change,
and also when both τ, λ are changing together along
a straight line, i.e., a 1-dimensional subspace of the
(τ, λ) space (this has been observed by Wang et al.
(2006) for SVR, which is very similar from an opti-
mization perspective). The explicit result is given in
(Rosset, 2008), but we omit it here for brevity, given
its marginal novelty.

Armed with this result, we next show the main re-
sult of this section: that the knots themselves move
in a (piecewise) straight line as τ changes, and can
therefore be tracked as τ and the regularization path
change. Fix a quantile τ0 and assume that λk is

a knot in the λ-solution path for quantile τ0. Fur-
ther, let ik be the observation that is passing in or
out of the elbow at knot λk. Assume WLOG that
θ̂ik

(τ0, λk) = τ0, i.e. it is on the boundary between
Rk and Ek. Let K̃Ek

be the matrix KEk
with the ik

column removed, and b̃k = bk with index ik removed.
Let si =

∑
j∈R∪L∪{ik}K(xi,xj) for i ∈ Ek. Let sEk

be the vector of all these values.

Theorem 1 Any knot λk moves linearly as τ changes.
That is, there exists a constant ck such that for quan-
tile τ0 + δ there is a knot in the λ-solution path at
λk + ckδ, for δ ∈ [−εk, νk], a non-empty neighborhood
of 0. ck is determined through the solution of another
set of |Ek|+1 linear equations with |Ek|+1 unknowns:

Bk

(
b̃k

ck

)
=

( −(|R|+ |L|+ 1)
−sEk

)

with

Bk =
(

0 1T 0
1 K̃Ek

−yEk

)

And the fit at this knot progresses as:

f̂(τ0 + δ, λk + ckδ) = (7)

=
1

λk + ckδ

(
λkf̂(λk, τ0)(x) + δhk(x)

)

hk(x) = b̃k
0 +

∑

i∈Ek−ik

b̃k
i K(x,xi) + (8)

+
∑

i∈L∪R∪{ik}
K(x,xi)

This theorem tells us that we can in fact track the
knots in the solution efficiently as τ changes. We still
have to account for various types of events that can
change the direction the knot is moving in. The value
θi for a point in Ek − {ik} can reach τ or −(1− τ), or
a point in L∪R may reach the elbow E . These events
correspond to knots crossings, i.e., the knot λk is en-
countering another knot (which is tracking the other
event). There are also knot birth events, and knots
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merge events, which are possible but rare, and some-
what counter-intuitive. The details of how these are
identified and handled can be found in the detailed
algorithm description (Rosset, 2008). When any of
these events occurs, the set of knots has to be up-
dated and their directions have to be re-calculated us-
ing Theorem 1 and the new identity of the sets E ,L,R
and the observation ik. This in essence allows us to
map the whole 2-dimensional solution surface f̂(τ, λ).

3. The Bi-Level Optimization Problem

Our next task is to show how our ability to track the
knots as τ changes allows us to track the solution of
the bi-level optimization problem (4), as τ changes.
The key to this step is the following result.

Theorem 2 Any minimizer1 of (4) is always either
at a knot in the λ-path for this τ or a point where
a validation observation crosses the elbow. In other
words, one of the two following statements must hold:

• λ∗ is a knot: ∃i ∈ {1...n} s.t. f̂(τ, λ∗(τ))(xi) =
yi and θi ∈ {τ,−(1− τ)}, or

• λ∗ is a validation crossing:
∃i ∈ {1...N} s.t. f̂(τ, λ∗(τ))(x̃i) = ỹi

Corollary 1 Given the complete solution path for τ =
τ0, the solutions of the bi-level problem (4) for a range
of quantiles around τ0 can be obtained by following the
paths of the knots and the validation crossings only, as
τ changes.

To implement this corollary in practice, we have two
main issues to resolve: 1. How do we follow the paths
of the validation crossings? 2. How do we determine
which one of the knots and validation crossings is going
to be optimal for every value of τ?

The first question is easy to answer when we consider
the similarity between the knot following problem we
solve in Theorem 1 and the validation crossing follow-
ing problem. In each case we have a set of elbow obser-
vations whose fit must remain fixed as τ changes, but
whose θ̂ values may vary; sets L,R whose θ̂ are chang-
ing in a pre-determined manner with τ , but whose
fit may vary freely; and one special observation which
characterizes the knot or validation crossing. The only
difference is that in a knot this is a border observation
from the training set, so both its fit and its θ̂ are pre-
determined, while in the case of validation crossing it

1In pathological cases there may be a “segment” of min-
imizers. In this case it can be shown that such a segment
will always be flanked by points described in the theorem.

is a validation observation, whose fit must remain fixed
(at the elbow), but which does not even have a θ̂ value.
Taking all of this into account, it is easy to show a re-
sult similar to Theorem 1 for the validation crossings.
We refer the reader to Rosset (2008) for the details.

The second question we have posed requires us to ex-
plicitly express the validation loss (i.e., Lτ on the val-
idation set) at every knot and validation crossing in
terms of δ, so we can compare them and identify the
optimum at every value of δ. Using the representation
in (7) we can write the validation loss for a knot k :

∑N
i=1 Lτ (ỹi, f̂(τ0 + δ, λk + ckδ)(x̃i)) = . . . =

=
quadratic in δ

λk + ckδ
(9)

see Rosset (2008) for details, and note that similar ex-
pressions can naturally be derived for validation cross-
ings. These are rational functions of δ with quadratic
expressions in the numerator and linear expressions
in the denominator. Our cross-validation task can be
re-formulated as the identification of the minimum of
these rational functions among all knots and validation
crossings, for every value of τ in the current segment,
where the directions hk, hv of all knots and validation
crossings are fixed (and therefore so are the coefficients
in the rational functions). This is a lower-envelope
tracking problem, which has been extensively studied
in the literature (Sharir and Agarwal (1995) and ref-
erences therein).

To calculate the meeting point of two elements with
neighboring scores we find the zeros of the cubic equa-
tion obtained by requiring equality for the two rational
functions of the form (9) corresponding to the two ele-
ments. The smallest non-negative solution for δ is the
one we are interested in.

4. Algorithm Overview

Bringing together all the elements from the previ-
ous sections, we now give (Algorithm 1) a succinct
overview of the resulting algorithm. Since there is a
multitude of details, we defer a detailed pseudo-code
description of our algorithm to Rosset (2008).

The algorithm follows the knots of the λ-solution path
as τ changes using the results of Section 2, and keeps
track of the cross-validated solution using the results
of Section 3. Every time an event happens (like a knot
crossing), the direction in which two of the knots are
moving has to be changed, or knots have to be added
or deleted. Between these events, the evolution of the
cross-validation objective at all knots and validation
crossings has to be sorted and followed. Their order
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is maintained, and updated whenever crossings occur
between them.

4.1. Approximate Computational Complexity

Looking at Algorithm 1, we should consider the num-
ber of steps of the two loops and the complexity of
the operations inside the loops. Even for a “standard”
λ-path following problem for fixed τ , it is in fact im-
possible to rigorously bound the number of steps in
the general case, but it has been argued and empiri-
cally demonstrated by several authors that the num-
ber of knots in the path behaves as O(n), the number
of samples (Rosset & Zhu, 2007; Hastie et al., 2004;
Li et al., 2007). In our case the outer loop of Al-
gorithm 1 implements a 2-dimensional path following
problem, that can be thought of as following O(n) 1-
dimensional paths traversed by the knots of the path.
It therefore stands to reason (and we confirm it empir-
ically below) that the outer loop typically has O(n2)
steps where events happen. The events in the inner
loop, in turn, have to do with N validation observa-
tions meeting the O(n) knots. So a similar logic would
lead us to assume that the number of meeting events
(counted by the inner loop) should be at most O(nN)
total for the whole running of the algorithm (i.e., many
iterations of the outer loop may have no events hap-
pening in the inner loop). Each iteration of either
loop requires a re-calculation of up to three directions
(of knots or validation crossings), using Theorem 1.
These calculations involve updating and inversion of
matrices that are roughly |E| × |E| in size (where |E|
is the number of observations in the elbow). However
note that only one row and column are involved in the
updating, leading to a complexity of O(n + |E|2) for
the whole direction calculation operation, using the
Sherman-Morrison formula for updating the inverse.
In principle, |E| can be equal to n, although it is typ-
ically much smaller for most of the steps of the algo-
rithm, on the order of

√
n or less. So we assume here

that the loop cost is between O(n) and O(n2).

Putting all of these facts and assumptions together,
we can estimate the algorithm’s complexity’s typ-
ical dependence on the number of observations in
the training and validation set as ranging between
O(n2 ·max(n,N)) and O(n3 ·max(n,N)). Clearly, this
estimation procedure falls well short of a formal “worst
case” complexity calculation, but we offer it as an in-
tuitive guide to support our experiments below and
get an idea of the dependence of running time on the
amount of data used.

We have not considered the complexity of the lower
envelope tracking problem in our analysis, because it is

expected to have a much lower complexity (number of
order changes O(max(n,N) log(max(n,N))) and each
order change involves O(1) work).

5. Experiments

We demonstrate two main aspects of our methodol-
ogy: The computational behavior as a function of
the amount of training data used; and the ability of
KQR to capture the form of the conditional distribu-
tion P (Y |X), both in standard (i.i.d error) situations
and when the error is not homoscedastic and asym-
metric. We limit the experiments to simple simulated
data, where we know the truth and can understand
the behavior of KQR. This is due to shortage of space,
and since our main contribution is not a new method
that should be compared to competitors on real data,
but rather a new algorithmic approach for an existing
method.

Our simulation setup starts from univariate data
x ∈ [0, 1] and a “generating” function f(x) = 2 ·(
exp(−30 · (x− 0.25)2) + sin(π · x2)

)
(see Figure 3).

We then let Y = f(x) + ε, where the errors ε are inde-
pendent, with a distribution that can be either:

1. ε ∼ N(0, 1), i.e., i.i.d standard normal errors

2. ε+(x+1)2 ∼ exp(1/(x+1)2), which gives us errors
that are still independent and have mean 0, but
are asymmetric and have non-constant variance,
with small signal-to-noise ratio on the higher val-
ues of x (see Figure 4).

Figure 3 demonstrates the results of the algorithm
with i.i.d normal errors, 200 training samples and 200
validation samples and Gaussian kernel with param-
eter σ = 0.2. We see that the quantile estimates all
capture the general shape of the true curve, with some
“smoothing” due to regularization.

Next we consider the computational complexity of the
algorithm, and its dependence on the number of train-
ing samples (with 200 validation samples). We com-
pare it to the 1-dimensional KQR algorithm of Li
et al. (2007), who have already demonstrated that
their algorithm is significantly more efficient than grid-
based approaches for generating 1-dimensional paths
for fixed τ . Table 1 shows the number of steps of the
main (outer) loop of Algorithm 1 and the total run
time of our algorithm for generating the complete set
of cross-validated solutions for τ ∈ [0.1, 0.9] as a func-
tion of the number of training samples (with validation
sample fixed at 200). Also shown is the run time for
the algorithm of Li et al. (2007), when we use it on a
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Algorithm 1 Main steps of our bi-level path following algorithm
Input: The entire λ-solution path for quantile τ0; the bi-level optimizer λ∗(τ0)
Output:Cross-validated solutions f∗(τ) for τ ∈ [τ0, τend]
Initialization: identify all knots and validation crossings in the solution path for τ0;
Find direction of each knot according to Theorem 1
Find direction of each validation crossing
Create a list M of knots and validation crossings sorted by their validation loss
Let λ∗(τ0) be the one at the bottom of the list M , and f∗(τ0) accordingly
Calculate future meeting of each pair of neighbors in M by solving the cubic equation implied by (9)
Set τnow = τ0

while τnow < τend do
Find value τ1 > τnow where first knot crossing occurs
Find value τ2 > τnow where first knot merge occurs
Find value τ3 > τnow where first knot birth occurs
Set τnew = min(τ1, τ2, τ3)
while τnow < τnew do

Find value τ4 > τnow where first future meeting (order change) in M occurs
Find value τ5 > τnow where first validation crossing birth occurs
Find value τ6 > τnow where first validation crossing cancelation occurs
Set τnext = min(τ4, τ5, τ6)
Update λ∗(τ), f∗(τ) for τ ∈ (τnow, τnext) as the evolution of the knot or validation crossing attaining the minimal
Lτ in M (i.e., the one at λ∗(τnow))
Update M according to the first event (order change, birth, cancelation)
Update the future meetings of the affected elements using (9)
Set τnow = τnext

end while
Update the list of knots according to the first event (knot crossing, birth, merge)
Update the directions of affected knots using Theorem 1

end while
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Figure 3. The function f(x) (solid), data points drawn
from it with i.i.d normal error, and our cross-validated
estimates of quantiles 0.1, 0.25, 0.5, 0.75, 0.9 (dahsed lines,
from bottom to top).

grid of 8000 evenly spaced τ values in [0.1, 0.9] and find
the best cross validated solution by enumerating the
candidates as identified in Section 3. Our conjecture
that the number of knots in the 2-dimensional path
behaves like O(n2) seems to be consistent with these
results, as is the hypothesized overall time complexity
dependence of O(n3).

Finally, we demonstrate the ability of KQR to cap-

Table 1. Number of steps and run times of our algorithm
and of Li et al. (2007), for the whole path from τ = 0.1 to
τ = 0.9.

ntrain nsteps time(bi-level) time(Li et al.)
200 29238 931 sec. 2500 sec.
100 12269 99 sec. 900 sec.
50 2249 23 sec. 480 sec.

ture the quantiles with “strange” errors from model
2. Figure 4 shows a data sample generated from
this model and the (0.25, 0.5, 0.75) quantiles of the
conditional distribution P (Y |X) (solid), compared to
their cross-validated KQR estimates (dashed), using
500 samples for learning and 200 for validation (more
data is needed for learning because of the very large
variance at values of x close to 1). As expected, we
can see that estimation is easier of the lower quantiles
and at smaller values of x, because the distribution
P (Y |X = x) has long right tails everywhere and has
much larger variance when x is big.

6. Conclusions and Extensions

In this paper we have demonstrated that the family
of bi-level optimization problems (4) defined by the
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Figure 4. Quantiles of P (Y |X) (solid), and their estimates
(dashed) for quantiles (0.25, 0.5, 0.75) with the exponential
error model.

family of loss functions Lτ can be solved via a path
following approach which essentially maps the whole
surface of solutions f̂(τ, λ) as a function of both τ and
λ and uses insights about the possible locations of the
bi-level optima to efficiently find them. This leads to
a closed-form algorithm for finding f∗(τ) for all quan-
tiles. We see two main contributions in this work: a.
Identification and solution of a family of non-convex
optimization problem of great practical interest which
can be solved using solely convex optimization tech-
niques; and b. Formulation of a practical algorithm
for generating the full set of cross-validated solutions
for the family of kernel quantile regression problems.

Our algorithm as presented here can easily be adapted
to bi-level path following of cross validated solutions
of SVR, as the size ε of the don’t-care region changes
(see Rosset (2008) for details). However, it should be
noted that the statistical motivation for solving quan-
tile regression for multiple quantiles does not really
carry through to ε-SVR, as the parameter ε and the
loss function it parameterizes do not have a natural
interpretation in the spirit of τ .

There are many other interesting aspects of our work,
which we have not touched on here, including: de-
velopment of further optimization shortcuts to im-
prove algorithmic efficiency; investigation of the range
of applicability of our algorithmic approach beyond
KQR and SVR; analysis of the use of various kernels
for KQR and how the kernel parameters and kernel
properties interact with the solutions; implementation
of in-sample model selection approaches such as SIC
(Koenker, 2005; Li et al., 2007) instead of cross valida-
tion in our framework (which should require minimal
changes).
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Abstract
The Group-Lasso method for finding impor-

tant explanatory factors suffers from the poten-

tial non-uniqueness of solutions and also from

high computational costs. We formulate condi-

tions for the uniqueness of Group-Lasso solu-

tions which lead to an easily implementable test

procedure that allows us to identify all poten-

tially active groups. These results are used to

derive an efficient algorithm that can deal with

input dimensions in the millions and can approx-

imate the solution path efficiently. The derived

methods are applied to large-scale learning prob-

lems where they exhibit excellent performance

and where the testing procedure helps to avoid

misinterpretations of the solutions.

1. Introduction

In many practical learning problems we are not only inter-

ested in low prediction errors but also in identifying im-

portant explanatory factors. These explanatory factors can

often be represented as groups of input variables. Com-

mon examples are k-th order polynomial expansions of the

inputs where the groups consist of products over combina-

tions of variables up to degree k. Such expansions compute

explicit mappings into feature spaces induced by polyno-

mial kernel functions of the form k(x,y) = (1 + x · y)k.

Another popular example are categorical variables that are

represented as groups of dummy variables.

A method for variable selection which has gained particular

attention is the Lasso (Tibshirani, 1996) which exploits the

idea of using ℓ1-constraints in fitting problems. The Group-

Lasso (Yuan & Lin, 2006) extends the former in the sense

Appearing in Proceedings of the 25
th International Conference

on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

that it finds solutions that are sparse on the level of groups

of variables, which makes this method a good candidate

for situations described above. The Group-Lasso estimator,

however, has several drawbacks: (i) in high-dimensional

spaces, the solutions may not be unique. The potential

existence of several solutions that involve different vari-

ables seriously hampers the interpretability of “identified”

explanatory factors; (ii) existing algorithms can handle in-

put dimensions up to thousands (Kim et al., 2006) or even

several thousands (Meier et al., 2008), but in practical ap-

plications with high-order interactions or polynomial ex-

pansions these limits are easily exceeded; (iii) contrary to

the standard Lasso, the solution path (i.e. the evolution of

the individual group norms as a function of the constraint)

is not piecewise linear, which precludes the application of

efficient optimization methods like least angle regression

(LARS) (Efron et al., 2004).

In this paper we address all these issues: (i) we derive

conditions for the completeness and uniqueness of Group-

Lasso estimates, where we call a solution complete, if it

includes all groups that might be relevant in other solu-

tions (meaning that we cannot have “overlooked” relevant

groups). Based on these conditions we develop an easily

implementable test procedure. If a solution is not com-

plete, this procedure identifies all other groups that may be

included in alternative solutions with identical costs. (ii)

These results allow us to formulate a highly efficient active-

set algorithm that can deal with input dimensions in the

millions. (iii) The solution path can be approximated on

a fixed grid of constraint values with almost no additional

computational costs. Large-scale applications using both

synthetic and real data illustrate the excellent performance

of the developed concepts and algorithms. In particular,

we demonstrate that the proposed completeness test suc-

cessfully detects ambiguous solutions and thus avoids the

misinterpretation of “identified” explanatory factors.
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2. Characterization of Group-Lasso Solutions

for Generalized Linear Models

This section largely follows (Osborne et al., 2000), with the

exception that here we address the Group-Lasso problem

and a more general class of likelihood functions.

According to (McCullaghand & Nelder, 1983), a general-

ized linear model (GLM) consists of three elements:

(i) a random component f(y;µ) specifying the stochastic

behavior of a response variable Y ;

(ii) a systematic component η = x⊤β specifying the vari-

ation in the response variable accounted for by known co-

variates x; and

(iii) a link function g(µ) = η specifying the relationship

between the random and systematic components.

The random component f(y;µ) is typically an exponential

family distribution

f(y; θ, φ) = exp(φ−1(yθ − b(θ)) + c(y, φ)), (1)

with natural parameter θ, sufficient statistics y/φ, log par-

tition function b(θ)/φ and a scale parameter φ > 0.

Note that in the model (1) the mean of the responses µ =
Eθ[y] is related to the natural parameter θ by µ = b′(θ).
The link function g can be any strictly monotone differen-

tiable function. In the following, however, we will consider

only canonical link functions for which g(µ) = η = θ. We

will thus use the parametrization f(y; η, φ).

From a technical perspective, an important property of this

framework is that log f(y; η, φ) is strictly concave in η.

This follows from the fact that the one-dimensional suffi-

cient statistics y/φ is necessarily minimal, which implies

that the log partition function b(η)/φ is strictly convex, see

(Brown, 1986; Wainwright et al., 2005).

The standard linear regression model is a special case de-

rived from the normal distribution with φ = σ2, the iden-

tity link η = µ and b(η) = (1/2)η2. Other popular mod-

els include logistic regression (binomial distribution), Pois-

son regression for count data and gamma- ( or exponential-,

Weibull-) models for cost- or survival analysis.

Given an i.i.d. data sample {x1, . . . ,xn}, xi ∈ R
d, ar-

ranged as rows of the data matrix X , and a corresponding

vector of responses y = (y1, . . . , yn)⊤, we will consider

the problem of minimizing the negative log-likelihood

l(y,η,φ) = −
∑

i

log f(yi; ηi, φ)

= −
∑

i

φ−1(yiηi − b(ηi)) + c(yi, φ).
(2)

We assume that the scale parameter is known, and for the

sake of simplicity we assume φ = 1. Since η = xT β, the

gradient of l can be viewed as a function in either η or β:

∇ηl(η) = −(y − g−1(η)),

∇βl(β) = −X⊤∇ηl(η) = −X⊤(y − g−1(Xβ)),
(3)

where g−1(η) := (g−1(η1), . . . , g
−1(ηn))⊤. The corre-

sponding Hessians are

Hη = W, Hβ = X⊤WX, (4)

where W is diagonal with elements Wii = (g−1)′(ηi) =
1/(g′(µi)) = µ′(ηi) = b′′(ηi).

For the following derivation, it is convenient to partition X ,

β and h := ∇βl into J subgroups: X = (X1, . . . , Xj),

β =






β1
...

βJ




 , h =






h1

...

hJ




 =






X⊤
1 ∇ηl

...

X⊤
J ∇ηl




 . (5)

As stated above, b is strictly convex in θ = η, thus b′′(ηi) >

0 which in turn implies that Hη ≻ 0 and Hβ � 0. This

means that l is a strictly convex function in η. For general

matrices X it is convex in β, and it is strictly convex in β

if X has full rank and d ≤ n.

Given X and y, the Group-Lasso minimizes the negative

log-likelihood viewed as a function in β under a constraint

on the sum of the ℓ2-norms of the subvectors βj :

minimize l(β) s.t. g(β) ≥ 0, (6)

where g(β) = κ − ∑J
i=1 ‖βj‖. (7)

Here g(β) is implicitly a function of the fixed parameter κ.

Considering the unconstrained problem, the solution is not

unique if the dimensionality exceeds n: every β∗ = β0 +ξ

with ξ being an element of the null space N(X) is also a

solution. By defining the unique value

κ0 := minξ∈N(X)

∑J
i=1 ‖β0

j + ξj‖, (8)

we will require that the constraint is active i.e. κ < κ0.

Note that the minimum κ0 is unique, even though there

might exist several vectors ξ ∈ N(X) which attain this

minimum. Enforcing the constraint to be active is essential

for the following characterization of solutions. Although it

might be infeasible to ensure this activeness by computing

κ0 and selecting κ accordingly, practical algorithms will

not suffer from this problem: given a solution, we can al-

ways check if the constraint was active. If this was not

the case, then the uniqueness question reduces to checking

if d ≤ n (if X has full rank). In this case the solutions

are usually not sparse, because the feature selection mech-

anism has been switched off. To produce a sparse solution,
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one can then try smaller κ-values until the constraint is ac-

tive. In section 3 we propose a more elegant solution to this

problem in the form of an algorithm that approximates the

solution path, i.e. the evolution of the group norms when

relaxing the constraint. This algorithm can be initialized

with an arbitrarily small constraint value κ0 which typically

ensures that the constraint is active in the first optimization

step. Activeness of the constraint in the following steps can

then be monitored by observing the decay of the Lagrange

parameter when increasing κ, cf. Eq. (14) below.

Under the assumption l > −∞ a minimum of (6) is guar-

anteed to exist, since l is continuous and the region of feasi-

ble vectors β is compact. The assumption l > −∞ simply

means that the likelihood is finite (f < +∞) for all param-

eter values θ which is usually satisfied for models of practi-

cal importance (see (Wedderburn, 1973) for a detailed dis-

cussion), and we will restrict our further analysis to models

of this kind1. Since we assume that the constraint is active,

any solution β̂ will lie on the boundary of the constraint

region. It is easily seen that
∑J

j=1 ‖βj‖ is convex which

implies that g(β) is concave. Thus, the region of feasible

values defined by g(β) ≥ 0 is convex. If d ≤ n, the ob-

jective function l will be strictly convex if X has full rank,

which additionally implies that the minimum is unique. In

summary, we can state the following theorem:

Theorem 1. If κ < κ0 and X has maximum rank,

then the following holds: (i) A solution β̂ exists and
∑J

i=1 ‖β̂j‖ = κ for any such solution. (ii) If d ≤ n,

the solution is unique.

The Lagrangian for problem (6) reads

L(β, λ) = l(β) − λg(β). (9)

For a given λ > 0, L(β, λ) is a convex function in β. Un-

der the assumption l > −∞ a minimum is guaranteed to

exist, since g goes to infinity if ‖β‖ → ∞.

The vector β̂ minimizes L(β, λ) iff the d-dimensional null-

vector 0d is an element of the subdifferential ∂βL(β, λ).
Let dj denote the dimension of the j-th subvector βj

(i.e. the size of the j-th subgroup). The subdifferential is

∂βL(β, λ) = ∇βl(β) + λv = X⊤∇ηl(η) + λv, (10)

with v = (v1, . . .vJ)⊤ defined by

vj =
βj

‖βj‖
, if βj 6= 0dj

and

vj ∈ {a ∈ R
dj : ‖a‖ ≤ 1}, else.

(11)

Thus, β̂ is a minimizer for λ fixed iff

0d = X⊤∇ηl(η)|η=bη + λv (with η̂ = Xβ̂), (12)

1Technically we require that the domain of l is R
d, which im-

plies that Slater’s condition holds.

for some v of the form described above. Hence, for all j

with β̂j 6= 0dj
it holds that

‖X⊤
j ∇ηl(η)|η=bη‖ = λ. (13)

For all other j with β̂j = 0dj
it holds that

‖X⊤
j ∇ηl(η)|η=bη‖ ≤ λ which implies

λ = maxj ‖X⊤
j ∇ηl(η)|η=bη‖. (14)

Lemma 1. Let β̂ be a solution of (6). Let λ = λ(β̂) be

the associated Lagrangian multiplier. Then λ and ĥ =
∇βl(β)|

β=bβ
are constant across all solutions β̂(i) of (6).

Proof. Since the value of the objective function l(η(i)) =
l∗ is constant across all solutions and l is strictly convex

in η = Xβ and convex in β, it follows that η̂ must

be constant across all solutions β̂(i), which implies that

∇βl(β)|
β=bβ

= X⊤∇ηl(η)|η=bη is constant across all so-

lutions. Uniqueness of λ follows now from (14).

Theorem 2. Let λ be the Lagrangian parameter associated

with some (any) solution β̂ of (6) and let ĥ be the unique

gradient vector at the optimum. Let B = {j1, . . . , jp} be

the unique set of indices for which ‖ĥj‖ = λ. Then β̂j =

0dj
∀j 6∈ B across all solutions β̂(i) of (6).

Proof. A solution with β̂j 6= 0dj
for at least one j 6∈ B

would contradict (13).

Assume that an algorithm has found a solution β̂ of (6)

with the set of “active” groups A := {j : β̂j 6= 0}. If

A = B = {j : ‖ĥj‖ = λ}, then there cannot exist any

other solution with an active set A′ with |A′| > |A|. Thus,

A = B implies that all relevant groups are contained in

the solution β̂. Otherwise, the additional elements in B
which are not contained in A define all possible groups that

potentially become active in alternative solutions.

Note that A = B guarantees that we cannot have “over-

looked” relevant groups, which is typically sufficient in

practical applications. We will call such a solution com-

plete. However, A might still contain redundant groups,

and we might be additionally interested if we have found

a unique (an thus minimal) set A. The following theorem

characterizes a simple test for uniqueness under a further

rank assumption of the data matrix X .

Theorem 3. Assume that every n × n submatrix of X has

full rank. Let A be the active set corresponding to some

solution β̂ of (6) and let XA be the n × s submatrix of X

composed of all active groups. Assume further that A is

complete, i.e. A = B. Then, if s ≤ n, β̂ is the unique

solution of (6).
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Proof. Since the set B is unique, the assumption A = B
implies that the search for the optimal solution can be re-

stricted to the space S = R
s. If s ≤ n, XA must have full

rank by assumption. Thus, l(βS) is a strictly convex func-

tion on S which is minimized over the convex constraint

set. Thus, β̂
S

is the unique minimizer on S. Since all other

β̂j:j /∈A must be zero, β̂ is unique on the whole space.

In practice, it might be difficult to guarantee the rank con-

dition in the above theorem. Note, however, that for a given

set A and associated matrix XA it is sufficient to check if

rank(XA) = s via SVD or QR-decomposition.

3. An Efficient Active-Set Algorithm

The characterization of optimal solutions presented above

is now used to build a highly efficient algorithm, which is a

straight-forward generalization of the subset algorithm for

the standard Lasso problem presented in (Osborne et al.,

2000). Similar ideas for the standard Lasso have also been

introduced in (Shevade & Keerthi, 2003). The algorithm

starts with only one active group. The selection of further

active groups (or their removal) is guided by observing La-

grangian violations. Testing for completeness of the active

set will then identify all groups that could have nonzero

coefficients in alternative solutions.

A: Initialize set A = {j0}, βj0 arbitrary with ‖βj0‖ = κ.

B: Optimize over the current active set A. Define set

A+ = {j ∈ A : ‖βj‖ > 0} (some βj could have van-

ished during optimization). Define λ = maxj∈A+ ‖hj‖.

Adjust the active set A = A+.

C: Lagrangian violation. ∀j 6∈ A, check if ‖hj‖ ≤ λ.

If this is the case, we have found a global solution. Other-

wise, include the group with the largest violation to A and

go to B.

D: Completeness and uniqueness. ∀j 6∈ A, check if

‖hj‖ = λ. If so, there might exist other solutions with

identical costs that include these groups in the active set.

Otherwise, the active set is complete in the sense that it con-

tains all relevant groups. If Xa has full rank s ≤ n, unique-

ness can be checked additionally via theorem 3. Note that

step D requires (almost) no additional computations, since

it is a by-product of step C.

The above algorithm is easily extended to practical op-

timization routines in which we stop the fitting process

at a predefined tolerance level: testing for “completeness

within a ǫ-range” (|‖hj‖ − λ| < ǫ in D with ǫ being the

maximum deviation of gradient norms from λ in the active

set) will then identify all potentially active groups in alter-

native solutions with costs close to the actual costs.

The minimization in step B can be performed efficiently

by the projected gradient method introduced in (Kim et al.,

2006), which is applicable for all continuous convex cost

functions. Finding the projection is typically the computa-

tional bottleneck in methods of this kind. For our special

case, however, the projection can be found very efficiently.

We refer the reader to (Kim et al., 2006) for details.

Iterate:

B1: Gradient. At time t− 1, set b = βt−1 − s∇βl(βt−1)
and A+ = A, where s is a step-size parameter.

B2: Projection. For all j ∈ A+ define Mj := ‖bj‖ +
(κ − ∑

j ‖bj‖)/|A+|. If Mj ≥ 0∀j ∈ A+, go to B3. Else

update the active set A+ = {j : Mj > 0} and repeat B2.

B3: New solution. For all j ∈ A+ set βt
j = bjMj/‖bj‖.

For all other j ∈ A, j /∈ A+ set βt
j = 0.

Note that during the whole algorithm, access to the full set

of variables is only necessary in steps C and D, which are

outside the core optimization routine. Thus, in large-scale

applications where not all groups can be hold in the main

memory, we still have a rather efficient method, even if we

have to access external storage in steps C/D.

Computing the Solution Path. Contrary to the standard

Lasso, the Group-Lasso does not exhibit a piecewise linear

solution path. Algorithms like LARS (Efron et al., 2004)

are therefore not applicable. Despite this problem, we can

still approximate the solution path on a grid of constraint

values with almost no additional costs: starting with a very

small κ(0) (which will result in a small active set), we it-

eratively relax the constraint, resulting in a series of in-

creasing values κ(i). Note that at the i-th step, the previ-

ous solution β(κ(i−1)) is a feasible initial estimate since

κ(i) > κ(i−1). Typically only few further iterations are

needed to find β(κ(i)). Completeness/uniqueness can be

tested efficiently at every step i. In practical applications

we observed that the stepwise approximation of the solu-

tion path up to some final κ(f) is usually faster than di-

rectly computing the solution for κ(f), probably because

the stepwise procedure allows the use of larger stepsizes.

4. Applications

As a first application example we use synthetic data

generated by a script that has been used in the con-

text of the NIPS’03 feature selection workshop (follow

the link “dataset description” on the workshop webpage

www.clopinet.com/isabelle/Projects/NIPS2003/#challenge). We

reproduced the XOR example explained in the above cited

document: there are two classes, each of which is com-

posed of two Gaussian clusters. Two “useful” features are

drawn from N(0, 1) for each cluster. Some covariance is

added by multiplying by a random matrix. The clusters are

placed in an XOR configuration and 3200 “useless” fea-

tures are added, drawn from N(0, 1). All the features are

shifted and rescaled randomly. Random noise is then added

according to N(0, 0.1). Finally, 1% of the labels are ran-
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domly flipped. We construct a training set of size 2000 and

a test set of size 6000.
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Figure 1. Solution path for the XOR problem with 3200 noise di-

mensions. The norm of the one “useful” group grows steeply

when the constraint is relaxed. What appears as a horizontal

“thickening” line is an overlay of 275 “useless” groups.

Without feature selection, prediction becomes very diffi-

cult: a SVM with RBF kernel achieves 42% test error (on

the subset of the two “useful” features the error decreases

to 1.5% ). Moreover, simple feature selection methods like

correlation-based scoring fail badly on these data.

We expand the dataset in a polynomial basis of degree 2,

i.e. each pair of features (a, b) is mapped to a 5-dimensional

vector (a, b, a ·b, a2, b2). Given the 3202 features (2 + 3200

“useless”), this expansion yields ≈ 5 · 106 groups of size

5, each of which contains 5 quadratic interactions. We are,

thus, working in a ≈ 2.5 ·107-dimensional space. Since the

expanded feature set cannot be hold in the main memory,

we only store the original dataset and recompute the ex-

pansions on demand. Despite this computational overhead,

our active set algorithm allows us to optimize the Group-

Lasso functional very efficiently, see also Figure 2. Since

we are dealing with a classification problem, we choose the

logistic model from the GLM family. Figure 1 shows the

solution path for the logistic Group-Lasso when relaxing κ

in 20 steps. Note that in the first iterations the algorithm

was able to determine the one “useful” group of variables.

The norm of the corresponding weight vector increases al-

most linearly until κ ≈ 4.5, where the minimum error rate

of 1.6% on the test set is obtained.

Testing both the completeness and the uniqueness of the

active set gives a positive result, which guarantees that at

this constraint value there are no alternative solutions. Fur-

ther increasing κ leads to the selection of additional groups

with spurious weights. The model obtained for κ = 10
uses 275 groups which include “useless” features and have

norms < 0.2. Solutions for κ > 5 appear to be lacking

completeness: our test identified a steeply increasing num-

ber of other groups that may also become active. Given

that the “useless” variables are randomly drawn from a nor-

mal distribution, the observed lack of completeness might

be caused by the limited numerical precision in the opti-

mization routine: for models with κ < 7 we could indeed

show by increasing the numerical precision that the solu-

tions are complete, however at the price of drastically in-

creasing computational costs. For larger models, however,

we were not able to find complete solutions within any rea-

sonable time limits. This result nicely shows that lacking

completeness of Group-Lasso solutions is indeed a relevant

issue in real-world applications which are necessarily com-

puted with limited numerical precision. Besides the theo-

retical properties of our completeness test, this test might

thus be also a valuable practical tool to detect possible am-

biguities that are caused by numerical problems.

To compare the efficiency of our active set algorithm with

related approaches, we measured the time needed to com-

pute ten steps of the solution path (κ = 1, 2, . . . , 10) for

different numbers of “useless” groups. Figure 2 shows

the observed computation times of three different meth-

ods: (1): the blockwise sparse method (Kim et al., 2006),

(2): the block coordinate method by (Meier et al., 2008),

(3): our algorithm. The comparison with method 1 was

straight forward, since the same implementation was used

(note that by dropping the active set selection mechanism,

our method simply reduces to method (1)). In order to guar-

antee a fair comparison with method (2) for which we used

the R-package grplasso, a few modifications were nec-

essary: we first trained our method on the data and recorded

the sequence of Lagrange parameters λ1, . . . , λ10 corre-

sponding to the sequence of constraints κ = 1, 2, . . . , 10,

since the grplasso package needs the Lagrange parame-

ters on input. We also recorded the achieved log-likelihood

at each step. We then trained method (2) on the dataset and

adjusted its tolerance parameters as to (roughly) reproduce

the recorded sequence of log-likelihoods. The double loga-

rithmic scale in Figure 2 should make the interpretation of

the plot rather insensitive against performance differences

caused by using different implementations, since such dif-

ferences are expected to produce additive shifts without

changing the slopes.

For input instances that could be hold in the main mem-

ory, the log-log plot shows a relatively steep increase for

the models (1) and (2), whereas method (3) increases lin-

early with a moderate slope. For the “out-of-core” models,

we recomputed the groups whenever necessary (step C/D

in our algorithm). We again see an almost linear increase

of costs up to models including ≈ 106 groups. Three ob-

servations seem to be important: (i) the slope of the curve

for method (3) in the “out-of-core” regime does not even

exceed the slope of the corresponding curve for method (2)

at the end of the “cached” region; (ii) when fixing the costs

at the level of method (2) at the end of the “cached” region,

method (3) was able to solve instances which are larger by
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at least 1 − 1.5 orders of magnitude; (iii) comparison with

method (1) shows that the active set formalism leads to a

speed-up of several orders of magnitudes.
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Figure 2. Log-log plot of computation time (y-axis, in seconds)

for the XOR problem with logistic loss as a function of the num-

ber g of groups (x-axis). The three different methods are: 1:(Kim

et al., 2006), 2:(Meier et al., 2008), 3: our algorithm.

Splice Site Detection. The prediction of splice sites has

an important role in gene finding algorithms. Splice

sites are the regions between coding (exons) and non-

coding (introns) DNA segments. The 5′ end of an

intron is called a donor splice site and the 3′ end

an acceptor splice site. The MEMset Donor dataset

(http://genes.mit.edu/burgelab/maxent/ssdata/) consists of a

training set of 8415 true and 179438 false human donor

sites. An additional test set contains 4208 true and 89717

“false” (or decoy) donor sites. A sequence of a real splice

site is modeled within a window that consists of the last 3

bases of the exon and the first 6 bases of the intron. Decoy

splice sites also match the consensus sequence at position

zero and one. Removing this consensus “GT” results in

sequences of length 7, i.e. sequences of 7 factors with 4

levels {A,C, G, T}, see (Yeo & Burge, 2004) for details.

The goal of this experiment is to overcome the restriction

to marginal probabilities (main effects) in the widely used

Sequence-Logo approach (see Figure 4) by exploring all

possible interactions up to order 4.

Following (Meier et al., 2008), the original training dataset

is used to build a balanced training dataset and an unbal-

anced validation set which exhibits the same true/false ratio

as the test set. The data are represented as a collection all

factor interactions up to degree 4. Every interaction is en-

coded using dummy variables and treated as a group, lead-

ing to 120 groups of sizes varying between 4 (main effects)

and 45 (4th order interactions). In total, we are working in

a 33068-dimensional feature space. This dataset has also

been analyzed in (Meier et al., 2008) with the Group-Lasso,

but only up to 2nd order interactions.

To correct for the unbalancedness of the classes, the val-

Figure 3. Sequence Logo representation of the human 5′ splice

site. The consensus “GT” appears at positions 0, 1. The overall

height of the stack of symbols at a certain position indicates the

sequence conservation at that position, while the height of sym-

bols within the stack indicates the relative frequency of each nu-

cleic acid, see (Crooks et al., 2004). We model the splice sites in

a window over positions [−3, 5].

idation set is used to choose the best threshold τ on the

classifier output. It is further used to select κ. The perfor-

mance is measured in terms of the maximum correlation

coefficient ρmax between predicted and true labels.
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Figure 4. Left: solution path for donor splice site prediction.

Color and thickness of curves indicate different orders of inter-

actions. Right: Correlation coefficient as a function of κ. Bold

curve: correlation on the validation set that is used for model se-

lection (the thin vertical line indicates the chosen model). Thin

curve: correlation on the separate test set.

From the correlation curve in Figure 4 we conclude that

the inclusion of interactions of order three and greater does

not improve the predictive performance and produces some

pronounced overfitting effects. The model with the highest

correlation coefficient (κ = 20) contains 36 groups: all

7 main effects, 21 1st-order interactions and 8 2nd-order

interactions. Among the top-scoring groups we find the

main effects at positions −1, 2 and 4, the interactions at

positions (4 : 5), (−2 : −1) and (2 : 3) and the triplet

(−3 : −2 : −1), which all share the property that they

exclusively contain exon positions (or intron positions, re-

spectively). One might conclude that long-range interac-

tions between the preceding exon and the starting intron

are of minor importance for splice site recognition. The

completeness test reveals, however, that the solution with
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36 groups is not complete, and that a complete model for

κ = 20 additionally contains the four interactions (−1 :4),
(−2 : 5), (−1 : 3 : 4) and (−3 : −1 : 2 : 5), all of which

combine exon and intron positions. This is a nice exam-

ple where the completeness test gives rise to query an ini-

tial hypothesis (about the weak exon-intron dependencies)

which seems to be plausible from observing the Group-

Lasso solution. It should be noticed that the obtained cor-

relation coefficient of ρmax = 0.663 compares favorably

with the result in the original paper (Yeo & Burge, 2004)

(ρmax = 0.659), which has been viewed as among the best

methods for short motive modeling.

The next experiment shows a situation where the complete-

ness test indicates that the interpretability of the Group-

Lasso might be generally complicated if relatively com-

plex models are required. The problem is again the dis-

crimination between true and “false” splice sites, this time,

however, at the 3′ end. Compared to the 5′ situation, 3′

(acceptor) splice site motives are less concentrated around

the consensus nucleotide pair (“AG” at positions -2,-1 in

Figure 5), which requires the use of larger windows. We

trained the logistic Group-Lasso model on all interactions

up to order 4 using windows of length 21. In total, we

have 27896 groups which span a 22, 458, 100-dimensional

feature space. Despite this huge dimensionality, our ac-

tive set algorithm was able to compute the solution path

up to κ = 150 within roughly 20 hours. From the corre-

lation curve in Figure 6 we conclude that in this example,

the inclusion of 3rd- and 4th-order interactions does indeed

increase the predictive performance. The optimal model

at κ = 66 contains 386 groups. Among the 10 highest-

scoring groups are the main effects at positions −3, −5
and 0, the 1st-order interactions (−9 : −8), (−11 : −10),
(−11 : −9) and (−12 : −11), the triplet (−6 : −5 : −3),
the 3rd-order interaction (−14 : −9 : 0 : 1) and the 4th-

order interaction (−10 : −8 : −6 : −3 : 2). The latter

might be of particular interest, since it couples the position

2 which appears to be non-informative in the Sequence-

Logo representation (Fig. 5) with positions at the end of

the intron. This observation nicely emphasizes the strength

of a model that is capable of exploring high-order depen-

dencies among the positions.

A closer look at the results of the completeness tests in

Figure 7 shows, however, that probably all solutions with

κ > 40 are rather difficult to interpret, since a steeply in-

creasing number of groups must be added to obtain com-

plete models. This means that care should be taken when

it comes to interpreting specific groups occurring in par-

ticular solutions (as we have done above). Since most of

the models are not complete, it might well be that other

groups not contained in a particular solution might be of

high importance or even “substitute” identified groups. For

the 4th-order interaction (−10 : −8 : −6 : −3 : 2) in the

optimal solution with κ = 66 it might well be that there

exist other groups that can take over the role of this inter-

action. Even though the high score of this group might

indicate that a complete substitution is not very likely, the

“discovery” of the coupling between position 2 and intron

positions should not be accepted unquestioningly.

Figure 5. Sequence Logo representation of the human 3′ splice

site. The consensus “AG” appears at positions −2, −1. We use a

window over positions [−20, 2].
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Figure 6. Left: solution path for 3′ splice site prediction. The up-

per most curve represents the most important position -3 (last po-

sition of the intron). Right: Correlation coefficient as a function

of κ. Bold curve: correlation on the validation set that is used for

model selection. Thin curve: correlation on the separate test set.

5. Conclusion

The completeness- and uniqueness test presented here

overcomes a severe problem of the Group-Lasso estima-

tor for generalized linear models (GLM). Since in many

practical applications the dimensionality exceeds the sam-

ple size, we cannot a priori assume that the active set of

groups is unique, which somehow contradicts our goal of

identifying important factors. Our testing procedure has the

advantage that it identifies all groups that are potential can-

didates for the active set. Even if a solution is not complete,

this latter property still allows us to explicitly list (and po-

tentially investigate) the set of all candidate groups.

We have presented a highly efficient active-set algorithm

that can handle extremely high-dimensional input spaces

which typically arise when investigating high-order fac-

tor interactions or when using polynomial basis expan-

sions. Our theoretical characterization of solutions is used

to check both optimality and completeness/uniqueness.
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Figure 7. Acceptor splice site prediction: groups that must be in-

cluded in the logistic Group-Lasso estimates to obtain complete

models (gray values represent different orders of interactions).

The experiment on synthetic data in XOR configuration

with additional noise features showed that the methods

and concepts presented here can be successfully applied to

problems with millions of groups. We demonstrated that

non-completeness of solutions is indeed an important issue

in real-world applications where round-off errors are un-

avoidable. Without any additional computational costs, the

proposed completeness/uniqueness test easily detects such

situations and additionally identifies all groups that must be

included to achieve a complete model.

The splice-site prediction example confirmed these obser-

vations in a real-world context, where the inclusion of high-

order factor interactions helps to increases the predictive

performance but also leads to incomplete and, thus, po-

tentially ambiguous solutions. The active set algorithm

was able to approximate the solution path of the logistic

Group-Lasso for feature-space dimensions up to ≈ 2 · 107

within a reasonable time, and the completeness test helped

to avoid mis- or over-interpretations of identified interac-

tions between the nucleotide positions. In particular for

the 5′ (donor-) splicing sites, we could show that the com-

pleteness test avoids a potentially severe misinterpretation

regarding the independence of exon and intron positions.

While in the application examples we have focused on lo-

gistic classification problems, both the characterization of

solutions and the algorithms proposed are valid for the

much richer class of GLMs. Notable extensions include

models for counting processes (e.g. Poisson or log-linear

models). Details of such models for the analysis of sparse

contingency tables in the spirit of the work in (Dahinden

et al., 2007) will appear elsewhere. A C++ implementation

of the active set algorithm with completeness test is avail-

able from the authors on request.

In the broad perspective – and in the light of recent theoret-

ical results on the algorithmic complexity of feature selec-

tion (Nilsson et al., 2007) – one might conclude that feature

selection can be simpler than previously thought.
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Abstract

The success of kernel methods including sup-
port vector machines (SVMs) strongly de-
pends on the design of appropriate kernels.
While initially kernels were designed in or-
der to handle fixed-length data, their exten-
sion to unordered, variable-length data be-
came more than necessary for real pattern
recognition problems such as object recogni-
tion and bioinformatics.
We focus in this paper on object recogni-
tion using a new type of kernel referred to as
“context-dependent”. Objects, seen as con-
stellations of local features (interest points,
regions, etc.), are matched by minimizing an
energy function mixing (1) a fidelity term
which measures the quality of feature match-
ing, (2) a neighborhood criterion which cap-
tures the object geometry and (3) a regular-
ization term. We will show that the fixed-
point of this energy is a “context-dependent”
kernel (“CDK”) which also satisfies the Mer-
cer condition. Experiments conducted on ob-
ject recognition show that when plugging our
kernel in SVMs, we clearly outperform SVMs
with “context-free” kernels.

1. Introduction

Object recognition is one of the biggest challenges in
vision and its interest is still growing (Everingham
et al., 2007). Among existing methods, those based on
machine learning (ML), show a particular interest as
they are performant and theoretically well grounded
(Bishop, 2007). ML approaches, such as the popular

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

support vector networks (Boser et al., 1992), basically
require the design of similarity measures, also referred
to as kernels, which should provide high values when
two objects share similar structures/appearances and
should be invariant, as much as possible, to the linear
and non-linear transformations. Kernel-based object
recognition methods were initially holistic, i.e., each
object is mapped into one or multiple fixed-length
vectors and a similarity, based on color, texture or
shape (Swain & Ballard, 1991; Chapelle et al., 1999),
is then defined. Local kernels, i.e., those based on bags
or local sets were introduced in order to represent
data which cannot be represented by ordered and
fixed-length feature vectors, such as graphs, trees,
interest points, etc (Gartner, 2003). It is well known
that both holistic and local kernels should satisfy
certain properties among them the positive definite-
ness, low complexity for evaluation, flexibility in order
to handle variable-length data and also invariance.
Holistic kernels have the advantage of being simple
to evaluate, discriminating but less flexible than
local kernels in order to handle invariance1. While
the design of kernels gathering flexibility, invariance
and low complexity is a challenging task; the proof
of their positive definiteness is sometimes harder
(Cuturi, 2005). This property also known as the
Mercer condition ensures, according to Vapnik’s SVM
theory (Vapnik, 1998), optimal generalization per-
formance and also the uniqueness of the SVM solution.

Consider a database of objects (images), each one
seen as a constellation of local features, for instance
interest points (Schmid & Mohr, 1997; Lowe, 2004;
Lazebnik et al., 2004), extracted using any suitable
filter (Harris & Stephens, 1988). Again, original

1In case of object recognition, invariance means robust-
ness to occlusion, geometric transformations and illumina-
tion.
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holistic kernels explicitly (or implicitly) map objects
into fixed-length feature vectors and take the sim-
ilarity as a decreasing function of any well-defined
distance (Barla et al., 2002). In contrast to holistic
kernels, local ones are designed in order to handle
variable-length and unordered data. Two families of
local kernels can be found in the literature; those
based on statistical “length-insensitive” measures
such as the Kullback Leibler divergence, and those
which require a preliminary step of alignment. In the
first family, the authors in (Kondor & Jebara, 2003;
Moreno et al., 2003) estimate for each object (con-
stellation of local features) a probability distribution
and compute the similarity between two objects (two
distributions) using the “Kullback Leibler divergence”
in (Moreno et al., 2003) and the “Bhattacharyya
affinity” in (Kondor & Jebara, 2003). Only the
function in (Kondor & Jebara, 2003) satisfies the
Mercer condition and both kernels were applied for
image recognition tasks. In (Wolf & Shashua, 2003),
the authors discuss a new type of kernel referred
to as “principal angles” which is positive definite.
Its definition is based on the computation of the
principal angles between two linear subspaces under
an orthogonality constraint. The authors demonstrate
the validity of their method on visual recognition
tasks including classification of motion trajectory and
face recognition. An extension to subsets of varying
cardinality is proposed in (Shashua & Hazan, 2004).
In this first family of kernels, the main drawback, in
some methods, resides is the strong assumption about
the used probabilistic models in order to approximate
the set of local features which may not hold true in
practice.

In the second family, the “max” kernel (Wallraven
et al., 2003) considers the similarity function, between
two feature sets, as the sum of their matching scores
and unlike discussed in (Wallraven et al., 2003) this
kernel is actually not Mercer (Bahlmann et al., 2002).
In (Lyu, 2005), the authors introduced the “circular-
shift” kernel defined as a weighted combination of Mer-
cer kernels using an exponent. The latter is chosen in
order to give more prominence to the largest terms
so the resulting similarity function approximates the
“max” and also satisfies the Mercer condition. The
authors combined local features and their relative an-
gles in order to make their kernel rotation invariant
and they show its performance for the particular task
of object recognition. In (Boughorbel, 2005), the au-
thors introduced the “intermediate” matching kernel,
for object recognition, which uses virtual local fea-
tures in order to approximate the “max” while sat-

Naive matching ’H’ ’i’ ’S’ ’i’ ’r’

’S’ 0 0 - 1 0 0
’i’ 0 1 - 0 1 0
’r’ 0 0 - 0 0 1

Context-dependent - - - - - -

’S’ 0 0 - .38 0 0
’i’ 0 .36 - 0 .39 0
’r’ 0 0 - 0 0 .38

Table 1. This table shows a simple comparison between
similarity measures when using naive matching (upper ta-
ble) and context-dependent matching (lower table).

isfying the Mercer condition. Recently, (Grauman &
Darrell, 2007) introduced the “pyramid-match” kernel,
for object recognition and document analysis, which
maps feature sets using a multi-resolution histogram
representation and computes the similarity using a
weighted histogram intersection. The authors showed
that their function is positive definite and can be com-
puted linearly with respect to the number of local fea-
tures. Other matching kernels include the “dynamic
programming” function which provides, in (Bahlmann
et al., 2002), an effective matching strategy for hand-
written character recognition, nevertheless the Mercer
condition is not guaranteed.

1.1. Motivation and Contribution

The success of the second family of local kernels
strongly depends on the quality of alignments which
are difficult to obtain mainly when images contain re-
dundant and repeatable structures. Regardless the
Mercer condition, a naive matching kernel (such as
the “max”), which looks for all the possible alignments
and sums the best ones, will certainly fail and results
into many false matches (see Figure 1, left). The same
argument is supported in (Schmid & Mohr, 1997), for
the general problem of visual features matching, about
the strong spatial correlation between interest points
and the corresponding close local features in the image
space. This limitation also appears in closely related
areas such as text analysis, and particularly string
alignment. A simple example, of aligning two strings
(“Sir” and “Hi Sir”) using a simple similarity mea-
sure 1

{c1=c2}
between any two characters c1 and c2,

shows that without any extra information about the
context (i.e., the sub-string) surrounding each char-
acter in (“Sir” and “Hi Sir”), the alignment process
results into false matches (See Table 1). Hence, it is

necessary to consider the context as a part of the align-

ment process when designing kernels.

In this paper, we introduce a new kernel, called
“context-dependent” (or “CDK”) and defined as the
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fixed-point of an energy function which balances an
“alignment quality” term and a “neighborhood” crite-
rion. The alignment quality is inversely proportional
to the expectation of the Euclidean distance between
the most likely aligned features (see Section 2) while
the neighborhood criterion measures the spatial coher-
ence of the alignments; given a pair of features (fp, fq)
with a high alignment quality, the neighborhood
criterion is proportional to the alignment quality of all
the pairs close to (fp, fq). The general form of “CDK”

captures the similarity between any two features by

incorporating also their context, i.e., the similarity of

the surrounding features. Our proposed kernel can
be viewed as a variant of “dynamic programming”
kernel (Bahlmann et al., 2002) where instead of using
the ordering assumption we consider a neighborhood
assumption which states that two points match if
they have similar features and if they satisfies a
neighborhood criterion i.e., their neighbors match too.
This also appears in other well studied kernels such
as Fisher (Jaakkola et al., 1999), which implements
the conditional dependency between data using the
Markov assumption. “CDK” also implements such
dependency with an extra advantage of being the
fixed-point and the (sub)optimal solution of an energy
function closely related to the goal of our application.
This goal is to gather the properties of flexibility,
invariance and mainly discrimination by allowing each
local feature to consider its context in the matching
process. Notice that the goal of this paper is not to
extend local features to be global and doing so (as in
(Mortensen et al., 2005; Amores et al., 2005)) makes
local features less invariant, but rather to design a
similarity kernel (“CDK”) which captures the context
while being invariant. Even though we investigate
“CDK” in the particular task of object recognition, we
can easily extend it to handle closely related areas in
machine learning such as text alignment for document
retrieval (Nie et al., 1999), machine translation (Sim
et al., 2007) and bioinformatics (Scholkopf et al.,
2004).

In the remainder of this paper we consider the
following terminology and notation. A feature refers
to a local interest point xp

i = ( g(x
p
i ),  f (xp

i ), yp),
here i stands for the ith sample of the subset
Sp = {xp

1, . . . , x
p
n} and yp ∈ N

+ is a unique indicator
which provides the class or the subset including xp

i .
 g(x

p
i ) ∈ R

2 stands for the 2D coordinates of the
interest-point xp

i while  f (xp
i ) ∈ R

s corresponds to
the descriptor of xp

i (for instance the 128 coefficients
of the SIFT(Lowe, 2004)). We define X as the set of
all possible features taken from all the possible images

in the world and X is a random variable standing for
a sample in X . We also consider kt : X ×X → R as a
symmetric function which, given two samples (xp

i , x
q
j),

provides a similarity measure. Other notations will be
introduced as we go along through different sections of
this paper which is organized as follows. We first in-
troduce in Section 2, our energy function which makes
it possible to design our context-dependent kernel and
we show that this kernel satisfies the Mercer condition
so we can use it for support vector machine training
and other kernel methods. In Section 3 we show the
application of this kernel in object recognition. We
discuss in Section 4 the advantages and weaknesses
of this kernel and the possible extensions in order
to handle other tasks such as string matching and
machine translation. We conclude in Section 5 and
we provide some future research directions.

2. Kernel Design

Define X = ∪p∈N+Sp as the set of all possible interest
points taken from all the possible objects in the world.
We assume that all the objects are sampled with a
given cardinality i.e., |Sp| = n, |Sq| = m, ∀ p, q ∈ N

+

(n and m might be different). Our goal is to design
a kernel K which provides the similarity between any
two objects (subsets) Sp, Sq in X .

Definition 1 (Subset Kernels) let X be an input

space, and consider Sp,Sq ⊆ X as two finite subsets

of X . We define the similarity function or kernel K
between Sp = {xp

i } and Sq = {xq
j} as K(Sp,Sq) =

∑n

i

∑m

j k
(

xp
i , x

q
j

)

.

here k is symmetric and continuous on X × X , so
K will also be continuous and symmetric. Since K
is defined as the cross-similarity k between all the
possible sample pairs taken from Sp×Sq, it is obvious
that K has the big advantage of not requiring any
(hard) alignment between the samples of Sp and
Sq. Nevertheless, for a given Sp, Sq, the value of
K(Sp,Sq) should be dominated by

∑

i maxj k
(

xp
i , x

q
j

)

,
so k should be appropriately designed (see Section 2.1).

LetX be a random variable standing for samples taken
from Sp and X ′ is defined in a similar way for the
subset Sq. We design our kernel k(xp

i , x
q
j) = P(X ′ =

xq
j , X = xp

i ) as the joint probability that xq
j matches

xp
i . Again, it is clear enough (see Figure 1 and Table 1)

that when this joint probability is estimated using only
the sample coordinates (without their contexts), this
may result in many false matches and wrong estimate
of
{

P(X ′ = xq
j , X = xp

i )
}

i,j
.
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Before describing the whole design of k, we start with
our definition of context-dependent kernels.

Definition 2 (Context-Dependent Kernels) we

define a context-dependent kernel k as any symmetric,

continuous and recursive function k : X × X → R

such that k(xp
i , x

q
j) is equal to

c(xp
i , x

q
j) × h





∑

k,`

k(xp
k, x

q
`) V

(

xp
i , x

p
k, x

q
j , x

q
`

)



 ,

here c is a positive (semi) definite and context-free

(non-recursive) kernel, V(x, x′, y, y′) is a monotonic

decreasing function of any (pseudo) distance involving

(x, x′, y, y′) and h(x) is monotonically increasing.

2.1. Approach

We consider the issue of designing k using a variational
framework. Let Ip = {1, . . . , n}, Iq = {1, . . . ,m},
µ = {k(xp

i , x
q
j)}, d(x

p
i , x

q
j) = ‖ f (xp

i ) −  f (xq
j)‖2 and

Np(x
p
i ) = {xp

k ∈ Sp : k 6= i, ‖ g(x
p
i )−  g(x

p
k)‖2 ≤ εp}

(εp defines a neighborhood and Nq is defined in the
same way for Sq ). Consider α, β ≥ 0, (i, j) ∈ Ip ×Iq,
µ = {k(xp

i , x
q
j)} is found by solving

min
µ

∑

i∈Ip,j∈Iq

k(xp
i , x

q
j) d(x

p
i , x

q
j) +

β
∑

i∈Ip,j∈Iq

k(xp
i , x

q
j) log(k(xp

i , x
q
j)) +

α
∑

i∈Ip,j∈Iq

k(xp
i , x

q
j)











−
∑

x
p
k

∈ Np(x
p
i
),

x
q
`

∈ Nq(x
q
j
)

k(xp
k, x

q
`)











s.t. k(xp
i , x

q
j) ∈ [0, 1],

∑

i,j

k(xp
i , x

q
j) = 1

(1)

The first term measures the quality of matching two
descriptors  f (xp

i ),  f (xq
j). In the case of SIFT, this

is considered as the distance, d(xp
i , x

q
j), between the

128 SIFT coefficients of xp
i and xq

j . A high value of
d(xp

i , x
q
j) should result into a small value of k(xp

i , x
q
j)

and vice-versa.
The second term is a regularization criterion which
considers that without any a priori knowledge about
the aligned samples, the probability distribution
{k(xp

i , x
q
j)} should be flat so the negative of the

entropy is minimized. This term also helps defining a
simple solution and solving the constrained minimiza-
tion problem easily. The third term is a neighborhood
criterion which considers that a high value of k(xp

i , x
q
j)

should imply high kernel values in the neighborhoods
Np(x

p
i ) and Nq(x

q
j). This criterion makes it possible

to consider the context (spatial configuration) of each
sample in the matching process.
We formulate the minimization problem by adding
an equality constraint and bounds which ensure that
{k(xp

i , x
q
j)} is a probability distribution.

Proposition 1 (1) admits a solution in the form of

a context-dependent kernel kt(x
p
i , x

q
j) = vt(x

p
i , x

q
j)/

Zt, with t ∈ N
+, Zt =

∑

i,j vt(x
p
i , x

q
j) and vt(x

p
i , x

q
j)

defined as

exp

(

−
d(xp

i , x
q
j)

β
− 1

)

×

exp





2α
β

∑

k,`

V(xp
i , x

p
k, x

q
j , x

q
`) kt−1(x

p
k, x

q
`)





(2)
which is also a Gibbs distribution.

Proof. the proof, lengthy, is omitted and it is avail-
able in a research report (Sahbi et al., 2007).�

In (2), we set v0 to any positive definite kernel
(see proposition 3) and we define V(xp

i , x
r
k, x

q
j , x

s
`) as

g(xp
i , x

r
k) × g(xq

j , x
s
`) where g is a decreasing function

of any (pseudo) distance involving (xp
i , x

r
k), not neces-

sarily symmetric. In practice, we consider g(xp
i , x

r
k) =

1
{r=p} × 1

{xr
k
∈Np(xp

i
)}.

It is easy to see that kt is a P-kernel on any Sp × Sq

(Haussler, 1999) (as the joint probability over sample
pairs taken from any Sp and Sq sums to one), so the
value of the subset kernel K(Sp,Sq) defined in (1) is
constant and useless. To make kt (up to a factor) a
P-kernel on X × X (and not on Sp × Sq), we cancel
the equality constraint in (1) and we can prove in a
similar way that kt(x

p
i , x

q
j) is equal to vt(x

p
i , x

q
j) which

is still a context-dependent kernel.

2.2. Mercer Condition

Let X be an input space and let kt : X × X → R

be symmetric and continuous. kt is Mercer, i.e., pos-
itive (semi) definite, if and only if any Gram (kernel
scalar product) matrix built by restricting kt to any
finite subset of X is positive (semi) definite. A Mer-
cer kernel kt guarantees the existence of a reproducing
kernel Hilbert space H where kt can be written as a
dot product i.e., ∃Φt : X → H such that ∀ x, x′ ∈ X ,
kt(x, x

′) =
〈

Φt(x),Φt(x
′)
〉

.

Proposition 2 ex. (S-Taylor & Cristianini, 2000)

the sum and the product of any two Mercer kernels is a
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Mercer kernel. The exponential of any Mercer kernel

is also a Mercer kernel.

Proof. see, for instance, (S-Taylor & Cristianini,
2000). �

Now, let us state our result about the positive definite-
ness of the “CDK” kernel.

Proposition 3 consider g : X × X → R, let

V(xp
i , x

p
k, x

q
j , x

q
`) = g(xp

i , x
p
k)g(xq

j , x
q
`), and k0 positive

definite. The kernel kt is then positive definite.

Proof. Initially (t = 0), k0 is per definition
a positive definite kernel. By induction, let
us assume kt−1 a Mercer kernel i.e., ∃Φt−1 :
kt−1(x, x

′) =
〈

Φt−1(x),Φt−1(x
′)
〉

, ∀x, x′ ∈ X .
Now, the sufficient condition will be to show that
(

∑

y,y′ V(x, y, x′, y′) kt−1(y, y
′)
)

is also a Mercer ker-

nel. Then, by the closure of the exponential and the
product (see proposition 2), kt will then be Mercer.
We need to show

∀x1, . . . , xd ∈ X , ∀c1, . . . , cd ∈ R,

(∗) =
∑

i,j

ci cj





∑

y,y′

V(xi, y, xj , y
′) kt−1(y, y

′)



 ≥ 0

We have

(∗) =
∑

i,j

ci cj
∑

y,y′

g(xi, y) g(xj , y
′) kt−1(y, y

′)

=
∑

y,y′

(

∑

i

ci g(xi, y)

)

×





∑

j

cj g(xj , y
′)



 kt−1(y, y
′)

=
∑

y,y′

γy γy′ kt−1(y, y
′)

=

∥

∥

∥

∥

∑

y

γyΦt−1(y)

∥

∥

∥

∥

H

≥ 0. �

Corollary 1 K defined in (1) is also a Mercer kernel.

Proof. the proof is straightforward for the partic-
ular case n = m. As kt(x

p
i , x

q
j) = 〈Φt(x

p
i ),Φt(x

q
j)〉,

we can write K(Sp,Sq) =
∑

i,j〈Φt(x
p
i ),Φt(x

q
j)〉 =

〈
∑

i Φt(x
p
i ),
∑

j Φt(x
q
j)〉 and this corresponds to a dot

product in some Hilbert space. The proof can be found
in (S-Taylor & Cristianini, 2000) for the general case
of finite subsets of any length. �

2.3. Algorithm and Setting

The factor β, in kt, acts as a scale parameter and it is
selected using

β ← Er

[

E
{Xr

1
,Xr

2
:d(Xr

1
,Xr

2
)≤ε} [d(Xr

1 , X
r
2 )]

]

(3)

here E denotes the expectation and Xr
1 (also Xr

2 )
denotes a random variable standing for samples
in Sr. The coefficient α controls the tradeoff
between the alignment quality and the neighbor-
hood criteria. It is selected by cross-validation
and it should guarantee kt(x

p
i , x

q
j) ∈ [0, 1]. If

A = supi,j

∑

k,` g(x
p
i , x

p
k) × g(xq

j , x
q
`), α should then

be selected in [0, β
2 A

].

Figure 1. This figure shows a comparison of the match-
ing results when using a naive matching strategy without
geometry and our “context-dependent” kernel matching.
(Top figures) show the distribution of the kernel values
k(xi, xj), j ∈ Iq using a context-free kernel (left) and our
“CDK” kernel (right). We can clearly see that the high-
est value changes its location so the matching results are
now corrected (as shown for one particular and multiple
matches in bottom figures).

Consider P , Q as the intrinsic adjacency matrices of
Sp and Sq respectively defined as Pi,k = g(xp

i , x
p
k),

Qj,` = g(xq
j , x

q
`). Let U denote the unit matrix and

consider Di,j = d(xp
i , x

q
j), µ

(t)
i,j = kt(x

p
i , x

q
j). Now, µ

(t)
i,j

is iteratively found using Algorithm (“CDK”) (see ta-
ble 2) and converges to a fixed point (see. Section 2.4).
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Figure 2. This figure shows the evolution of context-dependent silhouette matching on the Swedish set, for different and
increasing values of α. We clearly see that when α increases the matching results are better. We set β = 0.1 and t = 1.

Algorithm (CDK)

Initialization:

Set β using (3) and α ∈ [0, β
2 A

]
Set µ(0) ← k0, t← 0

Repeat until t→ Tmax or ‖µ(t) − µ(t−1)‖2 → 0

µ(t) ← exp

(

−D/β +
2α

β
P µ(t−1) Q − U

)

Table 2. The “CDK” kernel evaluation.

2.4. Convergence

Let us assume 0 ≤ g ≤ 1, and remind µ(t) ∈ R
n×m

be the vector of components µ
(t)
i,j = kt(x

p
i , x

q
j). Intro-

duce the mapping f : R
n×m → R

n×m defined by its
component fi,j(v) as

exp

(

− 1−
d(xp

i , x
q
j)

β
+

2α

β

∑

k,`

g(xp
i , x

p
k)g(xq

j , x
q
`)vk,`

)

By construction of the kernel kt, we have µ(t) =
f
(

µ(t−1)
)

. Let A and B satisfy

sup
1≤i≤n, 1≤j≤m

∑

k,`

g(xp
i , x

p
k)g(xq

j , x
q
`) ≤ A (4)

∑

i,j

exp

(

− 1−
d(xp

i , x
q
j)

β

)

≤ B (5)

Consider L = 2Bα
β

exp
(

2αA
β

)

, and let

B =
{

v ∈ R
n×m : ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ m, |vi,j | ≤ 1

}

be the ‖ · ‖∞-ball of radius 1. Finally, let ‖ · ‖1 denote
the 1-norm on R

n×m: ‖u‖1 =
∑

1≤i≤n, 1≤j≤n |ui,j |.

Proposition 4 If ‖µ(0)‖∞ ≤ 1 and 2αA ≤ β, then

we have f(B) ⊂ B, and on B, f is L-Lipschitz for the

norm ‖ · ‖1.

In particular, if L < 1, then there exists a unique ṽ ∈ B
such that f(ṽ) = ṽ, and the sequence (µ(t)) satisfies

‖µ(t) − ṽ‖1 ≤ L
t‖µ(0) − ṽ‖1 −→

t→+∞

0. (6)

Proof. The first assertion is proved by induction by
checking that for ‖v‖∞ ≤ 1, we have

fi,j(v) ≤ exp

(

− 1 + 2α
β

∑

k,` g(x
p
i , x

p
k)g(xq

j , x
q
`)vk,`

)

≤ exp

(

− 1 + 2α
β
A

)

≤ 1.

For the second assertion, note that for any v in B,

we have |
∂fi,j

∂vk,`
(v)| ≤ exp

(

− 1 −
d(xp

i
,x

q
j
)

β

)

. Let C =

exp
(

2α
β
A
)

, for any v, v′ in B, we have

‖f(v)− f(v′)‖1 =
∑

i,j

|fi,j(v)− fi,j(v
′)| = (∗)

(∗) ≤
∑

i,j

exp
(

− 1−
d(xp

i , x
q
j)

β

)2α

β
exp

(2α

β
A
)

×
∑

k,`

∣

∣g(xp
i , x

p
k)g(xq

j , x
q
`)vk,`

−g(xp
i , x

p
k)g(xq

j , x
q
`)v

′

k,`

∣

∣

≤
∑

i,j

exp
(

− 1−
d(xp

i , x
q
j)

β

)2α

β
C ‖v − v′‖1

≤ L‖v − v′‖1

which proves the second assertion. The last assertion
directly comes from the fixed-point theorem. �

3. Performance

Experiments were conducted on the Swedish set (15
classes, 75 images per category) and a random sub-
set of MNIST digit database (10 classes, 200 images
per category). Each class in Swedish (resp. MNIST) is
split into 50+25 (resp. 100+100) contours for training
and testing. Interest points were sampled from each
contour in MNIST (resp. Swedish) and encoded us-
ing the 60 (resp. 16) coefficients of the shape-context
descriptor (Belongie et al., 2000).

3.1. Generalization and Comparison

We evaluate kt, t ∈ N
+ using two initializations:

(i) linear k0(x, x
′) = kl(x, x

′) = 〈x, x′〉 (ii) and
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polynomial k0(x, x
′) = kp(x, x

′) = (〈x, x′〉 + 1)2. Our
goal is to show the improvement brought when using
kt, t ∈ N

+, so we compared it against the standard
context-free kernels kl and kp (i.e., kt, t = 0). For this
purpose, we trained a “one-versus-all” SVM classifier
for each class in both MNIST and Swedish using
the subset kernel K(Sp,Sq) =

∑

x∈Sp,x′
∈Sq

kt(x, x
′).

The performance are measured, on different test sets,
using n-fold cross-validation error (n = 5).

We remind that β is set using (3) as the left-hand side
of kt corresponds to the Gaussian kernel with scale
β. In practice, β = 0.1. The influence (and the per-
formance) of the right-hand side of kt increases as α
increases (see. Figure 2), nevertheless the convergence
of kt to a fixed point is guaranteed only if α ∈ [0, β

2 A
].

Therefore, it becomes obvious that α should be set
to β

2 A
where A = supi,j

∑

k,` g(x
p
i , x

p
k)× g(xq

j , x
q
`) (in

practice, 0 ≤ g ≤ 1 and A = 1).

Table 3 shows the 5-fold cross validation errors on
MNIST and Swedish for different iterations; we clearly
see the out-performance and the improvement of the
“CDK” kernel (kt, t ∈ N

+) with respect to the context-
free kernels used for initialization (k0 = kl or kp.)

4. Remarks and Discussion

The adjacency matrix P , in kt, provides the
intrinsic properties and also characterizes the
geometry of an object Sp. Let us remind
Np(x

p
i ) = {xp

k ∈ Sp : k 6= i, ‖ g(x
p
i )−  g(x

p
k)‖2 ≤ εp}

and Pi,j = 1
{x

q
j
∈Np(xp

i
)}. It is easy to see that P is

translation and rotation invariant and can also be
made scale invariant when εp is adapted to the scale of
 g(x

p
i ). It follows that the right-hand side of our ker-

nel is invariant to any 2D similarity transformation.
Notice, also, that the left-hand side of kt involves
similarity invariant descriptors  f (xp

i ),  f (xq
j) so kt

(and K) is similarity invariant.
One current limitation of our kernel kt resides
in its evaluation complexity. Assuming kt−1

known, for a given pair xp
i , xq

j , this complexity

is O
(

max(N2, s)
)

, where s is the dimension of  f (xp
i )

and N = maxi,p #{Np(x
p
i )}. It is clear enough that

when N <
√
s, the complexity of evaluating our kernel

is strictly equivalent to that of usual kernels such as
the linear. Nevertheless, the worst case (N �

√
s)

makes our kernel evaluation prohibitive and this is
mainly due to the right-hand side of kt(x

p
i , x

q
j) which

requires the evaluation of kernel sums in a hypercube
of dimension 4. A simple and straightforward gener-
alization of the integral image (see for instance (Viola

Initialization Linear Polynomial

Iterations (MNIST)

k0 11.4± 4.42 9.15 ± 4.63
k1 8.80± 4.77 5.6 ± 2.72
k2 6.90± 3.55 5.8 ± 2.36
k3 6.90± 3.41 5.2 ± 2.07
k4 6.90± 3.41 5.2 ± 2.07

Iterations (Swedish)

k0 11.7± 2.88 6.53± 6.34
k1 6.00± 2.30 3.33± 2.73
k2 3.06± 1.88 3.33± 2.73

Table 3. This table shows the mean and the standard devi-
ation of the 5-fold error on the MNIST (top) and Swedish
(bottom) databases. We can see a clear and a consistent
gain through different iterations and also the convergence
of the errors.

& Jones, 2001)) will reduce this complexity to O (s).

Finally, the out-performance of our kernel comes
essentially from the inclusion of the context. This
strongly improves the precision and helps including
the intrinsic properties (geometry) of objects. Even
though tested only on visual object recognition, our
kernel can be extended to many other pattern analysis
problems such as bioinformatics, speech and text. For
instance, in text analysis and particularity machine
translation (Sim et al., 2007), the design of a similarity
kernel between words in two different languages, can
be achieved using any standard dictionary. Of course,
the latter defines similarity between any two words
(we, wf ) independently from their bilingual training
text (or bitext), i.e., the phrases where (we, wf )
might appear and this results into bad translation
performances. A better estimate of similarity between
two words (we, wf ), can be achieved using their
context i.e., the set of words which cooccur frequently
with (we, wf ) (Koehn et al., 2003).

5. Conclusion

We introduced in this paper a new type of kernels re-
ferred to as context-dependent. Its strength resides in
the improvement of the alignments between interest
points and this is considered as a preliminary step in
order to increase the robustness and the precision of
object recognition.
We have also shown that our kernel is Mercer and ap-
plicable to SVM learning. The latter, achieved for
shape recognition problems, has better performance
than SVMs with context-free kernels. Future work in-
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cludes the comparison of our kernel with other context-
free kernels and its application in scene and object un-
derstanding using other standard databases.
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Abstract

We consider the problem of distributed rein-
forcement learning (DRL) from private per-
ceptions. In our setting, agents’ perceptions,
such as states, rewards, and actions, are not
only distributed but also should be kept pri-
vate. Conventional DRL algorithms can han-
dle multiple agents, but do not necessarily
guarantee privacy preservation and may not
guarantee optimality. In this work, we design
cryptographic solutions that achieve optimal
policies without requiring the agents to share
their private information.

1. Introduction

With the rapid growth of computer networks and net-
worked computing, a large amount of information is
being sensed and gathered by distributed agents phys-
ically or virtually. Distributed reinforcement learning
(DRL) has been studied as an approach to learn a con-
trol policy thorough interactions between distributed
agents and environments—for example, sensor net-
works and mobile robots. DRL algorithms, such as the
distributed value function approach (Schneider et al.,
1999) and the policy gradient approach (Moallemi &
Roy, 2004), typically seek to satisfy two types of physi-
cal constraints. One is constraints on communication,
such as an unstable network environment or limited
communication channels. The other is memory con-
straints to manage the huge state/action space. There-
fore, the main emphasis of DRL has been to learn
good, but sub-optimal, policies with minimal or lim-
ited sharing of agents’ perceptions.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

In this paper, we consider the privacy of agents’ per-
ceptions in DRL. Specifically, we provide solutions for
privacy-preserving reinforcement learning (PPRL), in
which agents’ perceptions, such as states, rewards, and
actions, are not only distributed but are desired to be
kept private. Consider two example scenarios:

Optimized Marketing (Abe et al., 2004): Consider
the modeling of the customer’s purchase behavior as
a Markov Decision Process (MDP). The goal is to ob-
tain the optimal catalog mailing strategy which max-
imizes the long-term profit. Timestamped histories of
customer status and mailing records are used as state
variables. Their purchase patterns are used as actions.
Value functions are learned from these records to learn
the optimal policy. If these histories are managed sep-
arately by two or more enterprises, they may not want
to share their histories for privacy reasons (for exam-
ple, in keeping with privacy promises made to their
customers), but might still like to learn a value func-
tion from their joint data in order that they can all
maximize their profits.

Load Balancing (Cogill et al., 2006): Consider a load
balancing among competing factories. Each factory
wants to accept customer jobs, but in order to max-
imize its own profit, may need to redirect jobs when
heavily loaded. Each factory can observe its own back-
log, but factories do not want to share their backlog
information with each other for business reasons, but
they would still like to make optimal decisions.

Privacy constraints prevent the data from being com-
bined in a single location where centralized reinforce-
ment algorithms (CRL) could be applied. Although
DRL algorithms work in a distributed setting, they
are designed to limit the total amount of data sent be-
tween agents, but do not necessarily do so in a way
that guarantees privacy preservation. Additionally,
DRL often sacrifices optimality in order to learn with
low communication. In contrast, we propose solutions
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that employ cryptographic techniques to achieve op-
timal policies (as would be learned if all the informa-
tion were combined into a centralized reinforcement
learning (CRL) problem) while also explicitly protect-
ing the agents’ private information. We describe solu-
tions both for data that is “partitioned-by-time” (as
in the optimized marketing example) and “partitioned-
by-observation” (as in the load balancing example).

Related Work. Private distributed protocols have
been considered extensively for data mining, pioneered
by Lindell and Pinkas (Lindell & Pinkas, 2002), who
presented a privacy-preserving data-mining algorithm
for ID3 decision-tree learning. Private distributed pro-
tocols have also been proposed for other data min-
ing and machine learning problems, including k-means
clustering (Jagannathan & Wright, 2005; Sakuma &
Kobayashi, 2008), support vector machines (Yu et al.,
2006), boosting (Gambs et al., 2007), and belief prop-
agation (Kearns et al., 2007).

Agent privacy in reinforcement learning has been pre-
viously considered by Zhang and Makedon (Zhang &
Makedon, 2005). Their solution uses a form of average
reward reinforcement learning that does not necessar-
ily guarantee an optimal solution; further, their solu-
tion only applies partitioning by time. In contrast, our
solutions guarantee optimality under appropriate con-
ditions and we provide solutions both when the data
is partitioned by time and by observation.

In principle, private distributed computations such as
these can be carried out using secure function evalu-
ation (SFE) (Yao, 1986; Goldreich, 2004), which is a
general and well studied methodology for evaluating
any function privately. However, although asymptot-
ically polynomially bounded, these computations can
be too inefficient for practical use, particular when the
input size is large. For the reinforcement learning al-
gorithms we address, we make use of existing SFE so-
lutions for small portions of our computation in order
as part of a more efficient overall solution.

Our Contribution. We introduce the concepts of
partitioning by time and partitioning by observation
in distributed reinforcement learning (Section 2). We
show privacy-preserving solutions for SARSA learn-
ing algorithms with random action selection for both
kinds of partitioning (Section 4). Additionally, these
algorithms are expanded to Q-learning with greedy or
ε-greedy action selection (Section 5). We provide ex-
perimental results in Section 6.

Table 1 provides a qualitative comparison of vari-
ants of reinforcement learning in terms of efficiency,
learning accuracy, and privacy loss. We compare five

comp. comm. accuracy privacy
CRL good good good none
DRL good good medium imperfect
IDRL good good bad perfect

PPRL medium medium good perfect
SFE bad bad good perfect

Table 1. Comparison of different approaches

approaches: CRL, DRL, independent distributed re-
inforcement learning (IDRL, explained below), SFE,
and our privacy-preserving reinforcement learning so-
lutions (PPRL). In CRL, all the agents send their per-
ceptions to a designated agent, and then a centralized
reinforcement is applied. In this case, the optimal con-
vergence of value functions is theoretically guaranteed
when the dynamics of environments follow a discrete
MDP; however, privacy is not provided, as all the data
must be shared.

On the opposite end of the spectrum, in IDRL (inde-
pendent DRL), each agent independently applies CRL
only using its own local information; no information is
shared. In this case, privacy is completely preserved,
but the learning results will be different and indepen-
dent. In particular, accuracy will be unacceptable if
the agents have incomplete but important perceptions
about the environment. DRL can be viewed as an in-
termediate approach between CRL and IDRL, in that
the parties share only some information and accord-
ingly reap only some gains in accuracy.

The table also includes the direct use of general SFE
and our approach of PPRL. Both PPRL and SFE ob-
tain good privacy and good accuracy. Although our
solution incurs a significant cost (as compared to CRL,
IDRL, and DRL) in computation and communication
to obtain this, it does so with significantly improved
computational efficiency over SFE. We provide a more
detailed comparison of the privacy, accuracy, and effi-
ciency of our approach and other possible approaches
along with our experimental results in Section 6.

2. Preliminaries

2.1. Reinforcement Learning and MDP

Let S be a finite state set and A be a finite action set.
A policy π is a mapping from state/action pair (s, a)
to the probability π(s, a) with which action a is taken
at state s. At time step t, we denote by st, at, and rt,
the state, action, and reward at time t, respectively.

A Q-function is the expected return Qπ(s, a) =
Eπ

{∑∞
k=0 γkrt+k+1 | st = s, at = a

}
, where γ is a dis-

count factor (0 ≤ γ < 1). The goal is to learn the op-
timal policy π maximizing the Q-function: Q∗(s, a) =
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(s1, a1 ,r1, s2 )A      A     A     A (s1, a1 ,r1, s2 )B       B     B     B

(st , at  ,rt , st+1)A       A    A      A (st , at  ,rt , st+1)B       B     B     B

(s1, a1 ,r1, s2 )

(st , at  ,rt , st+1)

....
....

....
....

....
....

agent A

agent B

Partitioned-by-time Partitioned-by-observation

agent A agent B

Figure 1. Partitioning model in the two-agent case

maxπ Q(s, a) for all (s, a). In SARSA learning, Q-
values are updated at each step as:

∆Q(st, at) ← α(rt + γQ(st+1, at+1)−Q(st, at)),
Q(st, at) ← ∆Q(st, at) + Q(st, at), (1)

where α is the learning rate. Q-learning is obtained
by replacing the update of ∆Q by:

∆Q(st, at) ← α(rt + γ max
a

Q(st+1, a)−Q(st, at)).

Iterating these updates under appropriate conditions,
optimal convergence of Q-values is guaranteed with
probability 1 in discrete MDPs (Sutton & Barto, 1998;
Watkins, 1989); the resulting optimal policy can be
readily obtained.

2.2. Modeling Private Information in DRL

Let ht = (st, at, rt, st+1, at+1), let H = {ht}, and sup-
pose there are m agents. We consider two kinds of
partitioning of H (see Fig. 1).

Partitioned-by-Time. This model assumes that
only one agents interacts with the environment at
any time step t. Let T i be the set of time steps at
which only ith agent has interactions with the envi-
ronment. Then T i ∩ T j = ∅, (i �= j) and the set
Hi = {ht | t ∈ T i} is considered the private infor-
mation of the ith agent.

Partitioned-by-Observation. This model assumes
that states and actions are represented as a collection
of state and action variables. The state space and the
action space are S =

∏

i Si and A =
∏

i Ai where
Si and Ai are the space of the ith agent’s state and
action variables, respectively. Without loss of gener-
ality (and for notational simplicity), we consider each
agent’s local state and action spaces to consist of a sin-
gle variable. If st ∈ S is the joint state of the agents
at time t, we denote by si

t the state that ith agent per-
ceives and by ai

t the action of ith agent. Let ri
t be the

local reward of ith agent obtained at time t. We define
the global reward (or reward for short) as rt =

∑

i ri
t in

this model. Our Q-functions are evaluated based on

this global reword. The perception of the ith agent at
time t is denoted as hi

t = {si
t, a

i
t, r

i
t, s

i
t+1, a

i
t+1}. The

private information of the ith agent is Hi = {hi
t}.

We note that partitioning by observation is more gen-
eral than partitioning by time, in that one can always
represent a sequence that is partitioned by time by
one that is partitioned by observation. However, we
provide more efficient solutions in simpler case of par-
titioning by time.

Let πc be a policy learned by CRL. Then, informally,
the objective of PPRL is stated as follows:
Statement 1. The ith agent takes Hi as inputs. Af-
ter the execution of PPRL, all agents learn a policy π
which is equivalent to πc. Furthermore, no agent can
learn anything that cannot be inferred from π and its
own private input.

This problem statement can be formalized as in
SFE (Goldreich, 2004). This is a strong privacy re-
quirement which precludes consideration of solutions
that reveal intermediate Q-values, actions taken, or
states visited. We assume our agents behave semi-
honestly, a common assumption in SFE—this assumes
agents follows their specified protocol properly, but
might also use their records of intermediate computa-
tions in order to attempt to learn other parties’ private
information.

3. Cryptographic Building Blocks

Our solutions make use of several existing crypto-
graphic tools. Specifically, in our protocol, Q-values
are encrypted by an additive homomorphic cryptosys-
tem, which allows the addition of encrypted values
without requiring their decryption, as described in Sec-
tion 3.1. Using the homomorphic properties, this al-
lows encrypted Q-values are updated in the regular RL
manner, while unencrypted Q-values are not known to
agents. For computations which cannot be treated by
the homomorphic property, we use SFE as a primitive,
as we describe in Section 3.2.

3.1. Homomorphic Public Key Cryptosystems

In a public key cryptosystem, encryption uses a public
key that can be known to everyone, while decryption
requires knowledge of the corresponding private key.
Given a corresponding pair of (sk, pk) of private and
public keys and a message m, then c = epk(m; �) de-
notes a (random) encryption of m, and m = dsk(c)
denotes decryption. The encrypted value c uniformly
distributes over ZN if � is taken from ZN randomly.
An additive homomorphic cryptosystem allows addi-
tion computations on encrypted values without knowl-
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edge of the secret key. Specifically, there is some op-
eration · (not requiring knowledge of sk) such that
for any plaintexts m1 and m2, epk(m1 + m2; �) =
epk(m1; �1) · epk(m2; �2), where � is uniformly random
provided that at least one of �1 and �2 is. Based on this
property, it also follows that given a constant k and the
encryption epk(m1; �), we can compute multiplications
by k via repeated application of ·. This also enables a
re-randomization property, which allows the computa-
tion of a new random encryption c′ = epk(m; �′) of m
from an existing encryption c = epk(m; �) of m, again
without knowledge of the private key or of m, as fol-
lows: epk(m; �) = Encpk(m; �1) · Encpk(0; �2). In the
rest of the paper, we omit the random number � from
our encryptions for simplicity.

In an (m, t)-threshold cryptosystem, m agents share a
common public key pk while the agents hold differ-
ent private keys sk1, ..., skn. Each agent can encrypt
any message with the common public key. Decryption
cannot be performed by fewer than t agents, and can
be performed by any group of at least t agents us-
ing a recovery algorithm based on the public key and
their decryption shares dsk1(c), ..., dskn(c). We require
a cryptosystem that provides semantic security (un-
der appropriate computational hardness assumptions),
re-randomization, the additive homomorphic property,
and threshold decryption, such as the generalized Pail-
lier cryptosystem (D̊amgard & Jurik, 2001).

3.2. Private Comparison and Division

As mentioned, secure function evaluation (SFE) is a
cryptographic primitive which allows two or more par-
ties to evaluate a specified function of their inputs
without revealing (anything else about) their inputs
to each other (Goldreich, 2004; Yao, 1986). Although
our overall solution is more efficient than using SFE,
we do make use of SFE for two kinds of computations.

One is the problem of private comparison of random
shares. Let x = (x1, ..., xd) ∈ Z

d
N . For our purposes,

A and B have random shares of x if A has xA =
(xA

1 , ..., xA
d ) and B has xB = (xB

1 , ..., xB
d ) such that

xA
i and xB

i are uniformly distributed in ZN such that
xi = (xA

i +xB
i ) mod N for all i. If A holds xA and B

holds xB, where xA and xB are random shares of x,
then private comparison of random shares computes
the index i∗ such that i∗ = argmaxi(xA

i +xB
i ) in such

a way that A learns only i∗ and B learns nothing.

The other is a problem of private division of random
shares. The input of A and B are random shares of
x, xA ∈ ZN and xB ∈ ZN , respectively. Let K be an
integer known to both parties. Then, private division
of random shares computes random shares QA and

QB of quotient Q ∈ ZN such that x = (QK + R)
mod N , where R ∈ ZN (0 ≤ R < K), Q = (QA + QB)
mod N . After the protocol, A and B learn QA and
QB, respectively, and nothing else.

We use private division of random shares in several
places in our protocols to achieve private division of
encrypted values. Suppose agent A has a key pair
(pk, sk) and agent B knows pk and epk(x). The follow-
ing protocol allows B to learn the encrypted quotient
epk(Q) from epk(x) and K:

1. B computes c← epk(x)·epk(−xB), xB ∈r ZN and send
c to A.

2. A computes the decryption xA ← dsk(c)(≡ x − xB

mod N) .

3. Using SFE for private division on A and B’s inputs
xA and xB, respectively, A and B obtain outputs QA

and QB , respectively.

4. A sends epk(Q
A) to B.

5. B computes epk(Q)← epk(Q
A) · epk(Q

B).

4. Private Q-Value Update

In this section, we describe privacy-preserving SARSA
update of Q-values under random action selection is
described for our two partitioning models. We ex-
tend this to (ε-)greedy action selection in Section 5.
We assume that reward r, learning rate α, and dis-
count rate γ are non-negative rational numbers and
that

∑∞
t=1(γ

tLrmax) < N , where rmax is the largest
reward that agents can obtain and L ∈ ZN is a param-
eter defined in Section 4.1. In this paper, we describe
protocols for two agents; these can be extended to m-
agent case (m ≥ 3) straightforwardly, as will be shown
in an extended version of the paper.

4.1. Partitioned-by-Time Model

We first restrict our attention to the case where agent
A has perceptions during T A = {1, ..., t − 1} and B
has perceptions during T B = {t}. In this setting, A
first computes can learn intermediate Q-values during
the time period T A, because they can be locally com-
puted only from A’s perception. At time t, the new
Q-values must be computed based on the intermediate
Q-values known to A and B’s observation at time t.
In brief, we do this by carrying out the update on en-
crypted Q-values using the homomorphic property to
carry this out privately. However, the update includes
the multiplication of rational numbers, such as α or γ,
so the computation is not closed in ZN . Hence, we first
scale these rational numbers by multiplying with large
enough integers so that all computations are closed in
ZN . We use private division of encrypted values to
remove the scaling.
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• Public input; L, K, learning rate α, discount rate γ

• A’s input: Q(s, a) (trained by A during T A)

• B’s input: (st, at)

• A’s output: Nothing

• B’s output: Encryption of updated Q-value c(st, at)

1. A: Compute eA(Q(s, a)) for all (s, a) and send to B.

2. B: Take action at and get rt, st+1.

3. B: Choose at+1 randomly.

4. Update Q-value:
(a) B: Compute eA(K∆Q(st, at)) by eq. 3.

(b) B: Do private division of eA(K∆Q(st, at))
with A, then B learns eA(∆Q′(st, at)).

(c) B: Update c(st, at) by eq. 4.

Figure 2. Private update of Q-values in partitioned-by-
time model (SARSA/random action selection)

We now describe our protocol for private update,
shown in Fig. 2, in more detail. Let pkA be A’s pub-
lic key. At step 1, A computes c(s, a) = epkA

(Q(s, a))
for all (s, a) and sends them to B. B takes action at,
gets rt, st+1 (step 2), and chooses at+1 randomly (step
3). A and B must now update the encrypted Q-value
c(s, a). By encrypting both sides of SARSA update
(eq. 1), we obtain:

c(st, at) ← epkA
(∆Q(st, at) + Q(st, at)),

= epkA
(∆Q(st, at)) · epkA

(Q(st, at))
= ∆c(st, at) · c(st, at), (2)

where ∆c(st, at) = epkA
(∆Q(st, at)). If ∆c(st, at) is

computed by B from what B observes, B can update
c(st, at) by eq. 2 locally. Therefore, step 4 is devoted
to the computation of ∆c(st, at).

As mentioned, large integers K and L are used to treat
the multiplication of rationals α and γ, where αγK ∈
ZN and Lrt ∈ ZN for all rt. Multiplying K to both
sides of eq. 1 and multiplying L to rt, we obtain

K∆Q(st, at)← Kα(Lrt + γQ(st+1, at+1)−Q(st, at)),

in which the computation is closed in ZN . Encrypting
both sides by A’s public key, we obtain

epkA
(K∆Q(st, at))

= epkA
(Lrt)αK · c(st+1, at+1)αγK · c(st, at)−αK .(3)

Since K, L, α, γ are public and B has rt, c(s, a), B
can compute epkA

(K∆Q(st, at)) by eq. 3 (step 4(a)).
B needs to divide epkA

(K∆Q(st, at)) by K, however,
division is again not allowable. Instead, a quotient
∆Q′(st, at) satisfying ∆Q(st, at) = K∆Q′(st, aT ) +

R(0 ≤ R < K) is computed by private encrypted
division and B obtains epkA

(∆Q′(st, at)) (step 4(b)).
Then, B finally computes

c(st, at)← epkA
(∆Q′(st, at)) · c(st, at). (4)

It follows that eq. 4 is equivalent to eq. 2 except for
the truncation error included by the private encrypted
division step (step 4(c)). This truncation is negligibly
small if L is sufficiently large.
Lemma 1. If A and B behave semi-honestly, then af-
ter the private update of Q-values for SARSA and ran-
dom action selection in partitioned-by-time model, B
correctly updates encrypted Q-values but learn nothing
else. A learns nothing.

The proof of this lemma (omitted for space) follows the
standardized proof methodology of secure multi-party
computation (Goldreich, 2004), showing that one can
create the required algorithms, called simulators, for
A and B. Intuitively, Step 4(b) is secure because it is
implemented by SFE. Everything else that B receives
except for messages received at steps for step 4(b) are
encrypted by A’s public key, so do not reveal anything.
A does not receive anything except messages that are
part of the SFE in step 4(b), so does not learn any-
thing. Thus, the protocol is secure overall.

For the general setting of T A and T B, after time t, if B
interacts with the environment at time t+1 again, the
protocol can be started from step 2. When interaction
switches back to A, an SFE step is used to change the
encryption of the Q-values from A’s private key to B’s
private key via an SFE step, and then the roles of A
and B are switched.

4.2. Partitioned-by-Observation Model

In this model, we use a (2, 2)-threshold cryptosystem.
Both parties share a common public key pk: encryp-
tion of m by pk is denoted by e(m) in this section. A
and B hold different secret keys skA and skB for de-
cryption shares, respectively. A and B cannot decrypt
without both cooperating.

In this partitioning model, we write at = (aA
t , aB

t ),
st = (sA

t , sB
t ), and rt = rA

t + rB
t . A receives only

(sA
t , aA

t , rA
t ) and B receives only (sB

t , aB
t , rB

t ). Private
update of Q-values in this model is shown in Fig. 3.
In this model, eq. 3 is rewritten as

e(K∆Q(st, at)) = XA ·XB ·X (5)
XA = e(LrA

t )αKL, XB = e(LrB
t )αKL,

X = c(st+1, at+1)αγK · c(st, at)−αK .

XA and XB can be computed by A and B. To obtain
c(st+1, at+1) and c(st, at), let h, i, j, k be indices of Q-
tables where h ∈ SA, i ∈ SB, j ∈ AA, k ∈ AB. At
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step 4(a), A sends XA and tables {cik}, {c′ik} with re-
randomization such that

cik = c(sA
t , i, aA

t , k) · e(0) (i ∈ SB, k ∈ AB), (6)
c′ik = c(sA

t+1, i, a
A
t+1, k) · e(0) (i ∈ SB, k ∈ AB), (7)

to B. B determines c(st, at) = csB
t ,aB

t
, c(st+1, at+1) =

c′
sB

t+1,aB
t+1

and obtains e(K∆Q(st, at)) by eq. 5 (step

4(b)). Then computes e(∆Q′(st, at)) by private divi-
sion (step 4(c)). For all (hijk), B sets

∆chijk ←
{

e(∆Q′(st, at)) (i = sB
t , k = aB

t )
e(0) (o.w.) (8)

and sends {∆chijk} to A (step 4(d)). Finally, for all
(ik), Q-values are updated as

c(sA
t , i, aA

t , k) ← c(sA
t , i, aA

t , k) ·∆csA
t iaA

t k. (9)

by A. With this update, e(∆Q′(st, at)) is added
only when (h, i, j, k) = (sA

t , sB
t , aA

t , aB
t ). Otherwise,

e(0) is added. Note that A cannot tell which ele-
ment is e(∆Q′(st, at)) in {∆chijk} because of the re-
randomization. Thus, eq. 9 is the desired update.

Lemma 2. If A and B behave semi-honestly, then
after the private update of Q-values for SARSA and
random action selection in partitioned-by-observation
model, A updates encrypted Q-values correctly but
learns nothing. B learns nothing.

By iterating private updates, encrypted Q-values
trained by SARSA learning are obtained.

5. Private Greedy Action Selection

Private distributed algorithms for greedy action selec-
tion to compute a∗ = argmaxa Q(s, a) from encrypted
Q-values in both partitioning models are described.
These are used for: (1) (ε-)greedy action selection, (2)
max operation in updates of Q-learning, and (3) ex-
tracting learned policies from final Q-values. In the
partitioned-by-time model, this is readily solved by us-
ing private comparison, so is omitted.

5.1. Private Greedy Action Selection in
Partitioned-by-observation Model

When A and B observe sA
t and sB

t , respec-
tively, private greedy action selection requires that
(1) A obtains aA∗ and nothing else, (2) B ob-
tains aB∗ and nothing else, where (aA∗, aB∗) =
argmax(aA,aB)(Q(sA

t , aA, sB
t , aB)).

The protocol is described in Fig. 4. Threshold de-
cryption is used here, too. First, A sends encrypted
Q-values c(sA

t , i, j, k) with re-randomization for all

• Public input; L, K, learning rate α, discount rate γ

• A’s input: (sA
t , aA

t ), B’s input: (sB
t , aB

t )

• A’s output: Encryption of updated Q-value c(st, at)

• B’s output: Nothing

1. A: Initialize Q(s, a) arbitrarily and compute
c(s, a)(= e(Q(s, a))) for all (s, a).

2. Interaction with the environment:
• A: Take action aA

t and get rA
t , sA

t+1.

• B: Take action aB
t and get rB

t , sB
t+1.

3. Action selection:
• A: Choose aA

t+1 randomly.

• B: Choose aB
t+1 randomly.

4. Update Q-value:
(a) A: Send XA, {cik}, {c′ik} to B by eq. 6, 7.

(b) B: Compute e(K∆Q(st, at)) by eq. 5

(c) B: Do private division of e(K∆Q(st, at)) with
A, then B learns e(∆Q′(st, at)).

(d) B: Generate {∆chijk} by eq. 8 and send it to
A.

(e) A: Update c(s, a) with {∆chijk} by eq. 9.

Figure 3. Private update of Q-values in partitioned-by-
observation model (SARSA/random action selection)

(i, j, k). For all (i, k), B generates and sends a table
{cik} and {σik} whose values are set to

cik = c(sA
t , i, sB

t , π(k)) · e(−QB
iπ(k)), (10)

σB
ik = dB(cik), (11)

where π : SB �→ SB is a random permutation
and QB

iπ(k) ∈r ZN . At the third step, A recov-
ers QA

ik(= Q(sA
t , i, sB

t , k) − QB
ik). With these ran-

dom shares of Q(sA
t , i, sB

t , π(k)), the values (i∗, k∗) =
argmax(i,k)(QA

ik+QB
ik) are obtained by A using private

comparison. Finally, B learns aB∗ = π−1(k∗), where
π−1 is the inverse of π.

Lemma 3. If A and B behaves semi-honestly, then,
after the execution of private greedy action selection, A
learns aA∗ and nothing else. B learns aB∗ and nothing
else.

Note that aB∗ is not learned by A because index k is
obscured by the random permutation generated by B.

5.2. Security of PPRL

Privacy-preserving SARSA learning is constructed by
alternate iterations of private update and random ac-
tion selection. The policy π can be extracted by
computing argmaxa Q(s, a) for all (s, a) using private
greedy action selection. The security follows from the
earlier lemmas:
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• A’s input: c(s, a) for all (s, a), sA
t , B’s input: sB

t

• A’s output: aA∗, B’s output: aB∗

1. A: For all i ∈ SB , j ∈ AA, k ∈ AB, send c(sA
t , i, j, k)

to B.

2. B: For all j ∈ AA, k ∈ AB, compute cik(eq. 10),
σB

ik(eq. 11) and send {cik}, {σik}to A.

3. A: For all i ∈ AA, k ∈ AB , compute σB
ik = dB(cik).

Then, compute QA
ik by applying the threshold de-

cryption recovery algorithm with public key pk and
shares σA

ik, σB
ik.

4. A and B: Compute (i∗, k∗) = argmax(i,k)(Q
A
ik +

QB
ik) by private comparison. (A learns (i∗.k∗).)

5. A: Send k∗ to B. Then output aA∗ = i∗.

6. B: Output aB∗ = π−1(k∗).

Figure 4. Private greedy action selection in partitioned-by-
observation model

Theorem 1. SARSA learning with private update of
Q-values and random action selection is secure in the
sense of Statement 1.

Privacy-preserving SARSA learning and Q-learning
with (ε-)greedy action selection can be constructed by
combining private update and private greedy random
action selection. However, these PPRLs do not follow
Statement 1 because it does not allow agents to know
greedy actions obtained in the middle of the learning.
Therefore, the problem definition is relaxed as follows:

Statement 2. The ith agent takes Hi as inputs. Af-
ter the execution of PPRL, all agents learn a series
of greedy actions during learning steps and a policy
π which is equivalent to πc. Furthermore, no agent
learns anything else.

Theorem 2. SARSA and Q-learning with private up-
date of Q-values and private greedy/ε-greedy action se-
lection is secure in the sense of Statement 2.

6. Experimental Results

We performed experiments to examine the efficiency
of PPRL. Programs were written in Java 1.5.0. As the
cryptosystem, (D̊amgard & Jurik, 2001) with 1024-bit
keys was used. For SFE, Fairplay (Malkhi et al., 2004)
was used. Experiments were carried out under Linux
with 1.2 GHz CPU and 2GB RAM.

6.1. Random Walk Task

This random walk task is partitioned by time. The
state space is S = {s1, ..., sn}(n = 40) and the action
space is A = {a1, a2}. The initial and goal states are
s1 and sn, respectively. When a1 is taken at sp(p �= n),

the agent moves to sp+1. When a2 is taken at sp(p �=
1), the agent moves to sp−1, but the agent does not
move when p = 1. A reward r = 1 is given only when
the agent takes a1 at sn−1; else, r = 0. The episode is
terminated at sn or after 1, 000 steps.

A learns 15, 000 steps and then B learns 15, 000 steps.
CRL, IDRL, PPRL, and SFE were compared. SARSA
learning with random or ε-greedy action selection was
used for all settings. Table 2 shows the comparison re-
sults of computational cost, learning accuracy (number
of steps to reach the goal state, averaged over 30 trials,
and number of trials that successfully reach the goal
state), and privacy preservation.

Learning accuracy of PPRL and SFE are the same as
CRL because the policy learned by PPRL and SFE are
guaranteed to be equal to the one learned by CRL.
In contrast, the optimal policy is not obtained suc-
cessfully by IDRL because learning steps for IDRL
agents correspond to the half of others. Because most
of the computation time is spent for private division
and comparison, computation time with random se-
lection is much smaller than with ε-greedy selection.
These experiments demonstrate that PPRL obtains
good learning accuracy, while IDRL does not, though
computation time is larger than DRL and IDRL.

6.2. Load Balancing Task

In these experiments, we consider a load balancing
problem (Cogill et al., 2006) in the partitioned-by-
observation model with two factories A and B. Each
factory can observe its own backlog sA, sB ∈ {0, ..., 5}.
At each time step, each factory decides whether or
not to pass a job to other factories; the action vari-
able is aA, aB ∈ {0, 1}. Jobs arrive and are pro-
cessed independently at each time step with probabil-
ity 0.4 and 0.48, respectively. Agent A receives reward
rA = 50 − (sA)2. If A passes the job to B, then A’s
reward is reduced by 2 as a cost for redirection. If
an overflow happens, the job is lost and rA = 0 is
given. Similarly, rB is computed as well. Perceptions
(sA, aA, rA) and (sB, aB, rB) are to be kept private.
(In this task, actions cannot be kept private because
the parties learn them from whether the job was passed
or not.)

Distributed reward DRL (RDRL) (Schneider et al.,
1999) is tested in addition to the four RLs tested
earlier. RDRL is a variant of DRL, which is the
same with IDRL except that global rewards are shared
among distributed agents (Schneider et al., 1999).
SARSA/ε-greedy action selection was used in all set-
tings. Fig 5 shows the changes of sum of global rewards
per episode. For avoiding overflows, cooperation be-
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Table 2. Comparison of efficiency in random walk tasks
comp. accuracy privacy
(sec) avg. #goal loss

CRL/rnd. 0.901 40.0 30/30 disclosed all
IDRL/rnd. 0.457 247 8/30 Stmt. 1

PPRL/rnd. 4.71 × 103 40.0 30/30 Stmt. 1
SFE/rnd. > 7.0 × 106 40.0 30/30 Stmt. 1

CRL/ε-grd. 0.946 40.0 30/30 disclosed all
IDRL/ε-grd. 0.481 — 0/30 Stmt. 2

PPRL/ε-grd. 3.36 × 104 40.0 30/30 Stmt. 2
SFE/ε-grd. > 7.0 × 106 40.0 30/30 Stmt. 2

Table 3. Comparison of efficiency in load balancing tasks.
comp. (sec) accuracy privacy loss

CRL 5.11 90.0 disclosed all
RDRL 5.24 87.4 partially disclosed
IDRL 5.81 84.2 Stmt. 1
PPRL 8.85 ×105 90.0 Stmt. 2
SFE > 2.0 × 107 90.0 Stmt. 2
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Figure 5. Performance evaluation (sum of global rewards
in an episode, normalized by the number of steps in an
episode) in load balancing tasks (average of 100 trials).

tween agents is essential in this task. The performance
of IDRL agents is inferior to others because selfish be-
havior is learned. In contrast, CRL, PPRL and SFE
agents successfully obtain cooperative behavior. The
performance of RDRL is intermediate because percep-
tions of RDRL agents are limited. Efficiency is shown
in Table 3. Since ε-greedy action selection was used,
the privacy of IDRL, PPRL and SFE follow Statement
2. The privacy preservation of RDRL is between CRL
and PPRL. As discussed in Section 1, PPRL achieves
both the guarantee of privacy preservation and the op-
timality which is equivalent to that of CRL; SFE does
the same, but at a much higher computational time.
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Abstract

Deep Belief Networks (DBN’s) are generative
models that contain many layers of hidden vari-
ables. Efficient greedy algorithms for learning
and approximate inference have allowed these
models to be applied successfully in many ap-
plication domains. The main building block of
a DBN is a bipartite undirected graphical model
called a restricted Boltzmann machine (RBM).
Due to the presence of the partition function,
model selection, complexity control, and exact
maximum likelihood learning in RBM’s are in-
tractable. We show that Annealed Importance
Sampling (AIS) can be used to efficiently es-
timate the partition function of an RBM, and
we present a novel AIS scheme for comparing
RBM’s with different architectures. We further
show how an AIS estimator, along with approx-
imate inference, can be used to estimate a lower
bound on the log-probability that a DBN model
with multiple hidden layers assigns to thetest
data. This is, to our knowledge, the first step
towards obtaining quantitative results that would
allow us to directly assess the performance of
Deep Belief Networks as generative models of
data.

1. Introduction
Deep Belief Networks (DBN’s), recently introduced by
Hinton et al. (2006) are probabilistic generative models that
contain many layers of hidden variables, in which each
layer captures strong high-order correlations between the
activities of hidden features in the layer below. The main
breakthrough introduced by Hinton et al. was a greedy,
layer-by-layer unsupervised learning algorithm that allows
efficient training of these deep, hierarchical models. The
learning procedure also provides an efficient way of per-
forming approximate inference, which makes the values of

Appearing inProceedings of the25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

the latent variables in the deepest layer easy to infer. These
deep generative models have been successfully applied in
many application domains (Hinton & Salakhutdinov, 2006;
Bengio & LeCun, 2007).

The main building block of a DBN is a bipartite undirected
graphical model called the Restricted Boltzmann Machine
(RBM). RBM’s, and their generalizations to exponential
family models, have been successfully applied in collab-
orative filtering (Salakhutdinov et al., 2007), information
and image retrieval (Gehler et al., 2006), and time series
modeling (Taylor et al., 2006). A key feature of RBM’s
is that inference in these models is easy. An unfortunate
limitation is that the probability of data under the model is
known only up to a computationally intractable normaliz-
ing constant, known as the partition function. A good es-
timate of the partition function would be extremely helpful
for model selection and for controlling model complexity,
which are important for making RBM’s generalize well.

There has been extensive research on obtaining determin-
istic approximations (Yedidia et al., 2005) or determin-
istic upper bounds (Wainwright et al., 2005) on the log-
partition function of arbitrary discrete Markov random
fields (MRF’s). These variational methods rely critically
on an ability to approximate the entropy of the undirected
graphical model. However, for densely connected MRF’s,
such as RBM’s, these methods are unlikely to perform
well. There have also been many developments in the
use of Monte Carlo methods for estimating the partition
function, including Annealed Importance Sampling (AIS)
(Neal, 2001), Nested Sampling (Skilling, 2004), and many
others (see e.g. Neal (1993)). In this paper we show how
one such method, AIS, by taking advantage of the bipartite
structure of an RBM, can be used to efficiently estimate
its partition function. We further show that this estimator,
along with approximate inference, can be used to estimate a
lower bound on the log-probability that a DBN model with
multiple hidden layers assigns to training or test data. This
result allows us to assess the performance of DBN’s as gen-
erative models and to compare them to other probabilistic
models, such as plain mixture models.
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2. Restricted Boltzmann Machines
A Restricted Boltzmann Machine is a particular type of
MRF that has a two-layer architecture in which the visi-
ble, binary stochastic unitsv ∈ {0, 1}D are connected to
hidden binary stochastic unitsh ∈ {0, 1}M . The energy of
the state{v,h} is:

E(v,h; θ) = −
D∑

i=1

M∑

j=1

Wijvihj−
D∑

i=1

bivi−
M∑

j=1

ajhj , (1)

whereθ = {W,b,a} are the model parameters:Wij repre-
sents the symmetric interaction term between visible uniti

and hidden unitj; bi andaj are bias terms. The probability
that the model assigns to a visible vectorv is:

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (3)

wherep∗ denotes unnormalized probability, andZ(θ) is the
partition function or normalizing constant. The conditional
distributions over hidden unitsh and visible vectorv are
given by logistic functions:

p(h|v) =
∏

j

p(hj |v), p(v|h) =
∏

i

p(vi|h) (4)

p(hj = 1|v) = σ(
∑

i

Wijvi + aj) (5)

p(vi = 1|h) = σ(
∑

j

Wijhj + bi), (6)

whereσ(x) = 1/(1+exp(−x)). The derivative of the log-
likelihood with respect to the model parameterW can be
obtained from Eq. 2:

∂ ln p(v)

∂Wij
= EP0

[vihj ] − EPModel
[vihj ],

where EP0
[·] denotes an expectation with respect to the

data distribution and EPModel
[·] is an expectation with re-

spect to the distribution defined by the model. The ex-
pectation EPModel

[·] cannot be computed analytically. In
practice learning is done by following an approximation
to the gradient of a different objective function, called the
“Contrastive Divergence” (CD) (Hinton, 2002):

∆Wij = ε
(
EP0

[vihj ] − EPT
[vihj]

)
. (7)

The expectation EPT
[·] represents a distribution of samples

from running the Gibbs sampler (Eqs. 5, 6), initialized at
the data, forT full steps. SettingT = ∞ recovers maxi-
mum likelihood learning, althoughT is typically set to one.

Even though CD learning may work well in practice, the
problem of model selection and complexity control still re-
mains. Suppose we have two RBM’s with parameter values

θA and θB. Suppose that each RBM has different num-
ber of hidden units and was trained using different learning
rates and different numbers of CD steps. On the validation
set, we are interested in calculating the ratio:

p(v; θA)

p(v; θB)
=

p∗(v; θA)

p∗(v; θB)

Z(θB)

Z(θA)
,

which requires knowing the ratio of partition functions.

3. Estimating Ratios of Partition Functions

Suppose we have two distributions defined on some space
V with probability density functions:pA(v) = p∗A(v)/ZA

and pB(v) = p∗B(v)/ZB . One way to estimate the ra-
tio of normalizing constants is to use a simple importance
sampling (IS) method. Suppose thatpA(v) 6= 0 whenever
pB(v) 6= 0:

ZB

ZA
=

∫
p∗B(v)dv

ZA
=

∫
p∗B(v)

p∗A(v)
pA(v)dv = EpA

[
p∗B(v)

p∗A(v)

]

.

Assuming we can draw independent samples frompA, the
unbiased estimate of the ratio of partition functions can be
obtained by using a simple Monte Carlo approximation:

ZB

ZA
≈ 1

M

M∑

i=1

p∗B(v(i))

p∗A(v(i))
≡ 1

M

M∑

i=1

w(i) = r̂IS, (8)

wherev(i) ∼ pA. If pA and pB are not close enough,
the estimator̂rIS will be very poor. In high-dimensional
spaces, the variance ofr̂IS will be very large (or possibly
infinite), unlesspA is a near-perfect approximation topB.

3.1. Annealed Importance Sampling (AIS)

Suppose that we can define a sequence of intermediate
probability distributions:p0, ..., pK , with p0 = pA andpK

= pB, which satisfy the following conditions:

C1 pk(v) 6= 0 wheneverpk+1(v) 6= 0.

C2 We must be able to easily evaluate the unnormalized
probabilityp∗k(v), ∀v ∈ V , k = 0, ..., K.

C3 For eachk = 0, ..., K−1, we must be able to draw
a samplev′ givenv using a Markov chain transition
operatorTk(v′;v) that leavespk(v) invariant:

∫

Tk(v′;v)pk(v)dv = pk(v′). (9)

C4 We must be able to draw (preferably independent)
samples frompA.

The transition operatorsTk(v′;v) represent the probability
density of transitioning from statev to v′. Constructing a
suitable sequence of intermediate probability distributions

873



On the Quantitative Analysis of Deep Belief Networks

will depend on the problem. One general way to define this
sequence is to set:

pk(v) ∝ p∗A(v)1−βkp∗B(v)βk , (10)

with 0 = β0 < β1 < ... < βK = 1 chosen by the user.
Once the sequence of intermediate distributions has been
defined we have:

Annealed Importance Sampling (AIS) run:

1. Generatev1,v2, ..., vK as follows:

• Samplev1 from pA = p0

• Samplev2 givenv1 usingT1

• ...
• SamplevK givenvK−1 usingTK−1

2. Set

w
(i) =

p∗
1(v1)

p∗
0
(v1)

p∗
2(v2)

p∗
1
(v2)

...
p∗

K−1(vK−1)

p∗
K−2

(vK−1)

p∗
K(vK)

p∗
K−1

(vK)

Note that there is no need to compute the normalizing con-
stants of any intermediate distributions. After performing
M runs of AIS, the importance weightsw(i) can be substi-
tuted into Eq. 8 to obtain an estimate of the ratio of partition
functions:

ZB

ZA
≈ 1

M

M∑

i=1

w(i) = r̂AIS. (11)

Neal (2005) shows that for sufficiently large number of in-
termediate distributionsK, the variance of̂rAIS will be
proportional to1/MK. ProvidedK is kept large, the total
amount of computation can be split in any way between the
number of intermediate distributionsK and the number of
annealing runsM without adversely affecting the accuracy
of the estimator. If samples drawn frompA are indepen-
dent, the number of AIS runs can be used to control the
variance in the estimate of̂rAIS:

Var(r̂AIS) =
1

M
Var(w(i)) ≈ ŝ2

M
= σ̂2, (12)

whereŝ2 is estimated simply from the sample variance of
the importance weights.

3.2. Ratios of Partition Functions of two RBM’s

Suppose we have two RBM’s with parameter valuesθA =
{WA,bA,aA} andθB = {WB,bB,aB} that define prob-
ability distributionspA andpB over V ∈ {0, 1}D. Each
RBM can have a different number of hidden unitshA ∈
{0, 1}MA andhB ∈ {0, 1}MB . The generic AIS interme-
diate distributions (Eq. 10) would be harder to sample from
than an RBM. Instead we introduce the following sequence
of distributions fork = 0, ..., K:

pk(v) =
p∗k(v)

Zk
=

1

Zk

∑

h

exp (−Ek(v,h)), (13)

where the energy function is given by:

Ek(v,h) = (1 − βk)E(v,hA; θA) + βkE(v,hB ; θB), (14)

with 0 = β0 < β1 < ... < βK = 1. For i = 0, we have
β0 = 0 and sop0 = pA. Similarly, for i = K, we have
pK = pB. For the intermediate values ofk, we will have
some interpolation betweenpA andpB.

Let us now define a Markov chain transition operator
Tk(v′;v) that leavespk(v) invariant. Using Eqs. 13, 14,
it is straightforward to derive a block Gibbs sampler. The
conditional distributions are given by logistic functions:

p(hA
j = 1|v) = σ

(

(1 − βk)(
∑

i

WA
ij vi + aA

j )

)

(15)

p(hB
j = 1|v) = σ

(

βk(
∑

i

WB
ij vi + aB

j )

)

(16)

p(v′i = 1|h) = σ

(

(1 − βk)(
∑

j

WA
ij hA

j + bA
i )

+ βk(
∑

j

WB
ij hB

j + bB
i )

)

. (17)

Givenv, Eqs. 15, 16 are used to stochastically activate hid-
den unitshA andhB. Eq. 17 is then used to draw a new
samplev′ as shown in Fig. 1 (left panel). Due to the special
structure of RBM’s, the cost of summing outh is linear in
the number of hidden units. We can therefore easily evalu-
ate:

p∗k(v) =
∑

hA,hB

e(1−βk)E(v,hA;θA)+βkE(v,hB;θB)

= e
(1−βk)

∑

i
bA

i vi

MA∏

j=1

(1 + e
(1−βk)(

∑

i
W A

ij vi+aA
j ))

× e
βk

∑

i
bB

i vi

MB∏

j=1

(1 + e
βk(

∑

i
W B

ij vi+aB
j )).

We will assume that the parameter values of each RBM
satisfy |θ| < ∞, in which casep(v) > 0 for all v ∈ V .
This will ensure that condition C1 of the AIS procedure is
always satisfied. We have already shown that conditions
C2 and C3 are satisfied. For condition C4, we can run
a blocked Gibbs sampler (Eqs. 5, 6) to generate samples
from pA. These sample points will not be independent, but
the AIS estimator will still converge to the correct value,
provided our Markov chain is ergodic (Neal, 2001). How-
ever, assessing the accuracy of this estimator can be diffi-
cult, as it depends on both the variance of the importance
weights and on autocorrelations in the Gibbs sampler.

3.3. Estimating Partition Functions of RBM’s

The partition function of an RBM can be found by finding
the ratio to the normalizer forθA = {0,bA,aA}, an RBM
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Figure 1. Left: The Gibbs transition operatorTk(v′;v) leavespk(v) invariant when estimating the ratio of partition functionsZB/ZA.
Middle: Recursive greedy learning consists of learning a stack of RBMs. Right: Two-layer DBN as a generative model.

with a zero weight matrix. From Eq. 3, we know:

ZA = 2MA

∏

i

(1 + ebi). (18)

Moreover,

pA(v) =
∏

i

pA(vi) =
∏

i

1/(1 + e−bi),

so we can draw exact independent samples from this “base-
rate” RBM. AIS in this case allows us to obtain anunbi-
asedestimate of the partition functionZB. This approach
closely resembles simulated annealing, since the interme-
diate distributions of Eq. 13 take form:

pk(v) =
exp((1−βk)vT bA)

Zk

∑

hB

exp(−βkE(v,hB ; θB)).

We gradually changeβk (or inverse temperature) from 0
to 1, annealing from a simple “base-rate” model to the final
complex model. The importance weightsw(i) ensure that
AIS produces correct estimates.

4. Deep Belief Networks (DBN’s)
In this section we briefly review a greedy learning algo-
rithm for training Deep Belief Networks. We then show
how to obtain an estimate of the lower bound on the log-
probability that the DBN assigns to the data.

4.1. Greedy Learning of DBN’s

Consider learning a DBN with two layers of hidden fea-
tures as shown in Fig. 1 (right panel). The greedy strategy
developed by Hinton et al. (2006) uses a stack of RBM’s
(Fig. 1, middle panel). We first train the bottom RBM with
parametersW 1, as described in section 2.

A key observation is that the RBM’s joint distribution
p(v,h1|W 1) is identical to that of a DBN with second-

layer weights tied toW 2 =W 1>. We now consider untying
and refiningW 2, improving the fit to the training data.

For any approximating distributionQ(h1|v), the DBN’s
log-likelihood has the following variational lower bound:

ln p(v|W 1, W 2) ≥
∑

h1

Q(h1|v)
[
ln p(h1|W 2) +

ln p(v|h1, W 1)
]
+ H(Q(h1|v)), (19)

whereH(·) is the entropy functional. We setQ(h1|v) =
p(h1|v, W 1) defined by the RBM (Eq. 5). Initially, when

W 2 = W 1>, Q is the DBN’s true factorial posterior over
h1, and the bound is tight. Therefore, any increase in the
bound will lead to an increase in the true likelihood of the
model. Maximizing the bound of Eq. 19 with frozenW 1 is
equivalent to maximizing:

∑

h1

Q(h1|v) ln p(h1|W 2). (20)

This is equivalent to training the second layer RBM with
vectors drawn fromQ(h1|v) as data.

This scheme can be extended by training a third RBM on
h2 vectors drawn from the second RBM. If we initialize
W 3 =W 2>, we are guaranteed to improve the lower bound
on the log-likelihood, though the log-likelihood itself can
fall (Hinton et al., 2006). Repeating this greedy, layer-by-
layer training several times results in a deep, hierarchical
model.

Recursive Greedy Learning Procedure for the DBN.

1. Fit parametersW 1 of a 1-layer RBM to data.

2. Freeze the parameter vectorW 1 and use samples from
p(h1|v, W 1) as the data for training the next layer of
binary features with an RBM.

3. Proceed recursively for as many layers as desired.

In practice, when adding a new layerl, we typically do not

initialize W l = W l−1>, so the number of hidden units of
the new RBM does not need to be the same as the number
of the visible units of the lower-level RBM.

4.2. Estimating Lower Bounds for DBN’s

Consider the same DBN model with two layers of hidden
features shown in Fig. 1. The model’s joint distribution is:

p(v,h1,h2) = p(v|h1) p(h2,h1), (21)

wherep(v|h1) is defined by Eq. 6), andp(h1,h2) is the
joint distribution defined by the second layer RBM. Note
thatp(v|h1) is normalized.
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By explicitly summing outh2, we can easily evaluate an
unnormalized probabilityp∗(v,h1)=Zp(v,h1). Using the
approximating factorial distributionQ, which we get as a
byproduct of the greedy learning procedure, and the varia-
tional lower bound of Eq. 19, we obtain:

ln
∑

h1

p(v,h1) ≥
∑

h1

Q(h1|v) ln p∗(v,h1)

− ln Z + H(Q(h1|v)) = B(v). (22)

The entropy termH(·) can be computed analytically, since
Q is factorial. The partition functionZ is estimated by run-
ning AIS on the top-level RBM. And the expectation term
can be estimated by a simple Monte Carlo approximation:

∑

h1

Q(h1|v) ln p∗(v,h1) ≈ 1

M

M∑

i=1

ln p∗(v,h1(i)), (23)

whereh1(i) ∼ Q(h1|v). The variance of this Monte Carlo
estimator will be proportional to1/M provided the vari-
ance ofln p∗(v,h1(i)) is finite. In general, we will be in-
terested in calculating the lower bound averaged over the
test set containingNt samples, so

1

Nt

Nt∑

n=1

B(vn) ≈ 1

Nt

Nt∑

n=1

[
1

M

M∑

i=1

ln p∗(vn,h1(i)) +

H(Q(h1|vn))

]

− ln Ẑ = r̂B − ln Ẑ = r̂Bound. (24)

In this case the variance of the estimator induced by the
Monte Carlo approximation will asymptotically scale as
1/(NtM). We will show in the experimental results sec-
tion that the value ofM can be small providedNt is large.

The error of the overall estimator̂rBound in Eq. 24 will be
mostly dominated by the error in the estimate ofln Z. In
our experiments, we obtained unbiased estimates ofẐ and
its standard deviation̂σ using Eqs. 11, 12. We reportln Ẑ

andln (Ẑ ± σ̂).

Estimating this lower bound for Deep Belief Networks with
more layers is now straightforward. Consider a DBN with
L hidden layers. The model’s joint distribution and its ap-
proximate posterior distributionQ are given by:

p(v,h1, ...,hL) = p(v|h1)...p(hL−2|hL−1)p(hL−1,hL)

Q(h1, ...,hL|v) = Q(h1|v)Q(h2|h1)...Q(hL|hL−1).

The bound can now be obtained by using Eq. 22. Note
that most of the computation resources will be spent on
estimating the partition functionZ of the top level RBM.

5. Experimental Results
In our experiments we used the MNIST digit dataset, which
contains 60,000 training and 10,000 test images of ten

handwritten digits (0 to 9), with 28×28 pixels. The dataset
was binarized: each pixel value was stochastically set to 1
in proportion to its pixel intensity. Samples from the train-
ing set are shown in Fig. 2 (top left panel). Annealed im-
portance sampling requires theβk that define a sequence
of intermediate distributions. In all of our experiments this
sequence was chosen by quickly running a few preliminary
experiments and picking the spacing ofβk so as to mini-
mize the log variance of the final importance weights. The
biasesbA of a base-rate model (see Eq. 18) were set by
maximum likelihood, then smoothed to ensure thatp(v) >

0, ∀ v ∈ V . Code that can be used to reproduce experimen-
tal results is available at www.cs.toronto.edu/∼rsalakhu.

5.1. Estimating partition functions of RBM’s

In our first experiment we trained three RBM’s on the
MNIST digits. The first two RBM’s had 25 hidden units
and were learned using CD (section 2) withT=1 andT=3
respectively. We call these models CD1(25) and CD3(25).
The third RBM had 20 hidden units and was learned using
CD with T=1. For all three models we can calculate the ex-
act value of the partition function simply by summing out
the 784 visible units for each configuration of the hiddens.
For all three models we used 500βk spaced uniformly from
0 to 0.5, 4,000βk spaced uniformly from 0.5 to 0.9, and
10,000βk spaced uniformly from 0.9 to 1.0, with a total of
14,500 intermediate distributions.

Table 1 shows that for all three models, using only 10 AIS
runs, we were able to obtain good estimates of partition
functions in just 20 seconds on a Pentium Xeon 3.00GHz
machine. For model CD1(25), however, the variance of
the estimator was high, even with 100 AIS runs. However,
figure 3 (top row) reveals that as the number of annealing
runs is increased, AIS can almost exactly recover the true
value of the partition function across all three models.

We also estimated the ratio of normalizing constants of
two RBM’s that have different numbers of hidden units:
CD1(20) and CD1(25). This estimator could be used to
do complexity control. In detail, using 100 AIS runs with
uniform spacing of 10,000βk, we obtainedln r̂AIS =
ln (ZCD1(20)/ZCD1(25)) = −24.49 with an error estimate
ln (r̂AIS ± 3σ̂) = (−24.19,−24.93). Each sample from
CD1(25) was generated by starting a Markov chain at the
previous sample and running it for 10,000 steps. Com-
pared to the true value of−24.18, this result suggests that
our estimates may have a small systematic error due to the
Markov chain failing to visit some modes.

Our second experiment consisted of training two more re-
alistic models: CD1(500) and CD3(500). We used exactly
the same spacing ofβk as before and exactly the same base-
rate model. Results are shown in table 1 (bottom row). For
each model we were able to get what appears to be a rather
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Training samples MoB (100) Base-rate β = 0 β = 0.5 β = 0.95 β = 1.0

� �

The course of AIS run for model CD25(500)

CD1(500) CD3(500) CD25(500) DBN-CD1 DBN-CD3 DBN-CD25

Figure 2. Top row: First two panels show random samples from the training set and a mixture of Bernoullis model with 100 components.
The last 4 panels display the course of 16 AIS runs for CD25(500) model by starting from a simple base-rate model and annealing to the
final complex model.Bottom row: Random samples generated from three RBM’s and corresponding three DBN’s models.

Table 1. Results of estimating partition functions of RBM’s along with the estimates of the average training and test log-probabilities.
For all models we used 14,500 intermediate distributions.

AIS True
Estimates

Time
Avg. Test log-prob. Avg. Train log-prob.

Runs lnZ ln Ẑ ln (Ẑ ± σ̂) ln (Ẑ ± 3σ̂) (mins) true estimate true estimate

100 CD1(25) 255.41 256.52 255.00, 257.10 0.0000, 257.73 3.3 −151.57 −152.68 −152.35 −153.46
CD3(25) 307.47 307.63 307.44, 307.79 306.91, 308.05 3.3 −143.03 −143.20 −143.94 −144.11
CD1(20) 279.59 279.57 279.43, 279.68 279.12, 279.87 3.1 −164.52 −164.50 −164.89 −164.87

100 CD1(500) — 350.15 350.04, 350.25 349.77, 350.42 10.4 — −125.53 — −122.86
CD3(500) — 280.09 279.99, 280.17 279.76, 280.33 10.4 — −105.50 — −102.81
CD25(500) — 451.28 451.19, 451.37 450.97, 451.52 10.4 — −86.34 — −83.10

accurate estimate ofZ. Of course, we are relying on an em-
pirical estimate of AIS’s accuracy, which could potentially
be misleading. Nonetheless, Fig. 3 (bottom row) shows that
as we increase the number of annealing runs, the value of
the estimator does not oscillate drastically.

While performing these tests, we observed that contrastive
divergence learning withT=3 results in considerably better
generative model than CD learning withT=1: the differ-
ence of 20 nats is striking! Clearly, the widely used prac-
tice of CD learning withT=1 is a rather poor “substitute”
for maximum likelihood learning. Inspired by this result,
we trained a model by starting withT=1, and gradually
increasingT to 25 during the course of CD training, as
suggested by (Carreira-Perpinan & Hinton, 2005). We call
this model CD25(500). Training this model was computa-
tionally much more demanding. However, the estimate of
the average test log-probability for this model was about
−86, which is 39 and 19 nats better than the CD1(500) and
CD3(500) models respectively. Fig. 2 (bottom row) shows
samples generated from all three models by randomly ini-
tializing binary states of the visible units and running alter-
nating Gibbs for 100,000 steps. Certainly, samples gener-

ated by CD25(500) look much more like the real handwrit-
ten digits, than either CD1(500) or CD3(500).

We also obtained an estimate of the log ratio of two parti-
tion functionsr̂AIS = ln ZCD25(500)/ZCD3(500) = 169.96,
using 10,000βk and 100 annealing runs. The estimates of
the individual log-partition functions wereln ẐCD25(500) =

451.28 and ln ẐCD3(500) = 280.09, in which case the log
ratio is451.28−280.09=171.19. This is in agreement (to
within three standard deviations) with the direct estimateof
the ratio,r̂AIS =169.96.

For a simple comparison we also trained several mixture of
Bernoullis models (see Fig. 2, top left panel) with 10, 100,
and 500 components. The corresponding average test log-
probabilities were−168.95, −142.63, and−137.64. The
data generated from the mixture model looks better than
CD3(500), although our quantitive results reveal this is due
to over-fitting. The RBM’s make much better predictions.

5.2. Estimating lower bounds for DBN’s

We greedily trained three DBN models with two hidden
layers. The first model, called DBN-CD1, was greedily
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Figure 3. Estimates of the log-partition functionsln Ẑ as we increase the number of annealing runs. The error bars show ln (Ẑ ± 3σ̂).

learned by freezing the parameter vector of the CD1(500)
model and learning the2nd layer RBM with 2000 hidden
units using CD withT=1. Similarly, the other two models,
DBN-CD3 and DBN-CD25, added 2000 hidden units on
top of CD3(500) and CD25(500), using CD withT=3 and
T=25 respectively. Training the DBN’s took roughly three
times longer than the RBM’s.

Table 2 shows the results. We used 15,000 intermediate
distributions and 500 annealing runs to estimate the parti-
tion function of the2nd layer RBM. This took 2.3 hours.
Further sampling was required for the simple Monte Carlo
approximation of Eq. 23. We usedM=5 samples from
the approximating distributionQ(h|v) for each data vec-
tor v. SettingM=100 did not make much difference. Ta-
ble 2 also reports the empirical error in the estimate of the
lower bound̂rBound. From Eq. 24, we have Var(r̂Bound) =
Var(r̂B) + Var(ln Ẑ), both of which are shown in table 2.
Note that models DBN-CD1 and DBN-CD3 significantly
outperform their single layer counterparts: CD1(500) and
CD3(500). Adding a second layer for those two models im-
proves model performance by at least 25 and 7 nats. This
corresponds to a dramatic improvement in the quality of
samples generated from the models (Fig. 2, bottom row).

Observe that greedy learning of DBN’s does not appear to
suffer severely from overfitting. For single layer models,
the difference between the estimates of training and test
log-probabilities was about 3 nats. For DBN’s, the corre-
sponding difference in the estimates of the lower bounds
was about 4 nats, even though adding a second layer intro-
duced over twice as many (or one million) new parameters.

Table 2. Results of estimating lower boundŝrBound (Eq. 24) on
the average training and test log-probabilities for DBN’s.On av-
erage, the total error of the estimator is about± 2 nats.

Avg. AIS error
bound Error̂rB ln (Ẑ ± 3σ̂)

Model log-prob ±3 std − ln Ẑ

Test DBN-CD1 −100.64 ±0.77 −1.43, +0.57
DBN-CD3 −98.29 ±0.75 −0.91, +0.31
DBN-CD25 −86.22 ±0.67 −0.84, +0.65

Train DBN-CD1 −97.67 ±0.30 −1.43, +0.57
DBN-CD3 −94.86 ±0.29 −0.91, +0.31
DBN-CD25 −82.47 ±0.25 −0.84, +0.65

The result of our experiments for DBN-CD25, however,
was very different. For this model, on the test data we ob-
tainedr̂Bound = −86.22. This is comparable to the esti-
mate of−86.34 for the average test log-probability of the
CD25(500) model. Clearly, we cannot confidently assert
that DBN-CD25 is a better generative model compared to
the carefully trained single layer RBM. This peculiar result
also supports previous claims that if the first level RBM al-
ready models data well, adding extra layers will not help
(LeRoux & Bengio, 2008; Hinton et al., 2006). As an ad-
ditional test, instead of randomly initializing parameters of
the2nd layer RBM, we initialized it by using the same pa-
rameters as the1st layer RBM but with hidden and visible
units switched (see Fig. 1). This initialization ensures that
the distribution over the visible unitsv defined by the two-
layer DBN isexactly the sameas the distribution overv
defined by the1st layer RBM. Therefore, after learning
parameters of the2nd layer RBM, the lower bound on the
training data log-likelihood can only improve. After care-
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fully training the second level RBM, our estimate of the
lower bound on the test log-probability was only−85.97.
Once again, we cannot confidently claim that adding an ex-
tra layer in this case yields better generalization.

6. Discussions
The original paper of Hinton et al. (2006) showed that for
DBN’s, each additional layer increases a lower bound (see
Eq. 19) on the log-probability of thetraining data, pro-
vided the number of hidden units per layer does not de-
crease. However, assessing generalization performance of
these generative models is quite difficult, since it requires
enumeration over an exponential number of terms. In this
paper we developed an annealed importance sampling pro-
cedure that takes advantage of the bipartite structure of the
RBM. This can provide a good estimate of the partition
function in a reasonable amount of computer time. Further-
more, we showed that this estimator, along with approx-
imate inference, can be used to obtain an estimate of the
lower bound on the log-probability of thetestdata, thus al-
lowing us to obtain some quantitative evaluation of the gen-
eralization performance of these deep hierarchical models.

There are some disadvantages to using AIS. There is a
need to specify theβk that define a sequence of interme-
diate distributions. The number and the spacing ofβk will
be problem dependent and will affect the variance of the
estimator. We also have to rely on the empirical estimate of
AIS accuracy, which could potentially be very misleading
(Neal, 2001; Neal, 2005). Even though AIS provides an
unbiased estimator ofZ, it occasionally gives large overes-
timates and usually gives small underestimates, so in prac-
tice, it is more likely to underestimate of the true value of
the partition function, which will result in an overestimate
of the log-probability. But these drawbacks should not re-
sult in disfavoring the use of AIS for RBM’s and DBN’s:
it is much better to have a slightly unreliable estimate than
no estimate at all, or an extremely indirect estimate, such
as discriminative performance (Hinton et al., 2006).

We find AIS and other stochastic methods attractive as they
can just as easily be applied to undirected graphical models
that generalize RBM’s and DBN’s to exponential family
distributions. This will allow future application to mod-
els of real-valued data, such as image patches (Osindero &
Hinton, 2008), or count data (Gehler et al., 2006).

Another alternative would be to employ deterministic ap-
proximations (Yedidia et al., 2005) or deterministic upper
bounds (Wainwright et al., 2005) on the log-partition func-
tion. However, for densely connected MRF’s, we would
not expect these methods to work well. Indeed, preliminary
results suggest that these methods provide quite inaccurate
estimates of (or very loose upper bounds on) the partition
function, even for small RBM’s whentrained on real data.
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Abstract

Low-rank matrix approximation methods
provide one of the simplest and most effective
approaches to collaborative filtering. Such
models are usually fitted to data by finding
a MAP estimate of the model parameters, a
procedure that can be performed efficiently
even on very large datasets. However, un-
less the regularization parameters are tuned
carefully, this approach is prone to overfit-
ting because it finds a single point estimate
of the parameters. In this paper we present a
fully Bayesian treatment of the Probabilistic
Matrix Factorization (PMF) model in which
model capacity is controlled automatically by
integrating over all model parameters and
hyperparameters. We show that Bayesian
PMF models can be efficiently trained us-
ing Markov chain Monte Carlo methods by
applying them to the Netflix dataset, which
consists of over 100 million movie ratings.
The resulting models achieve significantly
higher prediction accuracy than PMF models
trained using MAP estimation.

1. Introduction

Factor-based models have been used extensively in the
domain of collaborative filtering for modelling user
preferences. The idea behind such models is that pref-
erences of a user are determined by a small number of
unobserved factors. In a linear factor model, a user’s
rating of an item is modelled by the inner product of
an item factor vector and a user factor vector. This
means that the N × M preference matrix of ratings
that N users assign to M movies is modeled by the
product of an D × N user coefficient matrix U and a
D×M factor matrix V (Rennie & Srebro, 2005; Srebro

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

& Jaakkola, 2003). Training such a model amounts to
finding the best rank-D approximation to the observed
N ×M target matrix R under the given loss function.

A variety of probabilistic factor-based models have
been proposed (Hofmann, 1999; Marlin, 2004; Marlin
& Zemel, 2004; Salakhutdinov & Mnih, 2008). In these
models factor variables are assumed to be marginally
independent while rating variables are assumed to be
conditionally independent given the factor variables.
The main drawback of such models is that inferring
the posterior distribution over the factors given the
ratings is intractable. Many of the existing methods
resort to performing MAP estimation of the model pa-
rameters. Training such models amounts to maximiz-
ing the log-posterior over model parameters and can
be done very efficiently even on very large datasets.

In practice, we are usually interested in predicting rat-
ings for new user/movie pairs rather than in estimat-
ing model parameters. This view suggests taking a
Bayesian approach to the problem which involves in-
tegrating out the model parameters. In this paper, we
describe a fully Bayesian treatment of the Probabilis-
tic Matrix Factorization (PMF) model which has been
recently applied to collaborative filtering (Salakhutdi-
nov & Mnih, 2008). The distinguishing feature of our
work is the use of Markov chain Monte Carlo (MCMC)
methods for approximate inference in this model. In
practice, MCMC methods are rarely used on large-
scale problems because they are perceived to be very
slow by practitioners. In this paper we show that
MCMC can be successfully applied to the large, sparse,
and very imbalanced Netflix dataset, containing over
100 million user/movie ratings. We also show that it
significantly increases the model’s predictive accuracy,
especially for the infrequent users, compared to the
standard PMF models trained using MAP with regu-
larization parameters that have been carefully tuned
on the validation set.

Previous applications of Bayesian matrix factorization
methods to collaborative filtering (Lim & Teh, 2007;
Raiko et al., 2007) have used variational approxima-
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tions for performing inference. These methods at-
tempt to approximate the true posterior distribution
by a simpler, factorized distribution under which the
user factor vectors are independent of the movie factor
vectors. The consequence of this assumption is that
that the variational posterior distributions over the
factor vectors is a product of two multivariate Gaus-
sians: one for the viewer factor vectors and one for
the movie factor vectors. This assumption of indepen-
dence between the viewer and movie factors seems un-
reasonable, and, as our experiments demonstrate, the
distributions over factors in such models turn out to
be non-Gaussian. This conclusion is supported by the
fact that the Bayesian PMF models outperform their
MAP trained counterparts by a much larger margin
than the variationally trained models do.

2. Probabilistic Matrix Factorization

Probabilistic Matrix Factorization (PMF) is a proba-
bilistic linear model with Gaussian observation noise
(see Fig. 1, left panel). Suppose we have N users
and M movies. Let Rij be the rating value of user i

for movie j, Ui and Vj represent D-dimensional user-
specific and movie-specific latent feature vectors re-
spectively. The conditional distribution over the ob-
served ratings R ∈ R

N×M (the likelihood term) and
the prior distributions over U ∈ R

D×N and V ∈
R

D×M are given by:

p(R|U, V, α) =

N∏

i=1

M∏

j=1

[

N (Rij |UT
i Vj , α

−1)

]Iij

(1)

p(U |αU ) =
N∏

i=1

N (Ui|0, α−1
U I) (2)

p(V |αV ) =

M∏

j=1

N (Vj |0, α−1
V I), (3)

where N (x|µ, α−1) denotes the Gaussian distribution
with mean µ and precision α, and Iij is the indicator
variable that is equal to 1 if user i rated movie j and
equal to 0 otherwise.

Learning in this model is performed by maximizing
the log-posterior over the movie and user features with
fixed hyperparameters (i.e. the observation noise vari-
ance and prior variances):

ln p(U, V |R, α, αV , αU ) = ln p(R|U, V, α) +

+ ln p(U |αU ) + ln p(V |αV ) + C,

where C is a constant that does not depend on the pa-
rameters. Maximizing this posterior distribution with
respect to U and V is equivalent to minimizing the

sum-of-squares error function with quadratic regular-
ization terms:

E =
1

2

N∑

i=1

M∑

j=1

Iij

(
Rij − UT

i Vj

)2

+
λU

2

N∑

i=1

‖ Ui ‖2
Fro +

λV

2

M∑

j=1

‖ Vj ‖2
Fro, (4)

where λU = αU/α, λV = αV /α, and ‖ · ‖2
Fro denotes

the Frobenius norm. A local minimum of the objective
function given by Eq. 4 can be found by performing
gradient descent in U and V .

The main drawback of this training procedure is the
need for manual complexity control that is essential
to making the model generalize well, particularly on
sparse and imbalanced datasets. One way to control
the model complexity is to search for appropriate val-
ues of regularization parameters λU and λV defined
above. We could, for example, consider a set of reason-
able parameter values, train a model for each setting
of the parameters, and choose the model that performs
best on the validation set. This approach however is
computationally very expensive, since it requires train-
ing a multitude of models instead of training a single
one.

Alternatively, we could introduce priors for the hy-
perparameters and maximize the log-posterior of the
model over both parameters and hyperparameters,
which allows model complexity to be controlled auto-
matically based on the training data (Nowlan & Hin-
ton, 1992; Salakhutdinov & Mnih, 2008). Though this
approach has been shown to work in practice it is not
well-grounded theoretically, and it is not difficult to
construct a simple example for which such joint opti-
mization would not produce the desired results.

In the next section we describe a fully Bayesian treat-
ment of the PMF model with model parameters and
hyperparameters integrated out using MCMC meth-
ods, which provides fully automatic complexity con-
trol.

3. Bayesian Probabilistic Matrix

Factorization

3.1. The Model

The graphical model representing Bayesian PMF is
shown in Fig. 1 (right panel). As in PMF, the likeli-
hood of the observed ratings is given by Eq. 1. The
prior distributions over the user and movie feature vec-
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Figure 1. The left panel shows the graphical model for Probabilistic Matrix Factorization (PMF). The right panel shows
the graphical model for Bayesian PMF.

tors are assumed to be Gaussian:

p(U |µU , ΛU ) =
N∏

i=1

N (Ui|µU , Λ−1
U ), (5)

p(V |µV , ΛV ) =

M∏

i=1

N (Vi|µV , Λ−1
V ). (6)

We further place Gaussian-Wishart priors on the user
and movie hyperparameters ΘU = {µU , ΛU} and
ΘV = {µV , ΛV }:

p(ΘU |Θ0) = p(µU |ΛU )p(ΛU )

= N (µU |µ0, (β0ΛU )−1)W(ΛU |W0, ν0), (7)

p(ΘV |Θ0) = p(µV |ΛV )p(ΛV )

= N (µV |µ0, (β0ΛV )−1)W(ΛV |W0, ν0). (8)

Here W is the Wishart distribution with ν0 degrees of
freedom and a D × D scale matrix W0:

W(Λ|W0, ν0) =
1

C
|Λ|(ν0−D−1)/2 exp (−1

2
Tr(W−1

0 Λ)),

where C is the normalizing constant. For convenience
we also define Θ0 = {µ0, ν0, W0}. In our experiments
we also set ν0 = D and W0 to the identity matrix
for both user and movie hyperparameters and choose
µ0 = 0 by symmetry.

3.2. Predictions

The predictive distribution of the rating value R∗
ij for

user i and query movie j is obtained by marginalizing

over model parameters and hyperparameters:

p(R∗
ij |R, Θ0) =

∫∫

p(R∗
ij |Ui, Vj)p(U, V |R, ΘU , ΘV )

p(ΘU , ΘV |Θ0)d{U, V }d{ΘU , ΘV }. (9)

Since exact evaluation of this predictive distribution
is analytically intractable due to the complexity of the
posterior we need to resort to approximate inference.

One choice would be to use variational methods (Hin-
ton & van Camp, 1993; Jordan et al., 1999) that pro-
vide deterministic approximation schemes for posteri-
ors. In particular, we could approximate the true pos-
terior p(U, V, ΘU , ΘV |R) by a distribution that factors,
with each factor having a specific parametric form such
as a Gaussian distribution. This approximate poste-
rior would allow us to approximate the integrals in
Eq. 9. Variational methods have become the method-
ology of choice, since they typically scale well to large
applications. However, they can produce inaccurate
results because they tend to involve overly simple ap-
proximations to the posterior.

MCMC-based methods (Neal, 1993), on the other
hand, use the Monte Carlo approximation to the pre-
dictive distribution of Eq. 9 given by:

p(R∗
ij |R, Θ0) ≈

1

K

K∑

k=1

p(R∗
ij |U (k)

i , V
(k)
j ). (10)

The samples {U (k)
i , V

(k)
j } are generated by running

a Markov chain whose stationary distribution is the
posterior distribution over the model parameters and
hyperparameters {U, V, ΘU , ΘV }. The advantage of
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the Monte Carlo-based methods is that asymptoti-
cally they produce exact results. In practice, how-
ever, MCMC methods are usually perceived to be so
computationally demanding that their use is limited
to small-scale problems.

3.3. Inference

One of the simplest MCMC algorithms is the Gibbs
sampling algorithm, which cycles through the latent
variables, sampling each one from its distribution con-
ditional on the current values of all other variables.
Gibbs sampling is typically used when these condi-
tional distributions can be sampled from easily.

Due to the use of conjugate priors for the parame-
ters and hyperparameters in the Bayesian PMF model,
the conditional distributions derived from the poste-
rior distribution are easy to sample from. In particu-
lar, the conditional distribution over the user feature
vector Ui, conditioned on the movie features, observed
user rating matrix R, and the values of the hyperpa-
rameters is Gaussian:

p(Ui|R, V, ΘU , α) = N
(
Ui|µ∗

i ,
[
Λ∗

i

]−1)
(11)

∼
M∏

j=1

[

N (Rij |UT
i Vj , α

−1)

]Iij

p(Ui|µU , ΛU ),

where

Λ∗
i = ΛU + α

M∑

j=1

[
VjV

T
j

]Iij
(12)

µ∗
i = [Λ∗

i ]
−1

(

α

M∑

j=1

[
VjRij

]Iij
+ ΛUµU

)

. (13)

Note that the conditional distribution over the user
latent feature matrix U factorizes into the product of
conditional distributions over the individual user fea-
ture vectors:

p(U |R, V, ΘU ) =
N∏

i=1

p(Ui|R, V, ΘU).

Therefore we can easily speed up the sampler by sam-
pling from these conditional distributions in parallel.
The speedup could be substantial, particularly when
the number of users is large.

The conditional distribution over the user hyperpa-
rameters conditioned on the user feature matrix U is
given by the Gaussian-Wishart distribution:

p(µU , ΛU |U, Θ0) =

N (µU |µ∗
0, (β

∗
0ΛU )−1)W(ΛU |W ∗

0 , ν∗
0 ), (14)

where

µ∗
0 =

β0µ0 + NŪ

β0 + N
, β∗

0 = β0 + N, ν∗
0 = ν0 + N,

[
W ∗

0

]−1
= W−1

0 + NS̄ +
β0N

β0 + N
(µ0 − Ū)(µ0 − Ū)T

Ū =
1

N

N∑

i=1

Ui S̄ =
1

N

N∑

i=1

UiU
T
i .

The conditional distributions over the movie feature
vectors and the movie hyperparameters have exactly
the same form. The Gibbs sampling algorithm then
takes the following form:

Gibbs sampling for Bayesian PMF

1. Initialize model parameters {U1, V 1
}

2. For t=1,...,T

• Sample the hyperparameters
(Eq. 14):

Θt
U ∼ p(ΘU |U

t
, Θ0)

Θt
V ∼ p(ΘV |V

t
, Θ0)

• For each i = 1, ..., N sample user features in
parallel (Eq. 11):

U
t+1

i ∼ p(Ui|R, V
t
, Θt

U )

• For each i = 1, ..., M sample movie features in
parallel:

V
t+1

i ∼ p(Vi|R, U
t+1

, Θt
V )

4. Experimental Results

4.1. Description of the dataset

The data, collected by Netflix, represent the distribu-
tion of all ratings Netflix obtained between October,
1998 and December, 2005. The training data set con-
sists of 100,480,507 ratings from 480,189 randomly-
chosen, anonymous users on 17,770 movie titles. As
part of the training data, Netflix also provides valida-
tion data, containing 1,408,395 ratings. In addition,
Netflix also provides a test set containing 2,817,131
user/movie pairs with the ratings withheld. The pairs
were selected from the most recent ratings from a sub-
set of the users in the training data set. Performance
is assessed by submitting predicted ratings to Netflix
which then posts the root mean squared error (RMSE)
on an unknown half of the test set. As a baseline, Net-
flix provided the test score of its own system trained
on the same data, which is 0.9514.
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Figure 2. Left panel: Performance of SVD, PMF, logistic PMF, and Bayesian PMF using 30D feature vectors, on the
Netflix validation data. The y-axis displays RMSE (root mean squared error), and the x-axis shows the number of epochs,
or passes, through the entire training set. Right panel: RMSE for the Bayesian PMF models on the validation set as a
function of the number of samples generated. The two curves are for the models with 30D and 60D feature vectors.

4.2. Training PMF models

For comparison, we have trained a variety of linear
PMF models using MAP, choosing their regularization
parameters using the validation set. In addition to lin-
ear PMF models, we also trained logistic PMF mod-
els, in which we pass the dot product between user-
and movie-specific feature vectors through the logistic
function σ(x) = 1/(1 + exp(−x)) to bound the range
of predictions:

p(R|U, V, α) =
N∏

i=1

M∏

j=1

[

N (Rij |σ(UT
i Vj), α

−1)

]Iij

. (15)

The ratings 1, ..., 5 are mapped to the interval [0, 1]
using the function t(x) = (x − 1)/4, so that the range
of valid rating values matches the range of predictions
our model can make. Logistic PMF models can some-
times provide slightly better results than their linear
counterparts.

To speed up training, instead of performing full batch
learning, we subdivided the Netflix data into mini-
batches of size 100,000 (user/movie/rating triples) and
updated the feature vectors after each mini-batch. We
used a learning rate of 0.005 and a momentum of 0.9
for training the linear as well as logistic PMF models.

4.3. Training Bayesian PMF models

We initialized the Gibbs sampler by setting the model
parameters U and V to their MAP estimates obtained
by training a linear PMF model. We also set µ0 =
0, ν0 = D, and W0 to the identity matrix, for both
user and movie hyperpriors. The observation noise

precision α was fixed at 2. The predictive distribution
was computed using Eq. 10 by running the Gibbs

sampler with samples {U (k)
i , V

(k)
j } collected after each

full Gibbs step.

4.4. Results

In our first experiment, we compared a Bayesian PMF
model to an SVD model, a linear PMF model, and a
logistic PMF model, all using 30D feature vectors. The
SVD model was trained to minimize the sum-squared
distance to the observed entries of the target matrix,
with no regularization applied to the feature vectors.
Note that this model can be seen as a PMF model
trained using maximum likelihood (ML). For the PMF
models, the regularization parameters λU and λV were
set to 0.002. Predictive performance of these models
on the validation set is shown in Fig. 2 (left panel).
The mean of the predictive distribution of the Bayesian
PMF model achieves an RMSE of 0.8994, compared to
an RMSE of 0.9174 of a moderately regularized linear
PMF model, an improvement of over 1.7%.

The logistic PMF model does slightly outperform its
linear counterpart, achieving an RMSE of 0.9097.
However, its performance is still considerably worse
than that of the Bayesian PMF model. A simple
SVD achieves an RMSE of about 0.9280 and after
about 10 epochs begins to overfit heavily. This ex-
periment clearly demonstrates that SVD and MAP-
trained PMF models can overfit and that the pre-
dictive accuracy can be improved by integrating out
model parameters and hyperparameters.
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Figure 3. Samples from the posterior over the user and movie feature vectors generated by each step of the Gibbs
sampler. The two dimensions with the highest variance are shown for two users and two movies. The first 800 samples
were discarded as “burn-in”.

D Valid. RMSE % Test RMSE %
PMF BPMF Inc. PMF BPMF Inc.

30 0.9154 0.8994 1.74 0.9188 0.9029 1.73
40 0.9135 0.8968 1.83 0.9170 0.9002 1.83
60 0.9150 0.8954 2.14 0.9185 0.8989 2.13
150 0.9178 0.8931 2.69 0.9211 0.8965 2.67
300 0.9231 0.8920 3.37 0.9265 0.8954 3.36

Table 1. Performance of Bayesian PMF (BPMF) and lin-
ear PMF on Netflix validation and test sets.

We than trained larger PMF models with D = 40 and
D = 60. Capacity control for such models becomes a
rather challenging task. For example, a PMF model
with D = 60 has approximately 30 million parameters.
Searching for appropriate values of the regularization
coefficients becomes a very computationally expensive
task. Table 1 further shows that for the 60-dimensional
feature vectors, Bayesian PMF outperforms its MAP
counterpart by over 2%. We should also point out
that even the simplest possible Bayesian extension of
the PMF model, where Gamma priors are placed over
the precision hyperparameters αU and αV (see Fig. 1,
left panel), significantly outperforms the MAP-trained
PMF models, even though it does not perform as well

as the Bayesian PMF models.

It is interesting to observe that as the feature di-
mensionality grows, the performance accuracy for the
MAP-trained PMF models does not improve, and con-
trolling overfitting becomes a critical issue. The pre-
dictive accuracy of the Bayesian PMF models, how-
ever, steadily improves as the model complexity grows.
Inspired by this result, we experimented with Bayesian
PMF models with D = 150 and D = 300 feature
vectors. Note that these models have about 75 and
150 million parameters, and running the Gibbs sam-
pler becomes computationally much more expensive.
Nonetheless, the validation set RMSEs for the two
models were 0.8931 and 0.8920. Table 1 shows that
these models not only significantly outperform their
MAP counterparts but also outperform Bayesian PMF
models that have fewer parameters. These results
clearly show that the Bayesian approach does not re-
quire limiting the complexity of the model based on the
number of the training samples. In practice, however,
we will be limited by the available computer resources.

For completeness, we also report the performance re-
sults on the Netflix test set. These numbers were ob-
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Figure 4. Left panel: Box plot of predictions, obtained after each full Gibbs step, for 4 users on a randomly chosen test
movies. Users A,B,C, and D have 4, 23, 319 and 660 ratings respectively. Right panel: Performance of Bayesian PMF,
logistic PMF, and the movie average algorithm that always predicts the average rating of each movie. The users were
grouped by the number of observed ratings in the training data. The linear PMF model performed slightly worse than
the logistic PMF model.

tained by submitting the predicted ratings to Netflix
who then provided us with the test score on an un-
known half of the test set. The test scores are slightly
worse than the validation scores, but the relative be-
havior across all models remains the same.

To diagnose the convergence of the Gibbs sampler, we
monitored the behaviour of the Frobenius norms of
the model parameters and hyperparameters: U , V , Λ,
and µ. Typically, after a few hundred samples these
quantities stabilize. Fig. 2 (right panel) shows the
RMSE error on the Netflix validation set for Bayesian
PMF models as the number of samples increases. Af-
ter obtaining a few hundred samples1 the predictive
accuracy does not significantly improve. Note that
the initial predictive accuracy is already high because
the Markov chain is initialized using the MAP values
of the model parameters.

For the Bayesian PMF model with D = 30 we also col-
lected samples over the user and movie feature vectors
generated by each full step of the Gibbs sampler. The
first 800 samples were discarded as “burn-in”. Figure
3 shows these samples for two users and two movies
projected onto the two dimensions of the highest vari-
ance. Users A and C were chosen by randomly picking
among rare users who have fewer than 10 ratings and
more frequent users who have more than 100 ratings
in the training set. Movies X and Y were chosen in the
same way. Note that the empirical distribution of the

1We store the model parameters after each full Gibbs
step as a sample. The fact that these samples are not
independent does not matter for making predictions.

samples from the posterior appear to be non-Gaussian.

Using these samples from the posterior we also looked
at the uncertainty of the predictions of four users on
randomly chosen test movies. Figure 4 (left panel)
shows results for users A,B,C, and D who have 4, 23,
319 and 660 ratings respectively. Note that there is
much more uncertainty about the prediction of user
A than about the prediction of user D, whose feature
vector is well-determined. Figure 4 (right panel) shows
that the Bayesian PMF model considerably outper-
forms the logistic PMF model on users with few rat-
ings. As the number of ratings increases, both the
logistic PMF and the Bayesian PMF exhibit similar
performance.

The advantage of Bayesian PMF models is that by av-
eraging over all settings of parameters that are com-
patible with the data as well as the prior they deal with
uncertainty more effectively than the non-Bayesian
PMF models, which commit to a single most probable
setting.

Since the main concern when applying Bayesian meth-
ods to large datasets is their running time, we provide
the times for our simple Matlab Bayesian PMF im-
plementation. One full Gibbs step on a single core of
a recent Pentium Xeon 3.00GHz machine for models
with D = 10, 30, 60, 300 takes 6.6, 12.9 , 31.6, and 220
minutes respectively. Note that the most expensive as-
pect of training Bayesian PMF models is the inversion
of a D × D matrix per feature vector2 (see Eq. 13),

2In our implementation, we solve a system of D equa-
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which is an O(D3) operation.

5. Conclusions

We have presented a fully Bayesian treatment of Prob-
abilistic Matrix Factorization by placing hyperpriors
over the hyperparameters and using MCMC meth-
ods to perform approximate inference. We have also
demonstrated that Bayesian PMF models can be suc-
cessfully applied to a large dataset containing over
100 million movie ratings, and achieve significantly
higher predictive accuracy compared to the MAP-
trained PMF models with carefully tuned regulariza-
tion parameters. An additional advantage of using a
Bayesian model is that it provides a predictive dis-
tribution instead of just a single number, allowing the
confidence in the prediction to be quantified and taken
into account when making recommendations using the
model.

Using MCMC instead of variational methods for ap-
proximate inference in Bayesian matrix factorization
models leads to much larger improvements over the
MAP trained models, which suggests that the assump-
tions made by the variational methods about the struc-
ture of the posterior are not entirely reasonable. This
conclusion is confirmed by inspecting the empirical dis-
tribution of the samples from the posterior, which ap-
pears to be significantly non-Gaussian.

A major problem of MCMC methods is that it is hard
to determine when the Markov chain has converged to
the desired distribution. In practice, we have to rely on
rules of thumb to diagnose convergence, which means
that there is a risk of using samples from a distribu-
tion that differs from the true posterior distribution,
potentially leading to suboptimal predictions. Our re-
sults show that this problem is not a sufficient reason
to reject MCMC methods.

For our models, the number of samples from the
posterior that can be generated within a reasonable
amount of time will typically be constrained by the
available computer resources. However, as mentioned
above, sampling the feature vectors for multiple users
or movies in parallel provides an easy way to greatly
speed up the process of generating samples using mul-
tiple cores.

Acknowledgments

We thank Geoffrey Hinton for many helpful discus-
sions. This research was supported by NSERC.

tions instead of inverting a matrix. The computational cost
of this operation is still O(D3).

References

Hinton, G. E., & van Camp, D. (1993). Keeping the
neural networks simple by minimizing the descrip-
tion length of the weights. COLT (pp. 5–13).

Hofmann, T. (1999). Probabilistic latent semantic
analysis. Proceedings of the 15th Conference on Un-
certainty in AI (pp. 289–296). San Fransisco, Cali-
fornia: Morgan Kaufmann.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., &
Saul, L. K. (1999). An introduction to variational
methods for graphical models. Machine Learning,
37, 183.

Lim, Y. J., & Teh, Y. W. (2007). Variational Bayesian
approach to movie rating prediction. Proceedings of
KDD Cup and Workshop.

Marlin, B. (2004). Modeling user rating profiles for
collaborative filtering. In S. Thrun, L. Saul and
B. Schölkopf (Eds.), Advances in neural information
processing systems 16. Cambridge, MA: MIT Press.

Marlin, B., & Zemel, R. S. (2004). The multiple mul-
tiplicative factor model for collaborative filtering.
Machine Learning, Proceedings of the Twenty-first
International Conference (ICML 2004), Banff, Al-
berta, Canada. ACM.

Neal, R. M. (1993). Probabilistic inference using
Markov chain Monte Carlo methods (Technical Re-
port CRG-TR-93-1). Department of Computer Sci-
ence, University of Toronto.

Nowlan, S. J., & Hinton, G. E. (1992). Simplify-
ing neural networks by soft weight-sharing. Neural
Computation, 4, 473–493.

Raiko, T., Ilin, A., & Karhunen, J. (2007). Princi-
pal component analysis for large scale problems with
lots of missing values. ECML (pp. 691–698).

Rennie, J. D. M., & Srebro, N. (2005). Fast max-
imum margin matrix factorization for collabora-
tive prediction. Machine Learning, Proceedings of
the Twenty-Second International Conference (ICML
2005), Bonn, Germany (pp. 713–719). ACM.

Salakhutdinov, R., & Mnih, A. (2008). Probabilistic
matrix factorization. Advances in Neural Informa-
tion Processing Systems 20. Cambridge, MA: MIT
Press.

Srebro, N., & Jaakkola, T. (2003). Weighted low-rank
approximations. Machine Learning, Proceedings
of the Twentieth International Conference (ICML
2003), Washington, DC, USA (pp. 720–727). AAAI
Press.

887



Accurate Max-Margin Training for Structured Output Spaces

Sunita Sarawagi sunita@iitb.ac.in

Rahul Gupta grahul@cse.iitb.ac.in

IIT Bombay, India

Abstract

Tsochantaridis et al. (2005) proposed two
formulations for maximum margin training of
structured spaces: margin scaling and slack
scaling. While margin scaling has been ex-
tensively used since it requires the same kind
of MAP inference as normal structured pre-
diction, slack scaling is believed to be more
accurate and better-behaved. We present
an efficient variational approximation to the
slack scaling method that solves its inference
bottleneck while retaining its accuracy ad-
vantage over margin scaling.

We further argue that existing scaling ap-
proaches do not separate the true labeling
comprehensively while generating violating
constraints. We propose a new max-margin
trainer PosLearn that generates violators to
ensure separation at each position of a de-
composable loss function. Empirical results
on real datasets illustrate that PosLearn can
reduce test error by up to 25% over margin
scaling and 10% over slack scaling. Further,
PosLearn violators can be generated more ef-
ficiently than slack violators; for many struc-
tured tasks the time required is just twice
that of MAP inference.

1. Introduction

The max-margin framework for training structured
prediction models generalizes the benefits of support
vector machines (SVMs) to predicting complex ob-
jects. A popular member of this framework is the
margin scaling method (Tsochantaridis et al., 2005;
Taskar, 2004; LeCun et al., 2006; Crammer & Singer,
2003) that tries to ensure that the score of the cor-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

rect prediction is separated from the score of an in-
correct prediction by a margin equal to the error of
the prediction. This method has been used exten-
sively in many applications, including sequence label-
ing (Taskar, 2004; Tsochantaridis et al., 2005), im-
age segmentation (Taskar, 2004; Ratliff et al., 2007),
grammar parsing (Taskar et al., 2004), dependency
parsing (McDonald et al., 2005b), bipartite match-
ing (Taskar, 2004) and text segmentation (McDonald
et al., 2005a). A reason for its wide-spread use is that
it can exploit the decomposability of the error function
to find the most violating constraint using the maxi-
mum a-posteriori (MAP) inference algorithm used for
prediction.

An alternative formulation (Tsochantaridis et al.,
2005) is to ensure that all labelings are separated by a
fixed margin of one but penalize violations in propor-
tion to their errors. This method, called slack scaling,
generally provides higher accuracy than margin scal-
ing which gives too much importance to labelings with
large errors even after they are well-separated, some-
times at the expense of instances that are not even
separated. Another shortcoming of margin scaling is
that it requires an error function that is linearly com-
parable with the feature values, whereas slack scaling
is invariant to scaling of the error function. In spite of
the advantages, slack scaling is not popular because it
requires inferring the labeling which maximizes a non-
decomposable metric – difference of score and error
inverse.

In this paper we make two contributions in max-
margin training of structured models.

First, we address the computational challenge of infer-
ing the labelings required when training via slack scal-
ing. We propose a variational approximation of the
slack loss so that the most violating labeling is found
using the same loss augmented MAP inference as in
margin scaling. We demonstrate that accuracy-wise
our slack approximation is much better than margin
scaling and close to the more expensive slack scaling.
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Second, we propose a new max-margin framework for
training models with decomposable error functions
that, like the slack scaling method, is scale invari-
ant and discounts labelings well-separated from the
margin. The inference step it requires is much sim-
pler than required by slack scaling. In particular, for
Markov models we show that the inference of the most
violating labelings is only a factor of two more expen-
sive than in margin scaling. The basic idea of the
new learner, that we call PosLearn, is to associate a
different slack variable for each error position of a de-
composable error function. We show that this leads
to a better characterization of the loss than both the
slack and margin scaling methods that define loss in
terms of a single most violating labeling. Empirically,
PosLearn reduces error by up to 25% over margin scal-
ing and 10% over slack scaling in various tasks.

2. Existing Methods for Max-Margin

Training

We consider structured prediction problems that as-
sociate a score s(x,y) for each output y ∈ Y of an
input x, and predict the output y∗ with maximum
score. The scoring function s(x,y) is a dot product
of a feature vector f(x,y) defined jointly over the in-
put x and output y, and the corresponding param-
eter vector w. The space of possible outputs Y can
be exponentially large. Thus, efficient solutions for
y∗ = argmax

y∈Y
wT f(x,y) crucially depend on the de-

composability of the feature vector f over components
of y. During training the goal is to find a w using a
set of labeled input-output pairs (xi,yi) : i = 1 . . . N

so as to minimize prediction error. The error of pre-
dicting y for an instance xi whose correct label is yi is
user-provided. We denote it by Li(y). In max-margin
methods, the training goal is translated to finding a w

that minimizes the sum of the loss on the labeled data
while imposing a regularization penalty for overfitting.
The loss is a computationally convenient combination
of the user-provided error function and feature-derived
scores so as to both minimize training error and max-
imize the margin between correct and incorrect out-
puts. There are two popular loss functions for struc-
tured learning tasks: margin scaler and slack scaler.
We review them briefly.

2.1. Margin Scaling

In margin scaling, the goal is to find w such that
the difference in score wT δfi(y) = wT f(xi,yi) −
wT f(xi,y) of the correct output yi from an incorrect

labeling y is at least Li(y). This is formulated as:

min
w,ξ

1

2
||w||2 + C

N∑

i=1

ξi

s.t. wT δfi(y) ≥ Li(y)− ξi ∀y 6= yi, i : 1 . . . N

ξi ≥ 0 i : 1 . . . N

Two category of methods have been proposed to opti-
mize the above QP. The first category is based on the
cutting plane algorithm to avoid generating the expo-
nentially many constraints. This involves incremen-
tally finding the output yM = argmax

y
(wT f(xi,y) +

Li(y)) which most violates the constraint. yM can
be found using the same inference algorithm as MAP
y∗ = argmax

y
wT f(xi,y) when Li(y) decomposes over

variable subsets no larger than the subsets in the de-
composition of f(xi,y). This category includes exact
gradient ascent methods (Tsochantaridis et al., 2005),
stochastic gradient methods (Bordes et al., 2007) and
online sub-gradient methods (Ratliff et al., 2007). The
online structured learning methods of (Crammer &
Singer, 2003) follow a perceptron based framework but
their constraints are identical to the margin scaling
method described here. The second category of meth-
ods (Taskar, 2004; Taskar et al., 2006) exploit the de-
composability of the error function to create a com-
bined program for the inference and parameter learn-
ing task.

2.2. Slack Scaling

Slack scaling demands a margin of one but scales the
slacks of violating outputs in proportion to their errors.
The corresponding optimization problem is:

min
w,ξ

1

2
||w||2 + C

N∑

i=1

ξi

s.t. wT δfi(y) ≥ 1− ξi

Li(y)
∀y 6= yi, i : 1 . . . N

ξi ≥ 0 i : 1 . . . N

The optimization of the above QP via the cutting
plane algorithm requires the inference of the labeling
yS = argmax

y
(1−wT δfi(y)− ξi

Li(y) ). Unlike for mar-

gin scaling, even with decomposable loss and scoring
functions, it is not easy to find yS efficiently. For this
reason, the slack scaling approach is not popular.

However, the slack loss is in many ways better behaved
than margin loss (Tsochantaridis et al., 2005). Margin
scaling gives too much importance to instances which
are already well-separated from the margin. This hurts
because the loss ξi is determined by a single most vio-
lating labeling. If a labeling imposes a difficult margin
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requirement because of its large error, the optimizer
will appropriately increase ξi. After that, there is no
incentive to improving separability of any other label-
ing of that instance. In contrast, the slack scaling loss
will ignore instances that are separated by a margin
of 1, and ξi is determined by labelings that matter be-
cause of their being close to the margin. Empirically,
we found slack scaling to give better accuracy than
margin scaling (Section 5). Slack scaling also makes
it convenient for an end-user to define an error func-
tion and a feature vector and tune C because the error
function can be arbitrarily scaled vis-a-vis the feature
vector.

3. Approximate Slack Scaling

We present a variational approximation to the slack in-
ference problem that is applicable for any structured
model for which we can only solve for the MAP effi-
ciently. The slack inference problem is to find

yS = argmax
y∈Y

(

1−wT δfi(y)− ξi

Li(y)

)

= argmax
y∈Y

(

si(y)− ξi

Li(y)

)

(1)

where si(y) = wT f(xi,y), Y = {y : y 6= yi, si(y) −
ξi

Li(y) > si(yi)−1} is the set of all violating labelings.

We approximate yS with another labeling yA. Our ap-
proximation is based on the observation that si(y) −

ξi

Li(y) is concave in Li(y) and its variational ap-

proximation can be written as a linear function of
Li(y) (Jordan et al., 1999). Here on, we drop the
subscript i wherever possible.

Claim 3.1. s(y)− ξ
L(y) = minλ≥0 s(y)+λL(y)−2

√
ξλ

Proof. Any concave function f(z) can be expressed as
minλ≥0(zλ− f∗(λ)) where f∗(λ) = minz(zλ− f(z)) is
the conjugate function of f(z). The result follows from
the fact that the conjugate function of −ξ

z is 2
√

ξλ.

Let F ′(y; λ) , s(y) + λL(y) − 2
√

ξλ and F (λ) ,

maxy 6=yi
F ′(y; λ)

We now approximate the exact slack MAP objective
with an upper bound as follows:

max
y∈Y

(

s(y)− ξ

L(y)

)

= max
y∈Y

min
λ≥0

F ′(y; λ) (2)

≤ min
λ≥0

max
y∈Y

F ′(y; λ) (3)

≤ min
λ≥0

F (λ) (4)

For a fixed λ, we can compute F (λ) using the loss aug-
mented MAP algorithm employed in margin scaling to
first find yλ = argmax

y 6=yi
s(y) + λL(y) and then set-

ting F (λ) = F ′(yλ; λ). The constraint y 6= yi can
be met by asking the loss augmented MAP algorithm
to return top two MAPs. The algorithmic extension
to return top two MAPs is straight forward in many
structured tasks.

We search for the λ for which the upper bound F (λ) is
minimized by exploiting the fact that F (λ) is convex
in λ.

Claim 3.2. F (λ) is convex in λ.

Proof. It can be seen that F ′(y; λ) is convex in λ.
Since F (λ) is a max of finitely many convex functions,
and max is also convex, F (λ) is convex.

We can compute minλ≥0 F (λ) using efficient line
search algorithms such as Golden Search. During the
search phase, for each λ that we encounter, we evaluate
F (λ) and thus get one labeling. Of all these labelings,
we return the one with the highest s(y)− ξ

L(y) as yA.

We show in the next section the range [λl, λu] within
which it is sufficient to perform the line search.

3.1. Upper and Lower Bounds for λ

Since λ ≥ 0, we can use λl = 0 as the lower limit.
However, with λ = 0, F ′(y; λ) is not able to distin-
guish between high and loss labelings with same scores
commonly seen in early training iterations. It can be
shown that with λl = ε

Lmax
where Lmax is the maxi-

mum possible loss, F (λ) for any λ < λl will not return
any violating labeling with slack score more than ε of
the score of a labeling returned with λ ≥ λl. By set-
ting ε to the tolerance of the cutting-plane algorithm,
we get a provably correct lower bound.

For the upper bound, it is sufficient to pick a λu such
that for any λ ≥ λu, either F (λ) gets the same vio-
lator as F (λu) or a non-violator that we are not in-
terested in. It is sufficient to pick a λu such that
argmax

y∈Y
F ′(y; λu) (= y′ say) has the maximum loss

among all violators in Y. Hence we need:

s(y′) + λuL(y′) ≥ max
y∈Y, L(y)<L(y′)

s(y) + λuL(y)

Let y1 , argmax
y
s(y) and Lε be the minimum dif-

ference between two distinct loss values (e.g. Lε = 1
for Hamming loss). Then the right side can be atmost

s(y1)+λu(L(y′)−Lε). So we require λu ≥ s(y1)−s(y′)
Lε

.

Now, y′ ∈ Y ⇒ s(y′) ≥ s(yi) − 1 + ξ
L(y′) ≥
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s(yi) − 1 + ξ
Lmax

, so we can conservatively set λu =

1
Lε

(

s(y1)− s(yi) + 1− ξ
Lmax

)

.

3.2. Limitation of Approximate Slack

In the worst case, it is possible that the exact slack
MAP yS violates the inequality but yA does not, as
we show next.

Claim 3.3. s(yA)− ξ
L(yA)

< s(yi)− 1 + ε 6⇒ s(yS)−
ξ

L(yS)
< s(yi)− 1 + ε

Proof. We prove the claim with a counter example.
Let yj , j = 1, 2, 3 be three labelings with scores sj =
− 1

2 ,− 13
18 ,− 5

6 and losses Lj = 1, 2, 3. Note that s1 >

s2 > s3 and L1 < L2 < L3. Let the score of the true
labeling be s = 0, the slack be ξ = 19

36 , and let ε ≈ 0.

By computing sgn(sj − ξ
Lj
− s + 1 − ε), we can see

that labelings y1 and y3 are not violators but y2 is.
In order to return y2 as the worst violator, there must
exist λ such that s2 + λL2 ≥ sj + λLj , j = 1, 3. This
translates to the constraints λ > 2

9 and λ < 1
9 , which

are infeasible.

The above counter example showed that it is impossi-
ble to approximate the slack scaled constraint by any
method that depends on finding MAP with varying
weights on error. This limitation though seemingly
restrictive, only slightly hampers the performance in
practice, as evident in our experimental results.

4. Position Learner

We next propose a new formulation for max-margin
training that directly exposes the decomposability of
the error function so as to require solving a consid-
erably simpler inference problem. We show that this
new formulation not only addresses the computational
problem of slack scaling inference, but also provides a
more accurate characterization of the loss of scoring
functions.

The basic premise of the new learner, which we call
PosLearn, is that when error is additive over a set of
positions, the loss should also additively reflect margin
violations at each possible error position. This is in
contrast to both the margin and slack scaling where
loss is in terms of a single most violating labeling.

Let Li(y) =
∑

c∈C Li,c(yc) denote a decomposition of
the error function. Our goal during training is to en-
sure that at each possible error position c, the correct
labeling has a margin over all labelings where c is in-
correctly labeled. If not, we add a hinge loss on the
difference in score between the correct labeling yi and

the best labeling argmax
y:yc 6=yi,c

wT f(xi,y) incorrect
at c. This yields the following constrained optimiza-
tion

min
w,ξ

1

2
||w||2 + C

N∑

i=1

∑

c

ξi,c

s.t wT δfi(y) ≥ 1− ξi,c

Li,c(yc)
∀y : yc 6= yi,c

ξi,c ≥ 0 i : 1 . . . N,∀c
In the above program, the number of slack variables
is equal to the total number of error positions over all
instances. Otherwise, the form of the QP is the same
as in Section 2.2 and therefore can be solved via similar
cutting plane algorithms. For a given position c of an
instance i, the most violating constraint is the labeling

yP :c
, argmax

y:yc 6=yi,c

(

si(y)− ξi,c

Li,c(yc)

)

(5)

This inference problem can be solved efficiently by any
structured learning task in which MAP can be found
efficiently since

max
y:yc 6=yi,c

si(y)− ξi,c

Li,c(yc)
= max

yc 6=yi,c

(

max
y∼yc

si(y)− ξi,c

Li,c(yc)

)

where the outer max is over a small number of values
as the size of c is typically small and the inner max is
MAP inference with label of c constrained to yc. The
MAPs yP :c will typically be evaluated simultaneously
for each c. In many structured learning tasks, all these
MAPs can be found in just twice the amount of time
it takes to compute a single unrestricted MAP, as we
show in Section 4.3.1.

In addition to these computational advantages,
PosLearn also provides better loss characterization
than slack scaling.

4.1. Comparison with Slack Scaling

First, we claim that the PosLearn loss is an upper
bound of the slack loss.

Claim 4.1. The slack loss
∑

i maxy Li(y)[1 −
wT δfi(y)]+ is upper bounded by the PosLearn loss
∑

i

∑

c maxy:yc 6=yi,c
Li,c(yc)[1−wT δfi(y)]+

Proof. Let yS = argmax
y 6=yi

Li(y)[1−wT δfi(y)]+.

Li(y
S)[1−wT δfi(y

S)]+

=
∑

c

Li,c(y
S
c )[1−wT δfi(y

S)]+

≤
∑

c

max
y:yc 6=yi,c

Li,c(yc)[1−wT δfi(y)]+
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Next, we show that slack scaling by defining the total
loss in terms of a single most violating labeling, can-
not discriminate amongst scoring functions as well as
the PosLearn loss that involves different labelings at
different error positions.

Consider one example where w is such that three la-
belings y0 = [0 0 0 0],y1 = [1 1 0 0],y2 = [0 0 1 0],
all have the same score of 1. Let y0 be the correct
labeling, then L(y1) = 2, L(y2) = 1, assuming Ham-
ming error. Let the score of all remaining labelings be
0. The total slack loss in this case is 2 whereas the
PosLearn loss is 3. Now consider the case where y2

has score 0. The slack loss remains unchanged whereas
PosLearn loss reduces to 2.

An important consequence of the reduced error cover-
age is that, when the cutting plane algorithm termi-
nates in slack scaling, PosLearn could continue to find
violating constraints. The reverse is not true.

4.2. Comparison with M3N Training

The PosLearn program appears similar to the M3N

program of (Taskar, 2004) because both decompose
the slack variable over multiple positions. However,
the similarity is only superficial. The training objec-
tive of M3N is Margin scaling and the position spe-
cific slack variables are for integrating training with
inference for loss augmented MAP. In PosLearn the
position specific slacks lead to a very different training
objective.

4.3. Common Decomposable Error Functions

We show examples of decomposable error functions in
several structured learning tasks and show how to effi-
ciently find the most violating constraints over all error
positions simultaneously.

4.3.1. Markov Models

Many structured prediction tasks can be modeled as
Markov models. Popular examples are sequence label-
ing for information extraction (Lafferty et al., 2001),
and grid models for image segmentation (Taskar, 2004;
Boykov et al., 2001). A natural error function here is
Hamming loss that decomposes over the nodes of the
Markov network. Typical MAP inference algorithms
based on belief propagation also give max-marginals at
each node. The max-marginals gives us at each (node
c, label y) pair, the best labeling yc:y with node c la-
beled y. We can now find the most violating labeling
at each position c via

max
y 6=yi,c

(1−wT δfi(y
c:y))Li,c(y)

where Li,c(y) = 1 when y 6= yi,c for Hamming loss.
In general Li,c(y) can be any arbitrary real-value, for
example a mis-classification matrix M(y′, y) could give
the cost of misclassifying a y′ node as y.

4.3.2. Segmentation

The output space Y consists of all possible labeled seg-
mentations of an input sequence x. A segmentation y

consists of a sequence of segments s1 . . . sp where each
sj = (tj , uj , yj) with tj = segment start position, uj

= segment end position, and yj= segment label. Seg-
mentation models have been proposed as alternative
models for information extraction that allows for more
effective use of entity-level features (McDonald et al.,
2005a; Sarawagi & Cohen, 2004).

The feature vector decomposes over segments and is
a function of the segment and the label of the pre-
vious segment. Thus f(x,y) =

∑p
j=1 f(x, sj , yj−1).

The error function also decomposes over segments as
Li(y) =

∑

s∈y
Li(s) where for a segment s = (t, u, y),

Li((t, u, y)) is defined as

Li((t, u, y)) =

{
py +

∑

(l′,u′,y′)∈yi

t≤u′

≤u

ry′ (t, u) 6∈ yi

M(y′, y) (t, u, y′) ∈ yi

where py is the precision penalty of labeling a segment
as y and ry′ is the recall penalty of missing a true
segment of label y′ and M(y′, y) is the misclassification
cost matrix applicable when the same span appears in
both segmentations.

The number of slack variables is the number of possible
segment spans (t, u), which is O(nm) for a sequence of
length n and maximum segment size m.

The MAP segmentation can be found using an ex-
tension of the Viterbi algorithm (Sarawagi & Cohen,
2004). Viterbi also gives the highest scoring segmenta-
tion of the sequence from 1 to i with the last segment
ending at i with label y for all possible i and y. Call
this γ(i, y). Similarly, we can use a backward Viterbi
pass to get β(i, y) the highest scoring segmentation
from i + 1 to n with label y on the segment ending
at i. These can be combined to find the most vio-
lating constraint for a slack variable corresponding to
segment (t, u) as:

max
y′,y:(t,u,y) 6∈yi

Li((t, u, y))[1− s(yi) + γ(t− 1, y′)

+ wT f(x, (t, u, y), y′) + β(u, y)]+

4.3.3. Unlabeled Dependency Parsing

In unlabeled dependency parsing, the goal is to assign
each token to its ’head’ token (or to a dummy token),
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such that the head links form a directed spanning tree.
The feature vector for a tree y over a sentence x is de-
composable over the edges (McDonald et al., 2005b):
f(x,y) =

∑

t f(yt,x, t) where t is a token and yt is
its head. A natural error function for a dependency
parse tree is then the number of words that are as-
signed an incorrect head word. In this case, the error
and features decompose in exactly the same way, over
individual words. The only coupling amongst the pre-
dictions of different words is that they need to form a
tree.

We use the combinatorial non-projective parsing al-
gorithm of (McDonald et al., 2005b), which cannot
be easily extended to simultaneously return MAP for
each position. For PosLearn we return the worst vio-
lator for each position by first finding the unrestricted
MAP y∗. Then, for each position where y∗ is cor-
rect, we re-invoke MAP with the correct assignment
disabled. In the worse case, this will lead to n MAP
invocations.

5. Experiments

We present experimental results on three tasks — se-
quence labeling, text segmentation and dependency
parsing, performed on the following datasets and set-
tings:

CoNLL’03: We use the English benchmark from the
CoNLL’03 shared task on named entity recognition.
The corpus consists of train, development and test sets
of ≈ 14000, 3200 and 3400 sentences respectively. We
used exactly the same features as in the trained model
from Stanford’s Named Entity Recognizer 1.

Cora: This is a database of ≈ 500 citations (McCal-
lum et al., 2000), containing entities such as Author,
Journal, Title, Year and Volume. We used standard
extraction features defined over the neighborhoods of
each token and the label of the previous token (Peng &
McCallum, 2004). For the segmentation task on this
dataset, we also used the segment length feature.

Address: This is a collection of ≈ 400 non-US postal
addresses. Unlike US addresses, these addresses are
highly irregular and relatively difficult to segment.
The features for sequence labeling and segmentation
tasks are as defined in (Sarawagi & Cohen, 2004).

CoNLL-X: We use the freely available treebanks for
Swedish, Dutch and Danish from the CoNLL X Shared
Task for unlabeled dependency parsing. The training
sets contain ≈ 11000, 13350, and 5200 sentences re-

1 http://nlp.stanford.edu/software/
stanford-ner-2008-05-07.tar.gz

Table 1. Token mis-classifications (in %) of all approaches
on all tasks. For sequence labeling and segmentation we
also report span F1 (after ’/’).

Margin Slack Approx PosLearn

Sequence Labeling

Cora 12.3/74.9 10.0/82.9 9.9/83.0 9.5/83.4

Address 17.1/71.0 15.7/76.7 15.1/78.1 14.2/78.4

CoNLL 2.89/84.7 2.95/84.7 2.96/84.6 2.82/85.1

Segmentation

Cora 17.7/81.8 17.4/81.9 17.3/81.9 16.2/83.1

Address 15.4/77.6 15.4/77.5 15.4/77.6 13.8/79.0

Dependency Parsing

Danish 12.4 - - 12.5
Dutch 16.3 - - 16.9
Swedish 12.9 - - 12.8

spectively. We use the first-order features, the on-
line MIRA trainer (Crammer & Singer, 2003), and
the non-projective parsing algorithm provided in the
MSTParser package2.

5.1. Results

Table 1 shows test errors (as defined in Section 4.3) and
Span F1 (where ever applicable) of all four training
approaches on all the tasks. For Cora and Address
results are averaged over ten splits of 25% train —
75% test, the rest are with the standard training and
test files as available in the benchmark. For sequence
and segmentation tasks, we are able to solve the Slack
inference problem exactly using a quadratic algorithm
that finds the MAP for each possible error value. For
dependency parsing, it was not easy to find MAP with
a pre-specified error. Hence, numbers for Slack scaling
methods are missing for this task.

Sequence labeling

We note that the errors go down in the order Margin
> Slack > ApproxSlack > PosLearn, and PosLearn
achieves ≈ 20% error reduction over Margin and 5-
10% over Slack. The difference between PosLearn and
Margin is statistically significant (p-value from paired
t-test is < 0.001), while that between ApproxSlack and
Slack is not. This confirms that the approximations
done in ApproxSlack are empirically good.

We also reports the entity span F1 values in Table
1 (numbers after the “/”). PosLearn provides signifi-

2http://sourceforge.net/mstparser
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Figure 1. Sequence labeling error (in %) of all approaches
on Cora as training size is increased.
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Figure 2. Comparison of training times on Cora over vari-
ous training percentages. The error bars denote one stan-
dard deviation over ten random splits.

cant improvements over Margin for Cora and Address,
going from 75 to 83 and 71 to 78 respectively. This
shows that optimizing for the error directly translates
to significantly better span F1 scores. For CoNLL’03
the gains are modest both for error and Span F1 for
reasons we will highlight in Section 5.2. Figure 1 in-
vestigates the effect of increasing training size on the
sequence labeling errors of all the approaches on Cora.
PosLearn remains the best approach for all training
sizes, with a 25% error reduction over Margin even for
75% training data. ApproxSlack and Slack are almost
identical for all training sizes.

Figure 2 compares the training time of the four ap-
proaches on Cora over various training sizes. PosLearn
and ApproxSlack turn out to be the cheapest of all
the approaches. Two key observations here are (a)
PosLearn is up to five times faster than Margin in
spite of generating many more constraints, and (b)
The training time of Margin reduces with an increase
in data. These can be attributed to two reasons. First,
PosLearn quickly generates a lot of relevant constraints
and terminates in much fewer iterations, whereas Mar-
gin spends too much time in separating high loss la-
belings which are already far enough. Second, when
data is scarce, Margin is not able to find good support
vectors early on and takes many more iterations. This

provides another empirical support for the recent ob-
servations in (Bottou & Bousquet, 2008) on the inverse
dependence of training time on data sizes.

Segmentation

The results for segmentation are similar to sequence
labeling. Again, PosLearn provides 7-10% decrease in
error over Margin and Slack. ApproxSlack again turns
out to be a close approximation to Slack.

Unlabeled dependency parsing

The difference between PosLearn and Margin turns
out to be very insignificant in this case. We cannot
evaluate Slack as its MAP inference algorithm is not
feasible in this setting. Our discussion in the next
section shows that we do not expect ApproxSlack to
score over Margin either.

Note our baseline numbers are competitive with the
state of the art for these tasks. For Swedish and Dan-
ish, the errors for Margin scaling are significantly lower
than the average errors of the CoNLL X Shared Task
participants — 15.8% and 15.5% respectively . For
Dutch, Margin scaling model is better than the best
model in the Shared Task (error 16.4%).

5.2. Discussion

We observed that Margin scaling was significantly
worse than other loss functions for tasks like sequence
labeling on the Address and Cora datasets, while being
the highest performing on tasks like dependency pars-
ing. We explain the reasons behind the varying gains
of Margin relative to other loss functions, in particu-
lar PosLearn, based on the decomposition of the error
function compared to the feature function.

We argue that margin scaling is a bad loss func-
tion only when the model comprises of features that
strongly couple larger subset of variables than the er-
ror function. Consider the case when the feature func-
tion decomposes over each position of y, exactly as in
the error function. This is true for dependency pars-
ing, and for sequence labeling models with no edge
features. In such cases, a structured formulation adds
little value, and a multi-class SVM with independent
constraints over the local features and loss at each posi-
tion, is just as adequate. The constraints of structured
margin scaling turn out to be a summation of the con-
straints of multi-class SVM and the two solve equiv-
alent objectives as shown in (Joachims, 2006). Inter-
estingly, (McDonald et al., 2005b) indeed finds that
such a model (which they call the factored model) is
very close to the structured model using margin scal-
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ing. We verify that for sequence labeling, if we disable
all edge features, then for the Address dataset, span
F1 drops from 71 to 62 and for Cora from 75 to 44
with Margin scaling. This indicates the strong impor-
tance of structured features for these datasets. In con-
trast, for CoNLL’03 where Margin is competitive with
PosLearn, removal of edge features causes only a small
drop in Span F1, from 84.7 to 81. Without edge fea-
tures, PosLearn shows little or negative improvement
over Margin scaling for all three datasets.

This indicates that in domains where the feature func-
tion does not induce strong coupling amongst vari-
ables, there is no reward in going beyond simple mar-
gin scaling, and possibly even multiclass SVMs. In
truly structured problems where features strongly cou-
ple multiple variables, margin scaling gets adversely af-
fected by the unnecessary margin requirements of high
error labelings due to shared slack variables. PosLearn
ignores labelings separated from the margin, and by
defining per-position slacks instead of a single shared
slack, handles such structured cases better.

6. Conclusion

We presented an efficient variational approximation
to the slack scaling approach, which only requires a
slightly modified loss augmented MAP algorithm, in-
stead of the inefficient slack scaling inference algo-
rithm. We demonstrated that in practice it performs
much better than margin scaling and closely approxi-
mates slack scaling.

Next, we argued that all existing approaches that de-
fine loss in terms of a single most violating label-
ing achieve inadequate separation from the correct la-
beling. We proposed a new trainer, PosLearn that
involves multiple labelings in trying to ensure max-
margin separation at each possible error position in
the structured output. The PosLearn constraints can
be generated using only the MAP algorithm, and for
many structured models the time required is no more
than twice the time taken to find MAP. Empirically,
this leads to significant error reduction over Margin
scaling on structured models that induce strong cou-
pling amongst output variables.

A compelling future direction is theoretically analyz-
ing the generalizability of PosLearn vis-a-vis other loss
scaling methods.
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Abstract

In this paper we investigate two aspects of
ranking problems on large graphs. First,
we augment the deterministic pruning algo-
rithm in Sarkar and Moore (2007) with sam-
pling techniques to compute approximately
correct rankings with high probability un-
der random walk based proximity measures
at query time. Second, we prove some sur-
prising locality properties of these proximity
measures by examining the short term behav-
ior of random walks. The proposed algorithm
can answer queries on the fly without caching

any information about the entire graph. We
present empirical results on a 600, 000 node
author-word-citation graph from the Citeseer
domain on a single CPU machine where the
average query processing time is around 4
seconds. We present quantifiable link pre-
diction tasks. On most of them our tech-
niques outperform Personalized Pagerank, a
well-known diffusion based proximity mea-
sure.

1. Introduction
Link prediction in social networks, personalized graph
search techniques, fraud detection and collaborative
filtering in recommender networks are important prac-
tical problems that greatly rely on graph theoretic
measures of similarity. Given a node in a graph we
would like to ask which other nodes are most simi-
lar to this node. Ideally we would like this similarity
measure to capture the graph structure such as hav-
ing many common neighbors or having several short
paths between two nodes. This kind of structural in-
formation can be easily quantified using random walks

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

on graphs: diffusion of information from one node to
another. Most random-walk based ranking algorithms
can be categorized into two broad categories.

Probability of reaching a node: This is the ba-
sis of measures like personalized page rank. Person-
alized page-rank vectors (PPV) have been used for
keyword search in databases (Balmin et al., 2004)
and entity-relation graphs (Chakrabarti, 2007). These
approaches focus on computing approximate PPV at
query time (details in section 6), and quantify the per-
formance in terms of the deviation of the approxima-
tion from the exact. However, it is not clear if PPV
itself has good predictive power.

Expected number of hops to reach a node:
This is also called the hitting time (Aldous & Fill,
2001). The symmetric version of this is the com-

mute time between two nodes. These metrics have
been shown to be empirically effective for ranking in
recommender networks (Brand, 2005) and link pre-
diction problems (Liben-Nowell & Kleinberg, 2003).
These measures usually require O(n3) computation.
Recently Spielman and Srivastava (2008) have come
up with a novel approximation algorithm for efficiently
computing commute times by random projections.
However it is only applicable to undirected graphs.

Sarkar and Moore (2007) introduced the notion of
truncated commute times and demonstrated that it
had good predictive power for link prediction tasks.
However their algorithm (GRANCH) required storing
potential nearest neighbors of all nodes in the graph
in order to answer nearest neighbor queries. The key
contribution in this paper are: 1) we combine sampling
with deterministic pruning to design an algorithm
which retrieves top k neighbors of a query in truncated
commute time incrementally without caching informa-
tion about all nodes in the graph. 2) We investigate
locality properties of truncated hitting and commute
times. 3) We show that on several link prediction tasks
these measures outperform PPV in terms of predictive
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power, while on others they do comparably. 4) Our
algorithm can process queries at around 4 seconds on
average on graphs of the order of 600, 000 nodes on a
single CPU machine.

The rest of the paper is organized as follows: in sec-
tion 2 we provide relevant background. In section 3 we
introduce our hybrid algorithm, and provide sample
complexity results for random sampling. The local-
ity properties of truncated hitting and commute times
are investigated in section 4. We present empirical re-
sults in section 5, and conclude with related work in
section 6.

2. Background

A graph G = (V,E) is defined as a set of vertices V
edges E. The ijth entry of the adjacency matrix W
denotes the weight on edge (i, j), and is zero if the edge
does not exist. P = pij , i, j ∈ V denotes the transition
probability matrix of this Markov chain, so that pij =
wij/

∑

j Wij if (i, j) ∈ E and zero otherwise.

Hitting time hij: The hitting time from node i to
node j is defined as the expected number of steps in
a random walk starting from i before node j is visited
for the first time. Recursively hij can be written as
hij = 1 +

∑

k pikhkj , if i 6= j and zero otherwise.

Commute time cij: Commute time between a pair
of nodes is defined as cij = hij + hji.

2.1. Truncated Hitting Time

The hitting and commute times are sensitive to long
range paths (Liben-Nowell & Kleinberg, 2003) which
result in non-local nature. They are also prone to be
small if one of the nodes is of large degree (Brand,
2005). This renders them ineffective for personaliza-
tion purposes. In order to overcome these shortcom-
ings, Sarkar and Moore (2007) define a T-truncated
hitting time, where only paths of length less than T
are considered. We shall use h, hT interchangeably
to denote truncated hitting time. hT

ij can be defined
recursively as

h
T

ij = 1 +
�

k

pikh
T−1

kj
(1)

where hT is defined to be zero if i = j or if T = 0.
The above equation expresses hT in a one step look-
ahead fashion. The expected time to reach a destina-
tion within T timesteps is equivalent to one step plus
the average over the hitting times of it’s neighbors to
the destination in T − 1 hops. If there is no path of
length smaller than T from i to j, this automatically
sets hT (i, j) to T .

2.2. GRANCH (Sarkar & Moore, 2007)

The truncated hitting time from all nodes to a desti-
nation node can be computed in O(ET ) time using dy-

namic programming. However in order to compute the
hitting time from a query node to a destination, one
has to compute the hitting time of all nodes to the des-
tination, thus computing the entire matrix which takes
O(NET ) time (N and E are the number of nodes and
edges respectively).

In order to get around the above problem the graph
is decomposed into N overlapping neighborhoods for
each node. Each neighborhood is computed in a way
to include potential nearest neighbors and prune away
the rest. The authors provide bounds on the hitting
time from all nodes within the neighborhood of i to i.
The hitting time from any node outside the boundary
to the destination is quantified by only two numbers: a
lower and an upper bound. As the neighborhoods are
expanded more the bounds become tighter. This way
each column of the truncated hitting time (HT ) matrix
is filled up partially. After iterating over all nodes it
is possible to look at one row and obtain ranking from
the bounds on hitting time from a node.

GRANCH computes all pairs of nearest neighbors by
caching information for all nodes in the graph. This
does not work when the graph is changing continu-
ously. We introduce a hybrid algorithm which essen-
tially combines the above branch and bound trick with
sampling techniques to obtain nearest neighbors of a
query node in commute time with high probability.

3. Hybrid Algorithm
We present an algorithm to compute approximate
nearest neighbors in commute times, without iterating
over the entire graph. We combine random sampling
with the branch and bound pruning scheme mentioned
before, in order to obtain upper and lower bounds on
commute times from a node. This lets us compute the
k nearest neighbors from a query node on the fly.

For any query node we compute hitting time from it
using sampling. We maintain a bounded neighborhood
for the query node at a given time-step. We compute
estimated bounds on the commute time from the nodes
within the neighborhood to the query. Commute time
of nodes outside the neighborhood to the query are
characterized by a single upper and lower bound. We
expand this neighborhood until this lower bound ex-
ceeds 2T ′, which guarantees that with high probability
we are excluding nodes which are more than 2T ′ com-
mute distance away. These bounds are then used for
ranking the nodes inside the neighborhood.

We will first describe a simple sampling scheme to
obtain ε-approximate truncated hitting times from a
query node with high probability.
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3.1. Sampling Scheme

We propose a sampling scheme to estimate the trun-
cated hitting time from a given query node i in a graph.
We run M independent T -length random walks from
i. Lets say out of these M runs m random walks hit
j for the first time at {tk1

, ...tkm
} time-steps. From

these we can estimate the following

1. The probability of hitting any node j for the first

time from the given source node within T steps
can be estimated by m

M
.

2. The first hitting time can be estimated by

ĥ
T (i, j) = � r

tkr

M
+ (1 −

m

M
)T

We provide bounds (details in Appendix) similar to
Fogaras et al. (2004)

1. The number of samples M required in order to
give an ε- correct answer with probability 1− �.

2. The number of samples M required in order to
get the top k neighbors correct.

Theorem 3.1 For a given node i, in order to obtain

P (∃u ∈ {1, . . . , n}, |ĥT (i, u) − hT (i, u)| ≥ εT ) ≤ �,
number of samples M should be at least 1

2ε2
log( 2n

δ
).

Theorem 3.2 Let vj , j = 1 : k be the top k neigh-

bors of i in exact T -truncated hitting time. Let α =
hT (i, vk+1) − hT (i, vk) . Then number of samples

M should be at least 2T 2

α2 log(nk/�) in order to have

Pr(∃j ≤ k, q > k, ĥT (i, vj) > ĥT (i, vq)) ≤ �.

The details are provided in the appendix. The above
theorem says nothing about the order of the top k
neighbors, only that if the gap between the hitting
times from i to the kth and k + 1th nearest neighbors
is large, then it is easy to retrieve the top k nearest
neighbors. We could change the statement slightly to
obtain a sample complexity bound to guarantee the
exact order of the top k neighbors with high probabil-
ity. The main difference will be that it will depend on
minj≤k hT (i, vj+1)− hT (i, vj).

3.2. Lower and Upper Bounds on cT
ij

Let us denote the neighborhood of node j by NBS(j).
The boundary of this is denoted by �(j).In Eqn (1)
ht(i, j) is computed using the hitting time from its
direct neighbors to j, which are computed in the t −
1th iteration. Since only the hitting times of nodes
within NBS(j) are stored, a boundary node would
not have access to the hitting time of at least one of
its neighbors. Those values can be upper and lower
bounded as follows. The fastest possible way to reach
node j from any node outside NBS(j) would be by

jumping to the node on the boundary �(j) which has
the closest optimistic hitting time to j. This gives us
a lower bound on the hitting time of all nodes outside
NBS(j) to j.

lb(j) = 1 + min
p∈δ(j)

ho
T−1

pj (2)

The pessimistic bound is T . Plugging in these bounds
in equation (1) whenever the neighbors are outside the
neighborhood of the destination gives the expressions
for optimistic (hoT

ij) and pessimistic (hpT
ij) bounds on

hitting times (details in Sarkar and Moore (2007)).

Now we have the expressions for the lower and upper
bounds for the hitting times of the nodes in NBS(j) to
j (ho and hp values). The hitting time from j to nodes
within NBS(j) can be estimated using the sampling
scheme described in section 3.1. Combining the two
leads to the following.

Theorem 3.3 The truncated commute time between
nodes i ∈ NBS(j) and j will be lower and upper

bounded by coT
ij and cpT

ij with probability 1 − � if the

number of samples for estimating ĥT
ij exceeds the lower

bound in theorem 3.1, where

co
T

ij = ĥ
T

ji + ho
T

ij − εT (3)

cp
T

ij = ĥ
T

ji + hp
T

ij + εT (4)

We would use ĉoij = ĥT
ji + hoT

ij and similarly ĉpij to
denote estimates of these bounds. In order to prune
away nodes which are not potential nearest neighbors
we also need to obtain a lower bound on the commute
time between j and any node outside NBS(j). The
incoming lower bound is given by equation 2. Now
note that for the outgoing lower bound we need the
minimum of hT

jk,∀k 6∈ NBS(j).

Lemma 3.4 The number of samples M should

be at least 1
2ε2

log( 2n
δ

) in order to obtain

Pr(|mink 6∈NBS(j) ĥT
jk −mink 6∈NBS(j) hT

jk| ≥ εT ) ≤ 2�.

Thus an estimate of the outgoing lower bound can be
computed from the hitting times obtained from sam-
pling. Combining the two we obtain an estimate on the

lower bound on 2T -truncated commute time ̂lb-ct(j)
from j to any node outside NBS(j).

�
lb-ct(j) = 1 + min

p∈δ(j)

ho
T−1

pj + min
k 6∈NBS(j)

ĥ
T

jk (5)

For our implementation, we always used estimated,
not the exact bounds. This introduces an additive
error in our results (proof excluded for lack of space).

3.3. Expanding Neighborhood
Now we need to find a heuristic to expand the neigh-
borhood such that both the outgoing and incoming
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components of the lower bound increase quickly so that
the threshold of 2T ′ is reached soon.

For the incoming lower bound we just find the x clos-
est nodes on the boundary which have small optimistic
hitting time to the query. We add the neighbors of
these nodes to the neighborhood of j. For the outgo-
ing lower bound, we compute the nodes outside the
boundary which a random walk is most probable to
hit. We do this by maintaining a set of paths from
j which stop at the boundary. These paths are aug-
mented one step at a time. This enables one step look-
ahead in order to figure out which nodes outside the
boundary are the most probable nodes to be hit. We
add y of these nodes to the current boundary.

3.3.1. Ranking

The ranking scheme is similar to GRANCH and is
rather intuitive. So far we only have lower and upper
bounds for commute times from node j to the nodes
in NBS(j). Lets denote this set as S. The commute
time from j to any node outside S is guaranteed to be
bigger than 2T ′. The true kth nearest neighbor will
have commute time larger than the kth smallest lower
bound i.e. co value. Lets denote the kth smallest co
value by X. Now consider the nodes which have upper
bounds (cp values) smaller than X. These are guaran-
teed to have commute time smaller than the true kth

nearest neighbor. Adding a multiplicative slack of α
to X allows one to return the α-approximate k nearest
neighbors which have commute time within 2T ′. Note
that the fact that no node outside set S has hitting
time smaller than 2T ′ is crucial for ranking, since that
guarantees the true kth nearest neighbor within 2T ′

commute distance to be within S. Since all our bounds
are probabilistic, i.e. are true with high probability
(because of the sampling), we return α-approximate k
nearest neighbors with high probability. Also the use
of estimated bounds (ĉo,ĉp) will introduce an additive
error of 2εT (ignoring a small factor of εαT ).

3.4. The Algorithm at a Glance

In this section we describe how to use the results in
the last subsections to compute nearest neighbors in
truncated commute time from a node. Given T, α, k
our goal is to return the top k α-approximate nearest

neighbors (within 2εT additive error) w.h.p.

First we compute the outgoing hitting times from a
node using sampling. We initialize the neighborhood
with the direct neighbors of the query node (We have
set up our graph so that there are links in both di-
rections of an edge, only the weights are different).
At any stage of the algorithm we maintain a bounded
neighborhood for the query node. For each node inside

the neighborhood the hitting times to the query can
be bounded using dynamic programming. Combining
these with the sampled hitting times gives us the es-
timated ĉo, and ĉp values. We also keep track of the

lower bound ̂lb-ct of the commute time from any node
outside the neighborhood to the query node. At each
step we expand the neighborhood using the heuristic
in section 3.3. Similar to GRANCH we recompute the

bounds again, and keep expanding until ̂lb-ct exceeds
2T ′. W.h.p this guarantees that all nodes outside the
neighborhood have commute time larger than 2T ′−εT .

Then we use the ranking as in section 3.3.1 to obtain
k α-approximate nearest neighbors (with an additive
slack of 2εT ) in commute time. We start with a small
value of T ′ and increase it until all k neighbors can be
returned. As in Sarkar and Moore (2007) it is easy to
observe that the lower bound can only increase, and
hence at some point it will exceed 2T ′ and the algo-
rithm will stop. The question is how many nodes can
be within 2T ′ commute distance from the query node.
In section 4 we prove that this quantity is not too large
for most query nodes.

4. Locality Properties of hT

In this section we analyze the locality properties of
truncated hitting times. We show that most nodes in
a graph will have only a small number of neighbors
within 2T ′ T -truncated commute time. We would do
this in three steps. First we show that number of nodes
within hitting time T ′ from a node i is small. Then
we would make a similar argument that the number of
nodes within T ′- hitting distance to i is also small. Fi-
nally we would make an argument about the neighbors
of i in commute time.

Theorem 4.1 For any graph G and constants T and

T ′, the number of nodes within a truncated hitting dis-

tance of T ′ from any node is at most T 2/(T − T ′).

Let P<T
ij denote the probability of hitting node j start-

ing at i within T steps and P̃ t
ij the probability of hit-

ting j in exactly t steps for the first time from i.

T
′
≥ hij ≥ T (1 − P

<T

ij ) =⇒ P
<T

ij ≥
T − T ′

T
(6)

Define Si as the neighborhood of i which consists of
only the nodes within hitting time T ′ from i.

�

j∈Si

P
<T

ij =
�

j∈Si

T−1�

t=1

P̃
t

ij ≤

T−1�

t=1

�

j∈Si

P
t

ij ≤ T − 1

However the left hand side is lower bounded by
|Si|

T−T ′

T
using (6). Which leads us to the upper bound
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|Si| ≤
T 2

T−T ′
. So all total there are only N T 2

T−T ′
pairs

within T ′ hitting distance. If T and T ′ are constant
w.r.t n, then using the above bound and counting ar-
guments we can also show that there can be at most
O(
√

n) nodes with more than
√

n nodes within T ′ hit-
ting time to them.

We have shown that not more than O(
√

n) nodes can
have more than O(

√
n) nodes with hitting time smaller

than T ′ to them. We already have a bound of T 2/(T−
T ′) on the number of nodes with hitting time smaller
than T ′ from a node. We want to bound the number
of nodes within commute time 2T ′.

In other words we have proven that {j|hT
ij ≤ T ′} and

{j|hT
ji ≤ T ′} are small. Now we need to prove that

{j|hT
ij + hT

ji ≤ 2T ′} is also small. Note that the above
set consists of

1. S1 = {j|hT
ij ≤ T ′

⋂

hT
ij + hT

ji ≤ 2T ′}

2. S2 = {j|hT
ij > T ′

⋂

hT
ij + hT

ji ≤ 2T ′}

S1 can have at most T 2/(T −T ′) nodes. Now consider
S2. S2 will have size smaller than |{j|hT

ji ≤ T ′}|. Using
our result from before we can say the following

Lemma 4.2 Let T be constant w.r.t n. If T ′ is

bounded away from T by a constant w.r.t n, i.e.

T 2/(T − T ′) is constant w.r.t n, then not more than

O(
√

n) nodes will have more than O(
√

n) neighbors

with truncated commute time smaller than 2T ′.

The impact of lemma 4.2 is that in a sequence of
O(
√

n) nearest neighbor queries (each selected at ran-
dom), for each node, there would be at most O(

√
n)

other nodes within 2T ′ commute distance on average.

5. Empirical Results
We have examined our algorithm on Entity Relation
(ER) datasets extracted from the Citeseer corpus, as
in Chakrabarti (2007). This is a graph of authors,
papers and title-words extracted from Citeseer.

5.1. Dataset and Link Structure
The link structure is obvious:

1. Between a paper and a word appearing in its title.

2. From a paper to the paper it cites, and one with
one-tenth the strength the other way.

3. Between a paper and each of its authors.

As observed by Chakrabarti (2007), the weights on
these links are of crucial importance. Unlike some
other approaches (Balmin et al., 2004; Chakrabarti,
2007) we also put links from the paper layer to the

word layer. This allows flow of information from one
paper to another via the common words they use. The
links between an author and a paper are undirected.
The links within the paper layer are directed. We use
the convention in Chakrabarti (2007) to put a directed
edge from the cited paper to the citing paper with one-
tenth the strength.

For any paper we assign a total weight of W to the
words in its title, a total weight of P to the papers it
cites and A to the authors on it. We use an inverse
frequency scheme for the paper-to-word link weight,
i.e. the weight on link from paper p to word w is
W × 1/fw/(

∑

p→u 1/fu), where fw is the number of
times word w has appeared in the dataset. We set
W = 1, A = 10, P = 10 so that the word layer to
paper layer connection is almost directed. We add a
self loop to the leaf nodes, with the same weight as its
single edge, so that the hitting times from these leaf
nodes are not very small.

We use two subgraphs of Citeseer. The small one
has around 75, 000 nodes and 260, 000 edges: 16, 445
words, 28, 719 papers and 29, 713 authors. The big
one has around 600, 000 nodes with 3 million edges :
81, 664 words, 372, 495 papers and 173, 971 authors.

5.2. Preprocessing
We remove the stopwords and all words which appear
in more than 1000 papers from both the datasets. The
number of such words was around 30 in the smaller
dataset and 360 in the larger one. We will make the
exact dataset used available on the web.

5.3. Experiments
The tasks we consider are as follows,

1. Paper prediction for words (Word task): We pick
a paper X at random, remove the links between it
and its title words. Given a query of exactly those
words we rank the papers in the training graph.
For different values of y the algorithm has a score
of 1 if X appears in the closest y papers. For any

search engine, it is most desirable that the paper

appears in the top k results, k ≤ 10.

2. Paper prediction for authors (Author task): Ex-
actly the above, only the link between the paper
and its authors are removed.

The hybrid algorithm is compared with: 1) Exact
truncated hitting time from the query, 2) Sampled
truncated hitting time from the query, 3) Exact trun-
cated commute time from the query, 4) Exact trun-
cated hitting time to the query, 5) Personalized Pager-
ank Vector and 6) Random predictor. Note that we
can compute a high accuracy estimate of the exact hit-
ting time from a query node by using a huge number of

900



Fast Incremental Proximity Search in Large Graphs

samples. We can also compute the exact hitting time
to a node by using dynamic programming by iterating
over all nodes. Both of these will be slower than the
sampling or the hybrid algorithm as in Table 1.

Distance from a set of nodes Hitting and com-
mute times are classic measures of proximity from a
single node. We extend these definitions in a very
simple fashion in order to find near-neighbors of a set
of nodes. The necessity of this is clear, since a query
often consists of more than one word. We define the
hitting time from a set of nodes as an weighted av-
erage of the hitting times from the single nodes. For
hitting time to a set, we can change the stopping con-
dition of a random walk to “stop when it hits any of
the nodes in the set”. We achieve this via a simple
scheme: for any query q, we merge the nodes in the
query in a new mega node Q as follows. For any node
v 6∈ Q P (Q, v) =

∑

q∈Q w(q)P (q, v), where P (q, v) is
the probability of transitioning to node v from node
q in the original graph.

∑

q∈Q w(q) = 1. We use a
uniform weighing function, i.e. w(q) = 1/|Q|. The
hitting/commute time is computed on this modified
graph from Q. These modifications to the graph are
local and can be done at query time, and then we undo
the changes for the next query.

Our average query size is the average number of
words (authors) per paper for the word (author) task.
These numbers are around 3 (2) for the big subgraph,
and 5 (2) for the small subgraph.

Figure 1 has the performance of all the algorithms for
the author task on the (A) smaller, (B) larger dataset
and the word task on the (C) smaller and (D) larger
dataset, and Table 1 has the average runtime. As men-
tioned before for any paper in the testset, we remove
all the edges between it and the words (authors) and
then use the different algorithms to rank all papers
within 3 hops of the words (5 for authors, since au-
thors have smaller degree and we want to have a large
enough candidate set) in the new graph and the re-
moved paper. For any algorithm the percentage of
papers in the testset which get ranked within the top
k neighbors of the query nodes is plotted on the y axis
vs. k on the x axis. We plot the performances for six
values of k: 1, 3, 5, 10, 20 and 40.

The results are extremely interesting. Before going
into much detail let us examine the performance of
the exact algorithms. Note that for the author task
the exact hitting time to a node and the exact com-

mute time from a node consistently beats the exact

hitting time from a node, and PPV. However for the
word task the outcome of our experiments are the op-
posite. This can be explained in terms of the inherent

directionality of a task. The distance from the word-
layer to the paper-layer gives more information than
the distance from the paper layer to the word layer,
whereas both directions are important for the author
task, which is why commute times, and hitting time
to a node outperform all other tasks.

We only compare the predictive power of PPV with our
measures, not the runtime. Hence we use the exact
version of it. We used c = 0.1, so that the average
path-length for PPV is around 10, since we use T = 10
for all our algorithms (however, much longer paths can
be used for the exact version of PPV). PPV and hitting
time from a node essentially relies on the probability of
reaching the destination from the source. Even though
hitting time uses information only from a truncated
path, in all of our experiments it performs better than
PPV, save one, where it behaves comparably.

Word task: The sampling based hitting time beats
PPV consistently by a small margin on the big-
ger dataset, whereas it performs comparably on the
smaller one. Hitting times and PPV beat the hitting
time to nodes for the word task. In fact for k = 1, 3, 5,
for the smaller dataset the hitting time to a query node
isn’t much of an improvement over the random predic-
tor (which is zero). This emphasizes our claim that the
hitting time to the word layer does not provide signif-
icant information for the word task. As a result the
performance of the exact and hybrid commute times
deteriorates.
Author task: The hitting time to the query and the
exact commute time from a query have the best per-
formance by a large margin. The hybrid algorithm
has almost similar performance. Hitting time from
the query is beaten by these. PPV does worse than all
the algorithms except of course the random predictor.

Number of samples: For the small graph, we use
100, 000 samples for computing the high accuracy ap-
proximation of hitting time from a node; 5000 samples
for the word task and 1000 samples for the author task.
We use 1.5 times each for the larger graph. We will
like to point out that our derived sample complexity
bounds are interesting for their asymptotic behavior.
In practice we expect much fewer samples to achieve
low probability of error. In Figure 1 sometimes the
exact hitting (commute) times does worse than the
sampled hitting time (hybrid algorithm). This might
happen by chance, with a small probability.

6. Related Work
In this section we briefly examine algorithms which
have been developed using random walks on graphs,
and their applications. Brand (2005) uses different
random walk based measures to compute the top k rec-
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Figure 1. Author task for (A) Small and (B) Large datasets. Word task for (C) Small and (D) Large datasets. x-axis
denotes the number of neighbors and y-axis denotes accuracy.

Table 1. Run-time in seconds for Exact hitting time from query, Sampled hitting time from query, Exact commute time,
Hybrid commute time, Exact hitting time to query, PPV

# nodes # edges Task Exact Ht-from Sampled Ht-from Exact Ct Hybrid Ct Exact Ht-to PPV

74,877 259,320 Author 1.8 .02 9.2 .28 6.7 18

Word 3.1 0.3 10.4 1.2 6.56 50

628, 130 2, 865, 660 Author 6.9 .07 79.07 1.8 67.2 337.5

Word 12.3 0.7 88.0 4.3 70 486

ommendations for a particular customer in a customer-
movie graph from the movielens dataset. The sub-
matrices of the hitting and commute times matrices
are computed by iterative sparse matrix multiplica-
tions (details in Sarkar and Moore (2007)). However it
is only tractable to compute these measures on graphs
with a few thousand nodes for most purposes.

Liben-Nowell and Kleinberg (2003) showed that the
hitting and commute times perform poorly for link
prediction tasks, because of their sensitivity to long
paths. The most effective measure was shown to be
the Katz measure (Katz, 1953) which directly sums
over the collection of paths between two nodes with
exponentially decaying weights. However, ranking un-
der the Katz score would require solving for a row of
the matrix (I−γA)−1−I, where I and A are the iden-
tity and adjacency matrices of the graph and γ is the
decay factor. Even if A is sparse the fast linear solvers
will take at least O(E) time.

Tong et al. (2007) uses escape probability from node
i to node j to compute direction aware proximity in
graphs. A fast matrix solver is used to compute this
between one pair of nodes, in O(E) time. Multiple
pairs of proximity require computation and storage of
the inverse of the matrix I − γP , which would be
intractable for large graphs (10K nodes). Jeh and

Widom (2002b) use the notion of expected f-hitting dis-

tance, which is the hitting time (in a random walk with
restart) between a set of nodes in a product graph with
N2 nodes. The quadratic time complexity is reduced
by limiting the computation between source and des-
tination pairs within distance of r.

The main idea of personalized pagerank is to bias the
probability distribution towards a set of webpages par-
ticular to a certain user, resulting in a user-specific
view of the web. It has been proven (Jeh & Widom,
2002a) that the PPV for a set of webpages can be
computed by linearly combining those for each indi-
vidual webpage. However it is hard to store all pos-
sible personalization vectors or compute the person-
alized pagerank vector at query time because of the
sheer size of the internet graph. There have been many
novel algorithms for efficiently computing PPV (Jeh &
Widom, 2002a; Haveliwala, 2002; Fogaras et al., 2004).
Most of these algorithms compute partial PPVs offline
and combine them at query time.

The ObjectRank algorithm (Balmin et al., 2004)
computes keyword-specific ranking in a publication
database of authors and papers, where papers are con-
nected via citations and co-authors. The personalized
pagerank for each word is computed and stored offline,
and at query time combined linearly. Chakrabarti
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(2007) et al. show how to compute approximate per-
sonalized pagerank vectors using clever neighborhood
expansion schemes which would drastically reduce the
amount of offline storage and computation.

7. Conclusion
Many graph-based learning algorithms rely on com-
puting proximity measures in graphs. These graphs
can be very large and undergoing continuous change,
hence fast incremental algorithms are needed. In this
paper we have combined sampling techniques with
branch and bound pruning to compute near neighbors
of a query node with high probability. Our proximity
measures have been empirically shown to often outper-
form a popular alternative, namely personalized pager-
ank on link-prediction tasks.
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Appendix
Proof of Theorem 3.1: We provide a bound on the
number of samples M required in order to give an ε-correct
answer with probability 1 − δ. We denote the estimate of
a random variable x by x̂ from now on. Lets denote by
Xr(i, u) the first arrival time at node u from node i on
the rth trial. Define Xr(i, u) = T if the path does not hit

u on trial r. Note that ĥT (i, u) = � r
Xr(i, u)/M , and

E[ĥT (i, u)] = hT (i, u). {Xr(i, u) ∈ [1, T ], r = 1 : M} are
i.i.d. random variables. The Hoeffding bound gives

P (|ĥT (i, u) − hT (i, u)| ≥ εT ) ≤ 2 exp(− 2M(εT )
2

T2 )
= 2 exp(−2Mε2)

Now we want the probability of a bad estimate for any
u to be low. We upper bound this error probability us-
ing union and Hoeffding bounds and set the upper bound
to be less than a small value δ. Hence we have P (∃u ∈

{1, . . . , n}, |ĥT (i, u) − hT (i, u)| ≥ εT ) ≤ 2n exp(−2Mε2) ≤
δ. This gives the lower bound of 1

2ε2
log( 2n

δ
).

Proof of Theorem 3.2: Consider a sampled path of
length T starting from i. We define Xr(i, u) as before. For
two arbitrary nodes u and v, WLOG let hT (i, u) > hT (i, v).
The idea is to define a random variable whose expected
value will equal hT (i, u) − hT (i, v). We define a random
variable Zr = Xr(i, u) − Xr(i, v). {Zr

∈ [−(T − 1), T −

1], r = 1 : M} are i.i.d. random variables. Note that
E(Zr) = hT (i, u) − hT (i, v).

The probability that the ranking of u and v will be
exchanged in the estimated hT values from M samples

equals P (ĥT (i, u) < ĥT (i, v)). This probability equals

P ( � M

r=1
Zr/M < 0) which using the Hoeffding bound

is smaller than exp(−2M(hT (i, u) − hT (i, v))2/(2T )2) =
exp(−M(hT (i, u) − hT (i, v))2/2T 2). Let v1, v2, . . . , vk be

the top k neighbors of i in exact truncated hitting time.

Pr(∃j ≤ k, q > k, ĥT (i, vj) > ĥT (i, vq))

≤ � j≤k � q>k
Pr(ĥT (i, vj) > ĥT (i, vq))

≤ � j≤k � q>k
exp(−

M(h
T

(i,vq)−h
T

(i,vj))
2

2T2 )

≤ nk exp(−
M(h

T
(i,vk+1)−h

T
(i,vk))

2

2T2 )

Let α = hT (i, vk+1) − hT (i, vk). Setting the above proba-

bility to be less than δ gives us the desired lower bound of
2T

2

α2 log(nk/δ) on M .

Proof of lemma 3.4: Let S be a set of nodes. Let
q = arg mink∈S h(j, k). Let m = arg mink∈S ĥ(j, k).
We know that h(j, q) ≤ h(j,m), since q is the true

minimum, and ĥ(j,m) ≤ ĥ(j, q), since m is the node
which has the minimum estimated h-value. Using the
sample complexity bounds from theorem 3.1, we have

ĥ(j,m) ≤ ĥ(j, q) ≤w.h.p h(j, q)+εT . For the other part

of the inequality we have ĥ(j,m) ≥w.h.p h(j,m)−εT ≥
h(j, q)−εT . Using both sides we get h(j, q)−εT ≤w.h.p

ĥ(j,m) ≤w.h.p h(j, q) + εT . Using S to be the set of
nodes outside the neighborhood of j yields lemma 3.4.
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Abstract

Probabilistic grammatical formalisms such as
hidden Markov models (HMMs) and stochas-
tic context-free grammars (SCFGs) have
been extensively studied and widely applied
in a number of fields. Here, we introduce
a new algorithmic problem on HMMs and
SCFGs that arises naturally from protein and
RNA design, and which has not been previ-
ously studied. The problem can be viewed as
an inverse to the one solved by the Viterbi
algorithm on HMMs or by the CKY algo-
rithm on SCFGs. We study this problem
theoretically and obtain the first algorith-
mic results. We prove that the problem is
NP-complete, even for a 3-letter emission al-
phabet, via a reduction from 3-SAT, a re-
sult that has implications for the hardness of
RNA secondary structure design. We then
develop a number of approaches for mak-
ing the problem tractable. In particular, for
HMMs we develop a branch-and-bound al-
gorithm, which can be shown to have fixed-
parameter tractable worst-case running time,
exponential in the number of states of the
HMM but linear in the length of the struc-
ture. We also show how to cast the problem
as a Mixed Integer Linear Program.

1. Introduction

Probabilistic grammatical formalisms such as hidden
Markov models (HMMs) and stochastic context-free
grammars (SCFGs) have found many applications in
areas such as computational biology and natural lan-
guage processing. Because of their intuitive repre-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

sentation, their power to capture some of the essen-
tial relationships present in data, and the existence
of polynomial-time algorithms (such as the Viterbi al-
gorithm) and practical training procedures (such as
the Baum-Welch algorithm), these formalisms have en-
joyed tremendous popularity in the past decades.

Three natural problems for a model have been de-
scribed: the decoding problem (given a model and a
sequence, find the most likely derivation), the evalua-
tion problem (given a model and a sequence, find the
likelihood of the sequence being generated), and the
learning problem (given a set of sequences, learn the
parameters of the underlying model). In this paper,
we identify another natural problem on HMMs and
SCFGs, which is the inverse of the decoding problem:
given a derivation and a model, find a sequence for
which this derivation is the most likely one. Because
the decoding problem is solved by the Viterbi algo-
rithm in HMMs and by the CKY algorithm in SCFGs,
we refer to our problem for these two models as the
Inverse-Viterbi and the Inverse-CKY problem, respec-
tively.

The motivation for our problem comes from protein
and RNA design. The design of biological molecules
with a desired structure is a long sought-after goal in
computational biology. While a number of achieve-
ments have been made in protein structure design,
the problem remains difficult (Butterfoss & Kuhlman,
2005; Park et al., 2004; Pokala & M., 2001). For RNA,
there has been recent interest in secondary structure
design (Breaker, 1996), and a number of fairly suc-
cessful heuristics have been developed to solve this
problem (Hofacker, 1994; Andronescu, 2004; Busch
& Backofen, 2006). Generally, structure design can be
divided into two goals: the positive-design aspect of
finding a sequence that has low energy in the desired
structure, and the negative-design aspect of blocking
the sequence from having low energy in other struc-

1To whom correspondence should be addressed
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tures. While some work has explored the negative-
design aspect in protein structure design (Butterfoss
& Kuhlman, 2005), most work has focused solely on
the positive-design aspect. In RNA secondary struc-
ture design, the positive-design aspect is largely triv-
ial (desired paired positions in the secondary structure
can simply be chosen to be complementary bases) and
the negative-design aspect, which involves attempting
to block erroneous base pairings in other structures, is
central to solving the problem.

Our goal in formulating the Inverse-Viterbi and
Inverse-CKY problems is to simultaneously capture
the positive-design and negative-design aspects of the
design problem. Our framework for viewing design
within the context of HMMs or SCFGs is the follow-
ing. When HMMs (SCFGs) are used for structure
prediction, the emitted string represents the biologi-
cal sequence and the goal is to find the hidden state-
path (derivation tree for SCFGs) that represents the
structure this sequence will adopt. A state-path of
high probability for that sequence is the analogue of a
structure with low energy. By inverting this problem,
we can use the same HMM (SCFG) for design. Now,
a state-path (derivation tree) representing the desired
structure is known and the goal is to find a sequence
which will adopt this structure (i.e. a string for which
this state-path is optimal).

Our Contribution. We have defined a novel prob-
lem (the Inverse-Viterbi problem) on HMMs and its
analogue on SCFGs, that as far as we know has never
been studied before. We show that the problem is NP-
hard for HMMs (and as a result for SCFGs). We then
give approaches for making the problem tractable. In
particular, for HMMs we give a branch-and-bound al-
gorithm. This algorithm can be shown to have fixed-
parameter tractable running time: if there are K
states, the emission alphabet is Σ, the path length is n,
and all of the log-probabilities in the model are greater
than −B (so that there are no 0 transition probabili-
ties and all the probabilities in the model are greater
than e−B) and are defined to a precision δ, then the
branch-and-bound algorithm has worst-case running
time O((2B/δ)K−2nK2|Σ|), which is exponential in
the number of states but linear in the path length. We
also show how to cast the problem as a simple Mixed
Integer Linear Program.

Our hardness proof shows that the RNA secondary
structure design problem is hard in a certain sense:
a polynomial-time algorithm that only depends on
the energy model for RNA secondary structure be-
ing SCFG-like, as is the case for the Zuker energy
model (the most successful model curently available

for RNA secondary structure prediction (Zuker &
Stiegler, 1981)), without making additional assump-
tions on the particular form of the energy model, is
not possible unless P = NP .

In presenting an abstract formulation of the design
problem and giving the theoretical results derived in
this paper, our goal is not to provide methods that
will necessarily be immediately applied to the protein
or RNA structure design problems. Instead, we believe
that the abstract framework given in this paper may
prove to be useful in understanding the design problem
and facilitating the development of new methods for
design. The Inverse-Viterbi and Inverse-CKY prob-
lems are novel and natural problems on HMMs and
SCFGs, and so we believe a theoretical exploration is
interesting in its own right.

2. Problem Description and Hardness
Results

2.1. Definition of the Models

An HMM consists of a set N of K states and an al-
phabet Σ, with N ∩ Σ = ∅. The symbols in Σ are
emitted on transitions between the states. The proba-
bility of emitting the symbol a when transitioning from
the state sk to the state sl is specified by the value of
the parameter pa

sk,sl
. These parameters determine the

HMM. We assume (without loss of generality) that
there is a unique initial state S.

The normalization condition requires that∑
sl∈N

∑
a∈Σ

pa
sk,sl

= 1 for k = 1, . . . ,K

Similarly, an SCFG consists of a set N of K non-
terminal symbols, and a set Σ of terminal symbols,
with N ∩ Σ = ∅. The non-terminals are rewritten
according to a set R of rewriting rules. The prob-
ability of applying each rewriting rule α is specified
by the value of the parameter pα. These parameters
determine the SCFG. We assume (without loss of gen-
erality) that there is a unique starting non-terminal
symbol S.

Every rule α replaces a single non-terminal with a
string γ of non-terminals and terminals:

α = Nk → γ

Here Nk (the terminal symbol being rewritten) is re-
ferred to as the left-hand side of the rule, abbreviated
as l(α).
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The normalization condition requires that∑
{α∈R|l(α)=Nk}

pα = 1, for k = 1 . . . , ,K

We do not insist that the SCFG be in Chomsky Nor-
mal Form (CNF) because in some applications (such
as RNA secondary structure design), the correspon-
dence between the design and inverse problem defined
in this paper may only be natural if the SCFG is not
converted to CNF.

We use boldface letters to indicate sequences of sym-
bols. A state-path of length n in the HMM is written
as π = π1 . . . πn, where each πi is a state in the HMM.
Such a path emits a sequence of n − 1 emission sym-
bols, ω = ω1 . . . ωn−1 where each ωi is a symbol from
Σ. The joint probability of a state-path π and an emis-
sion sequence ω is given by Pr(π,ω) =

∏n−1
i=1 pωi

πi,πi+1
.

It is frequently more convenient to deal with sums
rather than products, and so we work in log-space, tak-
ing qa

s1,s2
:= log(pa

s1,s2
) and therefore log(Pr(π,ω)) =∑n−1

i=1 qωi
πi,πi+1

.

A derivation of length n in the SCFG is the suc-
cessive application of rewriting rules, beginning with
the starting symbol S, which generates a yield ω =
ω1 . . . ωn where each ωi is a symbol from Σ. The
derivation can be summarized in the form of a tree
T . The joint probability of a derivation tree T and
a yield ω is given by Pr(T ,ω) =

∏
α∈R(T ) pα, where

R(T ) denotes the multiset of rewriting rules used to
derive T . As with HMMs, it is convenient to work
instead with the log-probabilities, qα := log pα, which
gives log(Pr(T ,ω)) =

∑
α∈R(T ) qα.

2.2. Definition of the Direct Problem

In the original Viterbi problem, one is given an emis-
sion sequence ω0 from an HMM and the goal is to find
the most likely state-path to have generated ω0: the π
that maximizes the conditional probability given the
emission Pr(π|ω0). Since Pr(π|ω0) = Pr(π,ω0)

Pr(ω0) , and
ω0 is fixed, it is equivalent to simply maximize the
joint probability Pr(π,ω0). The Viterbi problem can
therefore be expressed as: given ω0, find an element of
arg maxπ Pr(π,ω0) (we consider arg max as the set of
all arguments maximizing the function). For an HMM
with K states and an emission of length n, the Viterbi
algorithm finds the best state-path using dynamic pro-
gramming in time O(nK2|Σ|) (Viterbi, 1967).

Similarly, the direct problem for an SCFG is formu-
lated as follows: given a yield ω, find the deriva-
tion tree T which maximizes the joint probability
Pr(T ,ω). In other words, given ω, we find an ele-

ment of arg maxT Pr(T ,ω). The optimal derivation is
referred to as the Viterbi parse of ω. For a deriva-
tion of length n in an SCFG with rewriting rules R in
Chomsky Normal Form, the CKY algorithm finds the
Viterbi parse in time O(n3|R|) (Durbin et al., 1999).
Modified versions of the CKY algorithm can also han-
dle SCFGs in similar forms, such as those used in RNA
structure prediction, with the same time complexity
(for example see (Dowell & Eddy, 2004)).

2.3. Definition of the Inverse Problem

In the Inverse-Viterbi problem, a desired output of
the Viterbi algorithm is known and the goal is to de-
sign an input to the Viterbi algorithm that will re-
turn this output. In mathematical terms the problem
is: given a state-path π0, find an ω so that π0 is in
arg maxπ Pr(π,ω), or determine that none exists.

In an HMM used for structure prediction, the above
definition of the inverse problem captures what it
means to do structure design: one knows the struc-
ture (state-path) and tries to find a sequence that has
a higher score with that structure than with any other
structure. It is important to emphasize that for many
π there will be no such ω. In fact, it can be shown that
only polynomially many paths are designable (Elizalde
& Woods, 2006). This captures the notion that many
structures are not designable: there is no sequence that
will lead to these structures.

To illustrate this distinction, consider the 2-state
HMM shown in Figure 1. Say that the desired state-
path to design is Bn = B . . . B. The most likely emis-
sion given this state-path is an−1 = a . . . a, but when
run on such a path the Viterbi algorithm will not re-
turn Bn. In fact, the only sequence that the Viterbi
algorithm will return Bn on is bn−1. This simple case
illustrates that to design a path of all B’s it is impor-
tant not just to pick emissions likely given this path,
but to simulatenously block other possible paths, in
this case those paths containing A’s. Note further that
the probability of bn−1 being emitted from Bn at ran-
dom is (0.2)n−1. Therefore, neither picking the most
likely emission sequence nor randomly generating se-
quences from the state-path will in general solve the
Inverse-Viterbi problem with probability greater than
exponentially small in the length of the state-path.

We incorporate one generalization into our definition
of the problem of inverting the Viterbi algorithm, be-
cause it seems natural to the design problem. We allow
constraints on the emissions that can be chosen in any
position (given as the Σi below). The algorithms we
develop in this paper handle this generalization with-
out any added complexity.
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Figure 1. A 2-state HMM illustrating the distinction be-
tween the Inverse-Viterbi problem and the trivial problem
of finding the most likely emission from a given state-path.
The 2 states are A and B, while the 2 possible emissions
are a and b. Each transition is marked with the possi-
ble emissions followed by their corresponding probabilities.
In order to design Bn the only possible sequence is bn−1,
which is the least likely sequence to be produced by Bn.

INVERSE-VITERBI:
Input: An HMM, a state-path π0 of length n and for
every position i in 1, . . . , n a set Σi ⊆ Σ giving allowed
emissions at position i.
Output: An ω where each ωi ∈ Σi so that π0 is in
arg maxπ Pr(π,ω), or ∅ if no such ω exists.

Similarly, the inverse problem for an SCFG requires
one to find an input that corresponds to a given out-
put. In other words, given a derivation T0, we would
like to find an ω such that T0 is in arg maxT Pr(T ,ω),
or determine that none exists. Note that this problem
only makes sense if the tree T0 has had all of its
leaves removed (we will call such a tree ”naked”);
in other words, the tree includes the specification of
non-terminals but not the terminal symbols produced.

INVERSE-CKY:
Input: An SCFG, a naked derivation tree T0 that
corresponds to an emitted string of n terminals and
for every position i in 1, . . . , n a set Σi ⊆ Σ giving the
allowed emissions at position i.
Output: An ω where each ωi ∈ Σi so that T0 is in
arg maxT Pr(T ,ω), or ∅ if no such ω exists.

2.4. NP-hardness of the Inverse Problem

We now prove that the Inverse-Viterbi problem is
NP-hard. To do so, we introduce the decision problem
corresponding to Inverse-Viterbi:

DESIGNABLE:
Input: An HMM and a state-path π0

Output: YES if there is an ω so that π0 is in
arg maxπ Pr(π,ω), otherwise NO.

An algorithm that solves Inverse-Viterbi would
also solve Designable and so by proving Designable
is NP-complete, we show that Inverse-Viterbi is
NP-hard.

Theorem 1. Designable is NP-Complete.
Proof. Clearly Designable is in NP so we just need to
show Designable is NP-hard. We do so by presenting a
polynomial-time reduction from 3-SAT to Designable.

In outline, the construction is achieved by creating an
HMM with one component that can emit all possi-
ble non-satisfying assignments for the 3-SAT problem
along with a special state outside of this component
that can emit all binary strings, but that does so with
smaller probability. Because this probability is small,
the path consisting of repeatedly being in the special
state is only designable if a specific sequence of 0’s and
1’s could not possibly be emitted by the component
corresponding to the 3-SAT formula. And such a se-
quence is, by the construction, a satisfying assignment
of the 3-SAT formula.

In full detail, the construction is as follows (see Fig-
ure 2 for an illustration). Assume the 3-SAT formula
consists of m variables and r clauses. The HMM con-
sists of a begin state B, two special states S and T
and r(m + 1) states labelled Xi,j where 1 ≤ i ≤ r and
1 ≤ j ≤ m + 1. The emission alphabet consists of 0,
1, and the special symbol #. The state B transitions
to either S or any of Xi,1 with equal probability, 1

r+1 ,
while emitting #. The state S transitions to itself
while emitting 0 or 1, each with probability 1

2 . The
state T transitions to itself with probability 1 while
emitting #. The r sets of states Xi,1, . . . , Xi,m+1 for
1 ≤ i ≤ r are arranged in independent chains, each
corresponding to the ith clause, that emit all strings
{0, 1}m that do not satisfy the ith clause. Such a chain
is constructed by the following: if the ith clause con-
tains the jth variable un-negated then Xi,j transitions
to Xi,j+1 while emitting 0 with probabilty 1, if the
ith clause contains the jth variable negated then Xi,j

transitions to Xi,j+1 while emitting 1 with probabilty
1, and if the ith clause doesn’t contain the jth variable
then Xi,j transitions to Xi,j+1 while emitting 0 or 1
each with probability 1

2 . Finally, Xi,m+1 transitions
to T while emitting # with probability 1.

The state-path to design is BSm+1. We observe that
the joint probability of this state-path and an emis-
sion sequence of the form #{0, 1}m is ( 1

r+1 )( 1
2 )m, and

that only emissions of this form have non-zero proba-
bility for this state-path. We further observe that the
only other state-path that could emit such a sequence
must be of the form BXi,1 . . . Xi,m+1, and the joint
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probability of such a sequence and such a state-path
is ( 1

r+1 )( 1
2 )m−3 if the emission sequence contains a #

followed by a non-satisfying assignment to the 3-SAT
formula, but the joint probability is zero if the emis-
sion sequence contains a # followed by a satisfying as-
signment. Since ( 1

r+1 )( 1
2 )m−3 > ( 1

r+1 )( 1
2 )m, the only

sequence that could design BSm+1 is a # followed by
a satisfying assignment and therefore BSm+1 is des-
ignable if and only if there is a satisfying assignment
to the 3-SAT formula.

The above construction is done in polynomial time,
and therefore we have successfully given a polynomial
reduction from 3-SAT to Designable.

Corollary 1. Inverse-CKY is NP-hard.

Proof. An HMM can be thought of as an SCFG with
a non-terminal corresponding to each state and a ter-
minal to each letter in the emission alphabet. Every
branching rule rewrites a state as a letter and another
state, so that all derivation trees are right-branching.
Since the problem is hard on HMMs it is also hard on
the extended class of SCFGs.

Figure 2. The reduction from 3-SAT to DESIGNABLE.
Each transition is marked with all non-zero probability
emissions followed by their corresponding probabilities.

3. Algorithmic Results

In this section, we give two approaches for finding a
solution to the inverse problem, a branch-and-bound
algorithm and a formulation of the problem as a Mixed

Integer Linear Program. Both of these are derived
from the same basic approach, based on a set of con-
straints we develop that are satisfied by an ω if and
only if it is a solution to the inverse problem. Below we
first develop these constraints. Similar constraints and
a Mixed Integer Linear Program can be developed for
SCFGs. For reasons of space and simplicity of presen-
tation, we only give the details for HMMs in this sec-
tion. We illustrate the formulation of constraints and
a Mixed Integer Linear Program for an SCFG used for
RNA secondary structure prediction in a supplement.2

3.1. Constraint Formulation

Conceptually, the set of inequalities for HMMs is de-
rived by looking at how the Viterbi algorithm works
and enforcing constraints on ω so that the Viterbi al-
gorithm is forced to return the desired state-path π0.

The Viterbi algorithm calculates an n by K table of
values Mi,s of the best log-probability scores for the
state-path from positions 1 to i with final state s. Be-
cause of the special form of the HMM score, this table
can be filled in iteratively:
(1) M1,S = 0 and M1,s = −∞ for all s 6= S
(2) Mi,s = maxs′(Mi−1,s′ + q

ωi−1
s′,s ) for 2 ≤ i ≤ n and

all s

The best state in the nth position is then read off as
πn ∈ arg maxs(Mn,s), and the earlier ones are read off
by a traceback routine: the best state in position n−1
is an s′ that maximized (Mn−1,s′ + q

ωn−1
s′,πn

), and so on.

From the above we can directly read off the con-
straints on the emission symbol ωi in position i for
1 ≤ i ≤ n − 1, that need to be satisfied in order to
design a state-path with states πi. For the Viterbi
algorithm to return the desired path, we need for
every state in this path to traceback to the previous
state in the desired path and for the last state in this
path to have the best log-probability score:
(3) Mi,πi

+ qωi
πi,πi+1

≥ maxs 6=πi
(Mi,s + qωi

s,πi+1
) for

1 ≤ i ≤ n− 1
(4) Mn,πn ≥ maxs 6=πn(Mn,s)

3.2. Branch-and-Bound Algorithm

What is particularly nice about inequalities (1)-(4) is
that they allow for an inductive method for choosing
possible ωi in an emission sequence based only on the
choices of ωj for 1 ≤ j ≤ i − 1. This is because the
inequality constraining the choice of ωi (inequality 3
above) only depends on the values for Mi,s. And the

2See http://groups.csail.mit.edu/cb/inv viterbi/scfg.pdf
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values for Mi,s only depend on the choices made for
ω1 through ωi−1. This naturally leads to a branch-
and-bound algorithm. Branch-and-bound algorithms
are frequently useful in solving computationally hard
problems. A branch-and-bound algorithm is complete
(it always finds the correct answer) and frequently ef-
ficient on many problem instances.

The branch-and-bound algorithm steps through posi-
tion i from 1 to n−1, at each step maintaining a list of
emission sequences of length i that could be extended
to possible length n − 1 sequences the algorithm will
ultimately return. At each step i, the algorithm forms
emission sequences of length i from the emission se-
quences of length i − 1 stored in the previous stage
by appending possible emission symbols onto the se-
quences from the previous stage. In order to avoid
performing an exhaustive search, at every stage the
algorithm prunes the search space by applying two
elimination rules. The first elimination rule ensures
that for a given length i− 1 sequence from the previ-
ous stage, an ωi is only appended onto this sequence
to form a length i sequence if the traceback constraint
(constraint 3) is satisfied by the choice ωi. The sec-
ond elimination rule examines pairs ω and ω̃ of partial
strings of length i that remain after the application of
the first elimination rule. It eliminates ω due to ω̃, if
given that ω can be extended to a solution to the de-
sign problem, then ω̃ must also be able to be extended
to a solution.

Specifically, the second elimination rule is based
on the following observation. If for all states s,
Mi+1,πi+1 − Mi+1,s is at least as large under ω̃ as
it is under ω (i.e. if for all states s, the relative prefer-
ence of ω̃ for πi to state s is at least as large as that of
ω), then the traceback constraints (inequality 3 above)
on all positions j for j > i and the ending constraints
(inequality 4 above) can only be easier to satisfy when
extending ω̃ than when extending ω.

It is important to note that for the case of a 2-state
HMM the branch-and-bound is an exact polynomial-
time algorithm. This is because there is only one
Mi+1,πi+1 − Mi+1,s value to compare the choices for
ωi on (there is only one state s other than πi at every
position since there are only 2 states to choose from),
and so there is always a best choice for ωi at every
position based on the past choices.

The above branch-and-bound algorithm is exact for
all HMMs, but has no guaranteed worst-case running
time. If we make additional assumptions about our
HMM, however, we can show that the algorithm also
has fixed-parameter tractable running time. Specifi-
cally, we assume that all q values (the log-probabilities)

Algorithm 1 Branch-and-Bound Algorithm
Input: An HMM, a desired state-path π0 of length
n, and for every position i in 1, . . . , n a set Σi ⊆ Σ
giving the allowed emissions at position i
Output: A sequence ω such that π0 is in
arg maxπ Pr(π,ω) or ∅ if no such sequence exists.
Variables: A list Li of all partial sequences of
length i considered at the ith iteration each together
with its corresponding K-vector of values Mi,s.
Initialize: L0 = {(ε,0)}
for i = 1 to n− 1 do

Set Li = ∅
for all (ωi−1,vi−1) ∈ Li−1 and all ωi ∈ Σi do

Form ωi = ωi−1ωi by concatenation
Compute the K-vector vi of values Mi+1,s

Add (ωi, vi) to Li iff Elim Rule 1 doesn’t apply
end for
for all (ωi,vi) ∈ Li do

From vi compute and store the (K − 1)-vector
u of values Mi+1,πi+1 −Mi+1,s for s 6= πi+1

end for
Apply Elim Rule 2 to all pairs of entries of Li

end for
for all (ωn−1,vn−1) ∈ Ln−1 do

if Mn,πn
< maxs 6=πn

(Mn,s) then
Remove (ωn−1,vn−1) from Ln−1

end if
end for
Return: An element of Ln−1 or ∅ if Ln−1 is empty.
Elim Rule 1: Eliminate ωi if Mi,πi

+ qωi
πi,πi+1

<
maxs 6=πi

(Mi,s + qωi
s,πi+1

)
Elim Rule 2: Eliminate ωi due to ω̃i if ω̃i ∈ Li

has (K − 1)-vector u componentwise ≥ that of wi

satisfy q ≥ −B and that there are no zero probabili-
ties in the model. Furthermore, we assume that these
q values have been rounded off to precision δ.

Under these assumptions, we can see that any two val-
ues Mi,s and Mi,s′ satisfy |Mi,s − Mi,s′ | ≤ B. This
follows from the definitions:
Mi,s = maxs′(Mi−1,s′ + q

ωi−1
s′,s ) and

Mi,s′ = maxs(Mi−1,s + q
ωi−1
s,s′ ).

Let the maximum in the expression for Mi,s be at-
tained with s0. Then

Mi,s′ ≥ Mi−1,s0 + q
ωi−1
s0,s′

= Mi−1,s0 + qωi−1
s0,s + (qωi−1

s0,s′ − qωi−1
s0,s )

= Mi,s + (qωi−1
s0,s′ − qωi−1

s0,s ),

so that, upon rearranging,

Mi,s −Mi,s′ ≤ qωi−1
s0,s − q

ωi−1
s0,s′ ≤ 0− (−B) = B,

909



Inverting the Viterbi Algorithm: An Abstract Framework for Structure Design

and by symmetry, we also get Mi,s′ − Mi,s ≤ B, so
finally, |Mi,s −Mi,s′ | ≤ B.

In particular, only 2B/δ distinct values are possible
for each of the (K−1) possible Mi,πi

−Mi,s values. In
the branch-and-bound algorithm, it is only impossible
to remove either ω or ω̃ (both of length i) due to the
other if they are incomparable: the values one gives for
Mi,πi

−Mi,s are larger for some s and smaller for some
other s. But there are only (2B/δ)K−2 incomparable
values: for two sequences that share the first (K − 2)
Mi,πi−Mi,s values, any values for the last Mi,πi−Mi,s

will make them comparable.

Therefore, in the branch-and-bound algorithm there
are at most (2B/δ)K−2 sequence possibilities that
must be retained at any stage, and so with a care-
ful implementation the running time of the algorithm
is O((2B/δ)K−2nK2|Σ|). This bound is exponential
in the number of states, but linear in the length of
the structure to be designed. (This bound is inde-
pendent of the base used to get the q values (log-
probabilities), because changing the base introduces
a factor into both B and δ that cancels.)

For SCFGs in CNF, a similar idea allows one to obtain
an exact algorithm that runs in polynomial time if
there are only 2 non-terminal symbols. However, the
idea used above for candidate string elimination does
not immediately generalize to SCFGs because of their
non-linear nature; an HMM outputs one symbol per
state, but a non-terminal in an SCFG can generally
end up producing any substring of the output string.

3.3. Casting the Problem as a Mixed Integer
Linear Program

We can also start with the inequalities that must be
satisfied for ω and cast the inverse problem as the
problem of finding a feasible solution to a Mixed In-
teger Linear Program. We provide this simple formu-
lation because it allows both practical and theoretical
tools developed for integer programming to be applied
directly to our problem.

The formulation as a Mixed Integer Linear Program
is done by defining 0-1 variables εi,j , where εi,j = 1
indicates that the jth emission symbol is chosen for
ωi. Enforcing that there is only one emission choice
made at every position is equivalent to requiring∑

j εi,j = 1 for i = 1 to n − 1. Each maximum in
the constraints is replaced by ≥ , while the traceback
constraints are enforced by additional equalities.

Integer Linear Program For HMMs:
Objective: Feasible Solution

Variables:
εi,j , 0-1 valued, for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ |Σ|
Mi,s, for 1 ≤ i ≤ n and 1 ≤ s ≤ K

Constraints:∑
j εi,j = 1 for all 1 ≤ i ≤ n− 1

εi,j = 0 if j /∈ Σi for all 1 ≤ i ≤ n− 1
M1,S = 0 and M1,s = −∞ for all s 6= S

Mi,s ≥
∑

j εi−1,j(Mi−1,s′ + qj
s′,s) for all s, s′ and all

i ≥ 2
Mi,πi =

∑
j εi−1,j(Mi−1,πi−1 + qj

πi−1,πi
) for all i ≥ 2

Mn,s ≤ Mn,πn for all s 6= πn

4. Simulations

We implemented our branch-and-bound algorithm and
examined its running time on synthetic data in or-
der to demonstrate that in practice the algorithm fre-
quently runs fast when an exhaustive search would be
infeasible. In order to do this, we randomly generated
HMMs by drawing each-transition-emission pair prob-
ability from the uniform distribution and then normal-
izing the values, rounding off to precision δ = 0.01. We
then separately generated both arbitrary state-paths
and designable state-paths at random from this HMM
(the latter by randomly sampling emission sequences
and running the Viterbi algorithm on these sequences)
and timed our branch-and-bound algorithm on these
instances. We found that our algorithm ran signifi-
cantly faster on arbitrary paths, the majority of which
are not designable, than on arbitrary designable paths
(taking milliseconds rather than seconds per run).

Figure 3 shows running times of simulations on ran-
dom designable state-paths for different numbers of
states K and path lengths n, with fixed emission al-
phabet of size |Σ| = 20. For each pair of K and n val-
ues, 10 HMMs were generated at random and for each
of these HMMs, 10 designable paths were generated at
random, as described above. The branch-and-bound
algorithm was then run and the average time to design
a sequence over these 100 runs was recorded. On these
problem instances, the running time of the algorithm
scales roughly linearly with path length n. Interest-
ingly, while the running times initially increased with
increasing K values, the running times were lower for
K = 50 and K = 100 than for K = 20, an observa-
tion that was repeated for multiple experiments. The
longest run of the algorithm took 80 seconds. A so-
lution by exhaustive search would require examining
|Σ|n possible sequences, which for that run would have
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been 20400 sequences. All code was implemented in
Matlab and run on a 3.06 GHz Intel Xeon PC.
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Figure 3. Running times of the branch-and-bound algo-
rithm on designable paths. Simulations shown for number
of states K = 3, 10, 20, 50, 100, path lengths n = 10, 20,
50, 100, 200, 400 and emission alphabet size |Σ| = 20.

5. Conclusions

We have introduced a novel problem on HMMs and
SCFGs, the Inverse-Viterbi problem, inspired by pro-
tein and RNA structure design, and have given a num-
ber of theoretical results for the problem. In partic-
ular, our hardness result demonstrates that a polyno-
mial time algorithm for RNA secondary structure de-
sign that only exploits the general form of the Zuker
energy or similar SCFG models (and not the particu-
lars of a specific model) is not possible unless P = NP .

There are a number of possible extensions to this work.
Developing more efficient algorithms on both HMMs
and SCFGs may be possible and in particular, extend-
ing our branch-and-bound algorithm to SCFGs would
be useful. It is also possible to explore extensions
of the problem to more general probabilistic models
such as Markov Random Fields. The framework given
here may also be useful for developing new algorithms
for design in specific applications. Areas where the
negative-design aspect plays a large role, such as RNA
secondary structure design, are the most likely can-
didates to benefit from such an approach. Given the
widespread use of grammars, the inverse problem we
have defined here may find applications to other fields.
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Abstract

We relate compressed sensing (CS) with
Bayesian experimental design and provide
a novel efficient approximate method for
the latter, based on expectation propaga-
tion. In a large comparative study about lin-
early measuring natural images, we show that
the simple standard heuristic of measuring
wavelet coefficients top-down systematically
outperforms CS methods using random mea-
surements; the sequential projection optimi-
sation approach of (Ji & Carin, 2007) per-
forms even worse. We also show that our own
approximate Bayesian method is able to learn
measurement filters on full images efficiently
which outperform the wavelet heuristic. To
our knowledge, ours is the first successful at-
tempt at “learning compressed sensing” for
images of realistic size. In contrast to com-
mon CS methods, our framework is not re-
stricted to sparse signals, but can readily be
applied to other notions of signal complexity
or noise models. We give concrete ideas how
our method can be scaled up to large signal
representations.

1. Introduction

There has been a lot of recent interest in the area
of compressed sensing (CS) (Candès et al., 2006;
Donoho, 2006), where it is argued that if signals can
be expected to be compressible due to sparseness after
some linear transform, then they can be reconstructed
from a number of measurements significantly below the
Nyquist/Shannon limit, if the measurement design is
not too regular. In this paper, we relate CS to the
more general notion of statistical (Bayesian) experi-
mental design.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

Through this view, characteristics of signals and al-
gorithms, defined in an abstract mathematical way in
the CS literature so far, become understandable and
workable. The experimental design approach applies
to signals of low complexity in general, not only to
sparse ones. It has the potential to clearly outper-
form the randomised designs, favoured by theoretical
CS arguments, in cases where signals are not well-
described by common CS assumptions. For exam-
ple, CS has been viewed with some scepticism so far
by researchers in computer vision and image statistics
(Weiss et al., 2007). While images exhibit transform
sparsity to some degree, purely random measurement
designs can be suboptimal for them. The reason is that
there is more to low-level image statistics than spar-
sity. Much of this knowledge can be modeled tractably
(Simoncelli, 1999) and could therefore be incorporated
into a Bayesian experimental design architecture. To
our knowledge, the current CS reconstruction schemes
are purely estimation-based and lack proper represen-
tations of uncertainty (which is what fundamentally
drives experimental design), and the theory deals ex-
clusively with signals which are unstructured except
for random sparsity. We present experimental results
sheding more light on the relationship between CS
and images. Similar to (Weiss et al., 2007), we find
that standard approaches to linear image measure-
ment (wavelet coefficients) give significantly better re-
construction results than using random measurements
favoured by CS, even if modern CS reconstruction al-
gorithms are applied. Yet, our experimental evidence
is more substantial than theirs. Beyond that, we show
that our efficient approximation to sequential Bayesian
design can be used to learn measurements which in-
deed outperform measuring wavelet coefficients top-
down. Our method provides a practically efficient so-
lution to the problem posed in (Weiss et al., 2007),
namely how to learn measurement filters automatically
from data (using very little concrete knowledge about
the signal class) which perform close to or even bet-
ter than “standard” ones obtained through decades of
research and experience. In contrast, the uncertain
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components analysis algorithm suggested by them re-
quires a large database of image patches to be run, and
could hardly be scaled up to the realistic dimensions
treated here1.

An approximate Bayesian approach to compressed
sensing has been presented in (Ji & Carin, 2007), mak-
ing use of sparse Bayesian learning (SBL) (Tipping,
2001). Our method is based on a different, more gen-
eral inference approximation, expectation propagation
(Minka, 2001), and outperforms theirs very signifi-
cantly, for prediction based on the same design and,
even more so, for sequential design optimisation, as
we show in comparative experiments below. More-
over, strongly underdetermined problems (many more
variables than observations) are dealt with more effi-
ciently in our framework. In addition, our framework
is generalised easily to non-Gaussian observation likeli-
hoods, skew prior terms, and generalised linear models
(Gerwinn et al., 2008), and our methodology, our com-
parisons, as well as our discussion here have a broader
scope. Our method is an extension of the scheme in
(Seeger et al., 2007). However, the applications to
images considered here are orders of magnitude larger
than theirs, and several novel ideas are proposed here
in order to increase computational efficiency substan-
tially. While much work has been done in statistics on
experimental design for the classical Gaussian-linear
model, Gaussian priors are entirely inappropriate for
images2, and designs optimized for them are subopti-
mal (see also (Seeger et al., 2007)). We are not aware
of existing methods for the model used here, which
scale comparable to ours, with the exception of (Ji &
Carin, 2007).

A different approach for optimising measurement de-
sign is given in (Elad, 2007), where X is designed a
priori with the aim of making its rows maximally de-
coherent. In our setup, X is designed sequentially,
using Bayesian information criteria.

The structure of the paper is as follows: The exper-
imental design view on CS is detailed in Section 2.
Our framework for approximate inference is described
in Section 3, where we also show how to apply it to
large problems, especially in sequential experimental
design. Our approach is validated through a series of
experiments, comparing it to (Ji & Carin, 2007) and
common CS methods on artificial data (Section 4.1),

1Their experiments are on 4 × 4 image patches, while
ours run efficiently on 64 × 64 images.

2Reconstruction under the Gaussian-linear model is
simply the method of least squares, often referred to as
“linear reconstruction”. Much of the improved perfor-
mance through CS is due to the use of non-linear sparse
reconstruction techniques.

and analysing the suitability of CS and Bayesian ex-
perimental design on natural images (Section 4.2).

2. Compressed Sensing and

Experimental Design

Compressed sensing (CS) (Candès et al., 2006;
Donoho, 2006) can be motivated as follows. Sup-
pose a signal, such as an image or a sound waveform,
is measured and then transferred over some channel
or stored. Traditionally, the measurement obeys the
Nyquist/Shannon theorem, allowing for an exact re-
construction of the (band-limited) signal if there is no
measurement noise. However, what follows is usually
some form of lossy compression, exploiting redundan-
cies and non-perceptibility of losses. Given that, can
the information needed for a satisfactory reconstruc-
tion not be measured below the Nyquist frequency
(this is called undersampling)? In many key applica-
tions today, the measurement itself is the main bottle-
neck for cost reductions or higher temporal/spatial res-
olution. Recent theoretical results indicate that under-
sampling should work well if randomized designs are
used, and if the signal reconstruction method specifi-
cally takes the “compressibility” into account.

Bayesian experimental design encompasses the CS
problem. Here, the “compressibility” of signals is en-
coded in a prior distribution, under which signals of
low complexity in general, or high (transform) sparsity
in particular, have most mass. While an undersam-
pling violates the Nyquist theorem, signals can often
still be reconstructed if they are sufficiently likely un-
der the prior. But not every way of undersampling will
do. Experimental design is concerned with optimising
the measurement structure (called design), so as to
obtain the desired information at the lowest possible
cost. This is easily explained by considering the model
of interest here. Let u ∈ R

n be latent variables (pixels
of an image), and let y ∈ R

m be noisy measurements
thereof. The model class of interest is

P (u|y) ∝ N(y|Xu, σ2I)

q
∏

i=1

ti(si), s = Bu. (1)

The likelihood P (y|u) is Gaussian and underdeter-
mined (n > m). The prior3 is a product of univariate
non-Gaussian potentials ti(si). It is computationally
advantageous, yet not essential, that the log ti be con-
cave (Seeger, 2008), and in this paper we use Laplacian

3We do not require that the prior potential is actually
a normalisable distribution over u, the models of inter-
est here are of the undirected Markov random field (or
“energy-based”) type.
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potentials

ti(si) =
τ

2
e−τ |si|, (2)

which are of this sort. If number of image pixels n

is large, it is important for computational efficiency
that matrix-vector multiplications (MVMs) with B

and BT (less important: with X, XT ) can be done
efficiently, and that B does not have to be stored ex-
plicitly.

The unknown signal u (an image for now) should be
“compressible”, i.e. it should exhibit transform spar-
sity4: after some fixed linear mapping B, such as a
wavelet transform, s = Bu has many coefficients si

close to zero. An image coder would set these to ex-
actly zero, thereby compressing the image. “Expected
transform sparsity” is encoded in a sparsity prior, in
our case the product of Laplacians (2). As opposed to
a Gaussian, a Laplace distribution concentrates more
mass close to zero, forcing coefficients to be very small.
On the other hand, the Laplacian also has more mass
in the tails, which allows for occasional large values.
These points are explained further in (Seeger, 2008;
Tipping, 2001).

Next, the design is X, the measurement matrix. In
our example, each row of X is a linear filter speci-
fying a single image measurement. In this paper, we
assume that all rows of X have unit norm5. The prob-
lem of experimental design is how to choose X among
many candidates of the same cost, so that subsequent
measurements allow for the best reconstruction of u.
This decision has to be taken without doing real mea-
surements for most candidates. In a Bayesian variant,
the posterior distribution P (u|y) encodes all present
knowledge. To score a candidate X∗ (new rows of
X), assume for the moment that the outcome y∗ is
known. We can measure the decrease in uncertainty
from P (u|y) to P (u|y,y∗) by the entropy difference
H[P (u|y)] − H[P (u|y,y∗)]. Not knowing y∗, we in-
tegrate it out using P (y∗|y) =

∫
P (y∗|u)P (u|y) du.

This expected information score drives the optimisa-
tion of the design. It is clear that such scores are fun-
damentally based on the posterior as representation of
uncertainty, so that algorithms which merely estimate
good solutions from given data cannot be used directly
in order to compute them6. With such methods, either

4In our experiments, we use an extended notion of spar-
sity, see Section 3.2.

5When designing X, it is important to keep its rows
of the same scale. Otherwise, a measurement can always
be improved (at fixed noise level σ2) simply by increasing
its norm. Put differently, we place a prior on X which is
uniform over all matrices with rows of unit norm.

6It is one thing to learn to predict well, yet a different
issue to estimate its own uncertainty well, and methods

rough rules of thumb have to be followed to obtain a
design (“make it random” in CS), or many measure-
ments have to be taken in a trial-and-error fashion. In
Bayesian experimental design, a permanently refined
uncertainty representation is used to avoid uninforma-
tive data sampling, so often many fewer real measure-
ments are required.

3. Approximate Inference

Bayesian inference is in general not analytically
tractable for models of the form (1), and has to be
approximated. Moreover, the applications of inter-
est here demand a high efficiency in many dimensions
(n = 4096 in the natural image experiments here). Im-
portantly, Bayesian experimental design does not only
require inference just once, but many times in a se-
quential fashion. We make use of the expectation prop-
agation (EP) method (Minka, 2001), together with a
robust and efficient representation for Q(u) ≈ P (u|y).
Our framework has previously been used in a differ-
ent context (Seeger, 2008), where details can be found
which are omitted here. As a novelty, we will show here
how the framework can be run efficiently for large n,
and how sequential design optimisation can be done
orders of magnitude faster.

In EP, the posterior P (u|y) is approximated by a
Gaussian Q(u) with free (variational) parameters b,
π, which are formally introduced by replacing ti(si)

by t̃i(si) = ebisi−πis
2

i /2 in (1). The distribution Q(u)
is represented by lower triangular L and γ,

LLT = σ−2XT X + BT ΠB = CovQ[u]−1,

γ = L−1(σ−2XT y + BT b), Π = diag π,

so that EQ[u] = L−T γ. The (bi, πi) are then updated
sequentially by matching the Gaussian moments of the
tilted distributions

P̂i(u) ∝ N(y|Xu, σ2I)
∏

j 6=i

t̃j(sj)t̃i(si)
1−ηti(si)

η

with the new Q′(u). Here, η ∈ (0, 1] is a fractional
parameter7. In each local update, we need to compute
the non-Gaussian moments of the marginal P̂i(si), and
to update the Q(u) representation, which is done by an
O(n2) Cholesky update of L. Note that (Ji & Carin,
2007) employ the variational mean field approxima-
tion of (Tipping, 2001), which is specific to sparse lin-
ear models (more precisely, all ti have to be Gaussian

employing “premature sparsification” often perform badly
w.r.t. the latter (see Section 4.1).

7η = 1 gives standard EP, but choosing η < 1 can in-
crease the robustness of the algorithm on the sparse linear
model significantly (Seeger, 2008). We use η = 0.9 in all
our experiments.
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scale mixtures, thus even functions), while EP can be
applied with little modification to models with skew
priors or non-Gaussian skew likelihoods as well (Ger-
winn et al., 2008).

In our applications of sequential design, we need to
score the informativeness of new candidates x∗ (as row
of X), which we do by the entropy difference (see Sec-
tion 2). If Q′ is the approximate posterior after in-
cluding x∗, then 2H[Q′] = log |CovQ′ [u]| + C, where
Q′ differs from Q in that (X ′)T X ′ = XT X + x∗x

T
∗ ,

and π → π′. We approximate the entropy difference
by assuming that π′ = π, whence

H[Q] − H[Q′] =
1

2
log

(
1 + σ−2xT

∗ CovQ[u]x∗

)
.

Since ‖x∗‖ = 1 by assumption, this score is maximized
by choosing x∗ along the principal (leading) eigendi-
rection8 of CovQ[u]. The same score is used by (Ji &
Carin, 2007).

3.1. Large-Scale Applications

There are two major issues with trying to apply our
method for large sizes n. First, the EP site updates
are done in random sweeps over n sites, because it is
not clear which particular site ordering leads to fastest
convergence. This problem is severe in our sequential
design application to natural images, since there are
many small changes to X, y (individual new mea-
surements), after each of which EP convergence has
to be regained. We approach it by forward scoring
many site candidates before each EP update, thereby
always updating the one which gives the largest pos-
terior change. This is detailed just below. Second,
the robust Q representation of (Seeger, 2008) is of size
O(n2), and each update costs O(n2). We sketch a dif-
ferent representation of size O(m2) below, which can
be used to drive our framework as well. In contrast, (Ji
& Carin, 2007) use a heuristic of setting many of the πi

to ∞ early in the iteration, which leads to much worse
results than we obtain (see Section 4.1, Section 4.2).

Our selective updating scheme for EP hinges on the
fact that we can maintain all site marginals h, ρ,
Q(si) = N(hi, ρi), up to date at all times. For a site
i, we can quantify the change of Q through an update
there by D[Q′(si) ‖Q(si)] (Q′ the posterior after the
update at i), which can be computed in O(1). Impor-
tantly, D[Q′(u) ‖Q(u)] = D[Q′(si) ‖Q(si)] (because
Q(u|si) = Q′(u|si)), so the score precisely measures
the global amount of change Q → Q′. We maintain
a list of candidate sites, which are scored before each
EP update, and the update is done for the winner

8We compute x∗ by the Lanczos algorithm.

only. The list is then evolved by replacing the lower
half of worst-scoring sites by others randomly drawn
from {1, . . . , q}. Importantly, the marginals h, ρ can
be updated along with the representation, at the ex-
pense of only one additional L backsubstitution and
MVM with B. Namely, if π′

i = πi +∆πi, b′i = bi +∆bi,
and w := BL−T (L−1BT

i,·), then

ρ′ = ρ− ∆πi

1 + ρi∆πi
w ◦w, h′ = h +

∆bi − hi∆πi

1 + ρi∆πi
w.

Here, L−1BT
i,· has to be computed for the L update

anyway. This idea is used in the experiments described
in Section 4.2.

For large n, storing an n×n matrix in memory becomes
prohibitive. In a less costly representation, we exploit
m ≪ n. We require9 that B = I. The Woodbury
formula gives

CovQ[u] = Π−1 − Π−1XT L−T L−1XΠ−1,

where LLT = I + XΠ−1XT , so L (different from
above) is of size m2 only. An EP update requires
O(m2) and two MVMs with X, rather than O(n2)
above. While this representation is exact, it is numer-
ically less robust to update than the O(n2) one.

3.2. Image Model. Other Methods

In this section, we provide further details about the
concrete model we use in our experiments with natu-
ral images. Our prior encourages two different notions
of sparsity in an image. First, a multi-scale wavelet
transform of u should be sparse, modeling the obser-
vation that natural images can be compressed well in
a wavelet domain. Second, the finite differences in the
horizontal and vertical direction should exhibit spar-
sity, accounting for spatial smoothness often found in
images10. A frequently used penalty term for the lat-
ter is the L1 norm of the image gradient, also known
as total variation.

Our model is an instance of (1), where all ti are Lapla-
cian (2). s, and therefore B, decompose into two dif-
ferent parts: BT = (B(sp)T B(tv)T ). Equivalently, the
prior is the product of two potentials. The transform
sparsity potential is a sparsity prior on the wavelet
coefficients of u. Note that the Laplace distribution
is a sensible candidate to fit wavelet coefficient his-
tograms from natural images (Simoncelli, 1999). Thus,

9More generally, BT
ΠB must be easy to invert. If B

is invertible and B−1-MVM feasible, we represent Q(s)
rather than Q(u).

10Recall what we mean by sparsity from Section 2: most
coefficients are forced to be small, by allowing some to be
large. Occasional large components in the gradient corre-
spond to edges in the image.
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B(sp) ∈ R
n×n is a multi-scale orthonormal wavelet

transform, and the potential is exp(−τsp‖B(sp)u‖1).
The total variation potential is a Laplace prior on the
image gradient, i.e. the differences between horizontal
and vertical pixel neighbours11. B(tv) ∈ R

2(n−
√

n)×n is
a sparse structured matrix, mapping the image u to its
gradient. Here, we assume that n = 22k for simplicity.
The total variation potential is exp(−τtv‖B(tv)u‖1).

Therefore, we have q ≈ 3n for the size of s. Also, the
potentials come with different scale parameters τsp,
τtv. Importantly, neither of B(sp), B(tv) has to be
stored in memory, and MVM with B or BT can be
done in O(n).

We also briefly describe the methods we compare
against. Most of them come with a transform spar-
sity potential only, so that s = B(sp)u. The method
of (Ji & Carin, 2007) is called SBL here. In Lp

reconstruction, ŝ = argmin{‖s‖p |XB(sp)T s = y},
û = B(sp)T ŝ. For L2 we just solve the normal equa-
tions, while for L1 this is a linear program. Note that
the latter is used in many CS publications (Candès
et al., 2006; Donoho, 2006). A method with trans-
form sparsity and total variation potential, called
L1 + TV here, is given by the following quadratic pro-
gram: û = argmin 1

2‖y − Xu‖2
2 + τspσ

2‖B(sp)u‖1 +
τtvσ2‖B(tv)u‖1 (Candès & Romberg, 2004). We used
the following code in our experiments:

SBL: www.ece.duke.edu/∼shji/BCS.html
L1: www.acm.caltech.edu/l1magic/

L1 + TV: www.stanford.edu/∼mlustig/

4. Experiments

In this section, we provide experimental results for dif-
ferent instances of our framework, comparing to CS
and approximate Bayesian methods on synthetic data
(Section 4.1), and on the task of measuring natural
images (Section 4.2).

4.1. Artificial Setups

It is customary in the CS literature to test methods on
synthetic data, generated following the “truly sparse
and otherwise unstructured” assumptions under which
asymptotic CS theorems are proven. We do the same
here, explicitly using the “(non-)uniform spikes” (Ji &
Carin, 2007), but cover some other heavy-tailed dis-
tributions as well. It seems that not many signals of
real-world interest are strictly and randomly sparse, so

11This potential on its own is not normalisable as distri-
bution over u, being invariant against adding a constant
to all pixels.

that studies looking at the robustness of CS theoreti-
cal claims are highly important. In this section, signals
are sparse as such, so that B = I and u = s here. We
compare methods described in Section 3.2. It is im-
portant to stress that all methods compared here (ex-
cept for L2) are based on exactly the same underlying
model (1) with B = I, and differences arise only in the
nature of computations (approximate Bayesian versus
maximum a-posteriori optimisation) and in whether X

is sequentially designed (EP, SBL) or chosen at ran-
dom (Lp reconstruction; we follow CS theory (Candès
et al., 2006; Donoho, 2006) and sample rows of X uni-
formly of unit norm). Results are shown in Figure 1.
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Figure 1. Comparison on 6 random synthetic signals u ∈

R
512. Shown are L2-reconstruction errors (mean±std.dev.

over 100 runs). All methods start with same random initial
X (m = 40), then “(rand)” add random rows, “(opt)” op-
timise new rows sequentially. Noise variance σ2 = 0.005,
prior scale τ = 5. SBL: (Ji & Carin, 2007), Lp: Lp re-
construction, EP: our method. (a-c): i.i.d. zero mean, unit
variance Gaussian, Laplacian (Eq. 2), Student’s t (3 d.o.f.).
(d): n

2
of ui = 0, n

4
exponential decay 1, . . . , 0, n

4
minus

that, randomly permuted. (e-f): 20 ui 6= 0 at random;
(e) uniform spikes, ui ∈ {±1}; (f): non-uniform spikes,
ui ∼

1

4
+ |t|, t ∼ N(0, 1); as in (Ji & Carin, 2007). Distri-

butions in (d-f) normalised to unit variance.

The “sparsity” (or super-Gaussianity) of the signal dis-
tributions increases from (1a) to (1e-f). For Gaussian
signals (1a), L2 reconstruction based on random mea-
surements is optimal. While all CS methods and SBL
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(random and designed) lead to large errors, EP with
design matches the L2 results, thus shows robust be-
haviour. For Laplacian and Student’s t signals (1b-
c), designed EP outperforms L2 reconstruction signif-
icantly, while even the CS L1 method still does worse
than simple least squares. SBL performs poorly in all
three cases with signals not truly sparse, thus is not
robust against rather modest violations of the strict
CS assumptions. Its non-robustness is also witnessed
by large variations across trials.

On the other hand, L2 performs badly on truly sparse
signals. In all cases (1d-f), EP with design signifi-
cantly outperforms all other methods, including de-
signed SBL, with special benefits at rather small num-
bers of measurements. SBL does better now with truly
sparse signals, and is able to outperform L1.

From the superior performance of EP with design on
all signal classes, we conclude that experimental de-
sign can sequentially find measurements that are sig-
nificantly better than random ones, even if signals are
truly sparse. Moreover, the superior performance is
robust against large deviations away from the under-
lying model, more so even than classical L1 or L2 esti-
mation. The poor performance of SBL (Ji & Carin,
2007) seems to come from their desire for “prema-
ture sparsification”. During their iterations, many πi

are clamped to +∞ early for efficiency reasons. This
does not hurt mean predictions from current observa-
tions much, but affects their covariance approximation
drastically: most directions not supported by the data
right now are somewhat ruled out for further mea-
surements, since posterior variance along them (which
should be large!) is shrunk in their method. In con-
trast, in our EP method, none of the πi become very
large with modest m, and our covariance approxima-
tion seems good enough to successfully drive experi-
mental design. Without premature sparsification, our
scheme is still efficient, since the most relevant site
updates are found actively, and the need to eliminate
variables does not arise.

4.2. Natural Images

In this section, we are concerned about finding linear
filters which allow for good reconstruction of natural
images from noisy measurements thereof. Since nat-
ural images exhibit sparsity in wavelet or Fourier do-
mains, CS theory seems to suggest that random mea-
surements should be well-suited for this purpose, and
there have been considerable efforts to develop hard-
ware which can perform such random measurements
cost-efficiently (Duarte et al., 2008). On the other
hand, much is known about low level natural image

statistics, and powerful linear measurement transforms
have emerged there, such as multi-scale wavelet trans-
forms, based on which natural image reconstruction
should be substantial better than for random measure-
ments (Weiss et al., 2007).

The sparsity of images in a wavelet domain is highly
structured, there is a clear ordering among the coeffi-
cients from coarse to fine scales: natural images typ-
ically have much more energy in the coarse-scale co-
efficients, and coefficients with very small values are
predominantly found in the fine scales. In our ex-
periments, we employ a simple heuristic for linearly
measuring images, called wavelet heuristic in the se-
quel: every measurement computes a single wavelet
coefficient, and the sequential ordering of the mea-
surements is deterministic top-down, from coarse to
fine scales12. This ordering is a pragmatic strategy: if
mainly the coarse-scale coefficients are far from zero,
they should be measured first13. Do state-of-the-art
CS reconstruction algorithms, based on random linear
image measurements, perform better than simple L2

reconstruction based on the wavelet heuristic? And
how does Bayesian sequential design perform on this
task, if the model described in Section 3.2 is used?
Note that no prior knowledge about typical ordering
or dependence among wavelet coefficients in encoded
in this model either. Results of our study are given in
Figure 2.

In fact, we started our exploration with what is shown
in (2a), where 100 initial filters are drawn at random
(except for L2(heur)). Intrigued by the fact that the
wavelet heuristic method L2(heur) outperformed all
CS variants significantly, we tried to give them a head-
start, supplying m = 100, 200, 400 wavelet heuristic
measurements initially (2b-d). However, the system-
atic under-performance of methods which have spar-
sity regularizers built in, yet do random rather than
wavelet measurements, remains consistently present.
From these results we conclude, much as (Weiss et al.,
2007) argued on theoretical grounds, that if natural
images are to be measured successively by unit norm,
but otherwise unconstrained linear filters, then draw-
ing these filters at random leads to significantly worse

12This ordering follows the recursive definition of such
transforms: downsampling by factor two (coarse), horizon-
tal differences, vertical differences, diagonal corrections at
each stage. Our ordering is coarse → horizontal → vertical
→ diagonal, descending just as the transform does.

13Note that another problem with common CS assump-
tions applied to images is that the typical scale of coef-
ficients along a coarse-to-fine ordering follows a smooth
power law, it does not exhibit the abrupt drop from “signif-
icantly above noise level” to “exactly zero” often required
by CS theory.
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Figure 2. Experiments for measuring natural images (64×
64 = 4096 pixels). Shown are L2-reconstruction errors av-
eraged over 25 grayscale images typically used in computer
vision research (from decsai.ugr.es/cvg/dbimagenes/)
(± 1

4
std.dev. for “∗”). Noise level σ2 = 0.005. SBL: (Ji &

Carin, 2007), Lp: Lp reconstruction, L1 + TV: Lasso with
TV/wavelet penalties, EP: our method. True σ2 supplied,
τ parameters chosen optimally for each method individu-
ally: τsp = τtv = 0.075 (L1 + TV), τsp = 0.075, τtv = 0.5
(EP). New rows of X random unit norm (rand), actively
designed (opt), acc. to wavelet heuristic (heur).
(a): Start with m = 100, X random unit norm. (b-d):
Start with m = 100, 200, 400, X acc. to wavelet heuristic.

reconstructions than using standard wavelet coefficient
filters top-down. While CS theorems are mathemati-
cally intriguing, and while there certainly are impor-
tant applications that benefit from these results14, lin-
ear image measurement is probably not among them.

On the other hand, the wavelet heuristic method is
significantly outperformed by our EP method, where
X is designed sequentially. In (2a), EP quickly re-
covers from the suboptimal initial random X. More-
over, even when started from the same point as the
wavelet heuristic (2b-d), the designed measurements
lead to improvements over the heuristic immediately.

14The theoretical CS setting is more extreme than what
is really required here, in that there is no prior knowledge
about where the non-zeros will lie. We speculate that more
suitable applications could lie in steganography, spam or
intrusion detection, where a signal has to be detected which
has been hidden by an adversary.

EP(heur) is doing EP reconstruction, but based on
the same measurements as L2(heur). While it slightly
outperforms L2 reconstruction, the significant differ-
ence is due to the choice of the measurements. Our
method therefore provides an efficient solution to the
problem posed in (Weiss et al., 2007), namely how to
learn measurements automatically from data, starting
from little concrete domain knowledge. On the par-
ticular problem of measuring images linearly, our find-
ings should be put into perspective, by noting that
the L2 wavelet heuristic is vastly faster to compute15.
Moreover, X is optimised sequentially, particular to
the image u (but without knowing the underlying u),
while the wavelet heuristic filters are always the same.
Finally, the final X is is dense and unstructured. How-
ever, our method can be used in the same way to ad-
dress applications where strong structural constraints
on allowable X are present, and where wavelet (or
purely random) measurements are not an option.

In this setting, SBL (Ji & Carin, 2007) performs much
worse than all other methods tried, whether using ran-
dom, wavelet or designed measurements. Results for
SBL in cases (b-d) were even worse and are not in-
cluded to facilitate comparison among the others. This
is most probably an extreme instance of the problem
noted in Section 4.1. Premature sparsification, in light
of not strictly sparse signals, leads to poor results even
with random X. Their covariance estimates seem too
bad to steer sequential design in a useful direction16.

Finally, the deterioration of L1, when adding random
to initial wavelet measurements, is somewhat puz-
zling, especially since it does not happen for L1 + TV.
These additional measurements provide novel informa-
tion about the true u, so a valid inference method
should rather improve.

5. Discussion

We have shown how to address the compressive sensing
problem with Bayesian experimental design, where de-
signs are optimised to rapidly decrease uncertainty and
do not have to be chosen at random. In a large study

15EP sequential design is still very efficient. A typical
run on one image took 53 min (on 64bit 2.33GHz AMD),
for n = 4096 and q = 12160 sites: 16785 initial EP updates,
then 308 increments of X by 3 rows each, with on average
only 8.8 site updates needed to regain EP convergence (up
to 85 updates after some increments).

16In cases (b-d), top wavelet coefficients are measured
initially, so their method confidently starts with a highly
over-sparse solution and fails. Note that, as opposed to EP,
we restarted the SBL code after each new measurement,
so that poor current solutions are not inherited when new
data is obtained.
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about linearly measuring natural images, we show that
CS reconstruction methods based on randomly drawn
filters are outperformed significantly by standard least
squares reconstruction measuring coarse-scale wavelet
coefficients. Our findings suggest that the applicabil-
ity of CS results (with their insistence on strict and
unstructured signal sparsity) to natural image appli-
cations should be reconsidered. We also show that
our Bayesian sequential design method, starting from
a model with little domain knowledge built in, is able
to find filters with significantly better reconstruction
properties than top-down wavelet coefficients. Our
findings indicate that efficient Bayesian experimental
design techniques are highly promising for CS applica-
tions of different kinds just as well.

Why do random measurement filters enjoy good prop-
erties in CS theory, but are not useful in the case
of natural images? We think that this seeming con-
tradiction really comes from an erroneous “extrapola-
tion” of what CS theorems really mean. Any structure
apart from a randomly distributed sparsity pattern is
ignored there. Also, they are minimax results, in that
the reconstruction error for the worst sparsity pattern
is bounded. But undersampled image reconstruction
is not a worst-case problem, and much is known about
the sparsity structure of natural images. It may be
that L1 or L1 + TV are minimax methods (for known
B), but that does not imply much about their typi-
cal performance. We suspect that our doubts about
CS with random measurements extend beyond natu-
ral images to other signals of common interest in nor-
mal non-adversarial situations, since interest in a sig-
nal class implies that statistical knowledge about them
beyond random sparsity has been obtained.

Our experience with the method of (Ji & Carin, 2007),
which we compare against in our study, raises another
more speculative, yet interesting point. Several meth-
ods very frequently used in machine learning today
can loosely be summarised as trying to detect very
sparse solutions early on, mainly with the aim of high
computational efficiency. For example, SBL (Tipping,
2001) is much more aggressive in this respect than our
EP method here. Early sparsification does not seem
to hurt mean prediction performance much, and thus
is embraced for efficiency. However, our experiences
here indicate that it is the covariance (or uncertainty)
estimates that can be badly hurt by such sparsity-by-
elimination processes, and that in contexts such as ex-
perimental design, where covariances are more impor-
tant than predictive means, their application should
probably be avoided. The challenge is then to de-
velop methods that run efficiently without eliminating
many variables early on, and our selective site updat-

ing method for EP is a step in that direction.
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Abstract

We derive a generalization bound for multi-
classification schemes based on grid cluster-
ing in categorical parameter product spaces.
Grid clustering partitions the parameter
space in the form of a Cartesian product of
partitions for each of the parameters. The
derived bound provides a means to evaluate
clustering solutions in terms of the general-
ization power of a built-on classifier. For clas-
sification based on a single feature the bound
serves to find a globally optimal classification
rule. Comparison of the generalization power
of individual features can then be used for
feature ranking. Our experiments show that
in this role the bound is much more precise
than mutual information or normalized cor-
relation indices.

1. Introduction

Clustering is one of the basic tools for dimension-
ality reduction in categorical spaces. In this paper
we study classifiers based on a soft grid clustering
of categorical parameter product spaces. The grid
clustering is defined by a set of stochastic mappings
{qi : Xi 7→ {1, ..,mi}}, one for each parameter i, which
map the possible values Xi of the parameter Xi to a
reduced set Ci of size mi. A classifier based on the grid
clustering then assigns a separate prediction strategy
to each partition cell. For example, in collaborative
filtering we can cluster a thousand by thousand space
of viewers by movies into a five by five space of viewer
clusters by movie clusters (here X1 are the viewers
and X2 are the movies). Then we can predict a miss-
ing entry within some partition cell with an average of
ratings in that cell.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

Grid clustering or some other form of dimensionality
reduction can be helpful and even essential when the
sample size is limited. However, an appropriate choice
of clustering resolution is crucial for good results. A
coarse clustering may be highly imprecise - think of the
extreme of putting all the data into one big cluster. On
the other hand, a fine clustering may be statistically
unreliable - at the opposite extreme, if we put every
parameter value into a separate cluster, some parame-
ter combinations may not occur in the training set at
all. Thus, unification of parameter values amplifies the
statistical reliability, but reduces the precision. In this
paper we relate this tradeoff to generalization proper-
ties of a classifier based on the clustering.

Applications of grid clustering to data with intrinsi-
cally categorical features are abundant. Seldin, Slonim
and Tishby (2007) consider grid clustering from an
MDL perspective and demonstrate its success in pre-
dicting missing values in the context of collaborative
filtering. The same work achieves state of the art per-
formance in terms of coherence of obtained clusters
with manual annotation in the context of gene expres-
sion and stock data analysis. Here we also suggest a
new application of grid clustering for feature ranking.

We are not aware of any previous work on generaliza-
tion properties of models based on grid clustering. A
somewhat related work is (Srebro, 2004), which derives
a generalization bound for matrix approximation with
bounded norm factorization. However, matrix factor-
ization is a different model and the proof is based on
a different technique (Rademacher complexities).

The key point of this paper is a derivation of a gener-
alization bound for classification based on grid cluster-
ing. The bound is derived by using the PAC-Bayesian
technique (McAllester, 1999). The power of the PAC-
Bayesian technique lies in its ability to handle hetero-
geneous hypothesis classes so that the generalization
bound for a specific hypothesis depends on the com-
plexity of that hypothesis rather than on the complex-
ity of the whole class. A classical example of an appli-
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cation of the PAC-Bayesian bound are SVMs (Lang-
ford, 2005). It is well known that the VC-dimension of
separating hyperplanes in R

n is n+1. As well, the VC-
dimension of separating hyperplanes with a margin γ,
assuming all points are bounded in a unit sphere, is
min{ 1

γ2 , n} + 1. The ability to slice the hypothesis
space into infinitely many subspaces characterized by
a finer notion of complexity (the size of the margin)
rather than the coarse VC-dimension of the whole class
makes it possible to derive a better bound that remains
meaningful even for infinite dimensional spaces.

In this paper we propose a fine measure of complex-
ity of a grid partition of a cardinal space. The pro-
posed measure of complexity is related to the entropy
of a partition along each dimension i. The bound en-
ables us to consider all possible partitions of the prod-
uct space and to choose one with better generalization
properties. In the case of a single parameter it is easy
to find a global optimum of the bound. The mapping
rule achieving the optimum is shown to be the optimal
classification rule from a generalization point of view.
Although the bound is not perfectly tight, its shape
follows an error on a validation set extremely well. In
the experimental section we apply the bound to fea-
ture ranking and it is shown to be much more precise
than standard mutual information or normalized cor-
relation rankings.

2. A Brief Review of the PAC-Bayesian

Generalization Bound

To set the stage, we start with a simplified version of
the PAC-Bayesian bound, called Occam’s razor. Let
H be a countable hypothesis space. For a hypothesis
h ∈ H denote by L(h) an expected and by L̂(h) an
empirical loss of h. We assume the loss is bounded by
b.

Theorem 1 (Occam’s razor). For any data generating
distribution and for any “prior distribution” P (h) over
H with a probability greater than 1 − δ over drawing
an i.i.d. sample of size N , for all h ∈ H:

L(h) ≤ L̂(h) + b

√

− ln P (h) − ln δ

2N
. (1)

Proof. The proof is fairly simple and provides a good
illustration of what the “prior distribution” P (h) is.
By Hoeffding’s inequality P{L(h) − L̂(h) ≥ ε(h)} ≤
e−2Nε(h)2/b2 for any given h ∈ H. We require that
e−2Nε(h)2/b2 ≤ P (h)δ for some prior P (h) that satisfies
∑

h∈H P (h) = 1. Then, by the union bound L(h) ≤
L̂(h) + ε(h) for all h ∈ H with a probability of 1 − δ.

The minimal value of ε that satisfies the requirement

is ε(h) = b

√
− ln P (h)−ln δ

2N , which completes the proof.

We now introduce the notion of a randomized clas-
sifier. Let Q be any (posterior) distribution over H.
A randomized classifier associated with Q works by
choosing a new classifier h from H according to Q ev-
ery time a classification is made. We denote the loss
of a strategy Q by L(Q) = Eh∼QL(h) and similarly

L̂(Q) = Eh∼QL̂(h). By taking an expectation of (1)
over the choice of h and exploiting the concavity of the
square root we obtain that with a probability greater
than 1 − δ:

L(Q) ≤ L̂(Q) + b

√

−Eh∼Q ln P (h) − ln δ

2N
. (2)

The PAC-Bayesian bound (McAllester, 1999) was de-
rived to allow uncountably infinite hypothesis spaces,
though in our case the hypothesis space is finite. We
cite a slightly tighter version of the bound proved in
(Maurer, 2004).

Theorem 2 (PAC-Bayesian Bound). For any data
distribution and for any “prior” P over H fixed ahead
of training with a probability greater than 1− δ for all
distributions Q over H:

L(Q) ≤ L̂(Q) + b

√

D(Q‖P ) + 1
2 ln(4N) − ln δ

2N
, (3)

where D(Q‖P ) = Eh∼Q ln Q(h)
P (h) is the Kullback-Leibler

(KL) divergence between the distributions Q and P .

If the loss function is bounded by one (1), (2), and
(3) may be written in the form of a bound on the
KL-divergence between L̂(Q) and L(Q). For ex-
ample, (1) may be obtained as: D(L̂(h)‖L(h)) ≤
− ln P (h)−ln δ

N if we start from the P{L(h) − L̂(h) ≥
ε} ≤ e−ND(L(h)+ε‖L(h)) form of Hoeffding’s inequal-
ity. This provides a better bound in cases when L̂(Q)
is sufficiently small (less than 1

8 ). The choice of the
square root form of the bounds is based on their easier
analytical tractability for subsequent minimization.

By writing D(Q‖P ) = −H(Q) − Eh∼Q ln P (h) it is
easy to see that (3) is an improvement over (2) when
H(Q) > 1

2 ln(4N). In our experiments (2) is usually
tighter. It is an open question whether 1

2 ln(4N) can
be removed from (3), at least in the case of a countable
H. For example, (Blanchard & Fleuret, 2007) suggest
a parameterized tradeoff k+1

k D(Q‖P )+ln(k+1)+3.5+
1
2k instead of D(Q‖P ) + 1

2 ln(4N). For our data the
tradeoff does not improve the results and therefore we
omit its discussion.
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3. A Formal Definition of Grid

Clustering

Before proceeding to the results we provide a formal
definition of grid clustering as used in this paper.

Definition 1. Grid Clustering of the parameter space
X1 × ..×Xd is a set of distributions qi(Ci|Xi) defining
the probability of mapping Xi ∈ Xi to Ci ∈ {1, ..,mi}.
If each of qi(Ci|Xi) is deterministic, we call the clus-
tering a deterministic grid clustering. Otherwise it is
a stochastic grid clustering.

In the following sections we assume some unknown
joint probability distribution p(Y,X1, ..,Xd) of the pa-
rameters and the label exists. The set of all possible
labels is denoted by Y and its size is denoted by ny.
The size of Xi is denoted by ni. The cardinality of
Ci is mi. The value of each mi can vary in the range
of 1 ≤ mi ≤ ni for different partitions. A hypoth-
esis h in a deterministic grid clustering is comprised
of a set of deterministic mappings qi(Ci|Xi), for sim-
plicity denoted by qi(Xi) : Xi → {1, ..,m}, and a set
of
∏

i mi labels, one for each partition cell. We de-
note the hypothesis space by H and decompose it as
H = H|1 × .. × H|d × H|Y|m̄. Here H|i is a space of
all possible partitions of Xi, or, in other words, a pro-
jection of H onto dimension i. m̄ = (m1, ..,md) is a
vector of cardinalities of the partitions along each di-
mension and H|Y|m̄ is a space of all possible labelings
of
∏

i mi partition cells. Similarly, h ∈ H is decom-
posed as h = h|1 × ..× h|d × h|y|m̄. It is assumed that
a loss function l : Y × Y → R

+ is given. The loss of
h, denoted by L(h), is defined as an expectation over
p of L: L(h) = Epl(h(X1, ..,Xd), Y (X1, ..,Xd)). The
empirical loss of h on a sample S of size N is denoted
by L̂(h) and equals the average loss on the sample.

For stochastic mappings qi(Ci|Xi) it is assumed that
a random realization of the mapping is done prior to
the prediction. In other words, we choose a hypoth-
esis h at random by determining the values of qi(Xi)
according to qi(Ci|Xi) before we make a prediction.
Q =

{
{qi(Ci|Xi)}d

i=1, q(Y |C1, .., Cd)
}

collectively de-
notes a distribution over H associated with a random-
ized classifier called Q. The loss of Q is denoted by
L(Q) and equals L(Q) = Eh∼QL(h). The empirical

loss of Q is denoted by L̂(Q).

We define qi(Ci) = 1
ni

∑

xi
qi(Ci|xi) to be a marginal

distribution over Ci corresponding to a uniform
distribution over Xi and the conditional distribu-
tion qi(Ci|Xi) of our choice. The entropy of a
partition along a dimension i with respect to a
uniform distribution over Xi is then HU (qi) ≡
HU (Ci) = −∑ci

qi(ci) ln qi(ci). The mutual in-

formation between Xi and Ci with respect to
a uniform distribution over Xi is IU (Xi;Ci) =
1
ni

∑

xi,ci
qi(ci|xi) ln[qi(ci|xi)/qi(ci)].

4. Generalization Bound for

Multi-Classification with Grid

Clustering

In this section we state and prove a generalization
bound for multi-classification with stochastic grid clus-
tering:

Theorem 3. For any probability measure p over in-
stances and for any loss function l bounded by b, with
a probability of at least 1−δ over a selection of an i.i.d.
sample S of size N according to p, for all randomized
classifiers Q =

{
{qi(Ci|Xi)}d

i=1, q(Y |C1, .., Cd)
}
:

L(Q) ≤ L̂(Q) + b

√∑

i niHU (Ci) + K

2N
, (4)

K =
∑

i

(mi ln ni+
(ln(ni) + 1)2

4
)+(

∏

i

mi) ln ny−ln δ.

(5)

It is also possible to replace (4) in the theorem with:

L(Q) ≤ L̂(Q) + b

√
∑

i niIU (Xi;Ci) + 1
2 ln(4N) + K

2N
.

(6)

Proof. The bounds (4) and (6) are direct conse-
quences of (2) and (3) respectively for an appropriate
choice of a prior P over H. The main part of the proof
is to define a prior P that will provide a meaningful
complexity-related slicing of H and then to calculate
−EQ ln P (h) for (4) and D(Q‖P ) for (6).

To define the prior P over H we count the hypotheses

in H. For a fixed partition there are n
Q

i
mi

y possibili-
ties to assign the labels to the partition cells. There are
ni possibilities to choose the number of clusters along
a dimension i. There are at most

(
ni+mi−1

mi−1

)
≤ nmi−1

i

possibilities to choose a cluster cardinality profile along
a dimension i. (This is the number of possibilities to
place mi − 1 ones in a sequence of ni + mi − 1 ones
and zeros, where ones symbolize a partition of zeros
(”balls”) into mi bins.) We take the nmi−1

i bound for
simplicity. For a fixed cardinality profile |ci1|, .., |cimi

|
(over a single dimension) there are

(
ni

|ci1|,..,|cimi
|

)
possi-

bilities to assign Xi-s to the clusters. This multinomial
coefficient can be bounded from above by eniHU (Ci)

(see (Cover & Thomas, 1991, page 284) for an elegant
proof). Putting all the combinatorial calculations to-
gether it is possible to define a distribution P (h) over
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H that satisfies:

P (h) ≥ 1

exp [
∑

i (niHU (Ci) + mi ln ni) + (
∏

i mi) ln ny]
.

(7)

We pause to stress that unlike in most applications
of the PAC-Bayesian bound, in our case the prior P

and the posterior Q are defined over slightly differ-
ent hypothesis spaces. The posterior Q is defined for
named clusterings - we explicitly specify for each Xi

the “name” of Ci it is mapped to. Whereas the prior
P is defined over unnamed partitions - we only check
the cardinality profile of Ci, but we cannot recover
which Xi-s are mapped to a given Ci. Nevertheless,
the “named” distribution Q induces a distribution over
the “unnamed” space by summing up over all possi-
ble name permutations. This enables us to compute
−EQ ln P (h) we need for the bound.

We now turn to bound −EQ ln P (h). This is done
by showing that Q is concentrated around the hy-
potheses (hard partitions) h for which the entropies of
the partitions are close to the entropies HU (qi). By
the decomposition property we can write: P (h) =
P (h|1)..P (h|d)P (h|y|m̄), and similarly for Q. Then
−EQ ln P (h) = −∑i EQ ln P (h|i) − EQ ln P (h|y|m̄),
and similarly for D(Q‖P ). The last term is easy to
compute since P is uniform over HY|m̄ and Q is de-
fined for a fixed m̄. Therefore, −EQ ln P (h|y|m̄) =
(
∏

i mi) ln ny. For the first d terms we need to com-
pute or at least to bound Q(h|i).
Recall that h|i is obtained from Q by drawing a clus-
ter Ci for each Xi ∈ Xi independently according to

the distribution qi(Ci|Xi). Let q̂i = { |ci1|
ni

, ..,
|cimi

|

ni
}

denote an empirical cluster cardinality profile along a
dimension i obtained by such assignment. Then:

Eqi
H(q̂i) = HU (qi) − Eqi

D(q̂i‖qi) ≤ HU (qi), (8)

where H(q̂i) = −∑ci
q̂(ci) ln q̂(ci) and D(q̂i‖qi) =

∑

ci
q̂i(ci) ln q̂i(ci)

qi(ci)
. And also:

Pqi
{H(q̂i) − EH(q̂i) ≥ ε} ≤ e−2niε

2/(ln(ni)+1)2 . (9)

The latter inequality follows from the fact that the
empirical entropy H(q̂i) satisfies a bounded differences
property with a constant equal to 1

ln(ni)+1 . See (Panin-

ski, 2003) for a more detailed proof of (8) and (9).

Now, if q̂i is the cardinality profile of h|i, then Q(h|i) =
Q(q̂i) ≡ Pqi

{q̂i}. Let ε(q̂i) = max{0,H(q̂i)−HU (qi)}.
Since H(q̂i) − HU (qi) ≤ H(q̂i) − EH(q̂i) by (8), from

(9) we have: Q(q̂i) ≤ e−2niε(q̂i)
2/(ln(ni)+1)2 . Thus:

−EQ ln P (h|i) = −
∑

h|i∈H|i

Q(h|i) ln P (h|i)

=
∑

h|i∈H|i

Q(q̂i)(niH(q̂i) + mi ln ni)

=
∑

h|i∈H|i

Q(q̂i)[niHU (qi)+mi ln ni+ni(H(q̂i)−HU (qi))]

≤ niHU (qi) + mi ln ni +
∑

h|i∈H|i

Q(q̂i)niε(q̂i)

≤ niHU (qi) + mi ln ni +
∑

h|i∈H|i

niε(q̂i)e
−2niε(q̂i)

2

(ln(ni)+1)2

≤ niHU (qi) + mi ln ni +

∫ ∞

0

niεe
−2niε

2/(ln(ni)+1)2dε

= niHU (Ci) + mi ln ni +
1

4
(ln(ni) + 1)2.

This completes the proof of (4).

For (6) what remains is to compute EQ ln Q(h|i). To
do so we bound lnQ(q̂i) from above. The bound fol-
lows from the fact that if we draw ni values of Ci

according to qi(Ci|Xi) the probability of the resulting
type q̂i is bounded from above by e−niHU (Ci|Xi), where
HU (Ci|Xi) = − 1

ni

∑

xi,ci
qi(ci|xi) ln qi(ci|xi) (see The-

orem 12.1.2 in (Cover & Thomas, 1991)). Thus
EQ ln Q(h|i) ≤ −niHU (Ci|Xi), which together with
the identity IU (Xi;Ci) = HU (Ci) − HU (Ci|Xi) com-
pletes the proof of (6).

5. An Optimal Solution for a Single

Feature and Feature Ranking

In this section we show that if there is only one pa-
rameter X (i.e., d = 1) a globally optimal (from a
generalization point of view) classification rule may be
efficiently found by examining the “direct” mappings
q(Y |X). In other words, for a single parameter there
is no need for intermediate clustering. The obtained
result is used in the applications section for feature
ranking. It is shown there that the bound follows ex-
tremely well the shape of the true error of a classifier
based on a single feature and is much more precise than
mutual information or normalized correlation indices.

To prove the optimality of direct mappings we start
with the observation that for any clustering C a clas-
sification rule q(Y |X) defined as

q(y|x) =
∑

c

q(c|x)q(y|c) (10)

achieves the same loss as the loss of a hypothesis h

based on the clustering C. Therefore, the space of all
direct mappings q(Y |X) incorporates all possible solu-
tions that may be achieved via intermediate clustering.
It remains to show that the generalization power of the
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direct mappings is not worse than the generalization
power of clustering-based solutions and that the global
optimum may be efficiently found.

To analyze the generalization power of a direct map-
ping we define ny clusters cy, one for each label y ∈ Y,
i.e., Cy = {cy : y ∈ Y}. All instances x mapped
to a cluster cy obtain the label y. Thus the cluster-
ing Cy is identified with the labeling Y , in particular
q(Cy|X) = q(Y |X), and we can replace HU (Cy) in
(4) with HU (Y ) and IU (X;Cy) in (6) with IU (X;Y ).
Moreover, in our construction there are only (ny!) pos-
sibilities to assign the labels to the clusters and not n

ny
y

as in the case of general clustering. In addition, the
cardinality of Cy is fixed at ny and does not change
from 1 to n, where n is the cardinality of X. This
further reduces a ln(n) factor from the bound. Thus,
the definition of K in (5) is improved to:

Ky = ln[

(
n + ny − 1

ny − 1

)

] +
(ln n + 1)2

4
+ ln(ny!) − ln δ.

(11)
(We used the tighter bound

(
n+ny−1

ny−1

)
instead of nny−1

on the number of partitions.) And we get:

L(Q) ≤ L̂(Q) + b

√

nHU (Y ) + Ky

2N
(12)

instead of (4) and

L(Q) ≤ L̂(Q) + b

√

nIU (X;Y ) + K ′
y

2N
(13)

instead of (6) for K ′
y = Ky + 1

2 ln(4N).

For any other clustering C the direct mapping q(Y |X)
defined by (10) satisfies IU (X;C) ≥ IU (X;Y ) by the
information processing inequality (Cover & Thomas,
1991). Furthermore, since in H every partition cell
gets a single label, HU (Y |C) = 0. Therefore, HU (Y ) ≤
HU (C) because HU (Y ) = HU (Y ) − HU (Y |C) =
IU (C;Y ) = HU (C) − HU (C|Y ) ≤ HU (C). Adding
the fact that the empirical losses are equal for the
clustering-based classification and the associated di-
rect mapping we obtain that both (12) and (13) for
the direct mapping are tighter than (4) and (6) for the
corresponding clustering solution.

We can further optimize (13) by looking for an op-
timal classification rule q∗(Y |X) that minimizes it.
The minimum is achieved by iteration of the following
self-consistent equations, where p̂(x, y) is the empirical
joint distribution of X and Y (the derivation is done
by taking a derivative of the bound with respect to
q(Y |X) and is omitted due to lack of space):

q(y|x) =
q(y)

Z(x)
e−

2

b (
P

y′ p̂(x,y′)l(y′,y))
√

2N(nIU (X;Y )+K′
y),

(14)

q(y) = 1
n

∑

x q(y|x), Z(x) =
∑

y q(y|x), and

IU (X;Y ) = 1
n

∑

x,y q(y|x) ln[q(y|x)/q(y)]. Although
√

IU (X;Y ) is not necessarily convex, in our experi-
ments the iterations always converged to a global op-
timum. It is also possible to optimize a parameter-
ized tradeoff L̂(Q) + βIU (X;Y ), which is convex since
both mutual information IU (X;Y ) and the empirical
loss L̂(Q) are convex with respect to q(Y |X). A linear
search over β then leads to a global optimum of (13).

Note that the direct mapping is no longer optimal
when there is more than one parameter. For example,
for two parameters X1, X2, each with a cardinality
n, the conditional distribution p(Y |X1,X2) is defined
over the product space of size n2ny. This requires at
least an order of n2ny samples - a number quadratic
in n - for the direct inference to be possible. However,
from (4) and (6) it follows that with grid clustering for
relatively small cluster cardinalities mi it may be pos-
sible to achieve reliable estimations when the sample
size N is linear in n. This is further discussed in the
next section.

A related bound for generalization in prediction by
a single feature is suggested in (Sabato & Shalev-
Shwartz, 2007). Sabato and Shalev-Shwartz designed
an estimator for the loss of a prediction rule based on
the empirical frequencies qemp(y|x) = p̂(y|x). They

prove that their estimate is at most O(
ln(N/δ)

√
ln(1/δ)

√
N

)

far from the generalization error of qemp. Compared to
their work, a strong advantage of bounds (12) and (13)
is that they hold for any prediction rule q(Y |X). In
particular, they hold for the maximum likelihood pre-
diction qml(x) = arg maxy p̂(y|x) that performs much
better than qemp in practice.

6. A Bound for Estimation of a Joint

Probability Distribution in Grid

Clustering

For a fixed set of mappings {qi(Ci|Xi)} denote by
p(Y, C̄) the joint probability distribution of Y and C̄,
where C̄ stays for 〈C1, .., Cd〉 for brevity. Denote by
p̂(Y, C̄) its empirical counterpart. Clearly, p(Y, C̄) is
determined by p(Y,X1, ..,Xd) and the set {qi(Ci|Xi)}.
In this section we bound the deviation between p(Y, C̄)
and its empirical estimation.

Theorem 4. For any probability measure p over in-
stances and an i.i.d. sample S of size N according
to p, with a probability of at least 1 − δ for all grid
clusterings Q = {qi(Ci|Xi)}d

i=1 the following holds:

D(p̂(Y, C̄)‖p(Y, C̄)) ≤
∑

i niHU (Ci) + K2

N
(15)
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K2 =
∑

i

(

mi ln ni +
(ln(ni) + 1)2

4

)

+ny

(
∏

i

mi

)

ln(N + 1) − ln δ. (16)

Proof. The proof is based on the law of large numbers
cited below (Cover & Thomas, 1991).

Theorem 5 (The Law of Large Numbers). Let
Z1, .., ZN be i.i.d. distributed by p(Z). Then:

P{D(p̂(Z)‖p(Z)) > ε} ≤ e−Nε+|Z| ln(N+1), (17)

where |Z| stays for the cardinality of Z.

Note that the cardinality of the random variable 〈Y, C̄〉
is ny

∏

i mi. For the proof of theorem 4 we require that
the right hand side of (17) be smaller than P (h)δ.
Application of a union bound and reversion of the
requirement on ε bounds D(p̂(Y, C̄)‖p(Y, C̄)) for the

case of hard partitions by
ny(

Q

i
mi) ln(N+1)−ln(P (h)δ)

N
for all h. Since D(p‖q) is convex in the pair (p, q)
(Cover & Thomas, 1991, Theorem 2.7.2), for soft
partitions D(p̂(Y, C̄)‖p(Y, C̄)) is bounded from above

by EQ
ny(

Q

i
mi) ln(N+1)−ln(P (h)δ)

N . The calculation of
−EQ ln P (h) done earlier completes the proof.

Applying the inequality relating the L1 norm and the
KL divergence ‖P1−P2‖1 ≤

√

2D(P1‖P2) (see (Cover
& Thomas, 1991)) we obtain a bound on the varia-
tional distance.

Corollary 1. Under the conditions of theorem 4:

‖p(Y, C̄) − p̂(Y, C̄)‖1 ≤
√

2 (
∑

i niHU (Ci) + K2)

N
(18)

7. Generalization Bound for the

Logarithmic Loss in Grid Clustering

The goal of this section is to provide a
bound on the logarithmic loss −E ln p̂(Y |C̄) =
−∑y,c̄ p(y, c̄) ln p̂(y|c̄). This loss corresponds to the
prediction (and compression) power of the hypothesis.
Since ln is an unbounded function and p̂(y|c) is not
bounded from zero, we define a smoothed distribution:

p∗(y|c̄) =
p̂(y|c̄) + γ

nyγ + 1
,

where γ > 0 is the smoothing parameter. To com-
plete the definition: p∗(c̄) = p̂(c̄) and p∗(y, c̄) =
p∗(c̄)p∗(y|c̄). Instead of proving the bound for p̂ it
will be proved for p∗:

−E ln p∗(Y |C̄) = −
∑

y,c̄

p(y, c̄) ln p∗(y|c̄)

=
∑

y,c̄

(p̂(y, c̄)− p(y, c̄)) ln p∗(y|c̄)−
∑

y,c̄

p̂(y, c̄) ln p∗(y|c̄)

≤ 1

2
‖p(Y, C̄) − p̂(Y, C̄)‖1 ln

nyγ + 1

γ

−
∑

y,c̄

p̂(y, c̄) ln(p̂(y|c̄) + γ) + ln(nyγ + 1) (19)

≤ ε ln
nyγ + 1

γ
−
∑

y,c̄

p̂(y, c̄) ln p̂(y|c̄) + ln(nyγ + 1)

= Ĥ(Y |C̄) + ε ln
1

γ
+ (ε + 1) ln(nyγ + 1), (20)

where inequality (19) is justified by (18) and ε is de-
fined as half of its right hand side. Ĥ(Y |C̄) stays for
the empirical estimation of the entropy of Y given C̄.
Equation (20) is minimized for γ = ε

ny
, when we get:

−E ln p∗(Y |C̄) ≤ Ĥ(Y |C̄) + ε ln
ny

ε
+ (ε + 1) ln(ε + 1).

(21)

One natural application of the bound (21) to be stud-
ied in future work is to the broadly used “bag-of-
words” models, where a decision is made based on
multiple observations with the conditional indepen-
dence assumption on the observations given the label.
For example, in the bag of words model for document
classification by topic we assume that the words are in-
dependent given a topic (the label Y ). There is a single
parameter X coming from the space of all words, but
the classification is based on multiple observations of
this parameter - all words in the document. Since we
have a single parameter we can resort to the direct
mappings q(Y |X), as in section 5. Usually, a topic
that maximizes the log likelihood of all the words in
a document is assigned. After simple algebraic ma-
nipulations this can be translated to maximization of
a sum of ln[q(y|x)] over the document (up to correct
normalization by ln[q(y)]), which is directly related to
the expectation bounded in (21).

A related work in this context (Shamir, Sabato &
Tishby, 2008) uses some different techniques to de-
rive a bound for |H(Y |C) − Ĥ(Y |C)|. We note that
H(Y |C) = −E ln p(Y |C) is the minimal logarithmic
loss that could be achieved if we knew the true joint
distribution p(Y,C). Thus, (Shamir et al., 2008) give
a lower bound on the performance of any prediction
model based on grid clustering, whereas (21) is an up-
per bound on the performance of the prediction strat-
egy p∗(Y |C̄).

8. Applications

In this section we provide a series of applications of the
bounds (12) and (13) to prediction by a single feature
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Figure 1. Application of bounds (12) and (13). This figure displays an application of bounds (12) and (13) to
the four datasets discussed in text. The legend in subfigure (d) corresponds to all the graphs. The graphs contain the
training loss L̂(qml), the test loss L(qml) and the value of the bound (12) for the maximum likelihood prediction rule
qml(x) = arg maxy p̂(y|x). A second triplet on the graphs corresponds to L̂(q∗), L(q∗), and the value of the bound (13) for
the prediction rule q∗(Y |X) that minimizes (13). Baseline corresponds to the performance level that can be achieved by
predicting the test labels using a marginal distribution of Y on the train set. All the calculations are done per parameter.
For better visibility of the points they have been connected with lines, but the lines have no meaning.

and feature ranking, as suggested in section 5. We
use (12) to bound the generalization error of the max-
imum likelihood classification rule. For zero-one loss
the maximum likelihood rule qml(X) returns for each
value of x the most frequent value of Y that appeared
with that x in the sample: qml(x) = arg maxy p̂(y|x).
We also use the iterations (14) to find a classification
rule q∗(Y |X) that minimizes (13).

The experiments were conducted on four datasets ob-
tained at the UCI Machine Learning Repository: Con-
traceptive Method Choice (CMC), Mushrooms, Let-
ters and Nursery. In all the experiments we use 5 ran-
dom partitions of the data into 80% train and 20% test
subsets. Table 1 provides a short summary of the main
parameters of the datasets. See (Asuncion & Newman,
2007) for a full description.

Figure 1 shows the training loss and the test loss of the
maximum likelihood classification rule qml(Y |X) for
the four datasets considered. We stress that the maxi-
mum likelihood rule is calculated per parameter; actu-
ally there are d maximum likelihood rules qml(Y |Xi),
one for each parameter i of a given problem. Along
with the test loss we draw the value of the bound
(12). Note that the bound is quite tight and follows
the shape of the test loss remarkably well in all the
cases. The gap between the bound and the test loss is
less than 0.1.

The same figure includes an additional triplet of lines
- training loss, test loss, and the bound (13) value -
corresponding to the q∗(Y |X) classification rule that
minimizes (13). The performance of q∗ is very close to
the performance of qml and the value of (13) is very
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Table 1. Description of the datasets: for every set we
give the number of features, d, a list of cardinalities of the
features, ni, the number of labels, ny, and a train set size,
N , which is 80% of a dataset size.

Data set d ni-s ny N

CMC 9 34, 4, 4, 15, 3 1,178
2, 2, 4, 4, 2

Mushrooms 22 6, 4, 10, 2, 9, 2, 2 6,499
2, 2, 12, 2, 5, 4,
4, 9, 9, 1, 4, 3,

5, 9, 6, 7, 2
Letters 16 16 for all ni-s 26 16,000
Nursery 8 3, 5, 4, 4, 5 10,368

3, 2, 3, 3

0

0.5

1
Top 1 feature subset.

 

 

 Corr(X;Y)
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Bound (12)
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Figure 2. Feature Ranking. Agreement of Corr(X; Y ),
Î(X; Y ), and the bound (12) with the test set on the top-1,
top-2, and top-3 feature subsets.

close to the value of (12) with a small advantage to
qml and (12) on average.

We conclude this section by comparing the bound
(12) applied to feature ranking with the stan-
dard empirical mutual information Î(X;Y ) =
∑

x,y p̂(x)p̂(y|x) ln p̂(y|x)
p̂(y) and the normalized correla-

tion coefficient Corr(X;Y ) = Cov(X,Y )√
V ar(X)V ar(Y )

indices.

We compare agreement between the top-1, top-2, and
top-3 parameter subsets suggested by the indices with
the corresponding test-based sets - Figure 2. For the
top-1 choice (the best single parameter) our bound
is clearly superior - it provides a significant level of
success in two cases where the other two indices com-
pletely fail. For the top-2 choice there is a slight ad-
vantage over the mutual information and a clear ad-
vantage over the normalized correlation. In top-3 the
bound performs similarly to the mutual information
and is still superior to the normalized correlation.

9. Discussion

This paper derives generalization bounds for multi-
classification based on grid clustering. The bounds
enable evaluation of clustering solutions based on gen-
eralization properties of a built-on classifier. We ac-
knowledge that the (

∏

i mi) ln ny term in the bounds
limits their applicability to relatively few dimensional
problems. Nevertheless, this domain contains enough
challenges such as feature ranking, where our bounds
are especially tight, collaborative filtering and many
more. An interesting direction for future work would
be to extend the applicability of the approach to higher
dimensions by utilizing dependencies between the pa-
rameters.

Acknowledgements: We thank Ohad Shamir for
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by Leibnitz Center for Research in Computer Science
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Abstract

We discuss how the runtime of SVM optimiza-
tion shoulddecrease as the size of the training
data increases. We present theoretical and em-
pirical results demonstrating how a simple sub-
gradient descent approach indeed displays such
behavior, at least for linear kernels.

1. Introduction

The traditional runtime analysis of training Support Vec-
tor Machines (SVMs), and indeed most runtime analysis of
training learning methods, shows how the training runtime
increasesas the training set size increases. This is because
the analysis views SVM training as an optimization prob-
lem, whose size increases as the training size increases, and
asks “what is the runtime of finding a very accurate solution
to the SVM training optimization problem?”. However,
this analysis ignores the underlying goal of SVM training,
which is to find a classifier with low generalization error.
When our goal is to obtain a good predictor, having more
training data at our disposal should not increase the run-
time required to get some desired generalization error: If
we can get a predictor with a generalization error of 5%
in an hour using a thousand examples, then given ten thou-
sand examples we can always ignore nine thousand of them
and do exactly what we did before, using the same runtime.
But, can we use the extra nine thousand examples to get a
predictor with a generalization error of 5% inlesstime?

In this paper we begin answering the above question. But
first we analyze the runtime of various SVM optimization
approaches in the data-laden regime, i.e. given unlimited
amounts of data. This serves as a basis to our investigation
and helps us compare different optimization approaches
when working with very large data sets. A similar type
of analysis for unregularized linear learning was recently
presented by Bottou and Bousquet (2008)—here we han-

Appearing inProceedings of the25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

dle the more practically relevant case of SVMs, although
we focus on linear kernels.

We then return to the finite-data scenario and ask our origi-
nal question: How does the runtime required in order to get
some desired generalization error change with the amount
of available data? In Section 5, we present both a theoreti-
cal analysis and a thorough empirical study demonstrating
that, at least for linear kernels, the runtime of the subgra-
dient descent optimizer PEGASOS (Shalev-Shwartz et al.,
2007) does indeed decrease as more data is made available.

2. Background

We briefly introduce the SVM setting and the notation used
in this paper, and survey the standard runtime analysis of
several optimization approaches. The goal of SVM train-
ing is to find a linear predictorw that predicts the label
y ∈ ±1 associated with a feature vectorx assign(〈w,x〉).
This is done by seeking a predictor with small empirical
(hinge) loss relative to a large classification “margin”. We
assume that instance-label pairs come from some source
distributionP (X, Y ), and that we are given access to la-
beled examples{(xi, yi)}m

i=1 sampled i.i.d. fromP . Train-
ing a SVM then amounts to minimizing, for some regular-
ization parameterλ, the regularized empirical hinge loss:

f̂λ(w) = ˆ̀(w) +
λ

2
‖w‖2 (1)

where ˆ̀(w) = 1
m

∑

i `(w; (xi, yi)) and `(w; (x, y)) =
max{0, 1−y 〈w,x〉} is the hinge loss. For simplicity, we do
not allow a bias term. We say that an optimization method
finds anε-accurate solutioñw if f̂λ(w̃) ≤ minw f̂λ(w)+ε.

Instead of being provided with the feature vectors di-
rectly, we are often only provided with their inner products
through a kernel function. Our focus here is on “linear ker-
nels”, i.e. we assume we are indeed provided with the fea-
ture vectors themselves. This scenario is natural in several
applications, including document analysis where the bag-
of-words vectors provide a sparse high dimensional repre-
sentation that does not necessarily benefit from the kernel
trick. We used to denote the dimensionality of the feature
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vectors. Or, if the feature vectors are sparse, we used to
denote the average number of non-zero elements in each
feature vector (e.g. when input vectors are bag-of-words,d

is the average number of words in a document).

The runtime of SVM training is usually analyzed as the
required runtime to obtain anε-accurate solution to the op-
timization problemminw f̂λ(w).

Traditional optimization approaches converge linearly, or
even quadratically, to the optimal solution. That is, their
runtime has a logarithmic, or double logarithmic, depen-
dence on the optimization accuracyε. However, they scale
poorly with the size of the training set. For example, a
näıve implementation of interior point search on the dual
of the SVM problem would require a runtime ofΩ(m3)
per iteration, with the number of iterations also theoreti-
cally increasing withm. To avoid a cubic dependence on
m, many modern SVM solvers use “decomposition tech-
niques”: Only a subset of the dual variables is updated at
each iteration (Platt, 1998; Joachims, 1998). It is possi-
ble to establish linear convergence for specific decompo-
sition methods (e.g. Lin, 2002). However, a careful ex-
amination of this analysis reveals that the number of itera-
tions before the linearly convergent stage can grow asm2.
In fact, Bottou and Lin (2007) argue that any method that
solves the dual problem very accurately might in general
require runtimeΩ(dm2), and also provide empirical ev-
idence suggesting that modern dual-decomposition meth-
ods come close to a runtime ofΩ(dm2 log(1/ε)). There-
fore, for the purpose of comparison, we take the runtime of
dual-decomposition methods asO(dm2 log 1/ε).

With the growing importance of handling very large data
sets, optimization methods with a more moderate scaling
on the data set size were presented. The flip side is that
these approaches typically have much worse dependence
on the optimization accuracy. A recent example is SVM-
Perf (Joachims, 2006), an optimization method that uses a
cutting planes approach for training linear SVMs. Smola
et al. (2008) showed that SVM-Perf can find a solution
with accuracyε in timeO(md/(λε)).

Although SVM-Perf does have a much more favorable de-
pendence on the data set size, and runs much faster on
large data sets, its runtime still increases (linearly) with
m. More recently, Shalev-Shwartz et al. (2007) presented
PEGASOS, a simple stochastic subgradient optimizer for
training linear SVMs, whose runtime does not at all in-
crease with the sample size. PEGASOS is guaranteed to
find, with high probability, anε-accurate solution in time1

Õ(d/(λε)). Empirical comparisons show that PEGASOS
is considerably faster than both SVM-Perf and dual decom-
position methods on large data sets with sparse, linear, ker-

1TheÕ(·) notation hides logarithmic factors.

nels (Shalev-Shwartz et al., 2007; Bottou, Web Page).

These runtime guarantees of SVM-Perf and PEGASOS are
not comparable with those of traditional approaches: the
runtimes scale better withm, but worse withε, and also
depend onλ. We will return to this issue in Section 4.

3. Error Decomposition

The goal of supervised learning, in the context we consider
it, is to use the available training data in order to obtain a
predictor with low generalization error (expected error over
future predictions). However, since we cannot directly ob-
serve the generalization error of a predictor, the traininger-
ror is used as a surrogate. But in order for the training error
to be a good surrogate for the generalization error, we must
restrict the space of allowed predictors. This can be done
by restricting ourselves to a certain hypothesis class, or in
the SVM formulation studied here, minimizing a combina-
tion of the training error and some regularization term.

In studying the generalization error of the predictor mini-
mizing the training error on a limited hypothesis class, it is
standard to decompose this error into:

• The approximation error— the minimum general-
ization error achievable by a predictor in the hypothe-
sis class. The approximation error does not depend on
the sample size, and is determined by the hypothesis
class allowed.

• Theestimation error—the difference between the ap-
proximation error and the error achieved by the pre-
dictor in the hypothesis class minimizing the training
error. The estimation error of a predictor is a result of
the training error being only an estimate of the gen-
eralization error, and so the predictor minimizing the
training error being only an estimate of the predictor
minimizing the generalization error. The quality of
this estimation depends on the training set size and
the size, or complexity, of the hypothesis class.

A similar decomposition is also possible for the somewhat
more subtle case of regularized training error minimiza-
tion, as in SVMs. We are now interested in the generaliza-
tion error`(ŵ) = E(X,Y )∼P [`(w;X, Y )] of the predictor

ŵ = arg minw f̂λ(w) minimizing the training objective
(1). Note that for the time being we are only concerned
with the (hinge) loss, and not with the misclassification er-
ror, and even measure the generalization error in terms of
the hinge loss. We will return to this issue in Section 5.2.

• The approximation error is now the generaliza-
tion error `(w∗) achieved by the predictorw∗ =
arg minw fλ(w) that minimizes theregularizedgen-
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eralization error:

fλ(w) = `(w) +
λ

2
‖w‖2

.

As before, the approximation error is independent of
the training set or its size, and depends on the regular-
ization parameterλ. This parameter plays a role sim-
ilar to that of the complexity of the hypothesis class:
Decreasingλ can decrease the approximation error.

• The estimation error is now the difference between the
generalization error ofw∗ and the generalization error
`(ŵ) of the predictor minimizing the training objec-
tive f̂λ(w). Again, this error is a result of the training
error being only an estimate of the generalization er-
ror, and so the training objectivêfλ(w) being only an
estimate of the regularized lossfλ(w).

The error decompositions discussed so far are well under-
stood, as is the trade-off between the approximation and
estimation errors controlled by the complexity of the hy-
pothesis class. In practice, however, we do not minimize
the training objective exactly and so do not use the math-
ematically defined̂w. Rather, we use some optimization
algorithm that runs for some finite time and yields a pre-
dictor w̃ that only minimizes the training objectivêfλ(w)
to within some accuracyεacc. We should therefore con-
sider the decomposition of the generalization error`(w̃) of
this predictor. In addition to the two error terms discussed
above, a third error term now enters the picture:

• The optimization error is the difference in general-
ization error between the actual minimizer of the train-
ing objective and the output̃w of the optimization al-
gorithm. The optimizationerror is controlled by the
optimization accuracyεacc: The optimization accu-
racy is the difference in the training objectivêfλ(w)
while the optimization error is the resulting difference
in generalization error̀(w̃) − `(ŵ).

This more complete error decomposition, also depicted in
Figure 1, was recently discussed by Bottou and Bousquet
(2008). Since the end goal of optimizing the training er-
ror is to obtain a predictor̃w with low generalization error
`(w̃), it is useful to consider the entire error decomposition,
and the interplay of its different components.

Before investigating the balance between the data set size
and runtime required to obtain a desired generalization er-
ror, we first consider two extreme regimes: one in which
only a limited training set is available, but computational
resources are not a concern, and the other in which the
training data available is virtually unlimited, but compu-
tational resources are bounded.

-

εaprox εest εopt

0 `(w∗) `(ŵ) `(w̃)

generalization
error

Figure 1.Decomposition of the generalization error of the output
w̃ of the optimization algorithm:̀(w̃) = εaprx + εest + εopt.

Table 1.Summary of Notation
error (hinge loss) `(w; (x, y))=max{0, 1−y 〈w,x〉}

empirical error ˆ̀(w) = 1

m

∑

(x,y)∈S`(w; (x, y))
generalization error `(w) = E [`(w;X, Y )]

SVM objective f̂λ(w) = ˆ̀(w) + λ
2
‖w‖2

Expected SVM obj. fλ(w) = `(w) + λ
2
‖w‖2

Reference predictor w0

Population optimum w
∗ = arg minw fλ(w)

Empirical optimum ŵ = arg minw f̂λ(w)

εacc-optimal predictor w̃ s.t. f̂λ(w̃) ≤ f̂λ(ŵ) + εacc

3.1. The Data-Bounded Regime

The standard analysis of statistical learning theory can be
viewed as an analysis of an extreme regime in which train-
ing data is scarce, and computational resources are plenti-
ful. In this regime, the optimization error diminishes, as we
can spend the time required to optimize the training objec-
tive very accurately. We need only consider the approxi-
mation and estimation errors. Such an analysis provides an
understanding of the sample complexity as a function of the
target error: how many samples are necessary to guarantee
some desired error level.

For low-norm (large-margin) linear predictors, the esti-

mation error can be bounded byO
(

‖w∗‖
√

m

)

(Bartlett &

Mendelson, 2003), yielding a sample complexity ofm =

O
(

‖w∗‖2

ε2

)

to get a desired generalization error of`(w∗)+

ε (tighter bounds are possible under certain conditions, but
for simplicity and more general applicability, here we stick
with this simpler analysis).

3.2. The Data-Laden Regime

Another extreme regime is the regime in which we have vir-
tually unlimited data (we can obtain samples on-demand),
but computational resources are limited. This is captured
by the PAC framework (Valiant, 1984), in which we are
given unlimited, on-demand, access to samples, and con-
sider computationally tractable methods for obtaining a
predictor with low generalization error. Most work in the
PAC framework focuses on the distinction between poly-
nomial and super-polynomial computation. Here, we are
interested in understating the details of this polynomial
dependence—how does the runtime scale with the parame-
ters of interest? Discussing runtime as a function of data set
size is inappropriate here, since the data set size is unlim-
ited. Rather, we are interested in understanding the runtime
as a function of the target error: How much runtime is re-
quired to guarantee some desired error level.
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As the data-laden regime does capture many large data set
situations, in which data is virtually unlimited, such an
analysis can be helpful in comparing different optimization
approaches. We saw how traditional runtime guarantees
of different approaches are sometimes seemingly incom-
parable: One guarantee might scale poorly with the sample
size, while another scales poorly with the desired optimiza-
tion accuracy. The analysis we perform here allows us to
compare such guarantees and helps us understand which
methods are appropriate for large data sets.

Recently, Bottou and Bousquet (2008) carried out such a
“data-laden” analysis for unregularized learning of linear
separators in low dimensions. Here, we perform a similar
type of analysis for SVMs, i.e. regularized learning of a
linear separator in high dimensions.

4. Data-Laden Analysis of SVM Solvers

To gain insight into SVM learning in the data-laden regime
we perform the following “oracle” analysis: We assume
there is some good low-norm predictorw0, which achieves
a generalization error (expected hinge loss) of`(w0) and
has norm‖w0‖. We train a SVM by minimizing the train-
ing objectivef̂λ(w) to within optimization accuracyεacc.
Since we have access to an unrestricted amount of data,
we can choose what data set size to work with in order to
achieve the lowest possible runtime.

We will decompose the generalization error of the output
predictorw̃ as follows:

`(w̃) = `(w0)

+ (fλ(w̃) − fλ(w∗))

+ (fλ(w∗) − fλ(w0))

+
λ

2
‖w0‖2 − λ

2
‖w̃‖2 (2)

The degradation in the regularized generalization error,
fλ(w̃)− fλ(w∗), which appears in the second term, can
be bounded by the empirical degradation: For allw with
‖w‖2 ≤ 2/λ (a larger norm would yield a worse SVM ob-
jective thanw=0, and so can be disqualified), with proba-
bility at least1−δ over the training set (Sridharan, 2008):

fλ(w)−fλ(w∗) ≤ 2
[

f̂λ(w) − f̂λ(w∗)
]

+
+O

(
log 1

δ

λm

)

where [z]+ = max(z, 0). Recalling thatw̃ is an εacc-
accurate minimizer of̂fλ(w), we have:

fλ(w̃) − fλ(w∗) ≤ 2εacc+ O

(
log 1

δ

λm

)

(3)

Returning to the decomposition (2), the third term is non-
positive due to the optimality ofw∗, and regardingδ as a

constant we obtain that with arbitrary fixed probability:

`(w̃) ≤ `(w0) + 2εacc+
λ

2
‖w0‖2

+ O

(
1

λm

)

(4)

In order to obtain an upper bound of`(w0) + O(ε) on
the generalization error̀(w̃), each of the three remaining
terms on the right hand side of (4) must be bounded from
above byO(ε), yielding:

εacc ≤ O(ε) (5)

λ ≤ O
(

ε
‖w0‖

2

)

(6)

m ≥ Ω
(

1
λε

)
≥ Ω

(
‖w0‖

2

ε2

)

(7)

Using the above requirements on the optimization accuracy
εacc, the regularization parameterλ and the working sam-
ple sizem, we can revisit the runtime of the various SVM
optimization approaches.

As discussed in Section 2, dual decomposition approaches
require runtimeΩ(m2d), with a very weak dependence
on the optimization accuracy. Substituting in the sample
size required for obtaining the target generalization error

of `(w0) + ε, we get a runtime ofΩ
(

d‖w0‖
4

ε4

)

.

We can perform a similar analysis for SVM-Perf by substi-
tuting the requirements onεacc, λ andm into its guaranteed

runtime ofO
(

dm
λεacc

)

. We obtain a runtime ofO
(

d‖w0‖
4

ε4

)

,

matching that in the analysis of dual decomposition meth-
ods above. It should be noted that SVM-Perf’s runtime has
been reported to have only a logarithmic dependence on
1/εacc in practice (Smola et al., 2008). If that were the case,

the runtime guarantee would drop tõO
(

d‖w0‖
4

ε3

)

, perhaps

explaining the faster runtime of SVM-Perf on large data
sets in practice.

As for the stochastic gradient optimizer PEGASOS, sub-
stituting in the requirements onεacc and λ into its
Õ(d/(λεacc)) runtime guarantee yields a data-laden run-

time of Õ
(

d‖w0‖
2

ε2

)

. We see, then, that in the data-laden

regime, where we can choose a data set of arbitrary size in
order to obtain some target generalization error, the runtime
guarantee of PEGASOS dominates those of other methods,
including those with a much more favorable dependence on
the optimization accuracy.

The traditional and data-laden runtimes, ignoring logarith-
mic factors, are summarized in the following table:

Method εacc-accurate `(w̃) ≤ `(w0) + ε

Dual decompositoin dm2 d‖w0‖
4

ε4

SVM-Perf dm
λεacc

d‖w0‖
4

ε4

PEGASOS d
λεacc

d‖w0‖
2

ε2
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5. The Intermediate Regime

We have so far considered two extreme regimes: one in
which learning is bounded only by available data, but
not by computational resources, and another where it is
bounded only by computational resources, but unlimited
data is available. These two analyzes tell us how many
samples are needed in order to guarantee some target er-
ror rate (regardless of computational resources), and how
much computation is needed to guarantee this target error
rate (regardless of available data). However, if we have just
enough samples to allow a certain error guarantee, the run-
time needed in order to obtain such an error rate might be
much higher than the runtime given unlimited samples. In
terms of the error decomposition, the approximation and
estimation errors together would already account for the
target error rate, requiring the optimization error to be ex-
tremely small. Only when more and more samples are
available might the required runtime decrease down to that
obtained in the data-laden regime.

Accordingly, we study the runtime of a training method as a
decreasing function of the available training set size. As ar-
gued earlier, studied this way, the required runtime should
never increase as more data is available. We would like to
understand how the excess data can be used to decrease the
runtime.

In many optimization methods, including dual decompo-
sition methods and SVM-Perf discussed earlier, the com-
putational cost of each basic step increases, sometimes
sharply, with the size of the data set considered. In such
algorithms, increasing the working data set size in the hope
of being able to optimize to within a lower optimization ac-
curacy is a double-edged sword. Although we can reduce
the required optimization accuracy, and doing so reduces
the required runtime, we also increase the computational
cost of each basic step, which sharply increases the run-
time.

However, in the case of a stochastic gradient descent ap-
proach, the runtime to get some desired optimization ac-
curacy does not increase as the sample size increases. In
this case, increasing the sample size is a pure win: The
desired optimization accuracy decreases, with no counter
effect, yielding a net decrease in the runtime.

In the following sections, we present a detailed theoreti-
cal analysis based on performance guarantees, as well as
an empirical investigation, demonstrating a decrease in PE-
GASOS runtime as more data is available.

5.1. Theoretical Analysis

Returning to the “oracle” analysis of Section 4 and substi-
tuting into equation (4) our bound on the optimization ac-

R
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tim
e Dual Decomposition

R
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tim
e

SVM−Perf

PEGASOS

Training Set Size

R
un

tim
e

Figure 2.Descriptive behavior of the runtime needed to achieve
some fixed error guarantee based on upper bounds for different
optimization approaches (solid curves). The dotted lines are the
sample-size requirement in the data-bounded regime (vertical)
and the runtime requirement in the data-laden regime (horizon-
tal). In the top two panels (dual decomposition and SVM-Perf),
the minimum runtime is achieved for some finite training set size,
indicated by a dash-dotted line.

curacy of PEGASOS after running for timeT , we obtain:

`(w̃) ≤ `(w0) + Õ(
d

λT
) +

λ

2
‖w0‖2

+ O(
‖w0‖√

m
) (8)

The above bound is minimized whenλ = Θ̃(
√

d
‖w0‖

2T
),

yielding `(w̃) ≤ `(w0) + ε(T,m) with

ε(T,m) = Õ

(

‖w0‖
√

d
T

)

+ O
(

‖w0‖√
m

)

. (9)

Inverting the above expression, we get the following bound
on the runtime required to attain generalization error
`(w̃) ≤ `(w0) + ε using a training set of sizem:

T (m; ε) = Õ






d
(

ε
‖w0‖

− O( 1√
m

)
)2




 . (10)

This runtime analysis, which monotonically decreases with
the available data set size, is depicted in the bottom panel
of Figure 2. The data-bounded (statistical learning the-
ory) analysis describes the vertical asymptote ofT (·; ε)—at
what sample size is it at all possible to achieve the desired
error. The analysis of the data-laden regime of Section 4
described the minimal runtime using any amount of data,
and thus specifies the horizontal asymptoteinf T (m; ε) =
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limm→∞ T (m; ε). The more detailed analysis carried out
here bridges between these two extreme regimes.

Before moving on to empirically observing this behavior,
let us contrast this behavior with that displayed by learn-
ing methods whose runtime required for obtaining a fixed
optimization accuracy does increase with data set size. We
can repeat the analysis above, replacing the first term on the
right hand side of (8) with the guarantee on the optimiza-
tion accuracy at runtime ofT , for different algorithms.

For SVM-Perf, we haveεacc ≤ O (dm/(λT )). The opti-

mal choice ofλ is thenλ = Θ
(√

dm
T‖w0‖

2

)

and the run-

time needed to guarantee generalization error`(w0) + ε

when running SVM-Perf onm samples isT (m; ε) =

O

(

dm

/(
ε

‖w0‖
− O( 1√

m
)
)2

)

. The behavior of this

guarantee is depicted in the middle panel of Figure 2. As
the sample size increases beyond the statistical limitm0 =
Θ(‖w0‖2

/ε2), the runtime indeed decreases sharply, un-
til it reaches a minimum, corresponding to the data laden
bound, precisely at4m0, i.e. when the sample size is four
times larger than the minimum required to be able to reach
the desired target generalization error. Beyond this point,
the other edge of the sword comes into play, and the run-
time (according to the performance guarantees) increases
as more samples are included.

The behavior of a dual decomposition method with runtime
Θ(m2d log 1

εacc
) is given byT (m; ε) = m2d log(1/(ε −

Θ‖w0‖√
m

)) and depicted in the top panel of Figure 2. Here,
the optimal sample size is extremely close to the statistical
limit, and increasing the sample size beyond the minimum
increases the runtime quadratically.

5.2. Empirical Analysis

The above analysis is based on upper bounds, and is only
descriptive, in that it ignores various constants and even
certain logarithmic factors. We now show that this type
of behavior can be observed empirically for the stochastic
subgradient optimizer PEGASOS.

We trained PEGASOS2 on training sets of increasing size
taken from two large data sets, the Reuters CCAT and the
CoverType datasets3. We measured the average hinge loss

2We used a variant of the method described by Shalev-Shwartz
et al. (2007), with a single example used in each update: Follow-
ing Bottou (Web Page), instead of sampling an example indepen-
dently at each iteration, a random permutation over the training set
is used. When the permutation is exhausted, a new, independent,
random permutation is drawn. Although this variation does not
match the theoretical analysis, it performs slightly better in prac-
tice. Additionally, the PEGASOS projection step is skipped, as it
can be shown that even without it,‖w‖2 ≤ 4/λ is maintained.

3The binary text classification task CCAT from the Reuters

of the learned predictor on a (fixed) held-out test set. For
each training set size, we found the median number of it-
erations (over multiple runs with multiple training sets) for
achieving some target average hinge loss, which was very
slightly above the best “test” hinge loss that could be re-
liably obtained by training on the entire available train-
ing set. For each training set size we used the optimal
λ for achieving the desired target hinge loss4. The (me-
dian) required number of iterations is displayed in Figure
3. For easier interpretability and reproducibility, we report
the number of iterations. Since each PEGASOS iteration
takes constant time, the actual runtime is proportional to
the number of iterations.

So far we have measured the generalization error only in
terms of the average hinge loss`(w̃). However, our true
goal is usually to attain low misclassification error,P (Y 6=
sign 〈w̃,X〉). The dashed lines in Figure 3 indicate the
(median) number of iterations required to achieve a target
misclassification error, which again is very slightly above
the best that can be hoped for with the entire data set.

These empirical results demonstrate that the runtime of
SVM training using PEGASOS indeeddecreasesas the
size of the training set increases. It is important to note
that PEGASOS is the fastest published method for these
datasets (Shalev-Shwartz et al., 2007; Bottou, Web Page),
and so we are indeed investigating the best possible run-
times. To gain an appreciation of this, as well as to ob-
serve the runtime dependence on the training set size for
other methods, we repeated a limited version of the experi-
ments using SVM-Perf and the dual decomposition method
SVM-Light (Joachims, 1998). Figure 4 and its caption re-
port the runtimes required by SVM-Perf and SVM-Light to
achieve the same fixed misclassification error using vary-
ing data set sizes. We can indeed verify that PEGASOS’s

RCV1 collection and Class 1 in the CoverType dataset of
Blackard, Jock & Dean. CCAT consists of 804,414 examples
with 47,236 features of which 0.16% are non-zero. CoverType
has 581,012 examples with 54 features of which 22% are non-
zero. We used 23,149 CCAT examples and 58,101 CoverType
examples as test sets and sampled training sets from the remain-
der.

4Selectingλ based on results on the test set seems like cheat-
ing, and is indeed slightly cheating. However, the sameλ was
chosen for multiple random training sets of the same size, and
represents the optimalλ for the learning problem, not for a spe-
cific training set (i.e. we are not gaining here from random fluctu-
ations in learning). The setup in which the optimalλ is “known”
is common in evaluation of SVM runtime. Choosingλ by proper
validation involves many implementation choices that affect run-
time, such as the size of the holdout and/or number of rounds of
cross-validation, the range ofλs considered, and the search strat-
egy overλs. We therefore preferred a “knownλ” setup, where we
could obtain results that are cleaner, more interpretable, and less
affected by implementation details. The behavior displayed by
our results is still indicative of a realistic situation whereλ must
be selected.
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Figure 3.Number of PEGASOS iterations required to achieve the
desired hinge loss (solid lines) or misclassification error (dashed
and dotted lines) on the test set. Top: CCAT. The minimum
achievable hinge loss and misclassification error are0.132 and
5.05%. Bottom: CoverType. The minimum achievable hinge loss
and misclassification error are0.536 and 22.3%.

runtime is significantly lower than the optimal SVM-Perf
and SVM-Light runtimes on the CCAT dataset. On the
CoverType data set, PEGASOS and SVM-Perf have sim-
ilar optimal runtimes (both optimal runtimes were under a
second, and depending on the machine used, each method
was up to 50% faster or slower than the other), while SVM-
Light’s runtime is significantly higher (about 7 seconds).
We also clearly see the increase in runtime for large train-
ing set sizes for both SVM-Light and SVM-Perf. On the
CoverType dataset, we were able to experimentally observe
the initial decrease in SVM-Perf runtime, when we are just
past the statistical limit, and up to some optimal training
set size. On CCAT, and on both data sets for SVM-Light,
the optimal data set size is the minimal size statistically re-
quired and any increase in data set size increases runtime
(since the theoretical analysis is just an upper bound, it is
possible that there is no initial decrease, or that it is very
narrow and hard to detect experimentally).

In order to gain a better understanding of the reduction
in PEGASOS’s runtime, we show in Figure 5 the average
(over multiple training sets) generalization error achieved
by PEGASOS over time, for various data set sizes. It
should not be surprising that the generalization error de-
creases with the number of iterations, nor that it is lower
for larger data sets. The important observation is that for
smaller data sets the error decreases more slowly, even be-
fore the statistical limit for that data set is reached, as op-
posed to the hypothetical behavior depicted in the insert of
Figure 5. This can also be seen in the dotted plots of Figure
3, which are essentially contour lines of the generalization
error as a function of runtime and training set size—the
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Figure 4.Runtime required to achieve average misclassification
error of 5.25% on CCAT (top) and 23% on CoverType (bottom)
on a 2.4 GHz Intel Core2, using optimalλ settings. SVM-Light
runtimes for CCAT increased from 1371 seconds using 330k ex-
amples to 4.4 hours using 700k examples. SVM-Light runtimes
for CoverType increased to 552 seconds using 120k examples.

error decreases wheneitherruntime or training set size in-
crease. And so, fixing the error, we can trade off between
the runtime and data set size, decreasing one of them when
the other is increased.

The hypothetical situation depicted in the insert occurs
when runtime and dataset size each limit the attainable er-
ror independently. This corresponds to “L”-shaped con-
tours: both a minimum runtime and a minimum dataset
size are required to attain each error level, and once both
requirements are met, the error is attainable. In such a
situation, the runtime doesnot decrease as data set size
increases, but rather, as in the “L”-shaped graph, remains
constant once the statistical limit is passed. This happens,
e.g., if the optimization can be carried out with a single pass
over the data (or at least, if one pass is enough for getting
very close tò (ŵ)). Although behavior such as this has
been reported usingsecond-orderstochastic gradient de-
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Figure 5.Average misclassification error achieved by PEGASOS
on the CCAT test set as a function of runtime (#iterations), for
various training set sizes. The insert is a cartoon depicting a hy-
pothetical situation discussed in the text.
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scent forunregularizedlinear learning (Bottou & LeCun,
2004), this is not the case here. Unfortunately we are not
aware of an efficient one-pass optimizer for SVMs.

6. Discussion

We suggest here a new way of studying and understanding
the runtime of training: Instead of viewing additional train-
ing data as a computational burden, we view it as an asset
that can be used to our benefit. We already have a fairly
good understanding, backed by substantial theory, on how
additional training data can be used to lower the general-
ization error of a learned predictor. Here, we consider the
situation in which we are satisfied with the error, and study
how additional data can be used to decrease training run-
time. To do so, we study runtime as an explicit function of
the acceptable predictive performance.

Specifically, we show that a state-of-the-art stochastic gra-
dient descent optimizer, PEGASOS, indeed requires train-
ing runtime that monotonically decreases as a function of
the sample size. We show this both theoretically, by analyz-
ing the behavior of upper bounds on the runtime, and em-
pirically on two standard datasets where PEGASOS is the
fastest known SVM optimizer. To the best of our knowl-
edge, this is the first demonstration of a SVM optimizer
that displays this natural behavior.

The reason PEGASOS’s runtime decreases with increased
data is that its runtime to get a fixed optimization accuracy
does not depend on the training set size. This enables us
to leverage a decreased estimation error, without paying a
computational penalty for working with more data.

The theoretical analysis presented in Section 5.1, and we
believe also the empirical reduction in PEGASOS’s run-
time, indeed relies on this decrease in estimation error. This
decrease is significant close to the statistical limit on the
sample size, as is evident in the results of Figure 3—a
roughly 10–20% increase in sample size reduces the run-
time by about a factor of five. However, the decrease di-
minishes for larger sample sizes. This can also be seen
from the theoretical analysis—having a sample size which
is greater than the statistical limit by a constant factor en-
ables us to achieve a runtime which is greater than the the-
oretical (data-laden) limit by a constant factor (in fact, as
the careful reader probably noticed, since our data-laden
theoretical analysis ignores constant factors onε and m,
it seems that the training set size needed to be within the
data-laden regime, as specified in equation (7), is the same
as the minimum data set size required statistically). Such
“constant factor” effects should not be discounted—having
four times as much data (as is roughly the factor for Cover-
Type) is often quite desirable, as is reducing the runtime by
a factor of ten (as this four-fold increase achieves).

We are looking forward to seeing methods that more ex-
plicitly leverage large data sets in order to reduce runtime,
achieving stronger decreases in practice, and being able to
better leverage very large data sets. Although it seems that
not much better can be done theoretically given only the
simple oracle assumption of Section 4, a better theoretical
analysis of such methods might be possible using richer as-
sumptions. We would also like to see practical methods
for non-linear (kernelized) SVMs that display similar be-
havior. Beyond SVMs, we believe that many other prob-
lems in machine learning, usually studied computationally
as optimization problems, can and should be studied using
the type of analysis presented here.
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Abstract

In this paper we develop a spectral frame-
work for estimating mixture distributions,
specifically Gaussian mixture models. In
physics, spectroscopy is often used for the
identification of substances through their
spectrum. Treating a kernel function K(x, y)
as “light” and the sampled data as “sub-
stance”, the spectrum of their interaction
(eigenvalues and eigenvectors of the kernel
matrix K) unveils certain aspects of the un-
derlying parametric distribution p, such as
the parameters of a Gaussian mixture. Our
approach extends the intuitions and analyses
underlying the existing spectral techniques,
such as spectral clustering and Kernel Prin-
cipal Components Analysis (KPCA).

We construct algorithms to estimate param-
eters of Gaussian mixture models, includ-
ing the number of mixture components, their
means and covariance matrices, which are im-
portant in many practical applications. We
provide a theoretical framework and show en-
couraging experimental results.

1. Introduction

Gaussian mixture models are a powerful tool for vari-
ous tasks of data analysis, modeling and exploration.
The basic problem is to estimate the parameters of a
Gaussian mixture distribution p(x) =

∑G
g=1 πgpg(x),

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

from sampled data x1, . . . , xn ∈ R
d, where the mixture

component pg = N(µg,Σg) has the mean µg and the
covariance matrix Σg, g = 1, . . . , G. Gaussian mix-
ture models are used in a broad range of scientific
and engineering applications, including computer vi-
sion, speech recognition, and many other areas.

However, effectiveness of modeling hinges on choosing
the right parameters for the mixture distribution. The
problem of parameter selection for mixture models has
a long history, going back to the work of (Pearson,
1894, [9]), who introduced the Method of Moments
and applied it to the study of a population of Naples
crabs, deducing the existence of two subspecies within
the population.

The most commonly used method for parameter es-
timation is Maximum Likelihood Estimation (MLE),
which suggests choosing the parameters in a way that
maximizes the likelihood of the observed data, given a
model. In modern practice this is most commonly done
through the iterative optimization technique known
as Expectation Maximization (EM) algorithm ([3]),
which is typically initialized using k-means clustering.
Recently significant progress on understanding theo-
retical issues surrounding learning mixture distribu-
tions and EM has been made in theoretical computer
science, e.g., [2, 4].

Another set of methods for inferring mixture distri-
bution is based on the Bayesian inference, which is
done using a prior distribution on the parameters of
the model. In recent literature ([7]) the Dirichlet pro-
cess mixture models were used to produce posterior
distribution for parameters of a mixture model. The
inference procedure involves applying Markov Chain
Monte-Carlo to draw samples from the posterior dis-
tribution.
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In this paper we propose a new method for estimat-
ing parameters of a mixture distribution, which is
closely related to non-parametric spectral methods,
such as spectral clustering (e.g., [8]) and Kernel Prin-
cipal Components Analysis [11]. Those methods, as
well as certain methods in manifold learning (e.g., [1]),
construct a kernel matrix or a graph Laplacian ma-
trix associated to a data set. The eigenvectors and
eigenvalues of that matrix can then be used to study
the structure of the data set. For example, in spec-
tral clustering the presence of a small non-zero eigen-
value indicates the presence of clusters, while the cor-
responding eigenvector shows how the data set should
be split. In particular, we note the work [12] where
the authors analyze dependence of spectra on the input
density distribution in the context of classification and
argue that lower eigenfunctions can be truncated with-
out sacrificing classification accuracy. We will develop
the intuitions and analyses underlying these methods
and take them a step further by offering a framework,
which can be applied to analyzing parametric families,
in particular a mixture of Gaussian distributions.

We would like to study mixture distributions by build-
ing explicit connections between their parameters and
spectral properties of the corresponding kernel ma-
trices. More specifically, we construct a family of
probability-dependent operators and build estimators
by matching eigenvalues and eigenfunctions of the op-
erator associated to a probability distribution to those
of the matrix associated to a data sample. Thus given
a mixture distribution p(x) =

∑G
g=1 πgpg(x), we use a

Gaussian kernel K(x, y) = e−
‖x−y‖

2

2ω2 to construct the
integral operator

Gω
p f(y) =

∫

e−
‖x−y‖

2

2ω2 f(x) p(x)dx

which will be the principal object of this paper. Our
framework will rely on three key observations about
the spectral properties of this operator and its connec-
tion to the sampled data.

Observation 1. (Single component) For the Gaus-
sian distribution p = N(µ,Σ), we can analytically ex-
press eigenfunctions and eigenvalues of Gω

p in terms of
the mean µ and the covariance Σ. This will allows
us to reverse this dependence and explicitly express µ

and Σ in terms of the spectral properties of Gω
p .

Observation 2. (Mixture of components)

Let p be a mixture distribution p(x) =
∑G

g=1 πgpg(x).
Note that by linearity

Gω
p f(y) =

G∑

g=1

πg

∫

e−
‖x−y‖

2

2ω2 f(x) pg(x)dx

=

G∑

g=1

πgGω
pgf(y)

It can be seen (Theorem 1) that given enough separa-
tion between the mixture components, top eigenfunc-
tions of the individual components Gω

pg are approxi-
mated by top eigenfunctions of Gω

p . That will allow us
to connect eigenfunctions/eigenvalues of the mixture
to eigenfunctions/eigenvalues of the individual com-
ponents. A specific example of this is given in Fig. 2,
which will be discussed in detail in Section 4.

Observation 3. (Estimation from data) The
eigenfunctions and eigenvalues of Gω

p can be approx-
imated given data sampled from p(x) by eigenvectors
and eigenvalues of empirical kernel matrices.

To highlight the effectiveness of our methodology
consider the distribution in Fig. 1, where the den-
sity given by a mixture of two normal distributions
p = 0.9N(−3, 12)+0.1N(0, 0.32) and a histogram ob-
tained by sampling 1000 points are shown. From the
Table 1, we see that the spectroscopic estimator has
no difficulty providing reasonably accurate estimates
for the mixing coefficients π1, π2, means µ1, µ2 and
variances σ1, σ2 for each component, despite the fact
that the mixture is unbalanced. We also see that these
estimates can be further improved by using the spec-
troscopic estimate to initialize EM.

We note that, while EM is a computationally efficient
and algorithmically attractive method, it is a local op-
timization procedure and the quality of the achieved
maximum and accuracy of the resulting estimate are
sensitive to initialization (see, e.g., [10]). If the ini-
tial value happens to be close to the global maximum,
fast convergence can be guaranteed. However, finding
such “lucky” regions of the parameter space may be
nontrivial. To emphasize that point, consider the bot-
tom two rows of Table 1, where the results of k-means
clustering (k = 2) and EM initialized by k-means are
shown. We see that k-means consistently provides a
poor starting point as the energy minimizing configu-
ration splits the large component, ignoring the small
one. EM, initialized with k-means, stays at a local
maximum and cannot provide an accurate estimate
for the mixture. On the other hand, EM initialized
with our method, converges to the correct solution.

We should note that our method requires sufficient
separation between the components to provide accu-
rate results. However there does not exist a computa-
tionally feasible method for estimating parameters of
a mixture distribution in several dimensions without a
separation assumption.

The rest of the paper is structured as follows: in Sec-
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Figure 1. Histogram of 1000 data points sampled from 0.9N(−3, 12) + 0.1N(0, 0.32) and the distribution (red line).

True Parameters π1 = 0.9 π2 = 0.1 µ1 = −3 µ2 = 0 σ1 = 1 σ2 = 0.3

Spectroscopic Estimator 0.86 (0.01) 0.14 (0.01) -2.98 (0.23) -0.02 (0.08) 1.12 (0.54) 0.34 (0.10)
EM [SE initialization] 0.90 (0.01) 0.10 (0.01) -3.01 (0.04) 0.00 (0.03) 1.00 (0.03) 0.30 (0.02)

k-means [random samples] 0.68 (0.03) 0.32 (0.03) -3.42 (0.06) -1.17 (0.16) 0.74 (0.03) 0.90 (0.03)
EM [k-means initialization] 0.78 (0.07) 0.22 (0.07) -3.17 (0.09) -0.93 (0.56) 0.92 (0.05) 0.95 (0.39)

Table 1. Mixture Gaussian parameters and corresponding estimators from Spectroscopic Estimation, and EM (initialized
by SE), k-means (random initialization) and EM (initialized by k-means). The mean and the (standard deviation) of each
estimator over 50 runs are shown.

tion 2, we describe our approach in the simplest setting
of a one-dimensional component in R. In Section 3,
we analyze a single component in R

d, in Section 4,
we deal with a general case of a mixture distribution
and state a basic theoretical result for the mixture. In
section 5, we show some experimental results on a sim-
ulated mixture distribution with three components in
R

5 and show some experimental results on the USPS
handwritten digit dataset. We conclude in Section 6.

2. Setting Up the Framework: Single

Component in R

We start the discussion by demonstrating the basis
of our approach on the problem of estimating pa-
rameters of a single univariate Gaussian distribution
p(x) = N(µ, σ2). We first establish a connection be-
tween eigenfunctions and eigenvalues of the convolu-

tion operator Gω
p f(y) =

∫

R
e−

(x−y)
2

2ω2 f(x) p(x)dx and
the parameters µ and σ2. We show these parameters
can be estimated from sampled data. We will need the
following

Proposition 1 (Refinement of a result in [13]) Let
β = 2σ2/ω2 and let Hi(x) be the i-th order Hermite
polynomial. Then eigenvalues and eigenfunctions of
Gω

p for i = 0, 1, · · · are given by

λi =

√
2

(1 + β +
√

1 + 2β)
1/2

(
β

1 + β +
√

1 + 2β

)i

(1)

φi(x) =
(1 + 2β)1/8

√
2ii!

exp

(

− (x − µ)2

2σ2

√
1 + 2β − 1

2

)

×Hi

((
1 + 2β

4

) 1

4 x − µ

σ

)

(2)

Since H0(x) = 1, and putting C = (1 + 2β)1/8

φ0(x) = C exp

(

− (x − µ)2

2σ2

√

1 + 4σ2/ω2 − 1

2

)

(3)

We observe that that the maximum value of |φ0(x)|
is taken at the mean of the distribution µ, hence
µ = argmaxx |φ0(x)|. We also observe that λ1

λ0

=

2σ2

ω2

(

1 + 2σ2

ω2 +
√

1 + 4σ2

ω2

)−1

. Taking r = λ1/λ0, we

derive

σ2 =
rω2

(1 − r)2
. (4)

Thus we have established an explicit connection be-
tween spectral properties of Gω

p and parameters of
p(x). We now present Algorithm 1 for estimating
µ and σ2 from a sample x1, . . . , xn from p(x).

• Step 1. Construct kernel matrix Kn, (Kn)ij =

1
ne−

(xi−xj)
2

2ω2 . Kn serves as the empirical version
of the operator Gω

p . Compute the top eigen-
vector v0 of Kn and the top two eigenvalues
λ0(Kn), λ1(Kn).

938



Data Spectroscopy: Learning Mixture Models using Eigenspaces of Convolution Operators

Actual value µ = 0 σ = 1

SE (µ̂, σ̂) 0.000 (0.014) 1.005 (0.012)
Std Est (x̄, s) 0.002 (0.011) 1.001 (0.007)

Table 2. Average(standard deviation) of spectroscopic esti-
mator SE(µ̂, σ̂) and the standard estimator Std Est(x̄, s) of
100 simulation run. In each run, estimators are calculated
from 1000 i.i.d samples of N(0, 1).

• Step 2. Construct estimators µ̂ and σ̂2 for mean
and variance as follows:

µ̂ = xk, k = argmax
i

|(v0)i|

σ̂2 =
ω2r̂

(1 − r̂)2
,

where r̂ = λ0(Kn)
λ1(Kn) .

These estimators are constructed by substituting top
eigenvector of Kn for the top eigenfunction of Gω

p and
eigenvalues of Kn for the corresponding eigenvalues of
Gω

p .

It is well-known (e.g., [6]) that eigenvectors and eigen-
values of Kn approximate and converge to eigenfunc-
tions and eigenvalues of Gω

p at the rate 1√
n

as n → ∞,

which implies consistency of the estimators. The ac-
curacy of µ̂ and σ̂2 depends on how well the empirical
operator Kn approximates the underlying operator Gp.

The Table 2 reports the average and the standard devi-
ation of our spectroscopic estimators (µ̂, σ̂2) compared
the standard estimators (x̄, s2) for one hundred repeti-
tions of the simulation. We see that our spectroscopic
estimators are comparable to the standard estimators
for mean and variance of a single Gaussian.

3. Setting Up the Framework: Single

Component in R
d

In this section we extend our framework to estimat-
ing a single multivariate Gaussian p = N(µ,Σ) in R

d.

Let Σ =
∑d

i=1 σ2
i uiu

t
i be the spectral decomposition of

the covariance matrix Σ. As before we put Gω
p f(x) =

∫

Rd e−
‖x−y‖

2

2ω2 f(y) p(y)dy. Since the kernel e−
‖x−y‖

2

2ω2 is
invariant under rotations, it follows that the operator
Gω

p can be decomposed as: Gω
p = ⊕d

i=1 Gω
pi

, where pi is
an 1-dimensional Gaussian with variance σ2

i and mean
〈µ, ui〉 along the direction of ui.

It is easy to see that given two operators F , H, the
spectrum of their direct sum F ⊕ H consists of pair-
wise products λµ, where λ and µ are their respective

eigenvalues. The corresponding eigenfunction of the
product is e[λ,µ](x, y) = eλ(x) eµ(y).

Applying this result, we see that eigenvalues and eigen-
functions of of Gω

p can be written as products

λ[i1,...,id](Gω
p ) =

d∏

j=1

λ ij
(Gω

pj
)

φ [i1,...,id](Gω
p )(x) =

d∏

j=1

φ ij
(Gω

pj
)(〈x, uj〉)

Where [i1, . . . , id] is a multindex over all components.
It can be seen that φ [0,...,0] is (up to a scaling factor)
a Gaussian with the same mean µ as the original dis-
tribution p(x). Thus µ can be estimated as the point
with maximum value φ [0,...,0] in the same way as for
1-dimensional distributions.

Consider now φI , where I = [0, . . . , 0
︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0].

Since H2(x) = 2x, Eq. 1 implies that φI(x)
φ [0,...,0](x) is a

linear function in x with the gradient pointing in the
direction of ui. That allows us to estimate the prin-
cipal directions. The resulting Algorithm 2 for esti-
mating µ and Σ is presented below:

Step 1. Construct kernel matrix Kn, (Kn)st =

1
ne−

‖xs−xt‖
2

2ω2 . Kn serves as the empirical version of the
operator Gω

p . Compute eigenvalues λ(Kn) and eigen-
vectors v(Kn) of Kn. Denote the top eigenvector by
v0 and the corresponding eigenvalue by λ0.

Step 2. Identify each eigenvector vi, vi 6= v0, i =
1, . . . , d such that the values of vi

v0

are approximately
linear in x, that is

vi(xs)

v0(xs)
≈ aT xs + b, a, b ∈ R

d

The corresponding principal direction ui is estimated
by ûi = a

‖a‖ . Let the corresponding eigenvalue be λi.

Step 3. Construct estimators µ̂ and Σ̂ for mean and
variance as follows:

µ̂ = xk, k = argmax
i

|(v0)i|

Σ̂ =
d∑

i=1

σ̂2
i ûiû

t
i,

where σ̂2
i = ω2r̂i

(1−r̂i)2
and r̂i = λ0

λi
.
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4. Spectroscopic Estimation for

Mixtures of Gaussians

We now extend our framework to the case of a mix-
ture of several multivariate Gaussian distributions
with potentially different covariance matrices and mix-
ture coefficients. To illustrate our approach we sam-
ple 1000 points from two different Gaussian distribu-
tions N(2, 12) and N(−2, 12) and from their mixture
0.5N(2, 12)+0.5N(−2, 12). The histogram of the mix-
ture density is shown in the top left panel of Fig 2, and
histograms of each mixture component are shown in
the right top panels. Taking the bandwidth ω = 0.3,
we construct three kernel matrices K1, K2 and K for a
sample from each of the components and the mixture
distribution respectively. The middle and lower left
panels show the top two eigenvectors of K, while the
middle and lower right panels show the top eigenvector
of K1 and K2 respectively.

The key observation is to notice the similarity between
the left and right panels. That is, the top eigenvectors
of the mixture are nearly identical to the top eigenvec-
tors of each of the components. Thus knowing eigen-
vectors of the mixture allows us to approximate top
eigenvectors (and the corresponding eigenvalues) for
each of the components. Having access to these eigen-
vectors and using our Algorithms 1,2, allows us to es-
timate parameters of each of the mixture components.

This phenomenon is easily understood from the point
of view of operator theory. The leading eigenfunctions
of operators defined by each mixture component are
approximately the eigenfunctions of the operators de-
fined on the mixture distribution. To be explicit, let
us consider the Gaussian convolution operator Gω

p de-
fined by the mixture distribution p(x) = π1p1 + π2p2,
with Gaussian components p1 = N(µ1,Σ2) and p2 =
N(µ2,Σ2) and the Gaussian kernel K(x, y) with band-
width ω. The corresponding operators are Gω

p1 and

Gω
p2 and Gω

p = π1Gω
p1 + π2Gω

p2 respectively. Con-

sider an eigenfunction φ1(x) of Gω
p1 with eigenvalue λ1,

Gω
p1φ

1 = λ1φ1. We have

Gω
p φ1(y) = π1λ1φ1(y) + π2

∫

K(x, y)φ1(x)p2(x)dx.

It can be shown that eigenfunction φ1(x) of Gω
p1

is centered at µ1 and decays exponentially away
from µ1. Therefore, assuming the separation
‖µ1 − µ2‖ is large enough, the second summand
π2
∫

K(x, y)φ1(x)p2(x)dx ≈ 0 for all y uniformly, and
hence Gω

p φ1 ≈ π1λ1φ1. When the approximation holds
the top eigenfunctions of Gω

p are approximated by top
eigenfunctions of either Gω

p1 or Gω
p2 .

Theorem 1 Given a d-dimensional mixture of two
Gaussians p(x) =

∑2
i=1 πipi(x) where πi is mix-

ing weight and pi is the density corresponding
to N(µi, σ

2I). Define β = 2σ2/w2 and ξ =√
2σ/

√√
1 + 2β − 1, then the first eigenfunction (φ1

0

with an eigenvalue λ1
0) of Gw

p1
is approximately an

eigenfunction of Gw
p in the following sense: For any

ǫ > 0 we have that for all y

Gw
p φ1

0(y) = π1λ
1
0(φ

1
0(y) + T (y)) and |T (y)| ≤ ǫ

assuming that the separation satisfies

‖µ1 − µ2‖2

ξ2 + σ2
≥ 2 log

(
π2

π1

)

+ 2 log

(
1

ǫ

)

+
d

4
log(1 + 2β)

We do not provide a proof of Theorem 1 for lack of
space. A more general version of the theorem for sev-
eral Gaussians with different covariance matrices can
also be given along the same lines. Together with
some perturbation analysis ([5]) it is possible to pro-
vide bounds on the resulting eigenvalues and eigen-
functions of the operator.

We now observe that for the operator Gω
pg , the top

eigenfunction is the only eigenfunction with no sign
change. Therefore, such eigenfunction of Gω

p corre-
sponds to exactly one component of the mixture distri-
bution. This immediately suggest a strategy for iden-
tifying components of the mixture: we look for eigen-
functions of Gω

p that have no sign change. Once these
eigenfunctions of Gω

p are identified, each eigenfunction
of Gω

p can be assigned to a group determined an eigen-
function with no sign change. As a result, the eigen-
values and eigenfunctions in each group only depend
on one of the component pg and mixing weight πg.
By reversing the relationship between parameters and
eigenvalues/eigenfunctions, parameter estimations for
each mixing component can be constructed based only
on the eigenvalues/eigenvectors in the corresponding
group.

4.1. Algorithm for Estimation of a Mixture of

Gaussians

Following the discussion above, we now describe the
resulting algorithm for estimating a multidimensional
mixture of Gaussians p(x) =

∑G
g=1 πgN(µg,Σg), from

a sample x1, . . . , xn ∈ R
d, first giving the following

Definition 1 For vectors d, e ∈ R
n), we define

1. ǫ-support of d is the set of indices {i: |di| ≥ ǫ,
i = 1, · · · , n}.
2. d has no sign changes up to precision ǫ, if d is
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Figure 2. Eigenvectors of a Gaussian kernel matrix (ω = 0.3) of 1000 data sampled from a Mixture Gaussian distribution
P = 0.5N(2, 12) + 0.5N(−2, 12). Top left panel: Histogram of the data. Middle left panel: First eigenvector of Kn.
Bottom left panel: Second eigenvector of Kn. Top right panel: Histograms of data from each component. Middle right
panel: First eigenvector of K1

n. Bottom right panel: First eigenvector of K2

n.

either positive or negative on the ǫ-support of e.
{i : |ei| ≥ ǫ} ⊂ {i : |di| ≥ ǫ}.

Algorithm 3. Spectroscopic estimation of a Gaussian
mixture distribution.

Input: Data x1, . . . , xn ∈ R
d. Parameters: Kernel

bandwidth ω > 0, threshold ǫ > 0.1

Output: Number of components Ĝ. Estimated mean
µ̂g ∈ R

d, mixing weight π̂g, g = 1, . . . , Ĝ and covari-
ance matrix Σg for each component.

• Step 1. Constructing Kn, the empirical approx-
imation to Gω

p :

Put (Kn)ij = 1
n exp

(

−‖xi−xj‖
2

2ω2

)

, i, j =

(1, . . . , n). Compute the (leading) eigenvalues
λ1, λ2, . . . and eigenvectors v1, v2, . . . of Kn.

• Step 2. Estimating the number of components
G:

Identify all eigenvectors of Kn, which have no sign
changes up to precision ǫ. Estimate G by the
number (Ĝ) of such eigenvectors and denote those
eigenvectors and the corresponding eigenvalues by

v1
0 , v2

0 , . . . , vĜ
0 and λ1

0, λ
2
0, . . . , λ

Ĝ
0 respectively.

1In our implementation of the algorithm we choose ǫ =
maxj |(vi)j |/n for each eigenvector vi. In the description
of the algorithm we will use the same ǫ for simplicity.

• Step 3. Estimating the mean µg and the mixing
weight πg of each component:

For the g’th component, g = 1, . . . , Ĝ, estimate
the mean and the mixing weight as follows:

µ̂g = xk, where k = argmax
i

|(vg
0)i|

π̂g =
ng

∑Ĝ
h=1 nh

,

where nh = cardinality of ǫ-support of vh
0 .

To estimate the covariance matrix Σg of each compo-

nent pg: we first all eigenvectors such that v(xs)
vg
0
(xs)

is

approximately a linear function of xs on the ǫ-support
of v

g
0 . Then we can apply the estimation methods de-

scribed in Algorithm 2, Step 3 on the ǫ-support of
v

g
0 .

5. Simulations and Experiments

Simulation: multivariate Gaussian mixture dis-

tribution.

A simulation on five dimensional data is carried out to
test the proposed algorithm. The first two variables
X1 and X2 are a mixture three Gaussian components
p(X) =

∑3
g=1 πgN(µg,Σg) with mixing weights and

group means shown in Table 3 and covariance matri-
ces:

Σ1 =

(
0.5 −0.25

−0.25 0.5

)

, Σ2 =

(
0.5 0.25
0.25 0.5

)

,
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Figure 3. Left: Histogram of the first coordinate X1; Middle: Two dimensional histogram of the first two coordinates
(X1, X2). Right: Histogram of X2.

Σ3 =

(
0.5 −0.25

−0.25 0.5

)

The remaining three variables are Gaussian noise
N(0, 0.1I). In each simulation run, 3000 data points
are sampled. The histogram of X1, two-dimensional
histogram of X1 and X2, and histogram of X2 for one
simulation run are shown in Figure 3. We see that
it is impossible to identify the number of components
by investigating the one-dimensional histograms. The
Algorithm 3 with ω = 0.1 was used to estimate the
number of components G, mixing weights πg. The sim-
ulation is run 50 times and the algorithm accurately
estimated the number of groups in 46 of the 50 runs.
Two times the number of groups was estimated as 2
and two times as 4. The average and standard devia-
tion of the estimators of mixing weights and means for
the 46 runs are reported in Table 3. We see that the es-
timates for mixing weights are close to the true values
and the estimated group means are close to the esti-
mates from labeled data. Covariance estimates, which
we do not show due to space limitations, also show
reasonable accuracy.

USPS ZIP code data.
To apply our method to some real-world data we
choose a subset of the USPS handwritten digit dataset,
consisting of 16x16 grayscale images. In this experi-
ment, 658 “3”s, 652 “4”s, and 556 “5”s in the training
data are pooled together as our sample (size 1866).
The Spectroscopic estimation algorithm using a Gaus-
sian kernel with bandwidth 2 is applied to the sample .
Here we do not use the algorithm to estimate mean and
variance of each component, since we do not expect
the distribution of the 256 dimensional data to like
a Gaussian distribution. Instead, we investigate the
eigenvectors with no sign change over {x : |v(x)| > ǫ}.
We expect (1) the data corresponding to large absolute
values of each of such eigenvectors present one mode

Figure 4. Images ordered by the three eigenvectors v1, v16

and v49 identified by Algorithm 3. The images are the
digits corresponding to the 1st, 41st, 81st, · · ·, 361st largest
entries of |v1| (first row), |v16| (second row) and |v49| (third
row).

“3” (T) “4” (T) “5” (T)
“3” (P) 625 0 45
“4” (P) 17 640 32
“5” (P) 16 12 479

Table 4. Confusion matrix of clustering results for USPS
handwritten digits. Each cell shows the number of data
points belonging both in the True group (e.g. “3”) and
the Predicted group (e.g. “3”)

(cluster) and (2) those data points are in the same
digit group.

In the output of our algorithm, three eigenvectors v1,
v16 and v49 of Kn satisfy the condition of no sign
change over {x : |v(x)| > ǫ} with ǫ = max(v)/n. We
first rank the data by an decreasing order of |v| and
show the 1st, 41st, 81st, · · ·, 361st digits in Figure 4.
All digits with larger value of |v1| belong to the group
of “4”s, and other digits (“3” and “5”) correspond to
smaller values of |v1|. Similarly, larger values of |v16|
are in the group of “3”s and |v49| for “5”s.

By assigning digits to their component defined by one
of the eigenvectors (v1, v16, v49) we obtain the cluster-
ing results shown in the confusion Table 4. We see that
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Parameter value π1 = 0.4 π2 = 0.3 π3 = 0.3
Spectroscopy (STD) 0.40 (0.03) 0.30 (0.03) 0.30 (0.03)

Parameter value µ1
1 = 1 µ1

2 = 1 µ2
1 = 0 µ2

2 = −1 µ3
1 = −1 µ3

2 = 1
Spectroscopy (STD) 1.00 (0.12) 1.00 (0.19) 0.01 (0.20) -0.94 (0.21) -0.96 (0.22) 0.99 (0.22)

x̄(STD) of each group 1.00 (0.02) 1.00 (0.022) -0.00 (0.03) -1.00 (0.02) -1.00 (0.02) 0.99 (0.03)

Table 3. Estimation of mixing weight and mean of each component

the overall accuracy of clustering is 93.46%. This clus-
tering method can be thought of as an extension of the
framework provided in this paper. While this method
is closely related to spectral clustering, the procedures
for choosing eigenvectors are different.

6. Conclusion

In this paper we have presented Data Spectroscopy, a
new framework for inferring parameters of certain fam-
ilies of probability distributions from data. In particu-
lar we have analyzed the case of a mixture of Gaussian
distributions and shown how to detect and estimate its
components under the assumption of reasonable com-
ponent separation. The framework is based on the
spectral properties of data-dependent convolution op-
erators and extends intuitions from spectral clustering
and Kernel PCA. We have developed algorithms and
have shown promising experimental results on simu-
lated and real-world datasets.

We think that our approach provides new connections
between spectral methods and inference of distribu-
tions from data, which may lead to development of al-
gorithms for using labeled and unlabeled data in prob-
lems of machine learning.
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Abstract

Haussler’s convolution kernel provides a suc-
cessful framework for engineering new positive
semidefinite kernels, and has been applied to a
wide range of data types and applications. In the
framework, each data object represents a finite
set of finer grained components. Then, Haus-
sler’s convolution kernel takes a pair of data ob-
jects as input, and returns the sum of the re-
turn values of the predetermined primitive posi-
tive semidefinite kernel calculated for all the pos-
sible pairs of the components of the input data
objects. On the other hand, the mapping kernel
that we introduce in this paper is a natural gener-
alization of Haussler’s convolution kernel, in that
the input to the primitive kernel moves over a
predetermined subset rather than the entire cross
product. Although we have plural instances of
the mapping kernel in the literature, their pos-
itive semidefiniteness was investigated in case-
by-case manners, and worse yet, was sometimes
incorrectly concluded. In fact, there exists a sim-
ple and easily checkable necessary and sufficient
condition, which is generic in the sense that it
enables us to investigate the positive semidefi-
niteness of an arbitrary instance of the mapping
kernel. This is the first paper that presents and
proves the validity of the condition. In addi-
tion, we introduce two important instances of the
mapping kernel, which we refer to as the size-of-
index-structure-distribution kernel and the edit-
cost-distribution kernel. Both of them are nat-
urally derived from well known (dis)similarity
measurements in the literature (e.g. the maxi-
mum agreement tree, the edit distance), and are
reasonably expected to improve the performance
of the existing measures by evaluating their dis-
tributional features rather than their peak (max-
imum/minimum) features.

1. Introduction

Haussler’s convolution kernel (Haussler, 1999) has
been used as a general framework to tailor known

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

primitive kernels to the context of specific applications.
In this section, we first review a degenerated form of
Haussler’s convolution kernel, which proves in fact to
be equivalent to the general form of Haussler’s con-
volution kernel (see 2.2). Let each data point x in a
space χ be associated with a finite subset χ′x of a com-
mon space χ′. Furthermore, we assume that a kernel
k : χ′×χ′ → R is given. Then, Haussler’s convolution
kernel K : χ× χ → R is defined as follows (see 2.2).

K(x, y) =
∑

(x′,y′)∈χ′x×χ′y

k(x′, y′) (1)

Haussler proved that, if k(x′, y′) is positive semidefi-
nite, then so is K(x, y). Haussler’s convolution kernel
is known to have a wide range of application (Lodhi
et al., 2001; Collins & Duffy, 2001; Suzuki et al., 2004).

On the other hand, the mapping kernel is a natural
generalization of Haussler’s convolution kernel, and is
defined by Eq. (2) for {Mx,y j χ′x × χ′y | (x, y) ∈
χ2}. The problem that the present paper addresses is
to determine whether the mapping kernel is positive
semidefinite.

K(x, y) =
∑

(x′,y′)∈Mx,y

k(x′, y′) (2)

The main contribution of the present paper is to
present a necessary and sufficient condition for the
mapping kernel K(x, y) defined by Eq. (2) to be pos-
itive semidefinite for all possible choices of positive
semidefinite k(x′, y′). More specifically, we prove that
the condition is that the mapping system {Mx,y |
(x, y) ∈ χ2} is transitive, i.e., (x′, y′) ∈ Mx,y∧(y′, z′) ∈
My,z ⇒ (x′, z′) ∈ Mx,z. Haussler’s convolution kernel
is indeed the special case of the mapping kernel for
{Mx,y = χ′x × χ′y}, which is apparently transitive.

We see plural instances of the mapping kernel in the
literature, and some of them were mistreated in re-
spective manners.
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• Although the elastic tree kernel (Kashima & Koy-
anagi, 2002) was treated as an instance of Haus-
sler’s convolution kernel, it is, in fact, an instance
of the mapping kernel. Therefore, the positive
semidefiniteness of the kernel should not have
been determined based on Haussler’s theorem.

• The codon-improved kernel (Zien et al., 2000) was
claimed to be unconditionally positive semidefi-
nite, since it was viewed as an instance of the poly-
nomial kernel. The kernel, in fact, is an instance
of the mapping kernel under certain settings of
weights.

That is to say, the positive semidefiniteness of the
aforementioned kernels were concluded on wrong
grounds, and in fact, the conclusion regarding the
codon-improved kernel is wrong — in reality, it is not
necessarily positive semidefinite.

The kernels introduced in (Menchetti et al., 2005) and
(Kuboyama et al., 2006) are also instances of the map-
ping kernel. In contrast to the elastic and codon-
improved kernels, their positive semidefiniteness was
properly investigated, albeit in specific manners.

This is the first paper that recognizes the mapping
kernel as a generic class of kernels, and presents a nec-
essary and sufficient condition that a mapping kernel
becomes positive semidefinite. Furthermore, the con-
dition is simple, intuitive and easy to check, and there-
fore, would make engineering of new instances of the
mapping kernel easier, more efficient and more effec-
tive to a large extent.

As the second contribution of the present paper, we
take advantage of the mapping kernel, and present a
way to augment a couple of well-known frameworks to
engineer similarity functions for discretely structured
objects (e.g. strings, trees, general graphs).

It is known that the maximum sizes of shared substruc-
tures of the objects can be used as a good measure of
similarities of the objects. The maximum agreement
subtree is a good example. Also, the edit distance has
been applied to various types of objects. An edit dis-
tance between two data objects is generally defined as
the minimum cost of edit scripts that transform one
object into the other.

These two frameworks are common in that they only
focus on the maximum/minimum values of the similar-
ity measures (i.e. the sizes of shared substructures and
the costs of edit scripts), and therefore, only those sub-
structures with the maximum sizes or those edit scripts
with the minimum costs can contribute to the similar-
ity functions. It is, however, reasonably presumable
that distributional features of the measurements may

carry useful information with regard to similarities of
objects, and more accurate similarity functions can be
engineered by evaluating the distributional features.

Based on the aforementioned consideration, we intro-
duce two novel classes of kernels (similarity functions)
each evaluating the distributional features of the sizes
of shared substructures or the costs of edit scripts.
Also, we show a general way to view them as mapping
kernels. By virtue of our simple criteria for positive
semidefinite mapping kernels, we can easily determine
whether instances of the new kernel classes are positive
semidefinite, and, if they are, we can take advantage
of sophisticated classifiers such as support vector ma-
chines (SVM). In 3.1 and 3.2, we see that the examples
of distribution-based similarity functions derived from
maximum agreement subtrees and general tree edit
distances are positive semidefinite, while those derived
from maximum refinement trees (Hein et al., 1996) and
less-constrained tree edit distance (Lu et al., 2001) are
not.

2. The Mapping Kernel

In this section, as a preliminary, we quickly review
the positive semidefinite kernel (2.1) and Haussler’s
convolution kernel (2.2). Then, we describe our main
theorem with regard to the mapping kernel (2.3).

2.1. The Positive Semidefinite Kernel

A kernel K : χ×χ −→ R is said to be positive semidef-
inite, if, and only if, for arbitrary x1, . . . , xn ∈ χ, the
corresponding Gram matrix G = [K(xi, xj)]i,j=1,...,n

is a positive semidefinite matrix. Positive semidefi-
niteness of kernels is a critical condition for reproduc-
ing kernel Hilbert spaces to exist. In simpler cases
where a data point space χ is finite, this condition is
equivalent to the property that there exists a mapping
Φ : χ −→ RN such that K(x, y) = Φ(x)Φ(y)T.

In this paper, by a positive semidefinite matrix, we
mean a real symmetric matrix (i.e. AT = A) that sat-
isfies one of, hence, all of the mutually equivalent con-
ditions stated below, where dim A = n.

• (c1, . . . , cn)A(c1, . . . , cn)T ≥ 0 for ∀(c1, . . . , cn) ∈
Rn.

• A has only non-negative real eigenvalues.
• There exists an n-dimensional orthogonal matrix

P (i.e. PTP = En) such that PTAP is a diagonal
matrix with non-negative elements.

• A = BTB for some m× n real matrix B.
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2.2. Haussler’s Convolution Kernel

Hausler’s theorem (Haussler, 1999, Theorem 1) as-
serts the positive semidefiniteness of Haussler’s R-
convolution kernel, and Theorem 1 presents its special
case for D = 1.

Theorem 1. Let k : χ′×χ′ → R be a positive semidefi-
nite kernel. Given a relation R j χ′×χ, K : χ×χ → R
defined by Eq. (3) is also positive semidefinite.

K(x, y) =
∑

(x′,x)∈R

∑

(y′,y)∈R

k(x′, y′) (3)

It is interesting to note that Haussler’s theorem for
D > 1 is obtained as a corollary to Theorem 1.

Corollary 1. (Haussler, 1999) Let kd : χ′d × χ′d −→
R be positive semidefinite kernels for d = 1, . . . , D.
Given a relation R ⊂ χ′1×· · ·×χ′D×χ, the kernel K :
χ×χ −→ R defined below is also positive semidefinite.

K(x, y) =
∑

(x′1,...,x′
D

,x)∈R

∑

(y′1,...,y′
D

,y)∈R

D∏

d=1

kd(x′d, y
′
d)

2.3. Definition and Main Theorem

Letting χ′x denote {x′ ∈ χ′ | (x′, x) ∈ R}, Eq. (1) gives
an equivalent form of Eq. (3). On the other hand, the
mapping kernel is defined so that (x′, y′) moves over
a subset Mx,y of χ′x × χ′y rather than the entire cross
product χ′x × χ′y (Eq. (2)).

The present paper shows that the mapping kernel is
positive semidefinite for all possible choices of posi-
tive semidefinite underlying kernels k, if, and only if,
{Mx,y | x, y ∈ χ} is transitive (Definition 2).

Therefore, for an arbitrary non-transitive {Mx,y}, a
positive semidefinite underlying kernel k(x′, y′) exists
such that the resulting K(x, y) is not positive semidef-
inite (4.1.2). On the other hand, K(x, y) may be posi-
tive semidefinite even for a non-transitive {Mx,y} and
a positive semidefinite k(x′, y′) (Example 1).

Example 1. The (k,m)-mismatch kernel K(k,m)(x, y)
is positive semidefinite (Leslie et al., 2004). When
χ′x and χ′y denote the sets of k-mers in x and y,
K(k,m)(x, y) can be regarded as a mapping kernel for
the non-transitive {Mx,y} defined as follows.

Mx,y = {(x′, y′) | K(k,m)(x′, y′) 6= 0} j χ′x × χ′y

K(k,m)(x, y) =
∑

(x′,y′)∈Mx,y

K(k,m)(x′, y′)

The result is formalized as follows.

Definition 1. A mapping system M is a triplet
(χ, {χ′x | x ∈ χ}, {Mx,y j χ′x × χ′y | (x, y) ∈ χ2}) such
that |Mx,y| < ∞ and (y′, x′) ∈ My,x if (x′, y′) ∈ Mx,y.
Definition 2. A mapping system (χ, {χ′x}, {Mx,y})
is said to be transitive, if, and only if, (x′1, x

′
2) ∈

Mx1,x2 ∧ (x′2, x
′
3) ∈ Mx2,x3 ⇒ (x′1, x

′
3) ∈ Mx1,x3 holds

for arbitrary xi ∈ χ and x′i ∈ χ′xi
(i = 1, 2, 3).

Definition 3. An evaluating system E for a mapping
system (χ, {χ′x}, {Mx,y}) is a triplet (χ′, k, {γx | x ∈
χ}) with a positive semidefinite underlying kernel k :
χ′ × χ′ → R and projections γx : χ′x → χ′.
Definition 4. For a mapping system M =
(χ, {χ′x}, {Mx,y}) and an evaluating system E =
(χ′, k, {γx}) for M, the mapping kernel with respect
to M and E is defined by Eq. (4).

K(x, y) =
∑

(x′,y′)∈Mx,y

k(γx (x′) , γy (y′)) (4)

Now, our main theorem is described as follows, and its
proof is given in Section 4.
Theorem 2. For a mapping system M, the following
are equivalent to each other.

1. M is transitive.
2. For an arbitrary evaluating system E for M, the

mapping kernel with respect toM and E is positive
semidefinite.

It is possible to prove (1) ⇒ (2) of Theorem 2 as a
corollary to Theorem 1. Nevertheless, our direction
in the present paper is opposite — we like to view
Theorem 1 as a trivial corollary to Theorem 2. In fact,
we will prove Theorem 2 without assuming Theorem 1
in Section 4.

3. Similarity Functions Based on
Distributions

In this section, we introduce two new classes of the
mapping kernel. The kernels are expected to im-
prove the classification performance of known simi-
larity measurements by evaluating their distributional
features.

3.1. Size-of-index-structure-distribution
Kernels

When some structures are commonly derived from two
data objects, the structures may carry information
with regard to similarities between the data objects.
In this paper, we call such structures index structures.

The agreement subtree is a good example of the in-
dex structure, when data objects are represented as
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trees. An agreement subtree between plural input
trees is usually defined as a subtree homeomorphically
included in all the input trees (Berry & Nicolas, 2004).
In the present paper, we assume that the input trees
are a pair of trees. Even when we fix the input tree
pair, there may exist more than one agreement sub-
tree, and the maximum size of the agreement subtrees
can be naturally viewed as a measure of similarities be-
tween the input trees. The maximum agreement sub-
trees (MAST) problem is the problem to determine at
least one agreement subtree with the maximum size
among the possible agreement subtrees for the input
trees. The MAST problem has been extensively stud-
ied from the application point of view (e.g. evolution-
ary trees (Hein et al., 1996; Berry & Nicolas, 2004),
shape-axis trees (Pelillo, 2002)) as well as from the
algorithm efficiency point of view.

When using the size of the maximum agreement sub-
trees as a similarity measurement between trees, we
discard those agreement subtrees smaller in size than
the maximum ones, and therefore, they do not con-
tribute to the final evaluation at all. It is, however,
reasonable to think that distributional features of the
sizes of agreement subtrees may carry useful informa-
tion with regard to similarities of the trees.

Based on the aforesaid consideration, we introduce the
kernel of Eq. (5), which evaluates distributional fea-
tures of the sizes of agreement subtrees. In Eq. (5), we
let AST(x, y) denote the set of the agreement subtrees
between x and y, and f : N → R+ = {y ≥ 0 | y ∈ R}
be an increasing function.

K(x, y) =
∑

t∈AST(x,y)

f(size of(t)) (5)

If x and y are rooted trees of bounded degree, and
if f(n) = αn or f(n) = n, for example, there ex-
ist polynomial-time efficient algorithms to calculate
K(x, y).

Beside the advantages due to the distributional fea-
tures, the kernel could provide the advantage of using
sophisticated classifiers such as SVM (Cristianini &
Shawe-Taylor, 2000). In fact, our contribution asserts
that K(x, y) is positive semidefinite as follows. First,
K(x, y) can be viewed as a mapping kernel under the
following notation.

• χ′x is the set of the subtrees of x.
• Mx,y = {(x′, y′) ∈ χ′x × χ′y | x′ ∼= y′}, where

x′ ∼= y′ means that they are homeomorphic as
trees.

• k(x′, y′) =

{
f(size of(x′)) if size of(x′) = size of(y′),
0 otherwise.

It is easy to see that {Mx,y} is transitive and k(x′, y′)
is positive semidefinite. Hence,

K(x, y) =
∑

t∈AST(x,y)

f(size of(t)) =
∑

(x′,y′)∈Mx,y

k(x′, y′)

is positive semidefinite by Theorem 2.

Besides the maximum agreement subtree, the max-
imum refinement subtree (Hein et al., 1996; Berry
& Nicolas, 2004), maximum subtree isomorphism
(Pelillo, 2002; Aoki et al., 2003) and maximum agree-
ment supertree (Jansson et al., 2005) are also used as
index structures for trees. As for general graphs, the
maximal common clique included in an input pair of
graphs is also studied in association with MAST in
(Pelillo, 2002).

For each of those index structures, we can define ker-
nels in the same way as for MAST. We have only to
replace AST(x, y) in Eq. (5) with the set of the re-
spective index structures. Moreover, except for the
maximum refinement subtree, through the same dis-
cussion as for MAST, the kernels prove to be positive
semidefinite.

Interestingly, Theorem 2 also implies that the kernels
defined based on the minimum refinement subtree are
not necessarily positive semidefinite. The minimum
refinement subtree for x′ j x and y′ j y is defined
as the minimum tree t such that both x′ and y′ can
be derived from t through a sequence of edge contrac-
tions, and the maximum refinement subtree problem
(a.k.a. the maximum compatible tree problem) is the
problem to find a minimum refinement subtree with
the largest size. Different from the agreement subtree,
the relation of having a refinement is not an equiva-
lence relation — even if x′ and y′, and y′ and z′, have
refinement subtrees, x′ and z′ do not necessarily have a
refinement subtree. This implies that the correspond-
ing Mx,y is not necessarily transitive. Therefore, The-
orem 2 asserts that the corresponding K(x, y) is not
necessarily positive semidefinite.

3.2. Edit-cost-distribution Kernels

The Edit distance is also used as an effective measure
of similarities between discrete data structures (e.g.
(Wagner & Fischer, 1974) for strings, (Barnard et al.,
1995) for trees, (Bunke, 1997) for general graphs).

Let x be an object consisting of one or more compo-
nents. For example, a string consists of one or more
characters which are laid out on a line. For another
example, a graph consists of one or more vertices and
edges, and each edge connects a vertex to another. We
first give a general definition of edit operations, edit
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scripts, edit costs and edit distances for such objects.

An edit operation is an operation on a component of
x, and is one of (i) substituting a component b for a
component a of x (denoted by 〈a → b〉), (ii) deleting
a component a of x (denoted by 〈a → •〉), and (iii)
inserting a component a into x (denoted by 〈• → a〉).
An edit script is a sequence of zero or more edit opera-
tions which transforms an object into another. When
a cost γ〈a → b〉 ∈ R is given for each edit operation
〈a → b〉1, the cost γ(σ) of an edit script σ is the sum
of the costs of the edit operations that comprise σ. Fi-
nally, an edit distance d(x, y) between objects x and y
is defined by:

d(x, y) = min{γ(σ) | σ transforms x into y}.

Therefore, those edit scripts with larger costs than the
minimum cost do not contribute to the final edit dis-
tance. In contrast, by introducing kernels by Eq. (6)
with a decreasing function f : R+ → R+, we try to
take advantage of the information that those discarded
edit scripts potentially carry.

K(x, y) =
∑

σ transforms x into y

f(γ(σ)) (6)

It is important to note that there exists a natural in-
terpretation of Eq. (6). In a natural setting where
the cost γ〈a → b〉 is defined as the negative logarithm
of the probability that the substitution of b for a (a
or b could be •) would occur (e.g. (Li & Jiang, 2005;
Salzberg, 1997)), we let f(x) = e−x. For an edit script
σ = 〈x′1 → y′1〉 · · · 〈x′n → y′n〉 transforming x into y,
f(γ(σ)) is evaluated as follows.

f(γ(σ)) = e−γ(σ) = e−
∑n

i=1
γ〈x′i→y′i〉

= e−
∑n

i=1
− log Pr(x′i→y′i) =

n∏

i=1

Pr(x′i → y′i)

Hence, K(x, y) by Eq. (6) equals the total probability
that x would be transformed into y.

Usage of sophisticated classifiers such as SVM is an-
other potential advantage of the kernels of the form of
Eq. (6). In fact, as shown below, the kernels can be
viewed as mapping kernels, if we can pose the following
four assumptions.

1Usually, components are labeled with elements of an
alphabet, and costs of edit operations are defined on the
labels rather than on the components. However, for sim-
plicity, we assume that the cost function is defined over the
space of objects in the present paper. In addition, to make
the resulting edit distance be a distance metric, the costs
are often assumed to be a distance metric.

1. The cost function is symmetric (i.e. γ〈a → b〉 =
γ〈b → a〉).

2. We let f(x) = e−cx for some positive constant c.
3. In order to avoid calculating infinite sums, we take

only irreducible edit scripts into consideration in
calculating Eq. (6) — Assume that σ = 〈x′1 →
y′1〉 . . . 〈x′n → y′n〉 transforms x into y. σ is irre-
ducible, if, and only if, (1) x′i (resp. y′i) is either
a component of x (resp. y) or • and (2) exactly
one edit operation 〈x′i → y′i〉 is applied to each
component of x and y.

4. If two irreducible edit scripts differ from each
other only in the order of the included edit op-
erations, they are identified in calculating Eq. (6),
that is, they are evaluated only once.

For σ = 〈x′1 → y′1〉 . . . 〈x′n → y′n〉, we assume that
x′i and y′i are respectively components of x and y,
if, and only if, i ∈ {1, . . . ,m(σ)}, and call 〈x′1 →
y′1〉 · · · 〈x′m(σ) → y′m(σ)〉 the core of σ. Then, γ(σ) and
K(x, y) are evaluated as follows.

γ(σ) =
m(σ)∑

i=1

(γ〈x′i → y′i〉 − γ〈x′i → •〉 − γ〈• → y′i〉)

+
∑

x′∈x

γ〈x′ → •〉+
∑

y′∈y

γ〈• → y′〉

K(x, y) = (7)∏

ξ∈x

f(γ〈ξ → •〉) ·
∏
η∈y

f(γ〈• → η〉) ·

∑

σ




m(σ)∏

i=1

f(γ〈x′i → y′i〉)
f(γ〈x′i → •〉)f(γ〈• → y′i〉)







In Eq. (7), the first two factors of the right-hand side
are functions of x and y, and therefore, we denote them
by g(x) and g(y), respectively. On the other hand, the
last factor is a function of x′ = (x′1, . . . , x

′
m(σ)) and

y′ = (y′1, . . . , y
′
m(σ)), and is denoted by k(x′, y′). We

define Mx,y as follows.

Mx,y = {((x′1, . . . , x′m), (y′1, . . . , y
′
m)) |

∃σ[〈x′1 → y′1〉 · · · 〈x′m → y′m〉 is the core of σ]}
Then, the following holds

K(x, y) = g(x) · g(y) ·

 ∑

(x′,y′)∈Mx,y

k(x′, y′)




= g(x) · g(y) · K̄(x, y)

In particular, K̄(x, y) is a mapping kernel, and K(x, y)
is positive semidefinite, if, and only if, so is K̄(x, y),
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since g(x) cannot take the value 0. The kernel K̄(x, y),
however, is not necessarily positive semidefinite, even
if k(x′, y′) is positive semidefinite, since {Mx,y} is not
necessarily transitive. We will investigate this problem
taking the tree edit distance as an example.

For the tree edit distance, the edit operations act on
vertices of trees. For a pair (x′, y′) to be the core of
some irreducible tree edit script, it is necessary and
sufficient that ϕ defined by ϕ(x′i) = y′i preserves the
ancestor-descendent relation and the sibling (left-to-
right) relation (Tai, 1979). Therefore, Mx,y for the
general tree edit distance is defined as follows, where
x′i < x′j means x′j is an ancestor of x′i and x′i ≺ x′j
means x′j is located on the right side of x′i.

Mx,y = {((x′1, . . . , x′m), (y′1, . . . , y
′
m)) | (8)

[x′i < x′j ⇔ y′i < y′j ] ∧ [x′i ≺ x′j ⇔ y′i ≺ y′j ]}
It is straightforward to verify that {Mx,y} is transi-
tive. Therefore, Theorem 2 asserts that, if k(x′, y′) is
positive semidefinite, so is K̄(x, y) for this {Mx,y}.
On the other hand, two subclasses of the general tree
edit distance have been proposed. They are con-
strained (a.k.a. structure-preserving) tree edit distance
(Zhang, 1995) and less-constrained (a.k.a. alignable)
tree edit distance (Lu et al., 2001).

Those subclasses of the general tree edit distance de-
termine respective Mx,y, which are generally proper
subsets of those define by (8). Since {Mx,y} for the
constrained tree edit distance is easily verified to be
transitive, the resulting K̄(x, y) turns out positive
semidefinite by virtue of Theorem 2. In contrast to
the constrained edit distance, {Mx,y} for the less-
constrained tree edit distance is not transitive. There-
fore, Theorem 2 implies that K̄(x, y) is not necessarily
positive semidefinite.

4. Proof of Theorem 2

4.1. Key Lemma

Let Xij be m-dimensional square matrices parameter-
ized by (i, j) = {1, . . . , n}2, and let X denote the de-
rived mn-dimensional square matrix [Xij ]i,j=1,...,n —
the (m(i− 1) + k, m(j− 1) + l)-element of X, denoted
by Xij

kl , is defined to be the (k, l)-element of Xij .

Furthermore, for an m-dimensional square matrix A,
smryA(X) denotes the n-dimensional square matrix
[tr(ATXij)]i,j=1,...,n. Note that the (i, j)-element of
smryA(X) is given by Eq. (9).

tr(ATXij) =
m∑

k=1

m∑

l=1

AklX
ij
kl (9)

Proposition 1. For an m-dimensional square matrix
A, the following are equivalent to each other.

1. A is positive semidefinite.
2. smryA(X) is positive semidefinite for an arbitrary

mn-dimensional positive semidefinite matrix X.

Proof. First, we prove the assertion assuming that A
is diagonal, whose I-th diagonal element is αI .

The condition 2 implies 1, since we see αI ≥ 0 for any
I by letting X be the sparse matrix such that Xkl is
1, if k = l = I, and 0, otherwise.

On the other hand, the converse follows from Eq. (10),
since smryA(X) = ZTZ holds for the m2n× n matrix
Z such that Zmn(I−1)+m(k−1)+i,j =

√
αIY

kj
iI , where Y

is an mn-dimensional matrix such that X = Y TY .

trATXij =
m∑

I=1

αI

(
n∑

k=1

m∑

l=1

Y ki
lI Y kj

lI

)
(10)

=
m∑

I=1

n∑

k=1

m∑

l=1

(
√

αIY
ki
lI )(

√
αIY

kj
lI )

The general cases for non-diagonal A reduces to the
diagonal case, since, for P such that PTAP is di-
agonal, smryA(X) = smryP TAP (X̃) holds for X̃ =
[PTXijP ]i,j=1,...,n.

4.2. (1) Implies (2)

Investigating whether K is positive semidefinite is
equivalent to investigating whether the Gram matrices
for finite subsets of χ are positive semidefinite. There-
fore, without any loss of generality, we may assume
that χ is a finite set {x1, . . . , xn}. Since Mxi,xj are
finite, we may also assume χ′xi

are finite.

We slightly extend the definition of (χ′, k, {γx}) by
adding a new element • ∈ χ′ such that k(•, •) =
k(•, x′) = k(x′, •) = 0 hold for an arbitrary x′ ∈ χ′.
Even after the extension, (χ′, k, {γx}) still remains an
evaluating system for M.

Next, we define χ̄′, M̄ and {γ̄x} as follows: χ̄′ is the
disjoint union

⊔n
i=1 χ′xi

; x̄′ denotes the image of x′ ∈
χ′x in χ̄′; M̄ = {(x̄′, ȳ′) | (x′, y′) ∈ Mx,y ∧ x, y ∈ χ};
γ̄x : χ̄′ −→ χ′ satisfies that γ̄x(x̄′) = γx (x′), if x′ ∈ χ′x,
and γ̄x(x̄′) = •, otherwise. Then, the mapping kernel
K with respect to M and E is rewritten as follows.

K(x, y) =
∑

(x̄′,ȳ′)∈M̄

k(γ̄x(x̄′), γ̄y(ȳ′))

Furthermore, K(xi, xj) = tr(ATXij) holds, when we
define m-dimensional matrices A and Xij for χ̄′ =
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{x̄′1, . . . , x̄′m}. Akl = 1 if (x̄′k, x̄′l) ∈ M̄ , and Akl = 0
otherwise; Xij

kl = k(γ̄xi(x̄
′
k), γ̄xj (x̄

′
l)).

To show the assertion, it suffices to prove A is posi-
tive semidefinite by Proposition 1 (X = [Xij ]i,j=1,...,n

is positive semidefinite by definition). A is symmet-
ric, since (x′, y′) ∈ Mx,y ⇔ (y′, x′) ∈ My,x holds.
The hypothesis that {Mx,y} is transitive implies that
{1, . . . ,m} is decomposed into U1t· · ·tUM such that:
Ua ∩ Ub = ∅, if a 6= b; (x̄′k, x̄′l) ∈ M̄ , if, and only
if, k, l ∈ Ua for some a ∈ {1, . . . , M}. Therefore,
A =

⊕M
a=1 A[Ua] holds, and therefore, A is positive

semidefinite, since so are A[Ua].

4.3. (2) Implies (1)

We prove the cotraposition of the assertion. If M is
not transitive, A includes at least one of the following
sub-matrices (without any loss of generality, we may
assume k < l < b), where A[i1, . . . , in] denote the n-
dimensional matrix whose (α, β)-element is Aiα,iβ

.

A[k, l] =
[
0 1
1 0

]
(11)

A[k, l] =
[
1 1
1 0

]
(12)

A[k, l, b] =




1 1 0
1 1 1
0 1 1


 (13)

Note that any of them has a negative eigenvalue, since
detA < 0 holds.

We will see that there exists an instance of E =
(χ′, k, {γx}) such that smryA(X), which is the Gram
matrix for χ, is not positive semidefinite, if any of the
above three cases occurs. In the remaining of this
section, we will give a proof only for the case where
Eq. (13) holds. The assertion for the simpler cases,
that is, where either Eq. (11) or (12) holds, can be
proved in almost the same way.

Let i, j and a denote the indices such that x′k ∈ χ′xi
,

x′l ∈ χ′xj
and x′b ∈ χ′xa

(be reminded that χ̄′ is defined
as the disjoint union of χ′x for x ∈ χ). The indices are
not necessarily different from each other. Further, let
column vectors ~e1, ~e2 and ~e3 be an orthogonal basis of
R3 such that the following holds.

[~e1, ~e2, ~e3]
T
A[k, l, b][~e1, ~e2, ~e3] =




α1 0 0
0 α2 0
0 0 α3




We assume α1 < 0 without any loss of generality, and

define positive semidefinite K as follows.

K = [~e1, ~e2, ~e3]




1 0 0
0 0 0
0 0 0


 [~e1, ~e2, ~e3]

T

∴ tr(A[k, l, b]TK)

= tr







α1 0 0
0 α2 0
0 0 α3







1 0 0
0 0 0
0 0 0





 = α1 < 0

Now, we define E = (χ′, k, {γx}) as follows.

• χ′ = {•, ξ, η, ζ}

•



k(ξ, ξ) k(ξ, η) k(ξ, ζ)
k(η, ξ) k(η, η) k(η, ζ)
k(ζ, ξ) k(ζ, η) k(ζ, ζ)


 = K

• γx (x′) =





ξ, if x = xi and x′ = x′k,
η, if x = xj and x′ = x′l,
ζ, if x = xa and x′ = x′b,
•, otherwise.

Below, we investigate three cases: the indices take the
same value, that is, i = j = a; two of the indices
coincide with each other, where we can assume i = j 6=
a without loss of generality: the indices are different
from one another, that is, i 6= j 6= a 6= i. For each
case, we see that some diagonally located submatrix
of smryA(X) is not positive semidefinite. This implies
that smryA(X) itself is not positive semidefinite.

Case i = j = a: The submatrix smryA(X)[i] is not
positive semidefinite.

smryA(X)[i] = tr(A[k, l, b]TK) < 0

Case i = j 6= a: We will show that smryA(X)[i, k] is
not positive semidefinite.

tr(ATXii) = tr(A[k, l, b]T[1, 2]K[1, 2])

tr(ATXia) = A[k, l, b]T1,3K1,3 + A[k, l, b]T2,3K2,3

tr(ATXai) = A[k, l, b]T3,1K3,1 + A[k, l, b]T3,2K3,2

tr(ATXaa) = A[k, l, b]T3,3K3,3

∴ tr
(

smryA(X)[i, a]
[
1 1
1 1

])
= tr(A[k, l, b]TK) < 0

By Proposition 1 smryA(X)[i, a] turns out not to
be positive semidefinite.

Case i 6= j 6= a 6= i: For α, β = 1, 2, 3, the (α, β)-
element of smryA(X)[i, j, a] coincides with
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A[k, l, b]Tα,βKα,β .

tr


smryA(X)[i, j, a]




1 1 1
1 1 1
1 1 1







= tr(A[k, l, b]TK) < 0

By Proposition 1, smryA(X)[i, j, a] turns out not
to be positive semidefinite.
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Abstract

Traditional methods for analyzing popula-
tion structure, such as the Structure pro-
gram, ignore the influence of mutational ef-
fects. We propose mStruct, an admixture
of population-specific mixtures of inheritance
models, that addresses the task of structure
inference and mutation estimation jointly
through a hierarchical Bayesian framework,
and a variational algorithm for inference. We
validated our method on synthetic data, and
used it to analyze the HGDP-CEPH cell line
panel of microsatellites used in (Rosenberg
et al., 2002) and the HGDP SNP data used
in (Conrad et al., 2006). A comparison of
the structural maps of world populations esti-
mated by mStruct and Structure is presented,
and we also report potentially interesting
mutation patterns in world populations es-
timated by mStruct, which is not possible by
Structure.

1. Introduction

The deluge of genomic polymorphism data, such as
the genome-wide multilocus genotype profiles of vari-
able number of tandem repeats (i.e., microsatellites)
and single nucleotide polymorphisms (i.e., SNPs), has
fueled the long-standing interest in analyzing patterns
of genetic variations.to reconstruct the ancestral struc-
tures of modern human populations, because such ge-
netic ancestral information can shed light on the evo-
lutionary history of modern populations and provide
guidelines for more accurate association studies and
other population genetics problems.

One of the state-of-the-art methods for population
structure analysis based on multilocus genotype data

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

Figure 1. Population structural map inferred by Structure
on HapMap data consisting of 4 populations. The colors
represent different populations

is the program Structure, whose basic form is based
on a statistical formalism known as the admixture
model (Pritchard et al., 2000). Admixtures are in-
stances of a more general class of hierarchical Bayesian
models known as mixed membership models (Erosheva
et al., 2004), which postulate that genetic markers of
each individual are iid (Pritchard et al., 2000) or spa-
tially coupled (Falush et al., 2003) samples from multi-
ple population-specific fixed-dimensional multinomial
distributions (which we will call allele frequency pro-
files (Falush et al., 2003), or AP) of marker alleles.
Under this assumption, the admixture model identi-
fies each ancestral population by a specific AP (that
defines a unique allele frequency distribution for each
ancestral population for each marker) and displays the
fraction of contributions from each AP in a modern
individual chromosome as a structural map. Figure 1
shows an example of a structural map of four modern
populations inferred from a portion of the HapMap
multi-population dataset by Structure. In this popu-
lation structural map, each individual is represented
as a thin vertical line which shows the fraction of the
individual’s chromosome which originated from each
ancestral population, as given by a unique AP. This
method has been successfully applied to human ge-
netic data in (Rosenberg et al., 2002) and has unrav-
eled impressive patterns in the genetic structures of
world population.

However, since an AP merely represents the frequency
of alleles in an ancestral population, rather than the
actual allelic content or haplotypes of the alleles them-
selves, the admixture models developed so far based
on AP do not model genetic changes due to muta-
tions from the ancestral alleles. Indeed, a serious pit-
fall of the model underlying Structure, as pointed out
in (Excoffier & Hamilton, 2003), is that there is no

952



mStruct: Structure with mutations

mutation model for modern individual alleles with re-
spect to hypothetical common prototypes in the ances-
tral populations, i.e, every unique allele in the mod-
ern population is assumed to have a distinct ances-
tral frequency, rather than allowing the possibility of
it just being a descendent of some common ancestral
allele. Thus, while Structure aims to provide ancestry
information for each individual and each locus, there
is no explicit representation of “ancestors” as a phys-
ical set of “founding alleles”. Therefore, the inferred
population structural map emphasizes revealing the
contributions of abstract population-specific allele fre-
quency profiles, which does not directly reflect indi-
vidual diversity or the extent of genetic changes with
respect to the founders. Therefore, Structure does not
enable inference of the founding genetic patterns, the
age of the founding alleles, or the population diver-
gence time (Excoffier & Hamilton, 2003).

Another important issue in determining population
structure is to look for the presence of admixture, a
basic assumption of the Structure model. However,
as we shall see later, on the HGDP data, it produces
results that cluster individuals cleanly into one allele
frequency profile or the other, thus leading us to con-
clude that there was little or no admixture between
the human populations. While such a partitioning of
individuals would be desirable for clustering them into
groups, it does not offer us any biological insight into
the intermixing of the populations.

In this paper, we present mStruct (for structure un-
der mutations), based on an admixture of population-
specific mixtures of inheritance model (AdMim). Ad-
Mim is an admixture of mixtures model, which rep-
resents each ancestral population as a mixture of an-
cestral alleles each with its own inheritance process,
and each modern individual as an “ancestry propor-
tion vector” (ancestry vector or map vector) that in-
dicates membership proportions among the ancestral
populations. By a simple but important extension
to the LDA-like (Blei et al., 2003) admixture model
used by Structure, mStruct facilitates estimation of
both the structural map of populations (incorporat-
ing mutations) and the mutation rates of either SNP
or microsatellite alleles. A new variational inference
algorithm was developed for inference and learning.
We compare our method with Structure on both syn-
thetic genotype data, and on the microsatellite and
SNP genotype data of world populations (Rosenberg
et al., 2002; Conrad et al., 2006). Our results show the
presence of significant levels of admixture among the
founding populations. We also report interesting ge-
netic divergence in world populations revealed by the
mutation patterns we estimated.

2. The Statistical Model
2.1. Representation of Populations

To reveal the genetic composition of each modern in-
dividual in terms of contributions from hypothetical
ancestral populations via statistical inference on mul-
tilocus genotype data, one must first choose an appro-
priate representation of ancestral populations. Below,
we begin with a brief description of a commonly used
method, followed by a new method that we propose.

2.1.1. Population-Specific Allele Frequency
Profiles

Due to the polymorphic nature of genetic markers, an
intuitive statistic to characterize a population is the
frequencies of all observed alleles at all loci. For ex-
ample, we can represent an ancestral population k by
a unique set of population-specific multinomial dis-
tributions, βk ≡ {~βk

i ; i = 1 : I}, where ~βk
i =

[βk
i,1, . . . , β

k
i,L′

i
] is the vector of multinomial parame-

ters, also known as the allele frequency profile (Falush
et al., 2003), or AP, of the allele distribution at locus
i in ancestral population k; L′

i denotes the total num-
ber of observed marker alleles at locus i, and I denotes
the total number of marker loci. This representation,
known as population-specific ancestry proportion pro-
file, is used by the program Structure.

2.1.2. Population-Specific Mixtures of Ancestral
Alleles

A problem with the population-specific AP profile rep-
resentation is that it ignores the possibility of muta-
tions underlying the alleles observed in modern popu-
lations with respect to their ancestral alleles. To cap-
ture this, we propose to represent a population by
a genetically more realistic statistical model known
as the population-specific mixtures of ancestral alle-
les (MAA). For each locus i, an MAA for ancestral
population k is a triple {µk

i , δk
i , ~βk

i } consisting of a set
of ancestral (or founder) alleles µk

i = (µk
i,1, . . . , µ

k
i,Li

),
which can differ from their descendent alleles in the
modern population; a mutation rate δk

i associated with
the locus, which can be further generalized to be allele-
specific if necessary; and an AP ~βk

i which now repre-
sents the frequencies of the ancestral alleles. Here Li

denotes the total number of ancestral alleles at loci i.

An MAA is strictly more expressive than an AP, be-
cause the incorporation of a mutation model helps to
capture details about the population structure which
an AP cannot; and the MAA reduces to the AP when
the mutation rates become zero and the founders are
identical to their descendents. As we show shortly,
with an MAA, one can examine the mutation param-
eters corresponding to each ancestral population via
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Bayesian inference from genotype data; this might en-
able us to infer the age of alleles, and also estimate
population divergence times.

Let i ∈ {1, . . . , I} index the position of a locus in the
study genome, n ∈ {1, . . . , N} index an individual in
the study population, and e ∈ {0, 1} index the two
possible parental origin of an allele (in this study we
do not require strict phase information of the two al-
leles, so the index e is merely used to indicate diploid
data). Under an MAA specific to an ancestral popu-
lation k, the correspondence between a marker allele
Xi,ne and a founder µk

i,l ∈ µk
i is not directly observ-

able. For each allele founder µk
i,l, we associate with

it an inheritance model p(·|µk
i,l, δ

k
i,l) from which de-

scendants can be sampled. Then, given specifications
of the ancestral population from which Xi,ne

is de-
rived (denoted by hidden indicator variable Zi,ne), the
conditional distribution of Xi,ne under MAA follows
a mixture of population-specific inheritance model:
p(xi,ne

= l′ | Zi,ne
= k) =

∑L
l=1 βk

i,lp(xi,ne
|µk

i,l, δ
k
i,l).

Comparing to the counterpart of this function under
AP: p(xi,ne

= l′ | Zi,ne
= k) = βk

i,l′ , we can see that
the latter cannot explicitly model allele diversities in
terms of molecular evolution from the founders.

2.2. A New Admixture Model for Population
Structure

The concept of admixture arises when modeling ob-
jects (e.g., human beings) each comprising multiple
instances of some attributes (e.g., marker alleles), each
of which comes from a (possibly different) source dis-
tribution Pk(·|Θk), according to an individual-specific
admixing coefficient vector (a.k.a. map vector) ~θ.
The map vector represents the normalized contribution
from each of the source distributions {Pk ; k = 1 : K}
to the study object. For example, for every individ-
ual, the alleles at all marker loci may be inherited from
founders in different ancestral populations, each repre-
sented by a unique distribution of founding alleles and
the way they can be inherited. Formally, this scenario
can be captured in the following generative process:

1. For each individual n, draw the admixing vector:
~θn ∼ P (·|α), where P (·|α) is a pre-chosen map prior.

2. For each marker allele xi,ne ∈ xn

• 2.1: draw the latent ancestral-population-origin

indicator zi,ne ∼ Multinomial(·| ~θn);

• 2.2: draw the allele xi,ne |zi,ne = k ∼ Pk(·|Θk).

As discussed in the previous section, an ancestral pop-
ulation can be either represented as an AP or as an
MAA. These two different representations lead to two
different probability distributions for Pk(·|Θk) in the
last sampling step above, and thereby two different
admixtures of very different characteristics.

2.2.1. The Existing Model

In Structure, the ancestral populations are represented
by a set of population-specific APs. Thus the distri-
bution Pk(·|Θk) from which an observed allele can be
sampled is a multinomial distribution defined by the
rates of all observed alleles in the ancestral popula-
tion, i.e., xi,ne |zi,ne = k ∼ Multinomial(·|~βk

i ). Us-
ing this probability distribution in the general admix-
ture scheme outlined above, we can see that Structure
essentially implements an admixture of population-
specific allele rates model. But a serious pitfall of using
such a model, as pointed out in (Excoffier & Hamilton,
2003), is that there is no error model for individual al-
leles with respect to the common prototypes, i.e, every
unique measurement at a particular allele is assumed
to be a new allele, rather than allowing the possibility
of it just being the mutation of some common ancestral
allele at that marker.

2.2.2. The Proposed Model

We propose to represent each ancestral population by
a set of population-specific MAAs. Under this repre-
sentation, now the distribution Pk(·|Θk) from which an
observed allele can be sampled becomes a mixture of
inheritance models, each defined on a specific founder.
The ensuing sampling module to be plugged into the
general admixture scheme outlined above (to replace
step 2.2) becomes a two-step generative process:

• 2.2a: draw the latent founder indicator ci,ne |zi,ne =

k ∼ Multinomial(·|~βk
i );

• 2.2b: draw the allele xi,ne |ci,ne = l, zi,ne = k ∼
Pm(·|µk

i,l, δ
k
i,l),

where Pm() is a mutation model that can be flexibly
defined based on whether the genetic markers are mi-
crosatellites or single nucleotide polymorphisms. We
call this model an admixture of population-specific in-
heritance models (AdMim), while the previous model
is technically only an admixture of population specific
allele frequency profiles. Figure 2(a) shows a graphi-
cal model the overall generative scheme for AdMim, in
comparison with the admixture of population-specific
allele rates discussed earlier. From the figure, we can
clearly see that Structure is virtually identical to an
LDA model, while mStruct is an extended LDA model
which allows noisy observations.

For simplicity of presentation, in the model described
above we assume that for a particular individual,
the genetic markers at each locus are conditionally
iid samples from a set of population-specific fixed-
dimensional mixture of inheritance models, and that
the set of founder alleles at a particular locus is
the same for all ancestral populations( µk

i = µi).
Also our model assumes Hardy-Weinberg equilibrium
within populations. The simplifying assumptions of
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Figure 2. Graphical Models: the circles represent random
variables and diamonds represent hyperparameters.

unlinked loci, no linkage disequilibrium between loci
within populations can be easily removed by incorpo-
rating Markovian dependencies over ancestral indica-
tors Zi,ne and Zi+1,ne of adjacent loci, and over other
parameters such as the allele frequencies ~βk

i in exactly
the same way as in Structure. We can also introduce
Markovian dependencies over mutation rates at adja-
cent loci, which might be desirable to better reflect
the dynamics of molecular evolution in the genome.
We defer such extensions to a later paper.

2.3. Mutation Model

As described above, our model is applicable to almost
all kinds of genetic markers by plugging in an appro-
priate allele mutation model (i.e., inheritance model)
Pm(). We now discuss two mutation models, for mi-
crosatellites and SNPs, respectively.

2.3.1. Microsatellite Mutation Model

Microsatellites are the repeats of a small sequences in
DNA about 1-4 base pairs in length which are usually
represented as integer counts. The choice of a suitable
microsatellite mutation model is important, for both
computational and interpretation purposes. Below we
discuss the mutation model that we use and the biolog-
ical interpretation of the parameters of the mutation
model. We begin with a stepwise mutation model for
microsatellites widely used in forensic analysis (Valdes
et al., 1993; Lin et al., 2006).

This model defines a conditional distribution of a
progeny allele b given its progenitor allele a, both of
which take continuous values:

p(b|a) =
1
2
ξ(1− δ)δ|b−a|−1, (1)

where ξ is the mutation rate (probability of any mu-
tation), and δ is the factor by which mutation de-
creases as distance between the two alleles increases.
Although this mutation distribution is not stationary
(i.e. it does not ensure allele frequencies to be con-
stant over the generations), it is simple and commonly
used in forensic inference. To some degree δ can be
regarded as a parameter that controls the probabil-

ity of unit-distance mutation, as can be seen from the
following identity: p(b + 1|a)/p(b|a) = δ.

In practice, the two-parameter stepwise continuous
mutation model described above complicates the in-
ference process. We propose a discrete microsatellite
mutation model that is a simplification of Eq. 1, but
captures its main idea. We posit that: P (b|a) ∝ δ|b−a|.
It is not hard to show that normalizing this probability
mass function gives us the mutation model as:

P (b|a) =
1− δ

1− δa + δ
δ|b−a|. (2)

We can interpret δ as a variance parameter, the factor
by which probability drops as a fuction of the distance
between the mutated version b of the allele a.
Determination of founder set at each locus:
According to our model assumptions, there can be a
different number of founder alleles at each locus. This
number is typically smaller than the number of alle-
les observed at each marker since the founder alleles
are “ancestral”. To estimate the appropriate number
and allele states of founders, we fit finite mixtures of
microsatellite mutation models, and use the Bayesian
Information Criterion (BIC) to determine the cardi-
nality of the mixture.
Choice of mutation prior: In our model, the δ pa-
rameter, as explained above, is a population-specific
parameter that controls the probability of stepwise
mutations. Being a parameter that controls the vari-
ance of the mutation distribution, there is a possibility
that inference on the model will encourage higher val-
ues of δ to improve the log-likelihood, in the absence
of any prior distribution on δ. To avoid this situation,
and to allow more meaningful and realistic results to
emerge from the inference process, we impose on δ a
beta prior that will be biased towards smaller values
of δ. The beta prior will be a fixed one and will not
be among the parameters we estimate.

2.3.2. SNP Mutation Model

SNPs, or single nucleotide polymorphisms, represent
the largest class of individual differences in DNA. In
general, there is a well-defined correlation between the
age of the mutation producing a SNP allele and the
frequency of the allele. For SNPs, we use a simple
pointwise mutation model, rather than more complex
block models. Thus, the observations in SNP data are
only binary in nature (0/1). So, given the observed
allele b, we say that the probability of it being derived
from the founder allele a is given by:

P (b|a) = δI[b=a] × (1− δ)I[b 6=a]; a, b ∈ {0, 1}. (3)

In this case, the mutation parameter δ is the proba-
bility that the observed allele is not identical to the
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founder allele, but derived from it due to a mutation.

2.4. Inference and Parameter Estimation

2.4.1. Probability Distribution on the Model

For notational convenience, we will ignore the diploid
nature of observations in the analysis that follows.
With the understanding that the analysis is carried
out for the nth individual, we will drop the subscript
n. Also, we overload the indicator variables zi and
ci to be both, arrays with only one element equal to
1 , as well as scalars with a value equal to the index
at which the array forms have 1s. In other words:
zi ∈ 1, . . . ,K, ci ∈ 1, . . . , L, zi,k = I[zi = k], and
ci,l = I[ci = l].

The joint probability distribution of the the data and
the relevant variables under the AdMim model can
then be written as:

p
“
x, z, c, ~θ|α, β, µ, δ

”
= p

“
~θ|α
” IY

i=1

p
“
zi|~θ
”

p
“
ci|zi, ~βk=1·K

i

”
.

The marginal likelihood of the data can be com-
puted by summing/integrating out the latent vari-
ables. However, a closed-form solution to this sum-
mation/integration is not possible, and indeed exact
inference on hidden variables such as the map vector
~θ, and estimation of model parameters such as the mu-
tation rates δ under AdMim is intractable.(Pritchard
et al., 2000) developed an MCMC algorithms for ap-
proximate inference for their admixture model under-
lying Structure. We choose to apply a computationally
more efficient approximate inference method known as
variational inference (Jordan et al., 1999).

2.5. Variational Inference

We use a mean-field approximation for performing
inference on the model. This approximation method
approximates an intractable joint posterior p() of the
all hidden variables in the model by a product of
marginal distributions q() =

∏
qi(), each over only a

single hidden variable. The optimal parameterization
of qi() for each variable is obtained by minimizing the
Kullback-Leibler divergence between the variational
approximation q and the true joint posterior p. Using
results from the the Generalised Mean Field theory
(Xing et al., 2003), we can write the variational
distributions of the latent variables as follows:

q(~θ) ∝
KY

k=1

θ
αk−1+

PI
i=1 〈zi,k〉

k

q(ci) ∝
LY

l=1

 
KY

k=1

“
βk

i,lf(xi|µi,l, δ
k
i )
”〈zi,k〉

!ci,l

q(zi) ∝
KY

k=1

 
e〈log(θk)〉

 
LY

l=1

βk
i,lf(xi|µi,l, δ

k
i )

〈ci,l〉
!!zi,k

.

In the distributions above, the ‘〈〉’ are used to
indicate the expected values of the enclosed ran-
dom variables. A close inspection of the above
formulae reveals that these variational distribu-
tions have the form q(~θ) ∼ Dirichlet(γ1, . . . , γK),
q(zi) ∼ Multinomial(ρi,1, . . . , ρi,K), and q(ci) ∼
Multinomial(ξi,1, . . . , ξi,L), respectively, where the
parameters γk, ρi,k and ξi,l are given by the following
equations:

γk = αk +

IX
i=1

〈zi,k〉

ρi,k =
e〈log(θk)〉

“QL
l=1 βk

i,lf(xi|µi,l, δ
k
i )

〈ci,l〉
”

PK
k=1

“
e〈log(θk)〉

“QL
l=1 βk

i,lf(xi|µi,l, δk
i )

〈ci,l〉
””

ξi,k =

QK
k=1

`
βk

i,lf(xi|µi,l, δ
k
i )
´〈zi,k〉PK

k=1

„QK
k=1

“
βk

i,lf(xi|µi,l, δk
i )
”〈zi,k〉

«
and they have the properties: 〈log(θk)〉 = γk, 〈zi,k〉 =
ρi,k and 〈ci,l〉 = ξi,l, which suggest that they can be
computed via fixed point iterations. It can be shown
that this iteration will converge to a local optimum,
similar to what happens in an EM algorithm. Empiri-
cally, a near global optimal can be obtained by multi-
ple random restarts of the fixed point iteration. Typi-
cally, such a mean-field variational inference converges
much faster then sampling (Xing et al., 2003).

3. Hyperparameter Estimation

The parameters of our model, i.e., {µ, δ,β}, and the
Dirichlet hyperparameter α, can be estimated by max-
imizing the lower bound on the log-likelihood as a func-
tion of the current values of the hyperparameters, via a
variational EM algorithm. Due to space limits, details
of this empirical Bayes estimation scheme are available
in the extended version.
4. Experiments and Results
We validated our model on a synthetic microsatellite
dataset where the simulated values of the hidden map
vector θn of each individual and the population pa-
rameters {µk, δk, ~βk} of each ancestral population are
known as ground truth. The goal is to assess the per-
formance of mStruct in terms of accuracy and con-
sistency of the estimated map vectors and population
parameters, and test of the correctness of the infer-
ence and estimation algorithms we developed. We
also conduct empirical analysis using mStruct of two
real datasets: the HGDP-CEPH cell line panel of mi-
crosatellite loci and the HGDP SNP data, in compar-
ison with the Structure program (version 2.1).

4.1. Validations on Synthetic Data

We simulated 20 microsatellite genotype datasets us-
ing the AdMim generative process described in sec-
tion 2.2, with 100 diploid individuals from 2 ances-
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Figure 3. Ancestry spectra for a 3-population simulated
dataset. First panel shows the true ancestry proportion
vectors. Middle panel shows the estimate by mStruct.
Right panel shows the estimate from Structure .

tral populations, at 50 genotype loci. Each locus has
4 founding alleles, separated by adjustable distances;
the mutation parameter at each locus for both pop-
ulations had default value 0.1, but can be varied to
simulate different degrees of divergence. The founding
allele frequencies, ~βk

i , were drawn from a flat Dirich-
let prior with parameter 1. The map vectors θn were
sampled from a symmetric beta distribution with pa-
rameter α, allowing different levels of admixing. We
examine the accuracies of several estimates of interest
under a number of different simulation conditions, and
for each condition we report the statistics of the accu-
racies across 20 iid synthetic datasets. Due to space
limitations, we only report two experiments below; the
additional results on accuracy of ancestral alleles re-
covery and the ancestral-allele frequency estimation
are available in the full paper.

4.1.1. Accuracy of Population Map Estimate

The map vector θn reflects the proportions of con-
tributions from different ancestral population to the
maker-alleles of each individual. The display of the
map vectors of all individuals in a study population
gives a Map of population structure (see, e.g., Fig. 1
in the introduction), which has been the main output
of the Structure program . We compare the accuracy
of the estimated θn w.r.t. the ground truth recorded
during the simulation in terms of their L1 distances.

Figure 3 shows an example of this comparison, and we
can see that mStruct is visually more accurate than
Structure. Figure 4 shows the accuracy of the Map
estimate by mStruct on synthetic datasets simulated
with different properties, in comparison with that of
Structure. Fig. 4(a) shows that, under different de-
grees of biases of population admixing induced by the
Beta prior of θn, mStruct consistently outperforms
Structure. Specifically, as the value of the Beta prior
hyperparameter α increases, fewer individuals tend to
belong completely to only one population, and more
and more individuals become highly admixed. As the
figure shows, the performance of both methods de-
grades as we progress toward this end; however, the
severity of degradation of mStruct is much less than
that of Structure. mStruct remains robust and per-
forms better than Structure as the separations between
founding alleles decreases (Fig.4(b)), which tends to
increasingly confound the ancestral origins of modern

alleles. Finally, Fig. 4(c) shows how the presence of
mutations affects the performance of both methods.
At very low values of the mutation parameters, the
performances of both models are comparable; but as
the mutation parameter increases in magnitude, the
performance of Structure degrades significantly. On
the other hand, the decrease in accuracy for mStruct
is hardly noticeable. This shows that our model is
resistant to the confounding effect of large mutations.
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Figure 4. Accuracy of θ est. under different conditions.

4.1.2. Accuracy of Parameter Estimation.

An important aspect of guarantee and utility we desire
for our model and inference algorithm is that it should
offer consistent estimates of the population parameters
{µk, δk, ~βk} underlying the composition of the ances-
tral population and their inheritance processes. These
estimates offer important insight of the evolutionary
history and dynamics of modern population genotype
data. We have extensively investigated the robustness
and accuracy of all these estimates. Due to space lim-
itations, here we only report highlights of mutation
rate estimation.
Mutation parameter estimation: We evaluate
the performance at recovery of δk’s by a simple dis-
tance measure, (L1 distance measure), between the
true and inferred values. We expect that using the
beta prior described earlier improves the recovery
of the population-specific mutation parameters. As
shown in Figure 5, the estimates of δk’s are robust
and remain low-bias under different degree of admixing
(due to changing α) and different ancestor dispersion
(due to changing distances among the µk’s). The accu-
racy decreases as the value of the mutation parameter
itself increases, but remains respectable, as shown in
Figure. 5(c).
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Figure 5. Accuracy of microsatellite mutation para. est.

4.2. Empirical Analysis of Real Datasets

The HGDP-CEPH cell line panel (Cann et al., 2002;
Cavalli-Sforza, 2005) used in (Rosenberg et al.,
2002)contains genotype information from 1056 indvid-
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uals from 52 populations at 377 autosomal microsatel-
lite loci, along with geographical and population la-
bels. The HGDP SNP data (Conrad et al., 2006) con-
tains the SNPs genotypes at 2834 loci of 927 unrelated
individuals that overlap with the HGDP-CEPH data.
To make results for both types of data comparable, we
chose the set of only those individuals present in both
datasets. As in (Rosenberg et al., 2002), the choice of
the total number of ancestral populations is left to the
user, and here we only show results of K = 4 due to
space limitations.

4.2.1. Structural Maps from HGDP Data

We compare the structural maps inferred from both
the microsatellite and the SNP data using mStruct
and Structure (top panels in Figure 6). The structural
maps produced by both programs are quite similar in
the case of SNPs, but are very different for microsatel-
lites. The most obvious difference between the maps
produced by both programs is the degree of admix-
ing that the individuals in the program are assigned.
Structure assigns each geographical population to a
distinct profile. Thus, it seems to predict very little
admixing effect in modern human populations. While
useful for clustering, this might result in loss of po-
tentially useful information about actual evolutionary
history of populations. In contrast, the structure map
produced by mStruct for microsatellites suggests that
all populations share a common ancestral population
with a unique extra component that characterizes their
particular genotypes. It is interesting to note that clus-
tering individuals by the ancestry proportion vectors
due to mStruct will produce exactly the same cluster-
ing partitions as that due to Structure. The structural
maps produced in the case of SNP data are quite simi-
lar for both softwares, with results from mStruct again
predicting more admixture than Structure. It is also
interesting to see that the ancestry proportions for Eu-
ropean and Middle Eastern regions are more distinct
from each other in mStruct than in Structure, allow-
ing for better separation of the two geographical re-
gions. A possible cause for the inconsistency between
the results produced by mStruct for SNP data and mi-
crosatellite data could be the large difference between
their mutation rates, or due to the choice of a simplis-
tic SNP mutation model.This issue will be explored in
more detail in the full version of the paper.
4.2.2. Analysis of the Mutation Spectrums

Now we report a preliminary analysis of the evolu-
tionary dynamics reflected by the estimated mutation
spectrums of different ancestral populations (denoted
“am-spectrum”), and of different modern geograph-
ical populations (denoted “gm-spectrum”), which is
not possible by Structure. For the am-spectrum, we

compute the mean mutation rates over all loci and
founding alleles for each ancestral population as esti-
mated by mStruct. We estimate the gm-spectrum as
follows: for every individual, a mutation rate is com-
puted as the per-locus number of observed alleles that
are attributed to mutations, weighted by the muta-
tion rate corresponding to the ancestral allele chosen
for that locus. This can be computed by observing
the population-indicator (Z) and the allele-indicator
(C) for each individual. We then compute the popu-
lation mutation rates by averaging mutation rates of
all individuals having the same geographical label.

As shown in the gm-spectrums in Figure 6 (lower sub-
panels on the right), the mutation rates for African
populations are indeed higher than those of other mod-
ern populations. This indicates that they diverged ear-
lier, a common hypothesis of human migration. Other
trends in the gm-spectrums also reveal interesting in-
sights, which we do not have space to discuss. The
am-spectrums of SNP data in Figure 6 suggest that the
founder ancestral population that dominates modern
African populations has a higher mutation rate than
the other ancestral population, indicating that is the
older of the two ancestral populations. The mutation
estimates are largely consistent for both microsatellites
and SNPs in comparative order, but vastly different in
numerical values.

4.3. Model Selection
As with all probabilistic models, we face a tradeoff
between model complexity and the log-likelihood value
that the model achieves. In our case, complexity is
controlled by the number of ancestral populations we
pick, K.
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Figure 7. BIC scores for
K=2 to 5.

Unlike non-parametric or
infinite dimensional mod-
els (e.g., Dirichlet pro-
cesses etc.), for models
of fixed dimension, it is
not clear in general as
to what value of K gives
us the best balance be-
tween model complexity
and log-likelihood. In
such cases, different infor-
mation criteria are often used to determine the optimal
model complexity. To determine what number of an-
cestral populations fit the HGDP SNP and microsatel-
lite data best, we computed BIC scores for K=2 to
K=5 for both kinds of data separately. The results
are shown in Figure 7. The BIC curves for both SNPs
and microsatellites suggest K=4 as the best fit for the
data.
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Figure 6. Structural maps, mutation spectrums, from the HGDP data via mStruct and Structure.

5. Discussions
We have developed mStruct, which allows estimation
of genetic contributions of ancestral populations in
each modern individual in light of both population
admixture and allele mutation. The variational infer-
ence algorithm that we developed allows tractable ap-
proximate inference on the model. The ancestral pro-
portions of each individual enable representing pop-
ulation structure in a way that is both visually easy
to interpret, as well as amenable to further computa-
tional analysis. In conjunction with geographical loca-
tion, the inferred ancestry proportions could be used
to detect migrations,sub-populations etc quite easily.
Moreover, the ability to estimate population and locus
specific mutation rates also allows us to substantiate
evolutionary dynamics claims based on high/low mu-
tation rates in certain geographical population, or on
high/low mutation rates at certain loci in the genome.
While the estimates of mutation rates that mStruct
provides are not on an absolute scale, the comparison
of their relative magnitudes is certainly informative.
As of now, there remain a number of possible exten-
sions to the methodology we presented so far. It would
be instructive to see the impact of allowing linked loci
as in (Falush et al., 2003). We have not yet addressed
the issue of the most suitable choice of mutation pro-
cess, but instead have chosen one that is reasonable
and computationally tractable. It would be interesting
to combine mStruct with the nonparametric Bayesian
models based on the Dirichlet processes such as (Sohn
& Xing, 2007). Our model might be described as a
noisy-channel version of the LDA model, where the
observations are modified instances of the original al-
leles. It is not hard to imagine applications of this
model to other tasks such as image modeling or IR
tasks involving noisy data, with minor changes in the
distributions from which the observations are sampled.
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Abstract

We study the problem of finding the dom-
inant eigenvector of the sample covariance
matrix, under additional constraints on the
vector: a cardinality constraint limits the
number of non-zero elements, and non-
negativity forces the elements to have equal
sign. This problem is known as sparse and
non-negative principal component analysis
(PCA), and has many applications includ-
ing dimensionality reduction and feature se-
lection. Based on expectation-maximization
for probabilistic PCA, we present an al-
gorithm for any combination of these con-
straints. Its complexity is at most quadratic
in the number of dimensions of the data. We
demonstrate significant improvements in per-
formance and computational efficiency com-
pared to other constrained PCA algorithms,
on large data sets from biology and com-
puter vision. Finally, we show the usefulness
of non-negative sparse PCA for unsupervised
feature selection in a gene clustering task.

1. Introduction

Principal component analysis (PCA) provides a lower
dimensional approximation of high dimensional data,
where the reconstruction error (measured by Eu-
clidean distance) is minimal. The first principal com-
ponent (PC) is the solution to

arg max
w

w>Cw, subject to ‖w‖2 = 1, (1)

where C ∈ RD×D is the positive semi-definite covari-
ance matrix of the data. It is straightforward to show
that the first PC is the dominant eigenvector of C,
i.e. the eigenvector corresponding to the largest eigen-
value. The first PC maximizes the variance of the

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

projected data, while the second PC again maximizes
the variance, under the constraint that it is orthogonal
to the first, and so on.

Constrained PCA and its Applications. We con-
sider problem (1) under two additional constraints on
w: Sparsity ‖w‖0 ≤ K1 and non-negativity w � 0.
Constraining PCA permits a trade-off between maxi-
mizing statistical fidelity on the one hand, and facil-
itating interpretability and applicability on the other
(d’Aspremont et al., 2007). Although it is often the
case that PCA provides a good approximation with
few PCs, each component is usually a linear com-
bination of all original features. Enforcing sparsity
facilitates identification of the relevant influence fac-
tors and is therefore an unsupervised feature selec-
tion method. In applications where a fixed penalty
is associated with each included dimension (e.g. trans-
action costs in finance), a small loss in variance for
a large reduction in cardinality can lead to an over-
all better solution. Enforcing non-negativity renders
PCA applicable to domains where only positive in-
fluence of features is deemed appropriate (e.g. due to
the underlying physical process). Moreover, the to-
tal variance is explained additively by each compo-
nent, instead of the mixed sign structure of uncon-
strained PCA. Often non-negative solutions already
show some degree of sparsity, but a combination of
both constraints enables precise control of the car-
dinality. Sparse PCA has been successfully applied
to gene ranking (d’Aspremont et al., 2007), and non-
negative sparse PCA has been compared favorably to
non-negative matrix factorization for image parts ex-
traction (Zass & Shashua, 2006).

Related Work. Problem (1) is a concave program-
ming problem, and is NP-hard if either sparsity or non-
negativity is enforced (Horst et al., 2000). Although
an efficient global optimizer is therefore unlikely, lo-
cal optimizers often find good or even optimal solu-
tions in practice, and global optimality can be tested

1See final paragraph of this section for a definition of
our notation.
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in O(D3) (d’Aspremont et al., 2007), where D is the
dimensionality of the data. As is evident from writing
the objective function of (1) as

w>Cw =
D∑

i=1

D∑
j=1

Cijwiwj , (2)

setting wk to zero excludes the k-th column and row of
C from the summation. For a given sparsity pattern
S = {i|wi 6= 0}, the optimal solution is the dominant
eigenvector of the corresponding submatrix of C. For
sparse PCA, the computationally hard part is there-
fore to identify the optimal sparsity pattern, and any
solution can potentially be improved by keeping S only
and recomputing the weights, a process called varia-
tional renormalization by Moghaddam et al. (2006).

Sparse PCA methods can be characterized by the fol-
lowing two paradigms:

1. Relaxation of the hard cardinality constraint
‖w‖0 ≤ K into a convex constraint ‖w‖1 ≤ B,
thus approximating the combinatorial problem by
continuous optimization of (1) on a convex feasi-
ble region.

2. Direct combinatorial optimization of S. Due
to the potentially exponential runtime of exact
methods, heuristics such as greedy search have to
be employed for large values of D.

Cadima and Jolliffe (1995) proposed thresholding the
(D −K) smallest elements of the dominant eigenvec-
tor to zero, which has complexity O(D2). Better re-
sults have been achieved by the SPCA algorithm of
Zou et al. (2004), which is based on iterative elastic
net regression. Combinatorial optimization was intro-
duced by Moghaddam et al. (2006), who derived an
exact branch-and-bound method and a greedy algo-
rithm, that computes the full sparsity path 1 ≤ K ≤ D
in O(D4). Based on a semi-definite relaxation of the
sparse PCA problem, d’Aspremont et al. (2007) pro-
posed PathSPCA, which reduces the complexity of
each greedy step to O(D2), and renders computation
of the full regularization path possible in O(D3). Fi-
nally, Sriperumbudur et al. (2007) formulate sparse
PCA as a d.c. program (Horst et al., 2000) and provide
an iterative algorithm called DC-PCA, where each it-
eration consists of solving a quadratically constrained
QP with complexity O(D3).

Non-negative (sparse) PCA was proposed by Zass and
Shashua (2006). In contrast to the methods dis-
cussed so far, their algorithm (called NSPCA) opti-
mizes the cumulative variance of L components jointly,

versus a sequential approach that computes one com-
ponent after another. Orthonormality of the compo-
nents is enforced by a penalty in the objective function
(see section 4 for a discussion about orthogonality for
non-negative components), and the desired sparsity is
again expressed in terms of the whole set of L compo-
nents.

Our Contribution. To our knowledge, there is no al-
gorithm either for sparse or non-negative sparse PCA
that achieves competitive results in less than O(D3).
In this paper, we propose an O(D2) algorithm that
enforces sparsity, or non-negativity or both constraints
simultaneously in the same framework, which is rooted
in expectation-maximization for a probabilistic gener-
ative model of PCA (see next section). As for the
combinatorial algorithms, the desired cardinality can
be expressed directly as K = |S|, instead of a bound
B on the l1 norm of w (which requires searching for
the appropriate value). Although computing the full
regularization path is also of order O(D3), our method
directly computes a solution for any K in O(D2), in
contrast to forward greedy search which needs to build
up a solution incrementally. As is the case with SPCA,
our method works on the data matrix X ∈ RN×D (N
is the number of samples), instead of the covariance
matrix C. To summarize, the low complexity com-
bined with an efficient treatment of the D � N case
enables an application of our method to large data sets
of high dimensionality.

Notation. Vectors are indexed as w(t), and elements
of vectors as wi. ‖w‖1 =

∑
i |wi| and ‖w‖0 = |S|,

where S = {i|wi 6= 0}. ‖w‖0 is also called the car-
dinality of w. I is the identity matrix, 0 a vector of
zero elements, and w � 0 ⇔ ∀i : wi ≥ 0. x ◦ y
denotes element-wise multiplication of x and y, and
tr(X) =

∑
iXii is the trace of matrix X. E[.] is the

expectation operator, and N denotes a Gaussian dis-
tribution.

2. EM for Probabilistic PCA

Tipping and Bishop (1999) and independently Roweis
(1998) proposed a generative model for PCA, where
the full covariance matrix Σ ∈ RD×D of the Gaussian
distribution is approximated by its first L eigenvectors
(in terms of magnitude of the respective eigenvalues).
The latent variable y ∈ RL (in the principal compo-
nent subspace) is distributed according to a zero mean,
unit covariance Gaussian

p(y) = N (0, I). (3)

The observation x ∈ RD, conditioned on the value
of the latent variable y, is linear-Gaussian distributed
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according to

p(x|y) = N (Wy + µ, σ2I), (4)

where the matrix W ∈ RD×L spans the principal sub-
space, and µ ∈ RD is the mean of the data. To sim-
plify the presentation, we will assume centered data
from now on.

The EM equations for probabilistic PCA have the fol-
lowing form. The E-step keeps track of

E[y(n)] = M−1
(t)W

>
(t)x(n) (5)

E[y(n)y>(n)] = σ2
t M−1

(t) + E[y(n)]E[y(n)]>, (6)

where M ∈ RL×L is defined as

M = W>W + σ2I. (7)

The M-step equations are

W(t+1) =

[
N∑

n=1

x(n)E[y(n)]>
][

N∑
n=1

E[y(n)y>(n)]

]−1

(8)

σ2
t+1 =

1
ND

N∑
n=1

[
‖x(n)‖22 − 2E[y(n)]>W>

(t+1)x(n)

+ tr
(
E[y(n)y>(n)]W

>
(t+1)W(t+1)

)]
. (9)

In order to efficiently incorporate constraints into the
EM algorithm (see next section), we make three sim-
plifications: take the limit σ2 → 0, consider a one-
dimensional subspace and normalize ‖w(t)‖2 to unity.
The first simplification reduces probabilistic PCA to
standard PCA. Computing several components will
be treated in section 4, and the unity constraint on
‖w(t)‖2 is easily restored after each EM iteration. The
E-step now amounts to

E[yn] = w>(t)x(n), (10)

and the M-step is

w(t+1) =
∑N

n=1 x(n)E[yn]∑N
n=1 E[yn]2

. (11)

These two equations have the following interpretation
(Roweis, 1998): The E-step orthogonally projects the
data onto the current estimate of the subspace, while
the M-step re-estimates the projection to minimize
squared reconstruction error for fixed subspace coordi-
nates. We summarize this result in algorithm 1, which
iteratively computes the solution to eq. (1). Due to
the fact that so far only ‖w‖2 = 1 is enforced, con-
vergence to the global optimum doesn’t depend on the
initial estimate w(1). This will no longer be the case
for additional constraints.

Algorithm 1 Iterative Computation of First PC
Input: Data X ∈ RN×D, initial estimate w(1), ε
Algorithm:
t← 1
repeat

y = Xw(t)

w(t+1) = arg minw

∑N
n=1 ‖x(n) − ynw‖22

w(t+1) ← w(t+1)/‖w(t+1)‖2
t← t+ 1

until |w>(t+1)w(t)| > 1− ε
Output: w

3. Constrained PCA

Consider the minimization step in algorithm 1, which
can be written as

w∗ = arg min
w

J(w) := hw>w − 2f>w, (12)

with h =
∑N

n=1 y
2
n and f =

∑N
n=1 ynx(n). Eq. (12) is

a quadratic program (QP), and is convex due to the
non-negativity of h. Furthermore, because the Hes-
sian is a scaled identity matrix, the problem is also
isotropic. The unique global optimum is found by an-
alytical differentiation of the objective function

∇J != 0⇒ w∗ =
f
h
, (13)

which of course is identical to eq. (11).

3.1. Sparsity

It is well known (Tibshirani, 1996) that solving a QP
under an additional constraint on ‖w‖1 favors a sparse
solution. This constraint corresponds to restricting the
feasible region to an l1 diamond:

w◦ = arg min
w

(
hw>w − 2f>w

)
(14)

s.t. ‖w‖1 ≤ B,

where the upper bound B is chosen such that w◦ has
the desired cardinality. The l1 constrained QP is again
convex, and because the objective function is isotropic,
it implies that w◦ is the feasible point minimizing l2
distance to the unconstrained optimum w∗.

We derive an efficient and optimal algorithm for eq.
(14), where the desired cardinality can be specified di-
rectly by the number K of non-zero dimensions. Ob-
serve that w◦ must have the same sign structure as f ,
therefore we can transform the problem such that both
w∗ and w◦ come to lie in the non-negative orthant.
The algorithm (illustrated in fig. 1) approaches w◦
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with axis-aligned steps in the direction of the largest
element of the negative gradient

−∇J(w) ∝ w∗ −w, (15)

until the boundary of the feasible region is hit or the
gradient vanishes. Because the elements of w become
positive one after another, and their magnitude in-
creases monotonically, B is set implicitly by terminat-
ing the gradient descent once the cardinality of the so-
lution vector is K. Finally, the solution is transformed
back into the original orthant of w∗.

Proposition 3.1 Axis-aligned gradient descent with
infinitesimal stepsize terminates at the optimal feasible
point w◦.

Proof. Optimality is trivial if w∗ lies within the feasi-
ble region, so we consider the case where the l1 con-
straint is active. The objective function in eq. (14) is
equivalent to

‖w∗ −w‖22 =
D∑

d=1

(w∗d − wd)2 . (16)

The gradient descent procedure invests all available co-
efficient weight B into decreasing the largest term(s)
of this sum, which follows from eq. (15). We show
equivalence of w◦ to the gradient descent solution v
by contradiction. Suppose the computation of w◦ fol-
lows a different strategy, so at least one summation
term (w∗l −w◦l )2 is larger than maxd(w∗d − vd)2. How-
ever, subtracting a small amount from w◦s (s 6= l) and
adding it to w◦l doesn’t change ‖w◦‖1 but decreases
the objective, which is a contradiction. �

Implementation of axis-aligned gradient descent
amounts to sorting the elements of −∇J(w) in de-
scending order (an O(D logD) operation), and iter-
ating over its first K elements. At each iteration
k ∈ {1, . . . ,K}, the first k elements of w are manip-
ulated, resulting in complexity O(K2) for the whole
loop. Algorithm 2 provides a full specification of the
method. Because EM is a local optimizer, the ini-
tial direction w(1) must be chosen carefully to achieve
good results. For sparse PCA, initialization with the
unconstrained first principal component gave best re-
sults (see section 5). Initialization is therefore the most
expensive operation of the algorithm with its O(D2)
complexity. For the D � N case, it can be reduced
to O(N2) by working with XX> instead of X>X. As
initialization is independent of K, w(1) can be cached
and re-used when varying the sparsity parameter. The
number of EM iterations t until convergence also de-
pends on D and K, but our experiments (see section 5)

w1

w2

B

w*

w°

Figure 1. Starting at the origin, w◦ is approached by axis-
aligned steps in the direction of the largest element of the
negative gradient. As dimensions enter the solution vec-
tor one after another, and the corresponding weights wi

increase monotonically, the bound B is set implicitly by
terminating once ‖w‖0 = K.

suggest that dependence is weak and sub-linear. On
average, t < 10 iterations were sufficient to achieve
convergence.

3.2. Non-Negativity

Enforcing non-negativity is achieved in the same way
as sparsity. Here, the the feasible region is constrained
to the non-negative orthant, which is again a convex
domain:

w◦ = arg min
w

(
hw>w − 2f>w

)
(17)

s.t. w � 0.

Eq. (17) implies that choosing wi = 0 for fi < 0 is
optimal. The non-negativity constraint can then be
dropped, and optimization for the other elements of w
proceeds as before.

The first PC is invariant to a change of sign. How-
ever, this symmetry is broken if the non-negativity
constraint is enforced. As an extreme example, non-
negative EM fails if the initial projection w(1) is a dom-
inant eigenvector that only consists of non-positive el-
ements - the minimum of eq. (17) is the zero vector.
But changing the sign of w(1) implies that the non-
negativity constraint becomes inactive, and the algo-
rithm terminates immediately with the optimal solu-
tion. We choose to initialize EM for non-negative PCA
with a random unit vector in the non-negative orthant,
which exploits the benefit of random restarts.

For non-negative sparse PCA, the feasible region is
defined as the intersection of the non-negative orthant
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Algorithm 2 EM for Sparse PCA
Input: X ∈ RN×D, K ∈ {1, . . . , D}, ε
Algorithm:
t← 1
w(t) ← first principal component of X
repeat

y← Xw(t)

w∗ ←
∑N

n=1 ynx(n)/
∑N

n=1 y
2
n

s ← elements |w∗i | sorted in descending order
π ← indices of sorting order
w(t+1) ← 0
for k = 1 to K do

Add (sk − sk+1) to elements 1, . . . , k of w(t+1)

end for
Permute elements of w(t+1) according to π−1

w(t+1) ← w(t+1) ◦ sign(w∗)/‖w(t+1)‖2
t← t+ 1

until |w>(t+1)w(t)| > 1− ε
Output: w

and the l1 diamond. As the intersection of two convex
sets is again convex, the combined constraints can be
treated in the same framework. We establish conver-
gence of our method in the following proposition:

Proposition 3.2 EM for sparse and non-negative
PCA converges to a local minimum of the l2 recon-
struction error.

Proof. Given a feasible w(t) (either by proper initial-
ization or after one EM iteration), both the E-step
and the M-step never increase l2 reconstruction error.
Orthogonal projection y = Xw in the E-step is the
l2 optimal choice of subspace coordinates for given w.
Error minimization w.r.t. w in the M-step either re-
covers w(t) as it is feasible, or provides an improved
w(t+1). �

4. Several Components

A full eigen decomposition of the covariance matrix C
provides all r PCs, where r is the rank of C. Sorted in
descending order of eigenvalue magnitude, each eigen-
vector maximizes the variance of the projected data,
under the constraint that it is orthogonal to all other
components considered so far. For sparse PCA, we
compute more than one component by means of iter-
ative deflation: having identified the first component
w(1), project the data to its orthogonal subspace using

P = I−w(1)w>(1), (18)

re-run EM to identify w(2), and so on. Although defla-
tion suffers from numerical errors that accumulate over

each iteration, this inaccuracy is not a serious problem
as long as the desired number of components L is small
compared to r (which is true in many applications of
PCA).

Desiring non-negativity and orthogonality implies that
each feature can be part of at most one component:

w
(l)
i > 0⇒ w

(m)
i = 0 (19)

for m 6= l, i.e. the sparsity patterns have to be dis-
joint: Sl

⋂
Sm = ∅, for l 6= m and Sl = {i|w(l)

i > 0}.
This constraint might be too strong for some applica-
tions, where it can be relaxed to require a minimum
angle between components. This quasi -orthogonality
is enforced by adding a quadratic penalty term

αw>VV>w, (20)

to eq. (17), where V =
[
w(1)w(2) · · ·w(l−1)

]
contains

previously identified components as columns, and α
is a tuning parameter. Because VV> is also positive
semi-definite, the QP remains convex, but the Hes-
sian is no longer isotropic. We have used the standard
Matlab QP solver, but there exist special algorithms
for this case in the literature (Sha et al., 2007).

5. Experimental Results

We report performance and efficiency of our method
in comparison to three algorithms: SPCA2 and Path-
SPCA3 for cardinality constrained PCA, and NSPCA4

for non-negative sparse PCA. SPCA was chosen be-
cause it has conceptual similarities to our algorithm:
both are iterative methods that solve an l1 constrained
convex program, and both use the data matrix instead
of the covariance matrix. PathSPCA was chosen be-
cause it is (to our knowledge) the most efficient com-
binatorial algorithm. We are not aware of any other
non-negative PCA algorithm besides NSPCA.

The data sets considered in the evaluation are the fol-
lowing:

1. CBCL face images (Sung, 1996): 2429 gray scale
images of size 19×19 pixels, which have been used
in the evaluation of (Zass & Shashua, 2006).

2. Leukemia data (Armstrong et al., 2002): Expres-
sion profiles of 12582 genes from 72 patients. Sim-

2We use the Matlab implementation of SPCA by Karl
Sjöstrand, available at http://www2.imm.dtu.dk/~kas/
software/spca/index.html.

3Available from the authors at http://www.princeton.
edu/~aspremon/PathSPCA.htm.

4Available from the authors at http://www.cs.huji.
ac.il/~zass/.
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Figure 2. Left: Variance versus cardinality trade-off curves for the face image data. “opt” subscripts denote variance after
recomputing optimal weights for a given sparsity pattern (which is not necessary for PathSPCA). Middle: Variance versus
cardinality trade-off curves for the gene expression data. Performance of simple thresholding was included for reference.
Right: Running times of Matlab implementations on the gene expression data, which include renormalization for SPCA
and emPCA.

ilar data sets have been used in the evaluation of
(Zou et al., 2004) and (d’Aspremont et al., 2007).

The two data sets cover the N > D and D � N case
and are large enough such that differences in computa-
tional complexity can be established with confidence.
Both were standardized such that each dimension has
zero mean and unit variance.

5.1. Sparse PCA

Figure 2 (left) plots explained variance versus cardinal-
ity for SPCA, PathSPCA and our algorithm (called
emPCA) on the face image data set. Variational
renormalization is necessary for SPCA and emPCA to
close the performance gap to PathSPCA, which com-
putes optimal weights for a specific sparsity pattern by
construction. Figure 2 (middle) shows analogous re-
sults for the gene expression data. As a reference, we
have also plotted results for simple thresholding (after
renormalization).

To complement theoretical analysis of computational
complexity, we have also measured running times of
reference Matlab implementations, provided by their
respective authors (SPCA is a re-implementation of
the author’s R code in Matlab). CPU time was mea-
sured using Matlab’s tic and toc timer constructs,
running on an Intel Core 2 Duo processor at 2.2GHz
with 3GB of RAM. Our focus is not to report abso-
lute numbers, but rather demonstrate the dependency
on the choice of K. Figure 2 (right) plots the run-
ning times versus cardinality on the gene expression
data. The PathSPCA curve is well explained by the
incremental forward greedy search. SPCA is harder to
analyze, due to its active set optimization scheme: at
each iteration of the algorithm, active features are re-
examined and possibly excluded, but might be added

again later on. emPCA is only marginally affected by
the choice of K, but shows an increased number of
EM iterations for 10 ≤ K ≤ 25, which was observed
on other data sets as well.

5.2. Non-Negative PCA

The impact of the non-negativity constraint on the
explained variance depends on the sign structure of
w∗. Because the first principal component for the face
image data happens to lie in the non-negative orthant,
we projected the data onto its orthogonal subspace
such that the constraint becomes active. Figure 3 (left)
shows the variance versus cardinality trade-off curves
for non-negative sparse PCA. For NSPCA, the sparsity
penalty β was determined for each K using bisection
search, which was aborted when the relative length of
the parameter search interval was below a threshold of
10−5. Both the variance achieved and the number of
cardinalities for which a solution was found strongly
depend on the value of α, which corresponds to a unit
norm penalty (for the case of a single component).
For smaller values of α the performance of NSPCA is
comparable to emPCA, but only solutions close to the
full cardinality are found. Increasing the magnitude
of α makes it possible to sweep the whole cardinality
path, but the performance degrades.

Because both algorithms are initialized randomly, we
chose the best result after ten restarts. Running times
for both methods showed no strong dependency on K.
Average times for K ∈ {1, . . . , 100} were 0.4s for em-
PCA (0.15s standard deviation) and 24s for NSPCA
(14.7s standard deviation).

We already motivated in section 4 that requiring or-
thogonality between several non-negative components
can be restrictive. If the first PC happens to lie in the
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non-negative orthant, the constraints have to be mod-
ified such that more than one component can satisfy
them. We have explored the following two strategies:

1. Enforcing orthogonality, but constraining the car-
dinality of each component.

2. Relaxing the orthogonality constraint, by enforc-
ing a minimum angle between components in-
stead.

There is a methodological difficulty in comparing the
performance of NSPCA and emPCA. The former max-
imizes cumulative variance of all components jointly,
while our algorithm computes them sequentially, max-
imizing the variance under the constraint that subse-
quent components are orthogonal to previous ones (see
section 4). We therefore expect emPCA to capture
more variance in the first components, while NSPCA
is expected to capture larger cumulative variance. Fig-
ure 3 (middle) shows the results of applying the first
strategy to the face image data. The NSPCA sparsity
penalty β was tuned to achieve a joint cardinality of
200 for all components. For emPCA we distributed
the active features evenly among components by set-
ting K = 20 for all of them. As in figure 3 (left),
emPCA captures significantly more of the variance,
suggesting that the way NSPCA incorporates sparsity
seriously degrades performance. This observation was
confirmed for various values of K and L.

Finally, figure 3 (right) reports results for the second
strategy, where a minimum angle of 85 degrees was
enforced between components. Here, the complemen-
tary objectives of NSPCA and emPCA match with our
prior expectations. Again, various values for L and
minimum angle lead to essentially the same behavior.

5.3. Unsupervised Gene Selection

We apply emPCA to select a subset of genes of the
leukemia data, and measure subset relevance by fol-
lowing the evaluation methodology of Varshavsky et al.
(2006). For each gene subset, we cluster the data us-
ing k-means (k = 3), and compare the cluster assign-
ments to the true labeling of the data, which differenti-
ates between three types of leukemia (ALL, AML and
MLL). Agreement is measured using Jaccard scores
(Varshavsky et al., 2006), where a value of one signi-
fies perfect correspondence between cluster assignment
and label. We compare emPCA to simple ranking of
the CE criterion as proposed by the authors, which
has shown competitive performance to other popular
gene selection methods. Figure 4 shows that selecting
70 genes according to the first non-negative sparse PC
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Figure 4. Mean and standard deviation for Jaccard scores
after subset selection and k-means clustering (k = 3), av-
eraged over 100 random initializations of the centroids (see
text). A small amount of jitter has been added to better
distinguish error bars.

results in a significantly better Jaccard score than a
clustering of the full data set.

6. Conclusions

We have presented a novel algorithm for constrained
principal component analysis, based on expectation-
maximization for probabilistic PCA. Our method is
applicable to a broad range of problems: it includes
sparsity, non-negativity or both kinds of constraints,
it has an efficient formulation for N > D and D � N
type of data, and it enforces either strict or quasi-
orthogonality between successive components. Desired
sparsity is directly specified in the number of non-
zero elements, instead of a bound on the l1 norm
of the vector. We have demonstrated on popular
data sets from biology and computer vision that our
method achieves competitive results for sparse prob-
lems, and that it shows significant improvements for
non-negative sparse problems. Its unmatched compu-
tational efficiency enables a constrained principal com-
ponent analysis of substantially larger data sets and
lower requirements on available computation time.

Although our algorithm is rooted in expectation-
maximization for a generative model of PCA, con-
straints are added at the optimization stage. In the fu-
ture, we will study how to include them in the model it-
self, which would enable a Bayesian analysis and data-
driven determination of the proper sparsity and num-
ber of components. Secondly, we intend to examine
whether our algorithm can be extended to the related
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Figure 3. Left: Variance versus cardinality trade-off curves for non-negative sparse PCA methods on face image data.
For NSPCA, the sparsity penalty β was determined using bisection search (see text). Values indicate better result
after ten random restarts. Middle: Cumulative variance versus number of orthogonal components. For NSPCA, β
was tuned to achieve a joint cardinality of 200 for all components. For emPCA, we set K = 20 for every component.
emPCA (without non-negativity constraints) is plotted for reference. Right: Cumulative variance versus number of
quasi-orthogonal components. A minimum angle of 85 degrees was enforced between components.

problem of constrained linear discriminant analysis.

A Matlab implementation of emPCA is available
at http://www.inf.ethz.ch/personal/chrsigg/
icml2008.
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Abstract

We present a reinforcement learning architec-
ture, Dyna-2, that encompasses both sample-
based learning and sample-based search, and
that generalises across states during both
learning and search. We apply Dyna-2 to
high performance Computer Go. In this do-
main the most successful planning methods
are based on sample-based search algorithms,
such as UCT, in which states are treated
individually, and the most successful learn-
ing methods are based on temporal-difference
learning algorithms, such as Sarsa, in which
linear function approximation is used. In
both cases, an estimate of the value func-
tion is formed, but in the first case it is
transient, computed and then discarded af-
ter each move, whereas in the second case it
is more permanent, slowly accumulating over
many moves and games. The idea of Dyna-2
is for the transient planning memory and the
permanent learning memory to remain sepa-
rate, but for both to be based on linear func-
tion approximation and both to be updated
by Sarsa. To apply Dyna-2 to 9×9 Computer
Go, we use a million binary features in the
function approximator, based on templates
matching small fragments of the board. Us-
ing only the transient memory, Dyna-2 per-
formed at least as well as UCT. Using both
memories combined, it significantly outper-
formed UCT. Our program based on Dyna-2
achieved a higher rating on the Computer Go
Online Server than any handcrafted or tradi-
tional search based program.

Appearing in Proceedings of the 25 th International Confer-
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1. Introduction

Reinforcement learning can be subdivided into two
fundamental problems: learning and planning. Infor-
mally, the goal of learning is for an agent to improve its
policy from its interactions with the environment. The
goal of planning is for an agent to improve its policy
without further interaction with its environment. The
agent can deliberate, reason, ponder, think or search,
so as to find the best behaviour in the available com-
putation time. Sample-based methods can be applied
to both problems. During learning, the agent samples
experience from the real world: it executes an action at
each time-step and observes its consequences. During
planning, the agent samples experience from a model
of the world: it simulates an action at each computa-
tional step and observes its consequences. We propose
that an agent can both learn and plan effectively using
sample-based reinforcement learning algorithms. We
use the game of 9 × 9 Go as an example of a large-
scale, high-performance application in which learning
and planning both play significant roles.

In the domain of Computer Go, the most success-
ful learning methods have used sample-based rein-
forcement learning to extract domain knowledge from
games of self-play (Schraudolph et al., 1994; Dahl,
1999; Enzenberger, 2003; Silver et al., 2007). The
value of a position is approximated by a multi-layer
perceptron, or a linear combination of binary features,
that form a compact representation of the state space.
Temporal difference learning is used to update the
value function, slowly accumulating knowledge from
the complete history of experience.

The most successful planning methods use sample-
based search to identify the best move in the current
position. 9× 9 Go programs based on the UCT algo-
rithm (Kocsis & Szepesvari, 2006) have now achieved
master level (Gelly & Silver, 2007; Coulom, 2007). The
UCT algorithm begins each new move with no domain
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knowledge, but rapidly learns the values of positions
in a temporary search tree. Each state in the tree
is explicitly represented, and the value of each state
is learned by Monte-Carlo simulation, from games of
self-play that start from the current position.

In this paper we develop an architecture, Dyna-2, that
combines these two approaches. Like the Dyna archi-
tecture (Sutton, 1990), the agent updates a value func-
tion both from real experience, and from simulated ex-
perience that is sampled using a model of the world.
The new idea is to maintain two separate memories: a
permanent learning memory that is updated from real
experience; and a transient planning memory that is
updated from simulated experience. Both memories
use linear function approximation to form a compact
representation of the state space, and both memories
are updated by temporal-difference learning.

2. Reinforcement Learning

We consider sequential decision-making processes, in
which at each time-step t the agent receives a state st,
executes an action at according to its current policy
πt(s, a), and then receives a scalar reward rt+1.

2.1. Sample-Based Learning

Most efficient reinforcement learning methods use a
value function as an intermediate step for computing
a policy. In episodic tasks the action-value function
Qπ(s, a) is the expected total reward from state s after
taking action a and then following policy π.

In large domains, it is not possible or practical to learn
a value for each individual state. In this case, it is
necessary to approximate the value function using fea-
tures φ(s, a) and parameters θ. A simple and success-
ful approach (Sutton, 1996) is to use a linear function
approximation Q(s, a) = φ(s, a)T θ. We note that ta-
ble lookup is a special case of linear function approx-
imation, using binary features φ(s, a) = e(s, a), where
e(s, a) is a unit vector with a one in the single compo-
nent corresponding to (s, a) and zeros elsewhere.

The TD(λ) algorithm (Sutton, 1988) estimates the
value of the current state from the value of subse-
quent states. The λ parameter determines the tem-
poral span over which values are updated. At one ex-
treme, TD(0) bootstraps the value of a state from its
immediate successor. At the other extreme, TD(1)
updates the value of a state from the final return;
it is equivalent to Monte-Carlo evaluation (Sutton &
Barto, 1998). TD(λ) can be incrementally computed
by maintaining a vector of eligibility traces zt.

The Sarsa algorithm (Rummery & Niranjan, 1994)
combines temporal difference evaluation with policy
improvement. An action-value function is estimated
by the TD(λ) algorithm, and the policy is improved
by selecting actions according to an ε-greedy policy.
The action-value function is updated from each tuple
(s, a, r, s′, a′) of experience, using the TD(λ) update
rule,

δt = rt+1 + Q(st+1, at+1)−Q(st, at) (1)

zt = λzt−1 + φ(st, at) (2)

θt = θt−1 + αδtzt(s) (3)

2.2. Sample-Based Search

Sample-based planning applies sample-based reinforce-
ment learning methods to simulated experience. This
requires a sample model of the world: a state tran-
sition generator At(s, a) ∈ S × A 7→ S and reward
generator Bt(s, a) ∈ S × A 7→ R. The effectiveness
of sample-based planning depends on the accuracy of
the model (Paduraru, 2007). In sample-based search,
experience is simulated from the real state s, so as to
identify the best action from this state.

Monte-Carlo simulation is a simple but effective
method for sample-based search. Multiple episodes
are simulated, starting from the real state s, and fol-
lowing a random policy. The action-values Q(s, a) are
estimated by the empirical average of the returns of
all episodes in which action a was taken from the real
state s. After simulation is complete, the agent selects
the greedy action argmaxa Q(s, a), and proceeds to the
next real state.

Monte-Carlo tree search constructs a search tree con-
taining all state–action pairs that have been visited
by the agent. Each simulation consists of two dis-
tinct phases: greedy action selection while within the
tree, and then random action selection until termi-
nation. If a simulated state s is fully represented in
the search tree, i.e. all actions from s have already
been tried, then the agent selects the greedy action
argmaxa Q(s, a). Otherwise, the agent selects actions
at random. After each simulation, the action-values
Q(s, a) of all states and actions experienced in the
episode are updated to the empirical average return
following each state–action pair. In practice, only one
new state–action pair is added per episode, resulting
in a tree-like expansion.

The UCT algorithm (Kocsis & Szepesvari, 2006) im-
proves the greedy action selection in Monte-Carlo tree
search. Each state of the search tree is treated as a
multi-armed bandit, and actions are chosen using the
UCB algorithm for balancing exploration and exploita-
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tion (Auer et al., 2002).

2.3. Dyna

The Dyna architecture (Sutton, 1990) combines
sample-based learning with sample-based planning.
The agent learns a model of the world from real ex-
perience, and updates its action-value function from
both real and simulated experience. Before each real
action is selected, the agent performs some sample-
based planning. For example, the Dyna-Q algorithm
remembers all previous states, actions and transitions.
During planning, experience is simulated by sampling
states, actions and transitions from the empirical dis-
tribution. A Q-learning update is applied to update
the action-value function after each sampled transi-
tion, and after each real transition.

2.4. Tracking

Traditional learning methods focus on finding a single
best solution to the learning problem. In reinforcement
learning one may seek an algorithm that converges on
the optimal value function (or optimal policy). How-
ever, in large domains the agent may not have suffi-
cient resources to perfectly represent the optimal value
function. In this case we can actually achieve better
performance by tracking the current situation rather
than converging on the best overall parameters. The
agent can specialise its value function to its current re-
gion of the state space, and update its representation
as it moves through the state space. The potential for
specialisation means that tracking methods may out-
perform converging methods, even in stationary do-
mains (Sutton et al., 2007).

3. Permanent and Transient Memories

We define a memory to be the set of features and
corresponding parameters used by an agent to esti-
mate the value function. In our architecture, the agent
maintains two distinct memories: a permanent mem-
ory (φ, θ) updated during sample-based learning, and a
transient memory (φ̄, θ̄) updated during sample-based
search. The value function is a linear combination of
the transient and permanent memories, such that the
transient memory tracks a local correction to the per-
manent memory,

Q(s, a) = φ(s, a)T θ (4)

Q̄(s, a) = φ(s, a)T θ + φ̄(s, a)T θ̄ (5)

where Q(s, a) is a permanent value function, and
Q̄(s, a) is a combined value function.

We refer to the distribution of states and actions en-

countered during real experience as the learning distri-
bution, and the distribution encountered during simu-
lated experience as the search distribution. The per-
manent memory is updated from the learning distribu-
tion and converges on the best overall representation
of the value function, based on the agent’s past ex-
perience. The transient memory is updated from the
search distribution and tracks the local nuances of the
value function, based on the agent’s expected future
experience.

4. Dyna-2

Algorithm 1 Episodic Dyna-2

1: procedure Learn

2: Initialise A,B . Transition and reward models
3: θ ← 0 . Clear permanent memory
4: loop

5: s← s0 . Start new episode
6: θ̄ ← 0 . Clear transient memory
7: z ← 0 . Clear eligibility trace
8: Search(s)
9: a← π(s; Q̄) . e.g. ε-greedy

10: while s is not terminal do

11: Execute a, observe reward r, state s′

12: (A,B) ← UpdateModel(s, a, r, s′)
13: Search(s′)
14: a′ ← π(s′; Q̄)
15: δ ← r + Q(s′, a′)−Q(s, a) . TD-error
16: θ ← θ + α(s, a)δz . Update weights
17: z ← λz + φ . Update eligibility trace
18: s← s′, a← a′

19: end while

20: end loop

21: end procedure

22: procedure Search(s)
23: while time available do

24: z̄ ← 0 . Clear eligibility trace
25: a← π̄(s; Q̄) . e.g. ε-greedy
26: while s is not terminal do

27: s′ ← A(s, a) . Sample transition
28: r ← B(s, a) . Sample reward
29: a′ ← π̄(s′; Q̄)
30: δ̄ ← r + Q̄(s′, a′)− Q̄(s, a) . TD-error
31: θ̄ ← θ̄ + ᾱ(s, a)δ̄z̄ . Update weights
32: z̄ ← λ̄z̄ + φ̄ . Update eligibility trace
33: s← s′, a← a′

34: end while

35: end while

36: end procedure
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The Dyna-2 architecture can be summarised as Dyna
with Sarsa updates, permanent and transient mem-
ories, and linear function approximation (see Algo-
rithm 1). The agent updates its permanent memory
from real experience. Before selecting a real action,
the agent executes a sample-based search from the
current state. The search procedure simulates com-
plete episodes from the current state, sampled from
the model, until no more computation time is avail-
able. The transient memory is updated during these
simulations to learn a local correction to the perma-
nent memory; it is cleared at the beginning of each
real episode.

A particular instance of Dyna-2 must specify learn-
ing parameters: a policy π to select real actions; a
set of features φ for the permanent memory; a tempo-
ral difference parameter λ; and a learning rate α(s, a).
Similarly, it must specify the equivalent search param-
eters: a policy π̄ to select actions during simulation; a
set of features φ̄ for the transient memory; a temporal
difference parameter λ̄; and a learning rate ᾱ(s, a).

The Dyna-2 architecture subsumes a large family of
learning and search algorithms. If there is no transient
memory, φ̄ = ∅, then the search procedure has no effect
and may be skipped. This results in the linear Sarsa
algorithm.

If there is no permanent memory, φ = ∅, then Dyna-2
reduces to a sample-based search algorithm. For exam-
ple, Monte-Carlo tree search is achieved by choosing
table lookup φ̄(s, a) = e(s, a)1; using a simulation pol-
icy that is greedy within the tree, and then uniform
random until termination; and selecting learning pa-
rameters λ̄ = 1 and ᾱ(s, a) = 1/n(s, a), where n(s, a)
counts the number of times that action a has been
selected in state s. The UCT algorithm replaces the
greedy phase of the simulation policy with the UCB
rule for action selection.

Finally, we note that real experience may be accumu-
lated offline prior to execution. Dyna-2 may be exe-
cuted on any suitable training environment (e.g. a he-
licopter simulator) before it is applied to real data (e.g.
a real helicopter). The permanent memory is updated
offline, but the transient memory is updated online.
Dyna-2 provides a principled mechanism for combin-
ing offline and online knowledge(Gelly & Silver, 2007);
the permanent memory provides prior knowledge and
a baseline for fast learning. Our examples of Dyna-2
in Computer Go operate in this manner.

1The number of entries in the table can increase over
time, to give a tree-like expansion.

5. Dyna-2 in Computer Go

In domains with spatial coherence, binary features can
be constructed to exploit spatial structure at multiple
levels (Sutton, 1996). The game of Go exhibits strong
spatial coherence: expert players describe positions us-
ing a broad vocabulary of shapes (Figure 1a). A simple
way to encode basic shape knowledge is through a large
set of local shape features which match a particular
configuration within a small region of the board (Silver
et al., 2007). We define the feature vector φsquare(m) to
be the vector of local shape features for m×m square
regions, for all possible configurations and square lo-
cations. For example, Figure 1a shows several local
shape features of size 3×3. Combining local shape fea-
tures of different sizes builds a representation spanning
many levels of generality: we define the multi-level fea-
ture vector φsquare(m,n) = [φsquare(m); ...; φsquare(n)].
In 9× 9 Go there are nearly a million φsquare(1,3) fea-
tures, about 200 of which are non-zero at any given
time.

Local shape features can be used as a permanent mem-
ory, to represent general domain knowledge. For exam-
ple, local shape features can be learned offline, using
temporal difference learning and training by self-play
(Silver et al., 2007; Gelly & Silver, 2007). However,
local shape features can also be used as a transient
memory2, by learning online from simulations from
the current state. The representational power of lo-
cal shape features is significantly increased when they
can track the short-term circumstances (Sutton et al.,
2007). A local shape may be bad in general, but good
in the current situation (Figure 1b). By training from
simulated experience, starting from the current state,
we can focus learning on what works well now.

We apply the Dyna-2 algorithm to 9 × 9 Computer
Go using local shape features φ(s, a) = φ̄(s, a) =
φsquare(1,3)(s◦a), where s◦a indicates the afterstate fol-
lowing action a in state s (Sutton & Barto, 1998). We
use a self-play model, an ε-greedy policy, and default
parameters of λ = λ̄ = 0.4, α(s, a) = 0.1/|φ(s, a)|,
ᾱ(s, a) = 0.1/|φ̄(s, a)|, and ε = 0.3. We modify the
Dyna-2 algorithm slightly to utilise the logistic func-
tion and to minimise a cross-entropy loss function, by
replacing the value function approximation in (4) and
(5),

Q(s, a) = σ(φ(s, a)T θ) (6)

Q̄(s, a) = σ(φ(s, a)T θ + φ̄(s ◦ a)T θ̄) (7)

where σ(x) = 1
1+e−x is the logistic function.

2Symmetric local shape features share weights in the
permanent memory, but not in the transient memory.
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Figure 1. a) Examples of 3 × 3 local shape features, matching common shapes known to Go players: the one-point jump

(A), hane (B), net (C) and turn (D). b) The empty triangle (E) is normally considered a bad shape; it can be learned
by the permanent memory. However, in this position the empty triangle makes a good shape, known as guzumi; it can
be learned by the transient memory. c) White threatens to cut blacks stones apart at F and G. 2 × 2 and 3 × 3 local
shape features can represent the local consequences of cutting at F and G respectively. d) A position encountered when
searching from (c): Dyna-2 is able to generalise, using local shape features in its transient memory, and can re-use its
knowledge about cutting at F and G. UCT considers each state uniquely, and must re-search each continuation.

In addition we ignore local shape features consisting
of entirely empty intersections; we clear the eligibility
trace for exploratory actions; and we use the default
policy described in (Gelly et al., 2006) after the first
D = 10 moves of each simulation. We refer to the com-
plete algorithm as Dyna-2-Shape, and implement this
algorithm in our program RLGO, which executes al-
most 2000 complete episodes of simulation per second
on a 3 GHz processor.

For comparison, we implemented the UCT algorithm,
based on the description in (Gelly et al., 2006). We use
an identical default policy to the Dyna-2-Shape algo-
rithm, to select moves when outside of the search tree,
and a first play urgency of 1. We evaluate both pro-
grams by running matches against GnuGo, a standard
benchmark program for Computer Go.

We compare the performance of local shape features in
the permanent memory alone; in the transient memory
alone; and in both the permanent and transient mem-
ories. We also compare the performance of local shape
features of different sizes (see Figure 3). Using only the
transient memory, Dyna-2-Shape outperformed UCT
by a small margin. Using Dyna-2-Shape with both
permanent and transient memories provided the best
results, and outperformed UCT by a significant mar-
gin.

Local shape features would normally be considered
naive in the domain of Go: the majority of shapes and
tactics described in Go textbooks span considerably
larger regions of the board than 3×3 squares. Indeed,
when used only in the permanent memory, the local
shape features win just 5% of games against GnuGo.
However, when used in the transient memory, even
the φsquare(1,2) features achieve performance compa-
rable to UCT. Unlike UCT, the transient memory can

Figure 2. Winning rate of RLGO against GnuGo 3.7.10
(level 0) in 9×9 Go, using Dyna-2-Shape with 1000 simula-
tions/move, for different values of λ̄. Each point represents
the winning percentage over 1000 games.

generalise in terms of local responses: for example, it
quickly learns the importantance of black connecting
when white threatens to cut (Figures 1c and 1d).

We also study the effect of the temporal difference
parameter λ̄ in the search procedure (see Figure 2).
We see that bootstrapping (λ̄ < 1) provides signifi-
cant benefits. Previous work in sample-based search
has largely been restricted to Monte-Carlo methods
(Tesauro & Galperin, 1996; Kocsis & Szepesvari, 2006;
Gelly et al., 2006; Gelly & Silver, 2007; Coulom, 2007).
Our results suggest that generalising these approaches
to temporal difference learning methods may provide
significant benefits when value function approximation
is used.
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Figure 3. Winning rate of RLGO against GnuGo 3.7.10 (level 0) in 9 × 9 Go, using Dyna-2-Shape for different simula-
tions/move. Local shape features are used in either the permanent memory (dotted lines), the transient memory (dashed
lines), or both memories (solid lines). The permanent memory is trained offline from 100,000 games of self-play. Local
shape features varied in size from 1 × 1 up to 3 × 3. Each point represents the winning percentage over 1000 games.

6. Dyna-2 and Heuristic Search

In games such as Chess, Checkers and Othello, master
level play has been achieved by combining a heuristic
evaluation function with α-β search. The heuristic is
typically approximated by a linear combination of bi-
nary features, and can be learned offline by temporal-
difference learning and self-play (Baxter et al., 1998;
Schaeffer et al., 2001; Buro, 1999). Similarly, in the
permanent memory of our architecture, the value func-
tion is approximated by a linear combination of binary
features, learned offline by temporal-difference learn-
ing and self-play (Silver et al., 2007). Thus it is natu-
ral to compare Dyna-2 with approaches based on α-β
search.

Dyna-2 combines a permanent memory with a tran-
sient memory, using sample-based search. In contrast,
the classical approach uses the permanent memory
Q(s, a) as an evaluation function for α-β search. A
hybrid approach is also possible, in which the com-
bined value function Q̄(s, a) is used as an evaluation
function for α-β search, including both permanent and
transient memories. This can be viewed as searching
with a dynamic evaluation function that evolves ac-
cording to the current context. We compare all three
approaches in Figure 4.

Dyna-2 outperformed classical search by a wide mar-
gin. In the game of Go, the consequences of a par-
ticular move (for example, playing good shape as in
Figure 1a) may not become apparent for tens or even
hundreds of moves. In a full-width search these conse-
quences remain beyond the horizon, and will only be
recognised if represented by the evaluation function.
In contrast, sample-based search only uses the perma-
nent memory as an initial guide, and learns to identify
the consequences of particular patterns in the current
situation. The hybrid approach successfully combines
this knowledge with the precise lookahead provided by
full-width search.

Using the hybrid approach, our program RLGO estab-
lished an Elo rating of 2130 on the Computer Go On-
line Server, more than any handcrafted or traditional
search program.

7. Related work

The Computer Go program MoGo uses the heuris-
tic UCT algorithm (Gelly & Silver, 2007) to achieve
dan-level performance. This algorithm can be viewed
as an instance of Dyna-2 with local shape features
in the permanent memory, and table lookup in the
transient memory. It uses a step-size of ᾱ(s, a) =
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Figure 4. Winning rate of RLGO against GnuGo 3.7.10 (level 0) in 9 × 9 Go, using Dyna-2-Shape. A full-width α-β
search is used for move selection, using a value function based on either the permanent memory (dotted lines), or both
memories (solid lines). A 1-ply search corresponds to the usual move selection procedure in Dyna-2. For comparison,
a 5-ply search takes approximately the same computation time as 1000 simulations. The permanent memory is trained
offline from 100,000 games of self-play. Each point represents the winning percentage over 1000 games.

1/(nprior(s, a)+n(s, a)). The confidence in the perma-
nent memory is specified by nprior in terms of equiva-
lent experience, i.e. the worth of the permanent mem-
ory, measured in episodes of simulated experience.

In addition, MoGo uses the Rapid Action Value Esti-
mate (RAVE) algorithm in its transient memory (Gelly
& Silver, 2007). This algorithm can also be viewed as
a special case of the Dyna-2 architecture, but using
features of the full history ht and not just the current
state st and action at.

We define a history to be a sequence of states and
actions ht = s1a1...stat, including the current action
at. An individual RAVE feature φRAV E

sa (h) is a binary
feature of the history h that matches a particular state
s and action a. The binary feature is on iff s occurs in
the history and a matches the current action at,

φRAV E
sa (s1a1...stat) =

{

1 if at = a and ∃i s.t. si = s;

0 otherwise.

(8)

Thus the RAVE algorithm provides a simple abstrac-
tion over classes of related histories. The implemen-
tation of RAVE used in MoGo makes two additional
simplifications. First, MoGo estimates a value for each

RAVE feature independently of any other RAVE fea-
tures, set to the average outcome of all simulations in
which the RAVE feature φRAV E

sa is active. Second, for
action selection, MoGo only evaluates the single RAVE
feature φRAV E

stat
corresponding to the current state st

and candidate action at. This somewhat reduces the
generalisation power of RAVE, but allows for a partic-
ularly efficient update procedure.

8. Conclusion

Reinforcement learning is often considered a slow pro-
cedure. Outstanding examples of success have, in the
past, learned a value function from months of offline
computation. However, this does not need to be the
case. Many reinforcement learning methods are fast,
incremental, and scalable. When such a reinforcement
learning algorithm is applied to simulated experience,
using a transient memory, it becomes a high perfor-
mance search algorithm. This search procedure can
be made more efficient by generalising across states;
and it can be combined with long-term learning, using
a permanent memory.

Monte-Carlo tree search algorithms, such as UCT,
have recently received much attention. However, this
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is just one example of a sample-based search algorithm.
There is a spectrum of algorithms that vary from table-
lookup to function approximation; from Monte-Carlo
learning to bootstrapping; and from permanent to
transient memories. Function approximation provides
rapid generalisation in large domains; bootstrapping
is advantageous in the presence of function approx-
imation; and permanent and transient memories al-
low general knowledge about the past to be combined
with specific knowledge about the expected future. By
varying these dimensions, we have achieved a signifi-
cant improvement over the UCT algorithm.

In 9×9 Go, programs based on extensions to the UCT
algorithm have achieved dan-level performance. Our
program RLGO, based on the Dyna-2 architecture, is
the strongest program not based on UCT, and suggests
that the full spectrum of sample-based search meth-
ods merits further investigation. For larger domains,
such as 19× 19 Go, generalising across states becomes
increasingly important. Combining state abstraction
with sample-based search is perhaps the most promis-
ing avenue for achieving human-level performance in
this challenging domain.
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Abstract

Inspired by co-training, many multi-view
semi-supervised kernel methods implement
the following idea: find a function in each of
multiple Reproducing Kernel Hilbert Spaces
(RKHSs) such that (a) the chosen functions
make similar predictions on unlabeled exam-
ples, and (b) the average prediction given
by the chosen functions performs well on
labeled examples. In this paper, we con-
struct a single RKHS with a data-dependent
“co-regularization” norm that reduces these
approaches to standard supervised learn-
ing. The reproducing kernel for this RKHS
can be explicitly derived and plugged into
any kernel method, greatly extending the
theoretical and algorithmic scope of co-
regularization. In particular, with this devel-
opment, the Rademacher complexity bound
for co-regularization given in (Rosenberg
& Bartlett, 2007) follows easily from well-
known results. Furthermore, more refined
bounds given by localized Rademacher com-
plexity can also be easily applied. We pro-
pose a co-regularization based algorithmic al-
ternative to manifold regularization (Belkin
et al., 2006; Sindhwani et al., 2005a) that
leads to major empirical improvements on
semi-supervised tasks. Unlike the recently
proposed transductive approach of (Yu et al.,
2008), our RKHS formulation is truly semi-
supervised and naturally extends to unseen
test data.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

1. Introduction

In semi-supervised learning, we are given a few la-
beled examples together with a large collection of un-
labeled data from which to estimate an unknown tar-
get function. Suppose we have two hypothesis spaces,
H1 and H2, each of which contains a predictor that
well-approximates the target function. We know that
predictors that agree with the target function also agree
with each other on unlabeled examples. Thus, any pre-
dictor in one hypothesis space that does not have an
“agreeing predictor” in the other can be safely elimi-
nated from consideration. Due to the resulting reduc-
tion in the complexity of the joint learning problem,
one can expect improved generalization performance.

These conceptual intuitions and their algorithmic in-
stantiations together constitute a major line of work
in semi-supervised learning. One of the earliest ap-
proaches in this area was “co-training” (Blum &
Mitchell, 1998), in which H1 and H2 are defined
over different representations, or “views”, of the data,
and trained alternately to maximize mutual agree-
ment on unlabeled examples. More recently, sev-
eral papers have formulated these intuitions as joint
complexity regularization, or co-regularization, be-
tween H1 and H2 which are taken to be Reproducing
Kernel Hilbert Spaces (RKHSs) of functions defined
on the input space X . Given a few labeled exam-
ples {(xi, yi)}i∈L and a collection of unlabeled data
{xi}i∈U , co-regularization learns a prediction func-
tion,

f⋆(x) =
1

2

(
f1

⋆ (x) + f2
⋆ (x)

)
(1)

where f1
⋆ ∈ H1 and f2

⋆ ∈ H2 are obtained by solving
the following optimization problem,

(f1
⋆ , f2

⋆ ) = argmin
f1∈H1,f2∈H2

γ1||f1||2H1 + γ2||f2||2H2

+µ
∑

i∈U

[f1(xi) − f2(xi)]
2 +

∑

i∈L

V (yi, f(xi)) (2)

976



An RKHS for Multi-View Learning and Manifold Co-Regularization

In this objective function, the first two terms measure
complexity by the RKHS norms ‖ · ‖2

H1
and ‖ · ‖2

H2

in H1 and H2 respectively, the third term enforces
agreement among predictors on unlabeled examples,
and the final term evaluates the empirical loss of the
mean function f = (f1 + f2)/2 on the labeled data
with respect to a loss function V (·, ·). The real-valued
parameters γ1, γ2, and µ allow different tradeoffs be-
tween the regularization terms. L and U are index sets
over labeled and unlabeled examples respectively.

Several variants of this formulation have been pro-
posed independently and explored in different con-
texts: linear logistic regression (Krishnapuram et al.,
2005), regularized least squares classification (Sind-
hwani et al., 2005b), regression (Brefeld et al., 2006),
support vector classification (Farquhar et al., 2005),
Bayesian co-training (Yu et al., 2008), and generaliza-
tion theory (Rosenberg & Bartlett, 2007).

The main theoretical contribution of this paper is the
construction of a new “co-regularization RKHS,” in
which standard supervised learning recovers the so-
lution to the co-regularization problem of Eqn. 2.
Theorem 2.2 presents the RKHS and gives an ex-
plicit formula for its reproducing kernel. This “co-
regularization kernel” can be plugged into any stan-
dard kernel method giving convenient and immediate
access to two-view semi-supervised techniques for a
wide variety of learning problems. Utilizing this ker-
nel, in Section 3 we give much simpler proofs of the
results of (Rosenberg & Bartlett, 2007) concerning
bounds on the Rademacher complexity and general-
ization performance of co-regularization. As a more
algorithmic application, in Section 4 we consider the
semi-supervised learning setting where examples live
near a low-dimensional manifold embedded in a high
dimensional ambient euclidean space. Our approach,
manifold co-regularization (CoMR), gives major em-
pirical improvements over the manifold regularization
(MR) framework of (Belkin et al., 2006; Sindhwani
et al., 2005a).

The recent work of (Yu et al., 2008) considers a similar
reduction. However, this reduction is strictly trans-
ductive and does not allow prediction on unseen test
examples. By contrast, our formulation is truly semi-
supervised and provides a principled out-of-sample ex-
tension.

2. An RKHS for Co-Regularization

We start by reformulating the co-regularization opti-
mization problem, given in Eqn. 1 and Eqn. 2, in the
following equivalent form where we directly solve for

the final prediction function f⋆:

f⋆ = argmin
f

min
f=f1+f2

f1∈H1,f2∈H2

γ1

2
||f1||2H1 +

γ2

2
||f2||2H2 +

µ

2

∑

i∈U

[f1(xi) − f2(xi)]
2 +

1

2

∑

i∈L

V

(

yi,
1

2
f(xi)

)

(3)

Consider the sum space of functions, H̃, given by,

H̃ = H1 ⊕H2 (4)

= {f |f(x) = f1(x) + f2(x), f1 ∈ H1, f2 ∈ H2}

and impose on it a data-dependent norm,

‖f‖2
H̃

= min
f=f1+f2

f1∈H1,f2∈H2

γ1‖f1‖2
H1 + γ2‖f2‖2

H2

+µ
∑

i∈U

[
f1(xi) − f2(xi)

]2
(5)

The minimization problem in Eqn. 3 can then be posed
as standard supervised learning in H̃ as follows,

f⋆ = argmin
f∈H̃

γ‖f‖2
H̃

+
1

2

∑

i∈L

V

(

yi,
1

2
f(xi)

)

(6)

where γ = 1
2 . Of course, this reformulation is not

really useful unless H̃ itself is a valid new RKHS. Let
us recall the definition of an RKHS.

Definition 2.1 (RKHS). A reproducing kernel Hilbert
space (RKHS) is a Hilbert Space F that possesses a
reproducing kernel, i.e., a function k : X × X → R
for which the following hold: (a) k(x, .) ∈ F for all
x ∈ X , and (b) 〈f, k(x, .)〉F = f(x) for all x ∈ X and
f ∈ F , where 〈·, ·〉F denotes inner product in F .

In Theorem 2.2, we show that H̃ is indeed an RKHS,
and moreover we give an explicit expression for its re-
producing kernel. Thus, it follows that although the
domain of optimization in Eqn. 6 is nominally a func-
tion space, by the Representer Theorem we can express
it as a finite-dimensional optimization problem.

2.1. Co-Regularization Kernels

Let H1,H2 be RKHSs with kernels given by k1, k2 re-
spectively, and let H̃ = H1 ⊕H2 as defined in Eqn. 4.
We have the following result.

Theorem 2.2. There exists an inner product on H̃
for which H̃ is a RKHS with norm defined by Eqn. 5
and reproducing kernel k̃ : X × X → R given by,

k̃(x,z) = s(x,z) − µdT
xHdz (7)
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where s(x,z) is the (scaled) sum of kernels given by,

s(x,z) = γ−1
1 k1(x,z) + γ−1

2 k2(x,z),

and dx is a vector-valued function that depends on the
difference in views measured as,

dx = γ−1
1 k1

Ux − γ−1
2 k2

Ux,

where ki
Ux =

[
ki(x,xj), j ∈ U

]T
, and H is a positive-

definite matrix given by H = (I+µS)−1. Here, S is the
gram matrix of s(·, ·), i.e., S =

(
γ−1
1 K1

UU + γ−1
2 K2

UU

)

where Ki
UU = ki(U,U) denotes the Gram matrices of

ki over unlabeled examples.

We give a rigorous proof in Appendix A.

2.2. Representer Theorem

Theorem 2.2 says that H̃ is a valid RKHS with kernel
k̃. By the Representer Theorem, the solution to Eqn.6
is given by

f⋆(x) =
∑

i∈L

αik̃(xi,x) (8)

The corresponding components in H1,H2 can also be
retrieved as,

f1
⋆ (x) =

∑

i∈L

αiγ
−1
1

(
k1(xi,x) − µdT

xi
Hk1

Ux

)
(9)

f2
⋆ (x) =

∑

i∈L

αiγ
−1
2

(
k2(xi,x) + µdT

xi
Hk2

Ux

)
(10)

Note that H1 and H2 are defined on the same do-
main X so that taking the mean prediction is meaning-
ful. In a two-view problem one may begin by defining
H1,H2 on different view spaces X 1,X 2 respectively.
Such a problem can be mapped to our framework by
extending H1,H2 to X = X 1 × X 2 by re-defining
f1(x1,x2) = f1(x1), f1 ∈ H1; similarly for H2. While
we omit these technical details, it is important to note
that in such cases, Eqns. 9 and 10 can be reinterpreted
as predictors defined on X 1,X 2 respectively.

3. Bounds on Complexity and

Generalization

By eliminating all predictors that do not collectively
agree on unlabeled examples, co-regularization intu-
itively reduces the complexity of the learning prob-
lem. It is reasonable then to expect better test perfor-
mance for the same amount of labeled training data.
In (Rosenberg & Bartlett, 2007), the size of the co-
regularized function class is measured by its empiri-
cal Rademacher complexity, and tight upper and lower

bounds are given on the Rademacher complexity of the
co-regularized hypothesis space. This leads to general-
ization bounds in terms of the Rademacher complexity.
In this section, we derive these complexity bounds in
a few lines using Theorem 2.2 and a well-known result
on RKHS balls. Furthermore, we present improved
generalization bounds based on the theory of localized
Rademacher complexity.

3.1. Rademacher Complexity Bounds

Definition 3.1. The empirical Rademacher complex-
ity of a function class A = {f : X → R} on a sample
x1, . . . ,xℓ ∈ X is defined as

R̂ℓ(A) = Eσ

[

sup
f∈A

∣
∣
∣
∣
∣

2

ℓ

ℓ∑

i=1

σif(xi)

∣
∣
∣
∣
∣

]

,

where the expectation is with respect to σ =
{σ1, . . . , σℓ}, and the σi are i.i.d. Rademacher ran-
dom variables, that is, P (σi = 1) = P (σi = −1) = 1

2 .

Let H be an arbitrary RKHS with kernel k(·, ·), and
denote the standard RKHS supervised learning objec-
tive function by Q(f) =

∑

i∈L V (yi, f(xi)) + λ||f ||2H.

Let f⋆ = argminf∈H Q(f). Then Q(f⋆) ≤ Q(0) =
∑

i∈L V (yi, 0). It follows that ‖f⋆‖2
H ≤ Q(0)/λ. Thus

if we have some control a priori on Q(0), then we
can restrict the search for f⋆ to a ball in H of radius
r =

√

Q(0)/λ.

We now cite a well-known result about the
Rademacher complexity of a ball in an RKHS (see
e.g. (Boucheron et al., 2005)). Let Hr := {f ∈ H :
||f ||H ≤ r} denote the ball of radius r in H. Then we
have the following:

Lemma 3.2. The empirical Rademacher complexity
on the sample x1, . . . ,xℓ ∈ X for the RKHS ball Hr is
bounded as follows: 1

4
√

2
2r
ℓ

√
trK ≤ R̂ℓ(Hr) ≤ 2r

ℓ

√
trK

where K =
(
k(xi,xj)

)ℓ

i,j=1
is the kernel matrix.

For the co-regularization problem described in
Eqns. 3 and 6, we have f⋆ ∈ H̃r where r2 =
ℓ supy V (0, y), where ℓ is number of labeled examples.
We now state and prove bounds on the Rademacher
complexity of H̃r. The bounds here are exactly the
same as those given in (Rosenberg & Bartlett, 2007).
However, while they have a lengthy “bare-hands” ap-
proach, here we get the result as a simple corollary of
Theorem 2.2 and Lemma 3.2.

Theorem 3.3. The empirical Rademacher complexity
on the labeled sample x1, . . . ,xℓ ∈ X for the RKHS
ball H̃r is bounded as follows:

1
4
√

2

2r

ℓ

√

trK̃ ≤ R̂ℓ(H̃r) ≤
2r

ℓ

√

trK̃,
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where
K̃ = γ−1

1 K1
LL +γ−1

2 K2
LL −µDT

UL (I + µS)
−1

DUL and
DUL =

(
γ−1
1 K1

UL − γ−1
2 K2

UL

)

Proof. Note that K̃ is just the kernel matrix for the co-
regularization kernel k̃(·, ·) on the labeled data. Then
the bound follows immediately from Lemma 3.2.

3.2. Co-Regularization Reduces Complexity

The co-regularization parameter µ controls the extent
to which we enforce agreement between f1 and f2. Let
H̃(µ) denote the co-regularization RKHS for a partic-
ular value of µ. From Theorem 3.3, we see that the
Rademacher complexity for a ball of radius r in H̃(µ)
decreases with µ by an amount determined by

∆(µ) = tr
[

µDT
UL (I + µS)

−1
DUL

]

(11)

=
ℓ∑

i=1

ρ2
(
k1

Uxi
k2

Uxi

)
(12)

where ρ(·, ·) is a metric on R|U | defined by

ρ2(s, t) = µ(γ−1
1 s − γ−1

2 t)′ (I + µS)
−1

(γ−1
1 s − γ−1

2 t)

We see that the complexity reduction, ∆(µ), grows
with the ρ-distance between the two different repre-
sentations of the labeled points. Note that the metric
ρ is determined by S, which is the weighted sum of the
gram matrices of the two kernels on unlabeled data.

3.3. Generalization Bounds

With Theorem 2.2 allowing us to express multi-view
co-regularization problems as supervised learning in a
data-dependent RKHS, we can now bring a large body
of theory to bear on the generalization performance
of co-regularization methods. We start by quoting
the theorem proved in (Rosenberg & Bartlett, 2007).
Next, we state an improved bound based on localized
Rademacher complexity. Below, we denote the unit
ball in H̃ by H̃1.

Condition 1. The loss V (·, ·) is Lipschitz in its first
argument, i.e., there exists a constant A such that
∀y, ŷ1, ŷ2: |V (ŷ1, y) − V (ŷ2, y)| ≤ A |ŷ1 − ŷ2|
Theorem 3.4. Suppose V : Y2 → [0, 1] satisfies Con-
dition 1. Then conditioned on the unlabeled data, for
any δ ∈ (0, 1), with probability at least 1 − δ over
the sample of labeled points (x1, y1), . . . , (xℓ, yℓ) drawn
i.i.d. from P , we have for any predictor f ∈ H̃1 that

P [V (ϕ(x), y)] ≤ 1

ℓ

ℓ∑

i=1

V (ϕ(xi), yi) + 2BR̂ℓ(H̃1)

+
1√
ℓ

(

2 + 3
√

ln(2/δ)/2
)

We need two more conditions for the localized bound:

Condition 2. For any probability distribution P ,
there exists f⋆ ∈ H̃1 satisfying P [V (f⋆(x), y)] =
inff∈H̃1

P [V (f(x), y)]

Condition 3. There is a constant B ≥ 1 such that
for every probability distribution P and every f ∈ H̃1

we have, P (f − f∗)
2 ≤ BP (V [f(x), y] − V [f⋆(x), y)])

In the following theorem, let Pℓ denote the empirical
probability measure for the labeled sample of size ℓ.

Theorem 3.5. [Cor. 6.7 from (Bartlett et al., 2002)]
Assume that supx∈X k(x,x) ≤ 1 and that V satisfies

the 3 conditions above. Let f̂ be any element of H̃1

satisfying PℓV [f̂(x), y] = inff∈H̃1
PℓV [f(x), y]. There

exist a constant c depending only on A and B s.t. with
probability at least 1 − 6e−ν ,

P
(

V [f̂(x), y] − V [f⋆(x), y]
)

≤ c
(

r̂∗ +
ν

ℓ

)

,

where r̂∗ ≤ min0≤h≤ℓ

(
h
ℓ + 1

ℓ

√∑

i>h λi

)
and where

λ1, . . . , λℓ are the eigenvalues of the labeled-data kernel
matrix K̃LL in decreasing order.

Note that while Theorem 3.4 bounds the gap between
expected and empirical performance of an arbitrary
f ∈ H̃1, Theorem 3.5 bounds the gap between the
empirical loss minimizer over H̃1 and true risk min-
imizer in H̃1. Since the localized bound only needs
to account for the capacity of the function class in the
neighborhood of f∗, the bounds are potentially tighter.
Indeed, while the bound in Theorem 3.4 is in terms of
the trace of the kernel matrix, the bound in Theo-
rem 3.5 involves the tail sum of kernel eigenvalues. If
the eigenvalues decay very quickly, the latter is poten-
tially much smaller.

4. Manifold Co-Regularization

Consider the picture shown in Figure 1(a) where there
are two classes of data points in the plane (R2) lying
on one of two concentric circles. The large, colored
points are labeled while the smaller, black points are
unlabeled. The picture immediately suggests two no-
tions of distance that are very natural but radically
different. For example, the two labeled points are close
in the ambient euclidean distance on R2, but infinitely
apart in terms of intrinsic geodesic distance measured
along the circles.

Suppose for this picture one had access to two kernel
functions, k1, k2 that assign high similarity to nearby
points according to euclidean and geodesic distance
respectively. Because of the difference in ambient and
intrinsic representations, by co-regularizing the asso-
ciated RKHSs one can hope to get good reductions in
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complexity, as suggested in section 3.2. In Figure 1,
we report the value of complexity reduction (Eqn. 12)
for four point clouds generated at increasing levels of
noise off the two concentric circles. When noise be-
comes large, the ambient and intrinsic notions of dis-
tance converge and the amount of complexity reduc-
tion decreases.

Figure 1. Complexity Reduction ∆(µ = 1) (Eqn. 12) with
respect to noise level ρ. The choice of k1, k2 is discussed in
the following subsections.

(a) ∆ = 7957, ρ = 0 (b) ∆ = 7569, ρ = 0.1

(c) ∆ = 3720, ρ = 0.2 (d) ∆ = 3502, ρ = 0.5

The setting where data lies on a low-dimensional
submanifold M embedded in a higher dimensional
ambient space X , as in the concentric circles case
above, has attracted considerable research interest re-
cently, almost orthogonal to multi-view efforts. The
main assumption underlying manifold-motivated semi-
supervised learning algorithms is the following: two
points that are close with respect to geodesic distances
on M should have similar labels. Such an assump-
tion may be enforced by an intrinsic regularizer that
emphasizes complexity along the manifold.

Since M is truly unknown, the intrinsic regularizer is
empirically estimated from the point cloud of labeled
and unlabeled data. In the graph transduction ap-
proach, an nn-nearest neighbor graph G is constructed
which serves as an empirical substitute for M. The
vertices V of this graph are the set of labeled and un-
labeled examples. Let HI denote the space of all func-
tions mapping V to R, where the subscript I implies
“intrinsic.” Any function f ∈ HI can be identified
with the vector f = [f(xi),xi ∈ V]T . One can impose

a norm ‖f‖2
I =

∑

ij Wij [f(xi) − f(xj)]
2

on HI that
provides a natural measure of smoothness for f with

respect to the graph. Here, W denotes the adjacency
matrix of the graph. When X is a euclidean space, a

typical W is given by Wij = exp(−‖xi−xj‖
2

2σ2 ) if i and
j are nearest neighbors and 0 otherwise. In practice,
one may use a problem dependent similarity matrix to
set these edge weights. This norm can be conveniently
written as a quadratic form fT Mf , where M is the
graph Laplacian matrix defined as M = D−W , and D

is a diagonal degree matrix with entrees Dii =
∑

j Wij .

It turns out that HI with the norm ‖ · ‖I is an
RKHS whose reproducing kernel kI : V × V →
R is given by kI(xi,xj) = M

†
ij , where M† de-

notes the pseudo-inverse of the Laplacian. Given
HI with its reproducing kernel, graph transduction
solves the standard RKHS regularization problem,
f⋆ = argminf∈HI

γ‖f‖2
I +

∑

i∈L V (yi, f(xi)), where
yi is the label associated with the node xi. Note that
the solution f⋆ is only defined over V, the set of la-
beled and unlabeled examples. Since graph transduc-
tion does not provide a function whose domain is the
ambient space X , it is not clear how to make predic-
tions on unseen test points x ∈ X . Possessing a prin-
cipled “out-of-sample extension” distinguishes semi-
supervised methods from transductive procedures.

4.1. Ambient and Intrinsic Co-Regularization

We propose a co-regularization solution for out-of-
sample prediction. Conceptually, one may interpret
the manifold setting as a multi-view problem where
each labeled or unlabeled example appears in two
“views”: (a) an ambient view in X in terms of eu-
clidean co-ordinates x and (b) an intrinsic view in G
as a vertex index i. Let HA : X × X → R be an
RKHS defined over the ambient domain with an asso-
ciated kernel kA : X × X → R. We can now combine
ambient and intrinsic views by co-regularizing HA,HI .
This can be done by setting k1 = kA and k2 = kI in
Eqn. 7 and solving Eqn. 6. The combined prediction
function f⋆ given by Eqn. 8 is the mean of an ambient
component f1

⋆ given by Eqn. 9 and an intrinsic compo-
nent f2

⋆ given by Eqn. 10. Even though f⋆ is transduc-
tive and only defined on labeled and unlabeled exam-
ples, the ambient component f1

⋆ can be used for out-
of-sample prediction. Due to co-regularization, this
ambient component is (a) smooth in HX and (b) in
agreement with a smooth function on the data mani-
fold. We call this approach manifold co-regularization,
and abbreviate it as CoMR.

4.2. Manifold Regularization

In the manifold regularization (MR) approach
of (Belkin et al., 2006; Sindhwani et al., 2005a), the
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following optimization problem is solved:

f⋆ = argmin
f∈HA

γ1‖f‖2
HA

+ γ2f
T Mf

+
∑

i∈L

V (yi, f(xi)) (13)

where f = [f(xi), i ∈ L,U ]T . The solution, f⋆ is
defined on X , and can therefore be used for out-of-
sample prediction.

In Figure 2, we show a simple two-dimensional dataset
where MR provably fails when HA is the space of lin-
ear functions on R2. The LINES dataset consists of
two classes spread along perpendicular lines. In MR
the intrinsic regularizer is enforced directly on HA.
It can be easily shown that the intrinsic norm of a
linear function f(x) = wT x along the perpendicular
lines is exactly the same as the ambient norm, i.e.,
‖f‖2

HI
= ‖f‖2

HA
= wT w. Due to this, MR simply ig-

nores unlabeled data and reduces to supervised train-
ing with the regularization parameter γ1 + γ2.

The linear function that gives maximally smooth pre-
dictions on one line also gives the maximally non-
smooth predictions on the other line. One way to
remedy this restrictive situation is to introduce slack
variables ξ = (ξi)i∈L∪U in Eqn. 13 with an ℓ2 penalty,
and instead solve: f⋆ = argminf∈HA,ξ γ1‖f‖2

HA
+

γ2(f + ξ)T M(f + ξ) + µ‖ξ‖2 +
∑

i∈L V (yi, f(xi)).
Re-parameterizing g = f + ξ, we can re-write the
above problem as, f⋆ = argminf∈HA,g∈HI

γ1‖f‖2
HA

+
γ2‖g‖2

HI
+ µ‖f −g‖2 +

∑

i∈L V (yi, f(xi)), which may
be viewed as a variant of the co-regularization prob-
lem in Eqn. 2 where empirical loss is measured for f

alone. Thus, this motivates the view that CoMR adds
extra slack variables in the MR objective function to
better fit the intrinsic regularizer. Figure 2 shows that
CoMR achieves better separation between classes on
the LINES dataset.

Figure 2. Decision boundaries of MR and CoMR (using the
quadratic hinge loss) on the LINES dataset

(a) MR (b) CoMR

4.3. Experiments

In this section, we compare MR and CoMR. Similar to
our construction of the co-regularization kernel, (Sind-
hwani et al., 2005a) provide a data-dependent kernel
that reduces manifold regularization to standard su-
pervised learning in an associated RKHS. We write the
manifold regularization kernel in the following form,

k̃mr(x,z) = s̄(x,z) − d̄T
xH̄d̄z (14)

where we have, s̄ = γ−1
1 k1(x,z), d̄x = γ−1

1 k1
Ux and

H̄ =
(
γ−1
1 K̄1 + γ−1

2 K̄2
)−1

, where K̄1 is the Gram Ma-
trix of k1 = kA over labeled and unlabeled examples,
and K̄2 = M†. We use the notation s̄, d̄, H̄ so that
the kernel can be easily compared with corresponding
quantities in the co-regularization kernel Eqn. 7. In
this section we empirically compare this kernel with
the co-regularization kernel of Eqn. 7 for exactly the
same choice of k1, k2. Semi-supervised classification
experiments were performed on 5 datasets described
in table 1.

Table 1. Datasets with d features and c classes. 10 random
data splits were created with l labeled, u unlabeled, t test,
and v validation examples.

Dataset d c l u t v

LINES 2 2 2 500 250 250
G50C 50 2 50 338 112 50

USPST 256 10 50 1430 477 50
COIL20 241 20 40 1320 40 40
PCMAC 7511 2 50 1385 461 50

The LINES dataset is a variant of the two-dimensional
problem shown in Figure 2 where we added random
noise around the two perpendicular lines. The G50C,
USPST, COIL20, and PCMAC datasets are well
known and have frequently been used for empirical
studies in semi-supervised learning literature. They
were used for benchmarking manifold regularization
in (Sindhwani et al., 2005a) against a number of com-
peting methods. g50c is an artificial dataset gener-
ated from two unit covariance normal distributions
with equal probabilities. The class means are adjusted
so that the Bayes error is 5%. COIL20 consists of
32 × 32 gray scale images of 20 objects viewed from
varying angles. USPST is taken from the test subset
of the USPS dataset of images containing 10 classes
of handwritten digits. PCMAC is used to setup bi-
nary text categorization problems drawn from the 20-
newsgroups dataset.

For each of the 5 datasets, we constructed random
splits into labeled, unlabeled, test and validation sets.
The sizes of these sets are given in table 1. For
all datasets except LINES, we used Gaussian am-
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Table 2. Error Rates (in percentage) on Test Data

Dataset MR CoMR

LINES 7.7 (1.2) 1.0 (1.5)
G50C 5.8 (2.8) 5.5 (2.3)

USPST 18.2 (1.5) 14.1 (1.6)
COIL20 23.8 (11.1) 14.8 (8.8)
PCMAC 11.9 (3.4) 8.9 (2.6)

Table 3. Error Rates (in percentage) on Unlabeled Data

Dataset MR CoMR

LINES 7.5 (1.0) 1.3 (2.0)
G50C 6.6 (0.8) 6.9 (1.0)

USPST 18.6 (1.4) 13.3 (1.0)
COIL20 37.5 (6.0) 14.8 (3.3)
PCMAC 11.0 (2.4) 9.4 (1.9)

bient kernels k1(x,z) = exp(−‖x−z‖2

2σ2 ), and intrin-
sic graph kernel whose gram matrix is of the form
K2 = (Mp + 10−6I)−1. Here, M is the normalized
Graph Laplacian constructed using nn nearest neigh-
bors and p is an integer. These parameters are tabu-
lated in Table 4 for reproducibility. For more details
on these parameters see (Sindhwani et al., 2005a).

We chose squared loss for V (·, ·). Manifold regulariza-
tion with this choice is also referred to as Laplacian
RLS and empirically performs as well as Laplacian
SVMs. For multi-class problems, we used the one-
versus-rest strategy. γ1, γ2 were varied on a grid of
values: 10−6, 10−4, 10−2, 1, 10, 100 and chosen with re-
spect to validation error. The chosen parameters are
also reported in Table 4. Finally, we evaluated the MR
solution and the ambient component of CoMR on an
unseen test set. In Tables 2 and 3 we report the mean
and standard deviation of error rates on test and unla-
beled examples with respect to 10 random splits. We
performed a paired t-test at 5% significance level to as-
sess the statistical significance of the results. Results
shown in bold are statistically significant.

Our experimental protocol makes MR and CoMR ex-
actly comparable. We find that CoMR gives major
empirical improvements over MR on all datasets ex-
cept G50C where both methods approach the Bayes
error rate.

5. Conclusion

In this paper, we have constructed a single, new RKHS
in which standard supervised algorithms are immedi-
ately turned into multi-view semi-supervised learners.
This construction brings about significant theoretical
simplifications and algorithmic benefits, which we have
demonstrated in the context of generalization analysis
and manifold regularization respectively.

Table 4. Parameters Used. Note µ = 1 for CoMR. Linear
kernel was used for LINES dataset.

Dataset nn σ p MR CoMR
γ1, γ2 γ1, γ2

LINES 10 − 1 0.01, 10−6 10−4, 100
G50C 50 17.5 5 1, 100 10, 10

USPST 10 9.4 2 0.01, 0.01 10−6, 10−4

COIL20 2 0.6 1 10−4,10−6 10−6, 10−6

PCMAC 50 2.7 5 10, 100 1, 10
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A. Proof of Theorem 2.2

This theorem generalizes Theorem 5 in (Bertinet &
Thomas-Agnan, 2004).

The Product Hilbert Space We begin by intro-
ducing the product space,

F = H1 ×H2 = {(f1, f2) : f1 ∈ H1, f2 ∈ H2},
and an inner product on F defined by,
〈
(f1, f2), (g1, g2)

〉

F
= γ1〈f1, g1〉H1 + γ2〈f2, g2〉H2

+µ
∑

i∈U

(
f1(xi) − f2(xi)

) (
g1(xi) − g2(xi)

)
(15)

It’s straightforward to check that 〈·, ·〉F is a valid inner
product. Moreover, we have the following:

Lemma A.1. F is a Hilbert space.

Proof. (Sketch.) We need to show that F is complete.
Let (f1

n, f2
n) be a Cauchy sequence in F . Then f1

n

is Cauchy in H1 and f2
n is Cauchy in H2. By the

completeness of H1 and H2, we have f1
n → f1 in H1

and f2
n → f2 in H2, for some (f1, f2) ∈ F . Since

H1 and H2 are RKHSs, convergence in norm implies
pointwise convergence, and thus the co-regularization
part of the distance also goes to zero.

H̃ is a Hilbert Space Recall the definition of H̃
in Eqn. 4. Define the map u : F → H̃ by u(f1, f2) =
1
2

(
f1 + f2

)
. The map’s kernel N := u−1(0) is a closed

subspace of F , and thus its orthogonal complement
N⊥ is also a closed subspace. We can consider N⊥

as a Hilbert space with the inner product that is the
natural restriction of 〈·, ·〉F to N⊥. Define v : N⊥ →
H̃ as the restriction of u to N⊥. Then v is a bijection,
and we define an inner product on H̃ by

〈f, g〉H̃ = 〈v−1(f), v−1(g)〉F . (16)

We conclude that H̃ is a Hilbert space isomorphic to
N⊥.

The Co-Regularization Norm Fix any f ∈ H̃,
and note that u−1(f) =

{
v−1(f) + n | n ∈ N

}
. Since

v−1(f) and N are orthogonal, it’s clear by the
Pythagorean theorem that v−1(f) is the element of
u−1(f) with minimum norm. Thus

||f ||2
H̃

= ||v−1(f)||2F = min
(f1,f2)∈u−1(f)

||(f1, f2)||2F

We see that the inner product on H̃ induces the norm
claimed in the theorem statement.

We next check the two conditions for validity of an
RKHS (see Definition 2.1).

(a) k̃(z, ·) ∈ H̃ ∀z ∈ X Recall from Eqn. 7 that
the co-regularization kernel is defined as

k̃(x,z) = γ−1
1 k1(x,z) + γ−1

2 k2(x,z)

−µ
(
γ−1
1 k1

Ux − γ−1
2 k2

Ux

)T
βz

where βz = Hdz = (I + µS)
−1 (

γ−1
1 k1

Uz − γ−1
2 k2

Uz

)
.

Define h1(x) = γ−1
1 k1(x,z) − µγ−1

1 k1
Uxβz and

h2(x) = γ−1
2 k2(x,z) + µγ−1

2 k2(x, U)βz. Note that,
h1 ∈ span

{
k1(z, ·), k1(x1, ·), . . . , k1(xu, ·)

}
⊂ H1,

and similarly, h2 ∈ H2. It’s clear that k̃(z, ·) =
[
h1(·) + h2(·)

]
, and thus k̃(z, ·) ∈ H̃.

(b) Reproducing Property For convenience, we
collect some basic properties of h1 and h2 in the fol-
lowing lemma:

Lemma A.2 (Properties of h1 and h2). Writing
h1(U) for the column vector with entries h1(xi) ∀i ∈
U , and similarly for other functions on X , we have the
following:

〈
f1, h1

〉

H1
= γ−1

1 f1(z) − µγ−1
1 f1(U)T βz (17)

〈
f2, h2

〉

H2
= γ−1

2 f2(z) + µγ−1
2 f2(U)T βz (18)

h1(U) − h2(U) = βz (19)

Proof. The first two equations follow from the defini-
tions of h1 and h2 and the reproducing kernel property.
The last equation is derived as follows:

h1(U) − h2(U) =γ−1
1 k1(U,z) − µγ−1

1 k1(U,U)βz

− γ−1
2 k2(U,z) − µγ−1

2 k2(U,U)βz

=dz − µS(I + µS)−1dz

=
(
I − µS(I + µS)−1

)
dz

= (I + µS)
−1

dz = βz

where the last line follows from the Sherman-Morrison-
Woodbury inversion formula.

Since k̃(z, ·) = h1(·) + h2(·), it is clear that (h1, h2) =

v−1
(

k̃(z, ·)
)

+n, for some n ∈ N . Since v−1(f) ∈ N⊥,

we have
〈

f, k̃(z, ·)
〉

H̃
=

〈

v−1(f), v−1(k̃(z, ·))
〉

F

=
〈
v−1(f), (h1, h2) − n

〉

F

=
〈
v−1(f), (h1, h2)

〉

F

=γ1

〈
f1, h1

〉

H1

+ γ2 〈f2, h2〉H2

+ µ
[
h1(U) − h2(U)

]T [
f1(U) − f2(U)

]

=f1(z) + f2(z) − µ
[
f1(U) − f2(U)

]T
βz

+ µ
[
f1(U) − f2(U)

]T
βz (from A.2)

= f(z)
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Abstract

Semi-supervised learning aims at taking ad-
vantage of unlabeled data to improve the effi-
ciency of supervised learning procedures. For
discriminative models however, this is a chal-
lenging task. In this contribution, we intro-
duce an original methodology for using un-
labeled data through the design of a simple
semi-supervised objective function. We prove
that the corresponding semi-supervised esti-
mator is asymptotically optimal. The practi-
cal consequences of this result are discussed
for the case of the logistic regression model.

1. Introduction

In most real-world pattern classification problems
(e.g., for text, image or audio data), unannotated
data is plentiful and can be collected at almost no
cost, whereas labeled data are comparatively rarer,
and more costly to gather. A sensible question is thus
to find ways to exploit the unlabeled data in order to
improve the performance of supervised training pro-
cedures. Many proposals have been made in the re-
cent years to devise effective semi-supervised training
schemes (see (Chapelle et al., 2006) for an up-to-date
panorama). In this contribution, we focus on meth-
ods applicable to probabilistic classifiers, that is, clas-
sifiers designed to provide a probabilistic confidence
measure associated with each decision. These classi-
fiers do not necessarily perform better than other alter-
natives – particularly since probabilistic classification
and minimum error classification are related, but dif-
ferent, tasks – but are important in some applications,

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

for instance when it comes to predicting the general-
ization error, dealing with uneven error costs, ranking,
combining decisions from multiple sources, etc.

Probabilistic generative models fare easily with the
use of unlabeled data, usually through Expectation-
Maximization (see, e.g., (Nigam et al., 2000; Klein &
Manning, 2004) for successful implementations of this
idea). It is however an extensively documented fact
that discriminative models perform better than Gen-
erative models for classification tasks (Ng & Jordan,
2002). Integrating unlabeled data into discriminative
models is however a much more challenging issue. Put
in probabilistic terms, when learning to predict an out-
put y from an observation x, a discriminative model at-
tempts to fit P (y|x; θ), where θ denotes the parameter.
The role to be played by any available prior knowledge
about the marginal probability P (x) in this context is
not obvious. Several authors indeed claim that knowl-
edge of P (x) is basically useless (Seeger, 2002; Lasserre
et al., 2006), although one of the contribution of this
paper will be to show that this intuition relies on the
implicit assumption that the model is well-specified, in
the sense of allowing a perfect fit of the conditional
probability.

The most common approach is to make the unknown
parameter vector θ depend on the unlabeled data, ei-
ther directly or indirectly. One way to achieve this
goal is to use the unlabeled data to enforce constraints
on the shape of P (y|x): the cluster assumption, for in-
stance, stipulates that the decision boundary should be
located in low density regions (Seeger, 2002; Chapelle
& Zien, 2005). (Grandvalet & Bengio, 2004) use
this intuition to devise a semi-supervised training
method (termed entropy regularization), which com-
bines the usual log-likelihood term with an entropy-
based penalty; see also (Jiao et al., 2006), who extend
this methodology to Conditional Random Fields, (Laf-
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ferty et al., 2001), or (Corduneanu & Jaakkola, 2003)
for related ideas. This approach, as any attempt to dis-
tort the supervised training criterion with supplemen-
tary terms faces two risks: (i) to turn a well-behaved
convex optimization problem into a non-convex one,
fraught with local optima, thus making the results
highly dependent of a proper initialization; (ii) to loose
the asymptotic consistency property of the usual (con-
ditional maximum likelihood) estimator. As a result,
these methods are not guaranteed to improve over a
trivial baseline which would only use the available an-
notated data. They furthermore require a fine tuning
of the various optimization parameters (Mann & Mc-
Callum, 2007). The cluster assumption is also used in
graph-based methods, which exploit the intuition that
unlabeled data points should receive the same label as
their labeled neighbors: in (Zhu & Ghahramani, 2002),
a neighborhood graph is used to iteratively propagate
labels from labeled to unlabeled data points until con-
vergence.

(Lasserre et al., 2006) explores yet another avenue,
introducing two sets of parameters: one for the condi-
tional P (y|x; θ), and one for the marginal P (x; ν): the
case where θ and ν are unrelated corresponds to the
purely discriminative model, where unlabeled data are
of no help; taking θ = ν recovers the traditional gener-
ative model; introducing (via their Bayesian prior dis-
tribution) dependencies between (θ, ν) allows to build
a full range of hybrid models. Finally, we also men-
tion (Mann & McCallum, 2007) who try to also exploit
prior knowledge on the distribution of the labels Y ,
which may be available in some specific applications.

In this paper, we try to challenge the view that un-
labeled data cannot help purely discriminative mod-
els by exhibiting a semi-supervised estimator of the
parameter θ which is asymptotically optimal and, in
some situations, preferable to the usual maximum
(conditional) likelihood estimator. To this aim, we
make the simplifying assumption that the marginal
P (x) is fully known, which is true in the limit of in-
finitely many unlabeled data. An interesting obser-
vation about the proposed method is that it is most
efficient when the Bayes error is very small which cor-
relates well with the intuition underlying most semi-
supervised approaches that unlabeled data is most
useful if one can assume that the classes are “well-
separated”. In addition to the asymptotic results, we
also discuss a number of empirical findings pertaining
to logistic regression.

This paper is organized as follows: in Section 2, we in-
troduce our formal framework and formulate the main
result of the paper (Theorem 1), which is first exposed

in its full generality, then particularized to the case of
the logistic regression. Experiments with the logistic
regression model are discussed in Section 3. Conclud-
ing remarks and perspectives close the paper.

2. Semi-Supervised Estimator

Let g(y|x; θ) denote the conditional probability den-
sity function (pdf) corresponding to a discriminative
probabilistic model parameterized by θ ∈ Θ. In the
following, we will always assume that the class vari-
able Y takes its values in a finite set, Y, with a special
interest for the binary case where Y = {0, 1}. We will
further assume that the input (or explanatory) vari-
able X also takes its values in a finite set X , which
may be arbitrary large.

The training procedure has access to a set of n i.i.d.
labeled observations, (Xi, Yi)1≤i≤n, as well as to a po-
tentially unlimited number of unlabeled observations,
where the quantity of unlabeled data is so large that
we can consider that the marginal probability of X is
fully known.

Finally, for a function f : R
p 7→ R, we denote by

∇zf(z⋆) the p× 1 gradient vector and by ∇zT∇zf(z⋆)
the p × p Hessian matrix in z⋆. When f : R

p 7→ R
r,

the notation ∇zTf(z⋆) will be used to denote the r×p
Jacobian matrix in z⋆.

2.1. Preliminary: A Simple Case

We first consider the case where the “model” of in-
terest is very basic and simply consists in estimating
the complete joint probability of X and Y , which is
denoted by π(x, y). We will also denote by η(y|x) and
q(x), respectively, the conditional and the marginal
probabilities associated with π. Although this case is
not directly of interest for real-life statistical learning
tasks, it highlights the role played by the knowledge of
the marginal q in semi-supervised learning.

It is well known that the maximum-likelihood estima-
tor of π(x, y) defined by

π̂n(x, y) =
1

n

n∑

i=1

1{Xi = x, Yi = y} (1)

is asymptotically efficient with asymptotic variance
υ(x, y) = π(x, y)(1 − π(x, y)) (assuming that 0 <

π(x, y) < 1).

Assume now that we are given q(x), the marginal
distribution of X, and that 0 < q(x) < 1. It is
easily checked that the maximum-likelihood estima-
tor of π(x, y) subject to the marginal constraint that
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∑

y∈Y π(x, y) = q(x) is given by

π̂s
n(x, y) =

∑n
i=1 1{Xi = x, Yi = y}
∑n

i=1 1{Xi = x} q(x) (2)

where the superscript s stands for “semi-supervised”
and the ratio is recognized as the maximum-likelihood
estimate of the conditional probability η(y|x). As
π̂s

n(x, y) is a ratio of two simple estimators, its asymp-
totic variance can be computed using the δ-method,
yielding

υs(x, y) = π(x, y)(1 − π(x, y)/q(x))

As 0 < π(x, y) ≤ q(x) < 1, υs(x, y) is less than
υ(x, y). Hence, in general the semi-supervised esti-
mator π̂s

n(x, y) and π̂n(x, y) are not asymptotically
equivalent, and π̂s

n(x, y) is preferable. More precisely,
υs(x, y)/υ(x, y) = (1 − π(x, y)/q(x))/(1 − π(x, y))
which tends to zero as π(x, y) gets closer to q(x). In
other words, the performance of π̂s

n(x, y) is all the more
appreciable, compared to that of π̂n(x, y), that y is a
frequent label for x. In this case, knowledge of the
marginal q(x) makes it possible to obtain a precise
estimate of π̂s

n(x, y) ≈ q(x) even with a very limited
number of observations of x.

2.2. General Discriminative Model

We now consider the extension of the previous sim-
ple observation to the case of a general discrimina-
tive probabilistic model; the main difference being the
fact that a given parametric model {g(y|x; θ)}θ∈Θ will
generally not be able to fit exactly the actual condi-
tional distribution η(y|x) of the data. As in the fully-
specified case above, it is nonetheless possible to ex-
hibit a semi-supervised estimator which is asymptot-
ically optimal and preferable to the usual conditional
maximum likelihood estimator defined by

θ̂n = arg min
θ∈Θ

1

n

n∑

i=1

ℓ(Yi|Xi; θ) (3)

where ℓ(y|x; θ) = − log g(y|x; θ) denotes the inverse of
the conditional log-likelihood function.

Under the (classical) assumptions of Theorem 1 be-
low, 1

n

∑n
i=1 ℓ(Yi|Xi; θ) tends, uniformly in θ, to

Eπ[ℓ(Y |X; θ)] and thus the limiting value of θ̂n is given
by

θ⋆ = arg min
θ∈Θ

Eπ[ℓ(Y |X; θ)] (4)

The maximum likelihood estimator in (3) may also be

interpreted as θ̂n = arg minθ∈Θ Eπ̂n
[ℓ(Y |X; θ)] where

π̂n(x, y) =
1

n

n∑

i=1

1{Xi = x, Yi = y}

denotes the empirical measure associated with the
sample (Xi, Yi)1≤i≤n, which also coincides with the
maximum likelihood estimate of π(x, y) defined in (1).

If we now assume that the marginal q(x) is available,
we know that π̂n(x, y) is dominated (asymptotically)
by the estimator π̂s

n(x, y) defined in (2), which we here
particularize to

π̂s
n(x, y) =







Pn
i=1

1{Xi=x,Yi=y}
P

n
i=1

1{Xi=x} q(x) if
n∑

i=1

1{Xi = x} > 0

0 otherwise

(5)

By analogy with the construction used in the
absence of information on q, we now define
the corresponding semi-supervised estimator as
θ̂s

n = arg minθ∈Θ Eπ̂s
n
[ℓ(Y |X; θ)], where the notation

Eπ̂s
n
[f(Y, x)] =

∑

x∈X

∑

y∈Y π̂
s
n(x, y)f(x, y) is used

somewhat loosely here as it may happen that, for finite
n,

∑

x∈X

∑

y∈Y π̂n(x, y) < 1, although π̂n(x, y) sums
to one with probability one, for sufficiently large n. It
is easily checked that θ̂s

n may also be rewritten as

θ̂s
n = arg min

θ∈Θ

n∑

i=1

q(Xi)
∑n

j=1 1{Xj = Xi}
ℓ(Yi|Xi; θ) (6)

Eq. (6) is a weighted version of (3) where the weight
given to observations that share the same input x

is common and reflects our prior knowledge on the
marginal q(x).

Theorem 1 Let the joint probability of X and Y fac-
torize as π(x, y) = η(y|x)q(x), where q is known, and
define the following matrices

H(θ⋆) = Eq (Vη [∇θℓ(Y |X; θ⋆)|X]) (7)

I(θ⋆) = Eq

[

∇θℓ(Y |X; θ⋆) {∇θℓ(Y |X; θ⋆)}T
]

(8)

J(θ⋆) = Eq [∇θT∇θℓ(Y |X; θ⋆)] (9)

Assume that (1) X and Y are finite sets; (2) π(x, y) >
0 for all (x, y) ∈ X × Y; (3) for all (x, y) ∈ X × Y,
ℓ(y|x; θ) is bounded on Θ; (4) θ⋆ is the unique mini-
mizer of Eπ[ℓ(Y |X; θ)] on Θ; (5) for all (x, y) ∈ X×Y,
ℓ(y|x; θ) is twice continuously differentiable on Θ; (6)
the matrices H(θ⋆) and J(θ⋆) are non singular.

Then, θ̂n and θ̂s
n are consistent and asymptotically

normal estimators of θ⋆, which satisfy

√
n

(

θ̂n − θ⋆

)
L−→N

(
0, J−1(θ⋆)I(θ⋆)J

−1(θ⋆)
)

(10)

√
n

(

θ̂s
n − θ⋆

)
L−→N

(
0, J−1(θ⋆)H(θ⋆)J

−1(θ⋆)
)

(11)

Furthermore, θ̂s
n is asymptotically efficient.
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Theorem 1 asserts that the asymptotic covariance ma-
trix associated with θ̂s

n is optimal. Understanding the
relations between H(θ⋆) and I(θ⋆) is thus important
to assess the asymptotic performance achievable by
any semi-supervised training method which assumes
prior knowledge of q(x). Indeed, the well-known Rao-
Blackwell variance decomposition shows that

I(θ⋆) −H(θ⋆) = Vq (Eη [∇θℓ(Y |X; θ⋆)|X])

As a result, the difference between both estimators will
mostly depend on whether Eη [∇θℓ(Y |X; θ⋆)|X = x]
varies significantly or not around 0 as a function
of x, given that, by definition, θ⋆ is such that
Eq (Eη [∇θℓ(Y |X; θ⋆)|X]) = 0.

Note that in the particular case where the model
is well-specified, in the sense that θ⋆ is such that
g(y|x; θ⋆) = η(y|x) for all (x, y) ∈ X × Y, not
only is Eq (Eη [∇θℓ(Y |X; θ⋆)|X]) null but one in-
deed has the stronger result that for all x ∈ X ,
Eη [∇θℓ(Y |X; θ⋆)|X = x] = 0. This is the only case for
which H(θ⋆) = I(θ⋆), and hence, where both estima-
tors are asymptotically equivalent; it is also well known
that in this case J(θ⋆) = I(θ⋆) so that all asymptotic
covariance matrices coincide with the usual expression
of the inverse of the Fisher information matrix for θ.
Theorem 1 gives formal support to the intuition that
it is impossible to improve over the classic maximum
likelihood estimator for large n’s when the model is
well-specified, even when the marginal q is known.

The results of Theorem 1 are stated in terms of pa-
rameter estimation which is usually not the primary
interest for statistical learning tasks. Due to the non-
differentiability of the 0–1 loss, it is not directly possi-
ble to derive results pertaining to the error probability
from Theorem 1. One may however state the follow-
ing result in terms of the logarithmic risk, in which the
negated log-likelihood ℓ(y|x; θ) is interpreted as a loss
function.

Corollary 2 In addition to the assumptions of
Theorem 1, assume that ℓ(y|x; θ) has bounded
second derivative on Θ. Then, the logarith-
mic risk admits the following asymptotic equiva-
lent: Eπ⊗n{Eπ[ℓ(Y |X; θ̂n)]} = Eπ[ℓ(Y |X; θ⋆)] +
1
2n trace

{
I(θ⋆)J

−1(θ⋆)
}

+ o
(

1
n

)
, where Eπ⊗n de-

notes the expectation with respect to the train-
ing data (Xi, Yi)1≤i≤n; for the semi-supervised es-

timator θ̂s
n, the first order term is given by

1
2n trace

{
H(θ⋆)J

−1(θ⋆)
}
.

As a final comment on Theorem 1, note that the form
of the semi-supervised estimator in (6) shows that θ̂s

n

will be consistent also in the presence of covariate shift

(i.e., when the marginal distribution of the training
sample differs from q), whereas the logistic regression
estimates can only be consistent in this case if we
assume that the model is well-specified (Shimodaira,
2000). In the presence of covariate shift however, the
expressions of the asymptotic covariance matrices will
be different.

2.3. Application to Logistic Regression

To gain further insight into the results summarized in
Theorem 1, we consider the example of the logistic
regression model with binary labels Y and input vari-
ables X in R

p; the parameter θ is thus p-dimensional.
In this model, the negative log-likelihood function is
given by ℓ(y|x; θ) = −yθTx + log(1 + eθTx)1. Thus,
the estimation equation which implicitly defines the
value of the optimal fit θ⋆ as the value for which
Eπ [∇θℓ(Y |X; θ⋆)] = 0 may be rewritten as

Eq [X (g(1|X; θ⋆) − η(1|X))] = 0 (12)

Similar direct calculations yield

H(θ⋆) = Eq

[
η(1|X)(1 − η(1|X))XXT

]
(13)

I(θ⋆) = Eq

[{
η(1|X)(1 − η(1|X))

+ (η(1|X) − g(1|X; θ⋆))
2
}
XXT

]
(14)

J(θ⋆) = Eq

[
g(1|X; θ⋆){1 − g(1|X; θ⋆)}XXT

]
(15)

J(θ⋆) is the Fisher information matrix traditionally
found in logistic regression. Interestingly, H(θ⋆) is rec-
ognized as the Fisher information matrix for θ⋆ cor-
responding to the fully supervised logistic regression
model in the well-specified case (i.e. assuming that
g(y|x; θ⋆) = η(y|x)), although we made no such as-
sumption here.

For logistic regression, the difference

I(θ⋆) −H(θ⋆) = Eq

[
{η(1|X) − g(1|X; θ⋆)}2XXT

]

is clearly a term that is all the more significant that
the fit achievable by the model is poor. The second im-
portant factor that can lead to substantial differences
between the asymptotic performances of θ̂n and θ̂s

n is
revealed by the following observation: for a given dis-
tribution π, the largest (in a matrix sense) achievable
value for I(θ⋆) is given by

I(θ⋆) = Eq

[
max{η(1|X), 1 − η(1|X)}XXT

]

whereas H(θ⋆) in (13) may be rewritten as

H(θ⋆) = Eq

[
max{η(1|X), 1 − η(1|X)}

min{η(1|X), 1 − η(1|X)}XXT
]

1Or log(1+e−θTyx) when the labels are coded as {−1, 1}
rather than {0, 1}.
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Figure 1. Boxplots of the scaled squared parameter estimation error as a function of the number of observations. Left:
for logistic regression, n‖θ̂n − θ⋆‖

2; right: for the semi-supervised estimator, n‖θ̂s
n − θ⋆‖

2.
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Figure 2. Boxplots of the scaled excess logarithmic risk as a function of the number of observations. Left: for logistic
regression, n(Eπ⊗n{Eπ[ℓ(Y |X; θ̂n)]}−Eπ[ℓ(Y |X; θ⋆)]); right: for the semi-supervised estimator, n(Eπ⊗n{Eπ[ℓ(Y |X; θ̂s

n)]}−
Eπ[ℓ(Y |X; θ⋆)]).

Hence the difference between I(θ⋆) and H(θ⋆) can only
become very significant in cases where min{η(1|X =
x), 1 − η(1|X = x)} is small, that is, when the prob-
ability of incorrect decision is small, for some values
of x. The overall effect will be all the more significant
that this situation happens for many values of x, or,
in other words, that the Bayes error associated with π
is small.

3. Experiments

3.1. A Small Scale Experiment

We consider here experiments on artificial data which
correspond to the case of binary logistic regression
discussed in Section 2.3. We focus on a small-scale
problem where it is possible to exactly compute error
probabilities and risks so as to completely bypass the
empirical evaluation of trained classifiers. This setting
makes it possible to obtain an accurate assessment of
the performance as the only source of Monte Carlo
error lies in the choice of the training corpus. More

precisely, we consider the case where each observation
consists of a vector of p = 10 positive counts which
sums to k = 3. Hence the logistic regression parame-
ter θ is ten-dimensional and the set X of possible count

vectors contains exactly (p+k−1)!
(p−1)!k! = 220 different vec-

tors.

In this case, it is well-known that one can simu-
late data from well-specified logistic models by re-
sorting to mixture of multinomial distributions. De-
note by α1 the prior probability of class 1, and
by β0 and β1 the vectors of multinomial parame-
ters. Count vectors X generated from the mixture
of multinomial have marginal probabilities q(x) =
α1 mult(x;β1) + (1 − α1)mult(x;β0) and conditional
probabilities P(Y = 1|X = x) = {1 + exp−[(log β1 −
log β0)

Tx + log α1

1−α1

]}−1, where the log is to be un-
derstood componentwise. In the following, we take
α1 = 0.5, i.e., balanced classes, so as to avoid the bias
term.

In order to generate misspecified scenarios, we simply
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Figure 3. Boxplots of the probability of error as a function of the number of observations for a well-specified model. Left:
for the logistic regression; right: for the semi-supervised estimator.

flipped the labels of a few (three in the case shown
on figures. 1–2) x’s taken among the most likely ones.
This label flipping transformation leaves the Bayes er-
ror unchanged to that of the underlying unperturbed
logistic model but the performance achievable by logis-
tic regression is of course reduced. Figures 1 and 2 cor-
respond to a case where the underlying unperturbed
logistic model has a Bayes error of 1.7% and the prob-
ability of error associated with the best fitting logistic
model is of 9.4%. Remember that in these figures, the
only source of randomness is due to the choice of the
training sample, which is repeated 1000 times inde-
pendently for each size of the training sample, from
n = 10 to n = 5000 observations.

As logistic regression is very sensitive to the use of reg-
ularization for small sample sizes (here, when n is less
than one thousand), both (3) and (6) were regular-
ized by adding a L2 penalty term of the form ρn‖θ‖2,
where ρn has been calibrated independently for each
value of n. This being said, the optimal regularization
parameter was always found to be within a factor 2 of
ρn = 1/n for (3) and ρn = 1

n

∑

{x:
P

1

i=1
1{Xi=x}>0} q(x)

for (6). The effect of regularization is also negligible for
the two rightmost boxplots in each graph (i.e., when
n is greater than 1000). On figures 1 and 2, the su-
perimposed horizontal dashed lines correspond to the
theoretical averages computed from Theorem 1 and
Corollary 2, respectively.

When n is larger than one thousand, figures 1 and 2
perfectly correlate with the theory which predicts some
advantage for the semi-supervised estimator as we are
considering a case where the Bayes error is small and
the model misspecification is significant. For large
values of n, the semi-supervised estimator not only
achieves better average performance but also does
so more constantly, with a reduced variability. For
smaller values of n, the picture is more contrasted,

particularly when n ranges from 50 to 100 where the
semi-supervised estimator may perform comparatively
worse than the logistic regression. In this example, in
terms of the probability of error, the semi-supervised
estimator performs marginally better than logistic re-
gression when n = 10 and n = 5000 (although the
difference is bound to be very small in the latter case)
and somewhat worse in between.

As expected, the difference between both approaches
for large values of n decreases for scenarios with
larger error probabilities. In those scenarios, the semi-
supervised estimator performs worse than logistic re-
gression for smaller values of n and equivalently for
large values of n. A finding of interest is the fact
that for well-specified models (i.e., with data generated
from a multinomial mixture model) with low Bayes er-
ror, the semi-supervised approach does perform better
than logistic regression, for small values of n. This ef-
fect can be significant even when considering the prob-
ability of error of the trained classifiers, as exemplified
on Figure 3 in a case where the Bayes error is 6.3%.
This observation is promising and deserves further in-
vestigation as the analysis of Section 2 only explains
the behavior observed for large values of n, which in
the case of well-specified models results in the two ap-
proaches being equivalent.

3.2. Text Classification Experiment

To evaluate our methodology on a more realistic test
bed, we have used a simple binary classification task,
consisting in classifying mails as spam or ham based
on their textual content. The corpus used is the Spa-
mAssassin corpus (Mason, 2002), which contains ap-
proximately 6 000 documents. Adapting our technique
to real-world data requires to provide an estimate for
the marginal q(x). This was carried out by perform-
ing a discrete quantification of the data vectors as fol-
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lows. We first use unsupervised clustering techniques
to partition the available unlabeled collection of docu-
ments in k clusters. More specifically, we used a mix-
ture of multinomial model as in (Nigam et al., 2000)
with k = 10 components. We then simply adapt (6)
by replacing q(Xi) by the empirical frequency of the
cluster to which Xi belongs, likewise the denominator
∑n

j=1 1{Xj = Xi} is replaced by the number of train-
ing documents belonging to the same cluster as Xi.
We believe that this methodology is very general and
makes the proposed approach applicable to a large va-
riety of data. In effect, observations belonging to clus-
ters which are underrepresented in the training corpus
have higher relative weights, while the converse if true
for observations belonging to overrepresented clusters.
Note that, at this stage, no attempts have been made
at tuning the number k of clusters, although intuition
suggests that it would probably be reasonable to in-
crease k (slowly) with n.
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Figure 4. Boxplots of the error rates for, L50: logistic re-
gression with n = 50; S50: semi-supervised estimator with
n = 50; L300 and S300, idem with n = 300.

We tested the method with n = 50 and n = 300
randomly chosen training documents, the remaining
mails serving as the test set; each trial gave rise to
50 Monte Carlo replications. For each value of n, the
best regularization parameter was determined experi-
mentally both for the usual logistic regression and the
semi-supervised estimator. Each document is here rep-
resented as a count vector of dimension 1500. The
resulting error rates are plotted as boxplots on Fig-
ure 4. Although the difference between both meth-
ods is certainly not very significant in this prelimi-
nary experiment, we note that, as in the simple case
of Section 3.1, the semi-supervised estimator provides
a more less variable performance when n is small.

4. Conclusion

In this contribution, we have tried to address the
problem of semi-supervised learning without using any

prior idea on what type of information is to be pro-
vided by the unlabeled data. The result of Theorem 1
provides both proper theoretical support for the claim
that the unlabeled data does not matter asymptot-
ically when the model is well-specified and a better
understanding of the cases where the unlabeled data
does matter. In particular, it confirms the intuition
that unlabeled data is most useful when the Bayes er-
ror is small. One advantage of the proposed method
is that it does not compromise the simplicity of the
maximum likelihood approach because the weighted
semi-supervised criterion stays convex. In addition,
one could easily incorporate prior knowledge as used
in other semi-supervised approaches: for instance the
“cluster assumption” can be implemented by modi-
fying (5) so as to incorporate a Bayesian prior that
connects conditional probabilities for neighboring val-
ues of the input vector. In Section 3.2, we suggested a
means by which the method can be extended to larger
scales problem, including applications in which the fea-
ture vector is either continuous or has a more complex
structure. We are in particular currently investigat-
ing the extension of the proposed approach to the case
of sequence labelling with conditional random fields.
Another open issue is the theoretical analysis of the
behavior of the proposed criterion when n is small,
which cannot be deduced from the asymptotic analy-
sis presented here.

Appendix: Sketch of Proofs

First note that (10) is the well-known result that per-
tains to the behavior of the maximum likelihood es-
timator in misspecified models – see, for instance,
(White, 1982) or Lemma 1 of (Shimodaira, 2000).

Now, the fact that θ̂s
n = arg minθ∈Θ Eπ̂s

n
[ℓ(Y |X; θ)] im-

plicitly defines the semi-supervised estimator θ̂s
n as a

function of the maximum-likelihood estimator of the
conditional probabilities

η̂n(y|x) =

∑n
i=1 1{Xi = x, Yi = y}
∑n

i=1 1{Xi = x}

In our setting, the conditional probability η may be
represented by a finite dimensional vector block de-
fined by η = (η(x1), . . . ,η(xd))

T, where η(xi) =
(η(y1|xi), . . . , η(yk|xi))

T, {x1, . . . , xd} denote the ele-
ments of X , and, {y0, . . . , yk} denote the elements of
Y. As usual in polytomous regression models, we omit
one of the possible values of Y (by convention, y0) due
to the constraint that

∑

y∈Y η(y|x) = 1, for all x ∈ X .
The estimator η̂n is defined similarly with η̂n(y|x) sub-
stituted for ηn(y|x). η̂n is the maximum likelihood
estimator of η and it is asymptotically efficient with

990



The Asymptotics of Semi-Supervised Learning in Discriminative Probabilistic Models

asymptotic covariance matrix given by K−1(η), the
inverse of the Fisher information matrix for η, block-
defined by

K−1(η) = diag
(
K−1(x1;η), . . . ,K−1(xd;η)

)

where

K−1(xi;η) = q(xi)
−1

{
diag (η(xi)) − η(xi)η

T(xi)
}

To obtain the asymptotic behavior of the semi-
supervised estimator θ̂s

n, remark that θ̂s
n is obtained

as a function ψ of η̂n, where ψ is implicitly defined by
the optimality equation s(η, ψ(η)) = 0 where s is the
(negative of the) score function defined by

s(η, θ) = ∇θEπ [∇θℓ(Y |X; θ)] =
∑

x∈X

q(x)
∑

y∈Y

η(y|x)∇θℓ(y|x; θ) (16)

Because θ⋆ = ψ(η) and θ̂s
n = ψ(η̂n), θ̂s

n is an asymptot-
ically efficient estimator of θ⋆ with asymptotic covari-

ance matrix given by ∇ηTψ(η)K−1(η)
{
∇ηTψ(η)

}T
.

The Jacobian matrix ∇ηTψ(η) may be evaluated
thanks to the implicit function theorem as

∇ηTψ(η) = {∇θTs(η, θ⋆)}−1 ∇ηTs(η, θ⋆)

From the definition of the score function in (16), it
is obvious that ∇θTs(η, θ⋆) = J(θ⋆). In order to cal-
culate ∇ηTs(η, θ⋆), we differentiate the rightmost ex-
pression in (16) using the fact that η(y0|x) = 1 −
∑

y 6=y0
η(y|x) to obtain

∂s(η, θ)

∂η(x|y) = q(x) [∇θℓ(y|x; θ) −∇θℓ(y0|x; θ)]

The expression given in Theorem 1 or the asymp-
totic variance of θ̂s

n follows by computing the product

∇ηTs(η, θ⋆)K
−1(xi;η)

{
∇ηTs(η, θ⋆)

}T
– which facto-

ries into blocks of size k – and using the fact that
η(y0|x) = 1 − ∑

y 6=y0
η(y|x).

Corollary 2 is based on the classical asymptotic ex-
pansion of Eπ[ℓ(Y |X; θ̂n)] − Eπ[ℓ(Y |X; θ⋆)] as 1

2 (θ̂n −
θ⋆)

TJ(θ⋆)(θ̂n − θ⋆) + op(
1
n ), see, for instance, (Bach,

2006).
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Abstract
Moment matching is a popular means of para-
metric density estimation. We extend this tech-
nique to nonparametric estimation of mixture
models. Our approach works by embedding
distributions into a reproducing kernel Hilbert
space, and performing moment matching in that
space. This allows us to tailor density estima-
tors to a function class of interest (i.e., for which
we would like to compute expectations). We
show our density estimation approach is useful
in applications such as message compression in
graphical models, and image classification and
retrieval.

1. Introduction
Density estimation is a key element of statistician’s tool-
box, yet it remains a challenging problem. A popular
class of methods relies on mixture models, such as Parzen
windows (Parzen, 1962; Silverman, 1986) or mixtures of
Gaussians or other basis functions (McLachlan & Basford,
1988). These models are normally learned using the likeli-
hood. However, density estimation is often not the ultimate
goal but rather an intermediate step in solving another prob-
lem. For instance, we may ultimately want to compute the
expectation of a random variable or functions thereof. In
this case it is not clear whether likelihood is the ideal ob-
jective, especially when the training sample size is small.

A second class of density estimators employ exponen-
tial family models and are based on the duality between
maximum entropy and maximum likelihood estimation
(Barndorff-Nielsen, 1978; Dudı́k et al., 2004; Altun &
Smola, 2006). These methods match the moments of the
estimators to those of the data, which helps focus the mod-
els on certain aspects of the data for particular applications.
However, these parametric moment based methods can be

Appearing in Proceedings of the 25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

too limited in terms of the class of distributions. Further-
more, exponential families tend to require highly nontriv-
ial integration of high-dimensional distributions to ensure
proper normalization. We desire to overcome these draw-
backs and extend this technique to a larger class of models.

In this paper, we generalize moment matching to nonpara-
metric mixture models. Our major aim is to tailor these
density estimators for a particular function class, and pro-
vide uniform convergence guarantees for approximating
the function expectations. The key idea is if we have good
knowledge of the function class, we can tightly couple the
density estimation with this knowledge. Rather than per-
forming a full density estimation where we leave the func-
tion class and subsequent operations arbitrary, we restrict
our attention to a smaller set of functions and the expec-
tation operator. By exploiting this kind of domain knowl-
edge, we make the hard density estimation problem easier.

Our approach is motivated by the fact that distributions can
be represented as points in the marginal polytope in re-
producing kernel Hilbert spaces (RKHS) (Wainwright &
Jordan, 2003; Smola et al., 2007). By projecting data and
density estimators into RKHS via kernel mean maps, we
match them in that space (also referred to as the feature
space). Choosing the kernel determines how much infor-
mation about the density is retained by the kernel mean
map, and thus which aspects (e.g., moments) of a den-
sity are considered important in the matching process. The
matching process, and thus our density estimation proce-
dure, amounts to the solution of a convex quadratic pro-
gram. We demonstrate the application of our approach in
experiments, and show that it can lead to improvements in
more complicated applications such as particle filtering and
image processing.

2. Background
Let X be a compact domain and X = {x1, . . . , xm} be
a sample of size m drawn independently and identically
distributed (iid.) from a distribution p over X . We aim to
find an approximation p̂ of p based on the sample X .

Let H be a reproducing kernel Hilbert space (RKHS) on
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X with kernel k : X × X 7→ R and associated feature
map φ : X 7→ H such that k(x, x′) = 〈φ(x), φ(x′)〉H.
By design H has the reproducing property, that is, for any
f ∈ H we have f(x) = 〈f, k(x, ·)〉H. A kernel k is called
universal if H is dense in the space of bounded continu-
ous functions C0(X ) on the compact domain X in the L∞
norm (Steinwart, 2002). Examples of such kernels include
Gaussian kernel exp(−‖x− x′‖2 /2θ2) and Laplace ker-
nel exp(−‖x− x′‖ /2θ2).

The marginal polytope is the range of the expectation of the
feature map φ under all distributions in a set P , i.e.,M :=
{µ[p]|p ∈ P, µ[p] := Ex∼p [φ(x)]} (Wainwright & Jordan,
2003). The map µ : P 7→ H associates a distribution to an
element in the RKHS. For universal kernels, the elements
of the marginal polytope uniquely determine distributions:

Theorem 1 (Gretton et al. (2007)) Let k be universal and
P denote the set of Borel probability measures p on X with
Ex∼p [k(x, x)] <∞. Then the map µ is injective.

3. Kernel Moment Matching
Given a finite sample X from p, µ[p] can be approximated
by the empirical mean map µ[X] := 1

m

∑m
i=1 φ(xi). This

suggests that a good estimate p̂ of p should be chosen such
that µ[p̂] matches µ[X]: this is the key idea of the paper.
The flow of reasoning works as follows:

density p→ sample X → empirical mean µ[X]
→ density estimation via µ[p̂] ≈ µ[X] (1)

The first line of this reasoning was established in (Al-
tun & Smola, 2006, Theorem 15). Let Rm(H, p) be the
Rademacher average (Bartlett & Mendelson, 2002) associ-
ated with p andH via

Rm(H, p) := 1
mEXEω

[
sup‖f‖H≤1

∣∣∣∑m

i=1
ωif(xi)

∣∣∣] .

where ω ∈ {±1} is uniformly random. We use it to bound
the deviation between empirical means and expectations:
Theorem 2 (Altun & Smola (2006)) Assume ‖f‖∞ ≤ R
for all f ∈ H with ‖f‖H ≤ 1. Then for ε > 0
with probability at least 1 − exp(−ε2mR−2/2) we have
‖µ[p]− µ[X]‖H ≤ 2Rm(H, p) + ε.

This ensures that µ[X] is a good proxy for µ[p]. To carry
out the last step of (1) we assume the density estimator p̂ is
a mixture of a set of candidate densities pi (or prototypes):

p̂ =
∑n

i=1
αipi where α>1 = 1 and αi ≥ 0, (2)

where 1 is a vector of all ones. Here the goal is to obtain
good estimates for the coefficients αi and to obtain perfor-
mance guarantees which specify how well p̂ is capable of
estimating p. This can be cast as an optimization problem:

min
α
‖µ[X]− µ[p̂]‖2H s.t. α>1 = 1 , αi ≥ 0. (3)

To prevent overfitting, we add a regularizer Ω[α], such as

1
2 ‖α‖

2, and weight it by a regularization constant λ > 0.
Using the expansion of p̂ in (2) we obtain a quadratic pro-
gram (QP) for α

min
α

1
2α>(Q + λI)α− l>α s.t. α>1 = 1 , αi ≥ 0, (4)

where I is the identity matrix. Q ∈ Rn×n and l ∈ Rn are
given by
Qij = 〈µ[pi], µ[pj ]〉H = Ex∼pi,x′∼pj

[k(x, x′)] , (5)

lj = 〈µ[X], µ[pj ]〉H = 1
m

∑m

i=1
Ex∼pj [k(xi, x)] . (6)

By construction Q � 0 is positive semidefinite, hence the
program (4) is convex. We will discuss examples of kernels
k and prototypes pi where Q and l have closed form in Sec-
tion 5. In many cases, the prototypes pi also contain tun-
able parameters. We can also optimize them via gradient
methods. Before doing so, we first explain our theoretical
basis for tailoring density estimators.

4. Tailoring Density Estimators
Given functions f ∈ H, a key question is to bound how
well the expectations of f with respect to p can be approx-
imated by p̂. We have the following lemma:

Lemma 3 Let ε > 0 and ε′ := ‖µ[X]− µ[p̂]‖H. Under
the assumptions of Theorem 2 we have with probability at
least 1− exp(−ε2mR−2/2)

sup
‖f‖H≤1

|Ex∼p[f(x)]− Ex∼p̂[f(x)]| ≤ 2Rm(H, p) + ε + ε′.

Proof In the RKHS, we have Ex∼p[f(x)] = 〈f, µ[p]〉H
and Ex∼p̂[f(x)] = 〈f, µ[p̂]〉H. Hence the LHS of the
bound equates to sup‖f‖H≤1 | 〈µ[p]− µ[p̂], f〉 |, which is
given by ‖µ[p]− µ[p̂]‖H. Using the triangle inequality, our
assumption on µ[p̂] and Theorem 2 completes the proof.

This means that we have good control over the behavior of
the expectations, as long as the function class is “smooth”
on X in terms of the Rademacher average. It also means
that ‖µ[X]− µ[p̂]‖H is a sensible objective to minimize if
we are only interested in approximating well the expecta-
tions over functions f .

This bound also provides the basis for tailoring density es-
timators. Essentially, if we have good knowledge of the
function class used in an application, we can choose the
corresponding RKHS or the mean map. This is equivalent
to filtering the data and extracting only certain moments.
Then the density estimator p̂ can focus on matching p only
up to these moments.

5. Examples
We now give concrete examples of density estimation. A
number of existing methods are special cases of our setting.

Discrete Prototype or Discrete Kernel The simplest
case is to represent p by a convex combination of Dirac
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Table 1. Expansions for Qij and lj when using Gaussian prototypes and various kernels in combination. Let c := 〈xi, xj〉+ 1.
Kernel Qij lj

Linear kernel
˙
x, x′

¸
〈xi, xj〉 1

m

Pm
i=1 〈xi, xj〉

Degree 2 polynomial kernel (
˙
x, x′

¸
+ 1)2 c2 + tr ΣiΣj + x>i Σjxi + x>j Σixj

1
m

Pm
i=1(c

2 + x>i Σjxi)

Degree 3 polynomial kernel (
˙
x, x′

¸
+ 1)3 c3 + 6x>i ΣiΣjxj + 3c(tr ΣiΣj + x>i Σjxi + x>j Σixj)

1
m

Pm
i=1(c

3 + 3cx>i Σjxi)

Gaussian RBF kernel e
− 1

2θ2 ‖x−x′‖2
θd

˛̨
Σi + Σj + θ2I

˛̨− 1
2 e

− 1
2‖xi−xj‖2(Σi+Σj+θ2I) 1

m θd
˛̨
Σj + θ2I

˛̨− 1
2

Pm
i=1 e

− 1
2‖xi−xj‖2(Σj+θ2I)

measures pi(x) = δxi . Particle filters (Doucet et al., 2001)
use this choice when approximating distributions. For in-
stance, we could choose xi to be the set of training points.
In this case Q defined in (5) equals the kernel matrix and l
is the vector of empirical kernel averages:

Qij = k(xi, xj) and lj = 1
m

∑m

i=1
k(xi, xj). (7)

The key difference between an unweighted set as used in
particle filtering and our setting is that our expansion is
specifically optimized towards good estimates with respect
to functions drawn fromH.

The problem of data squashing (DuMouchel et al., 1999)
can likewise be seen as a special case of kernel mean
matching. Here one aims to approximate a potentially large
set X by a smaller set X ′ = {(x1, α1), . . . , (xn, αn)} of
weighted observations. We want to discard X and only re-
tain X ′ for all further processing. If ‖µ[X] − µ[X ′]‖H is
small, we expect X ′ to be a good proxy for X .

Instead of using generic kernels k and discrete measures
δxi as prototypes for density estimation, we may reverse
their roles. That is, we may pick generic densities pi and a
Dirac kernel k(x, x′) = δ(x = x′). Note this is only well
defined for discrete domains X .1 In this case the mean op-
erator simply maps a distribution into itself and we obtain
〈µ[p], µ[p′]〉H =

∫
X p(x)p′(x)dx. Using (5) we have

Qij =
∫
X

pi(x)pj(x)dx and lj = 1
m

∑m

i=1
pj(xi). (8)

Gaussian Prototype In general we will neither pick dis-
crete prototypes nor discrete kernels for density estimation.
We now give explicit expressions for Gaussian prototypes

pi(x) = (2π)−
d
2 |Σi|−

1
2 exp

(
− 1

2 ‖x− xi‖2Σi

)
, (9)

where d is the dimension of the data, Σi � 0 is a covariance
matrix, and ‖x− x′‖2Σi

:= (x − x′)>Σ−1
i (x − x′) is the

squared Mahalanobis distance. When used in conjunction
with different kernels, we have the expansions in Table 1.

Other Prototypes and Kernels Other combinations of
kernels and prototypes also lead to closed form expansions.
For instance, similar expressions also holds for a Laplacian
kernel. However, this involves more tedious integrals of the
form

∫
e−λ(|x|+|x−a|)dx = λ−1 + e−λ|a|. Another exam-

ple is to use indicator functions on unit intervals centered
at xi as pi and a Gaussian RBF kernel. In this case, both Q
and l can be expressed using the error function (erf).

1On continuous domains such a kernel does not correspond to
an RKHS since the point evaluation is not continuous.

Furthermore, Jebara et al. (2004) introduced kernels on
probability functions which effectively used definition (5).
While they were not motivated by the connection between
kernels and density estimation, their results for rich classes
of densities, such as HMMs, can be used directly to com-
pute our Q and l.

6. Related Work
Our work is related to the density estimators of Vapnik &
Mukherjee (2000) and Shawe-Taylor & Dolia (2007). The
main difference lies in the function space chosen to mea-
sure the approximation properties. The former uses the
Banach space of functions of bounded variation, while the
latter uses the space L1(q), where q denotes a distribution
over test functions. For spherically invariant distributions
over test functions our approach and the latter approach are
identical, with a key difference (to our advantage) that our
optimization is a simple QP which does not require con-
straint sampling to make the optimization feasible.

Support Vector Density Estimation The model of Vap-
nik & Mukherjee (2000) can be summarized as follows: let
F [p̂] be the cumulative distribution function of p̂ and let
F [X] be its empirical counterpart. Assume p̂ is given by
(2), and that we have a regularizer Ω[α] as previously dis-
cussed. In this case the Support Vector Density Estimation
problem can be written as

min
α feasible

1
m

∑m

i=1
|F [p̂](xi)− F [X](xi)|+ λΩ[α]. (10)

That is, we minimize the `1 distance between the empir-
ical and estimated cumulative distribution functions when
evaluated on the set of observations X .

To integrate this into our framework we need to extend
our setting from Hilbert spaces to Banach spaces. De-
note by B a Banach space, let X be a domain furnished
with probability measures p, p′, and let φ : X 7→ B be
a feature map into B. Analogously, we define the mean
map µ : P 7→ B as µ[p] := Ex∼p(x) [φ(x)]. More-
over, we define a distance between distributions p and p′

via D(p, p′) := ‖µ[p]− µ[p′]‖B. If we choose φ(x) =(
χ(−∞,x](x1), . . . , χ(−∞,x](xm)

)>
where χ is the indica-

tor function, and use the `m
1 norm on φ we recover SV den-

sity estimation as a special case.

Expected Deviation Estimation Shawe-Taylor & Dolia
(2007) defined a distance between distributions as follows:
let H be a set of functions on X and q be a probability
distribution over F . Then the distance between two distri-
butions p and p′ is given by
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D(p, p′) := Ef∼q(f) |Ex∼p[f(x)]− Ex∼p′ [f(x)]| . (11)

That is, we compute the average distance between p and p′

with respect to a distribution of test functions.
Lemma 4 Let H be a reproducing kernel Hilbert space,
f ∈ H, and assume q(f) = q(‖f‖H) with finite
Ef∼q[‖f‖H]. Then D(p, p′) = C ‖µ[p]− µ[p′]‖H for
some constant C which depends only onH and q.
Proof Note that by definition Ex∼p[f(x)] = 〈µ[p], f〉H.
Using linearity of the inner product, Equation (11) equals∫

|〈µ[p]− µ[p′], f〉H|dq(f)

= ‖µ[p]− µ[p′]‖H
∫ ∣∣∣∣〈 µ[p]− µ[p′]

‖µ[p]− µ[p′]‖H
, f

〉
H

∣∣∣∣ dq(f),

where the integral is independent of p, p′. To see this, note
that for any p, p′, µ[p]−µ[p′]

‖µ[p]−µ[p′]‖H
is a unit vector which can

be turned into, say, the first canonical basis vector by a ro-
tation which leaves the integral invariant, bearing in mind
that q is rotation invariant.

The above result covers a large number of interesting func-
tion classes. To go beyond Hilbert spaces, let φ : X 7→ B
be the transformation from x into f(x) for all f ∈ H and
‖z‖B := Ef∼q(f)[|zf |] be the L1(q) norm. Then (11) can
also be written as ‖µ[p]− µ[p′]‖B, where µ is the mean
map into Banach spaces. Its main drawback is the nontriv-
ial computation for constraint sampling (de Farias & Roy,
2004) and the additional uniform convergence reasoning
required. In Hilbert spaces no such operations are needed.

7. Experiments
We focus on two aspects: first, our method performs well
as a density estimator per se; and second, it can be tailored
towards the expectation over a particular function class.

7.1. Methods for Comparison
Gaussian Mixture Model (GMM)2 The density was
represented as a convex sum of Gaussians. GMM was ini-
tialized with k-means clustering. The centers, covariances
and mixing proportions of the Gaussians were optimized
using the EM algorithm. We used diagonal covariances
in all our experiments. We always employed 50 random
restarts for k-means, and returned the results from the best
restart.
Parzen Windows (PZ) The density was represented as
an average of a set of normalized RBF functions, with
each centered on a data point. The bandwidths of the RBF
functions were identical and tuned via the likelihood using
leave-one-out cross validation.
Reduced Set Density Estimation (RSDE)3 Girolami &
He (2003) compressed a Parzen window estimator using
RBF functions of larger bandwidths. The reduced represen-

2GMM codes from: http://www.datalab.uci.edu/resources/gmm/
3PZ and RSDE from: http://ttic.uchicago.edu/∼ihler/code/
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Figure 1. Left: Negative log-likelihood using a mixture of 3
Gaussians. The height of the bars represents the median of the
scores from 100 repeats, and the whiskers correspond to the
quartiles. We mark the best method with a black dot above the
whiskers. Right: Sparsity of KMM solution. Blue dots are data
points. Red circles represent prototypes selected by KMM. The
size of a circle is proportional to the magnitude of its weight αi.

tation was produced by minimizing an integrated squared
distance between the two densities.
Kernel Moment Matching (KMM) In applying our
method, we used Gaussians with diagonal covariances as
our prototypes pi. The regularization parameter λ in our
algorithm was fixed at 10−10 throughout. Since KMM may
be tailored for different RKHS, we instantiated it with the
four different kernels in Table 1. We denote them as LIN,
POL2, POL3 and RBF, respectively. Our choice of kernel
corresponded to the function class where we evaluated the
expectations. The initialization of the prototypes will be
further discussed below.

7.2. Evaluation Criterion
We compared various density estimators in terms of two
criteria: negative log-likelihood and discrepancy between
function expectations on test data. Since different algo-
rithms are optimized using different criteria, we expect that
each will win with respect to the criterion it employs. The
benefit of our density estimator is that we can explicitly
tailor for different classes of functions. For this reason, we
will focus on the second criterion.

Given a function f , the discrepancy between function ex-
pectations is computed as follows: (i) Evaluate function
expectation using test points, i.e., 1

m

∑m
i=1 f(xi); (ii) Eval-

uate function expectation using estimated density p̂, i.e.,
Ex∼p̂[f(x)]. (iii) Calculate

∣∣ 1
m

∑m
i=1 f(xi)− Ex∼p̂[f(x)]

∣∣
and normalize it by

∣∣ 1
m

∑m
i=1 f(xi)

∣∣.
We will compare various methods either by repeated ran-
dom instantiation or random split of the data (which we
will make clear in context). For both cases, we will per-
form paired sign tests at the significance level of 0.01 on the
results obtained from the randomizations. We will always
present the median of the results in subsequent tables, and
highlight in boldface those statistically equivalent methods
that are significantly better than the rest.

7.3. Synthetic Dataset
In this experiment, we use synthetic datasets to compare
various methods as the sample size changes. We also show
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Table 2. Sparsity of the solution of RSDE and KMM. We show
the median of the number of retained prototypes from 100 random
initializations. Also shown are median percentages of retained
prototypes after optimization.
Sample Size 50 150 250 350 450

RSDE 12 (25.0%) 35 (23.3%) 62 (24.8%) 90 (25.9%) 124 (27.5%)
KMM 10 (20.0%) 21 (14.0%) 30 (12.0%) 36 (10.3%) 42 (9.3%)

that KMM leads to sparse solutions.
Data Generation We generated 2 dimensional mixtures
of 3 Gaussians with centers (0, 0)>, (3, 3)> and (−6, 4)>,
and covariances 0.82I, 1.22I and I respectively. The mix-
ing proportions were 0.2, 0.3 and 0.5 respectively. We var-
ied the training sample size while always testing on sam-
ples of size 1000. For each fixed training size, we randomly
instantiated the experiments 100 times.
Experimental Protocol All training data points were
used as prototypes for RSDE and KMM. Their initial co-
variances were set to be identical, and were initialized in
both cases using the approach of RSDE. We used the RBF
instance of KMM and set the bandwidth θ of the kernel to
be the same as that for the prototypes. GMM used 3 cen-
ters.
Negative Log Likelihood The results are plotted in Fig-
ure 1. GMM performs best in general, while KMM is su-
perior for small sample sizes. This is not surprising since
we used a correct generative model of the data for GMM.
When the sample size is small (less than 30 data points
for each cluster), GMM is susceptible to local maxima and
does not result in good estimates.
Sparsity of the Solution KMM also leads to sparse so-
lutions (e.g., Figure 1). When using all data points as can-
didate prototypes, KMM automatically prunes away most
of them and results in a much reduced representation of the
data. In terms of both likelihood and sparsity, KMM is su-
perior to other reduction method such as RSDE (Table 2).

7.4. UCI Dataset
We used 15 UCI datasets to compare various methods
based on the discrepancies between function expectations.

Data Description We only included real-valued dimen-
sions of the data, and normalized each dimension of the
data separately to zero mean and unit variance. For each
dataset, we randomly shuffled the data points for 50 times.
In each shuffle, we used the first half of the data for training
and the remaining data for testing. In each shuffle, we ran-
domly generated 100 functions f to evaluate the discrep-
ancy criterion, i.e., f =

∑m0
i=1 wik(xi, ·) where m0 ∈ N

was uniformly random in [1,m], wi ∈ R was uniformly
random in [−1, 1], and the xi were uniformly sampled from
the test points. Thus, each method resulted in 5000 num-
bers for each dataset.

Experimental Protocol Both GMM and KMM used 10
prototypes and diagonal covariances, and both were initial-
ized using k-means clustering. We used all four instances

Table 3. Negative log-likelihood on test points as computed by
various density estimators over randomizations.

Data PZ GMM RSDE LIN POL2 POL3 RBF
covertype 11.48 11.22 14.97 11.64 208.29 45.23 62.37
ionosphere 28.09 36.58 56.68 29.55 69.92 68.79 46.49

sonar 78.29 119.16 122.35 78.13 129.81 92.35 112.21
australian 3.32 5.82 8.82 3.40 4.64 22.73 7.27

specft 43.01 42.61 43.16 42.90 231.76 87.28 105.04
wdbc 25.17 42.97 48.44 25.98 248.73 63.61 88.61
wine 19.68 21.17 22.95 19.43 70.15 47.99 48.94

satimage 18.49 39.10 59.88 20.18 158.31 121.27 52.41
segment -1.43a 5.71 36.74 -1.07 154.25 128.74 28.38
vehicle 10.98 11.99 32.85 11.34 170.66 200.22 83.35

svmguide2 27.85 39.67 40.07 27.92 204.30 59.22 36.08
vowle 11.75 6.24 25.59 11.77 108.43 47.45 26.18

housing 3.68 7.44 15.53 3.81 16.07 90.51 39.88
bodyfat 16.38 20.06 21.96 16.59 87.23 171.53 53.33
abalone 2.53 2.57 10.17 2.75 19.15 21.77 16.29

mix3 100 2.42 2.09 2.12 2.55 2.49 2.43 2.41
mix3 500 1.91 1.92 1.92 1.94 1.93 1.91 1.91

mix3 1000 1.86 1.87 1.88 1.88 1.87 1.87 1.86

aSome numbers are negative, which is possible since unlike
probability mass function, density can take values greater than 1.

of KMM, namely LIN, POL2, POL3 and RBF, for the ex-
periments, depending on the function class where we eval-
uated the expectations. When we used the RBF instance of
KMM, we set the bandwidth θ of the kernel to the median
of the distances between data points. Besides optimizing
the mixing proportions of the prototypes of KMM, we also
used conjugate gradient descent to optimize the center po-
sitions and covariances of the prototypes.
Negative Log Likelihood Kernel moment matching can
be a very different objective from the likelihood (Table 3).
Except for the LIN instance, KMM results in much larger
negative log-likelihood. This suggests that if the purpose of
density estimation is to approximate the function expecta-
tions, likelihood is no longer a good criterion. We confirm
this observation in our next experiment.
Discrepancy between Function Expectations We used
four classes of functions corresponding to the RKHS of the
LIN, POL2, POL3 and RBF instances of KMM. For non-
linear functions KMM clearly outperforms other density
estimators, while for linear functions KMM has equivalent
performance to PZ and GMM (Table 4). These results are
not surprising, since KMM is explicitly optimized for ap-
proximating the function expectations well. Note that PZ
is the second best for polynomial functions. This is rea-
sonable since PZ retains all training points in the density,
and should perform better than compressed representations
such as GMM and RSDE. We also applied this new exper-
imental protocol to the synthetic mixture of 3 Gaussians
from the last section. We instantiate the synthetic data with
3 different sample sizes: 100, 500 and 1000. The results
are shown in the last three rows of Table 3 and 4, which
are consistent with those for UCI data. A closer view of
the difference between GMM and KMM using “covertype”
dataset is shown in Figure 2. We chose to compare GMM
and KMM because they are initialized similarly.

As an aside, we remark that PZ and GMM also match the
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Figure 2. Scatter plot of the discrepancies between function ex-
pectations (in log scale) for the ‘covertype’ dataset, with GMM
discrepancies on the horizontal axis and KMM discrepancies on
the vertical axis. Left: plot for polynomial functions (d = 2);
Right: plot for RBF functions. The distribution of the points is
skewed below the red diagonal line, which means KMM is better.
The numbers near the corners count respectively the number of
points falling above and below the red diagonal.

empirical mean 1
m

∑m
j=1 xj . This is obvious for PZ. For

GMM, in each EM iteration, the centers µi and weights
αi of each pi are updated via µi ←

∑m
j=1 τ i

jxj/
∑m

j=1 τ i
j

and αi ← 1
m

∑m
j=1 τ i

j . Here τ i
j is the probability of xj

being generated by pi. It follows that Ep[x] =
∑

i αiµi

also matches 1
m

∑m
j=1 xj .

8. Applications
In this section, we employ KMM for two different applica-
tions: message compression in graphical models, and im-
age processing. The common feature of these two applica-
tions is that they involve density estimation for computing
the expectation of a function, which is the relevant setting
for KMM.

8.1. Message Compression
We use density estimation to compress messages in graph-
ical models. This is of particular interest for applications
such as distributed inference in sensor networks. It is our
desire to compress the messages to cater for limited power
supply and communication bandwidth. We will use a par-
ticle filtering example to compare GMM and KMM only,
since they performed best in our earlier experiments.

We model a one dimensional time series yt (t = 1 . . . 100)
as being conditionally independent given an unobserved
state st, which is itself Markovian. This system evolves
as follows:

st = f(st−1) = 1 + sin(0.04πt) + 0.5st−1 + ξ (12)

yt = g(st) =

{
0.2s2

t + ζ, if t < 50,

0.5st − 2 + ζ, otherwise.
(13)

The random variables ξ and ζ represent process and mea-
surement noise, respectively, and are modeled as mixtures
of Gaussians,

ξ ∼ 1
5

∑5

i=1
N (µi, σ), ζ ∼ N (0, σ). (14)

Throughout this experiment, we fix σ to 0.2 and choose
µi to be {−1.5,−0.5, 0.5, 1.5, 2}. We initialize s0 with ξ.

Note that our setting is a modification of de Freitas’s demo4

where we only change the process noise from a unimodal
gamma distribution to a more complicated mixture model.

The task of particle filtering (Doucet et al., 2001) is to in-
fer the hidden state given past and current observations.
This can be carried out by estimating the filtering density
p(st|Yt) := p(st|y1, . . . , yt) recursively in a two-stage pro-
cedure. First, the current filtering density p(st|Yt) is prop-
agated into the future via the transition density p(st+1|st)
to produce the prediction density p(st+1|Yt), i.e.,

Est∼p(st|Yt)[p(st+1|st)] :=
∫

p(st+1|st)p(st|Yt)dst. (15)

Second, p(st|Yt) is updated via Bayes’ law,
p(st+1|Yt+1) ∝ p(yt+1|st+1)p(st+1|Yt). (16)

The integral in (15) is usually intractable since the filter-
ing density p(st|Yt) can take a complicated form. There-
fore, p(st|Yt) is often approximated with a set of samples
called particles. For distributed inference, it is these sam-
ples that need to be passed around. We want to compress
the samples using density estimation such that we still do
well in computing Est∼p(st|Yt)[p(st+1|st)]. In our exam-
ple, p(st+1|st) takes the form

p(st+1|st) ∝
∑5

i=1
exp

(
− (st+1−f(st)−µi)

2

2σ2

)
. (17)

In terms of variable st, p(st+1|st) is in the RKHS with ker-
nel k(x, x′) = exp

(
− (x−x′)2

2(2σ)2

)
. We can customize KMM

using this kernel, and compress messages by targeting a
good approximation of Est∼p(st|Yt)[p(st+1|st)].

We use 5 centers for both GMM and KMM to compress the
messages. We compare the filtering results with the true
states. The error is measured as the root mean square of
the deviations. The results for compressing different num-
bers of particles are reported in Table 5. We find that fil-
tering results after compression even outperform those ob-
tained from the full set of particles (PF). In particular, the
results for KMM are slightly better than those for GMM.
By compression, we have extracted the information most
essential to statistical inference, and actually made the in-
ference more robust. If the compression is targeted to
Est∼p(st|Yt)[p(st+1|st)] (as we do in KMM), we can sim-
ply get better results.

The shortcomings of general purpose density estimation
also arise in the more general settings of message passing
and belief propagation. This is due to the way messages
are constructed: given a clique, the incoming messages are
multiplied by the clique potential and all variables not in
the receiver are integrated out. In most cases, this makes
the outgoing messages very complicated, causing signif-
icant computational problems. Popular methods include

4http://www.cs.ubc.ca/∼nando/software/upf demos.tar.gz
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Table 4. Discrepancy between function expectations over randomizations. Smaller numbers are not necessarily statistical significant.
Data Linear Functions Polynomials (d = 2) Polynomials (d = 3) RBF Functions

PZ GMM RSDE LIN PZ GMM RSDE POL2 PZ GMM RSDE POL3 PZ GMM RSDE RBF
covertype 2.003 2.003 10.280 2.003 0.185 0.194 0.396 0.150 0.418 0.539 1.240 0.412 0.073 0.023 0.071 0.020
ionosphere 2.006 2.006 17.995 2.006 0.159 0.232 0.383 0.169 0.615 0.664 1.659 0.626 0.120 0.024 0.142 0.022

sonar 2.000 2.000 12.288 2.000 0.971 0.354 0.933 0.242 0.691 0.745 2.558 0.673 0.857 0.030 0.873 0.029
australian 2.000 2.000 14.217 2.000 0.369 0.380 0.587 0.380 0.832 0.837 1.031 0.833 0.089 0.028 0.106 0.024

specft 2.000 2.000 3.594 2.000 0.891 0.515 0.522 0.488 0.922 0.878 1.265 0.867 0.903 0.067 0.904 0.062
wdbc 2.004 2.004 16.447 2.004 0.209 0.233 0.406 0.166 0.519 0.612 1.362 0.512 0.482 0.027 0.456 0.023
wine 2.017 2.017 9.489 2.017 0.822 0.236 1.027 0.211 0.679 0.718 2.782 0.682 0.471 0.040 0.545 0.039

satimage 2.000 2.000 27.561 2.000 0.146 0.126 0.533 0.122 0.260 0.281 1.230 0.256 0.307 0.028 0.359 0.026
segment 2.003 2.003 23.388 2.003 0.258 0.245 0.803 0.263 0.590 0.572 1.021 0.588 0.053 0.025 0.247 0.022
vehicle 2.005 2.005 26.331 2.005 0.126 0.135 0.780 0.119 0.496 0.478 1.686 0.493 0.095 0.028 0.325 0.027

svmguide2 2.005 2.005 7.248 2.005 3.468 0.247 3.341 0.183 0.866 0.782 2.603 0.729 0.798 0.019 0.808 0.018
vowle 2.000 2.000 12.913 2.000 0.131 0.150 0.642 0.131 0.348 0.394 1.741 0.352 0.028 0.019 0.111 0.018

housing 2.000 2.000 7.668 2.000 0.117 0.126 0.399 0.121 0.393 0.421 0.890 0.391 0.044 0.027 0.091 0.025
bodyfat 2.000 2.000 7.295 2.000 0.288 0.243 0.595 0.242 1.029 1.017 1.200 1.015 0.430 0.038 0.432 0.037
abalone 2.005 2.005 17.010 2.005 0.105 0.101 0.234 0.103 0.629 0.636 3.308 0.628 0.049 0.044 0.294 0.043

mix3 100 2.000 2.000 2.164 2.000 0.153 0.152 0.164 0.152 0.248 0.242 0.271 0.244 0.046 0.044 0.046 0.044
mix3 500 2.000 2.000 2.069 2.000 0.064 0.062 0.064 0.062 0.094 0.092 0.097 0.091 0.020 0.019 0.020 0.019
mix3 1000 2.000 2.000 2.035 2.000 0.052 0.051 0.051 0.050 0.082 0.081 0.082 0.080 0.015 0.014 0.015 0.014

Table 5. Root mean square error and standard deviation of the fil-
tering results before and after particle compression. We randomly
instantiated the system 50 times and concatenate the times to pro-
duce the results. Statistical tests are done by viewing each time
point as a data point.

Particle # PF GMM KMM
100 0.683±0.114 0.558±0.084 0.546±0.072
500 0.679±0.111 0.556±0.076 0.530±0.070

1000 0.685±0.111 0.556±0.082 0.526±0.070

particle filtering, which uses a discrete approximation of
the messages, and expectation propagation, which uses a
single Gaussian approximation of the messages (Minka,
2001). We plan to further investigate KMM in these gen-
eral settings. Our key benefit is that we can customize the
approximation properties for a particular graphical model.

8.2. Image Retrieval and Categorization
Following the work of (Rubner et al., 2000; Greenspan
et al., 2002), we use density estimation as an intermediate
step for image retrieval and categorization.

8.2.1. IMAGE RETRIEVAL

Image retrieval is the task of finding from a given database
the set of images similar to a given query image. An im-
age is normally characterized by the distribution over fea-
tures (e.g., color, texture) of pixels, patches, etc. It is thus
helpful to compress the distribution by density estimation
into more compact forms (e.g., mixtures of Gaussians), on
which the query is based. In particular, the advantage is
that density estimation can be computed offline before the
query takes place, thus offering computational and storage
savings.
Method Greenspan et al. (2002) used GMM for den-
sity estimation; we propose KMM as an alternative. After
density estimation, the dissimilarity between two distribu-
tions needs to be measured and the Earth Mover’s Distance
(EMD) is a state-of-the-art measure. Given two distribu-
tions represented by sets of weighted prototypes, EMD re-
gards one collection as mass of earth spread in the fea-
ture space, while the other is a collection of holes. The
EMD is defined as the least amount of work needed to
fill the holes with earth. A unit of work corresponds to

the ground distance between two prototypes. If we rep-
resent the distributions by mixtures of Gaussians, then a
sensible ground distance D(pi, p

′
j) between two Gaussians

pi = N (µi,Σi) and p′j = N (µ′j ,Σ
′
j) is the Fréchet dis-

tance used in (Greenspan et al., 2002),
D2(pi, p

′
j) := |µi − µ′j |2 + tr

(
Σi + Σ′j − 2(ΣiΣ′j)

1/2
)

.

Based on D(pi, p
′
j), if p =

∑
i αipi where pi is a Gaussian

and αi is its weight, and similarly p′ =
∑

j α′jp
′
j , then the

EMD between p and p′ is

EMD(p, p′) := min
γij feasible

∑
i

∑
j
γijD(pi, p

′
j),

where γij ≥ 0 is the flow between pi and qj . Feasibility
means

∑
i γij ≤ α′j and

∑
j γij ≤ αi for all i and j.

Settings In this experiment, the distance measure is fixed
to EMD. We plug the densities estimated by GMM and
KMM into EMD5, and compare the retrieval results. Para-
meters for KMM and GMM were chosen in the same way
as in Section 7.4. Here KMM used POL3. For each image,
we sampled 103 pixels and each pixel’s feature vector was
the CIE-Lab value of a 5×5 window centered on it.
Results We collected L = 10537 images from various
sources including FIRE and CIRES6. The dataset included
10 labeled categories like horse, beach, and each cate-
gory has 100 images. For each image Ic(i) from class
c (c ∈ {1, ..., 10}, i ∈ {1, ..., 100}), we retrieved r
(r ∈ {1, ..., L}) closest images (in terms of EMD) from
the whole database and counted how many among them are
also from class c, denoted as gc(i, r) for GMM and kc(i, r)
for KMM. For each c and r, we performed a paired sign test
between {gc(i, r)}100i=1 and {kc(i, r)}100i=1. Since p-value is
always in (0,1], we report in Figure 3 the log p-value if the
median of {kc(i, r) − gc(i, r)}100i=1 is higher than 0. Oth-
erwise, we plot the negative log p-value. Negative values
are in favor of KMM. In Figure 3, performance of KMM is
superior to or competitive with GMM in 8 categories and
for most values of r (number of retrieved images).

5EMD code from http://ai.stanford.edu/∼rubner/emd
6FIRE: http://www-i6.informatik.rwth-aachen.de/

∼deselaers/fire.html, CIRES: http://cires.matthewriley.com
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Figure 3. Log sign test p-value (vertical axis) v.s. # retrieved images (horizontal axis).
Negative if KMM is better than GMM, and positive otherwise. ±2 for significance level 0.01.
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Figure 4. Error rate of image cate-
gorization using KMM and GMM.

It is important to note that the Fréchet distance is not in the
class of functions used in KMM, and KMM still performs
reasonably well. In the next section, we learn an image
classifier using the same kernel as used in KMM.

8.2.2. IMAGE CATEGORIZATION

A closely related but different task is learning to cate-
gorize images using multi-class classification, particularly
by SVM. Here all we need is a kernel between pairs
of image densities p and q, which is readily given by
〈µ[p], µ[q]〉H. The SVM classifier takes the form f(pj) =∑

i γi 〈µ[pi], µ[pj ]〉 = Ex∼pj
[
∑

i γiµ[pi](x)] for some
γi ∈ R. Since

∑
i γiµ[pi] ∈ H, KMM ensures that pj is

estimated such that this expectation is well approximated.

Our 10-class classification used 1000 images from the 10
categories. We randomly divided each category into 70 im-
ages for training and 30 images for testing. We used Lib-
SVM to train a multi-class SVM with one-against-one cri-
terion on the combined 700 training images. The loss and
regularization tradeoff parameter was determined by an in-
ner loop 10-fold cross validation on the training data. Fi-
nally we test the accuracy of the learned model on the 300
test images. The whole process is repeated for 1500 times.
We use POL3 for both KMM and SVM, because for both
GMM and KMM, POL3 significantly outperforms POL2
and RBF in practice7. By using paired sign test, KMM
yields lower error rate than GMM at significance level 0.01.
Figure 4 shows the scatter plot of the resulting error rates.
Acknowledgements NICTA is funded by the Australian
Government’s Backing Australia’s Ability and the Centre of Ex-
cellence programs. This work is also supported by the IST Pro-
gram of the European Community, under the FP7 Network of Ex-
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Abstract

Discovering additive structure is an impor-
tant step towards understanding a complex
multi-dimensional function because it allows
the function to be expressed as the sum of
lower-dimensional components. When vari-
ables interact, however, their effects are not
additive and must be modeled and inter-
preted simultaneously. We present a new
approach for the problem of interaction de-
tection. Our method is based on compar-
ing the performance of unrestricted and re-
stricted prediction models, where restricted
models are prevented from modeling an in-
teraction in question. We show that an addi-
tive model-based regression ensemble, Addi-
tive Groves, can be restricted appropriately
for use with this framework, and thus has the
right properties for accurately detecting vari-
able interactions.

1. Introduction

Many scientific inquiries seek to identify what variables
are important and to describe their effects. Discovery
of additive structure is an important step towards un-
derstanding a complex multi-dimensional function, be-
cause it allows for expressing this function as the sum
of lower-dimensional components. When variables in-
teract, their effects cannot be decomposed into in-
dependent lower-dimensional contributions and hence
must be modeled simultaneously. In this paper we de-
velop a methodology to automatically identify additive
and interactive structure among large sets of variables.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

The term statistical interaction is used to describe the
presence of non-additive effects among two or more
variables in a function. Two variables are said to in-
teract when the effect of one variable on the response
depends on values of the other variable. Precisely, vari-
ables xi and xj interact in F (x) when partial deriva-

tive ∂F (x)
∂xi

depends on xj or, more generally, when the
“difference in the value of F (x) for different values of
xi depends on the value of xj” (Friedman & Popescu,
2005). This is equivalent to the following definition:

Function F (x), where x = (x1, x2, . . . , xn), shows no
interaction between variables xi and xj if it can be
expressed as the sum of two functions, f\j and f\i,
where f\j does not depend on xj and f\i does not
depend on xi:

F (x) = f\j(x1, . . . , xj−1, xj+1, . . . , xn)

+f\i(x1, . . . , xi−1, xi+1, . . . , xn) (1)

For example, F (x1, x2, x3) = sin(x1 + x2) + x1x3 has
interactions between x1 and x2 and also between x1

and x3, but no interaction between x2 and x3.
1

Higher-order interactions between a larger number of
variables are defined similarly. There is no K-way in-
teraction between K variables in the function, if it
can be represented as a sum of K (or fewer) functions,
each of which does not depend on at least one variable
in question. If such representation is not possible, we
say that there is a K-way interaction. Function xx2+x3

1

shows a 3-way interaction between x1, x2 and x3, while
x1x2 + x2x3 + x1x3 has all pairwise interactions, but
not a 3-way interaction.

1It is important to stress that the concept of statisti-
cal interaction is completely unrelated to the dependence
and independence of variable distributions. Some authors
use “interaction” to refer to different types of dependen-
cies between variables, e.g., correlation (Jakulin & Bratko,
2004). In this paper we discuss statistical (non-additive)
interactions only, not correlation or statistical dependence.

1000



Detecting Statistical Interactions with Additive Groves of Trees

Interaction detection has high practical importance
because it provides valuable knowledge about a do-
main. For example, our experiments with bird abun-
dance data (Section 7) demonstrate that detection of
spatio-temporal interactions can signal changes in the
environment. In this particular case, a fatal eye dis-
ease was spreading slowly from the Northeastern US
to other regions. This disease affected the annual bird
abundance differently depending on location, creating
a strong interaction between time and location.

Interactions are also an important part of statistical
analysis. Early methods for interaction detection were
parametric and required explicit modeling of interac-
tions, most often as multiplicative terms. As a con-
sequence, only limited types of interactions could be
detected. More general approaches were introduced
recently (Friedman & Popescu, 2005; Hooker, 2007).
These methods are based on building a model and
detecting interactions in the function learned by the
model. A major shortcoming of this approach is that
the model may detect spurious interactions over re-
gions of the input space where data is scarce, and
known solutions to this problem are either inadequate
or computationally expensive. (See (Hooker, 2007)
and Section 8 of this paper for more details.)

We introduce a new approach to interaction detec-
tion. It is based on comparing the performance of
restricted and unrestricted predictive models. This
avoids the drawbacks of previous methods, because it
does not require explicit modeling of interacting terms
and reports only those interactions that are present in
the actual input data. However, the choice of model
and the restriction algorithm used are crucial for this
framework. We explain why additive models are able
to provide the required accurate restrictions and fur-
ther show that Additive Groves (Sorokina et al., 2007),
an additive model-based ensemble of regression trees,
works well in this framework. We also investigate how
correlations in the data complicate interaction detec-
tion and suggest how this problem can be dealt with
via feature selection.

The advantage of our new approach for interaction
detection, compared with traditional statistical ap-
proaches, is that it is more automatic and does not
require limiting the functional form that interactions
might take. Statistical methods often represent only
multiplicative interactions and thus may miss other
forms of interactions. When little is known about the
system under study, data-driven scientific discovery re-
quires the data to “speak for themselves” with a min-
imum of analyst input or assumptions. It is possi-
ble to conduct a fully nonparametric analysis with the

method we propose in this paper, which is particularly
valuable for exploratory analysis.

2. Estimating Interactions

Let F ∗(x) be an unknown target function and let F (x)
be a highly accurate model of F ∗ that can be learned
from a given set of training data. Furthermore, let
Rij(x) denote a restricted model of F ∗ that is learned
from the same training data. It is restricted in the
sense that it is not allowed to contain an interaction
between xi and xj , but apart from this limitation
should be as accurate a model of F ∗ as possible.

Our interaction estimation technique is based on the
following observation. If xi and xj interact, then F (x)
should have significantly better predictive performance
than Rij(x), because the latter cannot accurately cap-
ture the true functional dependency between xi and
xj . On the other hand, if the two variables do not
interact, then the absence of the interaction from the
model should not hurt its quality. Hence in the absence
of an interaction between xi and xj the predictive per-
formance of the restricted and the unrestricted model
should be comparable. Note that in order to get an
adequate estimate of performance, we must measure
it on test data not used for training.

Quantifying interaction strength. We can quan-
tify Iij , the degree of interaction between xi and xj ,
by the difference in performance between F (x) and
Rij(x). We measure performance as standardized
RMSE: root mean squared error (RMSE) scaled by
the standard deviation in the response function. Scal-
ing is done to make the results comparable across dif-
ferent data sets; StD(F ∗(x)) is calculated as standard
deviation of the response values in the training data.

stRMSE(F (x)) =
RMSE(F (x))

StD(F ∗(x))
(2)

Iij(F (x)) = stRMSE(F (x)) − stRMSE(Rij(x)) (3)

Setting the threshold. To distinguish whether a
positive value of Iij indicates presence of an interac-
tion or happened due to random variation, we measure
whether the performance of Rij(x) is significantly dif-
ferent from the performance of F (x). We follow com-
mon practice and define a difference of three standard
deviations of the latter from its mean as significant.
The distribution of stRMSE(F (x)) can come either
from different random seeds for bagging or from dif-
ferent data samples (e.g., n-fold cross validation). The
threshold for significant interactions then becomes:

Iij(F (x)) > 3 · StD(stRMSE(F (x))) (4)
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Note that everything above naturally generalizes to
higher-order interactions as long as there exists a
method to restrict the model on a specific type of in-
teraction.

3. Choosing a Prediction Model

To correctly estimate interaction strength with our
model comparison technique, we have to make sure
that a model has the following key properties:

1. High predictive performance when modeling in-
teractions: if there is an interaction, it should be
captured by the unrestricted model.

2. High predictive performance when the model is re-
stricted on non-interacting variables: if there is no
interaction, performance of the restricted model
should be no worse than the performance of the
corresponding unrestricted model.

The first requirement is satisfied by many learning
techniques, e.g., bagged decision trees of adequate
depth, SVMs, or neural nets. Boosted stumps, on
the other hand, do not model interactions. Since they
represent functions as the sum of components, each
of which depends only on a single variable, boosted
1-level stumps cannot be used in our framework.

While many models satisfy the first requirement, the
second requirement — that models perform as well
when interaction between non-interacting variables is
restricted — is far more challenging. Even when there
is a straightforward way of explicitly preventing spe-
cific interactions, often the resulting restricted model
will not perform as well as the unrestricted model be-
cause the restriction may hamper the search in model
space compared to the unrestricted model.

Consider a single decision tree. Variables in the tree
can interact only if they are used on the same branch
of the tree. So the obvious way to restrict interaction
between specific variables is to not use one of them if
the other already was used earlier on this branch. Now
suppose there is no interaction between variables A

and B, but they both are important — if the tree does
not use one of them, its performance drops. Assume
further that A is more important than B. The tree
will tend to choose A earlier than B on all branches
(in the worst case it will use A at the root) and will
then never be able to choose B. Since B is important,
the performance of this restricted tree will drop even
though there was no interaction between A and B.

One might be tempted to address this problem with
an ensemble method like bagging. Unfortunately the
situation will not improve much. In bagging, every
tree tries to capture the same function from a different

sample of the train set. If A is more important, most
trees will choose A before B, use of B will be restricted,
and performance will drop as before.

Additive models. To detect absence of interactions
between important variables, we need to build a re-
stricted model that uses these variables in different
additive components of the function. There is a class
of ensembles that allows us to do this: additive models.
Each component in an additive model is trained on the
residuals of predictions of all other previous models in
the ensemble. The training set for the new model com-
ponent is created as the difference between true func-
tion values and current predictions of the ensemble.
This way, when the function has additive structure,
different models (or groups of models) are forced to
find and model different components of this structure
as opposed to each modeling the whole function.

Not all models that fit residuals are suitable for this
framework. Linear models do not model interactions,
while generalized linear models disguise additive struc-
ture with a non-linear transformation. Neural net-
works pose problems because they either have addi-
tive structure (1 internal layer), or the ability to model
complex non-linear functions (several layers), while we
need an algorithm that combines both. Restricting in-
teractions in a multi-level network splits it into sub-
nets, ultimately leading to ”groves of nets”.

In this paper we use layered Additive Groves (Sorokina
et al., 2007). There exist other methods that might
work as well, e.g., gradient boosting trained to mini-
mize least squares loss (Friedman, 2001). However, it
is important to understand that the two requirements
stated in the beginning of this section are crucial and
many (most?) learning algorithms do not satisfy them.

4. Additive Groves of Regression Trees

Additive Groves is an ensemble of trees introduced in
(Sorokina et al., 2007). The combination of the ability
to model additive structure of the response and to also
use large trees that capture complex interactions make
Groves suitable for interaction detection.

A single Grove of trees is an additive model where each
additive component is represented by a regression tree.
Additive Groves use regression trees trained to mini-
mize mean squared error. Tree size is controlled by a
parameter α, the minimum fraction of train set cases
in a non-leaf node. A single Grove is trained similar to
an additive model: each tree is trained on the residuals
of the sum of the predictions of the other trees. Trees
are discarded and retrained in turn until the overall
predictions converge to a stable function. For the pur-
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Algorithm 1 Layered training of a single Grove

function Layered(α,N ,TrainSet{x, y})
α0 = 0.5, α1 = 0.2, α2 = 0.1, . . . , αmax = α

for i = 1 to N do

Treei = 0
for j = 0 to max do

repeat

for i = 1 to N do

newTrainSet = {x, y − ∑

k 6=i Treek(x)}
Treei = TrainTree(αj ,newTrainSet)

until (change from the last iteration is small)

pose of interaction detection we use layered training
of Additive Groves (Algorithm 1). The main differ-
ence between layered training and training classical
additive models is the following: Additive Groves be-
gin with an ensemble of very small trees; then during
re-training we gradually increase tree size by adding
more branches. This layered approach ensures fitting
of additive structure of the response function. As with
single trees, a single Grove can still overfit to the train-
ing data. Hence for the Additive Groves ensemble, we
wrap bagging around the layered training algorithm:
many single Groves are built on bootstrap samples of
the training set and their results are averaged. This
procedure reduces variance and yields a very powerful
predictive model.

Additive models provide an intuitive and easy way for
restricting interactions. Assume we want to restrict
a single Grove to not contain interactions between xi

and xj . Since the modeled function is computed as
the sum of the predictions of the individual trees, we
only have to enforce that none of the trees uses both xi

and xj . To decide if a tree is not allowed to use xi (or
otherwise xj), we use a greedy procedure. Each time
we train a tree, we first construct two trees: one does
not use xi, the other does not use xj . The one resulting
in better performance is inserted into the model, the
other one is discarded. For evaluating performance
we use the out-of-bag samples, i.e., that part of the
training data that did not get into the current sample
and therefore was not used to train the trees.

If we need to restrict on a higher-order interaction
(say, k-way interaction between k variables), we need
to build k candidate trees instead of 2 every time: each
tree is not allowed to use one of the variables. Note
that the complexity of testing for a single k-way inter-
action depends only linearly on k.

(Sorokina et al., 2007) also suggest another, “dynamic
programming”, style of training for Additive Groves.
The method starts with a single small tree. Then on

every retraining stage it either increases tree size or
adds another tree, which is decided by a heuristic. Al-
though this method provides better performance for
unrestricted models, we have encountered problems
with it when training restricted models. Therefore we
prefer layered Additive Groves for interaction detec-
tion. Note that we need to use layered training even for
the unrestricted model in order for the performances
to be comparable.

5. Feature Selection

Correlations among features are common and compli-
cate the task of detecting interactions. Suppose there
exists an interaction between variables xi and xj . At
the same time, a third variable, xk, is present in the
data. Assume it is highly correlated with xj , to such
an extent that the model can freely use either xk or xj

with similar results. In this case we will not be able
to detect the interaction between xi and xj . When we
restrict the model to prevent a tree from using xj , it
can use xk instead and performance will not drop. The
same will happen when we try to detect an interaction
between xi and xk.

Correlation among features is an intrinsic problem of
high dimensional data that confronts all methods for
interaction detection. For example, methods based on
partial dependence functions (Friedman & Popescu,
2005) suffer from a similar problem. The unrestricted
prediction model might sometimes use xj and some-
times xk. As a result it will find only weak interac-
tion between xi and xj and also between xi and xk,
even though the true interactions are much stronger.
If there are more than two correlated variables (again,
this is common in high-dimensional datasets), the in-
teraction can be spread out in tiny portions over all of
them, making it virtually impossible to detect.

As a consequence, before attempting to detect inter-
actions, we must eliminate correlations. This can be
achieved by a feature selection process, which removes
some of the variables. The final set of variables should
be a compromise between two goals: (1) The perfor-
mance of the unrestricted model should still be good,
ideally at least as good as before feature selection. (2)
Each variable should be important, i.e., if we remove
it from the set of features, the performance of the un-
restricted model should drop significantly. The second
criterion also gives us an estimate of the maximum
strength of interactions that we can detect: if the per-
formance of the unrestricted model drops by δ when
we remove xi, then we cannot expect the performance
of the best model restricted on xi and xj to drop by
more than δ. The intuition here is that removing an
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important variable is a stronger restriction than pro-
hibiting its interactions.

We use a variant of backward elimination (Guyon &
Elisseeff, 2003) for the feature selection process. The
main idea is to greedily eliminate all features (vari-
ables) whose removal either improves performance or
reduces performance by at most ∆ compared to perfor-
mance on the full-feature data set. In our experiments
we estimated d = StD(RMSE(F (x))), where F (x) is
the unrestricted model, before running feature selec-
tion and used ∆ = 3d.

The feature selection procedure is not stable—it de-
pends on the order in which we test each feature. For
example, if we consider two completely correlated vari-
ables xj and xk, we can remove xj and leave xk in the
set of the features. Or we can do exactly the reverse,
depending on which variable we tried to remove first
during feature selection. If there is a strong notion of
which features should stay in the data set after fea-
ture selection, i.e., if we want to test certain features
for interactions, the feature selection process should be
modified so that features of interest are not removed.

6. Complexity Issues

One concern about interaction detection is the need to
conduct a separate test for each interaction. If we want
to test for all possible interactions, in theory we need
O(nk) tests, where n is the number of variables and k is
the order of the interaction. However, such complexity
is unlikely to be required in practice. First, the fea-
ture selection process usually leaves a relatively small
set of features that makes it feasible to test all pairs
for possible interactions. Second, as noted by (Hooker,
2004), interactions possess an important monotonicity
property. A k-way interaction can only exist if all its
corresponding (k − 1)-interactions exist. This fact is
a straightforward consequence from the definition of
a k-way interaction. Hence after we have detected all
2-way interactions, we need to test for 3-way interac-
tions only for those triples of variables that have all
3 pairwise interactions present, and so on. As com-
plex interactions are rare in real datasets, in practice
we usually need only few tests for higher-order inter-
actions. Some domains do pose an exception, for ex-
ample, see our experiments on the kin8nm dataset.

7. Experiments

We have applied our approach to both synthetic and
real data sets. We can evaluate the performance of
our algorithm on synthetic data because we know the
true interactions; for real data we try to explain the

detected interactions based on the data set description.

In all our experiments we used 100 iterations of bag-
ging. Apart from that, Additive Groves requires two
parameters to be set: N (number of trees in a sin-
gle Grove) and α (fraction of train set cases in the
leaf, controls size of a single tree). We determined the
best values of α and N on a validation set and re-
ported the performance of Additive Groves with these
parameters on a test set. We ran each experiment for
the unrestricted model 10 times, using different ran-
dom seeds and therefore different bootstrap samples
for bagging. From these results we estimated the dis-
tribution of performance and then calculated the in-
teraction threshold using Equation 4. After that we
ran the experiment for each unrestricted model only
once. If the resulting estimate of the interaction was
above the threshold, we considered it to be evidence of
an interaction. Otherwise it was considered insignif-
icantly different from zero, indicating absence of an
interaction. Notice that due to variance, in the latter
case the estimate could be even negative, but should
always be close to zero.

7.1. Synthetic Data.

This data set was generated by a function that was
previously used in (Hooker, 2004).

F (x) = πx1x2

√
2x3 − sin−1(x4) +

log(x3 + x5) −
x9

x10

√
x7

x8
− x2x7 (5)

Variables x1, x2, x3, x6, x7, x9 are uniformly dis-
tributed between 0.0 and 1.0 and variables x4, x5, x8

and x10 are uniformly distributed between 0.6 and 1.0.
Training, validation and test set contain 1000 points
each. Best parameters were detected as α = 0.02 and
N = 8. Feature selection eliminated variables x6 (not
present in the function) and x8 (virtually no influence
on the response). For each of the 28 pairs of remaining
variables we constructed a restricted model and com-
pared it to the unrestricted model. Figure 1 shows the
interaction value for each variable pair as computed by
Equation 2. The dashed line shows the threshold. We
can see a group of strong interactions high above the
threshold — pairs (x1, x2), (x1, x3), (x2, x3), (x2, x7),
(x7, x9). All cases without interactions fall below the
threshold. There are also several weak interactions
in the data set: our estimate for (x9, x10) is barely
above the threshold and we failed to detect interac-
tions (x3, x5) and (x7, x10). By construction, x5 and
x10 have a small range and their interactions are not
significant. There is only one triple of variables with 3
pairwise interactions detected: (x1, x2, x3). A separate
test correctly reveals that there is a 3-way interaction
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between them. Note that this is the only higher-order
interaction that we need to test to conclude the full
analysis. The original formula has another 4-way in-
teraction, (x7, x8, x9, x10), but interactions of x8 and
x10 turned out to be very weak in the data, so the
model did not pick them up.
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Figure 1. Interaction estimates on synthetic data

For more realistic results, we generated a version of the
same data set with a 2 : 1 signal-to-noise ratio. Now
feature selection left only 5 variables: x1, x2, x3, x5,
x7, and results of interaction detection between those
variables were qualitatively the same as the correspon-
dent results for the data set without noise.

7.2. Real data sets

We have run experiments on 5 real data sets, 4 of
them are regression data sets from Lúıs Torgo’s col-
lection (Torgo, 2007), and the last one is a bird abun-
dance data set from the Cornell Lab of Ornithol-
ogy (Caruana et al., 2006). We used 4/5 of the data
for training, 1/10 for validation and 1/10 for testing.

California Housing. California Housing is a regres-
sion data set introduced in (Pace & Barry, 1997). It
describes how housing prices depend on different cen-
sus data variables. Parameters used: α = 0.0005,
N = 6. Feature selection identified six variables as im-
portant: longitude, latitude, housingMedianAge, to-
talRooms, population and medianIncome. (Hooker,
2007) describes the joint effect of latitude and longi-
tude on the response function. Our results confirm
that there is a clear strong interaction between these
two variables — the location effect on prices cannot
be split into the sum of latitude and longitude effects.
We have also found an evidence of interaction between
population and totalRooms (Figure 2).

Elevators. This data set originates from an air-
craft control task (Camacho, 1998). Parameters used:
α = 0.02 and N = 18. Feature selection left six vari-
ables: climbRate, p, q, absRoll, diffRollRate, Sa. We
detected strong pairwise interactions in the triple (ab-
sRoll, diffRollRate, Sa) and a separate test confirmed
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Figure 2. Interaction estimates for California Housing.

that this is indeed a strong 3-way interaction (Figure
3). No other interactions were found.
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Figure 3. Interaction estimates for Elevators data.

Kinematics (kin8nm). The kin8nm dataset from
the Delve repository (Rasmussen et al., 2003) describes
a simulation of an 8-link robot arm movement. Its in-
put variables correspond to the angular positions of
the joints and it is classified as highly non-linear by
its creators. Parameters used: α = 0.005 and N = 17.
Our analysis produced symmetrical results that reveal
the simulation nature of the dataset: all 8 features turn
out to be important, 2 of them do not interact with
any other features and the other 6 are connected into
a 6-way interaction (Figure 4). For brevity we show
only results of tests for 2-way interactions and the final
6-way interaction, but we have also conducted tests for
20 3-way, 15 4-way and 6 5-way interactions between
those 6 variables following the procedure described in
Section 6. All tests confirmed the presence of inter-
actions. kin8nm is the only data set where we had
to test for many higher-order interactions. This is a
property of the domain: the formula describing the
end position of the arm based on joints angles results
from interaction between most of the variables.

CompAct. Another dataset from the Delve repos-
itory, it describes the level of CPU activity in mul-
tiuser computer systems. Parameters used: α = 0.05
and N = 18. Feature selection left 9 variables: lread,
scall, sread, exec, wchar, pgout, ppgin, vflt, freeswap.
This data set turns out to be very additive. Although
there are many 2-way interactions, they all are rela-
tively small (Figure 5). The largest interactions are
(freeswap, wchar), describing the joint effect of the
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Figure 5. Interaction estimates for CPU Activity (CompAct) data set.

number of blocks available for swapping and system
write call speed, and (freeswap, vflt), describing an in-
teraction between the same available blocks variable
and the number of page faults.

House Finch Abundance Data. We tested our ap-
proach on a dataset with sightings of House Finches in
the North-Eastern US as introduced in (Caruana et al.,
2006). The strongest interactions that we detected are
between the following variables: (latitude, longitude,
elevation) and (year, latitude, longitude). The first
3-way interaction describes the effect of geographical
position which is expected to be non-additive. But the
interactions between year and location is less trivial.
Normally one would not expect that the effect of lat-
itude or longitude on bird abundance would be very
different in different years. However, it turns out that
during the decade covered by the data set, the pop-
ulation of House Finches was suffering from an eye-
disease that was spreading slowly and was responsi-
ble for changing the effect of geographical location on
bird abundance over time. Our results show that inter-
esting domain information like this can be discovered
with the help of interaction detection analysis.

8. Previous Work

Interaction detection is regularly performed as part of
statistical analysis (Christensen, 1996). Mostly para-
metric models are used where the analyst specifies
the interaction as a parametric term, or perhaps sev-
eral terms. In this setting interaction detection be-
comes a parameter estimation problem. More recently,

techniques have been developed to detect interactions
within semi-parametric models (Ruppert et al., 2003).

(Friedman & Popescu, 2005) developed tests for inter-
action detection for a very general class of prediction
models, including fully nonparametric models. Their
method makes use of the fact that in the absence of
an interaction between xi and xj the following holds:
∂F (x)2

∂xi∂xj
= ∂F (x)

∂xi
+ ∂F (x)

∂xj
. They estimate the partial

dependence functions (Friedman & Popescu, 2005) of
the model and then estimate the strength of an inter-
action as the difference between the right hand side
and the left hand side of the equation above, scaled by
variance in the response.

The drawback of that method is that in order to get
accurate estimates of the partial dependence function,
it relies on predictions for synthetic data points in
sparse regions of the input space. As a result, de-
cisions about presence of interactions can be made
because of spurious interactions that happen only in
those regions (Hooker, 2007). To demonstrate this ef-
fect, we generated two simple data sets for the func-
tion F (x) = x3

1 + x3
2. In the first data set both x1

and x2 are distributed uniformly between −10 and
10. For the second data set we took the same points
and removed those where both x1 and x2 were pos-
itive. Neither of the data sets contains interactions,
but the estimates produced by Friedman’s approach
using RuleFit (Friedman, 2005) were 0.0243 for the
first and 0.0824 for the second set. The presence of
an unpopulated region in the input data increased the
estimated strength of the presumed interaction by a
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factor of three.

In order to deal with this extrapolation problem,
(Friedman & Popescu, 2005) suggest comparing the es-
timated interaction strength produced by the method
described above with a similar estimate on the same
data, but for a different response function that does
not contain any interactions. However, our experi-
ments with RuleFit revealed several examples of unsat-
isfactory performance of this technique. For instance,
we generated 5 data sets with response function x2

1+x2
2

without noise and for each of them generated 50 sam-
ples from the null distribution. For 3 of those data
sets RuleFit produced results that indicated presence
of an interaction, i.e., the original estimate was further
from the mean of the null distribution than 3 standard
deviations. In contrast, our method produced a con-
fident estimation of the absence of interactions in all
the cases described above.

(Hooker, 2007; Hooker, 2004) suggests another ap-
proach, based on estimating orthogonal components of
the ANOVA decomposition. This method has higher
computational complexity because it requires generat-
ing a full grid of data points with all possible combina-
tions of values for those input variables that are tested
for interaction. To overcome the problem of extrap-
olations over unpopulated regions of the input space,
as well as problems caused by correlations, (Hooker,
2007) suggests imposing low weights for points from
low-density regions. Unfortunately, this requires the
use of external density estimation techniques and fur-
ther increases complexity of the method.

We take a model comparison approach to interaction
detection. In doing so, we do not need to calculate
partial dependence functions to estimate predictor ef-
fects and we avoid the associated problem of spurious
interactions from sparse regions. We believe this is a
more direct approach to interaction detection.

9. Discussion

We presented a novel technique for detecting statis-
tical interactions in complex data sets. The main
idea is to compare the predictive performance of un-
restricted models to restricted models, which do not
contain the to-be-tested interaction. Although this
idea is quite intuitive, there are significant practical
challenges and few algorithms will work in this frame-
work. We demonstrated that layered Additive Groves
can be used in this approach due to its high predictive
performance for both restricted and unrestricted mod-
els. Results on synthetic and real data indicate that
we can reliably identify interactions.
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Abstract
In this paper, we consider a smoothing kernel
based classification rule and propose an algo-
rithm for optimizing the performance of the rule
by learning the bandwidth of the smoothing ker-
nel along with a data-dependent distance metric.
The data-dependent distance metric is obtained
by learning a function that embeds an arbitrary
metric space into a Euclidean space while mini-
mizing an upper bound on the resubstitution esti-
mate of the error probability of the kernel classi-
fication rule. By restricting this embedding func-
tion to a reproducing kernel Hilbert space, we re-
duce the problem to solving a semidefinite pro-
gram and show the resulting kernel classification
rule to be a variation of the k-nearest neighbor
rule. We compare the performance of the kernel
rule (using the learned data-dependent distance
metric) to state-of-the-art distance metric learn-
ing algorithms (designed for k-nearest neighbor
classification) on some benchmark datasets. The
results show that the proposed rule has either bet-
ter or as good classification accuracy as the other
metric learning algorithms.

1. Introduction
Parzen window methods, also called smoothing kernel
rules are widely used in nonparametric density estimation
and function estimation, and are popularly known as ker-
nel density and kernel regression estimates, respectively.
In this paper, we consider these rules for classification. To
this end, let us consider the binary classification problem
of classifying x ∈ RD, given an i.i.d. training sample
{(Xi, Yi)}n

i=1 drawn from some unknown distribution D,
where Xi ∈ RD and Yi ∈ {0, 1},∀ i ∈ [n] := {1, . . . , n}.
The kernel classification rule (Devroye et al., 1996, Chap-

Appearing in Proceedings of the 25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

ter 10) is given by

gn(x) =





0 if
∑n

i=1 1{Yi=0}K
(

x−Xi

h

)
≥ ∑n

i=1 1{Yi=1}K
(

x−Xi

h

)
1 otherwise,

(1)

where K : RD → R is a kernel function, which is usually
nonnegative and monotone decreasing along rays starting
from the origin. The number h > 0 is called the smooth-
ing factor, or bandwidth, of the kernel function, which pro-
vides some form of distance weighting. We warn the reader
not to confuse the kernel function, K, with the reproduc-
ing kernel (Schölkopf & Smola, 2002) of a reproducing
kernel Hilbert space (RKHS), which we will denote with
K.1 When K(x) = 1{‖x‖2≤1}(x) (sometimes called the
naı̈ve kernel), the rule is similar to the k-nearest neighbor
(k-NN) rule except that k is different for each Xi in the
training set. The k-NN rule classifies each unlabeled ex-
ample by the majority label among its k-nearest neighbors
in the training set, whereas the kernel rule with the naı̈ve
kernel classifies each unlabeled example by the majority
label among its neighbors that lie within a radius of h. De-
vroye and Krzyżak (1989) proved that for regular kernels
(see Devroye et al., (1996, Definition 10.1)), if the smooth-
ing parameter h → 0 such that nhD →∞ as n →∞, then
the kernel classification rule is universally consistent. But,
for a particular n, asymptotic results provide little guid-
ance in the selection of h. On the other hand, selecting the
wrong value of h may lead to very poor error rates. In fact,
the crux of every nonparametric estimation problem is the
choice of an appropriate smoothing factor. This is one of
the questions that we address in this paper by proposing an
algorithm to learn an optimal h.

The second question that we address is learning an opti-
mal distance metric. For x ∈ RD, K is usually a func-
tion of ‖x‖2. Some popular kernels include the Gaus-
sian kernel, K(x) = e−‖x‖

2
2 ; the Cauchy kernel, K(x) =

1Unlike K, K is not required to be a positive definite func-
tion. If K is a positive definite function, then it corresponds to
a translation-invariant kernel of some RKHS defined on RD . In
such a case, the classification rule in Eq. (1) is similar to the ones
that appear in kernel machines literature.
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1/(1 + ‖x‖D+1
2 ); and the Epanechnikov kernel K(x) =

(1 − ‖x‖22)1{‖x‖2≤1}.2 Snapp and Venkatesh (1998) have
shown that the finite-sample risk of the k-NN rule may be
reduced, for large values of n, by using a weighted Eu-
clidean metric, even though the infinite sample risk is inde-
pendent of the metric used. This has been experimentally
confirmed by Xing et al. (2003); Shalev-Shwartz et al.
(2004); Goldberger et al. (2005); Globerson and Roweis
(2006); Weinberger et al. (2006). They all assume the met-
ric to be ρ(x, y) =

√
(x− y)T Σ(x− y) = ‖L(x − y)‖2

for x, y ∈ RD, where Σ = LT L is the weighting matrix,
and optimize over Σ to improve the performance of the k-
NN rule. Since the kernel rule is similar to the k-NN rule,
one would expect that its performance can be improved by
making K a function of ‖Lx‖2. Another way to interpret
this is to find a linear transformation L ∈ Rd×D so that the
transformed data lie in a Euclidean metric space.

Some applications call for natural distance measures that
reflect the underlying structure of the data at hand. For ex-
ample, when computing the distance between two images,
tangent distance would be more appropriate than the Eu-
clidean distance. Similarly, while computing the distance
between points that lie on a low-dimensional manifold in
RD, geodesic distance is a more natural distance measure
than the Euclidean distance. Most of the time, since the
true distance metric is either unknown or difficult to com-
pute, Euclidean or weighted Euclidean distance is used as a
surrogate. In the absence of prior knowledge, the data may
be used to select a suitable metric, which can lead to better
classification performance. In addition, instead of x ∈ RD,
suppose x ∈ (X , ρ), where X is a metric space with ρ as its
metric. One would like to extend the kernel classification
rule to such X . In this paper, we address these issues by
learning a transformation that embeds the data from X into
a Euclidean metric space while improving the performance
of the kernel classification rule.

The rest of the paper is organized as follows. In §2, we
formulate the multi-class kernel classification rule and pro-
pose learning a transformation, ϕ, (that embeds the training
data into a Euclidean space) and the bandwidth parame-
ter, h, by minimizing an upper bound on the resubstitution
estimate of the error probability. To achieve this, in §3,
we restrict ϕ to an RKHS and derive a representation for
it by invoking the generalized representer theorem. Since
the resulting optimization problem is non-convex, in §4,
we approximate it with a semidefinite program when K
is a naı̈ve kernel. We present experimental results in §5,
wherein we show on benchmark datasets that the proposed
algorithm performs better than k-NN and state-of-the-art
metric learning algorithms developed for the k-NN rule.

2The Gaussian kernel is a positive definite function on RD

while the Epanechnikov and naı̈ve kernels are not.

2. Problem Formulation
Let {(Xi, Yi)}n

i=1 denote an i.i.d. training set drawn from
some unknown distributionD where Xi ∈ (X , ρ) and Yi ∈
[L], with L being the number of classes. The multi-class
kernel classification rule is given by

gn(x) = arg max
l∈[L]

n∑

i=1

1{Yi=l}KXi,h(x), (2)

where K : X → R+ and Kx0,h(x) = χ
(

ρ(x,x0)
h

)
for

some nonnegative function, χ, with χ(0) = 1. The prob-
ability of error associated with the above rule is L(gn) :=
Pr(X,Y )∼D(gn(X) 6= Y ) where Y is the true label associ-
ated with X . Since D is unknown, L(gn) cannot be com-
puted directly but can only be estimated from the training
set. The resubstitution estimate,3 L̂(gn), which counts the
number of errors committed on the training set by the clas-
sification rule, is given by L̂(gn) := 1

n

∑n
i=1 1{gn(Xi)6=Yi}.

As aforementioned, when X = RD, ρ is usually cho-
sen to be ‖.‖2. Previous works in distance metric learn-
ing learn a linear transformation L : RD → Rd lead-
ing to the distance metric, ρL(Xi, Xj) := ‖LXi −
LXj‖2 =

√
(Xi −Xj)T Σ(Xi −Xj), where Σ captures

the variance-covariance structure of the data. In this work,
our goal is to jointly learn h and a measurable function,
ϕ ∈ C := {ϕ : X → Rd}, so that the resubstitu-
tion estimate of the error probability is minimized with
ρϕ(Xi, Xj) := ‖ϕ(Xi) − ϕ(Xj)‖2. Once h and ϕ are
known, the kernel classification rule is completely speci-
fied by Eq. (2).

Devroye et al., (1996, Section 25.6) show that kernel rules
of the form in Eq. (1) picked by minimizing L̂(gn) with
smoothing factor h > 0 are generally inconsistent if X
is nonatomic. The same argument can be extended to the
multi-class rule given by Eq. (2). To learn ϕ, simply mini-
mizing L̂(gn) without any smoothness conditions on ϕ can
lead to kernel rules that overfit the training set. Such a
ϕ can be constructed as follows. Let nl be the number
of points that belong to lth class. Suppose n1 = n2 =
· · · = nL. Then for any h ≥ 1, choosing ϕ(X) = Yi

when X = Xi and ϕ(X) = 0 when X /∈ {Xi}n
i=1 clearly

yields zero resubstitution error. However, such a choice of
ϕ leads to a kernel rule that always assigns the unseen data
to class 1, leading to very poor performance. Therefore,
to avoid overfitting to the training set, the function class C
should satisfy some smoothness properties so that highly
non-smooth functions like the one we defined above are
not chosen while minimizing L̂(gn). To this end, we intro-
duce a penalty functional, Ω : C → R+, which penalizes

3Apart from the resubstitution estimate, holdout and deleted
estimates can also be used to estimate the error probability. These
estimates are usually more reliable but more involved than the
resubstitution estimate.
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non-smooth functions in C so that they are not selected.4

Therefore, our goal is to learn ϕ and h by minimizing the
regularized error functional given as

Lreg(ϕ, h) =
1
n

n∑

i=1

1{gn(Xi)6=Yi} + λ′ Ω[ϕ], (3)

where ϕ ∈ C, h > 0 and the regularization parameter,
λ′ > 0. gn in Eq. (3) is given by Eq. (2), with ρ replaced by
ρϕ. Minimizing Lreg(ϕ, h) is equivalent to minimizing the
number of training instances for which gn(X) 6= Y , over
the function class, {ϕ : Ω[ϕ] ≤ s}, for some appropriately
chosen s.

Consider gn(x) defined in Eq. (2). Suppose Yi = k for
some Xi. Then gn(Xi) = k if and only if

∑

{j:Yj=k}
Kϕ

Xj ,h(Xi) ≥ max
l∈[L]
l6=k

∑

{j:Yj=l}
Kϕ

Xj ,h(Xi), (4)

where the superscript ϕ is used to indicate the dependence
of K on ϕ.5 Since the right hand side of Eq. (4) involves
the max function which is not differentiable, we use
the inequality max{a1, . . . , am} ≤ ∑m

i=1 ai to upper
bound6 it with

∑
l∈[L]
l6=k

∑n
j=1 1{Yj=l}KXj (Xi). Thus, to

maximize
∑n

i=1 1{gn(Xi)=Yi}, we maximize its lower
bound given by∑n

i=1 1
{∑n

j=1
j 6=i

1{Yj=Yi}KXj
(Xi)≥

∑n
j=1 1{Yj 6=Yi}KXj

(Xi)

},

resulting in a conservative rule.7 In the above bound, we
use j 6= i just to make sure that ϕ(Xi) is not the
only point within its neighborhood of radius h. Define
τij := 2δYi,Yj − 1 where δ represents the Kronecker delta.
Then, the problem of learning ϕ and h by minimizing
Lreg(ϕ, h) in Eq. (3) reduces to solving the following
optimization problem,

min
ϕ, h

{ n∑

i=1

ψi(ϕ, h) + λ Ω[ϕ] : ϕ ∈ C, h > 0
}

, (5)

where λ = nλ′ and ψi(ϕ, h) given by

1{∑n
j=1
j 6=i

1{τij=1}KXj
(Xi) <

∑n
j=1 1{τij=−1}KXj

(Xi)

}

is an upper bound on 1{gn(Xi) 6=Yi} for i ∈ [n]. Solving the
above non-convex optimization problem is NP-hard. The

4This is equivalent to restricting the size of the function class
C from which ϕ has to be selected.

5To simplify the notation, from now onwards, we write
Kϕ

Xj ,h(Xi) as KXj (Xi) where the dependence of K on ϕ and h

is implicit.
6Another upper bound that can be used for the max function

is max{a1, . . . , am} ≤ log
(∑m

i=1 eai
)
.

7Using the upper bound of max function in Eq. (4) makes the
resulting kernel rule conservative as there can be samples from
the training set that do not satisfy this inequality but get correctly
classified according to Eq. (2).

gradient optimization is difficult because the gradients are
zero almost everywhere. In addition to the computational
hardness, the problem in Eq. (5) is not theoretically solv-
able unless some assumptions about C are made. In the
following section, we assume C to be an RKHS with the
reproducing kernel K and provide a representation for the
optimum ϕ that minimizes Eq. (5). We remind the reader
that K is a smoothing kernel which is not required to be a
positive definite function but takes on positive values, while
K is a reproducing kernel which is positive definite and can
take negative values.

3. Regularization in Reproducing Kernel
Hilbert Space

Many machine learning algorithms like SVMs, regulariza-
tion networks, and logistic regression can be derived within
the framework of regularization in RKHS by choosing an
appropriate empirical risk functional with the penalizer be-
ing the squared RKHS norm (see Evgeniou et al. (2000)).
In Eq. (5), we have extended this framework to kernel
classification rules, wherein we compute the ϕ ∈ C and
h > 0 that minimize an upper bound on the resubstitution
estimate of the error probability. To this end, we choose
C to be an RKHS with the penalty functional being the
squared RKHS norm,8 i.e., Ω[ϕ] = ‖ϕ‖2C . By fixing h,
the objective function

∑n
i=1 ψi(ϕ, h) in Eq. (5) depends

on ϕ only through {‖ϕ(Xi) − ϕ(Xj)‖2}n
i,j=1. By letting∑n

i=1 ψi(ϕ, h) = θh

({‖ϕ(Xi)− ϕ(Xj)‖2}n
i,j=1

)
where

θh : Rn2 → R+, Eq. (5) can be written as

min
h>0

min
ϕ∈C

θh

({‖ϕ(Xi)− ϕ(Xj)‖2}n
i,j=1

)
+λ ‖ϕ‖2C . (6)

The following result provides a representation for the min-
imizer of Eq. (6), and is proved in Appendix A. We remind
the reader that ϕ is a vector-valued mapping from X to Rd.
Theorem 1 (Multi-output regularization). Suppose C =
{ϕ : X → Rd} = H1×. . .×Hd whereHi is an RKHS with
reproducing kernel Ki : X×X → R and ϕ = (ϕ1, . . . , ϕd)
with Hi 3 ϕi : X → R. Then each minimizer ϕ ∈ C of
Eq. (6) admits a representation of the form

ϕj =
n∑

i=1

cijKj(., Xi), ∀ j ∈ [d] (7)

where cij ∈ R and
∑n

i=1 cij = 0, ∀ i ∈ [n], ∀ j ∈ [d].

8Another choice for C could be the space of bounded Lipschitz
functions with the penalty functional, Ω[ϕ] = ‖ϕ‖L, where ‖ϕ‖L

is the Lipschitz semi-norm of ϕ. With this choice of C and Ω, von
Luxburg and Bousquet (2004) studied large margin classification
in metric spaces. One more interesting choice for C could be the
space of Mercer kernel maps. It can be shown that solving for
ϕ in Eq. (5) with such a choice for C is equivalent to learning
the kernel matrix associated with ϕ and {Xi}n

i=1. However, this
approach is not useful as it does not allow for an out-of-sample
extension.
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Remark 2. (a) By Eq. (7), ϕ is completely determined by
{cij : i ∈ [n], j ∈ [d]}. Therefore, the problem of learning
ϕ reduces to learning n · d scalars, {cij :

∑n
i=1 cij = 0}.

(b) θh in Eq. (6) depends on ϕ through ‖ϕ(.) −
ϕ(.)‖2. Therefore, for any z, w ∈ X , we have
‖ϕ(z) − ϕ(w)‖22 =

∑d
m=1

[
cT

m (kz
m − kw

m)
]2 =∑d

m=1 tr(Σm(kz
m − kw

m)(kz
m − kw

m)T ) where cm :=
(c1m, . . . , cnm)T , kz

m := (Km(z,X1), . . . , Km(z, Xn))T ,
Σm := cmcT

m, ∀m ∈ [d] and tr(.) represents the trace.

(c) The regularizer, ‖ϕ‖2C in Eq. (6) is given by ‖ϕ‖2C =∑d
m=1 ‖ϕm‖2Hm

=
∑d

m=1

∑n
i,j=1 cimcjmKm(Xi, Xj) =∑d

m=1 cT
mKmcm =

∑d
m=1 tr(KmΣm) where Km :=

(kX1
m , . . . ,kXn

m ).

(d) Since ϕ appears in the form of ρϕ and ‖ϕ‖2C in
Eq. (6), learning ϕ is equivalent to learning {Σm º 0 :
rank(Σm) = 1, 1T Σm1 = 0}d

m=1.

In the above remark, we have shown that θh and ‖ϕ‖C in
Eq. (6) depend only on the entries in d kernel matrices (as-
sociated with d kernel functions) and n · d scalars, {cij}.
In addition, we also reduced the representation of ϕ from
{cm}d

m=1 to {Σm}d
m=1. It can be seen that ρ2

ϕ and ‖ϕ‖2C
are convex quadratic functions of {cm}d

m=1, while they are
linear functions of {Σm}d

m=1. Depending on the nature of
K, one representation would be more useful than the other.

Corollary 3. Suppose K1 = . . . = Kd = K. Then, for any
z, w ∈ X , ρ2

ϕ(z, w) is the Mahalanobis distance between
kz and kw, with

∑d
m=1 Σm as its metric.

Proof. By Remark 2, we have ρ2
ϕ(z, w) = ‖ϕ(z) −

ϕ(w)‖22 =
∑d

m=1 (kz
m − kw

m)T Σm (kz
m − kw

m). Since
K1 = . . . = Kd = K, we have kz

1 = . . . = kz
d = kz .

Therefore, ρ2
ϕ(z, w) = (kz − kw)T Σ(kz − kw) where

Σ :=
∑d

m=1 Σm.

The above result reduces the problem of learning ϕ to
learning a matrix, Σ º 0, such that rank(Σ) ≤ d and
1T Σ1 = 0. We now study the above result for linear ker-
nels. The following corollary shows that applying a lin-
ear kernel is equivalent to assuming the underlying distance
metric in X to be the Mahalanobis distance.

Corollary 4 (Linear kernel). Let X = RD and z, w ∈ X .
If K(z, w) = 〈z, w〉2 = zT w, then ϕ(z) = Lz ∈ Rd and
‖ϕ(z)− ϕ(w)‖22 = (z − w)T A(z − w) with A := LT L.

Proof. By Remark 2 and Corollary 3, we have ϕm(z) =∑n
i=1 cimK(z,Xi) = (

∑n
i=1 cimXi)

T
z =: `T

mz. There-
fore, ϕ(z) = Lz, where L := (`1, . . . , `d)T . In addition,
‖ϕ(z)−ϕ(w)‖22 = (z−w)T A(z−w) with A := LT L.

In the following section, we use these results to derive an
algorithm that jointly learns ϕ and h by solving Eq. (5).

4. Convex Relaxations & Semidefinite
Program

Having addressed the theoretical issue of making assump-
tions about C to solve Eq. (5), we return to address the com-
putational issue pointed out in §2. The program in Eq. (5)
is NP-hard because of the nature of {ψi}n

i=1. This issue
can be alleviated by minimizing a convex upper bound of
ψi, instead of ψi. Some of the convex upper bounds for the
function ψ(x) = 1{x>0} are Ψ(x) = max(0, 1 + x) :=
[1 + x]+, Ψ(x) = log (1 + ex) etc. Replacing ψi by Ψi in
Eq. (5) results in the following program,

min
ϕ∈C
h>0

n∑

i=1

Ψi

(
γ−i (ϕ, h)− γ+

i (ϕ, h)
)

+ λ ‖ϕ‖2C , (8)

where γ+
i (ϕ, h) :=

∑
j 6=i

τij=1
KXj

(Xi) and γ−i (ϕ, h) :=
∑
{j:τij=−1}KXj (Xi). Eq. (8) can still be computation-

ally hard to solve depending on the choice of the smooth-
ing kernel, K. Even if we choose K such that γ+ and γ−

are jointly convex in ϕ and h for some representation of ϕ
(see Remark 2), Eq. (8) is still non-convex as the argument
of Ψi is a difference of two convex functions.9 In addition,
if Ψ(x) = [1 + x]+, then Eq. (8) is a d.c. (difference of
convex functions) program (Horst & Thoai, 1999), which
is NP-hard to solve. So, even for the nicest of cases, one
has to resort to local optimization methods or computation-
ally intensive global optimization methods. Nevertheless,
if one does not worry about this disadvantage, then solv-
ing Eq. (8) yields ϕ (in terms of {cm}d

m=1 or {Σm}d
m=1,

depending on the chosen representation) and h that can be
used in Eq. (2) to classify unseen data. However, in the
following, we show that Eq. (8) can be turned into a con-
vex program for the naı̈ve kernel. As mentioned in §1, this
choice of kernel leads to a classification rule that is similar
in principle to the k-NN rule.

4.1. Naı̈ve kernel: Semidefinite relaxation

The naı̈ve kernel, Kx0(x) = 1{ρϕ(x,x0)≤h}, indicates that
the points, ϕ(x), that lie within a ball of radius h centered
at ϕ(x0) have a weighting factor of 1, while the remain-
ing points have zero weight. Using this in Eq. (8), we have
γ−i (ϕ, h) − γ+

i (ϕ, h) =
∑
{j:τij=−1} 1{ρϕ(Xi,Xj)≤h} −∑

{j:τij=1} 1{ρϕ(Xi,Xj)≤h} + 1, which represents the dif-
ference between number of points with label different from
Yi that lie within the ball of radius of h centered at ϕ(Xi)
and the number of points with the same label as Xi (exclud-
ing Xi) that lie within the same ball. If this difference is

9For example, let K be a Gaussian kernel, Ky(x) =
exp(−ρ2

ϕ(x, y)/h). Using the {Σm}d
m=1 representation for ϕ,

we have ρ2
ϕ(x, y) is linear in {Σm}d

m=1 and therefore, Ky(x) is
convex in {Σm}d

m=1. Here, we assume h to be fixed. This means
γ+

i and γ−i are convex in ϕ.
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positive, then the classification rule in Eq. (2) makes an er-
ror in classifying Xi. Therefore, ϕ and h should be chosen
such that this misclassification rate is minimized. Suppose
that {ϕ(Xi)}n

i=1 is given. Then, h determines the misclas-
sification rate like k in k-NN. It can be seen that the kernel
classification rule and k-NN rule are similar when K is a
naı̈ve kernel. In the case of k-NN, the number of nearest
neighbors are fixed for any point, whereas with the kernel
rule, it varies for every point. On the other hand, the ra-
dius of the ball containing the nearest neighbors of a point
varies with every point in the k-NN setting while it is the
same for every point in the kernel rule.

γ−i (ϕ, h) − γ+
i (ϕ, h) can be further reduced to a

more amenable form by the following algebra. Us-
ing

∑
{j:τij=1} 1{ρϕ(Xi,Xj)≤h} =

∑n
j=1 1{τij=1} −∑

{j:τij=1} 1{ρϕ(Xi,Xj)>h}, we get γ−i (ϕ, h) −
γ+

i (ϕ, h) = 1 − n+
i +

∑n
j=1 1{τijρ2

ϕ(Xi,Xj)>τij h̃} where

n+
i :=

∑n
j=1 1{τij=1} and h̃ := h2. Note that we have

neglected the set {j : τij = −1; ρϕ(Xi, Xj) = h}
in the above calculation for simplicity. Using
Ψ(x) = [1 + x]+, the first half of the objective
function in Eq. (8) reduces to

∑n
i=1

[
2 − n+

i +
∑n

j=1 1{τijρ2
ϕ(Xi,Xj)>τij h̃}

]
+

. Applying the convex

relaxation one more time to the step function, we get∑n
i=1

[
2 − n+

i +
∑n

j=1

[
1 + τijρ

2
ϕ(Xi, Xj)− τij h̃

]
+

]
+

as an upper bound on the first half of the objective
function in Eq. (8). Since ρ2

ϕ is a quadratic function of
{cm}d

m=1, it can be shown that representing ϕ in terms
of {cm}d

m=1 results in a d.c. program, whereas its repre-
sentation in terms of {Σm}d

m=1 results in a semidefinite
program (SDP) (except for the rank constraints), since
ρ2

ϕ is linear in {Σm}d
m=1. Assuming for simplicity that

K1 = . . . = Kd = K and neglecting the constraint
rank(Σ) ≤ d, we obtain the following SDP,

min
Σ,h̃

n∑

i=1

[
2− n+

i +
n∑

j=1

[
1 + τij tr(MijΣ)− τij h̃

]
+

]
+

+λ tr(KΣ)
s.t. Σ º 0, 1T Σ1 = 0, h̃ > 0, (9)

where Mij := (kXi − kXj )(kXi − kXj )T . For notational
details, refer to Remark 2 and Corollary 3. Since one does
not usually know the optimal embedding dimension, d, the
Σ representation is advantageous as it is independent of d
(as we neglected the rank constraint) and depends only on
n. On the other hand, it is a disadvantage as the algorithm
does not scale well to large datasets.

Although the program in Eq. (9) is convex, solving it by
general purpose solvers that use interior point methods
scales as O(n6), which is prohibitive. Instead, following
the ideas of Weinberger et al. (2006), we used a first order

Algorithm 1 Gradient Projection Algorithm

Require: {Mij}n
i,j=1, K, {τij}n

i,j=1, {n+
i }n

i=1, λ > 0,
ε > 0 and {αi, βi} > 0 (see Eq. (9))

1: Set t = 0. Choose Σ0 ∈ A and h̃0 > 0.
2: repeat
3: At = {i :

∑n
j=1

[
1 + τij tr(MijΣt)− τij h̃t

]
+

+

2 ≤ n+
i } × {j : j ∈ [n]}

4: Bt = {(i, j) : 1 + τij tr(MijΣt) > τij h̃t}
5: Nt = Bt\At

6: Σt+1 = PN (Σt − αt

∑
(i,j)∈Nt

τijMij − αtλK)
7: h̃t+1 = max(ε, h̃t + βt

∑
(i,j)∈Nt

τij)
8: t = t + 1
9: until convergence

10: return Σt, h̃t

gradient method (which scales as O(n2) per iteration) and
an alternating projections method (which scales as O(n3)
per iteration). At each iteration, we take a small step in the
direction of the negative gradient of the objective function,
followed by a projection onto the set N = {Σ : Σ º
0, 1T Σ1 = 0} and {h̃ > 0}. The projection onto N is
performed by an alternating projections method which in-
volves projecting a symmetric matrix alternately between
the convex sets, A = {Σ : Σ º 0} and B = {Σ :
1T Σ1 = 0}. Since A ∩ B 6= ∅, this alternating projec-
tions method is guaranteed to find a point in A ∩ B. Given
any A0 ∈ A, the alternating projections algorithm com-
putes Bm = PB(Am) ∈ B, Am+1 = PA(Bm) ∈ A, m =
0, 1, 2, . . . , where PA and PB are the projection on A and
B, respectively. In summary, the update rule can be given as
Bm = Am − 1T Am1

n2 11T and Am+1 =
∑n

i=1[λi]+uiuT
i

where {ui}n
i=1 and {λi}n

i=1 are the eigenvectors and eigen-
values of Bm.10 A pseudocode of the gradient projection
algorithm to solve Eq. (9) is shown in Algorithm 1.

Having computed Σ and h̃ that minimize Eq. (9), a test
point, x ∈ X , can be classified by using the kernel rule in
Eq. (2), where KXi(x) = 1{ρϕ(x,Xi)≤h} with ρ2

ϕ(x,Xi) =
(kx−kXi)T Σ(kx−kXi). Therefore, Σ and h completely
specify the classification rule.

5. Experiments & Results
In this section, we compare the performance of our method
(referred to as kernel classification rule (KCR)) to several
metric learning algorithms on a supervised classification
task in terms of the training and test errors. The training
phase of KCR involves solving the SDP in Eq. (9) to learn
optimal Σ and h from the data, which are then used in
Eq. (2) to classify the test data. Note that the SDP in Eq. (9)

10Given Am ∈ A, Bm is obtained by solving min{‖Bm −
Am‖2F : 1T Bm1 = 0}. Similarly, for a given Bm ∈ B, Am+1

is obtained by solving min{‖Am+1 −Bm‖2F : Am+1 º 0}.
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Table 1. k-NN classification accuracy on UCI datasets. The algorithms compared are k-NN (with Euclidean distance metric), LMNN
(large margin NN by Weinberger et al. (2006)), Kernel-NN (see footnote 11), KMLCC (kernel version of metric learning by collapsing
classes by Globerson and Roweis (2006)), KLMCA (kernel version of LMNN by Torresani and Lee (2007)), and KCR (proposed
method). Mean (µ) and standard deviation (σ) of the train and test (generalization) errors (in %) are reported.

Dataset Algorithm/ k-NN LMNN Kernel-NN KMLCC KLMCA KCR
(n, D, l) Error µ± σ µ± σ µ± σ µ± σ µ± σ µ± σ
Balance Train 17.81± 1.86 11.40± 2.89 10.73± 1.32 10.27± 2.01 9.93± 1.86 10.47± 2.11

(625, 4, 3) Test 18.18± 1.88 11.49± 2.57 17.46± 2.13 9.75± 1.92 10.54± 1.46 8.94 ± 3.12
Ionosphere Train 15.89± 1.43 3.50± 1.18 2.84± 0.80 7.05± 1.31 3.98± 1.94 2.73± 1.03
(351, 34, 2) Test 15.95± 3.03 12.14± 2.92 5.81± 2.25 6.54± 2.18 5.19 ± 2.09 5.71± 2.60

Iris Train 4.30± 1.55 3.25± 1.15 3.60± 1.33 3.61± 1.59 3.27± 1.63 2.29± 1.62
(150, 4, 3) Test 4.02± 2.22 4.11± 2.26 4.83± 2.47 3.89± 1.55 3.74± 2.21 3.27 ± 1.87

Wine Train 5.89± 1.35 0.90± 2.80 4.95± 1.35 4.48± 1.21 2.18± 2.58 1.01± 0.73
(178, 13, 3) Test 6.22± 2.70 3.41± 2.10 7.37± 2.82 4.84± 2.47 5.17± 1.91 2.13 ± 1.24

is obtained by using the naı̈ve kernel for K in Eq. (2). For
other smoothing kernels, one has to solve the program in
Eq. (8) to learn optimal Σ and h. Therefore, the results re-
ported in this section under KCR refer to those obtained by
using the naı̈ve kernel.

The algorithms used in the comparative evaluation are:

• The k-NN rule with the Euclidean distance metric.

• The LMNN (large margin nearest neighbor) method
proposed by Weinberger et al. (2006), which learns
a Mahalanobis distance metric by minimizing the dis-
tance between predefined target neighbors and sepa-
rating them by a large margin from the examples with
non-matching labels.

• The Kernel-NN rule, which uses the empirical kernel
maps11 as training data and performs k-NN classifica-
tion on this data using the Euclidean distance metric.

• The KMLCC (kernel version of metric learning by
collapsing classes) method proposed by Globerson
and Roweis (2006), which learns a Mahalanobis dis-
tance metric in the kernel space by trying to collapse
all examples in the same class to a single point while
pushing examples in other classes infinitely far away.

• The KLMCA (kernel version of large margin compo-
nent analysis) method proposed by Torresani and Lee
(2007), which is a non-convex, kernelized version of
LMNN.

Four benchmark datasets from the UCI machine learning
repository were considered for experimentation. Since the
proposed method and KMLCC solve an SDP that scales
poorly with n, we did not consider large problem sizes
for experimentation.12 The results shown in Table 1 are

11Kernel-NN is computed as follows. For each training point,
Xi, the empirical map w.r.t. {Xj}n

j=1 defined as kXi :=

(K(X1, Xi), . . . , K(Xn, Xi))
T is computed. Then, {kXi}n

i=1 is
considered to be the training set for the NN classification of em-
pirical maps of the test data using the Euclidean distance metric.

12To extend KCR to large datasets, one can represent ϕ in terms
of {cm}, which leads to a non-convex program as in KLMCA.

the average performance over 20 random splits of the data
with 50% for training, 20% for validation and 30% for test-
ing. The Gaussian kernel, K(x, y) = e−υ‖x−y‖22 was used
for the kernel based methods, i.e., Kernel-NN, KMLCC,
KLMCA and KCR. The parameters υ and λ (only υ for
Kernel-NN) were set with cross-validation by searching
over υ ∈ {2i}4−4 and λ ∈ {10i}3−3. While testing, KCR
uses the rule in Eq. (2), whereas the k-NN rule was used
for all the other methods.13 It is clear from Table 1 that
KCR almost always performs as well as or significantly
better than all other methods. However, on the timing front
(which we do not report here), KLMCA, which solves a
non-convex program for n · d variables, is much faster than
KMLCC and KCR, which solve SDPs involving n2 vari-
ables. The role of empirical kernel maps is not clear as
there is no consistent behavior between the performance
accuracy achieved with k-NN and Kernel-NN.

KMLCC, KLMCA, and KCR learn the Mahalanobis dis-
tance metric in Rn which makes it difficult to visualize
the class separability achieved by these methods. To vi-
sually appreciate their behavior, we generated a synthetic
two dimensional dataset of 3 classes with each class being
sampled from a Gaussian distribution with different mean
and covariance. Figure 1(a) shows this dataset where the
three classes are shown in different colors. Using this as
training data, distance metrics were learned using KMLCC,
KLMCA and KCR. If Σ is the learned metric, then the two
dimensional projection of x ∈ Rn is obtained as x̂ = Lx
where L = (

√
λ1u1,

√
λ2u2)T , with Σ =

∑n
i=1 λiuiuT

i ,
and λ1 ≥ λ2 > · · ·λn. Figure 1(b-d) show the two di-

13Although KCR, LMNN, and KMLCC solve SDPs to com-
pute the optimal distance metric, KCR has fewer number of pa-
rameters to be tuned compared to these other methods. LMNN
requires cross-validation over k (in k-NN) and the regulariza-
tion parameter along with the knowledge about target neighbors.
KMLCC requires cross-validation over k, the kernel parameter,
υ and the regularization parameter. In KCR, we only need to
cross-validate over υ and λ. In addition, if X = RD and K is
a linear kernel, then KCR only requires cross-validation over λ
while computing the optimal Mahalanobis distance metric.

1013



Metric Embedding for Kernel Classification Rules

−10 −5 0 5 10

−10

−5

0

5

10

k−NN, Error = 6.67

(a)
−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

KMLCC, Error = 3.33

(b)
−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

KLMCA, Error = 2.67

(c)
−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

KCR, Error = 2.67

(d)

−10 −5 0 5 10
−10

−5

0

5

10

k−NN, Error = 10.7

(a′)
−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

KMLCC, Error = 10.0

(b′)
−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

KLMCA, Error = 8.0

(c′)
−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

KCR, Error = 8.0

(d′)

Figure 1. Dataset visualization results of k-NN, KMLCC, KLMCA and KCR applied to a two-dimensional synthetic dataset of three
classes with each class being modeled as a Gaussian. (a,a′) denote two independent random draws from this distribution whereas (b-d,
b′-d′) represent the two-dimensional projections of these data using the metric learned from KMLCC, KLMCA and KCR. The points
in bold represent the misclassified points. It is interesting to note that KLMCA and KCR generate completely different embeddings but
have similar error rates. See §5 for more details.

mensional projections of the training set using KMLCC,
KLMCA and KCR. The projected points were classified
using k-NN if Σ was obtained from KMLCC/KLMCA and
using Eq. (2) if Σ was obtained from KCR. The misclas-
sified points are shown in bold. Since the classification is
done on the training points, one would expect better error
rate and separability between the classes. To understand
the generalization performance, a new data sample shown
in Figure 1(a′) was generated from the same distribution
as the training set. The learned Σ was used to obtain the
two dimensional projections of the new data sample which
are shown in Figure 1(b′-d′). It is interesting to note that
KLMCA and KCR generate completely different projec-
tions but have similar error rates.

6. Related Work
We briefly review some relevant work and point out simi-
larities and differences with our method. In our work, we
have addressed the problem of extending kernel classifica-
tion rules to arbitrary metric spaces by learning an embed-
ding function that embeds data into Euclidean space while
minimizing an upper bound on the resubstitution estimate
of the error probability. The method that is closest in spirit
(kernel rules) to ours is the recent work by Weinberger and
Tesauro (2007) who learn a Mahalanobis distance metric
for kernel regression estimates by minimizing the leave-
one-out quadratic regression error of the training set. With
the problem being non-convex, they resort to gradient de-

scent techniques. Except for this work, we are not aware of
any method related to kernel rules in the context of distance
metric learning or learning the bandwidth of the kernel.

There has been lot of work in the area of distance metric
learning for k-NN classification, some of which are briefly
discussed in §5. The central idea in all these methods
is that similarly labeled examples should cluster together
and be far away from differently labeled examples. Shalev-
Shwartz et al. (2004) proposed an online algorithm for
learning a Mahalanobis distance metric with the constraint
that any training example is closer to all the examples that
share its label than to any other example of different label.
In addition, examples from different classes are constrained
to be separated by a large margin. Though Shalev-Shwartz
et al. (2004) do not solve this as a batch optimization prob-
lem, it can be shown that it reduces to an SDP (after rank
relaxation) and is in fact the same as Eq. (9) except for the
outer [.]+ function and the constraint 1T Σ1 = 0.

7. Concluding Remarks
In this paper, two questions related to the smoothing ker-
nel based classification rule have been addressed. One is
related to learning the bandwidth of the smoothing kernel,
while the other is to extending the classification rule to ar-
bitrary domains. We jointly addressed them by learning a
function in a reproducing kernel Hilbert space while mini-
mizing an upper bound on the resubstitution estimate of the
error probability of the kernel rule. For a particular choice
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of the smoothing kernel, called the naı̈ve kernel, we showed
that the resulting rule is related to the k-NN rule. Because
of this relation, the kernel rule was compared to k-NN and
its state-of-the-art distance metric learning algorithms on a
supervised classification task and was shown to have com-
parable performance to these methods. In the future, we
would like to develop some theoretical guarantees for the
proposed method along with extending it to large-scale ap-
plications.

Appendix A. Proof of Theorem 1
We need the following result to prove Theorem 1.
Lemma 5. Let H = {f : X → R} be an RKHS with K :
X × X → R as its reproducing kernel. Let θ : Rn2 → R
be an arbitrary function. Then each minimizer f ∈ H of

θ
({f(xi)− f(xj)}n

i,j=1

)
+ λ‖f‖2H (10)

admits a representation of the form f =
∑n

i=1 ciK(., xi),
where {ci}n

i=1 ∈ R and
∑n

i=1 ci = 0.

Proof. The proof follows the generalized representer the-
orem (Schölkopf et al., 2001, Theorem 4). Since
f ∈ H, f(x) = 〈f, K(., x)〉H. Therefore, the argu-
ments of θ in Eq. (10) are of the form {〈f, K(., xi) −
K(., xj)〉H}n

i,j=1. We decompose f = f‖ + f⊥
so that f‖ ∈ span

({K(., xi)− K(., xj)}n
i,j=1

)
and

〈f⊥,K(., xi) − K(., xj)〉H = 0, ∀ i, j ∈ [n]. So, f =∑n
i,j=1 αij(K(., xi) − K(., xj)) + f⊥ where {αij}n

i,j=1 ∈
R. Therefore, f(xi)−f(xj) = 〈f, K(., xi)−K(., xj)〉H =
〈f‖, K(., xi) − K(., xj)〉H =

∑n
p,m=1 αpm(K(xi, xp) −

K(xj , xp) − K(xi, xm) + K(xj , xm)). Now, consider
the penalty functional, 〈f, f〉H. For all f⊥, 〈f, f〉H =
||f‖||2H + ||f⊥||2H ≥ ‖∑n

i,j=1 αij(K(., xi) − K(., xj))‖2H.
Thus for any fixed αij ∈ R, Eq. (10) is minimized for
f⊥ = 0. Therefore, the minimizer of Eq. (10) has the
form f =

∑n
i,j=1 αij(K(., xi) − K(., xj)), which is pa-

rameterized by n2 parameters of {αij}n
i,j=1. By simple

algebra, f reduces to f =
∑n

i=1 ciK(., xi), where ci =∑n
j=1(αij − αji) satisfies

∑n
i=1 ci = 0.

We are now ready to prove Theorem 1.
Proof of Theorem 1. The arguments of θh in
Eq. (6) are of the form ‖ϕ(Xi) − ϕ(Xj)‖2. Consider
‖ϕ(Xi) − ϕ(Xj)‖22 =

∑d
m=1 (ϕm(Xi)− ϕm(Xj))

2 =∑d
m=1 (〈ϕm,Km(., Xi)− Km(., Xj)〉Hm)2. The penal-

izer in Eq. (6) reduces to ‖ϕ‖2C =
∑d

m=1 ‖ϕm‖2Hm
. There-

fore, applying Lemma 5 to each ϕm, m ∈ [d] proves the
result.
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Abstract

Bayesian network classifiers have been widely
used for classification problems. Given
a fixed Bayesian network structure, pa-
rameters learning can take two different
approaches: generative and discriminative
learning. While generative parameter learn-
ing is more efficient, discriminative param-
eter learning is more effective. In this pa-
per, we propose a simple, efficient, and
effective discriminative parameter learning
method, called Discriminative Frequency Es-
timate (DFE), which learns parameters by
discriminatively computing frequencies from
data. Empirical studies show that the DFE
algorithm integrates the advantages of both
generative and discriminative learning: it
performs as well as the state-of-the-art dis-
criminative parameter learning method ELR
in accuracy, but is significantly more efficient.

1. Introduction

A Bayesian network (BN) (Pearl, 1988) consists of a di-
rected acyclic graph G and a set P of probability distri-
butions, where nodes and arcs in G represent random
variables and direct correlations between variables re-
spectively, and P is the set of local distributions for
each node. A local distribution is typically specified
by a conditional probability table (CPT). Thus, learn-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

ing Bayesian networks from data has two elements:
structure learning and parameter learning.

Bayesian networks are often used for classification
problems, in which a learner attempts to construct a
classifier from a given set of training instances with
class labels. In learning Bayesian network classi-
fiers, parameter learning often uses Frequency Esti-
mate (FE), which determines parameters by comput-
ing the appropriate frequencies from data. The ma-
jor advantage of FE is its efficiency: it only needs to
count each data point (training instance) once. It is
well-known that FE maximizes likelihood and thus is
a typical generative learning method.

In classification, however, the objective is to maxi-
mize generalization accuracy, rather than likelihood.
Thus, discriminative parameter learning that maxi-
mizes generalization accuracy or its alternative objec-
tive function, conditional likelihood, are more desir-
able. Unfortunately, there is no closed form for choos-
ing the optimal parameters, because conditional like-
lihood does not decompose (Friedman et al., 1997).
As a consequence, discriminative parameter learning
for Bayesian networks often resorts to search methods,
such as gradient descent.

Greiner and Zhou (2002) proposed a gradient descent
based parameter learning method, called ELR, to dis-
criminatively learn parameters for Bayesian network
classifiers, and showed that ELR significantly outper-
forms the generative learning method FE. However,
the application of ELR is limited due to its high com-
putational cost. For example, Grossman and Domin-
gos (2004) observed that ELR is computationally in-
feasible in structure learning. In fact, how to find an
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efficient and effective discriminative parameter learn-
ing for Bayesian network classifiers is an open question.

In this paper, we propose a simple, efficient, and effec-
tive discriminative parameter learning method, called
Discriminative Frequency Estimate (DFE). Our mo-
tivation is to turn the generative parameter learning
method FE into a discriminative one by injecting a
discriminative element into it. DFE discriminatively
computes frequencies from data, and then estimates
parameters based on the appropriate frequencies. Our
empirical studies show that DFE inherits the advan-
tages of both generative and discriminative learning.

2. Related Work

Greiner and Zhou (2002) showed that discriminative
parameter learning for Bayesian networks is equiv-
alent to a logistic regression problem under certain
conditions. For many Bayesian network structures,
they indicated that the conditional likelihood function
may have only one global maximum, and thus can be
maximized by local optimization methods. They also
proposed a gradient descent based parameter learning
method, called ELR. To make ELR work effectively,
they modified the basic gradient descent method using
FE to initialize parameters and cross tuning to prevent
overfitting. Empirical studies showed that ELR signif-
icantly outperforms the generative learning approach.

Grossman and Domingos (2004) proposed a discrimi-
native structure learning method for Bayesian network
classifiers, and tried to combine discriminative struc-
ture learning with discriminative parameter learning.
To overcome the efficiency problem of ELR, they re-
duced the fold of cross tuning, and used a small sam-
ple for parameter learning. They observed that the
modified ELR still takes two orders of magnitude of
learning time longer than FE in their experiments, and
the performance of the combination of discriminative
structure and parameter learning does not outperform
the discriminative structure learning alone. Therefore,
they suggested learning a structure by conditional like-
lihood, and setting parameters by the FE method.

To our knowledge, ELR is the state-of-the-art al-
gorithm for discriminative parameter learning for
Bayesian network classifiers. Unfortunately, its com-
putational cost is quite high. In this paper, we propose
a discriminative parameter learning algorithm that is
as effective as ELR but much more efficient.

3. Frequency Estimate

We use capital letters X for a discrete random variable.
The lower-case letters x is used for the value taken by
variable X, and xij refers to the variable Xi taking
on its jth value. We use the boldface capital letters
X for a set of variables, and the boldface lower case
letters x for the values of variables in X. The training
data D consists of a set of finite number of training
instances, and an instance e is represented by a vector
(x, c), where c is the class label. In general, we use a
“hat” to indicate parameter estimates.

A Bayesian network encodes a joint probability distri-
bution P (X, C) by a set of local distributions P for
each variable. By forcing the class variable C to be
the parent of each variable Xi, we can compute the
posterior probability P (C|X) as follows.

P (C|X) = αP (C)
n∏

i=1

P (Xi|Ui), (1)

where α is a normalization factor, and Ui denotes the
set of parents of variable Xi. Note that the class vari-
able C is always one parent of Xi. In naive Bayes,
Ui only contains the class variable C. P (C) is called
the prior probability and P (Xi|Ui) is called the local
probability distribution of Xi.

The local distribution P (Xi|Ui) is usually represented
by a conditional probability table (CPT), which enu-
merates all the conditional probabilities for each as-
signment of values to Xi and its parents Ui. Each
conditional probability P (xij |uik) in a CPT is often es-
timated using the corresponding frequencies obtained
from the training data as follows.

P̂ (xij |uik) =
nijk

nik
, (2)

where nijk denotes the number of training instances
in which variable Xi takes on the value xij and its
parents Ui take on the values uik. nik is equal to the
sum of nijk over all j. The prior probability P (C) is
also estimated in the same way.

For the convenience in implementation, an entry θijk

in a CPT is the frequency nijk, instead of P (xij |uik),
which can be easily converted to P (xi|ui). To com-
pute the frequencies from a given training data set,
we go through each training instance, and increase the
corresponding entries θijk in CPTs by 1. By scanning
the training data set once, we can obtain all the re-
quired frequencies and then compute the correspond-
ing conditional probabilities. This parameter learning
method is called Frequency Estimate (FE).

It is well-known that FE is a generative learning ap-
proach, because it maximizes likelihood (Friedman

1017



Discriminative Parameter Learning for Bayesian Networks

et al., 1997). In classification, however, the parameter
setting that maximizes generalization accuracy is de-
sired. Theoretically, if the structure of a Bayesian net-
work is correct, the parameters determined by FE also
maximize generalization accuracy. In practice, how-
ever, this assumption is rarely true. Therefore, the
parameter learning method that directly maximizes
generalization accuracy is more desirable in classifi-
cation.

4. Discriminative Frequency Estimate

We now introduce Discriminative Frequency Estimate
(DFE), a discriminative parameter learning algorithm
for Bayesian network classifiers.

Note that, when counting a training instance in FE,
we simply increase the corresponding frequencies by
1. Consequently, we do not directly take the effect on
classification into account in computing frequencies.
In fact, at any step in this process, we actually have
a classifier on hand: the classifier whose local proba-
bilities are computed by Equation 2 using the current
entries (frequencies) in CPTs.

Thus, when we count an instance, we can apply the
current classifier to it, and then update the corre-
sponding entries based on how well (bad) the current
classifier predicts on the instance. Intuitively, if the
instance can be classified perfectly, there is no need to
change any entries. In general, given an instance e, we
can compute the difference between the true probabil-
ity P (c|e) and the predicted probability P̂ (c|e) gener-
ated by the current parameters, where c is the true
class of e, and then update the corresponding entries
based on the difference. Furthermore, the FE process
can be generalized such that we can count each in-
stance more than once (as many as needed) until an
convergence occurs. This is the basic idea of DFE.

More precisely, the DFE parameter learning algorithm
iterates through the training instances. For each in-
stance e, DFE firstly computes the predicted probabil-
ity P̂ (c|e), and then updates the frequencies in corre-
sponding CPTs using the difference between the true
P (c|e) and the predicted P̂ (c|e). The detail of the al-
gorithm is depicted as follows. Here M is a pre-defined
maximum number of steps. L(e) is the prediction loss
for training instance e based on the current parameters
Θt, defined as follows.

L(e) = P (c|e)− P̂ (c|e). (3)

In general, P (c|e) are difficult to know in classification
task, because the information we have for c is only the
class label. Thus, we assume that P (c|e) = 1 when

Algorithm 1 Discriminative Frequency Estimate

1. Initialize each CPT entry θijk to 0

2. For t from 1 to M Do

• Randomly draw a training instance e from
the training data set D.

• Compute the posterior probability P̂ (c|e) us-
ing the current parameters Θt and Equation
2.

• Compute the loss L(e) using Equation 3.
• For each corresponding frequency θijk in

CPTs
– Let θt+1

ijk =θt
ijk+L(e).

e is in class c in our implementations. Note this as-
sumption may not be held if data can not be separated
completely, and thus may introduce bias to our prob-
ability estimation.

Note that, in the beginning, each CPT entry θijk is 0,
and thus the predicted P̂ (c|e) is 1

|C| after the proba-
bility normalization. In each step, if the current pa-
rameters Θt cannot accurately predict P (c|e) for an
instance e, the corresponding entries θijk are increased
significantly. If the current parameter Θt can perfectly
predict P (c|e), there will be no change on any entry.

The following summarizes our understanding for DFE:

1. The generative element is Equation 2. If we set
the additive updates L(e) in Equation 3 as a con-
stant, DFE will be a maximum likelihood estima-
tor, which is exactly the same as in the traditional
naive Bayes. Thus, the parameters learned by
DFE are influenced by the likelihood information
P (xij |uik) through Equation 2.

2. The discriminative element is Equation 3. If we
use each entry θijk in CPTs as parameters rather
than generating the parameters using Equation 2,
DFE will be a typical perceptron algorithm in the
sense of error-driven learning. Thus, the param-
eters learned by DFE are also influenced by the
prediction error through Equation 3.

3. DFE is different from a perceptron algorithm be-
cause of Equation 2. As we explained above, if
we set the additive updates L(e) in Equation 3
as a constant, there is no difference between DFE
and a traditional naive Bayes. However, if we set
the additive updates in a standard perceptron al-
gorithm as a constant, the perceptron algorithm
will not learn a traditional naive Bayes.
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In summary, DFE learns parameters by considering
the likelihood information P (xij |uik) and the pre-
diction error P (c|e) − P̂ (c|e), and thus can be con-
sidered as a combination of generative and discrim-
inative learning. Moreover, the likelihood informa-
tion P (xij |uik) seems to be more important than
P (c|e)− P̂ (c|e). For example, a DFE algorithm with-
out Equation 2 performs significantly worse than naive
Bayes, while a DFE algorithm without Equation 3 can
still learn a traditional naive Bayes.

5. An Example

Before presenting our experiments, it could be helpful
to get some intuitive feeling on DFE through a simple
example.
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Figure 1. A data set with duplicate variables

Figure 1 shows a learning problem consisting of 5 in-
stances and 3 variables. The variables A2 and A3 are
the two duplicates of A1, and thus all variables are per-
fectly dependent. For an instance e = {A1 = 0, A2 =
0, A3 = 0}, the true posterior probability ratio is:

p(C = +|A1 = 0, A2 = 0, A3 = 0)
p(C = −|A1 = 0, A2 = 0, A3 = 0)

=
1
2

(4)

However, naive Bayes, which does not consider the de-
pendencies between variables, gives the estimated pos-
terior probability ratio:

p̂(C = +)
p̂(C = −)

(
p̂(A1 = 0|+)
p̂(A1 = 0|−)

)3 =
2
1

(5)

Thus, naive Bayes misclassifies e. Moreover, the es-
timated posterior probability p̂(C = +|A1 = 0, A2 =
0, A3 = 0) from naive Bayes is 0.66, while the true
probability p(C = +|A1 = 0, A2 = 0, A3 = 0) = 0.33.
This mismatch is due to the two duplicates A2 and A3.
Since p(Ai=0|C=+)

p(Ai=0|C=−) = 2, the duplication of A1 results
in overestimating the probability that e belongs to the
positive class.

For DFE, the story is different. Figure 2 shows how the
estimated probability p̂(C = +|A1 = 0, A2 = 0, A3 =

0) in naive Bayes changes with FE and DFE respec-
tively, as the number of instances used increases. Both
algorithms take an instance in the order in Figure 1 at
each step, and update the corresponding frequencies.
With the increased number of instances used, the es-
timated probability p̂(C = +|A1 = 0, A2 = 0, A3 = 0)
from DFE converges to 0.4 approximately, which is
close to the true probability and leads to a correct
classification. However, FE converges to 0.66, even
using the training instances more than once.

From this example, we can see that computing the fre-
quencies in a discriminative way tends to yield more
accurate probability estimation and give more accu-
rate classification consequently. Also, both DFE and
FE tend to converge with the increased training effort.

Figure 2. The y-axis is the predicted probability. The x-
axis is the tth instance fed into the algorithms.

6. Experiments

6.1. Experimental Setup

We conduct our experiments under the framework of
WEKA (Witten & Frank, 2000). All experiments are
performed on a Pentium 4 with 2.8GHZ CPU and 1G
RAM. In our experiments, we use the 33 UCI data
sets, selected by WEKA, which represent a wide range
of domains and data characteristics. The smallest
training data set “labor” has 51 training instances,
and the largest data set “mushroom” has 7311 train-
ing instances. Numeric variables are discretized using
the unsupervised ten-bin discretization implemented
in WEKA. Missing values are replaced with the mean
values from the training data. The multi-class data
sets are transformed into binary ones by taking the
two largest classes. The performance of an algorithm
on each data set is observed via 10 runs of 10-fold
stratified cross validation.
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Table 1. Experimental results on accuracy

Data set NB+DFE NB+FE NB+ELR NB+Ada HGC+FE HGC+DFE
Labor 92.73±12.17 96.27± 7.87 95.53± 9.00 86.53±13.95 89.80±10.80 86.93±12.12
Zoo 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Iris 100.00± 0.00 100.00± 0.00 96.20±11.05 100.00± 0.00 100.00± 0.00 100.00± 0.00
Primary-tumor 84.12± 9.17 84.12± 9.48 83.32± 9.99 80.82± 8.77 82.94± 9.07 82.23±10.32
Autos 88.94± 9.81 77.24±12.03 • 90.27± 9.08 88.76± 8.70 83.97±10.75 84.49±11.85
Audiology 100.00± 0.00 99.82± 1.29 97.31± 5.22 99.82± 1.29 99.82± 1.29 100.00± 0.00
Glass 80.45± 9.91 76.37±10.59 81.44±10.04 75.03± 9.12 72.12±11.89 • 71.55±12.32 •
Vowel 95.89± 4.87 83.56± 8.76 • 92.33± 5.71 94.44± 4.63 97.44± 3.22 97.44± 3.41
Soybean 98.58± 3.30 95.52± 4.74 97.29± 4.13 97.38± 3.18 97.49± 3.85 98.05± 3.27
Hepatitis 84.79± 9.11 84.13±10.34 83.49±10.41 81.42± 9.33 83.01± 9.04 83.71± 9.01
Sonar 76.85± 9.30 76.02±10.67 77.36± 9.49 75.23± 9.09 69.16±10.44 68.89±10.49
Lymphography 86.33± 8.95 86.21± 8.12 85.08± 8.84 83.34± 9.56 84.40± 9.10 84.23± 8.49
Heart-statlog 82.89± 5.69 83.70± 5.60 82.96± 5.80 76.44± 7.59 • 83.04± 5.55 82.00± 4.96
Cleveland 83.04± 7.49 83.57± 5.99 82.50± 7.11 79.08± 7.94 • 82.32± 7.46 80.99± 7.43
Breast-cancer 70.36± 8.05 72.87± 7.48 71.34± 8.04 69.73± 7.71 74.26± 5.45 73.49± 5.98
Ionosphere 90.54± 5.32 90.83± 3.99 91.11± 4.82 89.13± 6.14 93.28± 4.53 91.51± 5.29
Horse-colic 82.99± 6.03 78.70± 6.27 • 80.59± 6.71 77.60± 6.30 • 83.70± 5.30 82.01± 6.86
Vehicle 93.74± 3.40 82.82± 6.80 • 92.96± 3.52 93.84± 3.31 95.68± 3.11 96.78± 2.87 ◦
Vote 94.80± 2.86 90.29± 4.07 • 95.72± 2.87 94.39± 3.12 94.84± 3.15 95.44± 3.15
Balance 99.48± 0.94 99.24± 1.17 99.83± 0.52 99.27± 1.17 99.27± 1.22 99.69± 0.76
Wisconsin 96.45± 2.05 97.31± 1.70 96.22± 2.10 95.11± 2.40 96.91± 1.51 96.71± 2.11
Segment 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
Credit-rating 85.51± 3.65 84.75± 3.68 85.25± 4.16 82.96± 4.08 • 85.51± 4.27 86.03± 3.80
Diabetes 75.78± 4.67 75.57± 4.76 76.15± 4.36 74.90± 4.75 75.94± 5.14 75.60± 4.68
Anneal 99.72± 0.74 97.67± 1.98 • 99.87± 0.53 99.87± 0.59 98.95± 1.20 99.92± 0.30
Credit-g 75.98± 4.01 75.90± 3.97 75.64± 3.73 74.22± 4.43 72.88± 3.88 • 72.92± 3.53 •
Letter 99.52± 0.49 96.49± 1.42 • 98.95± 0.74 • 98.94± 0.83 • 98.42± 1.01 • 99.46± 0.52
Splice 97.62± 0.98 97.61± 0.98 97.64± 0.89 95.70± 1.41 • 98.05± 0.91 98.01± 0.85
Kr-vs-kp 94.70± 1.37 87.80± 1.89 • 95.68± 1.21 ◦ 95.19± 1.19 92.40± 1.61 • 95.54± 1.37 ◦
Waveform 91.05± 1.52 87.52± 1.46 • 90.71± 1.16 89.19± 1.63 • 89.66± 1.40 • 89.72± 1.43 •
Hypothyroid 95.95± 0.46 95.49± 0.49 • 95.83± 0.49 95.55± 0.66 • 95.72± 0.52 95.88± 0.51
Sick 97.49± 0.67 96.75± 0.97 • 97.47± 0.74 96.79± 0.83 • 97.82± 0.75 97.91± 0.70
Mushroom 99.96± 0.06 95.53± 0.63 • 100.00± 0.00 100.00± 0.00 99.96± 0.06 100.00± 0.00

• worse, and ◦ better, comparing with NB-DFE.

Two Bayesian network classifiers, naive Bayes (NB)
and HGC (Heckerman et al., 1995), are used to com-
pare the performance of different parameter learning
methods. HGC is a hill-climbing structure search al-
gorithm. In our experiments with HGC, we limit the
number of parents of each node to 2.

In general, we use NB+X and HGC+X to indicate
that NB and HGC with a specific parameter learning
method X respectively: X is one of FE, DFE, ELR
and Ada (Freund & Schapire, 1996). Note that, for
HGC+DEF, we use HGC to learn the structure first,
and then apply DFE to learn parameters. We do not
use DFE in the structure learning of HGC. The fol-
lowing summarizes the parameter learning algorithms
used in our experiments.

FE: the generative parameter learning method. Note
the term “one iteration” in this paper indicates that
we count all training instances exactly once.

DFE: the discriminative parameter learning method,
depicted in Section 4. In our implementation, we sim-
ply go through the whole training data four times (it-
erations), instead of randomly choosing instances.

ELR: the gradient descent based discriminative pa-
rameter learning method, proposed in (Greiner &
Zhou, 2002).

Ada: Adaboost M1 is used as an ensemble method
that combines the outputs of base classifiers to produce

a better prediction (Freund & Schapire, 1996). The
number of classifiers is 20.

In our experiments, we use the implementation of ELR
from the authors (Greiner & Zhou, 2002) and the im-
plementation of HGC and Ada in WEKA, and imple-
ment DFE in WEKA.

Table 2. Summary of the experimental results on accuracy.

NB+FE NB+ELR NB+Ada HGC+FE HGC+DFE
NB+DFE 12/21/0 1/31/1 9/24/0 5/28/0 3/28/2
NB+FE 0/22/11 9/19/5 0/22/11 1/22/10
NB+ELR 4/29/0 4/27/2 2/28/3
NB+Ada 2/26/5 0/28/5
HGC+FE 0/30/3

6.2. Accuracy and Training Time

Table 1 gives the detailed experimental results on ac-
curacy. To better understand the effect of training
data size on the algorithm performance, we sort the
data sets by their sizes. Table 2 shows the results of
the paired t-test with significance level 0.05, in which
each entry w/t/l means that the learner in the corre-
sponding row wins in w data sets, ties in t data sets,
and loses in l data sets, compared to the learning al-
gorithm in the corresponding column. The following
is the highlight of our observations.

1. The two discriminative parameter learning meth-
ods ELR and DFE have the similar performance
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Table 3. Experimental results on training time

Data set NB+DFE NB+FE NB+ELR NB+Ada HGC+FE HGC+DFE
Labor 0.0009±0.00 0.0002±0.00 • 55.0250± 48.89 ◦ 0.0066±0.00 ◦ 0.0367±0.00 ◦ 0.0416±0.00 ◦
Zoo 0.0006±0.00 0.0001±0.00 • 100.1444± 49.28 ◦ 0.0018±0.00 ◦ 0.0077±0.00 ◦ 0.0120±0.00 ◦
Iris 0.0005±0.00 0.0001±0.00 • 317.4304± 150.43 ◦ 0.0019±0.00 ◦ 0.0030±0.00 ◦ 0.0058±0.00 ◦
Primary-tumor 0.0010±0.00 0.0002±0.00 • 99.7059± 12.72 ◦ 0.0097±0.00 ◦ 0.0178±0.00 ◦ 0.0295±0.00 ◦
Autos 0.0017±0.00 0.0002±0.00 • 202.3540± 42.84 ◦ 0.0213±0.02 ◦ 0.2843±0.03 ◦ 0.2956±0.04 ◦
Audiology 0.0019±0.00 0.0003±0.00 • 311.3375± 55.36 ◦ 0.0023±0.00 0.5920±0.05 ◦ 0.6141±0.05 ◦
Glass 0.0008±0.00 0.0002±0.00 • 205.4710± 14.92 ◦ 0.0117±0.00 ◦ 0.0363±0.00 ◦ 0.0464±0.02 ◦
Vowel 0.0013±0.00 0.0003±0.00 • 399.6574± 263.88 ◦ 0.0176±0.00 ◦ 0.0373±0.00 ◦ 0.0510±0.00 ◦
Soybean 0.0018±0.00 0.0004±0.00 • 507.1840± 55.93 ◦ 0.0230±0.01 ◦ 0.0464±0.00 ◦ 0.0705±0.02 ◦
Hepatitis 0.0015±0.00 0.0002±0.00 • 414.9584± 27.77 ◦ 0.0191±0.00 ◦ 0.0369±0.00 ◦ 0.0559±0.02 ◦
Sonar 0.0066±0.00 0.0007±0.00 • 932.8643± 106.34 ◦ 0.0669±0.02 ◦ 4.8039±0.21 ◦ 4.8389±0.20 ◦
Lymphography 0.0037±0.02 0.0003±0.00 387.2173± 19.10 ◦ 0.0164±0.00 ◦ 0.0335±0.00 ◦ 0.0480±0.00 ◦
Heart-statlog 0.0019±0.00 0.0003±0.00 • 579.2737± 74.95 ◦ 0.0252±0.02 ◦ 0.0494±0.02 ◦ 0.0674±0.02 ◦
Cleveland 0.0020±0.00 0.0028±0.02 681.2536± 109.79 ◦ 0.0209±0.01 ◦ 0.0239±0.00 ◦ 0.0451±0.00 ◦
Breast-cancer 0.0015±0.00 0.0002±0.00 • 541.8432± 56.39 ◦ 0.0126±0.00 ◦ 0.0161±0.02 ◦ 0.0288±0.00 ◦
Ionosphere 0.0054±0.00 0.0007±0.00 • 2261.0212± 780.54 ◦ 0.0629±0.02 ◦ 0.3492±0.04 ◦ 0.4219±0.04 ◦
Horse-colic 0.0044±0.00 0.0005±0.00 • 1506.9836± 146.88 ◦ 0.0430±0.01 ◦ 0.0987±0.02 ◦ 0.1457±0.02 ◦
Vehicle 0.0039±0.00 0.0005±0.00 • 2125.4934± 137.27 ◦ 0.0480±0.00 ◦ 0.1531±0.02 ◦ 0.2009±0.03 ◦
Vote 0.0034±0.00 0.0005±0.00 • 1779.7511± 251.58 ◦ 0.0334±0.02 ◦ 0.0229±0.02 ◦ 0.0632±0.02 ◦
Balance 0.0017±0.00 0.0005±0.00 • 2710.6686±1280.37 ◦ 0.0243±0.01 ◦ 0.0038±0.00 ◦ 0.0189±0.00 ◦
Wisconsin 0.0034±0.00 0.0005±0.00 • 1376.4606± 146.91 ◦ 0.0559±0.02 ◦ 0.0243±0.00 ◦ 0.0624±0.02 ◦
Segment 0.0057±0.00 0.0008±0.00 • 3973.2459± 659.38 ◦ 0.0039±0.00 • 0.1233±0.02 ◦ 0.1952±0.03 ◦
Credit-rating 0.0076±0.02 0.0006±0.00 1316.8793± 68.50 ◦ 0.0514±0.02 ◦ 0.0648±0.02 ◦ 0.1252±0.02 ◦
Diabetes 0.0034±0.00 0.0005±0.00 • 1118.3888± 41.75 ◦ 0.0344±0.01 ◦ 0.0299±0.00 ◦ 0.0676±0.02 ◦
Anneal 0.0097±0.00 0.0011±0.00 • 4947.6380±1573.55 ◦ 0.1098±0.03 ◦ 0.1797±0.03 ◦ 0.3056±0.03 ◦
Credit-g 0.0103±0.00 0.0012±0.00 • 2440.2377± 357.70 ◦ 0.0745±0.03 ◦ 0.1473±0.03 ◦ 0.2611±0.03 ◦
Letter 0.0223±0.00 0.0024±0.00 • 262.4565± 142.62 ◦ 0.3817±0.15 ◦ 0.2089±0.06 ◦ 0.5355±0.20 ◦
Splice 0.1322±0.04 0.0143±0.02 • 2398.4974± 835.69 ◦ 1.3441±0.44 ◦ 8.1985±2.28 ◦ 9.8085±2.38 ◦
Kr-vs-kp 0.1533±0.08 0.0232±0.06 • 1648.1174± 856.53 ◦ 1.2348±0.16 ◦ 1.0847±0.17 ◦ 1.9889±0.11 ◦
Waveform 0.1829±0.05 0.0171±0.00 • 2743.9441± 295.50 ◦ 1.5109±0.16 ◦ 2.3946±0.26 ◦ 3.4949±0.28 ◦
Hypothyroid 0.1091±0.04 0.0121±0.01 • 1035.1162± 543.62 ◦ 1.2212±0.63 ◦ 1.1376±0.34 ◦ 3.3269±1.24 ◦
Sick 0.1246±0.08 0.0095±0.00 • 2662.4956± 379.71 ◦ 0.6825±0.27 ◦ 1.6360±0.64 ◦ 3.4699±0.99 ◦
Mushroom 0.2102±0.15 0.0205±0.02 • 11243.5967±3074.40 ◦ 2.6704±0.95 ◦ 2.2242±0.86 ◦ 4.5443±1.32 ◦

◦ slower, and • faster comparing with NB-DFE The training time unit is second

in terms of accuracy. NB+DFE performs better
than NB+ELR in 1 data set and loses in 1 data
set.

2. For naive Bayes, the discriminative parameter
learning methods significantly improve the per-
formance of the generative parameter learning
method FE. NB+ELR and NB+DFE outperform
NB+FE in 11 and 12 data sets without a loss re-
spectively. In our experiments, NB+Ada loses to
NB in 9 data sets and wins in 5 data sets. This
means that using boosting as a discriminative pa-
rameter learning method is not effective according
to our experiments.

3. NB+DFE outperforms HGC+FE in 5 data sets
without a loss. Note that there is no structure
learning in NB+DFE at all. Thus, we could ex-
pect that discriminative parameter learning can
significantly reduce the effort for structure learn-
ing.

4. DFE improves the general Bayesian network
learning algorithm HGC. HGC+DFE outper-
forms HGC+FE in 3 data sets without a loss.
This improvement is not as significant as in naive
Bayes. However, it is consistent with previous re-
search results: while the structure of a Bayesian
network is closer to the “true” one, discrimina-
tive parameter learning is less helpful (Greiner &
Zhou, 2002; Grossman & Domingos, 2004).

5. HGC+FE outperforms NB+FE in 11 data sets
without a loss. This results show that many data
sets in our experiments contains strong depen-
dencies. The structure learning in HGC relaxes
the independence assumption in naive Bayes, and
thus improves the performance significantly.

We have also observed the training time for each algo-
rithm. Table 3 shows the average training time of each
algorithm from 10 runs of 10-fold stratified cross vali-
dation. From Table 3, we can see that DFE is approx-
imately 250,000 times faster than ELR. Recall that
their performance in classification accuracy is similar.
Certainly, FE is still the most efficient algorithm: 7
times faster than DFE, 70 faster than NB+Ada, and
1,800,000 times faster than ELR approximately.

6.3. Convergence, Overfitting and Learning
Curves

In our experiments, we have investigated the conver-
gence of the DFE algorithm. We have observed the
relation between the number of iterations and the ac-
curacy of NB+DFE on the 8 largest data sets, shown
in Figure 3. Again, an iteration means counting all
instances once. Each point in the curves corresponds
to the number of iterations that a parameter learn-
ing method performs over the training data and the
average accuracy from 10-fold cross validation.

Figure 3 shows that NB+DFE converges quickly. We
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Figure 3. Relation between accuracies and the number of iterations over training and testing data. Solid lines represent
training accuracy, and dotted lines represent testing accuracy.

can see that NB+DFE approaches its highest accuracy
just after one iteration. As the number of iterations in-
creases after that, there is no significant difference. For
example, in all the 8 data sets, the differences between
NB+DFE with one iteration and with more iterations
are only around 0.005. In our experiments, in fact, we
have tried different iteration numbers (1 to 2048) for
DFE, and the accuracies of NB+DFE and HGC+DFE
do not significantly change.

In the 33 data sets, there is only one data set “Vowel”,
in which NB+DFE needs more than one iteration to
reach the asymptotic accuracy. NB+DFE achieves
90.00% after one iteration, and approaches 95.89% af-
ter 4 iterations. The “Vowel” data set has been ob-
served to contain strong variable dependencies (Su &
Zhang, 2005), and is small (contains only 180 train-
ing instances). However, when the sample size is not
small, such as in “Kr-vs-kp” and “Mushroom”, one it-
eration is still enough for DFE to reach its asymptotic
accuracy, even though there are strong dependencies
in these data sets.

From Figure 3, we can also observe that NB+DFE
does not suffer from overfitting. With the increased
iterations, the accuracies on test data, shown by the
dotted lines, remain the same. That means, once
NB+DFE reaches its asymptotic accuracy, the more
learning effort does not influence the model. Conse-
quently, no stopping criterion is required for DFE. In
contrast, the discriminative learning algorithm ELR
requires a stopping criterion to prevent overfitting.

Greiner and Zhou (2002) showed that the accuracy of
ELR may decrease with an increased training effort.

We have also studied the learning curves of NB+DFE.
Ng and Jordan (2001) showed that discriminative
learning may have disadvantage comparing to genera-
tive learning when sample size is small. Thus, we are
interested in how our discriminative parameter learn-
ing algorithm DFE performs in this scenario.

Figure 4 shows the learning curves for NB+FE,
NB+ELR, and NB+DFE on the same 8 UCI data sets.
Since we are interested in the performance in a small
sample size, we only observe the performance of each
algorithm using up to 50 instances. The accuracy in
the learning curves is the average accuracy, obtained
on the data that is not used for training with a total of
30 runs. The learning curves show how the accuracy
changes as more labeled data are used.

From Figure 4, we can see that NB+FE dominates
NB+DFE and NB+ELR only on data sets “Credit-g”
and “Hypothyroid” in terms of accuracy. On data sets
“Kr-vs-kp” and “Mushroom”, however, both discrim-
inative learning algorithms NB+ELR and NB+DFE
outperform NB+FE. On all other data sets, the results
are mixed. It means that generative learning has actu-
ally no obvious advantage over discriminative learning
even when the size of training data is small. In fact,
our observations agree with the analysis in (Greiner &
Zhou, 2002).
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Figure 4. Relation between accuracies and training data sizes. Solid, dotted, and dashed lines correspond to NB+FE,
NB+DFE, and NB+ELR respectively.

7. Conclusion

In this paper, we propose a novel discriminative pa-
rameter learning method for Bayesian network classi-
fiers. DFE can be viewed as a discriminative version
of frequency estimate. Our experiments show that the
DFE algorithm combines the advantages of generative
and discriminative learning: it is computationally effi-
cient, converges quickly, does not suffer from the over-
fitting problem, and performs competitively with the
state-of-the-art discriminative parameter learning al-
gorithm ELR in accuracy.

This paper mainly studies the empirical side of DFE.
Its theoretical nature remains unknown. Moreover, be-
cause of the efficiency of DFE, we would expect that
DFE could be applied in general structure learning,
leading to more accurate Bayesian network classifiers.
In our future work, we will study DFE from theoret-
ical perspective and embed DFE into the structure
search process of HGC and other structure learning
algorithms.
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Abstract

Canonical Correlation Analysis (CCA) is a
well-known technique for finding the correla-
tions between two sets of multi-dimensional
variables. It projects both sets of variables
into a lower-dimensional space in which they
are maximally correlated. CCA is commonly
applied for supervised dimensionality reduc-
tion, in which one of the multi-dimensional
variables is derived from the class label. It
has been shown that CCA can be formu-
lated as a least squares problem in the binary-
class case. However, their relationship in the
more general setting remains unclear. In this
paper, we show that, under a mild condi-
tion which tends to hold for high-dimensional
data, CCA in multi-label classifications can
be formulated as a least squares problem.
Based on this equivalence relationship, we
propose several CCA extensions including
sparse CCA using 1-norm regularization. Ex-
periments on multi-label data sets confirm
the established equivalence relationship. Re-
sults also demonstrate the effectiveness of the
proposed CCA extensions.

1. Introduction

Canonical Correlation Analysis (CCA) (Hotelling,
1936) is commonly used for finding the correlations
between two sets of multi-dimensional variables. It
makes use of two views of the same set of objects and
projects them into a lower-dimensional space in which
they are maximally correlated. CCA has been applied
successfully in various applications (Hardoon et al.,
2004; Vert & Kanehisa, 2003). One popular use of
CCA is for supervised learning, in which one view is

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

derived from the data and another view is derived from
the class labels. In this setting, the data can be pro-
jected into a lower-dimensional space directed by the
label information. Such formulation is particularly ap-
pealing in the context of dimensionality reduction for
multi-label data (Yu et al., 2006).

Multivariate linear regression (MLR) that minimizes
the sum-of-squares cost function is a well-studied tech-
nique for regression problems. It can also be applied
for classification with an appropriate class indicator
matrix (Bishop, 2006; Hastie et al., 2001). The so-
lution to least squares problems can be obtained by
solving a linear system of equations. A number of al-
gorithms, including the conjugate gradient algorithm,
can be applied to solve it efficiently (Golub & Loan,
1996). Furthermore, the least squares formulation can
be readily extended using the regularization technique.
For example, 1-norm regularization can be incorpo-
rated into the least squares formulation to control
model complexity and improve sparseness (Tibshirani,
1996). Sparseness often leads to easy interpretation
and a good generalization ability. It has been used
successfully in PCA (d’Aspremont et al., 2004) and
SVM (Zhu et al., 2003).

In contrast to least squares, CCA involves a gener-
alized eigenvalue problem, which is computationally
more expensive to solve. Furthermore, it is challenging
to derive sparse CCA, as it involves a difficult sparse
generalized eigenvalue problem. Convex relaxation of
sparse CCA has been studied in (Sriperumbudur et al.,
2007), where the exact sparse CCA formulation has
been relaxed in several steps. On the other hand, in-
teresting connection between least squares and CCA
has been established in the literature. In particular,
CCA has been shown to be equivalent to Fisher Linear
Discriminant Analysis (LDA) for binary-class prob-
lems (Hastie et al., 1995). Meanwhile, it is well-known
that LDA is equivalent to least squares in this case
(Bishop, 2006; Hastie et al., 2001). Thus CCA can be
formulated as a least squares problem for binary-class
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problems. In practice, the multi-class and multi-label
problems are more prevalent. It is therefore tempting
to investigate the relationship between least squares
and CCA in the more general setting.

In this paper, we study the relationship between CCA
and least squares for multi-label problems. We show
that, under a mild condition which tends to hold for
high-dimensional data, CCA can be formulated as a
least squares problem by constructing a specific class
indictor matrix. Based on this equivalence relation-
ship, we propose several CCA extensions including
sparse CCA using the 1-norm regularization. Further-
more, the entire solution path for sparse CCA can be
readily computed by the Least Angle Regression algo-
rithm (LARS) (Efron et al., 2004). We evaluate the es-
tablished theoretical results using a collection of multi-
label data sets. Our experiments confirm the equiva-
lence relationship between these two models under the
given assumption. Results also show that, even when
the assumption does not hold, they achieve very sim-
ilar performance. Our experiments also demonstrate
the effectiveness of the proposed CCA extensions.

Notations The number of training samples, the data
dimensionality, and the number of labels are denoted
by n, d, and k, respectively. xi ∈ R

d denotes the ith
observation and yi ∈ R

k encodes the corresponding
label information. Let X = [x1, · · · , xn] ∈ R

d×n be
the data matrix and Y = [y1, · · · , yn] ∈ R

k×n be the
class label matrix. We assume that both {xi}n

1 and
{yi}n

1 are centered, i.e.,
∑n

i=1 xi = 0, and
∑n

i=1 yi = 0.

2. Background and Related Work

In this section we give a brief overview of CCA and
least squares as well as several other related work.

2.1. Canonical Correlation Analysis

In CCA two different representations of the same set
of objects are given, and a projection is computed
for each representation such that they are maximally
correlated in the dimensionality-reduced space. For
X ∈ R

d×n and Y ∈ R
k×n, CCA computes two pro-

jection vectors, wx ∈ R
d and wy ∈ R

k, such that the
following correlation coefficient:

ρ =
wT

x XY T wy
√

(wT
x XXT wx)(wT

y Y Y T wy)
(1)

is maximized. Since ρ is invariant to the scaling of wx

and wy, CCA can be formulated equivalently as

max
wx,wy

wT
x XY T wy (2)

subject to wT
x XXT wx = 1, wT

y Y Y T wy = 1.

We assume that Y Y T is nonsingular. It can be shown
that wx can be obtained by solving the following opti-
mization problem:

max
wx

wT
x XY T

(
Y Y T

)−1
Y XT wx

subject to wT
x XXT wx = 1. (3)

Both formulations in Eqs. (2) and (3) attempt to find
the eigenvectors corresponding to top eigenvalues of
the following generalized eigenvalue problem:

XY T (Y Y T )−1Y XT wx = ηXXT wx, (4)

where η is the eigenvalue corresponding to the eigen-
vector wx. Multiple projection vectors under certain
orthonormality constraints can be computed simulta-
neously by solving the following optimization problem
(Hardoon et al., 2004):

max
W

trace(WT XY T (Y Y T )−1Y XT W )

subject to WT XXT W = I, (5)

where W ∈ R
d×ℓ is the projection matrix, ℓ is the num-

ber of projection vectors, and I is the identity matrix.
The solution to the optimization problem in Eq. (5)
consists of the top ℓ eigenvectors of the generalized
eigenvalue problem in Eq. (4).

In regularized CCA (rCCA), a regularization term λI

with λ > 0 is added to XXT in Eq. (5) to prevent the
overfitting and avoid the singularity of XXT (Bach &
Jordan, 2003). Specifically, rCCA solves the following
generalized eigenvalue problem:

XY T (Y Y T )−1Y XT wx = η(XXT + λI)wx. (6)

2.2. Least Squares for Regression and

Classification

In regression, we are given a training set {(xi, ti)}n
i=1,

where xi ∈ R
d is the observation and ti ∈ R

k is the
corresponding target. We assume that both the ob-
servations and the targets are centered. Thus the bias
term can be ignored. In this case, the projection ma-
trix W can be computed by minimizing the following
sum-of-squares cost function:

min
W

n∑

i=1

‖WT xi − ti‖2
2 = ‖WT X − T‖2

F , (7)

where T = [t1, · · · , tn]. It is well known that the opti-
mal projection matrix is given by

WLS = (XXT )†XTT , (8)
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where the pseudo-inverse is used in case XXT is sin-
gular. To improve the generality ability of the model,
a penalty term based on 2-norm or 1-norm regulariza-
tion is commonly applied (Hastie et al., 2001).

Least squares is also commonly applied for classifica-
tion. In the general multi-class case, we are given a
data set consisting of n samples {(xi, yi)}n

i=1, where
xi ∈ R

d, and yi ∈ {1, 2, · · · , k} denotes the class la-
bel of the i-th sample, and k > 2. To apply the least
squares formulation to the multi-class case, the 1-of-k
binary coding scheme is usually employed to apply a
vector-valued class code to each data point (Bishop,
2006). The solution to the least squares problem de-
pends on the choice of class indicator matrix. Several
class indicator matrices have been proposed in the lit-
erature (Hastie et al., 2001).

2.3. Related Work

The inherent relationship between least squares and
several other models has been established in the past.
In particular, LDA for binary-class problems can be
formulated as a least squares problem (Duda et al.,
2000; Bishop, 2006). Moreover, this equivalence rela-
tionship can be extended to the multi-class case using
a specific class indicator matrix (Ye, 2007). CCA has
been shown to be equivalent to LDA for multi-class
problems (Hastie et al., 1995). Thus, CCA is closely
related to least squares in the multi-class case. We
show in the next section that, under a mild condition,
CCA can be formulated as a least squares problem for
multi-label classifications when one of the views used
in CCA is derived from the labels.

3. Relationship between CCA and

Least Squares

In this section we investigate the relationship between
CCA and least squares in the multi-label case. We
first define four matrices essential for our derivation:

H = Y T (Y Y T )−
1

2 ∈ R
n×k, (9)

CXX = XXT ∈ R
d×d, (10)

CHH = XHHT XT ∈ R
d×d, (11)

CDD = CXX − CHH ∈ R
d×d. (12)

Note that we assume n ≫ k and rank(Y ) = k for

multi-label problems. Thus, (Y Y T )−
1

2 is well-defined.
It follows from the definition above that the solution
to CCA can be expressed as the eigenvectors corre-
sponding to top eigenvalues of the matrix C

†
XXCHH .

3.1. Basic Matrix Properties

In this subsection, we study the basic properties of the
matrices involved in the following discussion. Follow-
ing the definition of H in Eq. (9), we have:

Lemma 1. Let H be defined as in Eq. (9) and let
{yi}n

1 be centered, i.e.,
∑n

i=1 yi = 0. Then we have

(1). H has orthonormal columns, i.e., HT H = Ik;

(2). HT e = 0.

Given H ∈ R
n×k with orthonormal columns, there

exists D ∈ R
n×(n−k) such that [H,D] ∈ R

n×n is an
orthogonal matrix (Golub & Loan, 1996), that is

In = [H,D][H,D]T = HHT + DDT .

It follows that

CDD = CXX − CHH = XDDT XT . (13)

It can be verified from Eqs. (10), (11), and (13) that
the matrices CXX , CHH , and CDD are all positive
semidefinite.

Let the Singular Value Decomposition (SVD) of X be

X = UΣV T = [U1, U2] diag(Σr, 0) [V1, V2]
T

= U1ΣrV
T
1 , (14)

where r = rank(X), U and V are orthogonal matrices,
Σ ∈ R

d×n, U1 ∈ R
d×r, U2 ∈ R

d×(d−r), V1 ∈ R
n×r,

V2 ∈ R
n×(n−r), and Σr ∈ R

r×r.

Since U2 lies in the null space XT , we have:

Lemma 2. Let H, X, U2, and D be defined as above.
Then HT XT U2 = 0 and DT XT U2 = 0.

3.2. Computing CCA via Eigendecomposition

Recall that the solution to CCA consists of the top ℓ

eigenvectors of the matrix C
†
XXCHH . We next show

how to compute the eigenvectors of C
†
XXCHH . Define

the matrix A ∈ R
r×k by

A = Σ−1
r UT

1 XH. (15)

Let the SVD of A be A = PΣAQT , where P ∈ R
r×r

and Q ∈ R
k×k are orthogonal, and ΣA ∈ R

r×k is di-
agonal. Then

AAT = PΣAΣT
APT . (16)
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The matrix C
†
XXCHH can be diagonalized as follows:

C
†
XXCHH =U1Σ

−2
r UT

1 XHHT XT

=U1Σ
−1
r AHT XT UUT

=U

[
Ir

0

]

Σ−1
r A[HT XT U1,H

T XT U2]U
T

=U

[
Σ−1

r AAT Σr 0
0 0

]

UT

=U

[
Σ−1

r P 0
0 I

] [
ΣAΣT

A 0
0 0

] [
PT Σr 0

0 I

]

UT

where the second equality follows since U is orthogo-
nal, the fourth equality follows since HT XT U2 = 0 as
shown in Lemma 2, and the last equality follows from
Eq. (16). Thus the solution to CCA, which consists of

the top ℓ eigenvectors of matrix C
†
XXCHH , is given by

WCCA = U1Σ
−1
r Pl, (17)

where Pℓ contains the first ℓ columns of P .

3.3. Equivalence of CCA and Least Squares

Recall from Eq. (8) that for a given class indicator
matrix T , the solution to the least squares problem is
given by

(XXT )†XTT .

We define the class indicator matrix T̃ as follows:

T̃ = (Y Y T )−
1

2 Y = HT . (18)

In this case, the solution to the least squares problem
is given by

WLS = (XXT )†XH = U1Σ
−2
r UT

1 XH

= U1Σ
−1
r A = U1Σ

−1
r PΣAQT . (19)

It is clear from Eqs. (17) and (19) that the difference
between CCA and least squares lies in ΣA and QT .

We next show that all diagonal elements of ΣA are
one under a mild condition, that is, rank(X) = n − 1
and rank(Y ) = k. Note that the first condition is
equivalent to requiring that the original data points
are linearly independent before centering, which tends
to hold for high-dimensional data.

Before presenting the main result summarized in The-
orem 1 below, we have the following lemma:

Lemma 3. Assume

rank(CXX) + s = rank(CHH) + rank(CDD),

for some non-negative integer s. Then for the matrix
Σ̂A = ΣAΣT

A = diag(a1, a2, · · · , ar) ∈ R
r×r, we have

1 = · · · = af−s > af−s+1 > · · · > af > af+1 = · · · = 0.

where f = rank(ΣA).

Proof. Define the matrix J ∈ R
d×d as follows:

J = U

[
Σ−1

r P 0
0 Id−r

]

. (20)

It follows from the definition of CXX , CHH , and CDD

in Eqs. (10)-(12) that

JT CXXJ = diag(Ir, 0),

JT CHHJ = diag(ΣAΣT
A, 0)

= diag(a1, · · · , ar, 0, · · · , 0),

JT CDDJ = JT CXXJ − JT CHHJ

= diag(b1, · · · , br, 0, · · · , 0), (21)

where bi = 1 − ai, for i = 1, · · · , r. Note that since J

is nonsingular, we have

rank(CXX) = rank(JT CXXJ) = r.

It follows from our assumption that

rank(JT CHHJ) + rank(JT CDDJ) = r + s. (22)

Since both JT CHHJ and JT CDDJ are diagonal, there
are a total of r + s nonzero elements in JT CHHJ and
JT CDDJ . Note that f = rank(ΣA) = rank(Σ̂A), thus
a1 > · · · > af > 0 = af+1 = · · · = ar. It follows from
Eq. (21) that

ai + bi = 1, for 1 6 i 6 r, br > · · · > b1 > 0. (23)

This implies that at least one of ai or bi is positive for
1 6 i 6 r. To satisfy the rank equality in Eq. (22), we
therefore must have

1 = a1 = a2 = · · · = af−s > af−s+1 > · · · > af

> af+1 = · · · = ar = 0,

0 = b1 = b2 = · · · = bf−s < bf−s+1 6 · · · 6 bf

< bf+1 = · · · = br = 1.

This completes the proof of the lemma.

Theorem 1. Assume that rank(X) = n − 1 and
rank(Y ) = k for multi-label problems. Then we have

rank(CXX) = n − 1, (24)

rank(CHH) = k, (25)

rank(CDD) = n − k − 1. (26)

Thus s = 0, where s is defined in Lemma 3, and

1 = a1 = · · · = ak > ak+1 = · · · = ar = 0.

This implies that all diagonal elements of ΣA are ones.
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Proof. Denote eT = [1, 1, · · · , 1] ∈ R
1×n, H =

[h1, · · · , hk], and D = [hk+1, · · · , hn]. Note that X

is column centered, i.e.,
∑n

i=1 xi = 0. It follows from
Lemma 1 that HT e = 0, that is,

hT
i e = 0, for 1 6 i 6 k. (27)

Since [H,D] is an orthogonal matrix, {h1, · · · , hn}
form a basis for R

n. Thus we can represent e ∈ R
n

as

e =

n∑

i=1

αihi, where αi ∈ R. (28)

It follows from the orthogonality of [H,D] and Eq. (27)
that e can be expressed as e =

∑n
i=k+1 αihi, and

0 = Xe = X

(
n∑

i=k+1

αihi

)

=
n∑

i=k+1

αi(Xhi). (29)

Since not all αi’s are zero, the n − k columns of XD

are linearly dependent, thus rank(XD) 6 n − k − 1.
According to the property of matrix rank, we have

rank(XD) > rank(X) + rank(D) − n

= (n − 1) + (n − k) − n = n − k − 1. (30)

Thus, rank(XD) = n − k − 1 holds.

For matrix XH, we have

rank(X) = rank(X[H,D]) 6 rank(XH) + rank(XD)

⇔ n − 1 6 rank(XH) + n − k − 1

⇔ rank(XH) > k.

On the other hand, since XH ∈ R
d×k, rank(XH) 6 k.

Thus we have rank(XH) = k and

rank(CXX) = rank(X) = n − 1,

rank(CHH) = rank(XH) = k,

rank(CDD) = rank(XD) = n − k − 1.

It follows that s = 0. On the other hand,

f = rank(A) = rank(Σ−1
r UT

1 XH) = rank(XH) = k.

Hence,

1 = a1 = a2 = · · · = ak > 0 = ak+1 = · · · = ar,

and all diagonal elements of ΣA are ones. This com-
pletes the proof of the theorem.

Since rank(ΣA) = k, C
†
XXCHH contains k nonzero

eigenvalues. If we choose ℓ = k, then

WCCA = U1Σ
−1
r Pk. (31)

The only difference between WLS and WCCA lies in
the orthogonal matrix QT in WLS .

In practice, we can use both WCCA and WLS to project
the original data onto a lower-dimensional space before
classification. For any classifiers based on Euclidean
distance, the orthogonal transformation QT will not
affect the classification performance since the Eu-
clidean distance is invariant of any orthogonal trans-
formations. Some well-known algorithms with this
property include the K-Nearest-Neighbor (KNN) algo-
rithm (Duda et al., 2000) based on the Euclidean dis-
tance and the linear Support Vector Machines (SVM)
(Schölkopf & Smola, 2002). In the following, the least
squares CCA formulation is called “LS-CCA”.

4. Extensions of CCA

Based on the equivalence relationship established in
the last section, the classical CCA formulation can be
extended using the regularization technique.

Regularization is commonly used to control the com-
plexity of the model and improve the generalization
performance. Linear regression using the 2-norm reg-
ularization, called ridge regression (Hoerl & Ken-
nard, 1970), minimizes the penalized sum-of-squares
cost function. By using the class indicator matrix T̃

in Eq. (18), we obtain the 2-norm regularized least
squares CCA formulation (called “LS-CCA2”) by min-
imizing the following objective function:

L2(W,λ) =

k∑

j=1

(
n∑

i=1

(xT
i wj − T̃ij)

2 + λ‖wj‖2
2

)

,

where W = [w1, · · · , wk], and λ > 0 is the regulariza-
tion parameter.

In mathematical programming, it is known that
sparseness can often be achieved by penalizing the
L1-norm of the variables (Donoho, 2006; Tibshirani,
1996). It has been introduced into the least squares
formulation and the resulting model is called lasso
(Tibshirani, 1996). Based on the established equiv-
alence relationship between CCA and least squares,
we derive the 1-norm least squares CCA formulation
(called “LS-CCA1”) by minimizing the following ob-
jective function:

L1(W,λ) =

k∑

j=1

(
n∑

i=1

(xT
i wj − T̃ij)

2 + λ‖wj‖1

)

.

The optimal w∗
j , for 1 ≤ j ≤ k, is given by

w∗
j = arg min

wj

(
n∑

i=1

(xT
i wj − T̃ij)

2 + λ‖wj‖1), (32)
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which can be reformulated as:

w∗
j = arg min

‖wj‖1≤τ

n∑

i=1

(xT
i wj − T̃ij)

2, (33)

for some tuning parameter τ > 0 (Tibshirani, 1996).
Furthermore, the solution can be readily computed by
the Least Angle Regression algorithm (Efron et al.,
2004). One key feature of LARS is that it computes
the entire solution path for all values of τ , with essen-
tially the same computational cost as fitting the model
with a single τ value.

If the value of τ is large enough, the constraint in
Eq. (33) is not effective, resulting in an unconstrained
optimization problem. We can thus consider τ from
a finite range [0, τ̂ ], for some τ̂ > 0. Define γ = τ/τ̂

so that τ = τ̂ γ with 0 ≤ γ ≤ 1. The estimation of τ

is equivalent to the estimation of γ. Cross-validation
is commonly used to estimate the optimal value from
a large candidate set S = {γ1, γ2, · · · , γ|S|}, where |S|
denotes the size of S. If the value of γ is sufficiently
small, many of the coefficients in W will become ex-
actly zero, which leads to a sparse CCA model. We
thus call γ the “sparseness coefficient”.

5. Experiments

We use a collection of multi-label data sets to ex-
perimentally verify the equivalence relationship estab-
lished in this paper. We also evaluate the performance
of various CCA extensions.

5.1. Experimental Setup

We use two types of data in the experiment. The
gene expression pattern image data1 describe the gene
expression patterns of Drosophila during development
(Tomancak & et al., 2002). Each image is annotated
with a variable number of textual terms (labels) from
a controlled vocabulary. We apply Gabor filters to ex-
tract a 384-dimensional feature vector from each im-
age. We use five data sets with different numbers of
terms (class labels). We also use the scene data set
(Boutell et al., 2004) which contains 2407 samples of
294-dimension and 6 labels. In all the experiments,
ten random splittings of data into training and test
sets are generated and the averaged performance is re-
ported.

In the experiment, five methods including CCA and
its regularized version rCCA in Eq. (6), as well as
LS-CCA and its regularization versions LS-CCA2 and
LS-CCA1 are compared. These CCA methods are used

1All images were extracted from the FlyExpress
database at http://www.flyexpress.net.

to project the data into a lower-dimensional space in
which a linear SVM is applied for classification for each
label. The Receiver Operating Characteristic (ROC)
score is computed for each label and the averaged per-
formance over all labels is reported.

5.2. Gene Expression Pattern Image Data

In this experiment we first evaluate the equivalence
relationship between CCA and least squares. For all
cases, we set the data dimensionality d larger than
the sample size n, i.e., d/n > 1. The condition in
Theorem 1 holds in all cases. We observe that for all
splittings of all of the five data sets, rank(CXX) equals
rank(CHH) + rank(CDD)), and the ratio of the maxi-
mal to the minimal diagonal element of ΣA is 1, which
implies that all diagonal elements of ΣA are the same,
i.e., ones. Our experimental evidences are consistent
with the theoretical results presented in Section 3.3.

5.2.1. Performance Comparison

In Table 1, we report the mean ROC scores over all
terms and all splittings for each data set. The main ob-
servations include: (1) CCA and LS-CCA achieve the
same performance for all data sets, which is consistent
with our theoretical results; (2) The regularized CCA
extensions including rCCA, LS-CCA2, and LS-CCA1

perform much better than their counterparts CCA and
LS-CCA without the regularization; and (3) LS-CCA2

is comparable to rCCA in all data sets, while LS-CCA1

achieves the best performance in all cases. These fur-
ther justify the use of the proposed least squares CCA
formulations for multi-label classifications.

Table 1. Comparison of different CCA methods in terms of
mean ROC scores. ntot denotes the total number of images
in the data set, and k denotes the number of terms (labels).
Ten different splittings of the data into training (of size n)
and test (of size ntot−n) sets are applied for each data set.
For the regularized algorithms, the value of the parameter
is chosen via cross-validation. The proposed sparse CCA
model (LS-CCA1) performs the best for this data set.

ntot k CCA LS-CCA rCCA LS-CCA2 LS-CCA1

863 10 0.542 0.542 0.617 0.619 0.722

1041 15 0.534 0.534 0.602 0.603 0.707

1138 20 0.538 0.538 0.609 0.610 0.714

1222 25 0.540 0.540 0.603 0.605 0.704

1349 30 0.548 0.548 0.606 0.608 0.709

5.2.2. Sensitivity Study

In this experiment, we investigate the performance of
LS-CCA and its variants in comparison with CCA
when the condition in Theorem 1 does not hold, which
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Figure 1. Comparison of all algorithms on gene data set (left) and scene data set (right) in terms of mean ROC scores.

is the case in many applications. Specifically, we use a
gene data set with the dimensionality fixed at d = 384,
while the size of the training set varies from 100 to 900
with a step size about 100.

The performance of different algorithms as the size
of training set increases is presented in Figure 1 (left
graph). We can observe that in general, the perfor-
mance of all algorithms increases as the training size
increases. When n is small, the condition in Theorem
1 holds, thus CCA and LS-CCA are equivalent, and
they achieve the same performance. When n further
increases, CCA and LS-CCA achieve different ROC
scores, although the difference is always very small in
our experiment. Similar to the last experiment, we
can observe from the figure that the regularized meth-
ods perform much better than CCA and LS-CCA, and
LS-CCA2 is comparable to rCCA. The sparse formu-
lation LS-CCA1 performs the best for this data set.

5.3. Scene Data Set

We conduct a similar set of experiments on the scene
data. As in the gene data set, the equivalence relation-
ship holds when the condition in Theorem 1 holds.

For the performance comparison and sensitivity study,
we generate a sequence of training sets with the size
n ranging from 100 to 900 with a step size around
100. The results are summarized in Figure 1 (right
graph). Similar to the gene data set, CCA and LS-
CCA achieve the same performance when n is small,
and they differ slightly when n is large. We can also
observe from the figure that the regularized algorithms
including rCCA, and LS-CCA2, and LS-CCA1 perform

much better than CCA and LS-CCA without regular-
ization, and LS-CCA2 performs slightly better than
others in this data set.

5.4. The Entire CCA Solution Path

In this experiment, we investigate the sparse CCA
model, i.e., LS-CCA1 using the scene data set. Recall
that the sparseness of the weight vectors wi’s depends
on the sparseness coefficient γ between 0 and 1.

Figure 2 shows the entire collection of solution paths
for a subset of the coefficients from the first weight
vector w1. The x-axis denotes the sparseness coeffi-
cient γ, and the y-axis denotes the value of the coef-
ficients. The vertical lines denote (a subset of) the
turning point of the path, as the solution path for
each of the coefficients is piecewise linear (Efron et al.,
2004). We can observe from Figure 2 that when γ = 1,
most of the coefficients are non-zero, i.e., the model is
dense. When the value of the sparseness coefficient γ

decreases (from the right to the left side along the x-
axis), more and more coefficients become exactly zero.
All coefficients become zero when γ = 0.

6. Conclusion and Future Work

In this paper we show that CCA for multi-label clas-
sifications can be formulated as a least squares prob-
lem under a mild condition, which tends to hold for
high-dimensional data. Based on the equivalence rela-
tionship established in this paper, we propose several
CCA extensions including sparse CCA. We have con-
ducted experiments on a collection of multi-label data
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Figure 2. The entire collection of solution paths for a sub-
set of the coefficients from the first weight vector w1 on the
scene data set. The x-axis denotes the sparseness coeffi-
cient γ, and the y-axis denotes the value of the coefficients.

sets to validate the proposed equivalence relationship.
Our experimental results show that the performance
of the proposed least squares formulation and CCA
is very close even when the condition does not hold.
Results also demonstrate the effectiveness of the pro-
posed CCA extensions.

The proposed least squares formulation facilitates the
incorporation of the unlabeled data into the CCA
framework through the graph Laplacian, which cap-
tures the local geometry of the data (Belkin et al.,
2006). We plan to examine the effectiveness of this
semi-supervised CCA model for learning from both la-
beled and unlabeled data. The proposed sparse CCA
performs well for the gene data set. We plan to ana-
lyze the biological relevance of the features extracted
via the sparse CCA model.
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Abstract
In apprenticeship learning, the goal is to learn
a policy in a Markov decision process that is at
least as good as a policy demonstrated by an ex-
pert. The difficulty arises in that the MDP’s true
reward function is assumed to be unknown. We
show how to frame apprenticeship learning as a
linear programming problem, and show that us-
ing an off-the-shelf LP solver to solve this prob-
lem results in a substantial improvement in run-
ning time over existing methods — up to two or-
ders of magnitude faster in our experiments. Ad-
ditionally, our approach produces stationary poli-
cies, while all existing methods for apprentice-
ship learning output policies that are “mixed”,
i.e. randomized combinations of stationary poli-
cies. The technique used is general enough to
convert any mixed policy to a stationary policy.

1. Introduction

In apprenticeship learning, as with policy learning for
Markov decision processes (MDPs), the objective is to find
a good policy for an autonomous agent, called the “appren-
tice”, in a stochastic environment. While the setup of an ap-
prenticeship learning problem is almost identical to that of
policy learning in an MDP, there are a few key differences.
In apprenticeship learning the true reward function is un-
known to the apprentice, but is assumed to be a weighted
combination of several known functions. The apprentice
is also assumed to have access to demonstrations from an-
other agent, called the “expert”, executing a policy in the
same environment. The goal of the apprentice is to find a
policy that is at least as good as the expert’s policy with
respect to the true reward function. This is distinct from
policy learning, where the goal is to find an optimal policy
with respect to the true reward function (which cannot be

Appearing inProceedings of the25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

done in this case because it is unknown).

The apprenticeship learning framework, introduced by
Abbeel & Ng (2004), is motivated by a couple of observa-
tions about real applications. The first is that reward func-
tions are often difficult to describe exactly, and yet at the
same time it is usually easy to specify what the rewards
must depend on. A typical example, investigated by Abbeel
& Ng (2004), is driving a car. When a person drives a
car, it is plausible that her behavior can be viewed as maxi-
mizing some reward function, and that this reward function
depends on just a few key properties of each environment
state: the speed of the car, the position of other cars, the
terrain, etc. The second observation is that demonstrations
of good policies by experts are often plentiful. This is cer-
tainly true in the car driving example, as it is in many other
applications.

Abbeel & Ng (2004) assumed that the true reward func-
tion could be written as a linear combination ofk known
functions, and described an iterative algorithm that, given
a small set of demonstrations of the expert policy, output
an apprentice policy withinO(k log k) iterations that was
nearly as good as the expert’s policy. Syed & Schapire
(2008) gave an algorithm that achieved the same guarantee
in O(log k) iterations. They also showed that by assum-
ing that the linear combination is also a convex one, their
algorithm can sometimes find an apprentice policy that is
substantially better than the expert’s policy. Essentially, the
assumption of positive weights implies that the apprentice
has some prior knowledge about which policies are better
than others, and their algorithm leverages this knowledge.

Existing algorithms for apprenticeship learning share a
couple of properties. One is that they each use an algorithm
for finding an MDP’s optimal policy (e.g. value iteration or
policy iteration) as a subroutine. Another is that they out-
put apprentice policies that are “mixtures”, i.e. randomized
combinations of stationary policies. A stationary policy is
a function of just the current environment state.

Our first contribution in this paper is to show that, if
one uses the linear programming approach for finding an
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MDP’s optimal policy (Puterman, 1994) as a subroutine,
then one can modify Syed & Schapire’s (2008) algorithm
so that it outputs a stationary policy instead of a mixed pol-
icy. Stationary policies are desirable for a number of rea-
sons, e.g. they are simpler to describe, and are more natural
and intuitive in terms of the behavior that they prescribe.
Moreover, this technique can be straightforwardly applied
to any mixed policy, such as the ones output by Abbeel &
Ng’s (2004) algorithms, to convert it to a stationary policy
that earns the same expected cumulative reward.

Our technique leads naturally to the second contribution of
this paper, which is the formulation of the apprenticeship
learning problem as a linear program. We prove that the
solution to this LP corresponds to an apprentice policy that
has the same performance guarantees as those produced by
existing algorithms, and that the efficiency of modern LP
solvers results in a very substantial improvement in running
time compared to Syed & Schapire’s (2008) algorithm —
up to two orders of magnitude in our experiments.

In work closely related to apprenticeship learning, Ratliff,
Bagnell & Zinkevich (2006) described an algorithm for
learning the true reward function by assuming that the ex-
pert’s policy is not very different from the optimal policy.
They took this approach because they wanted to learn poli-
cies that were similar to the expert’s policy. In apprentice-
ship learning, by contrast, the learned apprentice policy can
be very different from the expert’s policy.

2. Preliminaries

Formally, an apprenticeship learning problem(
S,A, θ, α, γ,R1 . . . Rk,D

)
closely resembles a Markov

decision process. At each time stept, an autonomous agent
occupies a statest from a finite setS, and can take an
actionat from a finite setA. When the agent is in states,
taking actiona leads to states′ with transition probability
θsas′ , Pr(st+1 = s′ | st = s, at = a). Initial state
probabilities are given byαs , Pr(s0 = s). The agent
decides which actions to take based on its policyπ, where
πsa , Pr(at = a | st = s). The value of a policyπ is
given by

V (π) , E

[
∞∑

t=0

γtRstat

∣∣∣ α, π, θ

]

whereRsa ∈ [−1, 1] is the reward associated with the
state-action pair(s, a), andγ ∈ [0, 1) is a discount fac-
tor. An optimal policy π∗ is one that satisfiesπ∗ =
arg maxπ V (π). We say a policyπ is ε-optimalif V (π∗)−
V (π) ≤ ε.

A policy π hasoccupancy measurexπ if

xπ
sa = E

[
∞∑

t=0

γt
1(st=s∧at=a)

∣∣∣ α, π, θ

]
(1)

for all s, a. In other words,xπ
sa is the expected (discounted)

number of visits to state-action pair(s, a) when following
policy π.

Unlike an MDP, in apprenticeship learning the true reward
function R is unknown. Instead, we are givenbasis re-
ward functions1 R1 . . . Rk, whereRi

sa is the reward of
state-action pair(s, a) with respect to theith basis reward
function. We assume that the true reward functionR is an
unknown convex combinationw∗ of the basis reward func-
tions, i.e., for alls, a

Rsa =
∑

i

w∗
i Ri

sa

where the unknown weights satisfyw∗
i ≥ 0 and

∑
i w∗

i =
1. Each basis reward functionRi has a correspondingbasis
value functionV i(π) given by

V i(π) , E

[
∞∑

t=0

γtRi
stat

∣∣∣ α, π, θ

]
.

Given the assumption of positive weights, the value ofk
can be viewed as a measure of how much the apprentice
knows about the true reward function. Ifk = 1, the (only)
basis value of a policy is equal to its true value, and the sit-
uation reduces to a traditional MDP. At the other extreme,
if the ith basis reward function is just an indicator function
for the ith state-action pair, thenk = |SA|, and the ba-
sis values of a policy are equal to its occupancy measure.
In this situation, the apprentice knows essentially nothing
about which policies are better than others.

The positive weight assumption also implies that if for
state-action pairs(s, a) and(s′, a′) we haveRi

sa ≥ Ri
s′a′

for all i, thenRsa ≥ Rs′a′ . So the basis rewards them-
selves can encode prior knowledge about the true rewards.
If we wish not to assert any such prior knowledge, we can
simply add the negative of each basis reward function to the
original set, thereby at most doubling the number of basis
reward functions.

We also assume that we are given a data setD of M
i.i.d. sample trajectories from anexpert policyπE exe-
cuting in the environment, where themth trajectory is a
sequence of state-action pairs visited by the expert, i.e.,
(sm

0 , am
0 , sm

1 , am
1 , . . . , sm

H , am
H). For simplicity, we assume

that all sample trajectories are truncated to the same length
H.

The goal of apprenticeship learning (Abbeel & Ng, 2004)
is to find anapprentice policyπA such that

V (πA) ≥ V (πE) (2)
even though the true value functionV (π) is unknown
(since the true reward function is unknown).

2.1. A More Refined Goal

By our assumptions about the reward functions (and the
linearity of expectation), we have

V (π) =
∑

i

w∗
i V i(π).

1In (Abbeel & Ng, 2004) and (Syed & Schapire, 2008) these
functions were calledfeatures, but we believe that the present ter-
minology is better suited for conveying these functions’ role.
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Consequently, for any policyπ, the smallest possible differ-
ence betweenV (π) andV (πE) is mini V i(π) − V i(πE),
because in the worst-case,w∗

i = 1 for the minimizingi.
Based on this observation, Syed & Schapire (2008) pro-
posed finding an apprentice policyπA that solves the max-
imin objective

v∗ = max
π

min
i

V i(π) − V i(πE). (3)

Note that ifπA is a solution to (3), thenV (πA) ≥ V (πE)+
v∗ (becausev∗ = mini V i(πA) − V i(πE) ≤ V (πA) −
V (πE)). We also havev∗ ≥ 0 (becauseπ = πE is avail-
able in (3)). ThereforeπA satisfies the goal of apprentice-
ship learning given in (2).

Syed & Schapire (2008) showed that in some cases where
V (πE) is small,v∗ is large, and so addingv∗ to the lower
bound in (2) serves as a kind of insurance against bad ex-
perts. Our algorithms also produce apprentice policies that
achieve this more refined goal.

2.2. Estimating the Expert Policy’s Values

Our algorithms require knowledge of the basis values of
the expert’s policy. From the expert’s sample trajectories
D, we can form an estimatêV i,E of V i(πE) as follows:

V i(πE) ≈
1

M

M∑

m=1

H∑

t=0

γtRi
sm

t am
t

, V̂ i,E .

Clearly, as the number of sample trajectoriesM and the
truncation lengthH increase, the error of this estimate will
decrease. Thus the issue of accurately estimatingV i(πE)
is related tosamplecomplexity, while in this work we are
primarily concerned withcomputationalcomplexity. To
make our presentation cleaner, we will assume thatD is
large enough to yield an estimatêV i,E of V i(πE) such that
|V̂ i,E − V i(πE)| ≤ ε, for all i. We call such an estimate
ε-good. The sample complexity of apprenticeship learning
is treated in (Syed & Schapire, 2008).

2.3. Policy Types

Unless otherwise noted, a policyπ is presumed to be sta-
tionary, i.e.,πsa is the probability of taking actiona in state
s. One exception is amixed policy. A mixed policyπ̃ is de-
fined by a set of ordered pairs{(πj , λj)}N

j=1. The policyπ̃
is followed by choosing at time0 one of the stationary poli-
ciesπj , each with probabilityλj , and then following that
policy exclusively thereafter. The value of a mixed policy
is the expected value of the stationary policies it comprises,
i.e.,

V (π̃) = E
[
V (πj)

]
=

N∑

j=1

λjV (πj), and

V i(π̃) = E
[
V i(πj)

]
=

N∑

j=1

λjV i(πj).

3. Multiplicative Weights Algorithm for
Apprenticeship Learning

Syed & Schapire (2008) observed that solving the objec-
tive in (3) is equivalent to finding an optimal strategy in
a certain two-player zero-sum game. Because the size of
this game’s matrix is exponential in the number of states
|S|, they adapted a multiplicative weights method for solv-
ing extremely large games. The resulting MWAL (Mul-
tiplicative Weights Apprenticeship Learning) algorithm is
described in Algorithm 1 below.

Algorithm 1 MWAL algorithm

1: Given: S,A, θ, α, γ,R1 . . . Rk,D.
2: Using the expert’s sample trajectoriesD, compute an

ε-good estimatêV i,E of V i(πE), for all i.

3: Let β =

(
1 +

√
2 log k

T

)−1

∈ (0, 1].

4: Initialize w1
i = 1

k
, for i = 1 . . . k.

5: for t = 1 . . . T do
6: Computeε-optimal policy πt for reward function

Rsa =
∑

i wt
iR

i
sa.

7: Computeε-good estimatêV i,t of V i(πt), for i =
1 . . . k.

8: Let wt+1
i = wt

iβ
bV i,t−bV i,E

, for i = 1 . . . k.
9: Renormalizew.

10: end for
11: Return: Let apprentice policyπA be the mixed policy

defined by{(πt, 1
T

)}T
t=1.

In each iteration of the MWAL algorithm, an optimal pol-
icy πt is computed with respect to the current weight vec-
tor wt. Then the weights are updated so thatwi is in-
creased/decreased ifπt is a bad/good policy (relative to
πE) with respect to theith basis reward function.

The next theorem bounds the number of iterationsT re-
quired for the MWAL algorithm to produce a good appren-
tice policy. The computational complexity of each iteration
is discussed in Section 3.1.

Theorem 1 (Syed & Schapire (2008)).Let πA be the
mixed policy returned by the MWAL algorithm. If

T ≥ O

(
log k

(ε(1 − γ))2

)

then
V (πA) ≥ V (πE) + v∗ − O(ε)

wherev∗ = maxπ mini V i(π) − V i(πE).

3.1. MWAL-VI and MWAL-PI

The specification of the MWAL algorithm is somewhat
open-ended. Step 6 requires finding anε-optimal policy in
an MDP, and Step 7 requires computingε-good estimates of
the basis values of that policy. There are several procedures
available for accomplishing each of these steps, with each
option leading to a different variant of the basic algorithm.
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We briefly describe some natural options, and remark on
their implications for the overall computational complexity
of the MWAL algorithm.

In Step 6, we can find the optimal policy using value it-
eration (Puterman, 1994), which has a worst-case running
time of O

(
logγ (1/ε(1 − γ)) |S|2|A|

)
. We can also use

value iteration to compute thek basis values in Step 7 (this
is sometimes called “policy evaluation”), which implies a
worst-case running time ofO

(
k logγ (1/ε(1 − γ)) |S|2

)
.

We call this variant the MWAL-VI algorithm.

Another choice for Step 6 is to find the optimal policy us-
ing policy iteration (Puterman, 1994). No polynomial time
bound for policy iteration is known; however, in practice
it has often been observed to be faster than value iteration.
We call this variant the MWAL-PI algorithm. In Section 8,
we present experiments comparing these algorithms to the
ones described later in the paper.

4. Dual Methods for MDPs

As we previously observed, the MWAL algorithm must re-
peatedly find the optimal policy in an MDP, and this task is
usually accomplished via classic iterative techniques such
as value iteration and policy iteration. However, there are
other techniques available for solving MDPs, and in this
work we show that they can lead to better algorithms for
apprenticeship learning. Consider the following linear pro-
gram:

max
x

∑

s,a

Rsaxsa (4)

such that
∑

a

xsa = αs + γ
∑

s′,a

xs′aθs′as (5)

xsa ≥ 0 (6)

It is well-known (Puterman, 1994) that ifx∗ is a solution to

(4) - (6), thenπ∗
sa =

x∗
sa∑

a x∗
sa

is an optimal policy, andx∗

is the occupancy measure ofπ∗. Often (5) - (6) are called
theBellman flow constraints.

The linear program in (4) - (6) is actually the dual of the
linear program that is typically used to find an optimal pol-
icy in an MDP. Accordingly, solving (4) - (6) is often called
theDual LPmethod of solving MDPs .

Having found an optimal policy by the Dual LP method,
computing its values is straightforward. The next lemma
follows immediately from the definitions of the occupancy
measure and value of a policy.
Lemma 1. If policy π has occupancy measurexπ, then
V (π) =

∑
s,a Rsaxπ

sa andV i(π) =
∑

s,a Ri
saxπ

sa.

5. Main Theoretical Tools

Recall that the MWAL algorithm produces mixed policies.
In Sections 6 and 7, we will present algorithms that achieve

the same theoretical guarantees as the MWAL algorithm,
but produce stationary policies (and are also faster). To
prove the correctness of these algorithms, we need to show
that every mixed policy has an equivalent stationary policy.

In Section 4, we said that the Dual LP method of solving an
MDP outputs the occupancy measure of an optimal policy.
In fact, all x that satisfy the Bellman flow constraints (5)
- (6) are the occupancy measure of some stationary policy,
as the next theorem shows.
Theorem 2. Let x satisfy the Bellman flow constraints(5)

- (6), and letπsa =
xsa∑
a xsa

be a stationary policy. Then

x is the occupancy measure forπ. Conversely, ifπ is
a stationary policy such thatx is its occupancy measure,

thenπsa =
xsa∑
a xsa

andx satisfies the Bellman flow con-

straints.

An equivalent result as Theorem 2 is given in (Feinberg &
Schwartz, 2002), p. 178. For completeness, a simple and
direct proof is contained in the Appendix.

The Bellman flow constraints make it very easy to show
that, for every mixed policy, there is a stationary policy that
has the same value.
Theorem 3. Let π̃ be a mixed policy defined by
{(πj , λj)}N

j=1, and letxj be the occupancy measure ofπj ,
for all j. Let π̂ be a stationary policy where

π̂sa =

∑
j λjxj

sa∑
a

∑
j λjxj

sa

.

ThenV (π̂) = V (π̃).

Proof. By Theorem 2,xj satisfies the Bellman flow con-
straints (5) - (6) for allj. Let x̂sa =

∑
j λjxj

sa. By lin-
earity,x̂ also satisfies the Bellman flow constraints. Hence,
by Theorem 2, the stationary policŷπ defined byπ̂sa =

x̂sa∑
a x̂sa

has occupancy measurex̂. Therefore,

V (π̂) =
∑

s,a

Rsax̂sa =
∑

j

λj
∑

s,a

Rsaxj
sa =

∑

j

λjV (πj)

= V (π̃).

where these equalities use, in order: Lemma 1; the defini-
tion of x̂; Lemma 1; the definition of a mixed policy.

6. MWAL-Dual Algorithm

In this section, we will make a minor modification to the
MWAL algorithm so that it outputs a stationary policy in-
stead of a mixed policy.

Recall that the MWAL algorithm requires, in Steps 6 and
7, a way to compute an optimal policy and its basis values,
but that no particular methods are prescribed. Our proposal
is to use the Dual LP method in Step 6 to find the occu-
pancy measurext of a policy πt that is ε-optimal for re-
ward functionRsa =

∑
i wt

iR
i
sa. Then in Step 7 we let
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V̂ i,t =
∑

s,a Ri
saxt

sa, for i = 1 . . . k. Note that Lemma 1

impliesV̂ i,t = V i(πt).

Now we can apply Theorem 3 to combine all the policies
computed during the MWAL algorithm into a single sta-
tionary apprentice policy. This amounts to changing Step
11 to the following:

Return: Let apprentice policyπA be the stationary
policy defined by

πA
sa =

1
T

∑
t xt

sa∑
a

1
T

∑
t xt

sa

.

We call this modified algorithm the MWAL-Dual algo-
rithm, after the method it uses to compute optimal policies.

It is straightforward to show that these changes to the
MWAL algorithm do not affect its performance guarantee.

Theorem 4. Let πA be the stationary policy returned by
the MWAL-Dual algorithm. If

T ≥ O

(
log k

(ε(1 − γ))2

)

then
V (πA) ≥ V (πE) + v∗ − O(ε)

wherev∗ = maxπ mini V i(π) − V i(πE).

Proof. By Theorem 3, the stationary policy returned by the
MWAL-Dual algorithm has the same value as the mixed
policy returned by the original MWAL algorithm. Hence
the guarantee in Theorem 1 applies to the MWAL-Dual al-
gorithm as well.

Of course, the trick used here to convert a mixed policy to a
stationary one is completely general, provided that the oc-
cupancy measures of the component policies can be com-
puted. For example, this technique could be applied to the
mixed policy output by the algorithms due to Abbeel & Ng
(2004).

Let T (n) be the worst-case running time of an LP solver on
a problem with at mostn constraints and variables.2 For a
typical LP solver,T (n) = O(n3.5) (Shu-Cherng & Puthen-
pura, 1993), although they tend to be much faster in prac-
tice. Using this notation, we can bound the running time
of Steps 6 and 7 in the MWAL-Dual algorithm. Finding an
optimal policy using the Dual LP method takesT (|S||A|)
time. And by Lemma 1, given the occupancy measure of
a policy, we can compute its basis values inO (k|S||A|)
time.

7. LPAL Algorithm

We now describe a way to use the Bellman flow constraints
to find a good apprentice policy in a much more direct fash-

2Technically, the time complexity of a typical LP solver also
depends on the number of bits in the problem representation.

ion than the MWAL algorithm. Recall the objective func-
tion proposed in (Syed & Schapire, 2008) for solving ap-
prenticeship learning:

v∗ = max
π

min
i

V i(π) − V i(πE) (7)

We observed earlier that, ifπA is a solution to (7), then
V (πA) ≥ V (πE) + v∗, and thatv∗ ≥ 0. In this section,
we describe a linear program that solves (7). In Section
8, we describe experiments that show that this approach is
much faster than the MWAL algorithm, although it does
have some disadvantages, which we also illustrate in Sec-
tion 8.

Our LPAL (Linear Programming Apprenticeship Learning)
algorithm is given in Algorithm 2. The basic idea is to
use the Bellman flow constraints (5) - (6) and Lemma 1 to
define a feasible set containing all (occupancy measures of)
stationary policies whose basis values are above a certain
lower bound, and then maximize this bound.

Algorithm 2 LPAL algorithm

1: Given: S,A, θ, α, γ,R1 . . . Rk,D.
2: Using the expert’s sample trajectoriesD, compute an

ε-good estimatêV i,E of V i(πE), for all i.
3: Find a solution (B∗, x∗) to this linear program:

max
B,x

B (8)

such that

B ≤
∑

s,a

Ri
saxsa − V̂ i,E (9)

∑

a

xsa = αs + γ
∑

s′,a

xs′aθs′as (10)

xsa ≥ 0 (11)
4: Return: Let apprentice policyπA be the stationary

policy defined by

πA
sa =

x∗
sa∑

a x∗
sa

.

Theorem 5. Let πA be the stationary policy returned by
the LPAL algorithm. Then

V (πA) ≥ V (πE) + v∗ − O(ε)

wherev∗ = maxπ mini V i(π) − V i(πE).

Proof. By Theorem 2, the Bellman flow constraints (10) -
(11) imply that all feasiblex correspond to the occupancy
measure of some stationary policyπ. Using this fact and
Lemma 1, we conclude that solving the linear program is
equivalent to finding(B∗, πA) such that

B∗ = min
i

V i(πA) − V̂ i,E

andB∗ is as large as possible. Since|V̂ i,E − V i(πE)| ≤ ε
for all i, we know thatB∗ ≥ v∗ − ε. Together with (9) and
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Lemma 1 this implies

V i(πA) =
∑

s,a

Ri
sax∗

sa ≥ V̂ i,E +B∗ ≥ V i(πE)+v∗−2ε.

Note that theoverall worst-case running time of the LPAL
algorithm isT (|S||A| + k), whereT (n) is the complexity
of an LP solver.

8. Experiments

8.1. Gridworld

We tested each algorithm in gridworld environments that
closely resemble those in the experiments of Abbeel & Ng
(2004). Each gridworld is anN × N square of states.
Movement is possible in the four compass directions, and
each action has a 30% chance of causing a transition to a
random state. Each gridworld is partitioned into several
square regions, each of sizeM × M . We always choose
M so that it evenly dividesN , so that each gridworld has
k = ( N

M
)2 regions. Each gridworld also hask basis reward

functions, where theith basis reward functionRi is a 0-1
indicator function for theith region.

For each gridworld, in each trial, we randomly chose a
sparse weight vectorw∗. Recall that the true reward func-
tion has the formR(s) =

∑
i w∗

i Ri(s), so in these ex-
periments the true reward function just encodes that some
regions are more desirable than others. In each trial, we let
the expert policyπE be the optimal policy with respect to
R, and then supplied the basis valuesV i(πE), for all i, to
the MWAL-VI, MWAL-PI, MWAL-Dual and LPAL algo-
rithms.3

Our experiments were run on an ordinary desktop com-
puter. We used the Matlab-basedcvx package (Grant
& Boyd, 2008) for our LP solver. Each of the values
in the tables below is the time, in seconds, that the al-
gorithm took to find an apprentice policyπA such that
V (πA) ≥ 0.95V (πE). Each running time is the average
of 10 trials.

Table 1.Time (sec) to findπA s. t.V (πA) ≥ 0.95V (πE)
Gridworld MWAL-VI MWAL-PI MWAL-Dual LPAL

Size (sec) (sec) (sec) (sec)
16 × 16 6.43 5.78 46.99 1.46
24 × 24 14.45 10.27 90.16 1.55
32 × 32 27.23 15.04 247.38 2.76
48 × 48 61.37 35.33 791.61 8.62
64 × 64 114.12 85.26 3651.70 30.52

128 × 128 406.24 307.58 4952.74 80.21
256 × 256 1873.93 1469.56 29988.85 588.60

3Typically in practice,πE will be unknown, and so the ba-
sis values would need to be estimated from the data set of expert
sample trajectoriesD. However, since we are primarily concerned
with computational complexity in this work, and not sample com-
plexity, we sidestep this issue and just compute eachV i(πE) di-
rectly.

Table 2.Time (sec) to findπA s. t.V (πA) ≥ 0.95V (πE)

Gridworld Number of MWAL-VI MWAL-PI MWAL-Dual LPAL
Size Regions (sec) (sec) (sec) (sec)

64 14.45 10.27 90.16 1.55
24 × 24 144 32.33 20.06 97.58 2.64

576 129.87 75.81 120.82 1.86
64 27.23 15.04 247.38 2.76

32 × 32 256 107.11 60.24 270.71 8.43
1024 440.64 267.12 361.36 4.75
64 61.37 35.33 791.61 8.62
144 135.83 79.88 800.23 11.42

48 × 48 256 244.46 150.08 815.66 16.89
576 575.34 352.15 847.38 16.33
2304 2320.71 1402.10 1128.32 11.14

In the first set of experiments (Table 1), we tested the al-
gorithms in gridworlds of varying sizes, while keeping the
number of regions in each gridworld fixed (64 regions). Re-
call that the number of regions is equal to the number of
basis reward functions. In the next set of experiments (Ta-
ble 2), we varied the number of regions while keeping the
size of the gridworld fixed.

Several remarks about these results are in order. For every
gridworld size and every number of regions, the LPAL al-
gorithm is substantially faster than the other algorithms —
in some cases two orders of magnitude faster. As we previ-
ously noted, LP solvers are often much more efficient than
their theoretical guarantees. Interestingly, in Table 2, the
running time for LPAL eventually decreases as the number
of regions increases. This may be because the number of
constraints in the linear program increases with the num-
ber of regions, and more constraints often make a linear
program problem easier to solve.

Also, the MWAL-Dual algorithm is much slower than the
other algorithms. We suspect this is only because the
MWAL-Dual algorithm calls the LP solver in each itera-
tion (unlike the LPAL algorithm, which calls it just once),
and there is substantial overhead to doing this. Modifying
MWAL-Dual so that it uses the LP solver as less of a black-
box may be a way to alleviate this problem.

8.2. Car driving

In light of the results from the previous section, one might
reasonably wonder whether there is any argument for using
an algorithm other than LPAL. Recall that, in those exper-
iments, the expert’s policy was an optimal policy for the
unknown reward function. In this section we explore the
behavior of each algorithm when this is not the case, and
find that MWAL produces better apprentice policies than
LPAL. Our experiments were run in a car driving simulator
modeled after the environments in (Abbeel & Ng, 2004)
and (Syed & Schapire, 2008).

The task in our driving simulator is to navigate a car on
a busy three-lane highway. The available actions are to
move left, move right, drive faster, or drive slower. There
are three basis reward functions that map each environment
state to a numerical reward: collision (0 if contact with an-
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other car, and 1/2 otherwise), off-road (0 if on the grass,
and 1/2 otherwise), and speed (1/2, 3/4 and 1 for each of
the three possible speeds, with higher values correspond-
ing to higher speeds). The true reward function is assumed
to be some unknown weighted combinationw∗ of the basis
reward functions. Since the weights are assumed to be pos-
itive, by examining the basis reward functions we see that
the true reward function assigns higher reward to states that
are intuitively “better”.

We designed three experts for these experiments, described
in Table 3. Each expert is optimal for one of the basis re-
ward functions, and mediocre for the other two. Therefore
each expert policyπE is an optimal policy ifw∗ = wE ,
wherewE is the weight vector that places all weight on
the basis reward function for whichπE is optimal. At the
same time, eachπE is very likely to be suboptimal for a
randomly chosenw∗.

We used the MWAL and LPAL algorithms to learn appren-
tice policies from each of these experts.4 The results are
presented in Table 4. We letγ = 0.9, so the maximum
value of the basis value function corresponding to speed
was 10, and for the others it was 5. Each of the reported
policy values for randomly chosenw∗ was averaged over
10,000 uniformly sampledw∗’s. Notice that for each ex-
pert, whenw∗ is chosen randomly, MWAL outputs better
apprentice policies than LPAL.

Table 3.Expert types
Speed Collisions Off-roads

(per sec) (per sec)
“Fast” expert Fast 1.1 10

“Avoid” expert Slow 0 10
“Road” expert Slow 1.1 0

Table 4.Driving simulator experiments.
Expert Algorithm w∗ = wE w∗ chosen randomly
type used

V (πA) V (πE) V (πA) V (πE)
“Fast” MWAL 10 10 9.83 8.25

LPAL 10 10 8.84 8.25
“Avoid” MWAL 5 5 8.76 6.32

LPAL 5 5 7.26 6.32
“Road” MWAL 5 5 9.74 7.49

LPAL 5 5 8.12 7.49

9. Conclusion and Future Work

Each of the algorithms for apprenticeship learning pre-
sented here have advantages and disadvantages that make
them each better suited to different situations. As our ex-
periments showed, the LPAL algorithm is much faster than
any of the MWAL variants, and so is most appropriate
for problems with large state spaces or many basis reward
functions. And unlike the original MWAL algorithm, it
produces a stationary policy, which make it a good choice

4Each of the MWAL variants behaved in exactly the same way
in this experiment. The results presented are for the MWAL-PI
variant.

whenever a simple and easily interpretable apprentice pol-
icy is desired. On the other hand, we also presented evi-
dence that LPAL performs poorly when the expert policy is
far from an optimal policy for the true reward function. If
one suspects in advance that this may be the case, then one
of the MWAL variants would be a better choice for a learn-
ing algorithm. Among these variants, only MWAL-Dual
produces a stationary policy, although it has the drawback
of being the slowest algorithm that we tested.

Although the theoretical performance guarantees of both
the MWAL and LPAL algorithm are identical, the results in
Table 4 suggest that the two algorithms are not equally ef-
fective. It seems possible that the current theoretical guar-
antees for the MWAL algorithm are not as strong as they
could be. Investigation of this possibility is ongoing work.

One way to describe the poor performance of the LPAL al-
gorithm versus MWAL is to say that, when there are several
policies that are better than the expert’s policy, the LPAL
algorithm fails to optimally break these “ties”. This char-
acterization suggests that recent techniques for computing
robust strategies in games (Johanson et al., 2008) may be
an avenue for improving the LPAL algorithm.

It would also be interesting to examine practically and the-
oretically how apprenticeship learning can be combined
with MDP approximation techniques. In particular, the
dual linear programming approach in this work might com-
bine nicely with recent work on stable MDP approximation
techniques based on the dual form (Wang et al., 2008).
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10. Appendix

This is a proof of Theorem 2. Before proceeding, we in-
troduce another linear system. For any stationary policy
π, theπ-specific Bellman flow constraintsare given by the
following linear system in which thexsa variables are un-
known:

xsa = πsaαs + πsaγ
∑

s′,a′

xs′a′θs′a′s (12)

xsa ≥ 0 (13)

The next lemma shows thatπ-specific Bellman flow con-
straints have a solution.

Lemma 2. For any stationary policyπ, the occupancy
measurexπ of π satisfies theπ-specific Bellman flow con-
straints(12) - (13).

Proof. Clearly,xπ
sa is non-negative for alls, a, and so (13)

is satisfied. As for (12), we simply plug in the definition of
xπ

sa from (1). (In the following derivation, all the expecta-
tions and probabilities are conditioned onα, θ, andπ. They
have been omitted from the notation for brevity.)

x
π
sa = E

"

∞
X

t=0

γ
t
1(st=s∧at=a)

#

=

∞
X

t=0

γ
t Pr(st = s, at = a)

= πsaαs +

∞
X

t=0

γ
t+1 Pr(st+1 = s, at+1 = a)

= πsaαs

+

∞
X

t=0

γ
t+1

X

s′,a′

Pr(st = s
′
, at = a

′
, st+1 = s, at+1 = a)

= πsaαs +

∞
X

t=0

γ
t+1

X

s′,a′

Pr(st = s
′
, at = a

′) · θs′a′sπsa

= πsaαs + πsaγ
X

s′,a′

E

"

∞
X

t=0

γ
t
1(st=s′∧at=a′)

#

θs′a′s

= πsaαs + πsaγ
X

s′,a′

x
π
s′a′θs′a′s

Now we show that the solution to theπ-specific Bellman
flow constraints given by Lemma 2 is unique.

Lemma 3. For any stationary policyπ, theπ-specific Bell-
man flow constraints(12) - (13)have at most one solution.

Proof. Define the matrix

A(sa,s′a′) ,

{
1 − γθs′a′sπsa if (s, a) = (s′, a′)
− γθs′a′sπsa otherwise.

and the vectorbsa , πsaαs. (Note thatA and b are in-
dexed by state-action pairs.) We can re-write (12) - (13)
equivalently as

Ax = b (14)

x ≥ 0 (15)

The matrixA is column-wise strictly diagonally dominant.
This is because

∑
s′ θsas′ = 1,

∑
a πsa = 1 andγ < 1, so

for all s′, a′

∑

s,a

γθs′a′sπsa = γ < 1

⇒ 1 − γθs′a′s′πs′a′ >
∑

(s,a) 6=(s′,a′)

γθs′a′sπsa

⇒ |A(s′a′,s′a′)| >
∑

(s,a) 6=(s′,a′)

|A(sa,s′a′)|.

where the last line is the definition of column-wise strict
diagonal dominance. This implies thatA is non-singular
(Horn & Johnson, 1985), so (14) - (15) has at most one
solution.

We are now ready to prove Theorem 2.

Proof of Theorem 2.For the first direction of the theorem,
we assume thatx satisfies the Bellman flow constraints (5)
- (6), and thatπsa =

xsa∑
a xsa

. Therefore,

πsa =
xsa

αs + γ
∑

s′,a′ xs′a′θs′a′s

. (16)

Clearlyx is a solution to theπ-specific Bellman flow con-
straints (12) - (13), and Lemmas 2 and 3 imply thatx is the
occupancy measure ofπ.

For the other direction of the theorem, we assume thatx
is the occupancy measure ofπ. Lemmas 2 and 3 imply
thatx is the unique solution to theπ-specific Bellman flow
constraints (12) - (13). Therefore,π is given by (16). And
since

∑
a πsa = 1, we have

∑
a xsa

αs + γ
∑

s′,a′ xs′a′θs′a′s

= 1

which can be rearranged to show thatx satisfies the Bell-
man flow constraints, and also combined with (16) to show
thatπsa =

xsa∑
a xsa

.
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Abstract
The Support Vector Machine (SVM) is an ac-
knowledged powerful tool for building classi-
fiers, but it lacks flexibility, in the sense that the
kernel is chosen prior to learning. Multiple Ker-
nel Learning (MKL) enables to learn the ker-
nel, from an ensemble of basis kernels, whose
combination is optimized in the learning process.
Here, we propose Composite Kernel Learning
to address the situation where distinct compo-
nents give rise to a group structure among ker-
nels. Our formulation of the learning problem
encompasses several setups, putting more or less
emphasis on the group structure. We characterize
the convexity of the learning problem, and pro-
vide a general wrapper algorithm for computing
solutions. Finally, we illustrate the behavior of
our method on multi-channel data where groups
correpond to channels.

1. Motivation
Kernel methods have been extensively used in learning
problems (Schölkopf & Smola, 2001). In these models,
the observations are implicitly mapped in a feature space
via a mapping Φ : X → H, where H is a Reproduc-
ing Kernel Hilbert Space (RKHS) with reproducing kernel
K : X × X → R.

We address the problem of learning the kernel in Support
Vector Machines (SVM) and related methods. Indeed, the
kernel is crucial in many respects, and its relevance is es-
sential to the success of kernel methods. Formally, the pri-
mary role of K is to define the evaluation functional in H:
∀f ∈ H, f(x) = 〈f,K(x, ·)〉H , but K also defines (i) H

Appearing in Proceedings of the 25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

itself, since ∀f ∈ H, f(x) =
∑∞
i=1 αiK(xi,x) ; (ii) a

metric, and hence a smoothness functional in H: ‖f‖2H =∑∞
i=1

∑∞
j=1 αiαiK(xi,xj) ; (iii) a distance between ob-

servations: ‖Φ(x) − Φ(x′)‖2 = K(x,x) + K(x′,x′) −
2K(x,x′) .

In this paper, we devise Composite Kernel Learning
(CKL), a framework where the kernel is learned in a way to
favor the selection of variables or groups of variables. Sec-
tion 2 motivates our approach while briefly reviewing the
different means proposed to extend kernel methods beyond
the predefined kernel setup. We then follow in Section 3 by
considering some recent developments in variable selection
that are relevant for our aims. Section 4 describes the CKL
framework; the optimization algorithm is provided in Sec-
tion 5, and experiments are reported in Section 6.

2. Flexible Kernel Methods
From now on, we restrict our discussion to classification,
where, from a learning set S = {(xi, yi)}ni=1 of pairs of
observations and label (xi, yi), one aims at building a de-
cision rule that predicts the class label y of any observa-
tion x. We furthermore focus on the binary case, where
(xi, yi) ∈ X × {±1}. However, it should be kept in mind
that most of our observations carry on to other settings,
such as multiclass classification, clustering or regression
with kernel methods.

2.1. Support Vector Machines

A SVM builds the decision rule sign (f?(x) + b?), where
f? and b? are defined as the solution of

min
f,b,ξ

1
2‖f‖

2
H + C

n∑
i=1

ξi

s. t. yi
(
f(xi) + b

)
≥ 1− ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n .

(1)

The regularization parameter C is the only adjustable pa-
rameter in this procedure. This is usually not flexible
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enough to provide good results when the kernel is chosen
prior to seeing data. Hence, most applications of SVM in-
corporate a mechanism for learning the kernel.

2.2. Learning the Kernel

Cross-validation is the most rudimentary, but also the most
common way to learn the kernel. It consists in (i) defin-
ing a family of kernels (e.g. Gaussian), indexed by one
or more parameters (e.g. bandwidth), the so-called ker-
nel hyper-parameters, (ii) running the SVM algorithm on
each hyper-parameter setting, and (iii) finally choosing the
hyper-parameter minimizing a cross-validation score.

A thorough discussion of the pros and cons of cross-
validation is out of the scope of this paper, but it is clear
that this approach is inherently limited to one or two hyper-
parameters and few trial values. This observation led to
several proposals allowing for more flexibility.

2.2.1. FILTERS, WRAPPERS & EMBEDDED METHODS

Learning the kernel amounts to learn the feature mapping.
It should thus be of no surprise that the approaches inves-
tigated bear some similarities with the ones developed for
variable selection, where one encounters filters, wrappers
and embedded methods (Guyon & Elisseeff, 2003). Some
general frameworks do not belong to a single category but
the distinction is appropriate in most cases.

In filter approaches, the kernel is adjusted before build-
ing the SVM, with no explicit relationship to the objective
value of Problem (1). For example, the kernel target align-
ment of Cristianini et al. (2002) adapts the kernel to the
available data without training any classifier.

In wrapper algorithms, the SVM solver is the inner loop of
two nested optimizers, whose outer loop is dedicated to ad-
just the kernel. This tuning may be guided by various gen-
eralization bounds (Cristianini et al., 1999; Weston et al.,
2001; Chapelle et al., 2002).

Kernel learning can also be embedded in Problem (1), with
the SVM objective value minimized jointly with respect
to the SVM parameters and the kernel hyper-parameters
(Grandvalet & Canu, 2003). Our approach, which belongs
to this family of methods, is based on the Multiple Kernel
Learning (MKL) framework (Lanckriet et al., 2004).

2.2.2. MULTIPLE KERNEL LEARNING

MKL is a joint optimization problem of the coefficients of
the SVM classifier and a convex combination of kernels
that defines the actual SVM kernel

K(x,x′) =
M∑
m=1

σmKm(x,x′) , (2)

where each kernel Km is associated to a RKHSHm whose
elements will be denoted fm, and {σm}Mm=1 are coeffi-
cients to be learned under the convex combination con-
straints

M∑
m=1

σm = 1 , σm ≥ 0 , 1 ≤ m ≤M . (3)

Bach et al. (2004) proposed the following formulation of
MKL 1:

min
f1,...,fM ,

b,ξ

1
2

(∑
m
‖fm‖Hm

)2 + C
∑
i

ξi

s. t. yi
(∑
m
fm(xi) + b

)
≥ 1− ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n ,

(4)

whose solution leads to a decision rule of the form
sign (

∑
m f

?
m(x) + b?). This expression of the learning

problem is remarkable in that it only deviates slightly from
the original SVM problem (1). The squared RKHS norm
in H is simply replaced by a mixed-norm, with the stan-
dard RKHS norm within each feature space Hm, and an
`1 norm in RM on the vector built by concatenating these
norms. This `1 norm encourages sparse solutions, that is,
solutions where some functions fm have zero norm. In this
respect, the MKL problem may be seen as the kernelization
of the group-LASSO (Yuan & Lin, 2006).

2.2.3. COMPOSITE KERNEL LEARNING

When the individual kernels Km represent a series, such
as Gaussian kernels with different scale parameters, MKL
may be used as an alternative to cross-validation. When the
input data originates from M differents sources, and that
each kernel is affiliated to one input variable, MKL can be
used to select relevant input variables.

However, MKL is not meant to address problems where
several kernels pertain to one input variable. In this situ-
ation, the sparseness mechanism of MKL does not favor
solutions discarding all the kernels computed from an ir-
relevant input. Although most of the related coefficients
should vanish in combination (2), spurious correlation may
cause irrelevant input variables to participate to the solu-
tion.

The flat combination of kernels in MKL does not include a
mechanism to cluster the kernels related to one input vari-
able. In order to favor the selection of kernels within prede-
fined groups, one has to define a group structure among ker-
nels, which will guide the selection process through a struc-
tured kernel combination. This type of hierarchy among

1To lighten notations, the range of indexes is often omitted in
summations, in which case: indexes i and j refer to examples and
go from 1 to n; index m refers to kernels and goes from 1 to M ;
index ` refers to groups of kernels and goes from 1 to L.
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variables has been investigated in linear models (Szafran-
ski et al., 2008; Zhao et al., to appear). We briefly recapitu-
late the general framework in the following section, before
discussing its adaptation to kernel learning in Section 4.

3. Grouped and Hierarchical Selection
The introduction of `1 penalties, with the seminal paper of
Tibshirani (1996) on the LASSO, gave rise to many im-
portant theoretical and practical advances in the statistics
and machine learning fields. As stated in Section 2.2.2,
MKL itself belongs to the series of algorithms affiliated to
the LASSO, through its relationship with group-LASSO. In
this lineage, Zhao et al. (to appear) defined the very general
Composite Absolute Penalties (CAP) family.

3.1. Composite Absolute Penalties

Consider a linear model with M parameters, β =
(β1, . . . , βM )t, and let I = {1, . . . ,M} be a set of index
on these parameters. A group structure on the parameters
is defined by a series of L subsets {G`}L`=1, whereG` ⊆ I .
Additionally, let {γ`}L`=0 be L+ 1 norm parameters. Then,
the member of the CAP family for the chosen groups and
norm parameters is

Ω =
∑
`

( ∑
m∈G`

|βm|γ`

)γ0/γ`

. (5)

Mixed-norms correspond to groups defined as a partition
of the set of variables. A CAP may also rely on nested
groups, G1 ⊂ G2 ⊂ . . . ⊂ GL, and γ0 = 1, in which
case it favors what Zhao et al. call hierarchical selection,
that is, the selection of groups of variables in the predefined
order {I \ GL}, {GL \ GL−1}, . . . , {G2 \ G1}, G1. This
example is provided here to stress that Zhao et al.’s notion
of hierarchy differs from the one that follows.

3.2. Hierarchical Penalization

Hierarchical penalization uses shrinking coefficients to
transform a ridge-like penalty into a sparse penalizer
(Szafranski et al., 2008). The model parameterized by β
is fitted by minimizing a differentiable loss function J(·),
subject to a ridge penalty with adaptive coefficients that en-
courages sparseness among and within groups:

min
β,σ1,σ2

J(β) + λ
∑̀ ∑

m∈G`

β2
m√

σ1,` σ2,m

s. t.
∑̀
d` σ1,` = 1 , σ1,` ≥ 0 1 ≤ ` ≤ L∑

m
σ2,m = 1 , σ2,m ≥ 0 1 ≤ m ≤M .

(6)

The Lagrange parameter λ controls the amount of shrink-
age, and d` is the size of group `. The constraints expressed

on the two last lines encourage sparseness in σ1,` and σ2,m,
which induces sparseness in βm.

Here, the groups G` form a partition of I , and the hierar-
chy refers to the tree-structure of the shrinking coefficients:
σ2,m shrinks parameter βm, while σ1,` shrinks the parame-
ters for group G`. In the words of Zhao et al., the objective
here is grouped variable selection.

The minimizer of Problem (6) is the minimizer of

min
β
J(β) + λ

(∑
`

d
1/4
`

( ∑
m∈G`

|βm|4/3
)3/4

)2

,

which is essentially a CAP estimate, where parameter d`
only accounts for the group sizes (Szafranski et al., 2008).
The inner `4/3 norm and the outer `1 norm form a mixed-
norm penalty that will be denoted `(4/3,1). The overall pe-
nalizer favors sparse solutions at the group level, with few
leading coefficients within the selected groups.

4. From Multiple to Composite Kernels
MKL has been formalized as a quadratically constrained
program by Lanckriet et al. (2004), then as a second-order
cone program by Bach et al. (2004). More recently, other
formulations led to wrapper algorithms, where the opti-
mization with respect to kernel hyper-parameters is still
based on the SVM objective value, but is performed in an
outer loop that wraps a standard SVM solver. The outer
loop is cutting planes for Sonnenburg et al. (2006), and gra-
dient descent for Rakotomamonjy et al. (2007). Wrapper
algorithms have appealing features: (i) they benefit from
the developments of solvers specifically tailored for the
SVM problem in the inner loop; (ii) they allow to address
large-scale problems; (iii) they are multipurpose, since the
SVM inner loop may be replaced by another algorithm with
little or no adjustments.

We chose to build on gradient-based MKL. First, it has
been shown to be more efficient than the SILP approach
of Sonnenburg et al. (2006), thanks to the stability of the
updates performed in the outer loop, which induces good
initializations for the inner loop solver (Rakotomamonjy
et al., 2007). Second, and even more important for our pur-
pose, gradient-based MKL is amenable to the extension to
groups of kernels, thanks to the formulation of hierarchical
penalization of Section 3.2.

4.1. Variational Multiple Kernel Learning

Problem (4) is not differentiable at ‖fm‖Hm
= 0, a diffi-

culty that causes a considerable algorithmic burden. The
MKL formulation of Rakotomamonjy et al. (2007) can
be viewed as a variational form of Problem (4), where M
new variables σ1, . . . , σM are introduced in order to avoid
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these differentiability issues. The resulting problem, which
is equivalent to Problem (4), is stated as:



min
f1,...,fM ,

b,ξ,σ

1
2

∑
m

1
σm
‖fm‖2Hm

+ C
∑
i

ξi

s. t. yi
(∑
m
fm(xi) + b

)
≥ 1− ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n∑
m
σm = 1 , σm ≥ 0 1 ≤ m ≤M .

(7)

Here and in what follows, u/v is defined by continuation at
zero as u/0 =∞ if u 6= 0 and 0/0 = 0.

The constraints expressed on the last line encourage sparse-
ness in σm, which induces sparseness in fm. As already
mentioned in Section 2.2.2, the sparseness applies at the
kernel level, ignoring the group structure. The latter is
taken into account in the formulation proposed in the fol-
lowing section.

4.2. Variational Composite Kernel Learning

Here, we build on the variational form of the composite
absolute penalties presented in Section 3.2 to take into ac-
count the group structure. Hierarchical penalization can
deal with kernel methods if the ridge penalties are replaced
by RKHS norms. We first generalize Problem (6) to obtain
smooth variational formulations for arbritrary mixed-norm
penalties, so that to address a wide variety of problems in-
cluding MKL:



min
f1,...,fM ,

b,ξ,σ1,σ2

1
2

∑̀
σ−p1,`

∑
m∈G`

σ−q2,m‖fm‖2Hm
+ C

∑
i

ξi

s. t. yi
(∑
m
fm(xi) + b

)
≥ 1− ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n∑̀
d` σ1,` = 1 , σ1,` ≥ 0 1 ≤ ` ≤ L∑

m
σ2,m = 1 , σ2,m ≥ 0 1 ≤ m ≤M,

(8)

where p and q are exponents to be set according to the prob-
lem at hand.

This formulation, which is difficult to optimize, is simpli-
fied by replacing the two shrinking coefficients σ1 and σ2

by σ, defined by σm = σp1,`σ
q
2,m. In a first step, we con-

sider the change of variable that maps σ2 to σ. When
q 6= 0, this mapping is one-to-one provided σ1,` 6= 0. Fur-
thermore, if σ?1,` and σ?2,m denote the optimal σ1,` and σ2,m

values for Problem (8), we have that σ?1,` = 0⇒ σ?2,m = 0,

hence Problem (8) is equivalent to

min
f1,...,fM ,

b,ξ,σ1,σ

1
2

∑
m

1
σm
‖fm‖2Hm

+ C
∑
i

ξi

s. t. yi
(∑
m
fm(xi) + b

)
≥ 1− ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n∑̀
d` σ1,` = 1 , σ1,` ≥ 0 1 ≤ ` ≤ L∑̀
σ
−p/q
1,`

∑
m∈G`

σ
1/q
m ≤ 1

σm ≥ 0 1 ≤ m ≤M .

(9)

The new problem is simplified further by showing that σ1

can be dropped out from the optimization process, leading
to the following formulation of Composite Kernel Learning
(CKL):

min
f1,...,fM ,

b,ξ,σ

1
2

∑
m

1
σm
‖fm‖2Hm

+ C
∑
i

ξi

s. t. yi
(∑
m
fm(xi) + b

)
≥ 1− ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n∑̀(
dp`

( ∑
m∈G`

σ
1/q
m

)q)1/(p+q)

≤ 1

σm ≥ 0 1 ≤ m ≤M ,

(10)

Before considering particular settings of interest, we state
below two helpful propositions. The first one gives a more
interpretable formulation of Problem (10); the second one
presents the conditions for convexity of formulation (10),
that will guaranty the convergence towards the global min-
imum for the algorithm described in Section 5.

Proposition 1. CAP Formulation: Problem (10) is equiv-
alent to the following MKL problem with a CAP-like
penalty on the RKHS norms:

min
f1,...,fM ,

b,ξ

1
2

(∑̀
dγ

∗

`

(∑
m∈G`

‖fm‖γHm

)γ0/γ)2/γ0
+ C

∑
i

ξi

s. t. yi
(∑
m
fm(xi) + b

)
≥ 1− ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n,

(11)

with γ = 2
q+1 , γ0 = 2

p+q+1 and γ∗ = 1− γ0
γ .

Sketch of proof. Let L be the Lagrangian of problem (10).
The optimality conditions for σm are obtained from the first
order optimality conditions for σm ( ∂L

∂σm
= 0):

σm =
(∑

`

dγ
∗

` s
γ0/γ
`

)(γ0−2)/γ0
d−γ

∗

` sγ
∗

` ‖fm‖
2−γ
Hm

, (12)

where s` =
∑

m∈G`

‖fm‖γHm
. Plugging this expression in

Problem (10) yields the claimed result.
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Note that the outer exponent 2
γ0

only influences the strength
of the penalty, not its type. Hence, the penalty in the ob-
jective function (11) differs from (5) in the RKHS norms
‖ · ‖Hm

and in the parameters d` that accommodate for
group sizes.

Proposition 2. Conditions for Convexity: Problem (10) is
convex if and only if 0 ≤ q ≤ 1 and 0 ≤ p+ q ≤ 1.

Proof. A problem minimizing a convex criterion on a con-
vex set is convex. The objective function of Problem (10)
is convex (Boyd & Vandenberghe, 2004, p. 89). The first,
second and fourth constraints define convex sets, and the
third one also provided (i)

(∑
m∈G`

σ
1/q
m

)q
is a norm, that

is 0 ≤ q ≤ 1, and (ii)
∑
` t

1/(p+q)
` is convex in t`, that is

0 ≤ p+ q ≤ 1.

Within the values of p and q ensuring convexity, we pick
the following particular cases of interest:

• p = 0, q = 1 yields a LASSO type penalty on the
RKHS norms. It results in the generalization of the
group-LASSO known as MKL, as formulated in (4);

• p = 1, q = 0 yields a group-LASSO type penalty on
the RKHS norms. It results in another MKL, with L
effective kernels K`, defined as K` =

∑
m∈G`

Km;

• p = q = 1
2 yields a hierarchical-penalization type

penalty on the RKHS norms. It is a true CKL, where
there are M effective kernels, and where the penalty
favors sparse solutions at the group level, with few
leading kernels within the selected groups.

Hence, when p goes from zero to one, with q = 1 − p, the
penalty gives more and more emphasis to the group struc-
ture. For most applications where convexity is a key issue,
we recommend the balanced setup p = q = 1

2 .

Note however that convex penalties restrict the sparseness
of the solution to either the group level or the kernel level.
In Section 6, we will illustrate that giving up convexity may
turn out to be an interesting option when considering inter-
pretability issues.

5. Algorithm
Our approach to solve Problem (10) draws on the MKL
algorithm of Rakotomamonjy et al. (2007). We use the
wrapper scheme described below, where the outer loop is
carried out by a projected gradient descent update.

5.1. A Gradient-Based Wrapper

The wrapper scheme considers the following constrained
optimization problem:

min
σ

J(σ)

s. t.
∑̀(

dp`

(∑
m
σ

1/q
m

)q)1/(p+q)

≤ 1

σm ≥ 0, 1 ≤ m ≤M ,

where J(σ) is defined as the objective value of
min

f1,...,fM ,

b,ξ

1
2

∑̀ ∑
m∈G`

1
σm
‖fm‖2Hm

+ C
∑
i

ξi

s. t. yi
(∑
m
fm(xi) + b

)
≥ 1− ξi , 1 ≤ i ≤ n

ξi ≥ 0 , 1 ≤ i ≤ n .

(13)

The global optimization problem consists thus of two
nested problems. In the inner loop, the criterion is opti-
mized with respect to f1, . . . , fM , b and ξ, considering that
the coefficients σ are fixed. In the outer loop, σ is updated
to decrease the criterion, with fm, b and ξ being fixed.

Equation (12) may be used to update σ in closed form.
However, this approach lacks convergence guarantees and
may lead to numerical problems, in particular when some
elements of σ approach zero. Hence, following Rakotoma-
monjy et al. (2007), we use that the objective function
J(σ) is actually an optimal SVM objective value to update
σ by an efficient projected gradient descent scheme.

5.2. Computing the Gradient

The dual formulation offers a convenient means to compute
the gradient ∇J(σ). The derivation of the Lagrangian of
Problem (13), which is omitted here for brevity, shows that
its dual formulation is identical to the one of a standard
SVM using the aggregated kernel Kσ defined in Equa-
tion (2). Hence, the dual problem takes the usual form

max
α
− 1

2

∑
i,j

αiαjyiyjKσ(xi,xj) +
∑
i

αi

s. t.
∑
i

αiyi = 0

C ≥ αi ≥ 0 1 ≤ i ≤ n ,

(14)

which can be solved by any SVM solver.

As J(σ) is defined as the optimal objective value of the
convex Problem (13) for which strong duality applies,
J(σ) is also the dual objective value:

J(σ) = −1
2

∑
i,j

α?iα
?
jyiyjKσ(xi,xj) +

∑
i

α?i , (15)

where α? solves Problem (14).
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The existence and computation of the derivatives of J(·)
follow from general results on optimal values, such as The-
orem 4.1 of Bonnans and Shapiro (1998), which, in a nut-
shell states that the differentiability of J(σ) is ensured by
the unicity of α?, and by the differentiability of (15). 2 Fur-
thermore, the derivatives of J(σ) can be computed as if
α? were not to depend on σ. Thus, the gradient ∇J(σ) is
simply

∂J

∂σm
= −1

2

∑
i,j

α?iα
?
jyiyj

∑
`

∑
m∈G`

Km(xi,xj) .

5.3. CKL Algorithm

Now, we have all the ingredients to adapt the machinery
developed for MKL by Rakotomamonjy et al. (2007). Ac-
cording to the process described in Section 5.1, we propose
Algorithm 1.

Algorithm 1 Composite Kernel Learning
initialize σ
solve the SVM problem→ J(σ)
repeat

compute direction d = −∇J(σ)
repeat

compute d′, the projection of d onto the tangent of
the surface of the admissible set
compute the smallest step that nullifies a compo-
nent of σ
S =

{
j : d′j < 0 and σj 6= 0

}
ν = min

j∈S
−σj
d′j

k = arg min
j∈S
−σj
d′j

dk = 0

σ† = σ + ν d′

project σ† onto the surface of the admissible set
solve the SVM problem→ J(σ†)
if J(σ†) < J(σ) then σ = σ†

until J(σ†) ≥ J(σ)
compute ν? = arg minν J(σ + ν d)
σ = σ + ν? d

until convergence

The stopping criterion for assessing the convergence of the
outer loop can be based on standard criteria for gradient-
based algorithms or on the duality gap. In the following
experiments, it is based on the stability of σ and J(σ).

6. Channel Selection for BCI
This experiment deals with single trial classification of
EEG signals coming from Brain-Computer Interface (BCI).
Depending on each BCI paradigm, these EEG signals are

2The unicity of α? is ensured provided that the Gram matrix
built from kernelKσ is positive-definite. To enforce this property,
a small ridge may be added to the diagonal.

recorded from specific electrode positions. However, as
stated by Schröder et al. (2005), automated channel se-
lection should be performed for each single subject since
it leads to better performances or a substantial reduction
of the number of useful channels. Reducing the number of
channels involved in the decision function is of primary im-
portance for BCI real-life applications, since it makes the
acquisition system easier to use and to set-up.

We use here the dataset from the BCI 2003 competition for
the task of interfacing the P300 Speller (Blankertz et al.,
2004). The dataset consists in 7560 EEG signals paired
with positive or negative stimuli responses. The signal, pro-
cessed as in (Rakotomamonjy et al., 2005), leads to 7560
examples of dimension 896 (14 time frames for each of the
64 channels).

The experimental protocol is then the following: we have
randomly picked 567 training examples from the datasets
and used the remaining as testing examples. For each pa-
rameter, C has been selected by retaining a small part of
the training set as a validation set, for selecting the param-
eter which the highest AUC. This overall procedure has
been repeated 10 times. Using a small part of the exam-
ples for training can be justified by the use of ensemble of
SVMs (that we do not consider here) on a latter stage of
the EEG classification procedure (Rakotomamonjy et al.,
2005), and the AUC performance measure is justified by
how the EEG recognition is transformed into selected char-
acter in the P300.

The 896 features extracted from the EEG signals are not
tranformed before classification: we do not use any kernel-
ization. However, to unify the presentation, we will refer to
these features as linear kernels. Hence, in this application
where the kernels related to a given channel form a group
of kernels, we have to learn M = 896 coefficients σm, di-
vided into L = 64 groups.

CKL is well-suited to the classification objectives, since
we aim at classifying the EEG trials with as few channels
as possible. Furthermore, it is also likely that some time
frames are irrelevant, so that variable selection may be car-
ried out within each channel. To reach a sparse solution at
the channel and the time frame levels, we test a non-convex
parametrization of CKL that encourages sparseness within
and between groups.

In the following, CKL1/2 stands for a convex version of
our algorithm, with p = q = 1/2 (a `(4/3,1) mixed-
norm), CKL1 is a non-convex version, with p = q = 1
(a `(1,2/3) (pseudo) mixed-norm). Note that MKL is also
implemented by our algorithm, with p = 0 and q = 1.

Table 1 summarizes the average performance of SVM,
MKL, and CKL, that is, for 4 different penalization terms:
quadratic penalization for the classical SVM (which is
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trained with the mean of 896 kernels), `1 norm for MKL,
and mixed-norms for the two versions of CKL: CKL1/2

and CKL1. The number of channels and kernels selected
by these algorithms is also reported.

Table 1. Average Results for SVMs with 4 different penalization
terms on the BCI datasets.

Algorithms AUC # Channels # Kernels
SVM 83.87 ± 0.8 64 896
MKL 85.43 ± 0.9 62.2 ± 1 255.8 ± 15
CKL1/2 85.49 ± 1.1 62.9 ± 1 835.7 ± 25
CKL1 84.15 ± 0.8 24.0 ± 4 60.9 ± 10

The prediction performances of the 4 algorithms are simi-
lar, with a slight advantage for sparse methods. CKL1/2 is
much less sparse than MKL, which itself keeps about four
times as much kernels compared to CKL1. In the number
of groups, MKL and CKL1/2 behave similarly, with only
one or two channels removed. CKL1 is much sparser and
removes about two thirds of the channels.

Figure 6 represents the median relevance of the electrodes
over the 10 experiments. It displays which electrodes have
been selected by the different kernel learning methods. For
one experiment, the relevance for channel ` is computed
by the relative contribution of group ` to the norm of the
solution, that is

1
Z

∑
m∈G`

1
σ?m
‖f?m‖2Hm

,

where Z is a normalization factor that sets the sum of rele-
vances to one.

The results for CKL1 are particularly neat, with high rel-
evances for the electrodes in the areas of the visual cortex
(especially the lateral electrodes PO7 and PO8), and the pri-
mary motor and Somatosensory cortex (C• and CPZ). The
scalp maps for MKL and CKL1/2 are very similar and show
the importance of the same regions. In addition they also
highlight numerous frontal electrodes that are not likely to
be relevant for the BCI P300 Speller paradigm.

7. Conclusion and Further Works
This paper is at the crossroad of kernel learning and vari-
able selection. From the former viewpoint, we extended the
multiple kernel learning problem to take into account the
group structure among kernels. From the latter viewpoint,
we generalized the hierarchical penalization framework to
kernel classifiers by considering penalties in RKHS instead
of parametric function spaces.

As a side contribution, we also provide a smooth variational
formulation for arbritrary mixed-norm penalties, enabling

to tackle a wide variety of problems. This formulation is
not restricted to convex mixed-norm, a property that turns
out to be of interest for reaching sparser, hence more inter-
pretable solutions.

Our approach is embedded, in the sense that the kernel
hyper-parameters are optimized jointly with the parame-
ters of classifier to minimize the soft-margin criterion. It is
however implemented by a simple wrapper algorithm, for
which the inner and the outer subproblems have the same
objective function, and where the inner loop is a standard
SVM problem.

In particular, this implementation allows to use available
solvers for kernel machines in the inner loop. Hence, al-
though this paper considered binary classification prob-
lems, our approach can be readily extended to other learn-
ing problems, such as multiclass classification, clustering,
regression or ranking.
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Figure 1. Electrode median relevance for MKL (left), CKL1/2 (center) and CKL1 (right). The darker the color, the higher the relevance.
Electrodes in white with a black circle are discarded (the relevance is exactly zero). The arrow represents the frontal direction.
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András Lőrincz andras.lorincz@elte.hu
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Abstract

The exploration-exploitation dilemma has
been an intriguing and unsolved problem
within the framework of reinforcement learn-
ing. “Optimism in the face of uncertainty”
and model building play central roles in ad-
vanced exploration methods. Here, we inte-
grate several concepts and obtain a fast and
simple algorithm. We show that the proposed
algorithm finds a near-optimal policy in poly-
nomial time, and give experimental evidence
that it is robust and efficient compared to its
ascendants.

1. Introduction

Reinforcement learning (RL) is the art of maximizing
long-term rewards in a stochastic, unknown environ-
ment. In the construction of RL algorithms, the choice
of exploration strategy is of central significance.

We shall examine the problem of exploration in the
Markov decision process (MDP) framework. While
simple methods like ε-greedy and Boltzmann explo-
ration are commonly used, it is known that their be-
havior can be extremely poor (Koenig & Simmons,
1993). Recently, a number of efficient exploration al-
gorithms have been published, and for some of them,
formal proofs of efficiency also exist. We review these
methods in Section 2. By combining ideas from several
sources, we construct a new algorithm for efficient ex-
ploration. The new algorithm, optimistic initial model
(OIM), is described in Section 3. In Section 4, we show
that many of the advanced algorithms, including ours,
can be treated in a unified way. We use this fact to
sketch a proof that OIM finds a near-optimal policy
in polynomial time with high probability. Section 5
provides experimental comparison between OIM and

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

a number of other methods on some benchmark prob-
lems. Our results are summarized in Section 6. In the
rest of this section, we review the necessary prelimi-
naries, Markov decision processes and the exploration
task.

1.1. Markov Decision Processes (MDPs)

Markov decision processes are the standard framework
for RL, and the basis of numerous extensions (like
continuous MDPs, partially observable MDPs or fac-
tored MDPs). An MDP is characterized by a quintuple
(X, A,R, P, γ), where X is a finite set of states; A is a
finite set of possible actions; R : X×A×X → PR is the
reward distribution, R(x, a, y) denotes the mean value
of R(x, a, y), P : X × A×X → [0, 1] is the transition
function; and finally, γ ∈ [0, 1) is the discount rate on
future rewards. We shall assume that all rewards are
nonnegative and bounded from above by R0

max.

A (stationary) policy of the agent is a mapping
π : X ×A → [0, 1]. For any x0 ∈ X, the policy of the
agent and the parameters of the MDP determine a
stochastic process experienced by the agent through
the instantiation x0, a0, r0, x1, a1, r1, . . . , xt, at, rt, . . .

The goal is to find a policy that maximizes
the expected value of the discounted total re-
ward. Let us define the state-action value
function (value function for short) of π as
Qπ(x, a) := E

(∑∞
t=0 γtrt

∣∣∣ x=x0, a=a0

)
and the

optimal value function as

Q∗(x, a) := max
π

Qπ(x, a)

for each (x, a) ∈ X × A. Let the greedy action at x
w.r.t. value function Q be aQ

x := arg maxa Q(x, a).
The greedy policy of Q deterministically takes the
greedy action in each state. It is well-known that the
greedy policy of Q∗ is an optimal policy and Q∗ satis-
fies the Bellman equations:

Q∗(x, a) =
∑

y

P (x, a, y)
(
R(x, a, y) + γQ∗(y, aQ∗

y )
)
.
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1.2. The Exploration Problem

In the classical reinforcement learning setting, it is as-
sumed that the environment can be modelled as an
MDP, but its parameters (that is, P and R) are un-
known to the agent, and she has to collect information
by interacting with the environment. If too little time
is spent with the exploration of the environment, the
agent will get stuck with a suboptimal policy, without
knowing that there exists a better one. On the other
hand, the agent should not spend too much time vis-
iting areas with low rewards and/or accurately known
parameters.

What is the optimal balance between exploring and
exploiting the acquired knowledge and how could the
agent concentrate her exploration efforts? These ques-
tions are central for RL. It is known that the optimal
exploration policy in an MDP is non-Markovian, and
can be computed only for very simple tasks like k-
armed bandit problems.

2. Related Literature

Here we give a short review about some of the most
important exploration methods and their properties.

2.1. ε-greedy and Boltzmann Exploration

The most popular exploration method is ε-greedy ac-
tion selection. The method works without a model,
only an approximation of the action value function
Q(x, a) is needed. The agent in state x selects the
greedy action aQ

x or an explorative move with a ran-
dom action with probabilities 1− ε and ε, respectively.
Sooner or later, all paths with nonzero probability will
have been visited many times, so, a suitable learning
algorithm can learn to choose the optimal path. It is
known, for example, that Q-learning with nonzero ex-
ploration converges to the optimal value function with
probability 1 (Littman & Szepesvári, 1996), and so
does SARSA (Singh et al., 2000), if the exploration
rate diminishes according to an appropriate schedule.

Boltzmann exploration selects actions as follows: the

probability of choosing action a is
exp

(
Q(s,a)/T

)
∑

a′∈A exp
(
Q(s,a′)/T

) ,

where ‘temperature’ T (>0) regulates the amount of
explorative actions. Convergence results of the ε-
greedy method carry through to this case.

Unfortunately, for the ε-greedy and the Boltzmann
method, exploration time may scale exponentially in
the number of states (Koenig & Simmons, 1993).

2.2. Optimistic Initial Values (OIV)

One may boost exploration with a simple trick: the
initial value of each state action pair can be set to
some overwhelmingly high number. If a state x is vis-
ited often, then its estimated value will become more
exact, and therefore, lower. Thus, the agent will try
to reach the more rarely visited areas, where the esti-
mated state values are still high. This method, called
‘exploring starts’ or ‘optimistic initial values’, is a
popular exploration heuristic (Sutton & Barto, 1998),
sometimes combined with others, e.g., the ε-greedy ex-
ploration method. Recently, Even-Dar and Mansour
(2001) gave theoretical justification for the method:
they proved that if the optimistic initial values are suf-
ficiently high, Q-learning converges to a near-optimal
solution. One apparent disadvantage of OIV is that if
initial estimations are too high, then it takes a long to
fix them.

2.3. Bayesian Methods

We may assume that the MDP (with the unknown
values of P and R) is drawn from a parameterized
distribution M0. From the collected experience and
the prior distribution M0, we can calculate succes-
sive posterior distributions Mt, t = 1, 2, . . . by Bayes’
rule. Furthermore, we can calculate (at least in prin-
ciple) the policy that minimizes the uncertainty of the
parameters (Strens, 2000). Dearden (2000) approx-
imates the distribution of state values directly. Ex-
act computation of the optimal exploration policy is
infeasible and Bayesian methods are computationally
demanding even with simplifying assumptions about
the distributions, e.g., the independencies of certain
parameters.

2.4. Confidence Interval Estimation

Confidence interval estimation algorithms are between
Bayesian exploration and OIV. It assumes that each
state value is drawn from an independent Gaussian
distribution and it computes the confidence interval of
the state values. The agent chooses the action with
the highest upper confidence bound. Initially, all con-
fidence intervals are very wide, and shrink gradually
towards the true state values. Therefore, the behavior
of the technique is similar to OIV. The IEQL+ method
of Meuleau and Bourgine (1999) directly estimates
confidence intervals of Q-values, while Wiering and
Schmidhuber (1998) calculate confidence intervals for
P and R, and obtain Q-value bounds indirectly. Strehl
and Littman (2006) improve the method and prove a
polynomial-time convergence bound. Both algorithms
are called model-based interval estimation. To avoid
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confusion, we will refer to them as MBIE(WS) and
MBIE(SL).

Auer and Ortner (2006) give a confidence interval-
based algorithm, for which the online regret is only
logarithmic in the number of steps taken.

2.5. Exploration Bonus Methods

The agent can be directed towards less-known parts of
the state space by increasing the value of ‘interesting’
states artificially with bonuses. States can be interest-
ing given their frequency, recency, error, etc. (Meuleau
& Bourgine, 1999; Wiering & Schmidhuber, 1998).

The balance of exploration and exploitation is usually
set by a scaling factor κ, so that the total immediate
reward of the agent at time t is rt + κ · bt(xt, at, xt+1),
where bt is one of the above listed bonuses. The
bonuses are calculated by the agent and act as intrin-
sic motivating forces. Exploration bonuses for a state
can vary swiftly and model-based algorithms (like pri-
oritized sweeping or Dyna) are used for spreading the
changes effectively. Alas, the weight of exploration κ
needs to be annealed according to a suitable schedule.

Alternatively, the agent may learn two value functions
separately: a regular one, Qr

t which is based on the
rewards rt received from the environment, and an ex-
ploration value function Qe

t which is based on the ex-
ploration bonuses. The agent’s policy will be greedy
with respect to their combination Qr

t + κQe
t . Then

the exploration mechanism may remain the same, but
several advantages appear. First of all, the changes
in κ take effect immediately. As an example, we can
immediately switch off exploration by setting κ to 0.
Furthermore, Qr

t may converge even if Qe
t does not.

Confidence interval estimation can be phrased as an
exploration bonus method: see IEQL+ (Meuleau &
Bourgine, 1999) or MBIE-EB (Strehl & Littman,
2006). Even-Dar and Mansour (2001) have shown that
ε-greedy and Boltzmann explorations can be formu-
lated as exploration bonus methods although rewards
are not propagated through the Bellman equations.

2.6. E3 and R-max

The Explicit explore or exploit (E3) algorithm of
Kearns and Singh (1998) and its successor, R-max
(Brafman & Tennenholtz, 2001) were the first algo-
rithms that have polynomial time bounds for finding
near-optimal policies. R-max collects statistics about
transitions and rewards. When visits to a state enable
high precision estimations of real transition probabili-
ties and rewards then state is declared known. R-max
also maintains an approximate model of the environ-

ment. Initially, the model assumes that all actions
in all states lead to a (hypothetical) maximum-reward
absorbing state. The model is updated each time when
a state becomes known. The optimal policy of the
model is either the near-optimal policy in the real en-
vironment or enters a not-yet-known state and collects
new information.

3. Construction of the Algorithm

Our agent starts with a simple, but overly optimistic
model. By collecting new experiences, she updates
her model, which becomes more realistic. The value
function is computed over the approximate model with
(asynchronous) dynamic programming. The agent al-
ways chooses her action greedily w.r.t. her value func-
tion. Exploration is induced by the optimism of the
model: unknown areas are believed to yield large re-
wards. Algorithmic components are detailed below.

Separate exploration values. Similarly to the ap-
proach of Meuleau and Bourgine (1999), we shall sep-
arate the ‘true’ state values from exploration values.
Formally, the value function has the form

Q(x, a) = Qr(x, a) + Qe(x, a)

for all (x, a) ∈ X×A, where Qr and Qe will summarize
external and exploration rewards, respectively.

‘Garden of Eden’ state. Similarly to R-max, we
introduce a new hypothetical ‘garden of Eden’ state
xE , and assume an extended state space X ′ = X ∪
{xE}. Once there, then, according to the inherited
model, the agent remains in xE indefinitely and re-
ceives Rmax reward for every step, which may ex-
ceed R0

max =: maxx,a,y R(x, a, y), the maximal reward
of the original environment.

Model approximation. The agent builds an approx-
imate model of the environment. For each x, y ∈ X
and a ∈ A, let Nt(x, a), Nt(x, a, y), and Ct(x, a, y) de-
note the number of times when a was selected in x up
to step t, the number of times when transition x

a→ y
was experienced, and the sum of external rewards for
x

a→ y transitions, respectively. With these notations,
the approximate model parameters are

P̂t(x, a, y) =
Nt(x, a, y)
Nt(x, a)

and R̂t(x, a, y) =
Ct(x, a, y)
Nt(x, a, y)

.

Suitable initializations of Nt(x, a), Nt(x, a, y) and
Ct(x, a, y) will ensure that the ratios are well-defined
everywhere. The exploration rewards are defined as

Re(x, a, y) :=
{

Rmax, if y = xE ;
0, if y 6= xE ,
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for each x, y ∈ X ∪ {xE}, a ∈ A, and are not modified
during the course of learning.

Optimistic initial model. The initial model as-
sumes that xE has been reached once for each state-
action pairs: for each x ∈ X ∪{xE}, y ∈ X and a ∈ A,

N0(x, a) = 1,
N0(x, a, y) = 0, C0(x, a, y) = 0.
N0(x, a, xE) = 1, C0(x, a, xE) = 0.

Then, the optimal initial value function equals

Q0(x, a) = Qr
0(x, a)+Qe

0(x, a) = 0+
1

1− γ
Rmax := Vmax

for each (x, a) ∈ X ′ ×A, analogously to OIV.

Dynamic programming. Both value functions can
be updated using the approximate model. For each
x ∈ X, let ax be the greedy action according to the
combined value function, i.e.,

ax := arg max
a∈A

(
Qr(x, a) + Qe(x, a)

)
.

The dynamic programming equations for the value
function components are

Qr
t+1(x, a) :=

∑

y∈X

P̂t(x, a, y)
(
R̂t(x, a, y) + γQr

t (y, ay)
)

Qe
t+1(x, a) :=γ

∑

y∈X

P̂t(x, a, y)Qe
t (y, ay)

+ P̂t(x, a, xE)Vmax.

Episodic tasks can be handled as usual way; we intro-
duce an absorbing final state with 0 external reward.

Asynchronous update. The algorithm can be on-
line, if instead of full update sweeps over the state
space updates are limited to state set Lt in the ‘neigh-
borhood’ of the agent’s current state. Neighborhood is
restricted by computation time constraints; any asyn-
chronous dynamic programming algorithm suffices. It
is implicitly assumed that the current state is always
updated, i.e., xt ∈ Lt. In this paper, we used the im-
proved prioritized sweeping algorithm of Wiering and
Schmidhuber (1998).

Putting it all together. The method is summarized
as Algorithm 1.

4. Analysis

In the first part of this section, we analyze the similari-
ties and differences between various exploration meth-
ods, with an emphasis on OIM. Based on this analy-
sis, we sketch the proof that OIM finds a near-optimal
policy in polynomial time. Details of the proof can be
found in (Szita & Lőrincz, 2008).

4.1. Relationship to Other Methods

‘Optimism in the face of uncertainty’ is a common
point in exploration methods: the agent believes that
she can obtain extra rewards by reaching the unex-
plored parts of the state space.

Note that as far as the combined value function Q is
concerned, OIM is an asynchronous dynamic program-
ming method augmented with model approximation.

Optimistic initial values. Apparently, OIM is the
model-based extension of the OIV heuristic. Note
however, that optimistic initialization of Q-values is
not effective with a model: the more updates are made,
the less effect the initialization has and it fully dimin-
ishes if value iteration is run until convergence. There-
fore, naive combination of OIV and model construction
is contradictory: the number of DP-updates should be
kept low in order to save the initial boost, but it should
be as high as possible in order to propagate the real
rewards quickly.

OIM resolves this paradox by moving the optimism
into the model. The optimal value function of the
initial model is Q0 ≡ Vmax, corresponding to OIV.
However, DP updates can not, but only model updates
may lower the exploration boost.

Note that we can set the initial model value as high
as we like, but we do not have to wait until the initial
boost diminishes, because Qr and Qe are separated.

R-max. The ‘Garden of Eden’ state xE of OIM
is identical to the fictitious max-reward absorbing
state of R-max (and E3). In both cases, the agent’s
model tells that all unexplored (x, a) pairs lead to xE .
R-max, however, updates the model only when the
transition probabilities and rewards are known with
high precision, which is only after many visits to (x, a).
In contrast, OIM updates the model after each single
visit, employing each bit of experience as soon as it is
obtained. As a result, the approximate model can be
used long before it becomes accurate.

Exploration bonus methods. The extra reward
offered by the Garden of Eden state can be un-
derstood as an exploration bonus: for each visit of
the pair (x, a), the agent gets the bonus bt(x, a) =

1
Nt(x,a)

(
Vmax − Qt(x, a)

)
. It is insightful to contrast

this formula with those of the other methods like the
frequency-based bonus bt = −α ·Nt(x, a) or the error-
based bonus bt = α · ∣∣Qt+1(x, a)−Qt(x, a)

∣∣.
Model-based interval exploration. The explo-
ration bonus form of the MBIE method of Strehl and
Littman (2005) sets bt = α

Nt(x,a) . MBIE-EB is not
an ad-hoc method: the form of the bonus comes from
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Algorithm 1 The Optimistic initial model algorithm
Input: x0 ∈ X initial state, ε > 0 required precision, optimism parameter Rmax

Model initialization: t := 0; ∀x, y ∈ X, ∀a ∈ A:
N(x, a, y) := 0, N(x, a, xE) := 1, N(x, a) := 1, C(x, a, y) := 0, Qr(x, a) := 0, Qe(x, a) := Rmax/(1− γ);
repeat

at := greedy action w.r.t. Qr + Qe; apply at and observe rt and xt+1

C(xt, at, xt+1) := C(xt, at, xt+1) + rt; N(xt, at, xt+1) := N(xt, at, xt+1) + 1; N(xt, at) := N(xt, at) + 1
Lt := list of states to be updated
for each x ∈ Lt do

Qr
t+1(x, a) :=

∑
y∈X P̂ (x, a, y)

(
R̂(x, a, y) + γQr

t (y, ay)
)

Qe
t+1(x, a) := P̂ (x, a, xE)Rmax/(1− γ) + γ

∑
y∈X P̂ (x, a, y)Qe

t (y, ay).
end for
t := t + 1

until Bellman-error> ε

confidence interval estimations. The comparison to
MBIE-EB will be especially valuable, as it converges
in polynomial-time and the proof can be transported
to OIM with slight modifications.

4.2. Polynomial-time Convergence

Theorem 4.1 There exists a constant C so that
for any ε > 0, δ > 0, ε1 := ε/4, ε2 := ε1(1 − γ),

H := 1
1−γ ln R0

max
ε1(1−γ) , K :=

(
2C|X|5|A|H4

δε41
ln 1

δ

)1/6

,
OIM converges almost surely to a near-optimal
policy in polynomial time if started with
Rmax ≥ 3

ε2(1−γ) (R
0
max)

2 ln(KR0
max), that is, with

probability 1 − δ, the number of timesteps where
QπOIM

(xt, at) > Q∗(xt, at) − ε does not hold, is
O

(
( |X|Hε1

)5 |A|(R
0
max)7

(1−γ)ε51
ln2 1

δ

)
.

For the sketch of the proof, we shall follow the tech-
nique of Kearns and Singh (2002) and Strehl and
Littman (2006), and will use the shorthands [KS] and
[SL] for referring to them. See (?) for the detailed
proof with a slightly better polynomial bound.

A pair (x, a) is declared known, if it has been visited at
least m = C( |X|Hε1

)4(R0
max)

6 ln 1
δ times, with a suitable

constant C. OIM preserves the optimism of the value
function:

Lemma 4.2 Let Qt be the sequence of Q-functions
generated by OIM. Then, it holds with probability
1− δ/2 that for any t, Qt(x, a) ≥ Q∗(x, a)− ε1.

Proof: According to [SL], with probability 1− δ/2,
∑

y

P̂t(x, a, y)
(
R̂t(x, a, y) + γV ∗(y)

)
(1)

−Q∗(x, a) ≥ −β/
√

Nt(x, a),

where β := R0
max/(1 − γ)

√
ln(2 |X| |A|m/δ)/2 =√

3
1−γ R0

max

√
ln(KR0

max).

We will show that

Rmax/(Nt(x, a)(1− γ)) + ε2 ≥ β/
√

Nt(x, a). (2)

For Nt(x, a) ≤ Rmax
(1−γ)ε2

, the first term dominates the
l.h.s. and we can omit the second term (and prove the
stricter inequality). If the relation is reversed, then the
first term can be omitted. In both cases, we arrive at
the requirement Rmax ≥ 3

ε2(1−γ) (R
0
max)

2 ln(KR0
max),

which holds by assumption.

At step t, a number of DP updates are carried out. We
proceed by induction on the number of DP-updates.
Initially, Q(0)(x, a) ≥ Q∗(x, a)−ε1, then Q(i+1)(x, a) =∑

y P̂t(x, a, y)
(
R̂t(x, a, y) + γV (i)(y)

)
+ Vmax

Nt(x,a)

≥ ∑
yP̂t(x, a, y)

(
R̂t(x, a, y) + γ(V ∗(y)− ε1)

)
+ Vmax

Nt(x,a)

≥ Q∗(x, a)− β/
√

Nt(x, a)− γε1 + Vmax
Nt(x,a)

≥ Q∗(x, a)− γε1 − ε2 = Q∗(x, a)− ε1,
where we applied (1), (2), the induction assumption
and the definition of ε2. ¤
Let M denote the true (and unknown) MDP, let M̂
be the approximate model of OIM, and define M̄
so that it is identical to M for known pairs, and
equals M̂ for unknown pairs. The parameters of M̂
and M̄ are nearly identical: if (x, a) becomes known,
then the local values of P̂ and R̂ are O( ε

|X|HR0
max

)2-
approximations of P and R with probability 1 − δ/2
(Lemma 5 of [KS]). Therefore, by Lemma 4 of [KS],

|Qπ
M̂

(x, a)−Qπ
M̄ (x, a)| < ε1. (3)

Define the H-step truncated value function of policy
π as Qπ(x, a, H) := E

(∑H
t=0 γtrt

∣∣∣ x = x0, a = a0

)
.

According to [KS] Lemma 2, H = 1
1−γ ln R0

max
ε1(1−γ) is an
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ε1-horizon time, i.e., |Qπ
M (x, a, H)−Qπ

M (x, a)| < ε1 for
any (x, a), π and any MDP M with discount factor γ.

Consider a state-action pair (x1, a1) and a H-step long
trajectory generated by π. Let AM be the event that
an unknown pair (x, a) is encountered along the tra-
jectory. Then, by Lemma 3 of [SL],

Qπ
M (x1, a1) ≥ Qπ

M̄ (x1, a1)− Vmax Pr(AM ). (4)

To conclude the proof, we separate two cases (following
the line of thoughts of Theorem 1 in [SL]). In the first
case, an exploration step will occur with high prob-
ability: Let V 0

max := R0
max/(1 − γ). Suppose that

Pr(AM ) > ε1/V 0
max, that is, an unknown pair (x, a)

is visited in H steps with high probability. This can
happen at most m |X| |A| times, so by the Hoeffding-
Azuma bound, with probability 1− δ/2, all (x, a) will
become known after O(m|X||A|HV 0

max
ε1

ln 1
δ ) exploration

steps.

On the other hand, if Pr(AM ) ≤ ε1/V 0
max, then the

policy is near-optimal with probability 1− δ:

QπOIM

M (x1, a1) ≥ QπOIM

M (x1, a1,H)

≥ QπOIM

M̄ (x1, a1, H)− V 0
max Pr(AM )

≥ QπOIM

M̄ (x1, a1, H)− ε1 ≥ QπOIM

M̄ (x1, a1)− 2ε1

≥ QπOIM

M̂
(x1, a1)− 3ε1 ≥ Q∗(x1, a1)− 4ε1

= Q∗(x1, a1)− ε,

where we applied (in this order) the property that
truncation decreases the value function; Eq. (4); our
assumption; the ε1-horizon property of H; Eq. (3);
Lemma 4.2 and the definition of ε1.

5. Experiments

To assess the practical utility of OIM, we compared
its performance to other exploration methods. Ex-
periments were run on several small benchmark tasks
challenging exploration algorithms.

For fair comparisons, benchmark problems were taken
from the literature without changes, nor did we change
the experimental settings or the presentation of ex-
perimental data. It also means that the presentation
format varies for different benchmarks.

5.1. RiverSwim and SixArms

The first two benchmark problems, RiverSwim and
SixArms, were taken from Strehl and Littman (2006).

The RiverSwim MDP has 6 states, representing the
position of the agent in a river. The agent has two

Table 1. Results on the RiverSwim task.
Method Cumulative reward

E3 3.020·106 ±0.027 ·106

R-max 3.014·106 ±0.039 ·106

MBIE(SL) 3.168·106 ±0.023 ·106

MBIE-EB 3.093·106 ±0.023 ·106

OIM 3.201·106 ±0.016 ·106

Table 2. Results on the SixArms task.
Method Cumulative reward

E3 1.623·106 ± 0.244 ·106

R-max 2.819·106 ± 0.256 ·106

MBIE(SL) 9.205·106 ± 0.559 ·106

MBIE-EB 9.486·106 ± 0.587 ·106

OIM 10.007·106 ± 0.654 ·106

possible actions: she can swim either upstream or
downstream. Swimming down is always successful,
but swimming up succeeds only with a 30% chance
and there is a 10% chance of slipping down. The low-
ermost position yields +5 reward per step, while the
uppermost position yields +10000.

The SixArms MDP consists of a central state and six
‘payoff states’. In the central state, the agent can play
6 one-armed bandits. If she pulls arm k and wins,
she is transferred to payoff state k. Here, she can get
a reward in each step, if she chooses the appropriate
action. The winning probabilities range from 1 to 0.01,
while the rewards range from 50 to 6000 (for the exact
values, see Strehl & Littman, 2006).

Data for E3, R-max, MBIE and MBIE-EB are taken
from Strehl and Littman (2006). Parameters of all
four algorithms were chosen optimally. Following a
coarse search in parameter space, the Rmax parameter
for OIM was set to 2000 for RiverSwim and to 10000
for SixArms. State spaces are small and value iteration
instead of prioritized sweeping was completed in each
step.

On both problems, each algorithm ran for 5000 time
steps and the undiscounted total reward was recorded.
The averages and 95% confidence intervals are calcu-
lated over 1000 test runs (Tables 5.1 and 5.1).

5.2. 50× 50 Maze with Subgoals

Another benchmark problem, MazeWithSubgoals, was
suggested by Wiering and Schmidhuber (1998). The
agent has to navigate in a 50 × 50 maze from the
start position at (2, 2) to the goal (with +1000 re-
ward) at the opposite corner (49, 49). There are sub-
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Table 3. Results on the MazeWithSubgoals task. The num-
ber of steps required to learn p-optimal policies (p=0.95,
0.99, 0.998) on the 50×50 maze task with suboptimal goals.
In parentheses: how many runs out of 20 have found the
goal. ‘k’ stands for 1000.

Method 95% 99% 99.8%

ε-greedy, ε = 0.2 – (0) – (0) – (0)
ε-greedy, ε = 0.4 43k (4) 52k (4) 68k (4)
Recency-bonus 27k (19) 55k (18) 69k (9)
Freq.-bonus 24k (20) 50k (16) 66k (10)
MBIE(WS) 25k (20) 42k (19) 66k (18)
OIM 19k (20) 29k (20) 31k (20)

optimal goals (with +500 reward) at the other two
corners. The maze has blocked places and punishing
states (−10 reward), set randomly in 20-20% of the
squares. The agent can move in four directions, but
with a 10% chance, its action is replaced by a random
one. If the agent tries to move to a blocked state, it
gets a reward of −2. Reaching any of the goals resets
the agent to the start state. In all other cases, the
agent gets a −1 reward for each step.

Each algorithm was run on 20 different mazes for
100,000 steps. After every 1000 steps, we tested the
learned value functions by averaging 20 test runs, in
each one following the greedy policy for 10,000 steps,
and averaging cumulated (undiscounted) rewards. We
measured the number of test runs needed for the algo-
rithms to learn to collect 95%, 99% and 99.8% of the
maximum possible rewards in 100,000 steps, and the
number of steps this takes on average, if the algorithms
can meet the challenge.

The algorithms that we compared were the recency
based and frequency based exploration bonus meth-
ods, two versions of ε-greedy exploration, MBIE(WS)
and OIM. All exploration rules applied the improved
prioritized sweeping of Wiering and Schmidhuber
(1998). OIM’s Rmax was set to 1000. The results
are summarized in Table 3.

5.3. Chain, Loop and FlagMaze

The next three benchmark MDPs, the Chain, Loop
and FlagMaze tasks were investigated, e.g., by
Meuleau and Bourgine (1999), Strens (2000) and Dear-
den (2000). In the Chain task, 5 states are lined up
along a chain. The agent gets +2 reward for being
in state 1 and +10 for being in state 5. One of the
actions advances one state ahead, the other one resets
the agent to state 1. The Loop task has 9 states in

Table 4. Average accumulated rewards on the Chain task.
Optimal policy gathers 3677.

Method Phase 1 Phase 2 Phase 8

QL+var.-bonus – 25701 –
QL+err.-bonus – 25301 –
QL ε-greedy 1519 1611 1602
QL Boltzmann 1606 1623 –
IEQL+ 2344 2557 –
Bayesian QL 1697 2417 –
Bayesian DP2 3158 3611 3643
OIM 3510 3628 3643

two loops (arranged in a 8-shape). Completing the
first loop (using any combination of the two actions)
yields +1 reward, while the second loop yields +2, but
one of the actions resets the agent to the start. The
FlagMaze task consists of a 6 × 7 maze with several
walls, a start state, a goal state and 3 flags. Whenever
the agent reaches the goal, her reward is the number
of flags collected.

The following algorithms were compared: Q-learning
with variance-based and TD error-based exploration
bonus (model-free variants), ε-greedy exploration,
Boltzmann exploration, IEQL+, Bayesian Q-learning,
Bayesian DP and OIM. Data were taken from Meuleau
and Bourgine (1999), Strens (2000) and Dearden
(2000). According to the sources, parameters for all
algorithms were set optimally. OIM’s Rmax parame-
ter was set to 0.5, 10 and 0.005 for the three tasks,
respectively.

Each algorithm ran for 8 learning phases. The total
cumulated reward over each learning phase was mea-
sured. One phase lasted for 1000 steps for the first
two tasks and 20,000 steps for the FlagMaze task. We
carried out 256 parallel runs for the first 2 tasks and
20 for the third one.

6. Summary of the Results

We proposed a new algorithm for exploration and rein-
forcement learning in Markov decision processes. The
algorithm integrates concepts from other advanced ex-
ploration methods. The key component of our al-
gorithm is an optimistic initial model. The optimal
policy according to the agent’s model will either ex-
plore new information that helps to make the model

1Results for Phase 5.
2Augmented with limited amount of pre-wired

knowledge (the list of successor states).
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Table 5. Average accumulated rewards on the Loop task.
Optimal policy gathers 400.

Method Phase 1 Phase 2 Phase 8

QL+var.-bonus – 1791 –
QL+err.-bonus – 1791 –
QL ε-greedy 337 392 399
QL Boltzmann 186 200 –
IEQL+ 264 293 –
Bayesian QL 326 340 –
Bayesian DP2 377 397 399
OIM 393 400 400

Table 6. Average accumulated rewards on the FlagMaze
task. Optimal policy gathers approximately 1890.

Method Phase 1 Phase 2 Phase 8

QL ε-greedy 655 1135 1147
QL Boltzmann 195 1024 –
IEQL+ 269 253 –
Bayesian QL 818 1100 –
Bayesian DP2 750 1763 1864
OIM 1133 1169 1171

more accurate, or follows a near-optimal path. The ex-
tent of optimism regulates the amount of exploration.
We have shown that with a suitably optimistic initial-
ization, our algorithm finds a near-optimal policy in
polynomial time. Experiments were conducted on a
number of benchmark MDPs. According to the exper-
imental results our novel method is robust and com-
pares favorably to other methods.
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Abstract

The ν-support vector classification (ν-SVC)
algorithm was shown to work well and pro-
vide intuitive interpretations, e.g., the pa-
rameter ν roughly specifies the fraction of
support vectors. Although ν corresponds to
a fraction, it cannot take the entire range be-
tween 0 and 1 in its original form. This prob-
lem was settled by a non-convex extension
of ν-SVC and the extended method was ex-
perimentally shown to generalize better than
original ν-SVC. However, its good generaliza-
tion performance and convergence properties
of the optimization algorithm have not been
studied yet. In this paper, we provide new
theoretical insights into these issues and pro-
pose a novel ν-SVC algorithm that has guar-
anteed generalization performance and con-
vergence properties.

1. Introduction

Support vector classification (SVC) is one of the most
successful classification algorithms in modern machine
learning (Schölkopf & Smola, 2002). SVC finds a hy-
perplane that separates training samples in different
classes with maximum margin (Boser et al., 1992).
The maximum margin hyperplane was shown to min-
imize an upper bound of the generalization error ac-
cording to the Vapnik-Chervonenkis theory (Vapnik,
1995). Thus the generalization performance of SVC is
theoretically guaranteed.

SVC was extended to be able to deal with non-
separable data by trading the margin size with the

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

data separation error (Cortes & Vapnik, 1995). This
soft-margin formulation is commonly referred to as C-
SVC since the trade-off is controlled by the parameter
C. C-SVC was shown to work very well in a wide
range of real-world applications (Schölkopf & Smola,
2002).

An alternative formulation of the soft-margin idea is ν-
SVC (Schölkopf et al., 2000)—instead of the parameter
C, ν-SVC involves another trade-off parameter ν that
roughly specifies the fraction of support vectors (or
sparseness of the solution). Thus, the ν-SVC formula-
tion provides us richer interpretation than the original
C-SVC formulation, which would be potentially useful
in real applications.

Since the parameter ν corresponds to a fraction, it
should be able to be chosen between 0 and 1. How-
ever, it was shown that admissible values of ν are ac-
tually limited (Crisp & Burges, 2000; Chang & Lin,
2001). To cope with this problem, Perez-Cruz et al.
(2003) introduced the notion of negative margins and
proposed extended ν-SVC (Eν-SVC) which allows ν
to take the entire range between 0 and 1. They also
experimentally showed that the generalization perfor-
mance of Eν-SVC is often better than that of original
ν-SVC. Thus the extension contributes not only to elu-
cidating the theoretical property of ν-SVC, but also to
improving its generalization performance.

However, there remain two open issues in Eν-SVC.
The first issue is that the reason why a high general-
ization performance can be obtained by Eν-SVC was
not completely explained yet. The second issue is that
the optimization problem involved in Eν-SVC is non-
convex and theoretical convergence properties of the
Eν-SVC optimization algorithm have not been stud-
ied yet. The purpose of this paper is to provide new
theoretical insights into these two issues.

After reviewing existing SVC methods in Section 2, we
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elucidate the generalization performance of Eν-SVC in
Section 3. We first show that the Eν-SVC formulation
could be interpreted as minimization of the conditional

value-at-risk (CVaR), which is often used in finance
(Rockafellar & Uryasev, 2002; Gotoh & Takeda, 2005).
Then we give new generalization error bounds based
on the CVaR risk measure. This theoretical result jus-
tifies the use of Eν-SVC.

In Section 4, we address non-convexity of the Eν-SVC
optimization problem. We first give a new optimiza-
tion algorithm that is guaranteed to converge to one
of the local optima within a finite number of itera-
tions. Based on this improved algorithm, we further
show that the global solution can be actually obtained
within finite iterations even though the optimization
problem is non-convex.

Finally, in Section 5, we give concluding remarks and
future prospects. Proofs of all theorems and lemmas
are sketched in Appendix unless mentioned.

2. Support Vector Classification

In this section, we formulate the classification problem
and briefly review support vector algorithms.

2.1. Classification Problem

Let us address the classification problem of learning a
decision function h from X (⊂ IRn) to {±1} based on
training samples (xi, yi) (i ∈ M := {1, ...,m}). We
assume that the training samples are i.i.d. following
the unknown probability distribution P (x, y) on X ×
{±1}.

The goal of the classification task is to obtain a clas-
sifier h that minimizes the generalization error (or the
risk):

R[h] :=

∫

1

2
|h(x)− y|dP (x, y),

which corresponds to the misclassification rate for un-
seen test samples.

For the sake of simplicity, we generally focus on linear
classifiers, i.e.,

h(x) = sign(〈w,x〉+ b), (1)

where w (∈ IRn) is a non-zero normal vector, b (∈ IR)
is a bias parameter, and sign(ξ) = 1 if ξ ≥ 0 and −1
otherwise.

Most of the discussions in this paper can be directly
applicable to non-linear kernel classifiers (Schölkopf &
Smola, 2002). Thus we may not lose generality by
restricting ourselves to linear classifiers.

2.2. Support Vector Classification

The Vapnik-Chervonenkis theory (Vapnik, 1995)
showed that a large margin classifier has a small gen-
eralization error. Motivated by this theoretical result,
Boser et al. (1992) developed an algorithm for finding
the hyperplane (w, b) with maximum margin:

min
w,b

1

2
‖w‖2 s.t. yi(〈w,xi〉+ b) ≥ 1, i ∈M. (2)

This is called (hard-margin) support vector classifica-
tion (SVC) and valid when the training samples are
linearly separable. In the following, we omit “i ∈ M”
in the constraint for brevity.

2.3. C-Support Vector Classification

Cortes and Vapnik (1995) extended the SVC algo-
rithm to non-separable cases and proposed trading the
margin size with the data separation error (i.e., “soft-
margin”):

min
w,b,ξ

1

2
‖w‖2 + C

m
∑

i=1

ξi

s.t. yi(〈w,xi〉+ b) ≥ 1− ξi, ξi ≥ 0,

where C (> 0) controls the trade-off. This formulation
is usually referred to as C-SVC, and was shown to work
very well in various real-world applications (Schölkopf
& Smola, 2002).

2.4. ν-Support Vector Classification

ν-SVC is another formulation of soft-margin SVC
(Schölkopf et al., 2000):

min
w,b,ξ,ρ

1

2
‖w‖2 − νρ +

1

m

m
∑

i=1

ξi

s.t. yi(〈w,xi〉+ b) ≥ ρ− ξi, ξi ≥ 0, ρ ≥ 0,

where ν (∈ IR) is the trade-off parameter.

Schölkopf et al. (2000) showed that if the ν-SVC solu-
tion yields ρ > 0, C-SVC with C = 1/(mρ) produces
the same solution. Thus ν-SVC and C-SVC are equiv-
alent. However, ν-SVC has additional intuitive inter-
pretations, e.g., ν is an upper bound on the fraction
of margin errors and a lower bound on the fraction of
support vectors (i.e., sparseness of the solution). Thus,
the ν-SVC formulation would be potentially more use-
ful than the C-SVC formulation in real applications.

2.5. Eν-SVC

Although ν has an interpretation as a fraction, it can-
not always take its full range between 0 and 1 (Crisp
& Burges, 2000; Chang & Lin, 2001).
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2.5.1. Admissible Range of ν

For an optimal solution {αC
i }

m
i=1 of dual C-SVC, let

ζ(C) :=
1

Cm

m
∑

i=1

αC
i ,

νmin := lim
C→∞

ζ(C) and νmax := lim
C→0

ζ(C).

Then, Chang and Lin (2001) showed that for ν ∈
(νmin, νmax], the optimal solution set of ν-SVC is the
same as that of C-SVC with some C (not necessarily
unique). In addition, the optimal objective value of
ν-SVC is strictly negative. However, for ν ∈ (νmax, 1],
ν-SVC is unbounded, i.e., there exists no solution; for
ν ∈ [0, νmin], ν-SVC is feasible with zero optimal ob-
jective value, i.e., we end up with just having a trivial
solution (w = 0 and b = 0).

2.5.2. Increasing Upper Admissible Range

It was shown by Crisp and Burges (2000) that

νmax = 2min(m+,m−)/m,

where m+ and m− are the number of positive and
negative training samples. Thus, when the training
samples are balanced (i.e., m+ = m−), νmax = 1
and therefore ν can reach its upper limit 1. When
the training samples are imbalanced (i.e., m+ 6= m−),
Perez-Cruz et al. (2003) proposed modifying the opti-
mization problem of ν-SVC as

min
w,b,ξ,ρ

1

2
‖w‖2 − νρ +

1

m+

∑

i:yi=1

ξi +
1

m−

∑

i:yi=−1

ξi

s.t. yi(〈w,xi〉+ b) ≥ ρ− ξi, ξi ≥ 0, ρ ≥ 0,

i.e., the effect of positive and negative samples are bal-
anced. Under this modified formulation, νmax = 1
holds even when training samples are imbalanced.

For the sake of simplicity, we assume m+ = m− in the
rest of this paper; when m+ 6= m−, all the results can
be simply extended in a similar way as above.

2.5.3. Decreasing Lower Admissible Range

When ν ∈ [0, νmin], ν-SVC produces a trivial solution
(w = 0 and b = 0) as shown in Chang and Lin (2001).
To prevent this, Perez-Cruz et al. (2003) proposed
allowing the margin ρ to be negative and enforcing
the norm of w to be unity:

min
w,b,ξ,ρ

−νρ +
1

m

m
∑

i=1

ξi

s.t. yi(〈w,xi〉+ b) ≥ ρ− ξi, ξi ≥ 0, ‖w‖2 = 1. (3)

By this modification, a non-trivial solution can be ob-
tained even for ν ∈ [0, νmin]. This modified formula-
tion is called extended ν-SVC (Eν-SVC).

The Eν-SVC optimization problem is non-convex due
to the equality constraint ‖w‖2 = 1. Perez-Cruz et al.
(2003) proposed the following iterative algorithm for
computing a solution. First, for some initial w̃, solve
the problem (3) with ‖w‖2 = 1 replaced by 〈w̃,w〉 =
1. Then, using the optimal solution ŵ, update w̃ by

w̃ ←− γw̃ + (1− γ)ŵ (4)

for γ = 9/10, and iterate this procedure until conver-
gence.

Perez-Cruz et al. (2003) experimentally showed that
the generalization performance of Eν-SVC with ν ∈
[0, νmin] is often better than that with ν ∈ (νmin, νmax],
implying that Eν-SVC is a promising classification al-
gorithm. However, it is not clear how the notion of
negative margins influences on the generalization per-
formance and how fast the above iterative algorithm
converges. The goal of this paper is to give new theo-
retical insights into these issues.

3. Justification of the Eν-SVC Criterion

In this section, we give a new interpretation of Eν-SVC
and theoretically explain why it works well.

3.1. New Interpretation of Eν-SVC as CVaR
minimization

Let f(w, b;x, y) be the margin error for a sample
(x, y):

f(w, b;x, y) := −
y(〈w,x〉+ b)

‖w‖
.

Let us consider the distribution of margin errors over
all training samples:

Φ(α|w, b) := P{(xi, yi) | f(w, b;xi, yi) ≤ α}.

For β ∈ [0, 1), let αβ(w, b) be the 100β-percentile of
the margin error distribution:

αβ(w, b) := min{α | Φ(α|w, b) ≥ β}.

Thus only the fraction (1 − β) of the margin error
f(w, b;xi, yi) exceeds the threshold αβ(w, b) (see Fig-
ure 1). αβ(w, b) is commonly referred to as the value-

at-risk (VaR) in finance and is often used by security
houses or investment banks to measure the market risk
of their asset portfolios (Rockafellar & Uryasev, 2002;
Gotoh & Takeda, 2005).
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Figure 1. An example of the distribution of margin er-
rors f(w, b; xi, yi) over all training samples. αβ(w, b) is
the 100β-percentile called the value-at-risk (VaR), and the
mean φβ(w, b) of the β-tail distribution is called the con-
ditional VaR (CVaR).

Let us consider the β-tail distribution of f(w, b;xi, yi):

Φβ(α|w, b) :=

{

0 for α < αβ(w, b),
Φ(α|w,b)−β

1−β
for α ≥ αβ(w, b).

Let φβ(w, b) be the mean of the β-tail distribution of
f(w, b;xi, yi) (see Figure 1 again):

φβ(w, b) := EΦβ
[f(w, b;xi, yi)],

where EΦβ
denotes the expectation over the distri-

bution Φβ . φβ(w, b) is called the conditional VaR

(CVaR). By definition, the CVaR is always larger than
or equal to the VaR:

φβ(w, b) ≥ αβ(w, b). (5)

Let us consider the problem of minimizing the CVaR
φβ(w, b) (which we refer to as minCVaR):

min
w,b

φβ(w, b). (6)

Then we have the following theorem.

Theorem 1 The solution of the minCVaR problem

(6) is equivalent to the solution of the Eν-SVC problem

(3) with

ν = 1− β.

Theorem 1 shows that Eν-SVC actually minimizes
the CVaR φ1−ν(w, b). Thus, Eν-SVC could be in-
terpreted as minimizing the mean margin error over
a set of “bad” training samples. In contrast, the hard-
margin SVC problem (2) can be equivalently expressed
in terms of the margin error as

min
w,b

max
i∈M

f(w, b;xi, yi).

Thus hard-margin SVC minimizes the margin error
of the single “worst” training sample. This analysis
shows that Eν-SVC can be regarded as an extension
of hard-margin SVC to be less sensitive to an outlier
(i.e., the single “worst” training sample).

Non-convex Convex

Figure 2. A profile of the CVaR φ1−ν(w∗, b∗) as a function
of ν. As shown in Section 4, the Eν-SVC optimization
problem can be cast as a convex problem if ν ∈ (ν, νmax],
while it is essentially non-convex if ν ∈ (0, ν).

3.2. Justification of Eν-SVC

We have shown the equivalence between Eν-SVC and
minCVaR. Here we derive new bounds of the general-
ization error based on the notion of CVaR and try to
justify the use of Eν-SVC.

When training samples are linearly separable, the mar-
gin error f(w, b;xi, yi) is negative for all samples.
Then, at the optimal solution (w∗, b∗), the CVaR
φ1−ν(w∗, b∗) is always negative. However, in non-
separable cases, φ1−ν(w∗, b∗) could be positive par-
ticularly when ν is close to 0. Regarding the CVaR,
we have the following lemma.

Lemma 2 φ1−ν(w∗, b∗) is continuous with respect to

ν and is strictly decreasing when ν is increased.

Let ν be such that

φ1−ν(w∗, b∗) = 0

if such ν exists; we set ν = νmax if φ1−ν(w∗, b∗) > 0
for all ν and we set ν = 0 if φ1−ν(w∗, b∗) < 0 for all
ν. Then we have the following relation (see Figure 2):

φ1−ν(w∗, b∗) < 0 for ν ∈ (ν, νmax],

φ1−ν(w∗, b∗) > 0 for ν ∈ (0, ν).

Below, we analyze the generalization error of Eν-SVC
depending on the value of ν.

3.2.1. Justification When ν ∈ (ν, νmax]

Theorem 3 Let ν ∈ (ν, νmax]. Suppose that support

X is in a ball of radius R around the origin. Then,

for all (w, b) such that ‖w‖ = 1 and φ1−ν(w, b) < 0,
there exists a positive constant c such that the following

bound hold with probability at least 1− �:

R[h] ≤ ν + G(α1−ν(w, b)), (7)

where

G(γ) =

√

2

m

(

4c2(R2 + 1)2

γ2
log2(2m)− 1 + log

2

�

)

.
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The generalization error bound in (7) is furthermore

upper-bounded as

ν + G(α1−ν(w, b)) ≤ ν + G(φ1−ν(w, b)).

G(γ) is monotone decreasing as |γ| increases. Thus,
the above theorem shows that when φ1−ν(w, b) < 0,
the upper bound ν + G(φ1−ν(w, b)) is lowered if the
CVaR φ1−ν(w, b) is reduced. Since Eν-SVC minimizes
φ1−ν(w, b) (see Theorem 1), the upper bound of the
generalization error is also minimized.

3.2.2. Justification When ν ∈ (0, ν]

Our discussion below depends on the sign of
α1−ν(w, b). When α1−ν(w, b) < 0, we have the fol-
lowing theorem.

Theorem 4 Let ν ∈ (0, ν]. Then, for all (w, b) such

that ‖w‖ = 1 and α1−ν(w, b) < 0, there exists a posi-

tive constant c such that the following bound holds with

probability at least 1− �:

R[h] ≤ ν + G(α1−ν(w, b)).

A proof of the above theorem is omitted since the proof
follows a similar line to the proof of Theorem 3. This
theorem shows that when α1−ν(w, b) < 0, the up-
per bound ν + G(α1−ν(w, b)) is lowered if α1−ν(w, b)
is reduced. On the other hand, Eq.(5) shows that
the VaR α1−ν(w, b) is upper-bounded by the CVaR
φ1−ν(w, b). Therefore, minimizing φ1−ν(w, b) by Eν-
SVC may have an effect of lowering the upper bound
of the generalization error.

When α1−ν(w, b) > 0, we have the following theorem.

Theorem 5 Let ν ∈ (0, ν]. Then, for all (w, b) such

that ‖w‖ = 1 and α1−ν(w, b) > 0, there exists a posi-

tive constant c such that the following bound hold with

probability at least 1− �:

R[h] ≥ ν −G(α1−ν(w, b)).

Moreover, the lower bound of R[h] is bounded from

above as

ν −G(α1−ν(w, b)) ≤ ν −G(φ1−ν(w, b)).

A proof of the above theorem is also omitted since
the proof resembles to Theorem 3. Theorem 5 implies
that the lower bound ν −G(α1−ν(w, b)) of the gener-
alization error is upper-bounded by ν−G(φ1−ν(w, b)).
On the other hand, Eq.(5) and α1−ν(w, b) > 0 yields
φ1−ν(w, b) > 0. Thus minimizing φ1−ν(w, b) by Eν-
SVC may contribute to lowering the lower bound
ν −G(α1−ν(w, b)) of the generalization error.

4. New Optimization Algorithm

As reviewed in Section 2.5, Eν-SVC involves a non-
convex optimization problem. In this section, we give
a new efficient optimization procedure for Eν-SVC.
Our proposed procedure involves two optimization al-
gorithms depending on the value of ν. We first de-
scribe the two algorithms and then show how these
two algorithms are chosen for practical use.

4.1. Optimization When ν ∈ (ν, νmax]

Lemma 6 When ν ∈ (ν, νmax], the Eν-SVC problem

(3) is equivalent to

min
w,b,ξ,ρ

−νρ +
1

m

m
∑

i=1

ξi

s.t. yi(〈w,xi〉+ b) ≥ ρ− ξi, ξi ≥ 0, ‖w‖2 ≤ 1. (8)

This lemma shows that the equality constraint ‖w‖2 =
1 in the original problem (3) can be replaced by
‖w‖2 ≤ 1 without changing the solution. Due to the
convexity of ‖w‖2 ≤ 1, the above optimization prob-
lem is convex and therefore we can easily obtain the
global solution by a standard optimization software.

4.2. Optimization When ν ∈ (0, ν]

If ν ∈ (0, ν], the Eν-SVC optimization problem is es-
sentially non-convex and therefore we need a more
elaborate algorithm.

4.2.1. Local Optimum Search

Here, we propose the following iterative algorithm for
finding a local optimum.

Algorithm 7 (The Eν-SVC local optimum
search algorithm for ν ∈ (0, ν])

Step 1: Initialize w̃.
Step 2: Solve the following linear program:

min
w,b,ξ,ρ

−νρ +
1

m

m
∑

i=1

ξi (9)

s.t. yi(〈w,xi〉+ b) ≥ ρ− ξi, ξi ≥ 0, 〈w̃,w〉 = 1,

and let the optimal solution be (ŵ,̂b,̂ξ, ρ̂).
Step 3: If w̃ = ŵ, terminate and output w̃. Oth-
erwise, update w̃ by w̃ ←− ŵ/‖ŵ‖.
Step 4: Repeat Steps 2–3.

The linear program (9) is the same as the one pro-
posed by Perez-Cruz et al. (2003), i.e., the equality
constrained ‖w‖2 = 1 of the original problem (3) is
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replaced by 〈w̃,w〉 = 1. The updating rule of w̃ in
Step 3 is different from the one proposed by Perez-
Cruz et al. (2003) (cf. Eq.(4)).

We define a “corner” (or “0-dimensional face”) of Eν-
SVC (3) as the intersection of an edge of the polyhedral
cone formed by linear constraints of (3) and ‖w‖2 =
1. Under the new update rule, the algorithm visits a
corner of Eν-SVC (3) in each iteration. Since Eν-SVC
has finite corners, we can show that Algorithm 7 with
the new update rule terminates in a finite number of
iterations, i.e., less than or equal to the number of
corners of Eν-SVC.

Theorem 8 Algorithm 7 terminates within a finite

number of iterations of Steps 2–3. Furthermore, a

solution of the modified Eν-SVC algorithm is a local

minimizer if it is unique and non-degenerate.

4.2.2. Global Optimum Search

Next, we show that the global solution can be actu-
ally obtained within finite iterations, despite the non-
convexity of the optimization problem.

A naive approach to searching for the global solution
is to run the local optimum search algorithm many
times with different initial values and choose the best
local solution. However, there is no guarantee that this
naive approach can find the global solution. Below, we
give a more systematic way to find the global solution
based on the following lemma.

Lemma 9 When ν ∈ (0, ν], the Eν-SVC problem (3)
is equivalent to

min
w,b,ξ,ρ

−νρ +
1

m

m
∑

i=1

ξi

s.t. yi(〈w,xi〉+ b) ≥ ρ− ξi, ξi ≥ 0, ‖w‖2 ≥ 1. (10)

Lemma 9 could be proved in a similar way as Lemma 6,
so we omit the proof. This lemma shows that the
equality constraint ‖w‖2 = 1 in the original Eν-SVC
problem (3) can be replaced by ‖w‖2 ≥ 1 without
changing the solution if ν ∈ (0, ν].

The problem (10) is called a linear reverse convex pro-

gram (LRCP), which is a class of non-convex prob-
lems consisting of linear constraints and one concave
inequality (‖w‖2 ≥ 1 in the current case). The feasi-
ble set of the problem (10) consists of a finite num-
ber of faces. For LRCPs, Horst and Tuy (1995)
showed that the local optimal solutions correspond to
0-dimensional faces (or corners). This implies that all
the local optimal solutions of the Eν-SVC problem (10)
can be traced by checking all the faces.

(a)

(b)

Concavity cut

Facial cut

Figure 3. A 0-dimensional face (a) and three proper faces

(bold solid lines) of D are identified in eD. If the corner (a)
is found in Step 2, a concavity cut is constructed. If the
corner (b) is found, a facial cut is constructed. If these two

cuts are added to eD, the remaining area includes no face
of D.

Let D be the feasible set of Eν-SVC (3). Below, we
summarize the Eν-SVC training algorithm based on
the cutting plane method, which is an efficient method
of tracing faces.

Algorithm 10 (The Eν-SVC global optimum
search algorithm for ν ∈ (0, ν])

Step 1: ˜D ←− D.
Step 2: Find a local solution by Algorithm 7.
Step 3: Identify a face of D in ˜D that corresponds
the local solution.
Step 4a: If the face is a corner, construct a “con-
cavity cut”.
Step 4b: If the face is a proper face, construct a
“facial cut”.
Step 5: Add the cut to the problem (9) and ˜D.

Step 6: Repeat Steps 2–5 until ˜D includes no face
of D.
Step 7: Output the best local optimal solution as
the global solution.

If the local solution obtained in Step 2 is a corner of D
(i.e., the local solution is not on any cutting plane as
(a) in Figure 3), a concavity cut (Horst & Tuy, 1995) is
constructed. The concavity cut has a role of removing
the local solution, i.e., a 0-dimensional face of D and
its neighborhood. Otherwise, a facial cut (Majthay &
Whinston, 1974) is constructed to eliminate the proper
face (see (b) in Figure 3).

Since the total number of distinct faces of D is finite in
the current setting and a facial cut or a concavity cut
eliminates at least one face at a time, Algorithm 10 is
guaranteed to terminate within finite iterations (pre-
cisely, less than or equal to the number of all dimen-
sional faces of Eν-SVC). Furthermore, since the addi-
tion of a concavity cut or a facial cut does not remove
local solutions which are better than the best local
solution found so far, Algorithm 10 is guaranteed to
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trace all sufficient local solutions. Thus we can always
find a global solution within finite iterations by Algo-
rithm 10. A more detailed discussion on the concavity
cut and the facial cut is shown in Horst and Tuy (1995)
and Majthay and Whinston (1974), respectively.

4.3. Choice of Two Algorithms

We have two convergent algorithms when ν ∈ (ν, νmax]
and ν ∈ (0, ν]. Thus, choosing a suitable algorithm
depending on the value of ν would be an ideal proce-
dure. However, the value of the threshold ν is difficult
to explicitly compute since it is defined via the opti-
mal value φ1−ν(w∗, b∗) (see Figure 2). Therefore, it is
not straightforward to choose a suitable algorithm for
a given ν.

When we use Eν-SVC in practice, we usually com-
pute the solutions for several different values of ν and
choose the most promising one based on, e.g., cross-
validation. In such scenarios, we can properly switch
two algorithms without explicitly knowing the value of
ν—our key idea is that the solution of the problem (8)
is non-trivial (i.e., w 6= 0) if and only if ν ∈ (ν, νmax].
Thus if the solutions are computed from large ν to
small ν, the switching point can be identified by check-
ing the triviality of the solution. The proposed algo-
rithm is summarized as follows.

Algorithm 11 (The Eν-SVC algorithm for
(νmax ≥) ν1 > ν2 > · · · > νk > 0)

Step 1: i←− 1.
Step 2: Compute (w∗, b∗) for νi by solving (8).
Step 3a: If w∗ 6= 0, accept (w∗, b∗) as the solution
for νi, increment i, and go to Step 2.
Step 3b: If w∗ = 0, reject (w∗, b∗).
Step 4: Compute (w∗, b∗) for νi by Algorithm 10.
Step 5: Accept (w∗, b∗) as the solution for νi,
increment i, and go to Step 4 unless i > k.

5. Conclusions

We characterized the generalization error of Eν-SVC in
terms of the conditional value-at-risk (CVaR, see Fig-
ure 1) and showed that a good generalization perfor-
mance is expected by Eν-SVC. We then derived a glob-
ally convergent optimization algorithm even though
the optimization problem involved in Eν-SVC is non-
convex.

We introduced the threshold ν based on the sign of
the CVaR (see Figure 2). We can check that the prob-
lem (8) is equivalent to ν-SVC in the sense that they
share the same negative optimal value in (ν, νmax] and
(νmin, νmax], respectively (Gotoh & Takeda, 2005). On

the other hand, the problem (8) and ν-SVC have the
zero optimal value in (0, ν] and [0, νmin], respectively.
Thus, although the definitions of ν and νmin are differ-
ent, they would be essentially the same. We will study
the relation between ν and νmin in more detail in the
future work.
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A. Sketch of Proof of Theorem 1

Let (w∗, b∗, α∗) be the optimal solution of

min
w,b,α

Fβ(w, b, α), (11)

where, for [X]+ := max{X, 0},

Fβ(w, b, α) := α +

P

i∈M
[f(w, b; xi, yi) − α]+

(1 − β)m
. (12)
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Then Rockafellar and Uryasev (2002) showed that

Fβ(w∗
, b

∗
, α

∗) = φβ(w∗
, b

∗) = min
w,b

φβ(w, b), (13)

i.e, the problems (6) and (11) are equivalent.

Introducing slack variables ξi, imposing ‖w‖
2 = 1 (which

does not change the solution essentially; only the scale is
changed), and letting ν = 1 − β and ρ = −α in Eq.(11),
we establish the theorem.

B. Sketch of Proof of Lemma 2

Since Eq.(11) only involves continuous functions, conti-
nuity of Fβ(w∗, b∗, α∗) with respect to β is clear. From
Eq.(13), φβ(w∗, b∗) is also continuous. Let (w∗

βi
, b∗βi

, α∗

βi
)

be the optimal solutions of Eq.(11) for 0 < β1 < β2 < 1.
Then we have

φβ1
(w∗

β1
, b

∗

β1
) = Fβ1

(w∗

β1
, b

∗

β1
, α

∗

β1
) ≤ Fβ1

(w∗

β2
, b

∗

β2
, α

∗

β2
)

< Fβ2
(w∗

β2
, b

∗

β2
, α

∗

β2
) = φβ2

(w∗

β2
, b

∗

β2
),

where the first inequality is due to optimality of
(w∗

β1
, b∗β1

, α∗

β1
) and the second strict inequality is clear

from Eq.(12). Thus φβ(w∗, b∗) is strictly increasing with
respect to β, implying that φ1−ν(w∗, b∗) is strictly decreas-
ing with respect to ν.

C. Sketch of Proof of Theorem 3

For a homogeneous classifier h(ex) = sign(〈ew, ex〉), the fol-
lowing lemma holds:

Lemma 12 (Schölkopf et al., 2000) Suppose that support

X of ex is in a ball of radius eR around the origin. Then, for
all ew such that ‖ew‖ = 1, there exists a positive constant c

such that the following bound holds with probability at least
1 − δ:

R[h] ≤
|{i | yi〈ew, exi〉 < eγ}|

m

+

v

u

u

t

2

m

 

4c2
eR2

eγ2
log

2
(2m) − 1 + log

2

δ

!

.

Let ew = (w>
,b)

>

√
1+b2

and ex = (x>, 1)>. Then our classifier (1)

can be regarded as homogeneous. The assumption that all
the data points x live in a centered ball of radius R implies
that all the data points ex live in a centered ball of radius

eR =
p

R2 + 1.

The assumption ‖w‖ = 1 implies ‖ew‖ = 1. Then we can
apply Lemma 12 to the current setting. The condition
yi〈ew, exi〉 < eγ results in

yi(〈w, xi〉 + b) < eγ
p

1 + b2 := γ.

When all the data points x live in a centered ball of radius
R, we can assume without loss of generality that |b| ≤ R.
Then we have

1

eγ2
=

1 + b2

γ2
≤

1 + R2

γ2
.

Now let us set
γ = −α1−ν(w, b).

Then we can show that

1

m
|{i | yi(〈w, xi〉 + b) < −α1−ν(w, b)}| ≤ ν.

We omit its proof due to lack of space. Then we obtain
the upper bound ν + G(α1−ν(w, b)); the upper bound ν +
G(φ1−ν(w, b)) is clear from Eq.(5).

D. Sketch of Proof of Lemma 6

Since the difference between the problems (3) and (8) is
only the norm constraint of w, it is enough to show that
for ν ∈ (ν, νmax], ‖w∗

‖
2 = 1 holds at the optimal so-

lution (w∗, b∗, ξ∗, ρ∗) of the problem (8). For such ν,
φ1−ν(w∗, b∗) < 0 holds, i.e., the optimal value of Eν-SVC
is negative. If we suppose ‖w∗

‖
2 < 1, another feasible solu-

tion (w∗, b∗, ξ∗, ρ∗)/‖w∗
‖ achieves a smaller optimal value

than (w∗, b∗, ξ∗, ρ∗). This contradicts to the optimality of
(8), and hence ‖w∗

‖
2 = 1 is proved.

E. Sketch of Proof of Theorem 8

Let (bwk,bbk,bξ
k
, bρk) be an optimal solution of the linear

program (9) in the k-th iteration. Then, a feasible solution
of Eν-SVC (3) is given by

(ewk,ebk,eξ
k
, eρk) = (bwk,bbk,bξ

k
, bρk)/‖bwk‖.

Since (bwk,bbk,bξ
k
, bρk) is at a corner of the feasible set of the

linear program (9), (ewk,ebk,eξ
k
, eρk) is also a corner of the

feasible set of Eν-SVC (3).

Let q(·) be the objective function of Eν-SVC (3), which is
also the objective function of the linear program (9). Then
we have

q(eξ
k−1

, eρk−1) > q(bξ
k
, bρk) ≥ q(eξ

k
, eρk) = q(bξ

k
, bρk)/‖bwk‖,

where the first inequality comes from the optimality of

(bξ
k
, bρk) of the linear program (9). The second inequality

comes from ‖bwk‖ > 1, which is ensured by 〈ewk−1, bwk〉 = 1.
Thus the algorithm finds a distinct corner of Eν-SVC (3) in
each iteration. Since the number of corners of Eν-SVC (3)
is finite, the algorithm terminates within finite iterations.

Let ∆d = (∆w> ∆b> ∆ρ> ∆ξ>)> be a perturbation from
the solution d∗ = (w∗, b∗, ρ∗, ξ∗) of Algorithm 7. Note
that d∗ is an optimal solution of the linear program (9)
with ew = w∗. Using the Karush-Kuhn-Tucker (KKT)
optimality conditions, we can express the increase ∆q of
the objective value as

∆q := −ν∆ρ +
1

m

X

i∈M

∆ξi

= ∆d
>

0

B

@

y1x1 . . . ymxm O
y1 . . . ym 0
1 . . . 1 0

I I

1

C

A

„

λ∗

µ∗

«

− δ
∗∆w

>
w

∗
,

where λ∗
∈ IRm

+ , µ∗
∈ IRm

+ , and δ∗ ≤ 0 are KKT mul-
tipliers. If ∆d is a feasible perturbation (i.e., d∗ + ∆d is
feasible), we can show that ∆q > 0 (we omit its proof due
to lack of space), which implies that d∗ is locally optimal.
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Abstract

A new algorithm for training Restricted
Boltzmann Machines is introduced. The al-
gorithm, named Persistent Contrastive Di-
vergence, is different from the standard Con-
trastive Divergence algorithms in that it
aims to draw samples from almost exactly
the model distribution. It is compared to
some standard Contrastive Divergence and
Pseudo-Likelihood algorithms on the tasks
of modeling and classifying various types of
data. The Persistent Contrastive Divergence
algorithm outperforms the other algorithms,
and is equally fast and simple.

1. Introduction

Restricted Boltzmann Machines (RBMs) (Hinton
et al., 2006; Smolensky, 1986) are neural network mod-
els for unsupervised learning, but have recently seen a
lot of application as feature extraction methods for
supervised learning algorithms (Salakhutdinov et al.,
2007; Larochelle et al., 2007; Bengio et al., 2007;
Gehler et al., 2006; Hinton et al., 2006; Hinton &
Salakhutdinov, 2006). The success of these models
raises the issue of how best to train them.

Most training algorithms are based on gradient de-
scent, but the standard objective function (training
data likelihood) is intractable, so the algorithms dif-
fer in their choice of approximation to the gradient
of the objective function. At present, the most pop-
ular gradient approximation is the Contrastive Diver-
gence (CD) approximation (Hinton et al., 2006; Hin-
ton, 2002; Bengio & Delalleau, 2007); more specifi-
cally the CD-1 approximation. However, it is not ob-
vious whether it is the best. For example, the CD
algorithm has a parameter specifying the number of

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

Markov Chain transitions performed, and although
the most commonly chosen value is 1, other choices
are possible and reasonable, too (Carreira-Perpinan &
Hinton, 2005).

In this paper, a new gradient approximation algorithm
is presented and compared to a variety of CD-based al-
gorithms. The quantitative measures of test data like-
lihood (for unsupervised learning) and classification
error rate (for supervised learning) are investigated,
and the type of feature detectors that are developed
are also shown. We find that the new algorithm pro-
duces more meaningful feature detectors, and outper-
forms the other algorithms.

The RBMs on which these experiments were done all
had binary units. However, this special case can easily
be generalized to other harmoniums (Smolensky, 1986;
Welling et al., 2005) in which the units have Gaussian,
Poisson, multinomial, or other distributions in the ex-
ponential family, and the training algorithms described
here require only minor modifications to work in most
of those models.

In Section 2, the RBM model and CD gradient es-
timator are discussed. In Section 3, the Persistent
Contrastive Divergence algorithm is introduced. In
Sections 4 and 5, the experiments and results are de-
scribed, and Section 6 concludes with a discussion and
some plans for future work.

2. RBMs and the CD Gradient

Approximation

2.1. Restricted Boltzmann Machines

An RBM is an energy-based model for unsupervised
learning (Hinton, 2002; Smolensky, 1986). It consists
of two layers of binary units: one visible, to represent
the data, and one hidden, to increase learning capac-
ity. Standard notation is to use i for indices of visible
units, j for indices of hidden units, and wij for the
strength of the connection between the ith visible unit
and the jth hidden unit. If vi denotes the state of the
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ith visible unit, and hj denotes the state of the jth

hidden unit, an energy function is defined on states:
E(v, h) = −∑

i,j vihjwij −
∑

i vibi −
∑

j hjbj , where b

stands for the biases. Through these energies, proba-

bilities are defined as P (v, h) = e−E(v,h)

Z where Z is the

normalizing constant Z =
∑

x,y e−E(x,y). The proba-
bility of a data point (represented by the state v of
the visible layer) is defined as the marginal: P (v) =
∑

h P (v, h) =
P

h
e−E(v,h)

Z . Thus, the training data
likelihood, using just one training point for simplicity,
is φ = log P (v) = φ+−φ− where φ+ = log

∑

h e−E(v,h)

and φ− = log Z = log
∑

x,y e−E(x,y). The positive gra-

dient ∂φ+

∂wij
is simple: ∂φ+

∂wij
= vi · P (hj = 1|v). The

negative gradient ∂φ−

∂wij
= P (vi = 1, hj = 1), however,

is intractable. If we could get samples from the model,
we could Monte Carlo approximate it, but even getting
those samples is intractable.

2.2. The Contrastive Divergence Gradient

Approximation

To get a tractable approximation of ∂φ−

∂wij
, one uses

some algorithm to approximately sample from the
model. The Contrastive Divergence (CD) algorithm
is one way to do this. It is designed in such a way
that at least the direction of the gradient estimate is
somewhat accurate, even when the size is not. CD-1
is, at present, the most commonly used algorithm for
training RBMs. One of the algorithms we compare
is regular CD-1; another is CD-10, which is generally
considered to be better if the required computer time
is available.

A variation on CD is mean field CD (Welling & Hinton,
2002), abbreviated MF CD. This has the advantage of
being a deterministic gradient estimate, which means
that larger learning rates can be used. We include
mean field CD-1 in the comparison.

3. The Persistent Contrastive

Divergence Algorithm

CD-1 is fast, has low variance, and is a reasonable
approximation to the likelihood gradient, but it is
still significantly different from the likelihood gradi-
ent when the mixing rate is low. This can be seen by
drawing samples from the distribution that it learns
(see Figure 4). Generally speaking, CD-n for greater
n is preferred over CD-1, if enough running time is
available. In Neal’s 1992 paper about Sigmoid Belief
Networks (1992), a solution is suggested for such situ-
ations. In the context of RBMs, the idea is as follows
(see also (Yuille, 2004)).

What we need for approximating ∂φ−

∂wij
is a sample from

the model distribution. The standard way to get it
is by using a Markov Chain, but running a chain for
many steps is too time-consuming. However, between
parameter updates, the model changes only slightly.
We can take advantage of that by initializing a Markov
Chain at the state in which it ended for the previ-
ous model. This initialization is often fairly close to
the model distribution, even though the model has
changed a bit in the parameter update. Neal uses
this approach with Sigmoid Belief Networks to approx-
imately sample from the posterior distribution over
hidden layer states given the visible layer state. For
RBMs, the situation is a bit simpler: there is only one
distribution from which we need samples, as opposed
to one distribution per training data point. Thus, the
algorithm can be used to produce gradient estimates
online or using mini-batches, using only a few train-
ing data points for the positive part of each gradient
estimate, and only a few ’fantasy’ points for the nega-
tive part. The fantasy points are updated by one full
step of the Markov Chain each time a mini-batch is
processed.

Of course this still is an approximation, because the
model does change slightly with each parameter up-
date. With infinitesimally small learning rate it be-
comes exact, and in general it seems to work best with
small learning rates.

We call this algorithm Persistent Contrastive Diver-
gence (PCD), to emphasize that the Markov Chain is
not reset between parameter updates.

4. Experiments

We did a variety of experiments, using different data
sets (digit images, emails, artificial data, horse image
segmentations, digit image patches), different models
(RBMs, classification RBMs, fully visible Markov Ran-
dom Fields), different training procedures (PCD, CD-
1, CD-10, MF CD, pseudo likelihood), and different
tasks (unsupervised vs. supervised learning).

4.1. Data Sets

The first data set that we used was the MNIST dataset
of handwritten digit images (LeCun & Cortes, ). The
images are 28 by 28 pixels, and the data set consists
of 60,000 training cases and 10,000 test cases. To have
a validation set, we split the official training set of
60,000 cases into a training set of 50,000 cases and a
validation set of 10,000 cases. To have binary data, we
treat the pixel intensities as probabilities. Each time a
binary data point is required, a real-valued MNIST im-
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age is binarized by sampling from the given Bernoulli
distribution for each pixel. Thus, in effect, our data
set is a mixture of 70,000 factorial distributions: one
for each of the data points in the MNIST data set.

Another data set was obtained by taking small patches
of 5 by 5 pixels, from the MNIST images. To
have somewhat smooth-looking data, we binarized by
thresholding at 1/2. The 70,000 MNIST data points
were thus turned into 70,000 times (28 − 5 + 1)2 is
4,032,000 patches. This data set was split into train-
ing (60%), validation (20%), and test (20%) sets.

A data set consisting of descriptions of e-mails was
made available by Sam Roweis. It describes 5,000 e-
mails using a variety of binary features - mostly word
presence vs. absence features. The e-mails are labeled
as spam or non-spam.

An artificial data set was created by combining the
outlines of rectangles and triangles. Because this data
set is artificially generated, there is an infinite amount
of it, which helps shed some light on the reasons for
using weight decay regularization.

Lastly, we used a data set of image segmentations: in
pictures of horses, the segmentation indicates which
pixels are part of the horse and which are background
(Borenstein et al., 2004). By using only the segmen-
tation, we have a binary data set.

4.2. Models

The first model we used is an RBM, exactly as de-
scribed above. For the MNIST and horse segmentation
data sets, we used 500 hidden units; for the artificial
data set we used 100.

One of the evaluations is how well the learned RBM
models the test data, i.e. log likelihood. This is in-
tractable for regular size RBMs, because the time com-
plexity of that computation is exponential in the size
of the smallest layer (visible or hidden). One experi-
ment, therefore, was done using only 25 hidden units,
so that log likelihood could be calculated exactly in
about two hours. Another experiment uses an approxi-
mate assessment of the normalization constant Z, that
was developed recently in our group (Salakhutdinov &
Murray, 2008). This algorithm works for any num-
ber of hidden units, but its reliability has not been
researched extensively. Nonetheless, it seems to give a
reasonable indication, and can be used to complement
other results.

RBMs, however, are models for unsupervised learning,
so for classification we used a slightly different model,
described in more detail in (Hinton et al., 2006). We

used an RBM with one added visible unit, which rep-
resented the label. The training data points are then
combinations of inputs with their labels, and testing
is done by choosing the most likely label given the in-
put, under the learned model. This model we call a
’classification RBM’. Note that the label unit is not
necessarily binary (although in the spam classification
task it is). In the MNIST classification task it is multi-
nomial: it can have 10 different values. This, however,
does not significantly change the algorithms (Hinton,
2002). For MNIST classification we used 500 hidden
units; for spam classification we used 100.

The third model we tested is significantly differ-
ent: a fully visible, fully connected Markov Ran-
dom Field (MRF) (see for example (Wainwright &
Jordan, 2003)). One can use the PCD algorithm
on it, although it looks a bit different in this case.
We compared its performance to the more commonly
used Pseudo-Likelihood optimization algorithm (Be-
sag, 1986). To have exact test data log likelihood mea-
surements, we used small models, with only 25 units.

4.3. The Mini-batch Optimization Procedure

We used the mini-batch learning procedure: we only
used a small number of training points for each gra-
dient estimate. We used 100 training points in each
mini-batch for most data sets.

4.4. Algorithm Details

The PCD algorithm can be implemented in various
ways. One could, for example, choose to randomly
reset some of the Markov Chains at regular intervals.
Initial tests showed that the best implementation is as
follows: no Markov Chains get reset; one full Gibbs
update is done on each of the Markov Chains for each
gradient estimate; and the number of Markov Chains
is equal to the number of training data points in a
mini-batch.

PCD for fully visible MRFs is a bit different from PCD

for RBMs. A pleasant difference is that ∂φ+

∂θ is con-
stant, so it can be precomputed for the entire training
set. Thus, no variance results from the use of mini-
batches, and the training set can be discarded after
∂φ+

∂θ is computed over it. An unpleasant difference is
that the Markov Chain defined by Gibbs sampling has
slower mixing: MRFs with connections between the
visible units lack the pleasant property of RBMs that
all visible units can be updated at the same time.

A Pseudo-Likelihood (PL) gradient computation re-
quires more work than a PCD gradient computation,
because it requires a logistic regression gradient esti-
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mate for each of the units. As a result, we found that
using mini-batches of 50 training points instead of 100
took only a little bit more time per training point,
and did allow updating the model parameters almost
twice as often, which is preferable in the mini-batch
optimization procedure.

4.5. Other Technical Details

The learning rates used in the experiments are not
constant. In practice, decaying learning rates often
work better. In these experiments, the learning rate
was linearly decayed from some initial learning rate to
zero, over the duration of the learning. Preliminary
experiments showed that this works better than the
1
t schedule suggested in theoretical work by (Robbins
& Monro, 1951), which is preferable when infinitely
much time is available for the optimization.

Some experiment parameters, such as the number of
hidden units, and the size of the mini-batches, were
fixed. However, the initial learning rate was chosen
using a validation set, as was weight decay for the
(shorter) experiments on the spam, horses, MNIST
patches, and artificial data sets. For each algorithm,
each task, and each training duration, 30 runs were
performed with evaluation on validation data, trying
to find the settings that worked best. Then a choice of
initial learning rate and, for the shorter experiments,
weight decay, were made, and with those chosen set-
tings, 10 more runs were performed, evaluating on test
data. This provided 10 test performance numbers,
which were summarized by their average and standard
deviation (shown as error bars).

5. Results

5.1. The three MNIST Tasks

The results on the three MNIST tasks are shown in
Figures 1, 2, and 3.

It is clear that PCD outperforms the other algorithms.
PCD, CD-1, and MF CD all take approximately the
same amount of time per gradient estimate, with MF
CD being a little bit faster because it does not have
to create random numbers. CD-10 takes about four
times as long as PCD, CD-1, and MF CD, but it is
indeed better than CD-1.

While CD-1 is good for some purposes, it is substan-
tially different from the true likelihood gradient. This
can be seen by drawing samples from an RBM that
was trained with CD-1. Figure 4 shows those next to
samples drawn from an RBM that was trained using
PCD. It is clear that PCD is a better approximation
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Figure 1. Modeling MNIST data with 25 hidden units (ex-
act log likelihood)
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Figure 2. Modeling MNIST data with 500 hidden units
(approximate log likelihood)
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Figure 3. Classification of MNIST data

128sec 4min 8min 17min 34min 68min 2hr 4hr
−70

−65

−60

−55

−50

−45

CD−10

CD−1

MF CD

PCD

te
st

 d
at

a 
lo

g 
lik

el
ih

oo
d 

pe
r 

ca
se

training time (logarithmic)

Figure 5. Modeling artificial data

to the likelihood gradient.

Classification is a particularly interesting task because
it gives an indication of how well the model can extract
relevant features from the input. RBMs are most of-
ten used as feature detectors, and this finding suggests
that PCD creates feature detectors that give better
classification than CD-1.

5.2. Modeling Artificial Data

In Figure 5 we see essentially the same as what hap-
pened on the MNIST tasks. MF CD is clearly the
worst of the algorithms, CD-1 works better, and CD-
10 and PCD work best, with CD-10 being preferable
when little time is available and PCD being better if
more time is available.
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Figure 6. Classifying e-mail as spam versus non-spam

This data set was artificially generated, so there was
an infinite amount of data available. Thus, one might
think that the use of weight decay serves no purpose.
However, all four algorithms did work best with some
weight decay. The explanation for this is that CD al-
gorithms are quite dependent on the mixing rate of the
Markov Chain defined by the Gibbs sampler, and that
mixing rate is higher when the parameters of the model
are smaller. Thus, weight decay keeps the model mix-
ing reasonably well, and makes CD algorithms work
better. The effect is strongest for MF CD, which per-
forms only one Gibbs update and does so without in-
troducing noise. MF CD worked best with a weight
decay strength of 10−3. CD-1 does introduce some
noise in the update procedure, and required less weight
decay: 3 · 10−4. CD-10 performs more updates, and
is less dependent on the mixing rate. The best weight
decay value for CD-10 turned out to be approximately
1.3·10−4. Finally, the mixing mechanism used by PCD
is even better, but it is still based on the Gibbs sam-
pler, so it, too, works better with some weight decay.
The best weight decay strength for PCD was approx-
imately 2.5 · 10−5.

5.3. Classifying E-mail Data

In Figure 6 the results on the e-mail classification task
are shown. Because this is a small data set (5,000 data
points in total, i.e. only 1000 test data points), we see
that the error bars on the performace are quite large.
Thus, we cannot carefully compare the performance of
CD-1, CD-10, and PCD. We only see that MF CD is,
again, not the best method.

However, we can conclude that RBMs can be used for
this task, too, with acceptable performance, and that
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Figure 4. Samples from an RBM that was trained using PCD (left) and an RBM that was trained using CD-1 (right).
Clearly, CD-1 did not produce an accurate model of the MNIST digits. Notice, however, that some of the CD-1 samples
vaguely resemble a three.
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Figure 7. Modeling horse segmentation data

PCD is a reasonable choice of training algorithm.

5.4. Modeling Horse Contours

In Figure 7 we see a different picture: PCD is not
the best algorithm here. The most plausible explana-
tion is that although the same amount of training time
was used, the data is much bigger: 1024 visible units,
and 500 hidden units. Thus, there were 20 times as
many connections in the RBM to be learned, which
also means processing one mini-batch took more than
10 times as long as for the artificial data. Thus, we

are essentially looking at a short optimization. Above,
we already saw that CD-10 is better than PCD when
little time is available, and that is confirmed here. We
conjecture that, given significantly more training time,
PCD would perform better than the other algorithms.

5.5. PCD on Fully Visible MRFs

To verify that PCD also works well with other mod-
els, we did some experiments with fully visible, fully
connected MRFs. To be able to have exact test data
likelihood evaluation, we made the MRFs small, and
modeled 5 by 5 pixel patches from the MNIST digit
images.

Pseudo-Likelihood (PL) training works reasonably
well on this data set, but it does not produce the best
probability models. Presumably this is simply because
PL optimizes a different objective function. As a re-
sult, PL needed early stopping to prevent diverging
too much from the data likelihood objective function,
and the optimal learning rates are more or less in-
versely proportional to the duration of the optimiza-
tion. Even with only a few seconds training time, the
best test data likelihood is already achieved: −5.35.

PCD training does go more in the direction of the data
likelihood function - asymptotically it gives its exact
gradient. Thus, PCD did profit from having more time
to run. Figure 8 shows the performance. The asymp-
totic value of approximately −5.15 does seem to be
the best possible model: we also used exact gradient
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Figure 8. Training a fully visible MRF

optimization (which is slow, but possible), and this
equally ended up with test data log likelihood of −5.15.
However, the entropy of the training data distribution
is significantly less than 5.15 ’nats’: it is 4.78 nats.
This difference is probably due to the fact that the
model has insufficient complexity to completely learn
the training data distribution.

Incidentally, the training data log likelihood is only
0.004 better than the test data log likelihood - pre-
sumably because this data set is quite large and the
model is quite small.

6. Discussion and Future Work

One issue not investigated is the use of weight decay. It
is quite possible that the more approximate algorithms
(such as CD-1 and MF CD) would benefit more from
weight decay than CD-10 and PCD. In an RBM with
zero weights, CD-1 and MF CD give exactly the like-
lihood gradient, and in general, in RBMs with small
weights those algorithms give better approximations
to the likelihood gradient than in RBMs with large
weights. Weight decay keeps the weights small, and
thus enables gradient estimates that approximate the
likelihood gradient more closely. For many tasks, how-
ever, large weights may be required for good perfor-
mance, so strong weight decay is undesirable if it can
be avoided.

Also, the amount of training time used in these ex-
periments is insufficient to find the asymptotic per-
formance. In Figure 3 one can see, for example, that
PCD clearly profits from more training time. To find
out what its performance would be with more training
time is future work, but we have seen runs (with more

training time and more hidden units) where as few
as 104 out of the 10,000 test cases were misclassified.
Clearly, this is worth investigating further.

Another issue suggesting future work is that the clas-
sification RBMs in these experiments were not trained
to maximize classification performance. They were
trained to accurately model the joint distribution over
images and labels. It is possible to train classification
RBMs directly for classification performance; the gra-
dient is fairly simple and certainly tractable. A natu-
ral way to use this classification error gradient is after
training the RBM for joint density modeling. How-
ever, in preliminary experiments we found that this
procedure begins to overfit very quickly (often after
improving performance by less than 0.1%), so we did
not include it in this paper. It is, however, still possi-
ble that combining the classification gradient with the
density modeling gradient is a method that could yield
more improvements. This is future work.

The main limitation of PCD is that it appears to re-
quire a low learning rate in order to allow the ”fantasy”
points to be sampled from a distribution that is close to
the stationary distribution for the current weights. A
theoretical analysis of this requirement can be found in
(Yuille, 2004) and (Younes, 1999). Some preliminary
experiments, however, suggest that PCD can be made
to work well even when the learning rate is much larger
than the one suggested by the asymptotic justification
of PCD and we are currently exploring variations that
allow much larger learning rates.
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Abstract

Reinforcement learning (RL) methods based
on least-squares temporal difference (LSTD)
have been developed recently and have shown
good practical performance. However, the
quality of their estimation has not been well
elucidated. In this article, we discuss LSTD-
based policy evaluation from the new view-
point of semiparametric statistical inference.
In fact, the estimator can be obtained from a
particular estimating function which guaran-
tees its convergence to the true value asymp-
totically, without specifying a model of the
environment. Based on these observations,
we 1) analyze the asymptotic variance of an
LSTD-based estimator, 2) derive the opti-
mal estimating function with the minimum
asymptotic estimation variance, and 3) derive
a suboptimal estimator to reduce the com-
putational burden in obtaining the optimal
estimating function.

1. Introduction

Reinforcement learning (RL) is a machine learning
framework based on reward-related interactions with
environments (Sutton & Barto, 1998). In many RL
methods, policy evaluation, in which a value function
is estimated from sample trajectories, is an important
step for improving a current policy. Since RL problems
often involve high-dimensional state spaces, the value
functions are often approximated by low-dimensional

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

parametric models. Linear function approximation
has mostly been used due to their simplicity and com-
putational convenience.

To estimate the value function with a linear model,
an online procedure called temporal difference (TD)
learning (Sutton & Barto, 1998) and a batch proce-
dure called least-squares temporal difference (LSTD)
learning are widely used (Bradtke & Barto, 1996).
LSTD can achieve fast learning, because it uses en-
tire sample trajectories simultaneously. Recently, ef-
ficient procedures for policy improvement combined
with policy evaluation by LSTD have been developed,
and have shown good performance in realistic prob-
lems. For example, the least squares policy itera-
tion (LSPI) method maximizes the Q-function esti-
mated by LSTD (Lagoudakis & Parr, 2003), and the
natural actor-critic (NAC) algorithm uses the natu-
ral policy gradient obtained by LSTD (Peters et al.,
2005). Although variance reduction techniques have
been proposed for other RL algorithms (Greensmith
et al., 2004; Mannor et al., 2007), the important issue
of how to evaluate and reduce the estimation variance
of LSTD learning remains unresolved.

In this article, we discuss LSTD-based policy evalua-
tion in the framework of semiparmetric statistical in-
ference, which is new to the RL field. Estimation of
linearly-represented value functions can be formulated
as a semiparametric inference problem, where the sta-
tistical model includes not only the parameters of in-
terest but also additional nuisance parameters with in-
numerable degrees of freedom (Godambe, 1991; Amari
& Kawanabe, 1997; Bickel et al., 1998). We approach
this problem by using estimating functions, which pro-
vide a well-established method for semiparametric es-
timation (Godambe, 1991). We then show that the in-
strumental variable method, a technique used in LSTD
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learning, can be constructed from an estimating func-
tion which guarantees its consistency (asymptotic lack
of bias) by definition.

As the main results, we show the asymptotic esti-
mation variance in a general instrumental variable
method (Lemma 2) and the optimal estimating func-
tion that yields the minimum asymptotic variance of
the estimation (Theorem 1). We also derive a sub-
optimal instrumental variable, based on the idea of
the c-estimator (Amari & Kawanabe, 1997), to reduce
the computational difficulty of estimating the optimal
instrumental variable (Theorem 2). As a proof of con-
cept, we compare the mean squared error (MSE) of
our new estimators with that of LSTD on a simple
example of the Markov decision process (MDP).

2. Background

2.1. MDPs and Policy Evaluation

RL is an approach to finding an optimal policy for
sequential decision-making in an unknown environ-
ment. We consider a finite MDP, which is defined as
a quadruple (S,A, p, r): S is a finite set of states; A
is a finite set of actions; p(st+1|st, at) is the transition
probability to a next state st+1 when taking an action
at at state st; and r(st, at, st+1) is a reward received
with the state transition. Let π(st, at) = p(at|st) be a
stochastic policy that the agent follows. We introduce
the following assumption concerning the MDP.

Assumption 1. An MDP has a stationary state dis-
tribution dπ(s) = p(s) under the policy π(st, at).

There are two major choices in definition of the state
value function: discounted reward accumulation and
average reward (Bertsekas & Tsitsiklis, 1996). With
the former choice, the value function is defined as

V π(s) :=

∞∑

t=0

E
π

[
γtrt+1|s0 = s

]
, (1)

where E
π[·|s0 = s] is the expectation with respect

to the sample trajectory conditioned on s0 = s and
rt+1 := r(st, at, st+1). γ ∈ [0, 1) is the discount factor.
With the latter choice, on the other hand, the value
function is defined as

V π(s) :=

∞∑

t=0

E
π [rt+1 − r̄|s0 = s] , (2)

where r̄ :=
∑

s∈S

∑

a∈A

∑

s′∈S

dπ(s)π(s, a)p(s′|s, a)r(s, a, s′)

denotes the average reward over the stationary distri-
bution.

According to the Bellman equation, eq. (2) can be

rewritten as

V π(st) =
∑

st+1∈S

p(st+1|st)r̄(st, st+1)− r̄

+
∑

st+1∈S

p(st+1|st)V
π(st+1), (3)

where
p(st+1|st) :=

∑

at∈A

π(st, at)p(st+1|st, at) and

r̄(st, st+1) :=

P

at∈A

π(st,at)p(st+1|st,at)r(st,at,st+1)

p(st+1|st)
.

Throughout this article, we assume that the linear
function approximation is faithful, and discuss only
asymptotic estimation variance. (In general cases,
bias becomes non-negligible and selection of basis
functions is more important.)

Assumption 2. The value function can be repre-
sented as a linear function of some features:

V π(st) = φ(st)
⊤θ = φ⊤

t θ, (4)

where φ(s) : S → Rm is a feature vector and θ ∈ Rm

is a parameter vector.

Here, the symbol ⊤ denotes a transpose and the di-
mensionality of the feature vector m is smaller than the
number of states |S|. Substituting eq. (4) for eq. (3),
we obtain the following equation






φt −

∑

st+1∈S

p(st+1|st)φt+1







⊤

θ =

∑

st+1∈S

p(st+1|st)r̄(st, st+1)− r̄. (5)

When the matrix

E
π

" 

φt−
P

st+1∈S

p(st+1|st)φt+1

! 

φt−
P

st+1∈S

p(st+1|st)φt+1

!

⊤

#

is non-singular and p(st+1|st) is known, we can easily
obtain the parameter θ. However, since p(st+1|st)
is unknown in normal RL settings, we have to
estimate this parameter from the sample trajectory
{s0, a0, r1, · · · , sN−1, aN−1, rN} alone, instead of
using it directly.

Eq. (5) can be rewritten as

yt = x⊤
t θ + ǫt, (6)

where yt, xt and ǫt are defined as

yt := rt+1 − r̄, xt := φt − φt+1

ǫt :=






φt+1 −

∑

st+1∈S

p(st+1|st)φt+1







⊤

θ

+ rt+1 −
∑

st+1∈S

p(st+1|st)r̄(st, st+1). (7)
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When we use the discounted reward accumulation for
the value function, eq. (6) also holds with

yt := rt+1, xt := φt − γφt+1

ǫt := γ






φt+1 −

∑

st+1∈S

p(st+1|st)φt+1







⊤

θ

+ rt+1 −
∑

st+1∈S

p(st+1|st)r̄(st, st+1). (8)

Because E
π[ǫt] = 0, eq. (6) can be seen as a linear

regression problem, where x, y and ǫ are an input, an
output and observation noise, respectively (Bradtke
& Barto, 1996). Note that

E
π[ǫtg(st, st−1, · · · , s0)] = 0 (9)

holds for any function g(st, st−1, · · · , s0) because of
the Markov property. The regression problem (6) has
an undesirable property, however, which is known as
an “error-in-variable problem” (Young, 1984): the in-
put xt and observation noise variables ǫt are mutually
dependent.

It is not easy to solve such an error-in-variable problem
in a rigorous manner; the simple least-squares method
lacks consistency. Therefore, LSTD learning has used
the instrumental variable method (Bradtke & Barto,
1996), a standard method to solve the error-in-variable
problem that employs an “instrumental variable” to
remove the effects of correlation between the input and
the observation noise. When
X = [x0,x1, · · · ,xN−1] and y = [y0, y1, · · · , yN−1]

⊤,
the estimator of the instrumental variable method is
given by

θ̂ = [ZX⊤]−1[Zy], (10)

where Z = [z0,z1, · · · ,zN−1], and zt is an instrumen-
tal variable that is assumed to be correlated with the
input xt but uncorrelated with the observation noise
ǫt.

2.2. Semiparametric Model and Estimating

Functions

In the error-in-variable problem, if it is possible to as-
sume a reasonable model with a small number of pa-
rameters on the joint input-output probability p(x, y),
a proper estimator with consistency can be obtained
by the maximum likelihood method. Since the transi-
tion probability p(st+1|st) is unknown and usually dif-
ficult to estimate, it is practically impossible to con-
struct such a parametric model. Let kx and kǫ be
parameters which characterize the input distribution

p(x) and the conditional distribution p(y|x) of output
y given x, respectively. Then, the joint distribution
becomes

p(x, y;θ,kx,kǫ) = p(y|x;θ,kǫ)p(x;kx). (11)

We would like to estimate the parameter θ represent-
ing the value function in the presence of the extra un-
knowns kx and kǫ, which can have innumerable de-
grees of freedom. Statistical models which contain
such (possibly infinite-dimensional) nuisance param-
eters in addition to parameters of interest are called
semiparametric (Bickel et al., 1998). In semiparamet-
ric inference, one established way of estimating param-
eters is to employ an estimating function (Godambe,
1991), which can give a consistent estimator of θ with-
out estimation of the nuisance parameters kx and kǫ.
Now we begin with a short overview of the estimating
function in the simple i.i.d. case, and then discuss the
Markov chain case.

We consider a general semiparametric model p(x|θ,κ),
where θ is an m-dimensional parameter and κ is a
nuisance parameter. An m-dimensional vector func-
tion f(x;θ) is called an estimating function when it
satisfies the following conditions for any θ, κ;

E[f(x;θ)|θ,κ] = 0 (12)

det

∣
∣
∣
∣
E

[
∂

∂θ
f(x;θ)

∣
∣
∣θ,κ

]∣
∣
∣
∣
6= 0 (13)

E
[
||f(x;θ)||2|θ,κ

]
<∞, (14)

where E[·|θ,κ] denotes the expectation with respect
to x, which obeys the distribution p(x;θ,κ). The
notations det | · | and || · || denote the determinant
and the Euclidean norm, respectively. Consider that
i.i.d. samples {x0,x1, · · · ,xN−1} are obtained from
the true model p(x;θ = θ∗,κ = κ∗) = p(x;θ∗,κ∗)
for the observed trajectory. If there is an estimating
function f , by solving the estimating equation

N−1∑

t=0

f(xt; θ̂) = 0, (15)

we can obtain an estimator θ̂ with good asymptotic
properties. A solution of eq. (15) is called an “M-
estimator” in statistics; the M-estimator is consistent,
i.e., converges to the true parameter θ∗ regardless of
the true nuisance parameter κ∗ when the sample size
N reaches infinity. In addition, the asymptotic vari-
ance AV[θ̂] is given by

AV[θ̂] = E[(θ̂ − θ∗)(θ̂ − θ∗)⊤] =
1

N
A−1MA−⊤,

(16)
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where A = E
[

∂
∂θ

f(x;θ)|θ∗,κ∗
]

and M = E
[
f(x;θ)f⊤(x;θ)|θ∗,κ∗

]
. The symbol

−⊤ denotes transpose of the inverse matrix. We
omit the time index t, unless it is necessary to clar-
ify. Note that the asymptotic variance AV depends on
the true parameters, θ∗ and κ∗, not on the samples
{x0,x1, · · · ,xN−1}.
The notion of the estimating function can be ex-
tended to cases in which samples are given by a certain
stochastic process (Godambe, 1985). In the semipara-
metric model for policy evaluation, under Assump-
tion 1, there exist sufficient conditions of estimating
functions which are almost the same as eqs. (12) - (14).
The instrumental variable method is a type of esti-
mating function method for semiparametric problems
where the unknown distribution is given by eq. (11).

Lemma 1. Suppose {xt, yt} is given by eq. (7) or (8),
and zt is given by a function of {st, · · · , st−T }. If
E

π[ztx
⊤
t ] is nonsingular and E

π
[
||zt(x

⊤
t θ − yt)||2

]
is

finite, then

zt(x
⊤
t θ − yt) (17)

is an estimating function for the parameter θ. There-
fore, the estimating equation is given by

N−1∑

t=0

zt(x
⊤
t θ − yt) = 0. (18)

Proof For all t, the conditions corresponding to (13)
and (14) are satisfied by the assumptions, and the con-
dition (12) is satisfied as
E

π[zt(x
⊤
t θ − yt)] = E

π[ztǫt] = 0 from the property in
eq. (9). (Q.E.D.)

LSTD is specifically an instrumental variable method
in which the feature vector zt = φ(st) = φt is used as
an instrumental variable:

fLSTD = φt(x
⊤
t θ − yt). (19)

The solution of the estimating equation is an M-
estimator, and its asymptotic variance is given as fol-
lows.

Lemma 2. Let zt be a function of {st, ..., st−T } sat-
isfying the two conditions in Lemma 1 and ǫ∗t =
x⊤

t θ∗ − yt be the residual for the true parameter θ∗.

Then, the solution θ̂ of the estimating equation (18)
has the asymptotic variance

AV[θ̂] =
1

N
A−1

IV MIVA−⊤
IV , (20)

where AIV = Ed[ztx
⊤
t ], MIV = Ed[(ǫ

∗
t )

2ztz
⊤
t ]. Ed[·]

denotes the expectation when the sample trajectory
starts from the stationary distribution dπ(s0).

1

Proof The estimating equation (18) can be ex-
pressed as

Zy = ZX⊤θ̂ (21)

where Z = [z0, · · · ,zN−1], X = [x0, · · · ,xN−1], y =
[y0, · · · , yN−1]

⊤. On the other hand, from eq. (6), the
left hand side of eq. (21) is equal to ZX⊤θ∗ +ZX⊤ǫ,
where ǫ = [ǫ∗0, · · · , ǫ∗N−1]

⊤. Thus the asymptotic vari-

ance of the estimator θ̂ is obtained as

E
π[(θ̂ − θ∗)(θ̂ − θ∗)⊤] = E

π[(ZX⊤)−1Zǫǫ⊤Z⊤(XZ⊤)−1]

N→∞−→ A−1
IV

1

N2
E

π[Zǫǫ⊤Z⊤]A−⊤
IV

where we used the fact that the matrix ZX⊤ has the
limit

1

N
(ZX⊤) =

1

N

N−1∑

t=0

ztx
⊤
t

N→∞−→ AIV.

Also, the matrix E
π[Zǫǫ⊤Z⊤] has the following limit:

1

N
E

π[Zǫǫ⊤Z⊤] =
1

N

N−1∑

t=0

E
π[(ǫ∗t )

2ztz
⊤
t ]

N→∞−→ MIV,

where we used the property in eq. (9). Therefore, we
have

E
π[(θ̂ − θ∗)(θ̂ − θ∗)⊤]

N→∞−→ 1

N
A−1

IV MIVA−⊤
IV .

(Q.E.D.)

To summarize, if we have an instrumental variable
which satisfies the assumptions in Lemmas 1 and 2,
we can obtain an M-estimator from the estimating
equation (18) with the asymptotic variance eq. (20).
When more than one instrumental variable exists, it
is appropriate to choose the one whose estimator has
the minimum asymptotic variance.

3. Main Results

In this section, we show that estimating functions for
the semiparametric model of policy evaluation are lim-
ited to the type of equation used in the instrumental
variable method. Furthermore, we derive the optimal

1We remark that the definitions of AIV and MIV do not
depend on the t. Nevertheless, we keep the time index t

for clarification.

1075



A Semiparametric Statistical Approach to Model-Free Policy Evaluation

instrumental variable having the minimum asymptotic
variance of the estimation.

We first remark on the invariance property of the in-
strumental variable method.

Lemma 3. The value function estimation
V̂ (st) = φ⊤

t θ̂ = φ⊤
t [ZX⊤]−1[Zy] is invariant with

respect to the application of any regular linear trans-
formation to either the instrumental variable zt or the
basis functions φt.

Proof Assume that the instrumental variable and
the basis functions are both transformed by any
regular matrices Wz and Wφ as z′

t = Wzzt and
φ′

t = Wφφt. Noting that the linear transformation
of φt yields the linear transformation of the input
x′

t = Wφxt, the estimator of the instrumental vari-
able method given by eq. (10) becomes

θ̂′ = [Z′(X ′)⊤]−1[Z′y] = W−1
φ θ̂. This means that

the estimated value function is invariant as
(φ′

t)
⊤θ̂′ = φ⊤

t θ̂. (Q.E.D.)

When the basis functions span over the whole space of
functions of the state, any set of basis functions can
be represented by applying a linear transformation to
another set of basis functions. This observation leads
to the following Corollary.

Corollary 1. When the basis functions φt span the
whole space of functions of the state, the value function
estimation is invariant with respect to the choice of
basis functions and of the instrumental variable.

An instrumental variable may depend not only on
the current state st, but also on the previous states
{st−1, · · · , st−T }, because such an instrumental vari-
able does not violate the condition, cov[zt, ǫt] = 0.
However, we do not need to consider such instrumen-
tal variables, as the following Lemma shows.

Lemma 4. Let zt (st, · · · , st−T ) be any instrumental
variable depending on the current and previous states
which satisfies the conditions in Lemmas 1 and 2.
Then, there is necessarily an instrumental variable de-
pending only on the current state whose corresponding
estimator has equal or minimum asymptotic variance.

Proof We show that the conditional expectation
z̃t = E

π[zt|st] which depends only on the current state
st, gives an equally good or better estimator. The
matrices in the asymptotic variance, eq. (20), can be
calculated as

Az = Ed

[
z̃tx

⊤
t

]
+ Ed

[
(z̃t − zt)x

⊤
t

]
= Az̃

Mz = Ed[(ǫ
∗
t )

2(z̃t + zt − z̃t)(z̃t + zt − z̃t)
⊤]

= Mz̃ + Ed[(ǫ
∗
t )

2(zt − z̃t)(zt − z̃t)
⊤],

where we have used eq. (9). This implies that

AV[θ̂z] =
1

N
A−1

z MzA−⊤
z � 1

N
A−1

z̃ Mz̃A−⊤
z̃ = AV[θ̂z̃].

(Q.E.D.)

Here, the inequality � denotes the semipositive def-
initeness of the subtraction. Now, we consider the
general form of estimating functions for inference of
the value function. In the following, we consider only
‘admissible’ estimating functions. More precisely, we
discard ‘inadmissible’ estimating functions whose esti-
mators are always inferior to those of other estimat-
ing functions in the sense of asymptotic variance. To
simplify analysis, we only consider the limited set of
estimating functions which are defined on a one-step
sample {s, a, s′}.
Proposition 1. For the semiparametric model of
eqs. (6), (7) or eqs. (6), (8), all admissible estimating
functions of only the one-step sample {s, a, s′} must
have the form of f = z(y − x⊤θ), where z is any
function which does not depend on s′ and satisfies the
assumption in Lemma 1.

Proof Due to space limitation, we will just outline
the proof. To be an estimating function, the function
f must satisfy
Ed[f ]=

∑

s∈S

dπ(s)
∑

s′∈S

∑

a∈A

p(s′|s, a)π(s, a)f(s, a, s′) = 0.

Because we can prove that the stationary distribution
dπ(s) takes any probability vector,

∑

s∈S

dπ(s)v(s) = 0

implies that v(s) = 0 for any state s, where
v(s) :=

∑

s′∈S

∑

a∈A

p(s′|s, a)π(s, a)f(s, a, s′). Further-

more, the Bellman equation (6) holds, whatever the
p(s′|s, a) is. To fulfil v = 0, f must have the
form of f = z(y − x⊤θ) + h, where z does not de-
pend on s′ or a, and h is any function that satisfies
∑

a∈A

π(s, a)h(s, a, s′) = 0. However, the addition of

such a function h necessarily enlarges the asymptotic
variance of the estimation. Therefore, the admissi-
ble estimating function is restricted to the form of
f = z(y − x⊤θ). (Q.E.D)

We are currently working on the conjecture that
whether Proposition 1 can be extended to general es-
timating functions depend on all previous states and
actions. If this is true, from Lemma 4, it is sufficient to
consider the instrumental variable method with zt de-
pending only on the current state st for the semipara-
metric inference problem. Therefore, we next discuss
the optimal instrument variable of this type in terms of
asymptotic variance, which corresponds to the optimal
estimating function.
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Algorithm 1 The pseudo code of gLSTD.

gLSTD(D, φ)
// D = {s0, r1, · · · , sN−1, rN}: Sample sequence
// φ: Basis functions
// Calculate the initial parameter and its residual

θ̂0 ←
[

N−1∑

t=0
φtx

⊤
t

]−1 [
N−1∑

t=0
φtyt

]

ǫ̂t ← x⊤
t θ̂0 − yt

// Calculate the estimator ˜Eπ[(ǫ̂t)2|st], ˜Eπ[xt|st]
// of the conditional expectations
// and construct the instrumental variable

ẑt ← ˜Eπ[(ǫ̂t)2|st]−1 ˜Eπ[xt|st]
// Calculate the parameter

θ̂g ←
[

N−1∑

t=0
ẑtx

⊤
t

]−1 [
N−1∑

t=0
ẑtyt

]

Return θ̂g

Theorem 1. The optimal instrumental variable gives
the minimum asymptotic variance

z∗
t =







E
π

[
(ǫ∗t )

2|st

]−1
(φt − γE

π[φt+1|st])

(discounted reward accumulation)

E
π

[
(ǫ∗t )

2|st

]−1
(φt − E

π[φt+1|st])

(average reward).

(22)

The proof is given in Appendix A. Note that the def-
inition of the optimal instrumental variable includes
both the residual ǫ∗t and the conditional expectations
E

π[φt+1|st] and E
π[(ǫ∗t )

2|st]. To make this estima-
tor practical, we replace the residual ǫ∗t with that of
the LSTD estimator, and approximate the expecta-
tion, E

π[φt+1|st] and E
π[(ǫ∗t )

2|st], by using function
approximation. We call this procedure “gLSTD learn-
ing” (see Algorithm 1 for its pseudo code).

To avoid estimating the functions depending on the
current state, E

π[φt+1|st] and E
π[(ǫ∗t )

2|st], which ap-
pear in the instrumental variable, we simply replace
them by constants. When z is an instrumental vari-
able, addition of any constant value to z, z′ = z + c,
leads to another valid instrumental variable; because
of Lemma 1, it is easily confirmed that
fc = (zt + c)(x⊤

t θ − yt) is an estimating function.
Therefore, obtaining the optimal constant c yields a
suboptimal instrumental variable within instrumental
variables produced by constant shifts.

Theorem 2. The optimal shift is given by

c∗ := −Ed[(ǫ
∗
t )

2zt]− Ed[(ǫ
∗
t )

2ztz
⊤
t ]Ed[xtz

⊤
t ]−1

Ed[xt]

Ed[(ǫ∗t )
2]− Ed[(ǫ∗t )

2z⊤
t ]Ed[xtz

⊤
t ]−1Ed[xt]

.

(23)

Algorithm 2 The pseudo code of LSTDc

LSTDc(D, φ)
// D = {s0, r1, · · · , sN−1, rN}: Sample sequence
// φ: Basis functions
// Calculate the initial parameter and its residual

θ̂0 ←
[

N−1∑

t=0
φtx

⊤
t

]−1 [
N−1∑

t=0
φtyt

]

ǫ̂t ← x⊤
t θ̂0 − yt

// Construct the suboptimal
// instrumental variable with optimal shift

ĉ← −

"

N−1
P

t=0

ǫ̂2
t
φt

#

−

"

N−1
P

t=0

ǫ̂2
t
φtφ

⊤

t

#"

N−1
P

t=0

xtφ
⊤

t

#

−1
"

N−1
P

t=0

xt

#

"

N−1
P

t=0

ǫ̂2
t

#

−

"

N−1
P

t=0

ǫ̂2
t
φ⊤

t

#"

N−1
P

t=0

xtφ
⊤

t

#

−1
"

N−1
P

t=0

xt

#

ẑt = φt + ĉ

//Calculate the parameter

θ̂c ←
[

N−1∑

t=0
ẑtx

⊤
t

]−1 [
N−1∑

t=0
ẑtyt

]

Return θ̂c

1 2 3 4

r = 0 r =1 r =0.5 r =0

Figure 1. A four-state MDP.

The proof is given in Appendix B. In eq. (23), however,
the residual ǫ∗t is again unknown; hence, we need to
approximate this, too, as in the gLSTD learning. We
call this procedure “LSTDc learning” (see Algorithm 2
for its pseudo code).

4. Simulation Experiments

So far, we have discussed the asymptotic variance un-
der the assumption that we have an infinite number of
samples. In this section, we evaluate the performance
of the proposed estimator in a practical situation with
a finite number of samples. We use an MDP defined
on a simple Markov random walk, which was also used
in a previous study (Lagoudakis & Parr, 2003). This
MDP incorporates a one-dimensional chain walk with
four states (Figure 1). Two actions, “left”(L) and
“right”(R), are available at every state. Rewards 1
and 0.5 are given when states ‘2’ and ‘3’ are visited,
respectively.

We adopt the simplest direct representation of states;
the state variable took s = 1, s = 2, s = 3 or s = 4,
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Figure 2. Simulation result.

when the corresponding state was visited. The value
function was defined as the average reward, eq. (2),
and was approximated by a linear function with a
three-dimensional basis function: φ(s) = [s, s2, s3]⊤.
The policy was set at random, and at the beginning
of each episode an initial state was randomly selected
according to the stationary distribution of this Markov
chain.

Under these conditions, we performed 100 episodes
each of which consisted of 100 random walk steps.
We evaluated the “mean squared error” (MSE) of the
value function, i.e.,

∑

i∈{1,2,3,4}

dπ(i)|V̂ (i)− V ∗(i)|2;

where V̂ and V ∗ denote V̂ (i) = φ(s = i)⊤θ̂

and V ∗(i) = φ(s = i)⊤θ∗, respectively.

Figure 2 shows box-plots of the MSEs of LSTD,
LSTDc, and gLSTD. For this example, estimators of
the conditional expectations in gLSTD can be calcu-
lated by sample average in each state, because there
were only four discrete states. In continuous state
problems, however, estimation of such conditional ex-
pectations would become much harder.

In Figure 2, the y-axis denotes the MSE of the value
function. The center line and the upper and lower sides
of each box denote the median of MSEs and the upper
and lower quartiles, respectively. The number above
each box represents the average MSE. There is signif-
icant difference between the MSE of LSTD and those
of LSTDc and gLSTD. The estimators for LSTDc and
for gLSTD both achieved a much smaller MSE than
that for the ordinary LSTD.

5. Conclusion

In this study, we have discussed LSTD-based policy
evaluation in the framework of semiparametric statis-
tical inference. We showed that the standard LSTD
algorithm is indeed an estimating function method

which is guaranteed to be consistent regardless of the
stochastic properties of the environments. Based on
the optimal estimating functions in the two classes of
estimating functions, we constructed two new policy
evaluation methods called gLSTD and LSTDc. We
also evaluated the asymptotic variance of the general
instrumental variable methods for MDP. Moreover, we
showed that the form of possible estimating functions
for the value function estimation is restricted to be the
same as those used in the instrumental variable meth-
ods. We then demonstrated, through an experiment
using a simple MDP problem, that the gLSTD and
LSTDc estimators reduce substantially the asymptotic
variance of the LSTD estimator.

Further work is necessary to construct procedures
for policy updating based on evaluation by gLSTD
and LSTDc. It should be possible to incorporate
our proposed ideas into the least-squares policy itera-
tion (Lagoudakis & Parr, 2003) and the natural actor-
critic method (Peters et al., 2005).

A. Proof of Theorem 1: The Optimal

Instrumental Variable

As shown in eq. (20), the asymptotic variance of the

estimator θ̂z is given by

AV[θ̂z] =
1

N
A−1

z MzA−⊤
z ,

where Az := Ed[ztx
⊤
t ] and Mz := Ed[(ǫ

∗
t )

2ztz
⊤
t ]. If

we add a small change δt(st, · · · , st−T ) to the instru-
mental variable zt, the matrices become

Az+δ = Az + Ed[δtx
⊤
t ],

Mz+δ = Mz + Ed[(ǫ
∗
t )

2(δtz
⊤
t + ztδ

⊤
t )].

Therefore, the deviation of the trace of asymptotic
variance can be calculated as

Tr
[
A−1

z+δMz+δA−⊤
z+δ

]
− Tr

[
A−1

z MzA−⊤
z

]

=− Tr
{
A−1

z Ed

[
δtx

⊤
t

]
A−1

z MzA−⊤
z

}

− Tr
{
A−1

z Ed

[
xtδ

⊤
t

]
A−1

z MzA−⊤
z

}

+ Tr
{
A−1

z Ed

[
(ǫ∗t )

2
(
ztδ

⊤
t + δz⊤

t

)]
A−⊤

z

}

=2Ed

[
δ⊤

t A−⊤
z A−1

z E
π

[
(ǫ∗t )

2|st, · · · , st−T

]
zt

]

− 2Ed

[
δ⊤

t A−⊤
z A−1

z MzA−⊤
z E

π[xt|st, · · · , st−T ]
]
.

By using the condition that the deviation becomes 0

for any small change δt(st, · · · , st−T ), the optimal in-
strumental variable can be obtained as

z∗
t = E

π
[
(ǫ∗t )

2|st

]−1
MzA−⊤

z E
π[xt|st].
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Considering Lemma 3, the optimal instrumental vari-
able is restricted as

z∗
t = E

π
[
(ǫ∗t )

2|st

]−1
E

π[xt|st],

or as its transformation by any regular matrix.

Now, we show that eq. (22) also satisfies the global
optimality. Substituting z∗

t to the matrix Az∗ , we
obtain

Az∗ = Mz∗A−⊤
z∗ F ,

where

F := Ed

[
E

π[(ǫ∗t )
2|st]

−1
E

π[xt|st]E
π[x⊤

t |st]
]
.

Furthermore, the matrices at z∗
t + δt become

Az∗+δ = Mz∗A−⊤
z∗ F + Ed[xtδ

⊤
t ],

Mz∗+δ = Mz∗A−⊤
z∗ FA−1

z∗ Mz∗ + Mz∗A−⊤
z∗ Ed[xtδ

⊤
t ]

+ Ed[δtx
⊤
t ]A−1

z∗ Mz∗ + Ed[(ǫ
∗
t )

2δtδ
⊤
t ].

Therefore,

A−1
z∗+δMz∗+δA−⊤

z∗+δ −A−1
z∗ Mz∗A−⊤

z∗

= A−1
z∗+δ(Mz∗+δ −Az∗+δA−1

z∗ Mz∗A−⊤
z∗ A⊤

z∗+δ)A−⊤
z∗+δ

= A−1
z∗+δ(Ed[(ǫ

∗
t )

2δtδ
⊤
t ]− Ed[δtx

⊤
t ]F−1

Ed[xtδ
⊤
t ])A−⊤

z∗+δ

= A−1
z∗+δ

{

Ed

[

E
π[(ǫ∗t )

2|st]

×
(
δt − E

π[(ǫ∗t )
2|st]

−1
Ed[δtx

⊤
t ]F−1

E
π[xt|st]

)

×
(
δt − E

π[(ǫ∗t )
2|st]

−1
Ed[δtx

⊤
t ]F−1

E
π[xt|st]

)⊤
]

}

A−⊤
z∗+δ � 0.

The equality holds only when δt(st) ∝ z∗
t . (Q.E.D.)

B. Proof of Theorem 2: The Optimal c

By differentiating the trace of eq. (20), the optimal
constant c must satisfy

Ed[(ǫ
∗
t )

2]c + Ed[(ǫ
∗
t )

2φt] = McA
−⊤
c Ed[xt].

Using the well-known matrix inversion lemma (Horn
& Johnson, 1985), the solution can be obtained as
eq. (23).

In addition, the global optimality among those applied
by constant shifts can be proved using a similar argu-
ment to that in Appendix A. (Q.E.D.)
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Abstract

In dimensionality reduction approaches, the
data are typically embedded in a Euclidean
latent space. However for some data sets this
is inappropriate. For example, in human mo-
tion data we expect latent spaces that are
cylindrical or a toroidal, that are poorly cap-
tured with a Euclidean space. In this paper,
we present a range of approaches for embed-
ding data in a non-Euclidean latent space.
Our focus is the Gaussian Process latent vari-
able model. In the context of human motion
modeling this allows us to (a) learn models
with interpretable latent directions enabling,
for example, style/content separation, and
(b) generalise beyond the data set enabling
us to learn transitions between motion styles
even though such transitions are not present
in the data.

1. Introduction

Dimensionality reduction is a popular approach to
dealing with high dimensional data sets. It is of-
ten the case that linear dimensionality reduction, such
as principal component analysis (PCA) does not ad-
equately capture the structure of the data. For this

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

reason there has been considerable interest in the ma-
chine learning community in non-linear dimensionality
reduction. Approaches such as locally linear embed-
ding (LLE), Isomap and maximum variance unfold-
ing (MVU) (Roweis & Saul, 2000; Tenenbaum et al.,
2000; Weinberger et al., 2004) all define a topology
through interconnections between points in the data
space. However, if a given data set is relatively sparse
or particularly noisy, these interconnections can stray
beyond the ‘true’ local neighbourhood and the result-
ing embedding can be poor.

Probabilistic formulations of latent variable models do
not usually include explicit constraints on the embed-
ding and therefore the natural topology of the data
manifold is not always respected 1. Even with the cor-
rect topology and dimension of the latent space, the
learning might get stuck in local minima if the initial-
ization of the model is poor. Moreover, the maximum
likelihood solution may not be a good model, due e.g.,
to the sparseness of the data. To get better models in
such cases, more constraints on the model are needed.

This paper shows how explicit topological constraints
can be imposed within the context of probabilistic la-
tent variable models. We describe two approaches,
both within the context of the Gaussian process la-
tent variable model (GP-LVM) (Lawrence, 2005). The

1An exception is the back-constrained GP-LVM
(Lawrence & Quiñonero-Candela, 2006) where a con-
strained maximum likelihood algorithm is used to enforce
these constraints.
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first uses prior distributions on the latent space that
encourage a given topology. The second influences
the latent space and optimisation through constrained
maximum likelihood.

Our approach is motivated by the problem of model-
ing human pose and motion for character animation.
Human motion is an interesting domain because, while
there is an increasing amount of motion capture data
available, the diversity of human motion means that
we will necessarily have to incorporate a large amount
of prior knowledge to learn probabilistic models that
can accurately reconstruct a wide range of motions.
Despite this, most existing methods for learning pose
and motion models (Elgammal & Lee, 2004; Grochow
et al., 2004; Urtasun et al., 2006) do not fully exploit
useful prior information, and many are limited to mod-
eling a single human activity (e.g., walking with a par-
ticular style).

This paper describes how prior information can be
used effectively to learn models with specific topologies
that reflect the nature of human motion. Importantly,
with this information we can also model multiple ac-
tivities, including transitions between them (e.g. from
walking to running), even when such transitions are
not present in the training data. As a consequence,
we can now learn latent variable models with training
motions comprising multiple subjects with stylistic di-
versity, as well as multiple activities, such as running
and walking. We demonstrate the effectiveness of our
approach in a character animation application, where
the user specifies a set of constraints (e.g., foot loca-
tions), and the remaining kinematic degrees of freedom
are infered.

2. Gaussian Process Latent Variable

Models (GP-LVM)

We begin with a brief review of the GP-LVM
(Lawrence, 2005). The GP-LVM represents a high-
dimensional data set, Y, through a low dimensional
latent space, X, and a Gaussian process mapping
from the latent space to the data space. Let Y =
[y1, ...,yN ]T be a matrix in which each row is a single
training datum, yi ∈ ℜD. Let X = [x1, ...,xN ]T de-
note the matrix whose rows represent the correspond-
ing positions in latent space, xi ∈ ℜd. Given a covari-
ance function for the Gaussian process, kY (x,x′), the
likelihood of the data given the latent positions is,

p(Y |X, β̄) =
1

Z1
exp

(

−1

2
tr

(
K−1
Y YYT

)
)

, (1)

where Z1 is a normalization factor, KY is known as
the kernel matrix, and β̄ denotes the kernel hyperpa-
rameters. The elements of the kernel matrix are de-

fined by the covariance function, (KY )i,j = kY (xi,xj).
A common choice is the radial basis function (RBF),

kY (x,x′) = β1 exp(−β2

2 ||x− x′||2) +
δ
x,x′

β3

, where the

kernel hyperparameters β̄ = {β1, β2, β3} determine the
output variance, the RBF support width, and the vari-
ance of the additive noise. Learning in the GP-LVM
consists of maximizing (1) with respect to the latent
positions, X, and the hyperparameters, β̄.

When one has time-series data, Y represents a se-
quence of observations, and it is natural to aug-
ment the GP-LVM with an explicit dynamical model.
For example, the Gaussian Process Dynamical Model
(GPDM) models the sequence as a latent stochastic
process with a Gaussian process prior (Wang et al.,
2008) , i.e.,

p(X | ᾱ) =
p(x1)

Z2
exp

(

−1

2
tr

(
K−1
X XoutX

T
out

)
)

(2)

where Z2 is a normalization factor, Xout =
[x2, ...,xN ]T , KX ∈ ℜ(N−1)×(N−1) is the kernel matrix
constructed from Xin = [x1, ...,xN−1], x1 is given an
isotropic Gaussian prior and ᾱ are the kernel hyper-
parameters for KX ; below we use an RBF kernel for
KX . Like the GP-LVM the GPDM provides a gen-
erative model for the data, but additionally it pro-
vides one for the dynamics. One can therefore predict
future observation sequences given past observations,
and simulate new sequences.

3. Top Down Imposition of Topology

The smooth mapping in the GP-LVM ensures that
distant points in data space remain distant in la-
tent space. However, as discussed in (Lawrence &
Quiñonero-Candela, 2006), the mapping in the oppo-
site direction is not required to be smooth. While
the GPDM may mitigate this effect, it often produces
models that are neither smooth nor generalize well
(Urtasun et al., 2006; Wang et al., 2008).

To help ensure smoother, well-behaved models,
(Lawrence & Quiñonero-Candela, 2006) suggested the
use of back-constraints, where each point in the latent
space is a smooth function of its corresponding point
in data space, xij = gj (yi;aj), where {aj}1≤j≤d is
the set of parameters of the mappings. One possible
mapping is a kernel-based regression model, where re-
gression on a kernel induced feature space provides the
mapping,

xij =
N∑

m=1

ajmk(yi,ym) . (3)

This approach is known as the back-constrained GP-
LVM. When learning the back-constrained GP-LVM,
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(a) (b) (c) (d)
Figure 1. When training data contain large stylistic variations and multiple motions, the generic GPDM (a) and the
back-constrained GPDM (b) do not produce useful models. Simulations of both models here do not look realistic. (c,d)
Hybrid model learned using local linearities for smoothness (i.e., style) and backconstraints for topologies (i.e., content).
The training data is composed of 9 walks and 10 runs performed by different subjects and speeds. (c) Likelihood for the
reconstruction of the latent points (d) 3D view of the latent trajectories for the training data in blue, and the automatically
generated motions of Figs. 3 and 4 in green and red respectively.

one needs to determine the hyperparameters of the ker-
nel matrices (for the back-constraints and the covari-
ance of the GP), as well as the mapping weights, {aj}.
(Lawrence & Quiñonero-Candela, 2006) fixed the hy-
perparameters of the back-constraint’s kernel matrix,
optimizing over the remaining parameters.

Nevertheless, when learning human motion data with
large stylistic variations or different motions, nei-
ther GPDM nor back-constrained GP-LVM produce
smooth models that generalize well. Fig. 1 depicts
three 3–D models learned from 9 walks and 10 runs.
The GPDM (Fig. 1(a)) and the back-constrainted
GPDM2 (Fig. 1 (b)) do not generalize well to new runs
and walks, nor do they produce realistic animations.

In this paper we show that with a well designed
set of back-constraints good models can be learned
(Fig. 1(c)). We also consider an alternative approach
to the hard constraints on the latent space arising
from gj (yi;aj). We introduce topological constraints
through a prior distribution in the latent space, based
on a neighborhood structure learned through a gener-
alized local linear embedding (LLE) (Roweis & Saul,
2000). We then show how to incorporate domain-
specific prior knowledge, which allows us to develop
motion models with specific topologies that incorpo-
rate different activities within a single latent space and
transitions between them.

3.1. Locally Linear GP-LVM

The locally linear embedding (LLE) (Roweis & Saul,
2000) preserves topological constraints by finding a
representation based on reconstruction in a low dimen-
sional space with an optimized set of local weightings.
Here we show how the LLE objective can be combined
with the GP-LVM, yielding a locally linear GP-LVM
(LL-GPLVM).

2We use an RBF kernel for the inverse mapping in (3).

The locally linear embedding assumes that each data
point and its neighbors lie on, or close to, a locally
linear patch on the data manifold. The local geome-
try of these patches can then be characterized by lin-
ear coefficients that reconstruct each data point from
its neighbors. This is done in a three step proce-
dure: (1) the K nearest neighbors, {yj}j∈ηi

, of each
point, yi, are computed using Euclidean distance in
the input space, dij = ||yi − yj ||2; (2) the weights
w = {wij} that best reconstruct each data point
from its neighbors are obtained by minimizing Φ(w) =
∑N
i=1 ||yi−

∑

j∈ηi
wijyj ||2; and (3) the latent positions

xi best reconstructed by the weights wij are computed

by minimizing Φ(X) =
∑N
i=1 ||xi −

∑

j∈ηi
wijxj ||2.

In the LLE, the weight matrix w is sparse (only a small
number of neighbors is used), and the two minimiza-
tions can be computed in closed form. In particular,
computing the weights can be done by solving, ∀j ∈ ηi,
the following system,

∑

k

Csimkj wsimij = 1 , (4)

where Csimkj = (yi − yk)
T (yi − yj) if j, k ∈ ηi, and 0

otherwise. Once the weights are computed, they are
rescaled so that

∑

j wij = 1.

The LLE energy function can be interpreted, for a
given set of weights w, as a prior that forces each
latent point to be locally reconstructed by its neigh-
bors,i.e., p(X|w) = 1

Z exp
{
− 1
σ2 Φ(X)

}
, where Z is

a normalization constant, and σ2 represents a global
scaling of the prior. Note that strictly speaking this is
not a proper prior as it is conditioned on the weights
which depend on the training data. Following (Roweis
& Saul, 2000), we first compute the neighbors based
on the Euclidean distance. For each training point yi,
we then compute the weights solving Eq. (4).

Learning the LL-GPLVM is then equivalent to mini-
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mizing the negative log posterior of the model, 3 i.e.,

LS = log p(Y|X, β̄) p(β̄) p(X|w)

=
D

2
ln |KY | +

1

2
tr

(
K−1
Y YYT

)
+

∑

i

lnβi

+
1

σ2

d∑

k=1

N∑

i=1

‖xki −
N∑

j=1

wkijx
k
j ‖2 + C , (5)

where C is a constant, and xki is the k-th component
of xi. Note that we have extended the LLE to have
a different prior for each dimension. This will be use-
ful below as we incorporate different sources of prior
knowledge. Fig. 2 (a) shows a model of 2 walks and 2
runs learned with the locally linear GPDM. Note how
smooth the latent trajectories are.

We now have general tools to influence the structure
of the models. In what follows we generalize the top-
down imposition of topology strategies (i.e. back-
constraints and locally linear GP-LVM) to incorporate
domain specific prior knowledge.

4. Reflecting Knowledge in Latent

Space Structure

A problem for modeling human motion data is the
sparsity of the data relative to the diversity of natu-
rally plausible motions. For example, while we might
have a data set comprising different motions, such as
runs, walks etc., the data may not contain transitions
between motions. In practice however, we know that
these motions will be approximately cyclic and that
transitions can only physically occur at specific points
in the cycle. How can we encourage a model to re-
spect such topological constraints which arise from
prior knowledge?

We consider two alternatives to solve this problem.
First, we show how one can adjust the distance metric
used in the locally linear embedding to better reflect
different types of prior knowledge. We then show how
one can define similarity measures for use with the
back-constrained GP-LVM. Both these approaches en-
courage the latent space to construct a representation
that reflects our prior knowledge. They are comple-
mentary and can be combined to learn better models.

3When learning a locally linear GPDM, the dynamics
and the locally linear prior are combined as a product of po-
tentials. The objective function becomes LS + d

2
ln |KX |+

1

2
tr
`

K
−1

X XoutX
T
out

´

+
P

i
ln αi, with LS defined as in (5).

(a) (d)

(b) (e)

(c) (f)
Figure 2. First two dimensions of 3–D models learned
using (a) LL-GPDM (b) LL-GPDM with topology (c)
LL-GPDM with topology and transitions. (d) Back-
constrained GPDM with an RBF mapping. (e) GPDM
with topology through backconstraints. (f) GPDM with
backconstraints for the topology and transitions. For the
models using topology, the cyclic structure is imposed in
the last 2 dimensions. The two types of transition points
(left and right leg contact points) are shown in red and
green, and are used as prior knowledge in (c,f).

4.1. Prior Knowledge through Local

Linearities

We now turn to consider how one might incorporate
prior knowledge in the LL-GPLVM framework. This is
accomplished by replacing the local Euclidean distance
measures used in Section 3.1 with other similarity mea-
sures. That is, we can modify the covariance used to
compute the weights in Eq. (4) to reflect our prior
knowledge in the latent space. We consider two exam-
ples: the first involves transitions between activities;
with the second we show how topological constraints
can be placed on the form of the latent space.

Covariance for Transitions Modeling transitions
between motions is important in character animation.
Transitions can be infered automatically based on sim-
ilarity between poses (Kovar et al., 2002) or at points
of non-linearity of the dynamics (Bissacco, 2005), and
they can be used for learning. For example, for mo-
tions as walking or running, two types of transitions
can be identified: left and right foot ground contacts.
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To model such transitions, we define an index on the
frames of the motion sequence, {ti}Ni=1. We then define
subsets of this set, {t̂i}Mi=1, which represents frames
where transitions are possible. To capture transitions
in the latent model we define the elements for the co-
variance matrix as follows,

Ctranskj = 1 −
[
δkj exp(−ζ(tk − tj)

2)
]

(6)

with ζ a constant, and δij = 1 if ti and tj are in the
same set {t̂k}Mk=1, and otherwise δij = 0. This covari-
ance encourages the latent points at which transitions
are physically possible to be close together.

Covariance for Topologies We now consider co-
variances that encourage the latent space to have a
particular topology. Specifically we are interested in
suitable topologies for walking and running data. Be-
cause the data are approximately periodic, it seems
appropriate to have a non-Cartesian topology. To this
end one can extract the phase of the motion4, φ, and
use it with a covariance to encourage the latent points
to exhibit a periodic topological structure within a
Cartesian space. As an example we consider a cylindri-
cal topology within a 3–D latent space by constraining
two of the latent dimensions with the phase. In partic-
ular, to represent the cyclic motion we construct a dis-
tance function on the unit circle, where a latent point
corresponding to phase φ is represented with coordi-
nates (cos(φ), sin(φ)). To force a cylindrical topology
on the latent space, we specify different covariances for
each latent dimension

Ccosk,j = (cos(φi) − cos(φk)) (cos(φi) − cos(φj)) (7)

Csink,j = (sin(φi) − sin(φk)) (sin(φi) − sin(φj)) , (8)

with k, j ∈ ηi. The covariance for the remaining di-
mension is constructed as usual, based on Euclidean
distance in the data space. Fig. 2 (b) shows a GPDM
constrained in this way, and in Fig. 2 (c) the covari-
ance is augmented with transitions.

Note that the use of different distance measures for
each dimension of the latent space implies that the
neighborhood and the weights in the locally linear
prior will also be different for each dimension. Here,
three different locally linear embeddings form the prior
distribution.

4.2. Prior Knowledge with Back Constraints

As explained above, we can also design back-
constraints to influence the topology and learn useful

4The phase can be easily extracted from the data by
Fourier analysis or by detecting key postures and interpo-
lating the phases between them. Another idea, not further
explored here, would be to optimize the GP-LVM with re-
spect to the phase.

transitions. This can be done by replacing the ker-
nel of Eq. (3). Many kernels have interpretations as
similarity measures. In particular, any similarity mea-
sure that leads to a positive semi-definite matrix can
be interpreted as a kernel. Here, just as we define
covariance matrices above, we extend the original for-
mulation of back constraints by constructing similarity
measures (i.e., kernels) to reflect prior knowledge.

Similarity for Transitions To capture transitions
between two motions, we wish to design a kernel that
expresses strong similarity between points in the re-
spective motions where transitions may occur. We can
encourage transition points of different sequences to
be proximal with the following kernel matrix for the
back-constraint mapping:

ktrans(ti, tj) =
∑

m

∑

l

δmlk(ti, t̂m)k(tj , t̂l) (9)

where k(ti, t̂l) is an RBF centered at t̂l, and δml = 1
if t̂m and t̂l are in the same set. The influence of the
back-constraints is controlled by the support width of
the RBF kernel.

Topologically Constrained Latent Spaces We
now consider kernels that force the latent space to have
a particular topology. To force a cylindrical topology
on the latent space, we can introduce similarity mea-
sures based on the phase, specifying different similarity
measures for each latent dimension. As before we con-
struct a distance function in the unit circle, that takes
into account the phase. A periodic mapping can be
constructed from a kernel matrix as follows,

xn,1 =

N∑

m=1

acosm k(cos(φn), cos(φm)) + acos0 δn,m,

xn,2 =

N∑

m=1

asinm k(sin(φn), sin(φm)) + asin0 δn,m,

where k is an RBF kernel function, and xn,i is the ith

coordinate of the nth latent point. These two map-
pings project onto two dimensions of the latent space,
forcing them to have a periodic structure (which comes
about through the sinusoidal dependence of the kernel
on phase). Fig. 2 (e) shows a model learned using
GPDM with the last two dimensions constrained in
this way (the third dimension is out of plane). The
first dimension is constrained by an RBF mapping on
the input space. Each dimension’s kernel matrix can
then be augmented by adding the transition similarity
of Eq.(9), resulting in the model shown in Fig. 2 (f).

4.3. Model Combination

One advantage of our framework is that covariance ma-
trices can be combined in a principled manner to form
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new covariance matrices. Covariances can be multi-
plied (on an element by element basis) or added to-
gether. Similarly, similarities can be combined. Mul-
tiplication has, loosely speaking, an ‘AND gate effect’,
i.e. both similarity measures must agree that an ob-
ject is similar for their product to express similarity.
Adding them produces more of an ‘OR gate effect’, i.e.
if either representation expresses similarity the result-
ing measure will also express similarity.

The two sections above have shown how to incorpo-
rate prior knowledge in the GP-LVM by means of 1)
local linearities and 2) back-constraints. In general,
the latter should be used when the manifold has a
well-defined topology, since it has more influence on
the learning. When the topology is not so well defined
(e.g., due to noise) one should use local linearities.
Both techniques are complementary and can be com-
bined straightforwardly by including priors over some
dimensions, and constraining the others through back-
constraint mappings. Fig. 1 shows a model learned
with LL-GPDM for smoothness and back-constraints
for topology.

4.4. Multiple Activities and Transitions

Once we know how to ensure that transition points are
close together and that the latent structure has the
desired topology, we still need to address two issues.
How do we learn models that have very different dy-
namics? How can we simulate dynamical models that
lie somewhere between the different training motions?
Our goal in this section is to show how latent mod-
els for different motions can be learned independently,
but in a shared latent space that facilitates transitions
between activities with different dynamics.

Let Y = [YT
1 , ..., Y

T
M ]T denote training data for M

different activities. Each Ym comprises several differ-
ent motions. Let X = [XT

1 , ..., X
T
M ]T denote the corre-

sponding latent positions. When dealing with multiple
activities, a single dynamical model cannot cope with
the complexity of the different dynamics. Instead, we
consider a model where the dynamics of each activity
are modeled independently5. This has the advantage
that a different kernel can be used for each activity.

To enable interpolation between motions with different
dynamics, we combined these independent dynamical
models in the form of a mixture model. This allows us
to produce motions that gracefully transition between
different styles and motion types (Figs. 3 and 4).

5Another interpretation is that we have a block diagonal
kernel matrix for the GP that governs the dynamics.

5. Results

We demonstrate the effectiveness of our approach with
two applications. First we show how models of multi-
ple activities can be learned, and realistic animations
can be produced by drawing samples from the model.
We then show an interactive character animation ap-
plication, where the user specifies a set of sparse con-
straints and the remaining kinematic degrees of free-
dom are infered.

5.1. Learning multiple activities

We first considered a small training set comprised of
4 gait cycles (2 walks and 2 runs) performed by one
subject at different speeds. Fig. 2 shows the latent
spaces learned under different prior constraints. All
the models are learned using two independent dynam-
ical models, one for walking and one for running. Note
how the phases are aligned when imposing a cylindrical
topology, and how the LL-GPDM is smooth. Notice
the difference between the LL-GPDM (Fig. 2 (c)) and
the backconstrained GPDM (Fig. 2 (f)) when transi-
tion constraints are included. Neverthess, both mod-
els ensure that the transition points (shown in red and
green) are proximal.

Fig. 1 (c) shows a hybrid model learned using LL-
GPDM for smoothness, and back-constraints for topol-
ogy. The larger training set comprises approximately
one gait cycle from each of 9 walking and 10 running
motions performed by different subjects at different
speeds (3 km/h for walking, 6–12 km/h for running).
Colors in Fig. 1 (a) represent the variance of the GP
as a function of latent position. Only points close to
the surface of the cylinder produce poses with high
certainty.

We now illustrate the model’s ability to simulate dif-
ferent motions and transitions. Given an initial la-
tent position x0, we generate new motions by sam-
pling the mixture model, and using mean prediction
for the reconstruction. Choosing different initial con-
ditions results in very different simulations (Fig. 1 (d)).
The training data are shown in blue. For the first
simulation (depicted in green), the model is initial-
ized to a running pose with a latent position not far
from walking data. The system transitions to walking
quite naturally. The resulting animation is depicted in
Fig. 3. For the second example (in red), we initialize
the simulation to a latent position far from walking
data. The system evolves to different running styles
and speeds (Fig. 4). Note how the dynamics, and the
strike length, change considerably during simulation.
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Figure 3. Transition from running to walking: The system transitions from running to walking in a smooth and
realistic way. The transition is encouraged by incorporating prior knowledge in the model. The latent trajectories are
shown in green in Fig. 1 (d).

Figure 4. Different running styles and speeds: The system is able to simulate a motion with considerably changes
in speed and style. The latent trajectories are shown in red in Fig. 1 (d).

Figure 5. Single activity 3D latent models learned from
(left) 5 jumps of 2 different subjects using local linearities,
(b) 7 walking cycles of one subject using back-constraints.

5.2. Character animation from constraints

A key problem in the film and game industry is the
lack of tools to allow designers to easily generate an-
imations. Traditional techniques such as keyframing
are time consuming; an expert can expend days in
generating a few seconds of animation. A very useful
tool would provide the user with a simple way of gen-
erating motions from constraints that she/he defined.
Typical constraints are keyframes (i.e., specification
of the position of the full body in a particular time
instant), or joint trajectories. Here we use the topo-
logically constrained motion models as priors over the
space of possible motions.

Our motion estimation formulation is based on a state-
space model with a GPDM prior over pose and motion.
Given the state, φt = (yt,xt), the goal is to estimate
the state sequence φ1:T = (φ1, · · · , φT ) that satisfies
the user constraints u1:J . Inference is performed in a
Batch mode, so that the state is infered all at once.
The posterior can be expressed as

p(φ1:T |u1:J ,M) ∝ p(u1:J |φ1:T )p(φ1:T |M) (10)

where we assumed that p(u1:J ) is uniformily dis-
tributed; all the user constraints are equally probable.
The prediction distribution p(φ1:T |M) can be further
factored as follows

p(φ1:T |M) = p(x1:T |M)
T∏

t=1

p(yt|xt,M) (11)

Rather than approximating the entire posterior, we use
hill-climbing to find MAP estimates. Assuming that
the user constraints are noise-free, the minimization
can be expressed as

min
φ1:T

Lpose + Ldyn + Lsmooth

subject to ||u − f(yψ(u))|| = 0 (12a)

where f is a forward kinematics function (i.e., a
function that maps joint angles to positions in the
3D world), ψ(u) is a function that outputs the
frame where each constraint uj is defined, Lpose =
−∑

i ln p(yt|xt,M) and Ldyn = − ln p(x1:T |M) are
the pose and dynamics likelihood from the GPDM
prior (Urtasun et al., 2006), and Lsmooth =
1
σ2

s

∑T−1
t=1

∑P
j=1

1
σ2

j

(yjt+1 − y
j
t )

2 is a term that encour-

age smooth motions, where yjt is the j-th component of
yt, and σ2

j is a constant that encounters from the fact
that each degree of freedom has a different variance.

Initialization is important since a large number of vari-
ables need to be optimised and our objective function
is non-convex. In particular, we sample the model
starting at each training point and use as initializa-
tion the sample that is closest to the user constraints.

To demonstrate the effectiveness of our approach we
learned models of two different motions, walking and
jumping (Fig. 5). We impose smoothness and cyclic
topologies using back-constraints for the walking and
local linearities for the jumping. We demonstrate the
ability of the model to generalize to unseen styles.

We first show how the model can produce realistic an-
imations from a very small set of user defined con-
straints. The user specifies the contact points of the
foot with the ground (first row of Fig. 6) for walking
and the foot trajectories for the jumping (third row
of Fig. 6), and the rest of the degrees of freedom are
infered producing very realistic animations.

The model can also generalize to styles very different
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Figure 6. Animations generated from a set of foot constraints (green). First row: Normal walk. Second row: Gener-
alization a different style by changing the user constraints to be separate in the coronal plane. Third row: Short jump.
Last row: Longer stylistic jump. See video at http://people.csail.mit.edu/rurtasun

from the ones in the training set, by imposing con-
straints that can be satisfied only by motions very dif-
ferent from the training data. In particular, the user
placed the foot constraints far in the coronal plane for
walking. Consequently the character opens the legs to
satisfy the constraints (second row of Fig. 6). In the
last row of Fig. 6 the user places the foot trajectories
to create a jump with a style very different from the
traning data (the character opens his legs and bends
his body and arms in an exaggerated way).

6. Conclusions

In this paper we have proposed a general framework
of probabilistic models that learn smooth latent vari-
able models of different activities within a shared la-
tent space. We have introduced a principled way to
include prior knowledge, that allow us to learn spe-
cific topologies and transitions between the different
motions. Although we have learned models composed
of walking, running and jumping, our framework is
general, being applicable in any data sets where there
is a large degree of prior knowledge for the problem
domain, but the data availability is relatively sparse
compared to its complexity.
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Abstract

The infinite hidden Markov model is a non-
parametric extension of the widely used hid-
den Markov model. Our paper introduces
a new inference algorithm for the infinite
Hidden Markov model called beam sam-
pling. Beam sampling combines slice sam-
pling, which limits the number of states con-
sidered at each time step to a finite number,
with dynamic programming, which samples
whole state trajectories efficiently. Our algo-
rithm typically outperforms the Gibbs sam-
pler and is more robust. We present appli-
cations of iHMM inference using the beam
sampler on changepoint detection and text
prediction problems.

1. Introduction

The hidden Markov model (HMM) (Rabiner, 1989) is
one of the most widely used models in machine learn-
ing and statistics for sequential or time series data.
The HMM consists of a hidden state sequence with
Markov dynamics, and independent observations at
each time given the corresponding state. There are
three learning related tasks associated with the HMM:
inference of the hidden state sequence, learning of the
parameters, and selection of the right model size.

Inference for the hidden state trajectory can be
performed exactly using the forward-backward algo-
rithm (Rabiner, 1989), a dynamic programming algo-
rithm with O(TK2) computational costs where T is
the number of time steps and K number of states.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

The standard approach to learning uses the Baum-
Welch algorithm, a special instance of the EM al-
gorithm (Dempster et al., 1977) which produces (lo-
cally) maximum likelihood (ML) parameters. Such
ML learning of parameters can potentially lead to over-
fitting if the model size is inappropriate for the amount
of data available. This can be partially mitigated us-
ing a more fully Bayesian learning procedure, e.g. using
variational approximations (MacKay, 1997) or Markov
chain Monte Carlo (MCMC) sampling (Scott, 2002).
Such Bayesian approaches also produce estimates of
the marginal probability of data, which can be used to
select for the appropriate model size (or to average over
model sizes if ones desires a more Bayesian analysis).
Such model selection procedures can be computation-
ally expensive since multiple HMMs of different sizes
need to be explored.

A new twist on the problem of model selection has
emerged in recent years with the increasing popu-
larity of nonparametric Bayesian models. These are
models of infinite capacity, a finite portion of which
will be used to model a finite amount of observed
data. The idea of searching/averaging over the space
of finite models is replaced with Bayesian inference
over the size of submodel used to explain data. Ex-
amples of successful applications of nonparametric
Bayesian methods include Gaussian Processes (Ras-
mussen & Williams, 2005) for regression and classifi-
cation, Dirichlet Process (DP) mixture models (Es-
cobar & West, 1995; Rasmussen, 2000) for cluster-
ing heterogeneous data and density estimation, Indian
Buffet Processes for latent factor analysis (Griffiths
& Ghahramani, 2006), and defining distributions over
non-trivial combinatorial objects such as trees (Teh
et al., 2008).

The Infinite Hidden Markov Model (iHMM), otherwise
known as the HDP-HMM, (Beal et al., 2002) is a non-
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parametric Bayesian extension of the HMM with an
infinite number of hidden states. Exact Bayesian in-
ference for the iHMM is intractable. Specifically, given
a particular setting of the parameters the forward-
backward algorithm cannot be applied since the num-
ber of states K is infinite, while with the parameters
marginalized out all hidden state variables will be cou-
pled and the forward-backward algorithm cannot be
applied either. Currently the only approximate in-
ference algorithm available is Gibbs sampling, where
individual hidden state variables are resampled condi-
tioned on all other variables (Teh et al., 2006). Unfor-
tunately convergence of Gibbs sampling is notoriously
slow in the HMM setting due to the strong dependen-
cies between consecutive time steps often exhibited by
time series data (Scott, 2002).

In this paper we propose a new sampler for the iHMM
called beam sampling. Beam sampling combines two
ideas—slice sampling and dynamic programming—to
sample whole state trajectories efficiently. Our ap-
plication of slice sampling (Neal, 2003) is inspired
by (Walker, 2007), who used it to limit the number
of clusters considered when sampling assignment vari-
ables in DP mixtures to a finite number. We apply
slice sampling to limit to a finite number the states
considered in each time step of the iHMM, so that dy-
namic programming can be used to sample whole state
trajectories efficiently. We call our proposal beam
sampling due to its similarity to beam search, a heuris-
tic procedure for finding the maximum a posteriori
trajectory given observations in non-linear dynamical
systems. The underlying idea in both is to limit the
search to a small number of states so that a good tra-
jectory can be found using reasonable computational
resources. However, ours is a MCMC sampling method
with guaranteed convergence to the true posterior.

We first present a self-contained description of the
iHMM using the Hierarchical Dirichlet process (HDP)
formalism (Teh et al., 2006) in Section 2, followed
by a discussion of Gibbs sampling in Section 3. We
introduce beam sampling in Section 4 and compare
it against Gibbs sampling on both artificial and real
datasets in Section 5. We find that beam sampling
is (1) at least as fast if not faster than Gibbs sam-
pling; (2) more robust than Gibbs sampling as its
performance is not as dependent on initialization and
hyperparameter choice; (3) handles non-conjugacy in
the model more naturally; (4) straightforward to im-
plement. We conclude in Section 6 with a discus-
sion and suggestions for other cases in which beam
sampling might prove useful. All software is avail-
able from http://mlg.eng.cam.ac.uk/jurgen to encour-
age more widespread adoption of the iHMM and the
beam sampler.

2. The Infinite Hidden Markov Model

We start this section by describing the finite HMM,
then taking the infinite limit to obtain an intuition
for the infinite HMM, followed by a more precise def-
inition. A finite HMM consists of a hidden state se-
quence s = (s1, s2, . . . , sT ) and a corresponding ob-
servation sequence y = (y1, y2, . . . , yT ). Each state
variable st can take on a finite number of states, say
1 . . .K. Transitions between states are governed by
Markov dynamics parameterized by the transition ma-
trix π, where πij = p(st = j|st−1 = i), while the ini-
tial state probabilities are π0i = p(s1 = i). For each
state st ∈ {1 . . .K} there is a parameter φst

which
parametrizes the observation likelihood for that state:
yt|st ∼ F (φst

). Given the parameters {π0,π,φ,K} of
the HMM, the joint distribution over hidden states s
and observations y can be written (with s0 = 0):

p(s,y|π0,π,φ,K) =
T∏
t=1

p(st|st−1)p(yt|st)

We complete the Bayesian description by specifying
the priors. Let the observation parameters φ be iid
drawn from a prior distribution H. With no fur-
ther prior knowledge on the state sequence, the typical
prior for the transition (and initial) probabilities are
symmetric Dirichlet distributions.

A näıve way to obtain a nonparametric HMM with an
infinite number of states might be to use symmetric
Dirichlet priors over the transition probabilities with
parameter α/K and take K → ∞. Such an approach
has been successfully used to derive DP mixture mod-
els (Rasmussen, 2000) but unfortunately does not work
in the HMM context. The subtle reason is that there
is no coupling across transitions out of different states
since the transition probabilities are given indepen-
dent priors (Beal et al., 2002). To introduce coupling
across transitions, one may use a hierarchical Bayesian
formalism where the Dirichlet priors have shared pa-
rameters and given a higher level prior, e.g.

πk ∼ Dirichlet (αβ) ,
β ∼ Dirichlet (γ/K . . . γ/K) (1)

where πk are transition probabilities out of state k and
β are the shared prior parameters. As K →∞, the hi-
erarchical prior (1) approaches (with some alterations)
a hierarchical Dirichlet process (Teh et al., 2006).

A hierarchical Dirichlet process (HDP) is a set of
Dirichlet processes (DPs) coupled through a shared
random base measure which is itself drawn from a
DP (Teh et al., 2006). Specifically, each Gk ∼
DP(α,G0) with shared base measure G0, which can
be understood as the mean of Gk, and concentration
parameter α > 0, which governs variability around G0,
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Figure 1. iHMM Graphical Model

with small α implying greater variability. The shared
base measure is itself given a DP prior: G0 ∼ DP(γ,H)
with H a global base measure. The stick-breaking con-
struction for HDPs shows that the random measures
can be expressed as follows: G0 =

∑∞
k′=1 βk′δφk′ and

Gk =
∑∞
k′=1 πkk′δφk′ , where β ∼ GEM(γ) is the stick-

breaking construction for DPs (Sethuraman, 1994),
πk ∼ DP(α,β), and each φk′ ∼ H independently.

Identifying each Gk as describing both the transition
probabilities πkk′ from state k to k′ and the emis-
sion distributions parametrized by φk′ , we can now
formally define the iHMM as follows:

β ∼ GEM(γ), πk|β ∼ DP(α,β), φk ∼ H, (2)
st|st−1 ∼ Multinomial(πst−1), yt|st ∼ F (φst

). (3)

The graphical model corresponding to this hierarchical
model is shown in figure 1. Thus βk′ is the prior mean
for transition probabilities leading into state k′, and α
governs the variability around the prior mean. If we fix
β = ( 1

K . . . 1
K , 0, 0 . . .) where the first K entries are 1

K
and the remaining are 0, then transition probabilities
into state k′ will be non-zero only if k′ ∈ {1 . . .K}, and
we recover the Bayesian HMM of (MacKay, 1997).

Finally we place priors over the hyperparameters α
and γ. A common solution, when we do not have
strong beliefs about the hyperparameters, is to use
gamma hyperpriors: α ∼ Gamma(aα, bα) and γ ∼
Gamma(aγ , bγ). (Teh et al., 2006) describe how these
hyperparameters can be sampled efficiently, and we
will use this in the experiments to follow.

3. The Gibbs Sampler

The Gibbs sampler was the first sampling algorithm
for the iHMM that converges to the true posterior.
One proposal builds on the direct assignment sampling
scheme for the HDP in (Teh et al., 2006) by marginal-
izing out the hidden variables π,φ from (2), (3) and
ignoring the ordering of states implicit in β. Thus we
only need to sample the hidden trajectory s, the base
DP parameters β and the hyperparameters α, γ. Sam-
pling β, α, γ is exactly the same as for the HDP so we
refer to (Teh et al., 2006) for details.

In order to resample st, we need to compute the prob-
ability p(st|s−t,β,y, α,H) ∝ p(yt|st, s−t,y−t, H) ·
p(st|s−t,β, α). The first factor is the con-
ditional likelihood of yt given s, y and H:∫
p(yt|st,φst

)p(φst
|s−t,y−t, H)dφst

. This is easy to
compute when the base distribution H and likelihood
F from equations (2) and (3) are conjugate. For
the second factor we can use the fact that the hid-
den state sequence is Markov. Let nij be the number
of transitions from state i to state j excluding time
steps t − 1 and t. Let n·i, ni· be the number of tran-
sitions in and out of state i. Finally, let K be the
number of distinct states in s−t. Then we have that1
p(st = k|s−t,β, α) ∝

(nst−1,k + αβk)
nk,st+1+αβst+1

nk·+α
if k ≤ K, k 6= st−1

(nst−1,k + αβk)
nk,st+1+1+αβst+1

nk·+1+α if k = st−1 = st+1

(nst−1,k + αβk)
nk,st+1+αβst+1

nk·+1+α if k = st−1 6= st+1

αβkβst+1 if k = K + 1.

For each 1 ≤ t ≤ T we need to compute O(K)
probabilities, hence the Gibbs sampler has an O(TK)
computational complexity. Non-conjugate models can
be handled using more sophisticated sampling tech-
niques. In our experiments below, we used algorithm
8 from (Neal, 2000).

The Gibbs sampler’s success is due to its straightfor-
ward implementation. However, it suffers from one
major drawback: sequential and time series data are
likely to be strongly correlated. For example, if we
know the value of a stock at time t then we can be
reasonably sure that it will be similar at time t+1. As
is well known, this is a situation which is far from ideal
for the Gibbs sampler: strong correlations in the hid-
den states will make it unlikely that individual updates
to st can cause large blocks within s to be changed.
We will now introduce the beam sampler which does
not suffer from this slow mixing behavior by sampling
the whole sequence s in one go.

4. The Beam Sampler

The forward-backward algorithm does not apply to
the iHMM because the number of states, and hence
the number of potential state trajectories, are infinite.
The idea of beam sampling is to introduce auxiliary
variables u such that conditioned on u the number
of trajectories with positive probability is finite. Now
dynamic programming can be used to compute the
conditional probabilities of each of these trajectories
and thus sample whole trajectories efficiently. These

1Recall that we ignored the ordering of states in β. In
this representation the K distinct states in s are labeled
1 . . .K and K + 1 denotes a new state.

1090



Beam Sampling for the Infinite Hidden Markov Model

Figure 2. The auxiliary variable u partitions the probabil-
ity distribution π (vertical bars) into a set of entries less
than u and a set of entries larger than u.

auxiliary variables do not change the marginal distri-
bution over other variables hence MCMC sampling will
converge to the true posterior. This idea of using aux-
iliary variables to limit computation costs is inspired
by (Walker, 2007), who applied it to limit the number
of components in a DP mixture model that need be
considered during sampling.

As opposed to the sampler in the previous section,
the beam sampler does not marginalize out π nor φ.
Specifically, the beam sampler iteratively samples the
auxiliary variables u, the trajectory s, the transition
probabilities π, the shared DP parameters β and the
hyperparameters α and γ conditioned on all other vari-
ables. In the following, we shall describe in more detail
how to sample each set of variables, as well as how the
auxiliary variables allow dynamic programming to be
carried out over a finite number of trajectories without
approximations.

Sampling u: for each t we introduce an auxil-
iary variable ut with conditional distribution ut ∼
Uniform(0, πst−1st) depending on π, st−1 and st.

Sampling s: we sample the whole trajectory s given
the auxiliary variables u and other variables using a
form of forward filtering-backward sampling. The im-
portant observation here is that only trajectories s
with πst−1st

≥ ut for all t will have non-zero probabil-
ity given u. There are only finitely many such trajec-
tories2 and as a result we can compute the conditional
distribution over all such trajectories efficiently using
dynamic programming.

First note that the probability density for ut is
p(ut|st−1, st,π) =

I(0<ut<πst−1,st )

πst−1,st
, where I(C) = 1

if condition C is true and 0 otherwise. We compute
p(st|y1:t, u1:t) for all t as follows (we omitted the ad-

2To see this, note that ut > 0 with probability 1 for each
t, since each πkk′ > 0 with probability 1. Given the auxil-
iary variable ut, note further that for each possible value of
st−1, ut partitions the set of transition probabilities out of
state st−1 into two sets: a finite set with πst−1k > ut and
an infinite set with πst−1k < ut, as illustrated in figure 2.
Thus we can recursively show that for t = 1, 2 . . . T the set
of trajectories s1:t with all πst′−1st′ > ut is finite.

ditional conditioning variables π and φ for clarity):

p(st|y1:t, u1:t)
∝p(st, ut, yt|y1:t−1, u1:t−1),

=
∑
st−1

p(yt|st)p(ut|st, st−1)p(st|st−1)

p(st−1|y1:t−1, u1:t−1),

=p(yt|st)
∑
st−1

I(ut < πst−1,st
)p(st−1|y1:t−1, u1:t−1),

=p(yt|st)
∑

st−1:ut<πst−1,st

p(st−1|y1:t−1, u1:t−1). (4)

Note that we only need to compute (4) for the finitely
many st values belonging to some trajectory with
positive probability. Further, although the sum over
st−1 is technically a sum over an infinite number of
terms, the auxiliary variable ut truncates this summa-
tion to the finitely many st−1’s that satisfy both con-
straints πst−1,st

> ut and p(st−1|y1:t−1, u1:t−1) > 0.
Finally, to sample the whole trajectory s, we sam-
ple sT from p(sT |y1:T , u1:T ) and perform a backward
pass where we sample st given the sample for st+1:
p(st|st+1, y1:T , u1:T ) ∝ p(st|y1:t, u1:t)p(st+1|st, ut+1).

Sampling π, φ, β: these follow directly from the
theory of HDPs (Teh et al., 2006), but we briefly de-
scribe these for completeness.

Let nij be the number of times state i transi-
tions to state j in the trajectory s, where i, j ∈
{1 . . .K}, K is the number of distinct states in s,
and these states have been relabeled 1 . . .K. Merg-
ing the infinitely many states not represented in
s into one state, the conditional distribution of
(πk1 . . . πkK ,

∑∞
k′=K+1 πkk′) given its Markov blanket

s,β, α is

Dirichlet
(
nk1 + αβ1 . . . nkK + αβK , α

∑∞
i=K+1 βi

)
,

To sample β we introduce a further set of auxiliary
variables mij which are independent with conditional
distributions

p(mij = m|s,β, α) ∝ S(nij ,m)(αβj)m,

where S(·, ·) denotes Stirling numbers of the first kind.
The shared DP parameter (β1 . . . , βK ,

∑∞
k′=K+1 βk′)

has conditional distribution

Dirichlet (m·1 . . .m·K , γ) ,

where m·k =
∑K
k′=1mk′k. (Teh et al., 2006; Antoniak,

1974) gives more details.

Finally, each φk is independent of others conditional on
s, y and their prior distribution H, i.e. p(φ|s,y, H) =
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Figure 3. iHMM performance on strong negatively corre-
lated data. The top plot shows the error of the Gibbs and
beam sampler for the first 1500 iterations averaged over
20 runs. The bottom plot shows the average number of
previous states considered in equation (4) for the first 100
iterations of the beam sampler.

∏
k p(φk|s,y, H). When the base distribution H is

conjugate to the data distribution F each φk can
be sampled efficiently. Otherwise we may resort to
Metropolis-Hastings or other approaches. Note that in
the non-conjugate case this is simpler than for Gibbs
sampling. In the experimental section, we describe an
application where the base distribution and likelihood
are non-conjugate.

To conclude our discussion of the beam sampler, it
is useful to point out that there is nothing special
about sampling ut from the uniform distribution on
[0, πst−1,st

]: by choosing a distribution over [0, πst,st−1 ]
with higher mass near smaller values of ut, we will al-
low more trajectories to have positive probability and
hence considered by the forward filtering-backward
sampling algorithm. Although this will typically im-
prove mixing time, it also comes at additional compu-
tational cost. This brings us to the issue of the com-
putational cost of the beam sampler: since for each
timestep and each state assignment we need to sum
over all represented previous states, the worst case
complexity isO(TK2). However, the sum in (4) is only
over previous states for which the transition probabil-
ity is larger than ut; this means that in practice we
might only need to sum over a few previous states.
In our experiments below, we will give some empirical
evidence for this “average case” behavior. Further, we
have found that the drastically improved mixing of the
beam sampler more than made up for the additional
cost over Gibbs sampling. Finally, although we did not
find any advantage doing so, it is certainly possible to
interleave the beam sampler and the Gibbs sampler.
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Figure 4. iHMM error on increasing positively correlated
data. The blue curve shows the beam sampler while the red
curve shows the Gibbs sampler performance. The dotted
line show the one standard deviation error bars.

5. Experiments

We evaluate the beam sampler on two artificial and
two real datasets to illustrate the following properties:
(1) the beam sampler mixes in much fewer iterations
than the Gibbs sampler; (2) the actual complexity per
iteration of the beam sampler is only marginally more
than the Gibbs sampler; (3) the beam sampler mixes
well regardless of strong correlations in the data; (4)
the beam sampler is more robust with respect to vary-
ing initialization and prior distribution; (5) the beam
sampler handles non conjugate models naturally; (6)
the iHMM is a viable alternative to the finite HMM.
All datasets and a Matlab version of our software are
available at http://mlg.eng.cam.ac.uk/jurgen.

5.1. Artificial Data

Our first experiment compares the performance of the
iHMM on a sequence of length 800 generated by a 4
state HMM. The hidden state sequence was almost
cyclic (1-2-3-4-1-2-3-. . . ) with a 1% probability of self
transition: i.o.w the true distribution of hidden states
is strong negatively correlated. We use a multinomial
output distribution with the following emission matrix 0.0 0.5 0.5

0.6666 0.1666 0.1666
0.5 0.0 0.5

0.3333 0.3333 0.3333

 .
Next we run the Gibbs and beam sampler 20 times
from a random initialization with every state randomly
chosen between 1 and 20. We test the performance
of both samplers using three different hyperparame-
ter settings: (1) vague gamma hyperpriors for α and
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Figure 5. The 40’th sample of the beam sampler with every state represented by a different color on the well-log dataset.

γ (Gamma(1, 1) and Gamma(2, 1) respectively); (2)
strong gamma hyperpriors for α and γ (Gamma(6, 15)
and Gamma(16, 4) respectively); (3) fixed hyperparam-
eters α = 0.4, γ = 3.8. The latter were chosen using
the values the beam and Gibbs samplers converged to.
At every iteration, we greedily compute an assignment
of sample states to true states to maximize overlap and
use the resulting Hamming distance as our error mea-
sure. The top plot in figure 3 clearly shows that the
beam sampler discovers the underlying structure much
faster than the Gibbs sampler. Also, the beam sam-
pler is insensitive to the prior while the performance
of the Gibbs sampler becomes worse as we strengthen
our prior beliefs. The bottom plot of figure 3 shows
how many states are summed over in equation (4) av-
eraged per timestep, per state. We find that after only
about 20 iterations, the beam sampler on average con-
siders a little more than one state. This implies that
the actual complexity of the beam sampler is closer
to O(TK) rather than the worst case complexity of
O(TK2). Although this behavior is dependent on the
choice of distribution for the auxiliary variable ut and
the sparsity of the transition matrix, we have verified
that this behavior is consistent also for larger iHMM’s.

Our second experiment illustrates the performance of
the beam sampler on data generated from HMM’s
with increasing positive correlation between the hid-
den states. We generated sequences of length 4000
from a 4 state HMM with self-transition probabilities
increasing from 0.75 to 0.95 and finally 0.999. In one
experiment (top plot of figure 4) we generated nor-
mal distributed observation from an informative out-
put model with means −2.0, 4.0, 1.0,−0.5 and stan-
dard deviation 0.5, in another experiment (bottom
plot of figure 4) we generated normal distributed ob-
servations from a less informative output model with
means −1.0, 0.5,−0.5, 0.0 and standard deviation 0.5.
We initialize the experiment as above and set the base
distribution for the state means to be a 0 mean normal
with 2.0 standard deviation. Then, we greedily com-
pute the error compared to ground truth and average
the results over 60 different random starting positions.
The top row shows that with an informative prior,
both the Gibbs and beam sampler can reduce the ini-

tial error by at least 50% independent of the correla-
tion between hidden states. When the output model
is less informative however and there is little corre-
lation between the hidden states, the learning prob-
lem is hardest: the lower left plot shows that both
the beam and Gibbs sampler discover structure only
slowly. When the correlation increases, the learning
problem should become easier. However, as the lower
right plot shows, although the beam sampler mixes in-
creasingly well, the Gibbs sampler suffers from slow
random walk behavior.

5.2. Well Data

The next experiment illustrates the performance of
the iHMM on a changepoint detection problem. The
data consists of 4050 noisy measurements of nuclear-
response of rock strata obtained via lowering a probe
through a bore-hole. Figure 5 illustrates this datasets.
The data has been previously analyzed in (Ruanaidh
& Fitzgerald, 1996) by eliminating the forty great-
est outliers and running a changepoint detection algo-
rithm with a fixed number of changepoints. This ap-
proach works well as this one-dimensional dataset can
be inspected visually to make a decision on whether
to throw away datapoints and get a rough idea for
the number of changepoints. However, we believe that
with a nonparametric model, we can automatically
adapt the number of changepoints. Moreover, by set-
ting up a noise model with fat tails, we hope to auto-
matically handle the outlier problem.

We model the mean of the nuclear-response for every
segment. First we normalize the data to have zero
mean; then we specify a zero mean normal distribu-
tion for the base distribution H. We choose the vari-
ance of this normal to be the empirical variance of the
dataset. For the output model, we let F correspond
to a Student-t distribution with ν = 1, also known
as the Cauchy distribution. We set the scale parame-
ter for the Cauchy distribution to twice the empirical
standard deviation for the dataset. Since the Cauchy
likelihood is not conjugate with respect to the nor-
mal base distribution, we modified the Gibbs sampler
based on algorithm 8 in (Neal, 2000). We use the aux-
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Figure 6. The left plots show how frequent two datapoints
were in the same cluster averaged over the first 5 samples.
The right plots show how frequently two datapoints were
in the same cluster averaged over the last 30 samples.

iliary variable sampling scheme discussed in (Gelman
et al., 2004) to resample the segment means.

Figure 5 shows the results of one sample from the beam
sampler: the iHMM segments the dataset reasonably
well and robustly handles the outliers. To compare the
Gibbs and beam samplers, we compute 50 samples af-
ter a burnin of 5000 iterations with 1000 iterations in
between each sample. For every pair of datapoints we
compute the probability that they are in the same seg-
ment, averaged over the first five samples (left plots in
figure 6) and the last thirty samples (right plots in
figure 6). First, note that after the first 10000 itera-
tions, the Gibbs sampler hasn’t discovered any struc-
ture while the beam sampler has. This supports our
claim that the beam sampler mixes faster than the
Gibbs sampler. Moreover, we expect that the Gibbs
sampler will have trouble to reassign the state assign-
ment for whole segments because of slow random walk
behavior. The beam sampler on the other hand re-
samples whole hidden state sequences and should be
able to reassign whole segments more easily. The right
plots of figure 6 confirm our expectation: a careful in-
spection of both plots shows that the Gibbs sampler
is visually more black-white indicating that either two
datapoints are always in the same cluster or never in
the same cluster; the beam sampler, on the other hand,
has gray areas which indicate that it averages over dif-
ferent assignments of the segments: e.g. the Gibbs plot
(upper right) suggests that the leftmost segment and
rightmost segment are always in the same state, while
the beam sampler plot (bottom right) indicates that
only part of the time, the left and rightmost segments
are in the same state (90% of the time).

5.3. Alice in Wonderland

Another application domain for HMMs is the area of
text prediction. One such task is that of predicting
sequences of letters in text taken from Alice’s Adven-
tures in Wonderland. We compare the performance of
a finite HMM trained using variational Bayes (as de-
scribed in (MacKay, 1997)) with two iHMMs trained
using beam sampling and Gibbs sampling. Both sam-
plers had a burn-in of 1000 iterations and an additional
10000 iterations to collect 50 samples of hidden state
sequences from the posterior (i.e. we sample every 200
iterations).

The training data for each HMM (whether finite or
infinite) was taken to be a single sequence of 1000
characters from the first chapter of the book. There
were 31 different observation symbols (26 letters ignor-
ing case plus space and basic punctuation characters).
The test data was taken to be the subsequent 4000
characters from the same chapter. For all finite HMMs
we analyzed performance on models with the number
of hidden states ranging from 1 to 50. For VB, we
note that the true predictive distribution is intractable
to compute. Therefore, we used the posterior param-
eter distributions to sample 50 candidate parameter
settings, and used these to compute an approximate
predictive log-likelihood. For the iHMMs, we sam-
pled 50 hidden state sequences from the stationary
distribution after convergence and used these samples
to compute an approximate predictive log-likelihood.
For the VB-HMM we set the prior pseudo-counts for
the transition matrix to 4/K across all states and
the prior pseudo-counts for the emission matrix to 0.3
across all symbols. Accordingly, we set the hyperprior
for the iHMMs such that aα = 4 and bα = 1 and
H ∼ Dirichlet (() 0.3, · · · 0.3). The results for VB and
the iHMMs were averaged over 50 and 20 independent
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Figure 7. Comparing VB-HMM with the iHMM.
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runs respectively. The plot includes error bars corre-
sponding to 2 standard deviations.

Figure 7 illustrates the estimated predictive log-
likelihoods for the finite VB-HMM and the two iHMMs
trained using beam and Gibbs sampling. We find that
the iHMMs have superior predictive power when com-
pared to the VB-HMM, even when we select the best
number of hidden states (around K = 16). Both the
iHMMs converged to a posterior distribution over hid-
den state sequences with around 16 states, showing
that nonparametric Bayesian techniques are an effec-
tive way to handle model selection. The final perfor-
mance of the Gibbs and beam sampler were not found
to be significantly different as we set the number of
iterations high enough to ensure that both algorithms
converge. Indeed, the aim of this experiment is not to
compare the performance of individuals iHMM sam-
pling schemes, rather, it is to further illustrate the rel-
ative effectiveness of using models of infinite capacity.

6. Conclusion

In this paper we introduced the beam sampler, a new
inference algorithm for the iHMM that draws inspi-
ration from slice sampling and dynamic programming
to sample whole hidden state trajectories efficiently.
We showed that the beam sampler is a more robust
sampling algorithm than the Gibbs sampler. We be-
lieve that the beam sampler is the algorithm of choice
for iHMM inference because it converges faster than
the Gibbs sampler and is straightforward to imple-
ment. Moreover, it conveniently allows us to learn
non-conjugate models. To encourage adoption of the
iHMM as an alternative to HMM learning, we have
made the software and datasets used in this paper
available at http://mlg.eng.cam.ac.uk/jurgen.

The beam sampler idea is flexible enough to do in-
ference for various extensions of the iHMM: our cur-
rent work involves an adaptation of the beam sampler
to an extension of the iHMM that handles inputs, ef-
fectively resulting in a nonparametric generalization
of the input-output HMM (Bengio & Frasconi, 1995).
We believe this is a promising model for nonparamet-
ric Bayesian learning of POMDPs. Another project
currently underway is to use the beam sampler for ef-
ficiently learning finite, but very large hidden Markov
models. Finally, we are exploring the possibilities of
using the embedded HMM construction (Neal et al.,
2004) as an alternative for the beam sampler for effi-
cient inference in the iHMM.
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Abstract

Previous work has shown that the difficul-
ties in learning deep generative or discrim-
inative models can be overcome by an ini-
tial unsupervised learning step that maps in-
puts to useful intermediate representations.
We introduce and motivate a new training
principle for unsupervised learning of a rep-
resentation based on the idea of making the
learned representations robust to partial cor-
ruption of the input pattern. This approach
can be used to train autoencoders, and these
denoising autoencoders can be stacked to ini-
tialize deep architectures. The algorithm can
be motivated from a manifold learning and
information theoretic perspective or from a
generative model perspective. Comparative
experiments clearly show the surprising ad-
vantage of corrupting the input of autoen-
coders on a pattern classification benchmark
suite.

1. Introduction

Recent theoretical studies indicate that deep architec-
tures (Bengio & Le Cun, 2007; Bengio, 2007) may be
needed to efficiently model complex distributions and
achieve better generalization performance on challeng-
ing recognition tasks. The belief that additional levels
of functional composition will yield increased repre-
sentational and modeling power is not new (McClel-
land et al., 1986; Hinton, 1989; Utgoff & Stracuzzi,
2002). However, in practice, learning in deep archi-
tectures has proven to be difficult. One needs only

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

to ponder the difficult problem of inference in deep
directed graphical models, due to “explaining away”.
Also looking back at the history of multi-layer neural
networks, their difficult optimization (Bengio et al.,
2007; Bengio, 2007) has long prevented reaping the ex-
pected benefits of going beyond one or two hidden lay-
ers. However this situation has recently changed with
the successful approach of (Hinton et al., 2006; Hinton
& Salakhutdinov, 2006; Bengio et al., 2007; Ranzato
et al., 2007; Lee et al., 2008) for training Deep Belief
Networks and stacked autoencoders.

One key ingredient to this success appears to be the
use of an unsupervised training criterion to perform
a layer-by-layer initialization: each layer is at first
trained to produce a higher level (hidden) represen-
tation of the observed patterns, based on the repre-
sentation it receives as input from the layer below,
by optimizing a local unsupervised criterion. Each
level produces a representation of the input pattern
that is more abstract than the previous level’s, be-
cause it is obtained by composing more operations.
This initialization yields a starting point, from which
a global fine-tuning of the model’s parameters is then
performed using another training criterion appropriate
for the task at hand. This technique has been shown
empirically to avoid getting stuck in the kind of poor
solutions one typically reaches with random initializa-
tions. While unsupervised learning of a mapping that
produces “good” intermediate representations of the
input pattern seems to be key, little is understood re-
garding what constitutes “good” representations for
initializing deep architectures, or what explicit crite-
ria may guide learning such representations. We know
of only a few algorithms that seem to work well for
this purpose: Restricted Boltzmann Machines (RBMs)
trained with contrastive divergence on one hand, and
various types of autoencoders on the other.

The present research begins with the question of what
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explicit criteria a good intermediate representation
should satisfy. Obviously, it should at a minimum re-
tain a certain amount of “information” about its input,
while at the same time being constrained to a given
form (e.g. a real-valued vector of a given size in the
case of an autoencoder). A supplemental criterion that
has been proposed for such models is sparsity of the
representation (Ranzato et al., 2008; Lee et al., 2008).
Here we hypothesize and investigate an additional spe-
cific criterion: robustness to partial destruction
of the input, i.e., partially destroyed inputs should
yield almost the same representation. It is motivated
by the following informal reasoning: a good represen-
tation is expected to capture stable structures in the
form of dependencies and regularities characteristic of
the (unknown) distribution of its observed input. For
high dimensional redundant input (such as images) at
least, such structures are likely to depend on evidence
gathered from a combination of many input dimen-
sions. They should thus be recoverable from partial
observation only. A hallmark of this is our human
ability to recognize partially occluded or corrupted im-
ages. Further evidence is our ability to form a high
level concept associated to multiple modalities (such
as image and sound) and recall it even when some of
the modalities are missing.

To validate our hypothesis and assess its usefulness as
one of the guiding principles in learning deep architec-
tures, we propose a modification to the autoencoder
framework to explicitly integrate robustness to par-
tially destroyed inputs. Section 2 describes the algo-
rithm in details. Section 3 discusses links with other
approaches in the literature. Section 4 is devoted to
a closer inspection of the model from different theo-
retical standpoints. In section 5 we verify empirically
if the algorithm leads to a difference in performance.
Section 6 concludes the study.

2. Description of the Algorithm

2.1. Notation and Setup

Let X and Y be two random variables with joint prob-
ability density p(X, Y ), with marginal distributions
p(X) and p(Y ). Throughout the text, we will use
the following notation: Expectation: EEp(X)[f(X)] =∫

p(x)f(x)dx. Entropy: IH(X) = IH(p) =
EEp(X)[− log p(X)]. Conditional entropy: IH(X|Y ) =
EEp(X,Y )[− log p(X|Y )]. Kullback-Leibler divergence:
IDKL(p‖q) = EEp(X)[log p(X)

q(X) ]. Cross-entropy: IH(p‖q) =
EEp(X)[− log q(X)] = IH(p) + IDKL(p‖q). Mutual infor-
mation: I(X;Y ) = IH(X)− IH(X|Y ). Sigmoid: s(x) =

1
1+e−x and s(x) = (s(x1), . . . , s(xd))T . Bernoulli dis-

tribution with mean µ: Bµ(x). and by extension
Bµ(x) = (Bµ1(x1), . . . ,Bµd

(xd)).

The setup we consider is the typical supervised learn-
ing setup with a training set of n (input, target) pairs
Dn = {(x(1), t(1)) . . . , (x(n), t(n))}, that we suppose
to be an i.i.d. sample from an unknown distribution
q(X, T ) with corresponding marginals q(X) and q(T ).

2.2. The Basic Autoencoder

We begin by recalling the traditional autoencoder
model such as the one used in (Bengio et al., 2007)
to build deep networks. An autoencoder takes an
input vector x ∈ [0, 1]d, and first maps it to a hid-
den representation y ∈ [0, 1]d

′
through a deterministic

mapping y = fθ(x) = s(Wx + b), parameterized by
θ = {W,b}. W is a d′ × d weight matrix and b
is a bias vector. The resulting latent representation
y is then mapped back to a “reconstructed” vector
z ∈ [0, 1]d in input space z = gθ′(y) = s(W′y + b′)
with θ′ = {W′,b′}. The weight matrix W′ of the
reverse mapping may optionally be constrained by
W′ = WT , in which case the autoencoder is said to
have tied weights. Each training x(i) is thus mapped
to a corresponding y(i) and a reconstruction z(i). The
parameters of this model are optimized to minimize
the average reconstruction error:

θ?, θ′? = arg min
θ,θ′

1
n

n∑
i=1

L
(
x(i), z(i)

)
= arg min

θ,θ′

1
n

n∑
i=1

L
(
x(i), gθ′(fθ(x(i)))

)
(1)

where L is a loss function such as the traditional
squared error L(x, z) = ‖x− z‖2. An alternative loss,
suggested by the interpretation of x and z as either
bit vectors or vectors of bit probabilities (Bernoullis)
is the reconstruction cross-entropy:

LIH(x, z)= IH(Bx‖Bz)

= −
d∑

k=1

[xk log zk+(1− xk) log(1− zk)] (2)

Note that if x is a binary vector, LIH(x, z) is a negative
log-likelihood for the example x, given the Bernoulli
parameters z. Equation 1 with L = LIH can be written

θ?, θ′? = arg min
θ,θ′

EEq0(X) [LIH (X, gθ′(fθ(X)))] (3)

where q0(X) denotes the empirical distribution asso-
ciated to our n training inputs. This optimization will
typically be carried out by stochastic gradient descent.
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2.3. The Denoising Autoencoder

To test our hypothesis and enforce robustness to par-
tially destroyed inputs we modify the basic autoen-
coder we just described. We will now train it to recon-
struct a clean “repaired” input from a corrupted, par-
tially destroyed one. This is done by first corrupting
the initial input x to get a partially destroyed version
x̃ by means of a stochastic mapping x̃ ∼ qD(x̃|x). In
our experiments, we considered the following corrupt-
ing process, parameterized by the desired proportion ν
of “destruction”: for each input x, a fixed number νd
of components are chosen at random, and their value
is forced to 0, while the others are left untouched. All
information about the chosen components is thus re-
moved from that particuler input pattern, and the au-
toencoder will be trained to “fill-in” these artificially
introduced “blanks”. Note that alternative corrupting
noises could be considered1. The corrupted input x̃ is
then mapped, as with the basic autoencoder, to a hid-
den representation y = fθ(x̃) = s(Wx̃+b) from which
we reconstruct a z = gθ′(y) = s(W′y + b′) (see figure
1 for a schematic representation of the process). As
before the parameters are trained to minimize the av-
erage reconstruction error LIH(x, z) = IH(Bx‖Bz) over
a training set, i.e. to have z as close as possible to the
uncorrupted input x. But the key difference is that z
is now a deterministic function of x̃ rather than x and
thus the result of a stochastic mapping of x.

fθ

xxx̃

qD

y

z

LH(x, z)
gθ′

Figure 1. An example x is corrupted to x̃. The autoen-
coder then maps it to y and attempts to reconstruct x.

Let us define the joint distribution

q0(X, X̃, Y ) = q0(X)qD(X̃|X)δfθ( eX)(Y ) (4)

where δu(v) puts mass 0 when u 6= v. Thus Y is a
deterministic function of X̃. q0(X, X̃, Y ) is param-
eterized by θ. The objective function minimized by
stochastic gradient descent becomes:

arg min
θ,θ′

EEq0(X, eX)

[
LIH

(
X, gθ′(fθ(X̃))

)]
. (5)

So from the point of view of the stochastic gradient de-
scent algorithm, in addition to picking an input sam-
ple from the training set, we will also produce a ran-
dom corrupted version of it, and take a gradient step

1The approach we describe and our analysis is not spe-
cific to a particular kind of corrupting noise.

towards reconstructing the uncorrupted version from
the corrupted version. Note that in this way, the au-
toencoder cannot learn the identity, unlike the basic
autoencoder, thus removing the constraint that d′ < d
or the need to regularize specifically to avoid such a
trivial solution.

2.4. Layer-wise Initialization and Fine Tuning

The basic autoencoder has been used as a building
block to train deep networks (Bengio et al., 2007), with
the representation of the k-th layer used as input for
the (k + 1)-th, and the (k + 1)-th layer trained after
the k-th has been trained. After a few layers have been
trained, the parameters are used as initialization for a
network optimized with respect to a supervised train-
ing criterion. This greedy layer-wise procedure has
been shown to yield significantly better local minima
than random initialization of deep networks , achieving
better generalization on a number of tasks (Larochelle
et al., 2007).

The procedure to train a deep network using the de-
noising autoencoder is similar. The only difference is
how each layer is trained, i.e., to minimize the crite-
rion in eq. 5 instead of eq. 3. Note that the corrup-
tion process qD is only used during training, but not
for propagating representations from the raw input to
higher-level representations. Note also that when layer
k is trained, it receives as input the uncorrupted out-
put of the previous layers.

3. Relationship to Other Approaches

Our training procedure for the denoising autoencoder
involves learning to recover a clean input from a cor-
rupted version, a task known as denoising. The prob-
lem of image denoising, in particular, has been exten-
sively studied in the image processing community and
many recent developments rely on machine learning
approaches (see e.g. Roth and Black (2005); Elad and
Aharon (2006); Hammond and Simoncelli (2007)). A
particular form of gated autoencoders has also been
used for denoising in Memisevic (2007). Denoising us-
ing autoencoders was actually introduced much ear-
lier (LeCun, 1987; Gallinari et al., 1987), as an alter-
native to Hopfield models (Hopfield, 1982). Our ob-
jective however is fundamentally different from that of
developing a competitive image denoising algorithm.
We investigate explicit robustness to corrupting noise
as a novel criterion guiding the learning of suitable in-
termediate representations to initialize a deep network.
Thus our corruption+denoising procedure is applied
not only on the input, but also recursively to interme-
diate representations.
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The approach also bears some resemblance to the well
known technique of augmenting the training data with
stochastically “transformed” patterns. E.g. augment-
ing a training set by transforming original bitmaps
through small rotations, translations, and scalings is
known to improve final classification performance. In
contrast to this technique our approach does not use
any prior knowledge of image topology, nor does it pro-
duce extra labeled examples for supervised training.
We use corrupted patterns in a generic (i.e. not spe-
cific to images) unsupervised initialization step, while
the supervised training phase uses the unmodified orig-
inal data.

There is a well known link between “training with
noise” and regularization: they are equivalent for small
additive noise (Bishop, 1995). By contrast, our cor-
ruption process is a large, non-additive, destruction
of information. We train autoencoders to ”fill in the
blanks”, not merely be smooth functions (regulariza-
tion). Also in our experience, regularized autoencoders
(i.e. with weight decay) do not yield the quantitative
jump in performance and the striking qualitative dif-
ference observed in the filters that we get with denois-
ing autoencoders.

There are also similarities with the work of (Doi et al.,
2006) on robust coding over noisy channels. In their
framework, a linear encoder is to encode a clean input
for optimal transmission over a noisy channel to a de-
coder that reconstructs the input. This work was later
extended to robustness to noise in the input, in a pro-
posal for a model of retinal coding (Doi & Lewicki,
2007). Though some of the inspiration behind our
work comes from neural coding and computation, our
goal is not to account for experimental data of neu-
ronal activity as in (Doi & Lewicki, 2007). Also, the
non-linearity of our denoising autoencoder is crucial
for its use in initializing a deep neural network.

It may be objected that, if our goal is to handle missing
values correctly, we could have more naturally defined
a proper latent variable generative model, and infer the
posterior over the latent (hidden) representation in the
presence of missing inputs. But this usually requires
a costly marginalization2 which has to be carried out
for each new example. By contrast, our approach tries
to learn a fast and robust deterministic mapping fθ

from examples of already corrupted inputs. The bur-
den is on learning such a constrained mapping during
training, rather than on unconstrained inference at use
time. We expect this may force the model to capture
implicit invariances in the data, and result in interest-

2as for RBMs, where it is exponential in the number of
missing values

ing features. Also note that in section 4.2 we will see
how our learning algorithm for the denoising autoen-
coder can be viewed as a form of variational inference
in a particular generative model.

4. Analysis of Denoising Autoencoders

The above intuitive motivation for the denoising au-
toencoder was given with the perspective of discover-
ing robust representations. In the following, which can
be skipped without hurting the remainder of the paper,
we propose alternative perspectives on the algorithm.

4.1. Manifold Learning Perspective

The process of mapping a corrupted example to an
uncorrupted one can be visualized in Figure 2, with
a low-dimensional manifold near which the data con-
centrate. We learn a stochastic operator p(X|X̃) that
maps an X̃ to an X, p(X|X̃) = Bgθ′ (fθ( eX))(X). The
corrupted examples will be much more likely to be
outside and farther from the manifold than the uncor-
rupted ones. Hence the stochastic operator p(X|X̃)
learns a map that tends to go from lower probability
points X̃ to high probability points X, generally on
or near the manifold. Note that when X̃ is farther
from the manifold, p(X|X̃) should learn to make big-
ger steps, to reach the manifold. At the limit we see
that the operator should map even far away points to
a small volume near the manifold.

The denoising autoencoder can thus be seen as a way
to define and learn a manifold. The intermediate rep-
resentation Y = f(X) can be interpreted as a coordi-
nate system for points on the manifold (this is most
clear if we force the dimension of Y to be smaller than
the dimension of X). More generally, one can think of
Y = f(X) as a representation of X which is well suited
to capture the main variations in the data, i.e., on the
manifold. When additional criteria (such as sparsity)
are introduced in the learning model, one can no longer
directly view Y = f(X) as an explicit low-dimensional
coordinate system for points on the manifold, but it
retains the property of capturing the main factors of
variation in the data.

4.2. Top-down, Generative Model Perspective

In this section we recover the training criterion for
our denoising autoencoder (eq. 5) from a generative
model perspective. Specifically we show that training
the denoising autoencoder as described in section 2.3
is equivalent to maximizing a variational bound on a
particular generative model.

Consider the generative model p(X, X̃, Y ) =
p(Y )p(X|Y )p(X̃|X) where p(X|Y ) = Bs(W′Y +b′) and
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p(X̃|X) = qD(X̃|X). p(Y ) is a uniform prior over
Y ∈ [0, 1]d

′
. This defines a generative model with pa-

rameter set θ′ = {W′,b′}. We will use the previ-
ously defined q0(X, X̃, Y ) = q0(X)qD(X̃|X)δfθ( eX)(Y )
(equation 4) as an auxiliary model in the context of
a variational approximation of the log-likelihood of
p(X̃). Note that we abuse notation to make it lighter,
and use the same letters X, X̃ and Y for different
sets of random variables representing the same quan-
tity under different distributions: p or q0. Keep in
mind that whereas we had the dependency structure
X → X̃ → Y for q or q0, we have Y → X → X̃ for p.

Since p contains a corruption operation at the last
generative stage, we propose to fit p(X̃) to corrupted
training samples. Performing maximum likelihood fit-
ting for samples drawn from q0(X̃) corresponds to min-
imizing the cross-entropy, or maximizing

H = max
θ′
{−IH(q0(X̃)‖p(X̃))}

= max
θ′
{EEq0( eX)[log p(X̃)]}. (6)

Let q?(X, Y |X̃) be a conditional density, the quan-
tity L(q?, X̃) = EEq?(X,Y | eX)

[
log p(X, eX,Y )

q?(X,Y | eX)

]
is a lower

bound on log p(X̃) since the following can be shown to
be true for any q?:

log p(X̃) = L(q?, X̃) + IDKL(q?(X, Y |X̃)‖p(X, Y |X̃))

Also it is easy to verify that the bound is tight when
q?(X, Y |X̃) = p(X, Y |X̃), where the IDKL becomes 0.
We can thus write log p(X̃) = maxq? L(q?, X̃), and
consequently rewrite equation 6 as

H = max
θ′
{EEq0( eX)[max

q?
L(q?, X̃)]}

= max
θ′,q?

{EEq0( eX)[L(q?, X̃)]} (7)

x

x

x̃

x̃

qD(x̃|x)

gθ′(fθ(x̃))

Figure 2. Manifold learning perspective. Suppose
training data (×) concentrate near a low-dimensional man-
ifold. Corrupted examples (.) obtained by applying cor-

ruption process qD( eX|X) will lie farther from the manifold.

The model learns with p(X| eX) to “project them back” onto
the manifold. Intermediate representation Y can be inter-
preted as a coordinate system for points on the manifold.

where we moved the maximization outside of the ex-
pectation because an unconstrained q?(X, Y |X̃) can
in principle perfectly model the conditional distribu-
tion needed to maximize L(q?, X̃) for any X̃. Now
if we replace the maximization over an unconstrained
q? by the maximization over the parameters θ of our
q0 (appearing in fθ that maps an x to a y), we get
a lower bound on H: H ≥ maxθ′,θ{EEq0( eX)[L(q0, X̃)]}
Maximizing this lower bound, we find

arg max
θ,θ′

{EEq0( eX)[L(q0, X̃)]}

=arg max
θ,θ′

EEq0(X, eX,Y )

[
log

p(X, X̃, Y )

q0(X, Y |X̃)

]
=arg max

θ,θ′
EEq0(X, eX,Y)

[
log p(X, X̃, Y)

]
+ EEq0( eX)

[
IH[q0(X, Y |X̃)]

]
=arg max

θ,θ′
EEq0(X, eX,Y )

[
log p(X, X̃, Y )

]
.

Note that θ only occurs in Y = fθ(X̃), and θ′ only
occurs in p(X|Y ). The last line is therefore obtained
because q0(X|X̃) ∝ qD(X̃|X)q0(X) (none of which de-
pends on (θ, θ′)), and q0(Y |X̃) is deterministic, i.e., its
entropy is constant, irrespective of (θ, θ′). Hence the
entropy of q0(X, Y |X̃) = q0(Y |X̃)q0(X|X̃), does not
vary with (θ, θ′). Finally, following from above, we
obtain our training criterion (eq. 5):

arg max
θ,θ′

EEq0( eX)[L(q0, X̃)]

= arg max
θ,θ′

EEq0(X, eX,Y )[log[p(Y )p(X|Y )p(X̃|X)]]

= arg max
θ,θ′

EEq0(X, eX,Y )[log p(X|Y )]

= arg max
θ,θ′

EEq0(X, eX)[log p(X|Y = fθ(X̃))]

= arg min
θ,θ′

EEq0(X, eX)

[
LIH

(
X, gθ′(fθ(X̃))

)]
where the third line is obtained because (θ, θ′)
have no influence on EEq0(X, eX,Y )[log p(Y )] because
we chose p(Y ) uniform, i.e. constant, nor on
EEq0(X, eX)[log p(X̃|X)], and the last line is obtained
by inspection of the definition of LIH in eq. 2, when
p(X|Y = fθ(X̃)) is a Bgθ′ (fθ( eX)).

4.3. Other Theoretical Perspectives

Information Theoretic Perspective: Consider
X ∼ q(X), q unknown, Y = fθ(X̃). It can easily
be shown (Vincent et al., 2008) that minimizing the
expected reconstruction error amounts to maximizing
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a lower bound on mutual information I(X;Y ). Denois-
ing autoencoders can thus be justified by the objective
that Y captures as much information as possible about
X even as Y is a function of corrupted input.

Stochastic Operator Perspective: Extending the
manifold perspective, the denoising autoencoder can
also be seen as corresponding to a semi-parametric
model from which we can sample (Vincent et al., 2008):

p(X) = 1
n

∑n
i=1

∑
x̃ p(X|X̃ = x̃)qD(x̃|xi),

where xi is one of the n training examples.

5. Experiments

We performed experiments with the proposed algo-
rithm on the same benchmark of classification prob-
lems used in (Larochelle et al., 2007)3. It contains
different variations of the MNIST digit classification
problem (input dimensionality d = 28 × 28 = 784),
with added factors of variation such as rotation (rot),
addition of a background composed of random pixels
(bg-rand) or made from patches extracted from a set of
images (bg-img), or combinations of these factors (rot-
bg-img). These variations render the problems par-
ticularly challenging for current generic learning al-
gorithms. Each problem is divided into a training,
validation, and test set (10000, 2000, 50000 examples
respectively). A subset of the original MNIST prob-
lem is also included with the same example set sizes
(problem basic). The benchmark also contains addi-
tional binary classification problems: discriminating
between convex and non-convex shapes (convex), and
between wide and long rectangles (rect, rect-img).

Neural networks with 3 hidden layers initialized by
stacking denoising autoencoders (SdA-3), and fine
tuned on the classification tasks, were evaluated on all
the problems in this benchmark. Model selection was
conducted following a similar procedure as Larochelle
et al. (2007). Several values of hyper parameters (de-
struction fraction ν, layer sizes, number of unsuper-
vised training epochs) were tried, combined with early
stopping in the fine tuning phase. For each task, the
best model was selected based on its classification per-
formance on the validation set.

Table 1 reports the resulting classification error on the
test set for the new model (SdA-3), together with the
performance reported in Larochelle et al. (2007)4 for

3All the datasets for these problems are available at
http://www.iro.umontreal.ca/∼lisa/icml2007.

4Except that rot and rot-bg-img, as reported on the web-
site from which they are available, have been regenerated
since Larochelle et al. (2007), to fix a problem in the initial
data generation process. We used the updated data and
corresponding benchmark results given on this website.

SVMs with Gaussian and polynomial kernels, 1 and 3
hidden layers deep belief network (DBN-1 and DBN-3)
and a 3 hidden layer deep network initialized by stack-
ing basic autoencoders (SAA-3). Note that SAA-3 is
equivalent to a SdA-3 with ν = 0% destruction. As can
be seen in the table, the corruption+denoising train-
ing works remarkably well as an initialization step, and
in most cases yields significantly better classification
performance than basic autoencoder stacking with no
noise. On all but one task the SdA-3 algorithm per-
forms on par or better than the best other algorithms,
including deep belief nets. Due to space constraints,
we do not report all selected hyper-parameters in the
table (only showing ν). But it is worth mentioning
that, for the majority of tasks, the model selection
procedure chose best performing models with an over-
complete first hidden layer representation (typically
of size 2000 for the 784-dimensional MNIST-derived
tasks). This is very different from the traditional “bot-
tleneck” autoencoders, and made possible by our de-
noising training procedure. All this suggests that the
proposed procedure was indeed able to produce more
useful feature detectors.

Next, we wanted to understand qualitatively the ef-
fect of the corruption+denoising training. To this end
we display the filters obtained after initial training of
the first denoising autoencoder on MNIST digits. Fig-
ure 3 shows a few of these filters as little image patches,
for different noise levels. Each patch corresponds to a
row of the learnt weight matrix W, i.e. the incoming
weights of one of the hidden layer neurons. The benefi-
cial effect of the denoising training can clearly be seen.
Without the denoising procedure, many filters appear
to have learnt no interesting feature. They look like
the filters obtained after random initialization. But
when increasing the level of destructive corruption, an
increasing number of filters resemble sensible feature
detectors. As we move to higher noise levels, we ob-
serve a phenomenon that we expected: filters become
less local, they appear sensitive to larger structures
spread out across more input dimensions.

6. Conclusion and Future Work

We have introduced a very simple training principle
for autoencoders, based on the objective of undoing a
corruption process. This is motivated by the goal of
learning representations of the input that are robust to
small irrelevant changes in input. We also motivated
it from a manifold learning perspective and gave an
interpretation from a generative model perspective.

This principle can be used to train and stack autoen-
coders to initialize a deep neural network. A series
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Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction ν of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with ν = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (ν)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels ν. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to differentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish different kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.
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of image classification experiments were performed to
evaluate this new training principle. The empirical re-
sults support the following conclusions: unsupervised
initialization of layers with an explicit denoising crite-
rion helps to capture interesting structure in the input
distribution. This in turn leads to intermediate rep-
resentations much better suited for subsequent learn-
ing tasks such as supervised classification. It is possi-
ble that the rather good experimental performance of
Deep Belief Networks (whose layers are initialized as
RBMs) is partly due to RBMs encapsulating a simi-
lar form of robustness to corruption in the represen-
tations they learn, possibly because of their stochas-
tic nature which introduces noise in the representation
during training. Future work inspired by this observa-
tion should investigate other types of corruption pro-
cess, not only of the input but of the representation
itself as well.
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LeCun, Y. (1987). Modèles connexionistes de
l’apprentissage. Doctoral dissertation, Université
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Abstract

We show that the Brier game of prediction
is mixable and find the optimal learning rate
and substitution function for it. The result-
ing prediction algorithm is applied to predict
results of football and tennis matches. The
theoretical performance guarantee turns out
to be rather tight on these data sets, espe-
cially in the case of the more extensive tennis
data.

1. Introduction

The paradigm of prediction with expert advice was
introduced in the late 1980s (see, e.g., Littlestone
& Warmuth, 1994, Cesa-Bianchi et al., 1997) and
has been applied to various loss functions; see Cesa-
Bianchi and Lugosi (2006) for a recent book-length
review. An especially important class of loss functions
is that of “mixable” ones, for which the learner’s loss
can be made as small as the best expert’s loss plus
a constant (depending on the number of experts). It
is known (Haussler et al., 1998; Vovk, 1998) that the
optimal additive constant is attained by the “strong
aggregating algorithm” proposed in Vovk (1990) (we
use the adjective “strong” to distinguish it from the
“weak aggregating algorithm” of Kalnishkan & Vyu-
gin, 2005).

There are several important loss functions that have
been shown to be mixable and for which the optimal
additive constant has been found. The prime examples
in the case of binary observations are the log loss func-
tion and the square loss function. The log loss func-
tion, whose mixability is obvious, has been explored
extensively, along with its important generalizations,
the Kullback–Leibler divergence and Cover’s loss func-
tion.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

In this paper we concentrate on the square loss func-
tion. In the binary case, its mixability was demon-
strated in Vovk (1990). There are two natural direc-
tions in which this result could be generalized:

Regression: observations are real numbers (square-
loss regression is a standard problem in statistics).

Classification: observations take values in a finite set
(this leads to the “Brier game”, to be defined
below, a standard way of measuring the quality
of predictions in meteorology and other applied
fields: see, e.g., Dawid, 1986).

The mixability of the square loss function in the case
of observations belonging to a bounded interval of
real numbers was demonstrated in Haussler et al.
(1998); Haussler et al.’s algorithm was simplified in
Vovk (2001). Surprisingly, the case of square-loss
non-binary classification has never been analysed in
the framework of prediction with expert advice. The
purpose of this paper is to fill this gap. The full ver-
sion (Vovk & Zhdanov, 2008) of this paper is available
on arXiv.

2. Prediction Algorithm and Loss
Bound

A game of prediction consists of three components:
the observation space Ω, the decision space Γ, and the
loss function λ : Ω × Γ → R. In this paper we are
interested in the following Brier game (Brier, 1950):
Ω is a finite and non-empty set, Γ := P(Ω) is the set
of all probability measures on Ω, and

λ(ω, γ) =
∑

o∈Ω

(γ{o} − δω{o})2 ,

where δω ∈ P(Ω) is the probability measure concen-
trated at ω: δω{ω} = 1 and δω{o} = 0 for o 6= ω.
(For example, if Ω = {1, 2, 3}, ω = 1, γ{1} = 1/2,
γ{2} = 1/4, and γ{3} = 1/4, λ(ω, γ) = (1/2 − 1)2 +
(1/4− 0)2 + (1/4− 0)2 = 3/8.)
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The game of prediction is being played repeatedly by
a learner having access to decisions made by a pool of
experts, which leads to the following prediction proto-
col:

Protocol 1 Prediction with expert advice
L0 := 0.
Lk

0 := 0, k = 1, . . . ,K.
for N = 1, 2, . . . do

Expert k announces γk
N ∈ Γ, k = 1, . . . , K.

Learner announces γN ∈ Γ.
Reality announces ωN ∈ Ω.
LN := LN−1 + λ(ωN , γN ).
Lk

N := Lk
N−1 + λ(ωN , γk

N ), k = 1, . . . , K.
end for

At each step of Protocol 1 Learner is given K experts’
advice and is required to come up with his own deci-
sion; LN is his cumulative loss over the first N steps,
and Lk

N is the kth expert’s cumulative loss over the
first N steps. In the case of the Brier game, the deci-
sions are probability forecasts for the next observation.

An optimal (in the sense of Theorem 1 below) strat-
egy for Learner in prediction with expert advice for
the Brier game is given by the strong aggregating al-
gorithm. For each expert k, the algorithm maintains
its weight wk, constantly slashing the weights of less
successful experts.

Algorithm 1 Strong aggregating algorithm for the
Brier game

wk
0 := 1, k = 1, . . . ,K.

for N = 1, 2, . . . do
Read the Experts’ predictions γk

N , k = 1, . . . ,K.
Set GN (ω) := − ln

∑K
k=1 wk

N−1e
−λ(ω,γk

N ), ω ∈ Ω.
Solve

∑
ω∈Ω(s−GN (ω))+ = 2 in s ∈ R.

Set γN{ω} := (s−GN (ω))+/2, ω ∈ Ω.
Output prediction γN ∈ P(Ω).
Read observation ωN .
wk

N := wk
N−1e

−λ(ωN ,γk
N ).

end for

The algorithm will be derived in Section 5. The fol-
lowing result (to be proved in Section 4) gives a per-
formance guarantee for it that cannot be improved by
any other prediction algorithm.

Theorem 1. Using Algorithm 1 as Learner’s strategy
in Protocol 1 for the Brier game guarantees that

LN ≤ min
k=1,...,K

Lk
N + ln K (1)

for all N = 1, 2, . . . . If A < ln K, Learner does not

have a strategy guaranteeing

LN ≤ min
k=1,...,K

Lk
N + A (2)

for all N = 1, 2, . . . .

3. Experimental Results

In our first empirical study of Algorithm 1 we use his-
torical data about 6416 matches in various English
football league competitions, namely: the Premier
League (the pinnacle of the English football system),
the Football League Championship, Football League
One, Football League Two, the Football Conference.
Our data, provided by Football-Data, cover two full
seasons, 2005/2006 and 2006/2007, and part of the
2007/2008 season (which ends in May shortly after the
paper submission deadline). The matches are sorted
first by date and then by league. In the terminology
of our prediction protocol, the outcome of each match
is the observation, taking one of three possible values,
“home win”, “draw”, or “away win”; we will encode
the possible values as 1, 2, and 3.

For each match we have forecasts made by a range of
bookmakers. We chose eight bookmakers for which we
have enough data over a long period of time, namely
Bet365, Bet&Win, Gamebookers, Interwetten, Lad-
brokes, Sportingbet, Stan James, and VC Bet. (And
the seasons mentioned above were chosen because the
forecasts of these bookmakers are available for them.)

A probability forecast for the next observation is essen-
tially a vector (p1, p2, p3) consisting of positive num-
bers summing to 1. The bookmakers do not announce
these numbers directly; instead, they quote three bet-
ting odds, a1, a2, and a3. Each number ai is the
amount which the bookmaker undertakes to pay out
to a client betting on outcome i per unit stake in the
event that i happens (the stake itself is never returned
to the bettor, which makes all betting odds greater
than 1; i.e., the odds are announced according to the
“continental” rather than “traditional” system). The
inverse value 1/ai, i ∈ {1, 2, 3}, can be interpreted
as the bookmaker’s quoted probability for the obser-
vation i. The bookmaker’s quoted probabilities are
usually slightly (because of the competition with other
bookmakers) in his favour: the sum 1/a1+1/a2+1/a3

exceeds 1 by the amount called the overround (at most
0.15 in the vast majority of cases). We used

pi :=
1/ai

1/a1 + 1/a2 + 1/a3
, i = 1, 2, 3, (3)

as the bookmaker’s forecasts; it is clear that p1 + p2 +
p3 = 1.
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The results of applying Algorithm 1 to the football
data, with 8 experts and 3 possible observations, are
shown in Figure 1. Let Lk

N be the cumulative loss of
Expert k, k = 1, . . . , 8, over the first N matches and
LN be the corresponding number for Algorithm 1 (i.e.,
we essentially continue to use the notation of Theorem
1). The dashed line corresponding to Expert k shows
the excess loss N 7→ Lk

N − LN of Expert k over Al-
gorithm 1. The excess loss can be negative, but from
Theorem 1 we know that it cannot be less than − ln 8;
this lower bound is also shown in Figure 1. Finally,
the thick line (the positive part of the x axis) is drawn
for comparison: this is the excess loss of Algorithm 1
over itself. We can see that at each moment in time
the algorithm’s cumulative loss is fairly close to the
cumulative loss of the best expert (at that time; the
best expert keeps changing over the time).

0 1000 2000 3000 4000 5000 6000

−2

0

2

4

6

8

10

12

14

 

 
Theoretical bound
Algorithm 1
Experts

Figure 1. The difference between the cumulative loss of
each of the 8 bookmakers (experts) and of Algorithm 1
on the football data. The theoretical lower bound − ln 8
from Theorem 1 is also shown.

Figure 2 shows the results of another empirical study,
involving data about a large number of tennis tour-
naments in 2004, 2005, 2006, and 2007, with the to-
tal number of matches 10,087. The tournaments in-
clude, e.g., Australian Open, French Open, Wimble-
don, and US Open; the data is provided by Tennis-
Data. The matches are sorted by date, then by tourna-
ment. The data contain information about the winner
of each match and the betting odds of 4 bookmakers
for his/her win and for the opponent’s win. There-
fore, now there are two possible observations (player
1’s win and player 2’s win). There are four bookmak-
ers: Bet365, Centrebet, Expekt, and Pinnacle Sports.

The results in Figure 2 are presented in the same way
as in Figure 1. Typical values of the overround are
below 0.1.
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Figure 2. The difference between the cumulative loss of
each of the 4 bookmakers and of Algorithm 1 on the tennis
data. Now the theoretical bound is − ln 4.

In both Figure 1 and Figure 2 the cumulative loss
of Algorithm 1 is close to the cumulative loss of the
best expert, despite the fact that some of the experts
perform poorly. The theoretical bound is not hope-
lessly loose for the football data and is rather tight for
the tennis data. The pictures look exactly the same
when Algorithm 1 is applied in the more realistic man-
ner where the weights wk are not updated over the
matches that are played simultaneously.

Our second empirical study (Figure 2) is about binary
prediction, and so the algorithm of Vovk (1990) could
have also been used (and would have given similar re-
sults). We included it since we are not aware of any
empirical studies even for the binary case.

Other popular algorithms for prediction with expert
advice that could be used instead of Algorithm 1 in our
empirical studies are Kivinen and Warmuth’s (1999)
Weighted Average Algorithm (WAA) and Freund and
Schapire’s (1997) Hedge algorithm (HA). The perfor-
mance guarantees for these two algorithms are much
weaker than the optimal (1), especially in the case
of the HA (even if the loss bound given in Freund
& Schapire, 1997, is replaced by the stronger bound
given in Vovk, 1998, Example 7). The weak perfor-
mance guarantees show in the empirical performance
of the algorithms. For the football data the maxi-
mal difference between the cumulative loss of both the
WAA and the HA and the cumulative loss of the best
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expert is about twice as large as that for Algorithm 1
(and so is approximately equal to the optimal bound
ln K given by (1)). For the tennis data the maximal
difference for the WAA is about three times as large
as for Algorithm 1, and for the HA it is about twice
as large; therefore, both algorithms violate the opti-
mal bound ln K. For further details, see Vovk and
Zhdanov (2008).

The data used for producing Figures 1 and 2 can be
downloaded from http://vovk.net/ICML2008.

4. Proof of Theorem 1

This proof will use some basic notions of elementary
differential geometry, especially those connected with
the Gauss–Kronecker curvature of surfaces. (The use
of curvature in this kind of results is standard: see,
e.g., Vovk, 1990, and Haussler et al., 1998.) All defini-
tions that we will need can be found in, e.g., Thorpe,
1979.

A vector f ∈ RΩ (understood to be a function f :
Ω → R) is a superprediction if there is γ ∈ Γ such
that, for all ω ∈ Ω, λ(ω, γ) ≤ f(ω); the set Σ of all
superpredictions is the superprediction set. For each
learning rate η > 0, let Φη : RΩ → (0,∞)Ω be the
homeomorphism defined by

Φη(f) : ω ∈ Ω 7→ e−ηf(ω), f ∈ RΩ.

The image Φη(Σ) of the superprediction set will be
called the η-exponential superprediction set. It is
known that

LN ≤ min
k=1,...,K

Lk
N +

ln K

η

can be guaranteed if and only if the η-exponential su-
perprediction set is convex (part “if” for all K and
part “only if” for K → ∞ are proved in Vovk, 1998;
part “only if” for all K is proved by Chris Watkins,
and the details can be found in, e.g., Vovk, 2007, Ap-
pendix). Comparing this with (1) and (2) we can see
that we are required to prove that

• Φη(Σ) is convex when η ≤ 1;

• Φη(Σ) is not convex when η > 1.

Define the η-exponential superprediction surface to be
the part of the boundary of the η-exponential super-
prediction set Φη(Σ) lying inside (0,∞)Ω. The idea of
the proof is to check that, for all η < 1, the Gauss–
Kronecker curvature of this surface is nowhere vanish-
ing. Even when this is done, however, there is still un-
certainty as to in which direction the surface is bulging

(towards the origin or away from it). The standard ar-
gument (as in Thorpe, 1979, Chapter 12, Theorem 6)
based on the continuity of the smallest principal cur-
vature shows that the η-exponential superprediction
set is bulging away from the origin for small enough
η: indeed, since it is true at some point, it is true ev-
erywhere on the surface. By the continuity in η this is
also true for all η < 1. Now, since the η-exponential
superprediction set is convex for all η < 1, it is also
convex for η = 1.

Let us now check that the Gauss–Kronecker curvature
of the η-exponential superprediction surface is always
positive when η < 1 and is sometimes negative when
η > 1 (the rest of the proof, an elaboration of the
above argument, will be easy). Set n := |Ω|; without
loss of generality we assume Ω = {1, . . . , n}.
A convenient parametric representation of the η-
exponential superprediction surface is




x1

x2

...
xn−1

xn




=




e−η((u1−1)2+(u2)2+···+(un)2)

e−η((u1)2+(u2−1)2+···+(un)2)

...
e−η((u1)2+···+(un−1−1)2+(un)2)

e−η((u1)2+···+(un−1)2+(un−1)2)




, (4)

where u1, . . . , un−1 are the coordinates on the surface,
u1, . . . , un−1 ∈ (0, 1) subject to u1 + · · ·un−1 < 1, and
un is a shorthand for 1−u1−· · ·−un−1. The derivative
of (4) in u1 is

∂

∂u1




x1

x2

...
xn−1

xn




= 2η×




(un − u1 + 1)e−η((u1−1)2+(u2)2+···+(un−1)2+(un)2)

(un − u1)e−η((u1)2+(u2−1)2+···+(un−1)2+(un)2)

...
(un − u1)e−η((u1)2+(u2)2+···+(un−1−1)2+(un)2)

(un − u1 − 1)e−η((u1)2+(u2)2+···+(un−1)2+(un−1)2)




∝




(un − u1 + 1)e2ηu1

(un − u1)e2ηu2

...
(un − u1)e2ηun−1

(un − u1 − 1)e2ηun




,
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the derivative in u2 is

∂

∂u2




x1

x2

...
xn−1

xn



∝




(un − u2)e2ηu1

(un − u2 + 1)e2ηu2

...
(un − u2)e2ηun−1

(un − u2 − 1)e2ηun




,

and so on, up to

∂

∂un−1




x1

x2

...
xn−1

xn



∝




(un − un−1)e2ηu1

(un − un−1)e2ηu2

...
(un − un−1 + 1)e2ηun−1

(un − un−1 − 1)e2ηun




,

all coefficients of proportionality being equal and pos-
itive.

Let us set vi,j := (un − ui)e2ηuj

and wi := (un − ui),
for purely typographical reasons. A normal vector to
the surface can be found as

Z :=
∣∣∣∣∣∣∣∣∣∣

e1 · · · en−1 en

v1,1 + e2ηu1 · · · v1,n−1 v1,n − e2ηun

...
. . .

...
...

vn−1,1 · · · vn−1,n−1

+e2ηun−1
vn−1,n − e2ηun

∣∣∣∣∣∣∣∣∣∣

.

The coefficient in front of e1 is the (n − 1) × (n − 1)
determinant

∣∣∣∣∣∣∣∣∣∣

v1,2 · · · v1,n−1 v1,n − e2ηun

v2,2 + e2ηu2 · · · v2,n−1 v2,n − e2ηun

...
. . .

...
...

vn−1,2 · · · vn−1,n−1

+e2ηun−1
vn−1,n − e2ηun

∣∣∣∣∣∣∣∣∣∣

∝ e−2ηu1

∣∣∣∣∣∣∣∣∣

w1 · · · w1 w1 − 1
w2 + 1 · · · w2 w2 − 1

...
. . .

...
...

wn−1 · · · wn−1 + 1 wn−1 − 1

∣∣∣∣∣∣∣∣∣

= e−2ηu1

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 w1 − 1
2 1 · · · 1 w2 − 1
1 2 · · · 1 w3 − 1
...

...
. . .

...
...

1 1 · · · 2 wn−1 − 1

∣∣∣∣∣∣∣∣∣∣∣

= e−2ηu1

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 un − u1 − 1
1 0 · · · 0 u1 − u2

0 1 · · · 0 u1 − u3

...
...

. . .
...

...
0 0 · · · 1 u1 − un−1

∣∣∣∣∣∣∣∣∣∣∣

= e−2ηu1(
(−1)n(un − u1 − 1) + (−1)n+1(u1 − u2)

+ (−1)n+1(u1 − u3) + · · ·+ (−1)n+1(u1 − un−1)
)

= e−2ηu1
(−1)n×(

(u2 + u3 + · · ·+ un)− (n− 1)u1 − 1
)

= −e−2ηu1
(−1)nnu1 ∝ u1e−2ηu1

(5)

(with a positive coefficient of proportionality, e2η, in
the first ∝; the third equality follows from the expan-
sion of the determinant along the last column and then
along the first row).

Similarly, the coefficient in front of ei is propor-
tional (with the same coefficient of proportionality) to
uie−2ηui

for i = 2, . . . , n−1; indeed, the (n−1)×(n−1)
determinant representing the coefficient in front of ei

can be reduced to the form analogous to (5) by moving
the ith row to the top.

The coefficient in front of en is proportional to

e−2ηun

∣∣∣∣∣∣∣∣∣∣∣

w1 + 1 w1 · · · w1 w1

w2 w2 + 1 · · · w2 w2

...
...

. . .
...

wn−2 wn−2 · · · wn−2 + 1 wn−2

wn−1 wn−1 · · · wn−1 wn−1 + 1

∣∣∣∣∣∣∣∣∣∣∣

= e−2ηun

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 w1

0 1 · · · 0 w2

...
...

. . .
...

...
0 0 · · · 1 wn−2

−1 −1 · · · −1 wn−1 + 1

∣∣∣∣∣∣∣∣∣∣∣

= e−2ηun

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 un − u1

0 1 · · · 0 un − u2

...
...

. . .
...

...
0 0 · · · 1 un − un−2

0 0 · · · 0 nun

∣∣∣∣∣∣∣∣∣∣∣

= nune−2ηun

(with the coefficient of proportionality e2η(−1)n−1).

The Gauss–Kronecker curvature at the point with co-
ordinates (u1, . . . , un−1) is proportional (with a posi-
tive coefficient of proportionality, possibly depending
on the point) to ∣∣∣∣∣∣∣∣∣

∂ZT

∂u1

...
∂ZT

∂un−1

ZT

∣∣∣∣∣∣∣∣∣
(6)

(Thorpe, 1979, Chapter 12, Theorem 5, with T stand-
ing for transposition).

Set vi := (1 − 2ηui)e−2ηui

and wi = uie−2ηui

, again
for typographical reasons. A straightforward calcula-
tion allows us to rewrite determinant (6) (ignoring the
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positive coefficient ((−1)n−1ne2η)n) as

∣∣∣∣∣∣∣∣∣∣∣

v1 0 · · · 0 −vn

0 v2 · · · 0 −vn

...
...

. . .
...

...
0 0 · · · vn−1 −vn

w1 w2 · · · wn−1 wn

∣∣∣∣∣∣∣∣∣∣∣

∝

∣∣∣∣∣∣∣∣∣∣∣

1− 2ηu1 0 · · · 0 −1 + 2ηun

0 1− 2ηu2 · · · 0 −1 + 2ηun

...
. . .

...
...

0 0 · · · 1− 2ηun−1 −1 + 2ηun

u1 u2 · · · un−1 un

∣∣∣∣∣∣∣∣∣∣∣
= u1(1− 2ηu2)(1− 2ηu3) · · · (1− 2ηun)

+ u2(1− 2ηu1)(1− 2ηu3) · · · (1− 2ηun) + · · ·
+ un(1− 2ηu1)(1− 2ηu2) · · · (1− 2ηun−1) (7)

(with a positive coefficient of proportionality; to avoid
calculation of the parities of various permutations, the
reader might prefer to prove the last equality by in-
duction in n, expanding the last determinant along
the first column). Our goal is to show that the last
expression in (7) is positive when η < 1 but can be
negative when η > 1.

If η > 1, set u1 = u2 := 1/2 and u3 = · · · = un := 0.
The last expression in (7) becomes negative. There-
fore, the η-exponential superprediction set is not con-
vex (Thorpe, 1979, Chapter 13, Theorem 1).

It remains to consider the case η < 1. Set ti := 1 −
2ηui, i = 1, . . . , n; the constraints on the ti are

− 1 < 1− 2η < ti < 1, i = 1, . . . , n,

t1 + · · ·+ tn = n− 2η > n− 2. (8)

Our goal is to prove

(1− t1)t2t3 · · · tn + · · ·+ (1− tn)t1t2 · · · tn−1 > 0,

i.e.,

t2t3 · · · tn + · · ·+ t1t2 · · · tn−1 > nt1 · · · tn. (9)

This reduces to

1
t1

+ · · ·+ 1
tn

> n (10)

if t1 · · · tn > 0, and to

1
t1

+ · · ·+ 1
tn

< n (11)

if t1 · · · tn < 0. The remaining case is where some of
the ti are zero; for concreteness, let tn = 0. By (8) we

have t1 + · · ·+ tn−1 > n− 2, and so all of t1, . . . , tn−1

are positive; this shows that (9) is indeed true.

Let us prove (10). Since t1 · · · tn > 0, all of t1, . . . , tn
are positive (if two of them were negative, the sum
t1+· · ·+tn would be less than n−2; cf. (8)). Therefore,

1
t1

+ · · ·+ 1
tn

> 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n.

To establish (9) it remains to prove (11). Suppose,
without loss of generality, that t1 > 0, t2 > 0,. . . ,
tn−1 > 0, and tn < 0. Since the function t ∈ (0, 1] 7→
1/t is convex, we can also assume, without loss of gen-
erality, t1 = · · · = tn−2 = 1. Then tn−1 + tn > 0, and
so

1
tn−1

+
1
tn

< 0;

therefore,

1
t1

+ · · ·+ 1
tn−2

+
1

tn−1
+

1
tn

< n− 2 < n.

Finally, let us check that the positivity of the Gauss–
Kronecker curvature implies the convexity of the η-
exponential superprediction set, for η ≤ 1. Because
of the continuity of the η-exponential superprediction
surface in η we can and will assume, without loss of
generality, that η < 1. The η-exponential superpredic-
tion surface will be oriented by choosing the normal
vector field directed towards the origin; this can be
done since




x1

...
xn


 ∝




e2ηu1

...
e2ηun


 , Z ∝



−u1e−2ηu1

...
−une−2ηun


 , (12)

with the first coefficient of proportionality positive (cf.
(4) and the bottom row of the first determinant in (7)),
and the scalar product of the two vectors in (12) is
always negative.

Let us first check that the smallest principal curvature

k1 = k1(u1, . . . , un−1, η)

of the η-exponential superprediction surface is always
positive (among the arguments of k1 we list not only
the coordinates u1, . . . , un−1 of a point on the surface
(4) but also the learning rate η ∈ (0, 1)). At least at
some (u1, . . . , un−1, η) the value of k1(u1, . . . , un−1, η)
is positive: take a sufficiently small η and the point on
the surface (4) at which the maximum of x1 + · · ·+xn

is attained (the point of the η-exponential superpre-
diction set at which the maximum is attained will
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lie on the surface since the maximum is attained at
(x1, . . . , xn) = (1, . . . , 1) when η = 0). Therefore, for
all (u1, . . . , un−1, η) the value of k1(u1, . . . , un−1, η) is
positive: if k1 had different signs at two points in the
set

{
(u1, . . . , un−1, η) |u1 ∈ (0, 1), . . . , un−1 ∈ (0, 1),

u1 + · · ·+ un−1 < 1, η ∈ (0, 1)
}
, (13)

we could connect these points by a continuous curve ly-
ing completely inside (13); at some point on the curve,
k1 would be zero, in contradiction to the positivity of
the Gauss–Kronecker curvature k1 · · · kn−1.

Now it is easy to show that the η-exponential super-
prediction set is convex. Suppose there are two points
A and B on the η-exponential superprediction surface
such that the interval [A,B] contains points outside
the η-exponential superprediction set. The intersec-
tion of the plane OAB, where O is the origin, with
the η-exponential superprediction surface is a planar
curve; the curvature of this curve at the point between
A and B closest to the origin will be negative (with
the curve oriented by directing the normal vector field
towards the origin), contradicting the positivity of k1

at that point and Meusnier’s theorem (cf. (12)).

5. Derivation of the Prediction
Algorithm

To achieve the loss bound (1) in Theorem 1 Learner
can use, as discussed earlier, the strong aggregating al-
gorithm (see, e.g., Vovk, 2001, Section 2.1, (15)) with
η = 1. In this section we will find a substitution func-
tion for the strong aggregating algorithm for the Brier
game with η ≤ 1, which is the only component of
the algorithm not described explicitly in Vovk (2001).
Our substitution function will not require that its in-
put, the generalized prediction, should be computed
from the normalized distribution (wk)K

k=1 on the ex-
perts; this is a valuable feature for generalizations to
an infinite number of experts (as demonstrated in, e.g.,
Vovk, 2001, Appendix A.1).

Suppose that we are given a generalized prediction
(l1, . . . , ln)T computed by the aggregating pseudo-
algorithm from a normalized distribution on the
experts. Since (l1, . . . , ln)T is a superprediction (re-
member that we are assuming η ≤ 1), we are only
required to find a permitted prediction




λ1

λ2

...
λn


 =




(u1 − 1)2 + (u2)2 + · · ·+ (un)2

(u1)2 + (u2 − 1)2 + · · ·+ (un)2
...

(u1)2 + (u2)2 + · · ·+ (un − 1)2


 (14)

(cf. (4)) satisfying

λ1 ≤ l1, . . . , λn ≤ ln. (15)

Now suppose we are given a generalized prediction
(L1, . . . , Ln)T computed by the APA from an unnor-
malized distribution on the experts; in other words,
we are given 


L1

...
Ln


 =




l1 + c
...

ln + c




for some c ∈ R. To find (14) satisfying (15) we can first
find the largest t ∈ R such that (L1 − t, . . . , Ln − t)T

is still a superprediction and then find (14) satisfying

λ1 ≤ L1 − t, . . . , λn ≤ Ln − t. (16)

Since t ≥ c, it is clear that (λ1, . . . , λn)T will also
satisfy the required (15).
Proposition 1. Define s ∈ R by the requirement

n∑

i=1

(s− Li)+ = 2. (17)

The unique solution to the optimization problem t →
max under the constraints (16) with λ1, . . . , λn as in
(14) will be

ui =
(s− Li)+

2
, i = 1, . . . , n, (18)

t = s− 1− (u1)2 − · · · − (un)2. (19)

There exists a unique s satisfying (17) since the left-
hand side of (17) is a continuous, increasing (strictly
increasing when positive) and unbounded above func-
tion of s. The substitution function is given by (18).

Proof of Proposition 1. Let us denote the ui and t de-
fined by (18) and (19) as ui and t, respectively. To see
that they satisfy the constraints (16), notice that the
ith constraint can be spelt out as

(u1)2 + · · ·+ (un)2 − 2ui + 1 ≤ Li − t,

which immediately follows from (18) and (19). As a
by-product, we can see that the inequality becomes an
equality, i.e.,

t = Li − 1 + 2ui − (u1)2 − · · · − (un)2, (20)

for all i with ui > 0.

We can rewrite (16) as




t ≤ L1 − 1 + 2u1 − (u1)2 − · · · − (un)2,
...

t ≤ Ln − 1 + 2un − (u1)2 − · · · − (un)2,
(21)
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and our goal is to prove that these inequalities imply
t < t (unless u1 = u1, . . . , un = un). Choose ui (neces-
sarily ui > 0 unless u1 = u1, . . . , un = un; in the latter
case, however, we can, and will, also choose ui > 0)
for which εi := ui − ui is maximal. Then every value
of t satisfying (21) will also satisfy

t ≤ Li − 1 + 2ui −
n∑

j=1

(uj)2

= Li − 1 + 2ui − 2εi −
n∑

j=1

(uj)2 + 2
n∑

j=1

εju
j −

n∑

j=1

ε2j

≤ Li − 1 + 2ui −
n∑

j=1

(uj)2 −
n∑

j=1

ε2j ≤ t,

with the last ≤ following from (20) and becoming <
when not all uj coincide with uj .

The detailed description of the resulting prediction al-
gorithm was given as Algorithm 1 in Section 2. As
discussed, that algorithm uses the generalized predic-
tion GN (ω) computed from unnormalized weights.

6. Conclusion

In this paper we only considered the simplest predic-
tion problem for the Brier game: competing with a
finite pool of experts. In the case of square-loss regres-
sion, it is possible to find efficient closed-form predic-
tion algorithms competitive with linear functions (see,
e.g., Cesa-Bianchi & Lugosi, 2006, Chapter 11). Such
algorithms can often be “kernelized” to obtain predic-
tion algorithms competitive with reproducing kernel
Hilbert spaces of prediction rules. This would be an
appealing research programme in the case of the Brier
game as well.

Acknowledgments

We are grateful to Football-Data and Tennis-Data
for providing access to the data used in this paper.
This work was partly supported by EPSRC (grant
EP/F002998/1). Comments by Alexey Chernov, Alex
Gammerman, Yuri Kalnishkan, and anonymous refer-
ees have helped us improve the presentation.

References

Brier, G. W. (1950). Verification of forecasts expressed
in terms of probability. Monthly Weather Review,
78, 1–3.

Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold,
D. P., Schapire, R. E., & Warmuth, M. K. (1997).

How to use expert advice. Journal of the Association
for Computing Machinery, 44, 427–485.

Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction,
learning, and games. Cambridge, England: Cam-
bridge University Press.

Dawid, A. P. (1986). Probability forecasting. In
S. Kotz, N. L. Johnson and C. B. Read (Eds.), Ency-
clopedia of statistical sciences, vol. 7, 210–218. New
York: Wiley.

Freund, Y., & Schapire, R. E. (1997). A decision-
theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and
System Sciences, 55, 119–139.

Haussler, D., Kivinen, J., & Warmuth, M. K. (1998).
Sequential prediction of individual sequences under
general loss functions. IEEE Transactions on Infor-
mation Theory, 44, 1906–1925.

Kalnishkan, Y., & Vyugin, M. V. (2005). The Weak
Aggregating Algorithm and weak mixability. Pro-
ceedings of the Eighteenth Annual Conference on
Learning Theory (pp. 188–203). Berlin: Springer.

Kivinen, J., & Warmuth, M. K. (1999). Averaging ex-
pert predictions. Proceedings of the Fourth European
Conference on Computational Learning Theory (pp.
153–167). Berlin: Springer.

Littlestone, N., & Warmuth, M. K. (1994). The
Weighted Majority Algorithm. Information and
Computation, 108, 212–261.

Thorpe, J. A. (1979). Elementary topics in differential
geometry. New York: Springer.

Vovk, V. (1990). Aggregating strategies. Proceedings
of the Third Annual Workshop on Computational
Learning Theory (pp. 371–383). San Mateo, CA:
Morgan Kaufmann.

Vovk, V. (1998). A game of prediction with expert
advice. Journal of Computer and System Sciences,
56, 153–173.

Vovk, V. (2001). Competitive on-line statistics. Inter-
national Statistical Review, 69, 213–248.

Vovk, V. (2007). Defensive forecasting for opti-
mal prediction with expert advice (Technical Re-
port arXiv:0708.1503 [cs.LG]). arXiv.org e-Print
archive.

Vovk, V., & Zhdanov, F. (2008). Prediction with ex-
pert advice for the Brier game (Technical Report
arXiv:0708.2502v2 [cs.LG]). arXiv.org e-Print
archive.

1111



Sparse Multiscale Gaussian Process Regression

Christian Walder christian.walder@tuebingen.mpg.de

Kwang In Kim kimki@tuebingen.mpg.de

Bernhard Schölkopf berhard.schoelkopf@tuebingen.mpg.de

Max Planck Institute for Biological Cybernetics
Spemannstr. 38, 72076 Tuebingen, Germany

Abstract

Most existing sparse Gaussian process (g.p.)
models seek computational advantages by
basing their computations on a set of m basis
functions that are the covariance function of
the g.p. with one of its two inputs fixed. We
generalise this for the case of Gaussian covari-
ance function, by basing our computations on
m Gaussian basis functions with arbitrary di-
agonal covariance matrices (or length scales).
For a fixed number of basis functions and
any given criteria, this additional flexibility
permits approximations no worse and typ-
ically better than was previously possible.
We perform gradient based optimisation of
the marginal likelihood, which costs O(m2n)
time where n is the number of data points,
and compare the method to various other
sparse g.p. methods. Although we focus on
g.p. regression, the central idea is applicable
to all kernel based algorithms, and we also
provide some results for the support vector
machine (s.v.m.) and kernel ridge regression
(k.r.r.). Our approach outperforms the other
methods, particularly for the case of very few
basis functions, i.e. a very high sparsity ratio.

1. Introduction

The Gaussian process (g.p.) is a popular non-
parametric model for supervised learning problems.
Although g.p.’s have been shown to perform well on a
wide range of tasks, their usefulness is severely lim-
ited by the O(n3) time and O(n2) storage require-
ments where n is the number of data points. A large
amount of work has been done to alleviate this prob-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

lem, either by approximating the posterior distribu-
tion, or constructing degenerate covariance functions
for which the exact posterior is less expensive to eval-
uate (Smola & Bartlett, 2000; Csató & Opper, 2002;
Lawrence et al., 2002; Seeger et al., 2003; Snelson
& Ghahramani, 2006) — for a unifying overview see
(Quiñonero-Candela & Rasmussen, 2005). The major-
ity of such methods achieve an O(m2n) time complex-
ity for training where m ≪ n is the number of points
on which the computations are based.

The g.p. can be interpreted as a linear (in the pa-
rameters) model which, due to its non-parametric na-
ture, has potentially as many parameters to estimate
as there are training points. An exception is the case
where the covariance function has finite rank, such as
the linear covariance function on R

d × R
d given by

k(x,x′) = x⊤x′, which has rank d. In this case the
g.p. collapses to a parametric method and it is possible
to derive algorithms with O(d2n) time complexity by
basing the computations on d basis functions.

For non-degenerate covariance functions, most existing
sparse g.p. algorithms all have in common that they
base their computations on m basis functions of the
form k(vi, ·). Typically the set V = {v1,v2, . . . ,vm}
is taken to be a subset of the training set (Smola &
Bartlett, 2000; Csató & Opper, 2002; Seeger et al.,
2003). For example Seeger et al. (Seeger et al., 2003)
employ a highly efficient approximate information gain
criteria to incrementally select points from the training
set in a greedy manner.

More recently Snelson and Ghahramani (2006) have
shown that further improvements in the quality of the
model for a given m can be made — especially for small
m — by removing the restriction that V be a subset of
the training set. For this they introduced a new sparse
g.p. model which has the advantage of being closer to
the full g.p., and also of being more amenable to gradi-
ent based optimisation of the marginal likelihood with
respect to the set V. A further advantage of their con-
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tinuous optimisation of V is that the hyper-parameters
of the model can be optimised at the same time — this
is more difficult when V is taken to be a subset of the
training set, since choosing such a subset is a hard
combinatoric problem.

In this paper we take a logical step forward in the de-
velopment of sparse g.p. algorithms. We also base our
computations on a finite set of basis functions, but
remove the restriction that the basis functions be of
the form k(vi, ·) where k is the covariance of the g.p.
This will require computing integrals involving the ba-
sis and covariance functions, and so cannot always be
done in closed form. Fortunately however, closed form
expressions can be obtained for arguably the most use-
ful scenario, namely that of Gaussian covariance func-
tion (with arbitrary diagonal covariance matrix) along
with Gaussian basis functions (again each with their
own arbitrary diagonal covariance matrix).

The central idea is that, under some mild restrictions,
we can compute the prior probability density — under
the g.p. model with Gaussian covariance — of arbi-
trary Gaussian mixtures. Our analysis is new, but
there is a precedent for it in the literature. In par-
ticular, Walder et al. (2006) employ a similar idea,
but from an reproducing kernel Hilbert space (r.k.h.s.)
rather than a g.p. perspective, and for a different ba-
sis and covariance function. Also related is (Gehler &
Franz, 2006), which analyses from a g.p. perspective
with arbitrary basis and covariance function, but with
the difference that they do not take infinite limits.

Our idea has a direct r.k.h.s. analogy. Indeed the main
idea is applicable to any kernel machine, but in this pa-
per we focus on the g.p. framework. The main reason
for this is that it allows us to build on the sparse g.p.
model of Snelson and Ghahramani (2006), which has
been shown to be amenable to gradient based optimi-
sation of the marginal likelihood. Nonetheless we do
provide some experimental results for the kernel ridge
regression (k.r.r.) case, as well as an animated toy ex-
ample of the support vector machine (s.v.m.), in the
accompanying video.

The paper is structured as follows. Section 2 provides
an introduction to g.p. regression. In Section 3 we
derive the likelihood of arbitrary Gaussian mixtures
under the g.p. model with Gaussian covariance, and
clarify the link to r.k.h.s.’s. In Section 4 we discuss
and motivate the precise probabilistic model which we
use to make practical use of our theoretical results.
Experimental results and conclusions are presented in
Sections 5 and 6, respectively.

2. Gaussian Process Regression

We assume that we are given an independent and iden-
tically distributed (i.i.d.) sample

S = {(x1, y1) , . . . , (xn, yn)} ⊂ R
d × R

drawn from an unknown distribution, and the goal is
to estimate p(y|x). We introduce a latent variable u ∈
R, and make the assumption that p(y|u,x) = p(y|u).
Hence we can think of y as a noisy realisation of u,
which we model by p(y|u) = N (y|u, σ2

n) where σn is a
hyper-parameter.1

The relationship x → u is a random process u(·),
namely a zero mean g.p. with covariance function
k : R

d × R
d → R. Typically k will be defined in terms

of further hyper-parameters. We shall denote such a
g.p. as G(k), which is defined by the fact that its joint
evaluation at a finite number of input points is a zero
mean Gaussian random variable with covariance

Ef∼G(k) [f(x)f(z)] = k(x,z).

One can show that given the hyper-parameters, the
posterior p(u|S), where2 [u]i = u(xi), is

p(u|S) ∝ p(u)N (y|u, σ2
nI)

∝ N
(
u|Kxx(Kxx + σ2

nI)−1y, σ2
nKxx(Kxx + σ2

nI)−1
)
,

(1)

where [Kxx]ij = k(xi,xj). Like many authors we
neglect to notate the conditioning upon the hyper-
parameters, both in the above expression and for the
remainder of the paper. Now, it can also be shown
that the latent function u∗ = u(x∗) at an arbitrary
test point x∗ is distributed according to p(u∗|x∗,S) =
∫

p(u∗|x∗,S,u)p(u|x∗,S) du = N (u∗|µ∗, σ
2
∗), where

µ∗ = y⊤(Kxx + σ2
nI)−1k∗, (2)

σ2
∗ = k(x∗,x∗) − k⊤

∗ (Kxx + σ2
nI)−1k∗, (3)

and we have defined [k∗]i = k(x∗,xi).

In a Bayesian setting, one places priors over the
hyper-parameters and computes the hyper-posterior,
but this usually involves costly numerical integration
techniques. Alternatively one may fix the hyper-
parameters to those obtained by maximising some cri-
teria such as the marginal likelihood conditioned upon
them, p(y|X ) = N (y|0,Ky), where X = (x1, . . . ,xn)

1We adopt the common convention of writing N (x|µ, σ)
for the probability density at x of the Gaussian random
variable with mean µ and variance σ.

2Square brackets with subscripts denote elements of ma-
trices and vectors, and a colon subscript denotes an entire
row or column of a matrix.
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and Kyy = Kxx + σ2
nI is the covariance matrix for y.

This can be computed using the result that

log (p(y|X )) ∝ −y⊤K−1
yy y − log |Kyy| + c, (4)

where c is a term independent of the hyper-parameters.
Even when one neglects the cost of choosing the hyper-
parameters however, it typically costs O(n) and O(n2)
time to evaluate the posterior mean and variance re-
spectively, after an initial setup cost of O(n3).

3. Sparse Multiscale Gaussian Process

Regression

In this section we – loosely speaking – derive the likeli-
hood of a mixture of Gaussians with arbitrary diagonal
covariance matrices, under a g.p. prior with a covari-
ance function that is also a Gaussian with arbitrary di-
agonal covariance matrix. Let u be drawn from G(k).
As we mentioned previously, this means that the vec-
tor of joint evaluations at an arbitrary ordered set of
points X = (x1, . . . ,xn) is a random variable, call it
uX , distributed according to

puX
(u) = N (u|0,Kxx) . (5)

Hence by definition

puX
(
∑m

i=1ciui)

=
∣
∣2πK−1

xx

∣
∣
− 1

2 exp



−1

2

m∑

i,j=1

cicju
⊤
i K−1

xx uj



 ,

where |·| denotes the matrix determinant. Note that
this is simply the probability density function (p.d.f.)
of uX where we have set the argument to be

∑m
i=1 ciui,

for some ci ∈ R. We have done this because later
we will wish to determine the likelihood of a function
expressed as a summation of fixed basis functions. To
this end we now consider an infinite limit of the above
case. Taking the limit n → ∞ of uniformly distributed
points3 xi leads to the following p.d.f. for G(k),

pG(k)(
∑m

i=1ciui)

=
∣
∣2πk−1

∣
∣
− 1

2 exp

(

− 1

2

m∑

i,j=1

cicjΨk(ui, uj)

)

, (6)

where

Ψk(ui, uj) ,

∫ ∫

k−1(x,y)ui(x)uj(y) dx dy. (7)

We will discuss the factor of
∣
∣2πk−1

∣
∣
− 1

2 shortly. Note
that in the previous case of finite n, if we let u = Kxxα

3Although any non-vanishing distribution leads to the
same result.

and assume that Kxx is invertible, then α = K−1
xx u.

Following this finite analogy, by k−1 we now intend
a sloppy notation for the function which, for u =
∫

α(x)k(x, ·) dx, satisfies
∫

u(x)k−1(x, ·) dx = α(·).
Hence if we define

Mk : α 7→ Mkα =

∫

α(x)k(x, ·) dx,

then k−1 is by definition the Green’s function (Roach,
1970) of Mk, as it satisfies

∫
(
Mkα

)
(x)k−1(x, ·) dx = α(·). (8)

Let us now consider the covariance function given by
k(x,y) = cg(x,y,σ), where c > 0, σ > 0 ∈ R

d and
g is a normalised Gaussian on R

d × R
d with diagonal

covariance matrix, that is4

g(x,y,σ) , |2πdiag (σ)|− 1

2 exp

(

−1

2

d∑

i=1

([x − y]i)
2

[σ]i

)

.

(9)

If we assume furthermore that our function is an arbi-
trary mixture of such Gaussians, so that

ui(x) = g(x,vi,σi), (10)

then the well known integral (for the convolution of
two Gaussians)

∫

g(x,vi,σi)g(x,vj ,σj) dx = g(vi,vj ,σi + σj),
(11)

leads to
(

1

c
Mcg(·,·,σ)g(·,vi,σi − σ)

)

(x) = g(x,vi,σi) = ui(x).
(12)

As the covariance function and the basis functions are
all Gaussian we can obtain in closed form

Ψk(ui, uj)
(7,10,12)

=

∫ ∫

k−1(x,y)g(x,vi,σi)

·
(

1

c
Mcg(·,·,σ)g(·,vj ,σj − σ)

)

(y) dx dy

(8)
=

1

c

∫

g(x,vi,σi)g(x,vj ,σj − σ) dx

(11)
=

1

c
g(vi,vj ,σi + σj − σ).

4We use diag in a sloppy fashion with two meanings —
for a ∈ R

n, diag(a) ∈ R
n×n is a diagonal matrix satisfying

[diag(a)]
ii

= [a]
i
. But for A ∈ R

n×n, diag(A) ∈ R
n is a

column vector with [diag(A)]
i
= [A]

ii
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For clarity we have noted above each equals sign the
number of the equation which implies the correspond-
ing logical step. The following expression summarises
the main idea of the present section

pG(cg(·,·,σ))

( m∑

i=1

cig(·,vi,σi)

)

∝ exp

(

− 1

2

m∑

i,j=1

1

c
cicjg(vi,vj ,σi + σj − σ)

)

. (13)

We give only an unnormalised form by neglecting the

factor
∣
∣2πk−1

∣
∣
− 1

2 in (6). The neglected factor is equal
to the inverse of the integral of the right hand side
of the above expression with respect to all functions
∑m

i=1 cig(·,vi,σi). We need not concern ourselves
with choosing a measure with respect to which this
integral is finite, due to the fact that, since we will
be working only with ratios of the above likelihood
(i.e. for maximum a posteriori (m.a.p.) estimation and
marginal likelihood maximisation), we need only the
unnormalised form. Note that this peculiarity is not
particular to our proposed sparse approximation to the
g.p., but is a property of g.p.’s in general.

Interpretation We now make two remarks regard-
ing the expression (13). i) If σ1 = σ2 = · · · = σn = σ

and we reparameterise ci = cc′i then it simplifies to (5).

ii) Let c = 1 and h(x) = exp
(

− 1
2x⊤diag (σ1)

−1
x
)

,

an unnormalised Gaussian. Using (9) and (13) we can
derive the log-likelihood of h under the g.p. prior,

log
(

pG(g(·,·,σ))

(
h(·)

))

∝ −
√

|diag (σ1)|
|diag (2σ1 − σ)| . (14)

Simple analysis of this expression shows that the most
likely such function h is that with σ1 = σ. From this
extremal point, as any component of σ1 increases, the
log likelihood of h decreases without bound. Similarly
decreasing any component of σ1 also decreases the log
likelihood, and as any component of σ1 approaches
half the value of the corresponding component of σ,
then the log likelihood decreases without bound. To
be more precise, we have for all j = 1, 2, . . . , d that

lim
[σ1]j→( 1

2
[σ]

j)
+

log
(

pG(g(·,·,σ))

(
h(·)

))

= −∞.

An interesting consequence of the second remark is
that, roughly speaking, it is not possible to recover a
Gaussian function using a g.p. with Gaussian covari-
ance, if the covariance function is more than twice as
broad as the function to be recovered. Although this
may at first appear to contradict proven consistency

results for the Gaussian covariance function (for ex-
ample (Steinwart, 2002)), this is not the case. On the
contrary, such results hold only for compact domains,
and our analysis is for R

d.

An r.k.h.s. Analogy We note that (13) has a direct
analogy in the theory of r.k.h.s.’s, as made clear by the
following lemma. The lemma follows from (13) and the
well understood relationship between every g.p. and
the corresponding r.k.h.s. of functions.

Lemma 3.1. Let H be the r.k.h.s. with reproducing
kernel g(·, ·,σ). If the conditions σi > 1

2σ and σj >
1
2σ are satisfied component-wise, then

〈g(·,vi,σi), g(·,vj ,σj)〉H= g(vi,vj ,σi +σj −σ).
(15)

If either condition is not satisfied, then the correspond-
ing function on the left hand side is not in H.

Naturally this can also be proven directly, but doing
so for the general case is more involved and we omit
the details due to space limitations.5 However, by
assuming that the conditions σi > σ and σj > σ

are satisfied component-wise, then it is straightfor-
ward to obtain the main result. The basic idea is
as follows. Using (11) we substitute g(·,vp,σp) =
∫

g(·,xp,σ)g(xp,vp,σp − σ) dxp for p = i, j into
the l.h.s. of (15). By linearity we can write the
two integrals outside the inner product. Next we
use the r.k.h.s. reproducing property — the fact that
〈f(·), g(·,x,σ)〉H = f(x),∀f ∈ H,x ∈ R

d — to eval-
uate the inner product. Using (11) we integrate to
obtain the r.h.s. of (15).

4. Inference with the Sparse Model

4.1. A Simple Approach

In the previous section we derived the g.p. likelihood
over a certain restricted function space. This likeli-
hood defines a distribution over functions of the form
∑m

i=1 cig(·,vi,σi) where g as given previously is deter-
ministic and the ci are, by inspection of (13), normally
distributed according to

c ∼ N
(
0, U−1

Ψ

)
, (16)

where [UΨ]i,j = Ψk(ui, uj). Let us write U =
{u1, . . . , um} (which we refer to as the basis) and re-
fer to the random process thus defined as GU (k). This
new random process is equivalent to a full g.p. with

5For ICML reviewing, we can provide proof on request.
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covariance function of rank at most m given by

Ef∼GU (k) [f(x)f(z)] = E
c∼N(0,U−1

Ψ )

[(
u⊤

vxc
) (

u⊤
vzc
)⊤
]

= u⊤
vxU−1

Ψ uvz, (17)

where [uvx]i = g(x,vi,σi) and [uvz]i = g(z,vi,σi).

As an aside, note that if we choose as the ba-
sis U = {g(·,x,σ), g(·,z,σ)}, then it is easy to
verify using (17) that Ef∼GU (g(·,·,σ)) [f(x)f(z)] =
Ef∼G(k) [f(x)f(z)]. This is analogous to a special case
of the representer theorem from the theory of r.k.h.s.’s,
and agrees with the interpretation that (16) is such
that GU (k) approximates G(k) well in some sense, for
the given basis U .

Returning to the main thread, the new posterior can
be derived as it was at the end of Section 2 for the
exact g.p., but using the new covariance function (17).
Hence after some algebra we have from (2) and (3)
that, conditioned again upon the hyper-parameters,
the latent function u∗ = u(x∗) at an arbitrary test
point is distributed according to pu∼GU (k)(u∗|x∗,S) =
N (u∗|µ∗, σ

2
∗), where

µ∗ = (Uvxy)
⊤ (

UvxU⊤
vx + σ2

nUΨ

)−1
uv∗, (18)

σ2
∗ = σ2

nu⊤
v∗

(
UvxU⊤

vx + σ2
nUΨ

)−1
uv∗, (19)

and we have defined [Uvx]i,j = g(xj ,vi,σi), etc. Note
that these expressions can be evaluated in O(m) and
O(m2) time respectively, after an initial setup or train-
ing cost of O(m2n). This is the usual improvement
over the full g.p. obtained by such sparse approxima-
tion schemes. It turns out however that by employ-
ing an idea introduced by Snelson and Ghahramani
(2006), we can retain these computational advantages
while switching to a different model that is closer to
the full g.p.

4.2. Inference with Improved Variance

A fair criticism of the previous model is that the pre-
dictive variance approaches zero far away from the ba-
sis function centres vi, as can be seen from (19). It
turns out that this is particularly problematic to gra-
dient based methods for choosing the basis (the vi and
σi) by maximising the marginal likelihood (Snelson &
Ghahramani, 2006). An effective but still computa-
tionally attractive way of healing the model is to switch
to a different g.p. — which we denote G̃U (k) — whose
covariance function satisfies

EG̃U (k) [f(x)f(z)] = δx,zk(x,z) + δx,zu⊤
vxU−1

Ψ uvz,

(20)

where δa,b is the Kronecker delta function and δa,b =
1 − δa,b. Note that if x = z then the covariance is
that of the original g.p. G(k), otherwise it is that of
GU (k). Unlike (17), the prior variance in this case is
the same as that of the full g.p., even though in general
the covariance is not. Once again the posterior can be
found as before by replacing the covariance function
in (2) and (3) with the right hand side of (20). In
this case we obtain after some algebra the expression
pu∼G̃U (k)(u∗|x∗,S) = N (u∗|µ∗, σ

2
∗), where

µ∗ = u⊤
v∗Q

−1Uvx

(
Λ + σ2

nI
)−1

y, (21)

σ2
∗ = k(x∗,x∗) − u⊤

v∗

(
U−1

Ψ − Q−1
)
uv∗, (22)

Λ = diag (λ), and

[λ]i = k(vi,vi) − [Uvv]
⊤
:,i U−1

Ψ [Uvv]:,i,

Q = UΨ + Uvx

(
Λ + σ2

nI
)−1

U⊤
vx.

To compute the marginal likelihood we can use the ex-
pression (4). Note that it can be computed efficiently
using Cholesky decompositions. In order to optimize
the marginal likelihood, we also need its gradients with
respect to the various parameters. Our derivation
of the gradients (which closely follows (Seeger et al.,
2003)) is long and tedious, and has been omitted due
to space limitations. Note that by factorising appro-
priately, all of the required gradients can be obtained
in O(m2n + mnd).

4.3. A Unifying View

We now briefly outline how the method of the previ-
ous section fits into the unifying framework of sparse
g.p.’s provided by Quiñonero-Candela and Rasmussen
(2005). Using Bayes rule and marginalising out the
training set latent variables u, we obtain the posterior

p(u∗|y) =
1

p(y)

∫

p(y|u)p(u, u∗) du.

Here we have neglected to notate conditioning on x∗

and x1, . . . ,xn, and have written p instead of the more
precise pu∼G(k). Our algorithm can be interpreted as
employing two separate approximations. The first is
conditional independence of u and u∗ given a, i.e.

p(u, u∗) =

∫

p(u, u∗|a)p(a) da

≈
∫

p(u|a)p(u∗|a)p(a) da,

where a (which is marginalised out) is taken to be

(〈u1, u〉H 〈u2, u〉H · · · 〈um, u〉H)
⊤

,
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Figure 1. Predictive distributions (mean curve with ± two standard deviations shaded). For the spgp-full and vsgp-full

algorithms, we plot the (vi, σi) ∈ R×R of the basis as crossed circles. The horizontal lines denote the resulting σ ∈ R of
the covariance function cg(·, ·, σ).

the vector of inner products between the basis func-
tions ui and the latent function u, in the r.k.h.s. H
associated with k(·, ·). The second approximation is

p(u|a) = N
(
UxvU−1

Ψ v,Kxx − UxvU
−1
Ψ U⊤

xv

)

≈ N
(
UxvU−1

Ψ v,diag′
(
Kxx − UxvU

−1
Ψ U⊤

xv

))
.

where diag′(A) is a diagonal matrix matching A on
the diagonal, and [Kxv]i,j = k(xi,vj), etc. Note that
the first line can be shown with some algebra, whereas
the second is an approximation. One can show that
this leads to the result of Section 4.2, but we omit the
details for brevity. Of the algorithms considered in
(Quiñonero-Candela & Rasmussen, 2005), ours is clos-
est to that of Snelson and Ghahramani (2006), however
there the basis functions take the form ui = k(vi, ·),
which has two implications. Firstly, a simplifies to

(u(v1) u(v2) · · · u(vm))
⊤

,

the vector of the values of u at v1, . . . ,vm. Secondly,
UΨ and Uxv simplify to Kvv and Kxv, respectively.

5. Experiments

Our main goal is to demonstrate the value of being
able to vary the σi individually. Note that the chief
advantage of our method is in producing highly sparse
solutions, and the results represent the state of the
art in this respect. As such, and since the prediction
cost is O(md), we analyse the predictive performance
of the model as a function of the number of basis
functions m. Note that neither our method nor the
most closely related method of Snelson and Ghahra-
mani (2006) are particularly competitive in terms of
training time. Nonetheless, there is a demand for algo-
rithms which sacrifice training speed for testing speed,
such as real-time vision and control systems, and web
services in which the number of queries is large.

Let us clarify the terminology we use to refer to
the various algorithms under comparison. Our
new method is the variable sigma Gaussian process
(v.s.g.p.). The vsgp-full variant consists of optimising
the marginal likelihood with respect to the m basis
centers vi ∈ R

d and length scales σi ∈ R
d of our ba-

sis functions ui = g(·,vi,σi) where g is defined in (9).
Also optimised are the following hyper parameters —
the noise variance σn ∈ R of (1), and the parameters
c ∈ R and σ ∈ R

d of our original covariance function
cg(·, ·,σ). The vsgp-basis variant is identical to vsgp-
full except that σn, c and σ are determined by opti-
mising the marginal likelihood of a full g.p. trained
on a subset of the training data, and then held fixed
while the σi and vi are optimised as before. Both
v.s.g.p. variants use the G̃U (k) probabilistic model of
Section 4.2, where k = cg(·, ·,σ). For the optimisation
of the sparse pseudo-input Gaussian process (s.p.g.p.)
and v.s.g.p. methods we used a standard conjugate
gradient type optimiser.6

spgp-full and spgp-basis correspond to the work of
Snelson and Ghahramani (2006), and are identical
to their v.s.g.p. counterparts except that — as with
all sparse g.p. methods prior to the present work —
they are forced to satisfy the constraints σi = σ, i =
1 . . . m. To initialise the marginal likelihood optimisa-
tion we take the vi to be a k-means clustering of the
training data. The other parameters are always ini-
tialised to the same sensible starting values, which is
reasonable due to the preprocessing we employ (which
is identical to that of (Seeger et al., 2003)) in order to
standardise the data sets.

Figure 1 demonstrates the basic idea on a one dimen-
sional toy problem. Using m = 4 basis functions is not

6Carl Rasmussen’s minimize.m, which is freely available
from http://www.kyb.mpg.de/~carl.
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Figure 2. Plots (a) and (b) depict the test error as a function of basis size m. In (c) we plot against m the deviation of
the σi from σ, measured by the mean squared difference (see the text), for the kin-40k data set.

enough for spgp-full to infer a posterior similar to that
of the full g.p. trained on the depicted n = 200 train-
ing points. The v.s.g.p. achieves a posterior closer to
that of the full g.p. by employing — in comparison to
the full g.p. — larger σi’s and a smaller σ. This leads
to an effective covariance function — that of G̃U (k) as
given by (17) — which better matches that of the full
g.p. depicted in Figure 1 (c). In addition to merely ob-
serving the similarity between Figures 1 (b) and (c),
we verified this last statement directly by visualising
EG̃U (k) [f(x)f(z)] of (20) as a function of x and z, but
we omit the plot due to space limitations.

Figure 2 shows our experiments which, as in (Seeger
et al., 2003) and (Snelson & Ghahramani, 2006), were
performed on the pumadyn-32nm and kin-40k data
sets.7Optimising the v.s.g.p. methods from a random
initialisation tended to lead to inferior local optima,
so we used the s.p.g.p. to find a starting point for the
optimisation. This is possible because both methods
optimise the same criteria, while the s.p.g.p. merely
searches a subset of the space permitted by the v.s.g.p.
framework. To ensure a fair comparison, we optimised
the s.p.g.p. for 4000 iterations, whereas for the v.s.g.p.
we optimised first the s.p.g.p. for 2000 iterations (i.e.
fixing σi = σ, i = 1 . . . m), took the result as a starting
point, and optimised the v.s.g.p. for a further 2000
iterations (with the σi unconstrained).

We have also reproduced with kind permission the re-
sults of Seeger et al. (Seeger et al., 2003), and hence
have used exactly the experimental methodology de-
scribed therein. The results we reproduce are from the
info-gain and smo-bart methods. info-gain is their

7kin-40k : 10000 training, 30000 test, 9 attributes, see
www.igi.tugraz.at/aschwaig/data.html.
pumadyn-32nm: 7168 training, 1024 test, 33 attributes,
see www.cs.toronto/delve.

own method which is extremely cheap to train for
a given set of hyper parameters. The method uses
greedy subset selection based on a criteria which can
be evaluated efficiently. smo-bart is similar but is
based on a criteria which is more expensive to compute
(Smola & Bartlett, 2000). We also show the result of
training a full g.p. on a subset of the data of size 2000
and 1024 for kin-40k and pumadyn-32nm, respectively.

Neither info-gain nor smo-bart estimate the hyper-
parameters, but rather fix them to the values deter-
mined by optimising the marginal likelihood of the full
g.p. Hence they are most directly comparable to spgp-
basis and vsgp-basis. However, spgp-full and vsgp-full
correspond to the more difficult task of estimating the
hyper parameters at the same time as the basis.

For pumadyn-32nm we do not plot spgp-basis and
vsgp-basis as the results are practically identical to
spgp-full and vsgp-full. This differs from (Snelson
& Ghahramani, 2006), where local minima problems
with spgp-full on the pumadyn-32nm data set are re-
ported. It is unclear why our experiments did not suf-
fer in this way — possible explanations are the choice
of initial starting point, as well as the choice of op-
timisation algorithm. The results of the s.p.g.p. and
v.s.g.p. methods on the pumadyn-32nm data set very
similar, but both outperform the info-gain and smo-
bart approaches.

The kin-40k results are rather different. While the
σi deviated little from σ on the pumadyn-32nm data
set, this was not the case for kin-40k, particularly
for small m, as seen in Figure 2 (c) where we plot
1

md

∑m
i=1

∑d
j=1([σi − σ]j)

2. Our results are in agree-
ment with those of (Snelson & Ghahramani, 2006)
— our vsgp-full outperforms spgp-full for small m,
which in turn outperforms both info-gain and smo-
bart. However for large m both spgp-full and vsgp-full
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tend to over-fit. This is to be expected due to the
use of marginal likelihood optimisation, as the choice
of basis U is equivalent to the choice of the order of
md hyper parameters for the covariance function of
G̃U (k). Happily, and somewhat surprisingly, the vsgp-
full method tends not to over-fit more than the spgp-
full, in spite of its having roughly twice as many basis
parameters. Neither vsgp-basis nor spgp-basis suffered
from over-fitting however, and while they both out-
perform info-gain and smo-bart, our vsgp-basis clearly
demonstrates the advantage of our new s.p.g.p. frame-
work by consistently outperforming spgp-basis.

Finally, to emphasise the applicability of our idea to
other kernel algorithms, we provide an accompanying
video which visualises the optimisation of an s.v.m.
using multiscale gaussian basis functions.

6. Conclusions

Sparse g.p. regression is an important topic which has
received a lot of attention in recent years. Previous
methods have based their computations on subsets of
the data or pseudo input points. To relate this to our
method, this is analogous to basing the computations
on a set of basis functions of the form k(vi, ·) where k

is the covariance function and the vi are for example
the pseudo input points. We have generalised this for
the case of Gaussian covariance function, by basing
our computations on a set of Gaussian basis functions
whose bandwidth parameters may vary independently.

This provides a new avenue for approximations, appli-
cable to all kernel based algorithms, including g.p.’s
and the s.v.m., for example. To demonstrate the util-
ity of this new degree of freedom, we have constructed
sparse g.p. and k.r.r. algorithms which outperform pre-
vious methods, particularly for very sparse solutions.
As such, our approach yields state of the art perfor-
mance as a function of prediction time.
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Quiñonero-Candela, J., & Rasmussen, C. E. (2005). A
unifying view of sparse approximate gaussian pro-
cess regression. Journal of Machine Learning Re-
search, 6, 1935–1959.

Roach, G. F. (1970). Green’s functions. Cambridge,
UK: Cambridge University Press.

Seeger, M., Williams, C., & Lawrence, N. D. (2003).
Fast forward selection to speed up sparse gaussian
process regression. In C. M. Bishop and B. J. Frey
(Eds.), Workshop on ai and statistics 9. Society for
Artificial Intelligence and Statistics.

Smola, A. J., & Bartlett, P. L. (2000). Sparse greedy
gaussian process regression. In T. K. Leen, T. G.
Dietterich and V. Tresp (Eds.), Advances in neural
information processing systems 13, 619–625. Cam-
bridge, MA: MIT Press.

Snelson, E., & Ghahramani, Z. (2006). Sparse gaus-
sian processes using pseudo-inputs. In Y. Weiss,
B. Schölkopf and J. Platt (Eds.), Advances in neu-
ral information processing systems 18, 1257–1264.
Cambridge, MA: MIT Press.

Steinwart, I. (2002). On the influence of the kernel on
the consistency of support vector machines. Journal
of Machine Learning Research, 2, 67–93.

Walder, C., Schölkopf, B., & Chapelle, O. (2006). Im-
plicit surface modelling with a globally regularised
basis of compact support. Proc. EUROGRAPHICS,
25, 635–644.

1119



Manifold Alignment using Procrustes Analysis

Chang Wang chwang@cs.umass.edu
Sridhar Mahadevan mahadeva@cs.umass.edu

Computer Science Department, University of Massachusetts, Amherst, MA 01003 USA

Abstract

In this paper we introduce a novel approach
to manifold alignment, based on Procrustes
analysis. Our approach differs from “semi-
supervised alignment” in that it results in a
mapping that is defined everywhere – when
used with a suitable dimensionality reduction
method – rather than just on the training
data points. We describe and evaluate our
approach both theoretically and experimen-
tally, providing results showing useful knowl-
edge transfer from one domain to another.
Novel applications of our method including
cross-lingual information retrieval and trans-
fer learning in Markov decision processes are
presented.

1. Introduction

Manifold alignment is very useful in a variety of appli-
cations since it provides knowledge transfer between
two seemingly disparate data sets. Sample applica-
tions include automatic machine translation, represen-
tation and control transfer between different Markov
decision processes (MDPs), image comparison, and
bioinformatics. More precisely, suppose we have two
data sets S1 = {x1, · · · , xm} and S2 = {y1, · · · , yn} for
which we want to find a correspondence. Working with
the data in its original form can be very difficult as the
data might be in high dimensional spaces and the two
sets might be represented by different features. For ex-
ample, S1 could be a collection of English documents,
whereas S2 is a collection of Arabic documents. Thus,
it may be difficult to directly compare documents from
the two collections.

Even though the processing of high-dimensional data
sets is challenging, for many cases, the data source may

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

only have a limited number of degrees of freedom, im-
plying the data set has a low intrinsic dimensionality.
Similar to current work in the field, we assume kernels
for computing the similarity between data points in
the original space are already given. In the first step,
we map the data sets to low dimensional spaces reflect-
ing their intrinsic geometries using a standard (nonlin-
ear or linear) dimensionality reduction approach. For
example, using a graph-based nonlinear dimensional-
ity reduction method provides a discretized approxi-
mation to the manifolds, so the new representations
characterize the relationships between points but not
the original features. By doing this, we can compare
the embeddings of the two sets instead of their original
representations. Generally speaking, if two data sets
S1 and S2 have similar intrinsic geometry structures,
they have similar embeddings. In our second step, we
apply Procrustes analysis to align the two low dimen-
sional embeddings of the data sets based on a number
of landmark points. Procrustes analysis, which has
been used for statistical shape analysis and image reg-
istration of 2D/3D data (Luo et al., 1999), removes the
translational, rotational and scaling components from
one set so that the optimal alignment between the two
sets can be achieved.

There is a growing body of work on manifold align-
ment. Ham et al. (Ham et al., 2005) align the mani-
folds leveraging a set of correspondences. In their ap-
proach, they map the points of the two data sets to the
same space by solving a constrained embedding prob-
lem, where the embeddings of the corresponding points
from different sets are constrained to be identical. The
work of Lafon et al. (Lafon et al., 2006) is based on a
similar framework as ours. They use Diffusion Maps
to embed the nodes of the graphs corresponding to the
aligned sets, and then apply affine matching to align
the resulting clouds of points.

Our approach differs from semi-supervised align-
ment (Ham et al., 2005) in that it results in a map-
ping that is defined everywhere rather than just on the
known data points (provided a suitable dimensionality
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reduction method like LPP (He et al., 2003) or PCA
is used). Recall that semi-supervised alignment is de-
fined only on the known data points and it is hard
to handle the new test points (Bengio et al., 2004).
Our method is also faster, since it requires computing
eigendecompositions of much smaller matrices. Com-
pared to affine matching, which changes the shape of
one given manifold to achieve alignment, our approach
keeps the manifold shape untouched. This property
preserves the relationship between any two data points
in each individual manifold in the process of alignment.
The computation times for affine matching and Pro-
crustes analysis are similar, both run in O(N3) (where
N is the number of instances).

Given the fact that dimensionality reduction ap-
proaches play a key role in our approach, we provide a
theoretical bound for the difference between subspaces
spanned by low dimensional embeddings of the two
data sets. This bound analytically characterizes when
the two data sets can be aligned well. In addition
to the theoretical analysis of our algorithm, we also
report on several novel applications of our alignment
approach.

The rest of this paper is as follows. In Section 2 we de-
scribe the main algorithm. In Section 3 we explain the
rationale underlying our approach, and prove a bound
on the difference between the subspaces spanned by
low dimensional embeddings of the two data sets be-
ing aligned. We describe some novel applications and
summarize our experimental results in Section 4. Sec-
tion 5 provides some concluding remarks.

2. Manifold Alignment

2.1. The Problem

Given two data sets along with additional pairwise
correspondences between a subset of the training in-
stances, we want to determine a correspondence be-
tween the remaining instances in the two data sets.
Formally speaking, we have two sets: S1 = Sl

1

⋃Su
1 =

{x1, · · · , xm}, S2 = Sl
2

⋃Su
2 = {y1, · · · , yn}, and the

subsets Sl
1 and Sl

2 are in pairwise alignment. We want
to find a mapping f , which is more precisely defined
in Section 3.1, to optimally match the points between
Su

1 and Su
2 .

2.2. The Algorithm

Assume the kernel Ki for computing the similarity be-
tween data points in each of the two data sets is al-
ready given. The algorithmic procedure is stated be-
low. For the sake of concreteness, in the procedure,
Laplacian eigenmap (Belkin et al., 2003) is used for

dimensionality reduction.

1. Constructing the relationship matrices:

• Construct the weight matrices W1 for S1

and W2 for S2 using Ki, where W1(i, j) =
K1(xi, xj) and W2(i, j) = K2(yi, yj).

• Compute Laplacian matrices L1 = I −
D−0.5

1 W1D
−0.5
1 and L2 = I−D−0.5

2 W2D
−0.5
2 ,

where Dk is a diagonal matrix (Dk(i, i) =∑
j Wk(i, j)) and I is the identity matrix.

2. Learning low dimensional embeddings of
the data sets:

• Compute selected eigenvectors of L1 and L2

as the low dimensional embeddings of the
data sets S1 and S2. Let X, XU be the d
dimensional embeddings of Sl

1 and Su
1 , Y , YU

be the d dimensional embeddings of Sl
2 and

Su
2 , where Sl

1, Sl
2 are in pairwise alignment

and |Sl
1|=|Sl

2|.

3. Finding the optimal alignment of X and Y :

• Translate the configurations in X, XU , Y
and YU , so that X, Y have their centroids
(
∑|Sl

1|
i=1 Xi/|Sl

1|,
∑|Sl

2|
i=1 Yi/|Sl

2|) at the origin.

• Compute the singular value decomposi-
tion (SVD) of Y T X, that is UΣV T =
SVD(Y T X).

• Y ∗ = kY Q is the optimal mapping re-
sult that minimizes ‖X − Y ∗‖F , where ‖.‖F

is Frobenius norm, Q = UV T and k =
trace(Σ)/trace(Y T Y ).

4. Apply Q and k to find correspondences be-
tween Su

1 and Su
2 .

• Y ∗
U = kYUQ.

• For each element x in XU , its correspondence
in Y ∗

U = arg miny∗∈Y ∗
U
‖y∗ − x‖.

Depending on the approach that we want to use, there
are several variations of Step 1. For example, if we
are using PCA, then we use the covariance matrices
instead of Laplacian matrices; similarly, if we are using
LPP (He et al., 2003), then we construct the weight
matrices W l

1 for Dl
1, W l

2 for Dl
2 using Ki and then learn

the projections. Note that when PCA or LPP is used,
then the low dimensional embedding will be defined
everywhere rather than just on the training points.
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3. Justification

In this section, we prove two theorems. Theorem 1
shows why the algorithm is valid. Given the fact that
dimensionality reduction approaches play a key role in
our approach, Theorem 2 provides a theoretical bound
for the difference between subspaces spanned by low
dimensional embeddings of the two data sets. This
bound analytically characterizes when the two data
sets can be aligned well.

3.1. Optimal Manifold Alignment

Procrustes analysis seeks the isotropic dilation and the
rigid translation, reflection and rotation needed to best
match one data configuration to another (Cox et al.,
2001). Given low dimensional embeddings X and Y
(defined in Section 2), the most convenient way to
do translation is to translate the configurations in X
and Y so that their centroids are at the origin. Then
the problem is simplified as: finding Q and k so that
‖X − kY Q‖F is minimized, where ‖ · ‖F is Frobenius
norm. The matrix Q is orthonormal, giving a rotation
and possibly a reflection, k is a re-scale factor to either
stretch or shrink Y . Below, we show that the optimal
solution is given by the SVD of Y T X. A detailed re-
view of Procrustes analysis can be found in (Cox et al.,
2001).

Theorem 1: Let X and Y be low dimensional
embeddings of the points with known corre-
spondences in data set S1, S2, and Xi matches
Yi for each i. If Singular Value Decomposition
(SVD) of Y T X is UΣV T , then Q = UV T and
k = trace(Σ)/trace(Y T Y ) minimize ‖X − kY Q‖F .
Proof:
The problem is formalized as:
{kopt, Qopt} = arg mink,Q ‖X − kY Q‖F . (1.1)

It is easy to verify that
‖X − kY Q‖2F = trace(XT X) + k2 · trace(Y T Y )− 2k ·
trace(QT Y T X). (1.2)

Since trace(XT X) is a constant, the minimiza-
tion problem is equivalent to {kopt, Qopt} =
arg mink,Q(k2 · trace(Y T Y ) − 2k · trace(QT Y T X)).
(1.3)

Differentiating with respect to k, we have
2k · trace(Y T Y ) = 2 · trace(QT Y T X),
i.e. k = trace(QT Y T X)/trace(Y T Y ). (1.4)

(1.3) and (1.4) show that the minimization problem
reduces to Qopt = arg maxQ(trace(QT Y T X))2. (1.5)

Case 1:
If trace(QT Y T X) ≥ 0, then the problem becomes
Qopt = arg maxQ trace(QT Y T X). (1.6)

Using Singular Value Decomposition, we have
Y T X = UΣV T , where U and V are orthonormal,
and Σ is a diagonal matrix having as its main
diagonal all the positive singular values of Y T X.
So maxQ trace(QT Y T X) = maxQ trace(QT UΣV T ).
(1.7)

It is well known that for two matrices A and B,
trace(AB) = trace(BA), so maxQ trace(QT UΣV T ) =
maxQ trace(V T QT UΣ). (1.8)

For simplicity, we use Z to represent V T QT U . We
know Q, U and V are all orthonormal matrices, so Z
is also orthonormal. It is well known that any element
in an orthonormal matrix, say B, is in [-1,1] (other-
wise BT B is not an identity matrix). So we know
trace(ZΣ) = Z1,1Σ1,1+· · ·+Zc,cΣc,c ≤ Σ1,1+· · ·+Σc,c

(1.9) , which implies Z = I maximizes trace(ZΣ),
where I is an identity matrix. (1.10)

Obviously, the solution to Z = I is Q = UV T .
(1.11)

Case 2:
If trace(QT Y T X) < 0, then the problem becomes
Qopt = arg minQ trace(QT Y T X). (1.12)

Following the similar procedure shown above, we
have trace(ZΣ) = Z1,1Σ1,1 + · · · + Zc,cΣc,c ≥
−Σ1,1−· · ·−Σc,c (1.13) , which implies that Z = −I
minimizes trace(ZΣ). (1.14)

Obviously, the solution to Z = −I is Q = −UV T .
(1.15)

Considering (1.5), it is easy to verify that Q = UV T

and Q = −UV T return the same results, so
Q = UV T is always the optimal solution to (1.5),
no matter whether trace(QT Y T X) is positive or
not. Further, we can simplify (1.4), and have
k = trace(Σ)/trace(Y T Y ). (1.16)

3.2. Theoretical Analysis

Many dimensionality reduction approaches first com-
pute a relationship matrix, and then project the data
onto a subspace spanned by the “top” eigenvectors of
the matrix. The “top” eigenvectors mean some sub-
set of eigenvectors that are of interest. They might
be eigenvectors corresponding to largest, smallest, or
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A is a N ×N relationship matrix computed from S1.
B is a N ×N relationship matrix computed from S2.
E = B −A.

X denotes a subspace of the column space of A spanned
by top M eigenvectors of A.
Y denotes a subspace of the column space of B spanned
by top M eigenvectors of B.
X is a matrix whose columns are an orthonormal basis
of X .
Y is a matrix whose columns are an orthonormal basis
of Y.

δ1
A is the set of top M eigenvalues of A, δ2

A includes all
eigenvalues of A except those in δ1

A.
δ1

B is the set of top M eigenvalues of B, δ2
B includes all

eigenvalues of B except those in δ1
B .

d1 is the eigengap between δ1
A and δ2

A, i.e. d1 =
minλi∈δ1

A
,λj∈δ2

A
|λi − λj |.

d = δ1
A − δ2

B .

P denotes the orthogonal projection onto subspace X .
Q denotes the orthogonal projection onto subspace Y.

‖ · ‖ denotes Operator Norm, i.e. ‖L‖µ,ν =
maxν(x)=1 µ(Lx), where µ, ν are simply ‖ · ‖2.

Figure 1. Notation used in Theorem 2.

even arbitrary eigenvalues. One example is Laplacian
eigenmap, where we project the data onto the subspace
spanned by the “smoothest” eigenvectors of the graph
Laplacian. Another example is PCA, where we project
the data onto the subspace spanned by the “largest”
eigenvectors of the covariance matrix. In this section,
we study the general approach, which provides a gen-
eral framework for each individual algorithm such as
Laplacian eigenmap. We assume the two given data
sets S1 and S2 do not differ significantly, so the related
relationship matrices A and B are “very similar”. We
study the difference between the embedding subspaces
corresponding to the two relationship matrices. Nota-
tion used in the proof is in Figure 1. The difference be-
tween orthogonal projections ‖Q−P‖ characterizes the
distance between the two subspaces. The proof of the
theorem below is based on the perturbation theory of
spectral subspaces, where E = B−A can be thought as
the perturbation to A. The only assumption we need
to make is for any i and j, |Ei,j | = |Bi,j −Ai,j | ≤ τ .

Theorem 2: If the absolute value of
each element in E is bounded by τ , and
τ ≤ 2εd1/(N(π + 2ε)), then the difference be-
tween the two embedding subspaces ‖Q− P‖ is
at most ε.

Proof:
From the definition of operator norm, we know
‖E‖ = maxk1,k2,···,kN

√∑
i(

∑
j kjEi,j)2, given

∑
i k2

i = 1. (2.1)

We can verify the following inequality always
holds:

∑
i(

∑
j kjEi,j)2 ≤ N

∑
j k2

j

∑
i E2

i,j . (2.2)

From (2.1) and (2.2), we have
∑

i(
∑

j kjEi,j)2 ≤
N2τ2

∑
j k2

j = N2τ2. (2.3)

Combining (2.1) and (2.3), we have: ‖E‖ ≤ Nτ . (2.4)

It can be shown that if A and E are bounded
self-adjoint operators on a separable Hilbert space,
then the spectrum of A+E is in the closed ‖E‖-
neighborhood of the spectrum of A (Kostrykin et al.,
2003). From (Kostrykin et al., 2003), we also have
the following inequality: ‖Q⊥P‖ ≤ π‖E‖/2d. (2.5)

We know A has an isolated part δ1
A of the spec-

trum separated from its remainder δ2
A by gap d1. To

guarantee A + E also has separated components, we
need to assume ‖E‖ < d1/2. Thus (2.5) becomes
‖Q⊥P‖ ≤ π‖E‖/2(d1 − ‖E‖). (2.6)

Interchanging the roles of δ1
A and δ2

A, we have the
analogous inequality: ‖QP⊥‖ ≤ π‖E‖/2(d1 − ‖E‖).
(2.7)

Since ‖Q − P‖ = max{‖Q⊥P‖, ‖QP⊥‖} (2.8),
we have ‖Q− P‖ ≤ π‖E‖/2(d1 − ‖E‖). (2.9)

We define R = Q − P , and from (2.9), we get
‖R‖ ≤ π‖E‖/2(d1 − ‖E‖). (2.10)

(2.10) implies that if ‖E‖ ≤ 2d1ε/(2ε + π), then
‖R‖ ≤ ε. (2.11)

So we have the following conclusion: if the ab-
solute value of each element in E is bounded by τ ,
and τ ≤ 2εd1/(N(π + 2ε)), then the difference of the
subspaces spanned by top M eigenvectors of A and B
is at most ε.

Theorem 2 tells us that if the eigengap (between δ1
A

and δ2
A) is large, then the subspace corresponding to

the top M eigenvectors of A is insensitive to perturba-
tions. In other words, the algorithm can tolerate larger
differences between A and B. So when we are selecting
eigenvectors to form a subspace, the eigengap is an im-
portant factor to be considered. The reasoning behind
this is that if the magnitudes of the relevant eigenval-
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ues do not change too much, the top M eigenvectors
will not be overtaken by other eigenvectors, thus the
related space is more stable. Our result in essence con-
nects the difference between the two relationship ma-
trices to the difference between the subspaces spanned
by their low dimensional embeddings.

4. Applications and Results

In this section, we first use a toy example to illus-
trate how our algorithm works, then we apply our
approach to transfer knowledge from one domain to
another. We present results applying our approach
to two real world problems: cross-lingual information
retrieval and transfer learning in Markov decision pro-
cesses (MDPs).

4.1. A Toy Example

In this example, we directly align two manifolds and
use some pictures to illustrate how our algorithm
works. The two manifolds come from real protein ter-
tiary structure data.

Protein 3D structure reconstruction is an important
step in Nuclear Magnetic Resonance (NMR) protein
structure determination. Basically, it finds a map
from distances to coordinates. A protein 3D struc-
ture is a chain of amino acids. Let n be the num-
ber of amino acids in a given protein and C1, · · · , Cn

be the coordinate vectors for the amino acids, where
Ci = (Ci,1, Ci,2, Ci,3)T and Ci,1, Ci,2, and Ci,3 are the
x, y, z coordinates of amino acid i (in biology, one usu-
ally uses atom but not amino acid as the basic element
in determining protein structure. Since the number of
atoms is huge, for simplicity, we use amino acid as the
basic element). Then the distance di,j between amino
acids i and j can be defined as di,j = ‖Ci−Cj‖. Define
A = {di,j , i, j = 1, · · · , n}, and C = {Ci, i = 1, · · · , n}.
It is easy to see that if C is given, then we can im-
mediately compute A. However, if A is given, it is
non-trivial to compute C. The latter problem is called
Protein 3D structure reconstruction. In fact, the prob-
lem is even more tricky, since only the distances be-
tween neighbors are reliable, and this makes A an
incomplete distance matrix. The problem has been
proved to be NP-complete for general sparse distance
matrices (Hogben, 2006). In real life, people use other
techniques, such as angle constraints and human ex-
perience, together with the partial distance matrix to
determine protein structures.

With the information available to us, NMR techniques
might find multiple estimations (models), since more
than one configuration can be consistent with the dis-

tance matrix and the constraints. Thus, the result is
an ensemble of models, rather than a single structure.
Most usually, the ensemble of structures, with perhaps
10 - 50 members, all of which fit the NMR data and
retain good stereochemistry is deposited with the Pro-
tein Data Bank (PDB) (Berman et al., 2000). Models
related to the same protein should be similar and com-
parisons between the models in this ensemble provides
some information on how well the protein conforma-
tion was determined by NMR.

In this test, we study a Glutaredoxin protein PDB-
1G7O (this protein has 215 amino acids in total),
whose 3D structure has 21 models. Since such models
are already low dimensional (3D) embeddings of the
distance matrices, we skip Step 1 and 2 in our algo-
rithm. We pick up Model 1 and Model 21 for test.
These two models are related to the same protein, so
it makes sense to treat them as manifolds to test our
techniques. We denote Model 1 by Manifold A, which
is represented by matrix S1. We denote Model 21 by
Manifold B, which is represented by matrix S2. Obvi-
ously, both S1 and S2 are 215 × 3 matrices. To eval-
uate our re-scale factor, we manually stretch manifold
A by letting S1=4 · S1. Manifold A and B (row vec-
tors of S1 and S2 represent points in the 3D space)
are shown in Figure 2(A) and Figure 2(B). In biology,
such chains are called protein backbones. For the pur-
pose of comparison, we also plot both manifolds on the
same graph (Figure 2(C)). It is clear that manifold A
is much larger than B, and the orientations of A and
B are quite different.

To align the two manifolds, we uniformly selected 1/4
amino acids as correspondence resulting in matrix X
and Y , where row i of X (from S1) matches row i of Y
(from S2) and both X and Y are 54× 3 matrices. We
run our algorithm from Step 3. Our algorithm iden-
tifies the re-scale factor k as 4.2971, and the rotation
matrix Q as

Q =

(
0.56151 −0.53218 0.63363
0.65793 0.75154 0.048172
−0.50183 0.38983 0.77214

)
.

S∗2 , the new representation of S2, is computed as
S∗2 = kS2Q. We plot S∗2 and S1 in the same graph
(Figure 2(D)). The result shows that Manifold B is
rotated and enlarged to the similar size as A, and now
the two manifolds are aligned very well.

4.2. Cross-lingual Information Retrieval

In information retrieval, manifold alignment can be
used to find correspondences between documents. One
example is finding the exact correspondences between
documents in different languages. Such systems are
quite useful, since they allow users to query a docu-
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Figure 2. (A): Manifold A; (B): Manifold B; (C): Compari-
son of Manifold A(red) and B(blue) before alignment; (D):
Comparison of Manifold A(red) and B(blue) after align-
ment.

ment in their native language and retrieve documents
in a foreign language. Assume that we are given two
document collections. For example, one in English and
one in Arabic. We are also given some training corre-
spondences between documents that are exact trans-
lations of each other. The task is: for each English or
Arabian document in the untranslated set, to find the
most similar document in the other corpus.

We apply our manifold alignment approach to this
problem. The topical structure of each collection can
be thought as a manifold over documents. Each docu-
ment is a sample from the manifold. We are interested
in the case where the underlying topical manifolds of
two languages are similar. Our procedure for aligning
collections consists of two steps: learning low dimen-
sional embeddings of the two manifolds and aligning
the low dimensional embeddings. To compute similar-
ity of two documents in the same collection, we assume
that document vectors are language models (multino-
mial term distributions) estimated using the document
text. By treating documents as probability distribu-
tions, we can use distributional affinity to detect topi-
cal relatedness between documents. More precisely, a
multinomial diffusion kernel is used for this particular
application. The kernel used here is the same as the
one used in (Diaz et al., 2007), where more detailed
description is provided. Dimensionality reduction ap-
proaches are then used to learn the low dimensional
embeddings. After shifting the centroids of the docu-
ments in each collection to the origin point, we apply

our approach to learn the re-scale factor k and rotation
Q from the training correspondences and then apply
them to the untranslated set.

In our experiments, we used two document collections
(one in English, one in Arabic, manually translated),
each of which has 2119 documents. Correspondences
between 25% of them were given and used to learn
the mapping between them. The remaining 75% were
used for testing. We used Laplacian eigenmap and
LPP (the projection was learned from the data points
in the correspondence) to learn the low dimensional
embeddings, where top 100 eigenvectors were used to
construct the embeddings. Our testing scheme is as
follows: for each given Arabic document, we retrieve
its top j most similar English documents. The prob-
ability that the true match is among this top j docu-
ments is used to show the goodness of the method. We
also used the same data set to test the semi-supervised
manifold alignment method proposed in (Ham et al.,
2005), where top 100 eigenvectors were used for low di-
mensional embeddings. A fourth method (called base-
line method) was also tested. The baseline method is
as follows: assume that we have m correspondences in
the training set, then document x is represented by a
vector V with length m, where V (i) is the similarity
of x and the ith document in the training correspon-
dences. The baseline method maps the documents
from different collections to the same embedding space
- Rm. Experiment results are shown in Figure 3.
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Figure 3. Cross-lingual information retrieval test.

Compared to semi-supervised manifold alignment
method, the performance of Prucrustes (with Lapla-
cian eigenmap) is significantly better. For each given
Arabic document, if we retrieve 3 most relevant En-
glish documents, then the true match has a 60% prob-
ability of being among the 3. If we retrieve 10 most
relevant English documents, then we have about 80%
probability of getting the true match. Further, our
method is much faster. Semi-supervised manifold
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alignment method requires solving an eigenvalue prob-
lem over a (n1 + n2 − m) × (n1 + n2 − m) matrix,
where ni is the total number of the documents in col-
lection i, and m is the number of training correspon-
dences. Using our approach, the most time consuming
step is finding the low dimensional embeddings with
Laplacian eigenmap, which requires solving eigenvalue
problems over a n1 × n1 matrix and a n2 × n2 ma-
trix. We also compute the SVD over a d × d matrix,
where d is the dimension of the low dimensional em-
beddings and is usually much smaller than n. In the
experiments, Procrustes (with Laplacian eigenmap) is
roughly 2 times faster than semi-supervised manifold
alignment. Procrustes (with LPP) also returns rea-
sonably good results: if we retrieve 10 most relevant
English documents, then we have a 60% probability
of getting the true match. Procrustes (with LPP) re-
sults in a mapping that is defined everywhere rather
than just on the training data points and it also re-
quires less time. Another interesting result is that the
baseline algorithm also performs quite well, and bet-
ter than semi-supervised alignment method. One rea-
son that semi-supervised manifold alignment method
is not working well is that mappings of the correspond-
ing points are constrained to be identical. This might
lead to “over fitting” problems for some applications.

4.3. Transfer Learning in Markov Decision
Process

Transfer learning studies how to re-use knowledge
learned from one domain or task to a related domain or
task. In this section, we investigate transfer learning
in Markov decision processes (MDPs) following the ap-
proach of “proto-value functions” (PVFs), where the
Laplacian eigenmap method is used to construct basis
functions (Mahadevan, 2005). In a MDP, a value func-
tion is a mapping from states to real numbers, where
the value of a state represents the long-term reward
achieved starting from that state, and executing a par-
ticular policy. PVFs are an orthonormal basis span-
ning all value functions of an MDP on a state space
manifold. They are computed as follows: First, create
a weight matrix that reflects the topology of the state
space using a series of random walks; Second, compute
the graph Laplacian of the weight matrix; Third, select
the smoothest k eigenvectors of this graph Laplacian
as PVFs. If the state space is the same and only the
reward function is changed, then the PVFs can be di-
rectly transferred to the new domain. One interesting
question related to PVFs is how to transfer the old
PVFs to a new domain when the new state space is
only slightly different from the old one. In this section,
we answer this question with our techniques.

Let columns of Y denote PVFs of the current MDP.
Given the procedure on how to generate PVFs, we
know the rows of Y are also the low dimensional rep-
resentations of the data points on the current state
space manifold. Let rows of X represent the low di-
mensional embedding of the new manifold. Assume
centroids of both X and Y are at the origin. By using
isotropic dilation, reflection and rotation to align the
two state space manifolds, we may find the optimal k
and Q such that the two manifolds are aligned well.
Our argument is that the new PVFs are Y Q. The rea-
son is as follows: suppose we have already found the
optimal k and Q that minimize ‖X − kY Q‖F , then Y
will be changed to kY Q in the process of alignment. k
can be skipped, since it is well known that kY Q and
Y Q span the same space. The only thing that we need
to show is the columns of Y Q are orthonormal to each
other (a requirement of PVFs). The proof is quite sim-
ple: (Y Q)T Y Q = QT Y T Y Q = QT IQ = I, where I
is an identity matrix. This means different columns
of Y Q are orthogonal to each other and norm of each
column is 1, so Y Q is orthonormal.

The conclusion shown above works when two state
space manifolds are similar. Here, we still need to
answer one more question: “under what conditions
are the two manifolds similar?”. Theorem 2 provides
an answer to this question. Theorem 2 numerically
bounds the difference between two spaces given the
difference between the relevant relationship matrices.
For this case, the relationship matrices are the Lapla-
cian matrices used to model the state spaces. In this
test, we run experiments to verify the bound. We in-
vestigate two reinforcement learning tasks. The in-
verted pendulum task requires balancing a pendulum
of unknown mass and length by applying force to a
cart attached to the pendulum. The state space is
defined by two variables: the vertical angle of the pen-
dulum, and the angular velocity of the pendulum. The
mountain car task is to get a simulated car to the top
of a hill as quickly as possible. The car does not have
enough power to get there immediately, and so must
oscillate on the hill to build up the necessary momen-
tum. The state space is the position and velocity of
the car.

We first generate two different sets of sampled states
for the pendulum task and compute their related nor-
malized graph Laplacian matrices A and B. We com-
pute the top i non-trivial eigenvectors of A and B,
and directly compute the difference between the spaces
spanned by them. Theorem 2 says if the absolute
value of each element in A − B is bounded by τ , and
τ ≤ 2εd1/(N(π+2ε)), then the difference of the spaces
spanned by top i eigenvectors of A and B is at most

1126



Manifold Alignment using Procrustes Analysis

(A) Pendulum Task

(B) Mountain Car Task

Figure 4. (A): Bound for Pendulum task. (B): Bound for
Mountain car task. For both tasks, ε is 0.5, true values
(Max and Min in 5 tests) of the difference between two
spaces are in dotted lines.

ε. We set ε be 0.5, and let τ be εd1/(N(π+2ε)). Here
d1 is the eigengap between top i eigenvectors and the
other eigenvetors, N is 500. Based on our theorem, the
difference between spaces should not be larger than ε.
In our experiments, we tried 20 different values for
i=1, 6, 11, · · ·, 96. For each i, we ran 5 tests. We
carried out the same experiment on the Mountain Car
task. Figure 4(A) and 4(B) respectively show the re-
sults from Pendulum task and Mountain car task. For
each figure, we plot ε and the maximum and minimum
difference values of the 5 tests for various values of i.
For this application, the bound is loose, but the bound
given in Theorem 2 is a general theoretical bound and
for other applications, it might be tight. We also em-
pirically evaluate the PVFs transfer performance. The
results (not included) show that we can learn a good
policy by using PVFs from a similar domain.

5. Conclusions

In this paper we introduce a novel approach to man-
ifold alignment based on Procrustes Analysis. When
used with a suitable dimensionality reduction method,
our approach results in a mapping defined everywhere
rather than just on the training data points. We also
study the conditions under which low dimensional em-
beddings of two data sets can be aligned well. We pre-
sented novel applications of our approach, including
cross-lingual information retrieval and transfer learn-
ing in Markov decision processes.
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Abstract

We consider feature extraction (dimensional-
ity reduction) for compositional data, where
the data vectors are constrained to be pos-
itive and constant-sum. In real-world prob-
lems, the data components (variables) usu-
ally have complicated “correlations” while
their total number is huge. Such scenario de-
mands feature extraction. That is, we shall
de-correlate the components and reduce their
dimensionality. Traditional techniques such
as the Principle Component Analysis (PCA)
are not suitable for these problems due to
unique statistical properties and the need to
satisfy the constraints in compositional data.
This paper presents a novel approach to fea-
ture extraction for compositional data. Our
method first identifies a family of dimen-
sionality reduction projections that preserve
all relevant constraints, and then finds the
optimal projection that maximizes the esti-
mated Dirichlet precision on projected data.
It reduces the compositional data to a given
lower dimensionality while the components in
the lower-dimensional space are de-correlated
as much as possible. We develop theoreti-
cal foundation of our approach, and validate
its effectiveness on some synthetic and real-
world datasets.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

1. Introduction

Compositional data (positive constant-sum real vec-
tors) are frequently encountered in various scientific
disciplines and industrial applications. They quantita-
tively describe the parts that comprise the entire en-
tity. In geology, scientists investigate relative propor-
tion of different minerals in rocks. In microeconomics,
household expenditure in different commodity/service
groups is recorded as relative proportion. In informa-
tion retrieval, documents are usually represented as
relative frequencies of words in a prescribed vocabu-
lary. Generally, compositional data are natural repre-
sentations when the variables (features) are essentially
probabilities of complementary and mutually exclusive
events. The variables (features) in compositional data
are referred to as components in this paper.

Feature extraction is often applied in machine learning
when the datasets are large and complex. The same is
needed for compositional data. The need for feature
extraction arises from four aspects. First, prediction
performance in classification and regression can ben-
efit from a lower dimensional representation with de-
correlated components to avoid the curse of dimension-
ality. Second, feature extraction may improve over-
all domain understanding, e.g., we could expect the
learned components to represent latent independent
sources from which the data are generated. Third, the
computational expense of subsequent data processing
can be reduced with a lower dimensionality. Finally,
reducing data to two or three dimensions facilitates
visualization and further analysis by domain experts.

However, traditional feature extraction techniques are
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not suitable for compositional data due to several
reasons. First, the traditional measurement of “cor-
relation”1 implicated by multivariate Gaussian and
PCA only captures a linear relationship between two
random variables. In contrast, the “curved” nature
(Aitchison, 1983) of compositional data and the “spu-
rious correlation” (Pearson, 1896) induced by the
constant-sum constraint make it problematic to inter-
pret correlation as merely a linear relationship. We
thus need a new concept of “correlation” for compo-
sitional data. Second, the positive and constant-sum
constraints for compositional data are not considered
in most dimensionality reduction techniques, and sim-
ply modifying them to accommodate these constraints
may induce biases.

PCA is one of the most widely used techniques for
feature extraction. Given a target dimension k, PCA
identifies an orthogonal projection to a k dimensional
subspace that maximizes the estimated Gaussian vari-
ance of the projected data. Moreover, the covariance
matrix is diagonalized such that the variables are de-
correlated. Our approach adapts this framework for
compositional data. In particular, we first identify
a family of projections that preserve a simplex con-
straint as substitutes for the orthogonal projections in
PCA. Then, we find an optimal projection that mini-
mizes the “Dirichlet correlation” among the projected
components, as a substitute for maximizing the esti-
mated Gaussian variance in PCA. The Dirichlet cor-
relation among the components is defined as the esti-
mated Dirichlet precision on projected data. The com-
ponents are better de-correlated and separated with a
smaller Dirichlet correlation. The notion of Dirichlet
correlation extends the traditional “linear” interpreta-
tion of correlation connoted in the covariance structure
of multivariate Gaussian and PCA. Because of our ap-
proach’s affinity to the Dirichlet distribution, we call
it Dirichlet component analysis (DCA).

Although the Dirichlet distribution is a natural para-
metric family on the simplex, its role in modeling
compositional data is not well studied. As pointed
out in (Aitchison, 1982), the “ultimate independence”
property of the Dirichlet family prevents us from di-
rectly applying it to model compositional data. Con-
sequently, the use of Dirichlet family in compositional
data analysis has been superseded by the log-ratio
framework (eliminating the constraints by a transfor-
mation to RN ) originated from (Aitchison, 1982). For
example, the centered log-ratio is defined as dividing
all components by their geometric mean and then ap-
plying the log function. Although this framework has

1It is measured by the Pearson’s correlation coefficient.

been very successful, it has certain problems. The
log-ratio well captures variability in the central area
of the simplex, but encounters singularity in periph-
eral areas. For example, in sparse compositional data
(e.g., term frequencies in documents with thousands
of terms) the log-ratio is not well defined as most de-
nominators would be zero.

In this paper, we make three main contributions. 1)
We identify a rich family of dimensionality reduction
transformations for compositional data, as an alterna-
tive to existing compositional operators such as sub-
composition, amalgamation, and partition (Aitchison,
1982). 2) We exploit the Dirichlet family for composi-
tional data analysis to capture data variability beyond
traditional concepts of statistical correlation. 3) We
show that the entire framework of DCA is effective and
conceptually succinct, and validate its effectiveness on
two synthetic datasets and two real-world datasets.

2. Dirichlet Component Analysis

2.1. The Projection Family

Compositional data are positive constant-sum vectors.
Without loss of generality, we assume all components
to sum to one:

x = (x1, x2, · · · , xN )T , xi ≥ 0 for all i,

N∑

i=1

xi = 1

(1)
All points satisfying these constraints constitute the
(N − 1)-simplex, denoted as SN . As low dimensional
examples, S3 is a triangle and S4 is a tetrahedron.

Given a target dimension K (K ≤ N), our first aim
in dimensionality reduction is to identify a family of
projections from SN to SK .

Proposition 1 For linear projections

y = R x where R = (rij)K×N (2)

y is in SK for all x in SN if and only if
1) rij ≥ 0 for all i, j.
2)

∑K
i=1 rij = 1, for j = 1, · · · , N .

The proof is quite straightforward and we omit it here
for brevity.

Such projections could be viewed as rearranging mass
from the N original components to the K new compo-
nents, while the law of conservation of mass is satisfied.
Hence we refer to such linear transforms from SN to
SK as rearrangements.

Unfortunately, we could have degenerate rearrange-
ments when some rows of R are close to zero and
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as a result, the corresponding new component is al-
most ignored in the rearranging process. Without a
priori knowledge we should treat the K new compo-
nents equally, which gives rise to the family of balanced
rearrangements:

Definition 1 (Balanced Rearrangement) A lin-
ear projection R x = y is a balanced rearrange-
ment, if R = (rij)K×N satisfies:
1) rij ≥ 0 for all i, j.
2)

∑K
i=1 rij = 1, for j = 1, · · · , N .

3)
∑N

j=1 rij = N/K, for i = 1, · · · ,K.

The balanced is described by the following proposition,
which gives rise to a univariate (symmetric) Dirichlet
family, as we will discuss in Section 2.2.

Proposition 2 If RK×N is a balanced rearrangement
matrix, x is a random vector in SN satisfying E(xi) =
1
N for all i, then y = R x is a random vector in SK

and E(yi) = 1
K for all i.

The proof is straightforward given the linearity of the
expectation operator.

The space of balanced rearrangement projections from
SN to SK is a NK − N − K + 1 dimensional vector
space, which is closed with respect to the operator of
weighted average. This property is useful in developing
the optimization algorithm in Section 3:

Proposition 3 If R1 and R2 are balanced rearrange-
ment matrices, α and β are positive real numbers, then
(αR1+βR2)/(α+β) is a balanced rearrangement ma-
trix.

This is easy to validate from the definition of balanced
rearrangement.

A noticeable property of balanced rearrangements is
the “shrinking effects” stated as follows:

Proposition 4 Let min(x) be the minimum compo-
nent of x. RK×N is a balanced rearrangement matrix
with K ≤ N , then min(Rx) ≥ min(x) for all x in SN .

The proof is obvious as long as we notice that each
component of Rx is N/K times a weighted average of
the components of x, where equality holds only in some
trivial cases. For example, R is the identify matrix or
x = (1/N, 1/N, · · · , 1/N).

Intuitively, Proposition 4 states that the balanced rear-
rangements always make data points “shrink” toward
the central area of the simplex, which is undesirable
because it diminishes variabilities of data2. To solve

2Actually, as we will show, it also increases the Dirichlet

this problem, we induce the regularization operator for
compositional data. As shown in Figure 1, we impose
on the data points a parallel move along the direction
x1 = x2 = · · · = xN , and then project the data points
back to the simplex by radial projection:

Definition 2 (Regularization) Given a com-
positional dataset X = {x1,x2, · · · ,xM},
a regularization on the dataset is de-
noted as: X̃ = {x̃1, x̃2, · · · , x̃M}, where
x̃i = 1∑N

j=1(x
i
j−δ)

(xi
1 − δ, xi

2 − δ, · · · , xi
N − δ, ) for

i = 1, 2, · · · ,M , and the regularization factor
δ = min(min(x1), min(x2), · · · ,min(xM)).

Figure 1. Regularization of compositional data points
(black) is performed by parallel projection to the gray
points, then radial projection to the white points.

The regularization operator can be viewed as a “scal-
ing”, which preserves Euclidean geometrical properties
such as distance (allowing a constant scaling factor)
and angle. Intuitively it “expands” the data points
and compensates for the “shrinking effect” of balanced
rearrangements. Its usefulness will be illustrated in a
toy example in Section 2.3.1.

2.2. Dirichlet Correlation

The Dirichlet distribution (3) is conjugate prior of the
multinomial, which is quite natural for compositional
data arisen from independent components.

Dir(x | α) =
Γ(

∑N
i=1 αi)∏N

i=1 Γ(αi)

N∏

i=1

xαi−1
i (3)

Parameters α = (α1, α2, · · · , αN ) could be summarized
by the Dirichlet precision

∑N
i=1 αi and the Dirichlet

correlation among components, which is undesirable.
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mean (α1, α2, · · · , αN )/
∑N

i=1 αi. The Dirichlet mean
actually encodes the expectation of each component :

EDir(xi) = αi/

N∑

j=1

αj (4)

Without domain knowledge, we assume the compo-
nents in original data to be equally important. Ac-
cording to Proposition 2, the feature extraction pro-
cess should not “prefer” any new component. We
therefore adopt a uniform Dirichlet mean:

Dir(x | α0) =
Γ(Nα0)
Γ(α0)N

N∏

i=1

xα0−1
i (5)

The traditional concept of “correlation” (Pearson
product-moment correlation coefficient) encodes linear
relationships between components (variables). With
strong linear relationships, some components are re-
dundant and the total amount of information declines.
In information theory, the amount of information is
measured by “uncertainty” of a distribution. The
Gaussian distribution with larger variances is more
“uncertain”, thus is preferred in PCA. For the Dirich-
let distribution (5), a smaller α0 indicates higher “un-
certainty” (amount of information) and less “correla-
tion” among the components (see Figure 2), which co-
incides with the traditional statistical interpretation of
“correlation”. Hence we define correlation for compo-
sitional data in terms of α0:

Definition 3 (Dirichlet Correlation) Given
i.i.d. compositional data set X = {x1,x2, · · · ,xM}
arisen from (5), the Dirichlet correlation among
the components with respect to X is defined as the
maximum likelihood estimation of α0.

Note that α0 is the overall (not pairwise) “correlation”
among all components.

α
0
 = 5 α

0
 = 1 α

0
 = 0.2

Figure 2. Points sampled from the univariate Dirichlet dis-
tribution (5) on S3 with different α0.

The intuitive interpretation of the Dirichlet correlation
is shown in Figure 2: 1) when α0 > 1, the distribu-
tion is bump-shaped, where the components are highly

correlated and are likely to mix together in samples;
2) when α0 = 1, the distribution is uniform, and any
proportion of mixture is equally preferred; 3) when
α0 < 1, the distribution is valley-shaped with peaks
at simplex vertices, and the components are better
de-correlated such that the components present them-
selves as more purified elements in the data samples.

With the specially designed transform family and cor-
relation measure for compositional data, we define
Dirichlet component analysis (DCA) as follows:

Definition 4 (Dirichlet Component Analysis)
Given i.i.d. compositional data set X =
{x1,x2, · · · ,xM} with N components, and the
target dimension K, Dirichlet component analy-
sis (DCA) applies a balanced rearrangement R̄K×N

and a regularization on X to minimize the Dirichlet
correlation among the resulted K components:

R̄ = argmin
R

argmax
α0

Dir(R̃(X ) | α0) (6)

where R̃(X ) denotes that we first apply balanced re-
arrangement R to X , and then apply a regularization
according to Definition 2. The i.i.d. assumption is for
factorization of the joint likelihood. The optimization
problem will be discussed in Section 3.

2.3. Illustrative Examples

2.3.1. Example 1: Composition of Rocks in
Geology

In this example, suppose that some rock samples are
collected in a geological study in an attempt to ana-
lyze their composition. Original representation of each
rock sample is a point in S3 (see Figure 3 left) indicat-
ing relative proportion of 3 minerals. The data points
demonstrate three peaks that correspond to three sub-
stances that have fixed compositions in terms of the
minerals. These peaks are formed because the forma-
tion of different substances depends on certain geolog-
ical factors that vary from site to site. Hence a par-
ticular substance tends to dominate rock samples col-
lected from some particular site. The substances had
been decomposed by the chemical tests on the rocks,
so that we only observe proportions of minerals.

Given the target dimension of three, DCA obtains
a new representation of the rock samples (see Fig-
ure 3 right). The learned new components correspond
to three underlying substances in the rock samples.
Three peaks are found near the vertices of the sim-
plex, which indicates that the new components are “de-
correlated” in the sense that the samples tend to be
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Figure 3. Left: synthetic data, composition of rock samples
(small ‘x’) in terms of the old components. Right: repre-
sentation in terms of new components (right) obtained by
optimization algorithm discussed in Section 3.

explained by individual components instead of linear
combinations of multiple components. This effect of
de-correlation could be interpreted analogous to PCA.
In PCA, we diagonalize the covariance matrix in order
that variance in data is separately “explained” by in-
dividual variables rather than linear combinations of
multiple variables. In our representation, we reveal
more information about the rocks’ substances because
the individual components are easier to explain in fur-
ther statistical analysis. In contrast, we note that PCA
cannot be used to solve this rock analysis problem be-
cause by its nature this problem cannot be resolved
through an orthogonal transformation.

2.3.2. Example 2: Term Frequencies in
Document Retrieval

We consider a simplified bag-of-words model for docu-
ment retrieval, where relative frequency values of four
terms are counted in a set of documents. Each docu-
ment is represented as a point in S4 (see Figure 4 left).

Predictably, many documents would mention both
“economy” and “market” a lot, and many documents
would mention both “terrain” and “geography” a lot,
which gives rise to two ridge-shaped modes, corre-
sponding to two underlying classes in these documents
(one concerns economical issues, and the other dis-
cusses geological issues). Reducing the dimensionality
is very likely to boost the prediction performance in
classification tasks because it helps avoid overfitting
(the curse of dimensionality), especially in more so-
phisticated high-dimensional document datasets.

Given the target dimension of two, DCA identifies two
latent components (see Figure 4 right). The projection
actually merges two pairs of semantically close compo-
nents, and the resulting representation best preserves
the information that distinguishes the two classes.
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Figure 4. Left: Term frequencies of four words on S4, each
small ‘x’ denotes a document. The data are synthetic.
Right: new representation obtained by the optimization
algorithm discussed in Section 3. The histogram illustrates
the distribution of documents on S2.

Note that as an unsupervised approach, DCA can-
not see any class label—all it does is minimizing the
Dirichlet correlation. Although applying PCA to this
toy case may have similar effects, our approach greatly
outperforms PCA in higher dimensional cases, be-
cause it is specially designed for compositional data
(as shown on a real-world dataset in Section 4.2).

3. Optimization

The optimization problem of DCA as defined in (6)
lacks an explicit analytical loss function. Moreover,
the regularization operator adds to the difficulty in
identifying gradients or judging convexity in the pa-
rameter space.

Maximum likelihood estimation of Dirichlet precision
can be carried out efficiently (Minka, 2003). The solu-
tion space is closed with respect to weighted average
(Proposition 3), which motivates us to use the genetic
algorithm (Goldberg, 1988), in which the weighted av-
erage serves as the crossover operator3. Although
genetic algorithm is generally inefficient, it is still
tractable with additional acceleration tricks. Never-
theless, genetic algorithm is just one of many choices
in the optimization of DCA.

The algorithm is formalized in Algorithm 1, where
“BR” is abbreviation for balanced rearrangement ma-
trix; “DC” is abbreviation for Dirichlet correlation;
“MAX” is the maximum number of iterations allowed;
“SIZE” is the size of population. The fitness score is

3We do not use the mutation operator in our algorithm.
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Algorithm 1 Genetic Algorithm for DCA
Input: dataset X ⊂ SN , target dimension K
Initialize population of BR, denoted as P0.
for iter = 0 to MAX− 1 do

for j = 0 to SIZE− 1 do
Apply BRj in Piter to X
Apply the regularization operator
Estimate DC for transformed data

end for
Find minimum DC in Piter

if converged then
break

end if
Put the BR with minimum DC into Piter+1

Compute fitness score for all BR
Reduce SIZE
for j = 1 to SIZE− 1 do

Sample two BR from Piter, probability propor-
tional to their fitness scores
Put their average, weighted by fitness scores,
into Piter+1,

end for
end for

computed as:

fitness = − log(min(
DC

median DC
, 1)), (7)

where “median DC” is the median Dirichlet correla-
tion in current population. This is a key trick to ac-
celerate the algorithm, because it prunes half of the
population by assigning zero fitness scores. The prun-
ing is based on the intuitive observation that: 1) the
regularization factor is a continuous function of the BR
matrix given the dataset X ; 2) the Dirichlet precision
is a continuous function of the regularization factor
and BR matrix. Hence the target function is approx-
imately continuous and smooth in the solution space.
Retaining 50% good candidate solutions in each gen-
eration is sufficient. Since the total diversity of the
population diminishes, the population size could be
reduced accordingly in each iteration.

4. Experimental Results

4.1. The Llobregat River Basin
Hydrogeochemistry

We investigate the hydrogeochemistry dataset from
the Llobregat River Basin (northeast Spain)4 with
DCA. This dataset had been studied in (Tolosana-

4This dataset “Hydrochem.txt” is available online at:
http://rss.acs.unt.edu/Rdoc/library/compositions/data/

Delgado, 2005) using factor analysis under the log-
ratio framework, with which they obtained inter-
pretable latent factors. Applying our approach on this
dataset yields even more interesting results.

Figure 5. Sampling sites in the Llobregat River Basin, clas-
sified as “upstream” and “downstream” by the red line.

The dataset consists of 485 samples, each being a 14 di-
mensional compositional vector representing the con-
centrations of major ions (e.g. H+, Na+, NH+

4 , Cl−,
HCO−3 , etc.) in the water samples. These samples are
collected monthly over a certain period of time from
31 sites in the Llobregat River Basin. We classify the
sites into two categories: upstream and downstream,
separated by the red line (see figure 5). The 485 water
samples are also classified into two categories accord-
ing to the site from which they had been collected.

DCA is applied on this dataset with a target dimen-
sion of three to facilitate visualization. Visualization
of high-dimensional data is crucial in disciplines such
as geology, chemistry, etc., because it facilitates fur-
ther analysis by domain experts.

Interestingly, although there is no location informa-
tion in this dataset (locations are known from labels
unseen for DCA), the two categories are well sepa-
rated in the latent representation (see Figure 6). This
underlying pattern is attributable to various geolog-
ical and anthropogenic factors thoroughly described
in (Tolosana-Delgado, 2005), which we omit here for
brevity. These new patterns that are discovered by
DCA was not reported in (Tolosana-Delgado, 2005),
a fact highlighting the power of DCA in knowledge
discovery.
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Figure 6. Latent representation of the hydrogeochemistry
dataset on S3, learned by DCA. The two classes are well
separated, see text for explanation.

4.2. Twenty newsgroups dataset

Using the 20 newsgroup data set 5, we consider a classi-
fication task of the “alt” class (798 documents) versus
the “misc” class (965 documents). We show that our
approach avoids overfitting and improves the predic-
tion accuracy when we train the classifiers with a very
small number of training examples, in which case the
problem of overfitting could be the severest. In the
preprocessing step, the “stop words” and scarce words
with less than 10 total occurrences are removed. Thus
the dataset we used consists of 1763 documents, where
each document is represented by a 2711 dimensional
sparse vector of relative word frequency values, which
satisfy the constant-sum constraint.

The dimensionality is reduced to K with DCA, PCA,
and LDA (latent Dirichlet allocation) (Blei, 2003), re-
spectively. We then used a linear SVM to classify
these low dimensional representations as well as the
original high dimensional data for comparison. Per-
formance results on the test test dataset are plotted
with a varying number of training samples (see Fig-
ure 7) for target dimensions of K = 10, 20, and 50.
Different choices of training data may affect the pre-
diction performance, especially in our case where the
size of training set is very small. So the performance
results in our experiments are averaged over 500 differ-
ent random choices of the training set. The advantage
of DCA in improving prediction is clear when com-
paring to other techniques with the same target di-
mensionality, especially with very small training sets.

5The dataset is available at
http://people.csail.mit.edu/ jrennie/20Newsgroups/

Although the highly specialized technique for bag-of-
words data (LDA) beats our approach in some cases,
these cases are extreme (the target dimension is 10
and the number of training samples exceeds 30). The
results also justify the applicability of DCA on sparse
compositional data, for which the traditional log-ratio
framework (Aitchison, 1982) is not applicable.
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Figure 7. The “alt” versus ”misc” classification perfor-
mances using linear SVM. Representations with different
dimensionality obtained by different methods are com-
pared. E.g., “LDA, 10” indicates 10 dimensional repre-
sentation obtained by latent Dirichlet allocation.

To make the optimization step tractable for high-
dimensional data, we employed several variations in
implementation. In order to reduce the solution space,
we used a restricted family of transformations rather
than general rearrangements. The restricted family
is “amalgamations” (binary rearrangement matrices)
introduced in (Aitchison, 1982), and the “balanced”
requirement is not imposed. This is inspired from the
toy example in Section 2.3, for which the optimal re-
arrangement matrix is actually an amalgamation.

5. Related Work

Feature extraction for de-correlating and reducing
variables date back to K. Pearson’s original idea (Pear-
son, 1901) on PCA. There have been a large body of
research papers in the statistics and machine learn-
ing literature that address this issue, including ICA
(Hyvärinen, 2001), kernel PCA (Schölkopf, 1998), etc.
Directed and undirected graphical models (Blei, 2003;
Welling, 2004) have also been exploited to handle this
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problem, where they treat the target variables as latent
nodes in the graph. Besides, the manifold assumption
motivates a family of non-linear methods (Tenenbaum,
2000; Roweis, 2000), in which they use coordinates on
the manifold to encode original high dimensional data.

Statistical analysis of compositional data has received
a lot of concern since J. Aitchison’s seminal work
(Aitchison, 1982). The author proposed to trans-
form from SN to RN+1 by log-ratio functions, and
transplanted PCA to SN under the log-ratio frame-
work (Aitchison, 1983). Our approach is an alterna-
tive PCA-like technique on SN , which focuses on dif-
ferent statistical properties (Dirichlet correlation) of
data. Moreover, the log-ratio is not well-defined for
sparse compositional data. In contrast, our approach
do not have this problem. Algebraic-geometric struc-
tures (Pawlowsky-Glahn, 2001) on the simplex had
been investigated, which facilitate analysis of relation-
ship among compositional data points. Unsupervised
metric learning for compositional data had been ad-
dressed in the machine learning literature (Lebanon,
2003; Wang, H.-Y., 2007).

6. Discussion

A major unresolved issue in the DCA framework is the
theoretical implication of the regularization operator
(see Figure 1), which is not compatible with the pop-
ular log-ratio framework, because it does not preserve
the ratio between different components. Nevertheless,
the regularization operator preserves Euclidean geo-
metrical properties such as distance (allowing a con-
stant scaling factor) and angle. Although these prop-
erties are not emphasized in the log-ratio framework,
they are nonetheless meaningful as long as classifica-
tion or regression tasks are concerned.
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Abstract

In multiple instance learning (MIL), how the
instances determine the bag-labels is an es-
sential issue, both algorithmically and in-
trinsically. In this paper, we show that the
mechanism of how the instances determine
the bag-labels is different for different ap-
plication domains, and does not necessarily
obey the traditional assumptions of MIL. We
therefore propose an adaptive framework for
MIL that adapts to different application do-
mains by learning the domain-specific mech-
anisms merely from labeled bags. Our ap-
proach is especially attractive when we are
encountered with novel application domains,
for which the mechanisms may be different
and unknown. Specifically, we exploit mix-
ture models to represent the composition of
each bag and an adaptable kernel function to
represent the relationship between the bags.
We validate on synthetic MIL datasets that
the kernel function automatically adapts to
different mechanisms of how the instances
determine the bag-labels. We also compare
our approach with state-of-the-art MIL tech-
niques on real-world benchmark datasets.

1. Introduction

Multiple instance learning (MIL) has become an ac-
tive area of investigation in machine learning since
it was first put forward for drug activity predic-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

tion(Dietterich, 1997). In MIL, we consider “instance-
bags”, which are unordered sets of instances. Each
instance is represented as a feature vector. Accord-
ing to the original definition, a bag of instances is la-
beled as positive if at least one of its instances is posi-
tive, and it is labeled as negative if all of its instances
are negative. In real-world applications of MIL, the
focus is on assigning labels to bags rather than in-
stances. Many methods have been proposed to solve
the MIL problem, including Axis-Parallel Rectangles
(Dietterich, 1997), Diverse Density (Maron, 1998),
EM-DD (Zhang, 2001), Citation k-NN (Wang, J.,
2000), and variations of SVM (Andrews, 2003; Gart-
ner, 2002; Kwok, 2007; Bunescu, 2007).

A major difficulty of MIL arises from the ambiguity
caused by not knowing which instances determined the
bag labels. According to the original definition of MIL
(Dietterich, 1997), a bag can be labeled as positive
based on just one positive instance in it. However,
since the instance-labels are unknown in the outset, we
need to leverage the available information conveyed by
all instances to determine the label of a bag. This mo-
tivates us to carefully examine the underlying mech-
anism of how the bag labels are determined by the
instances within the bag.

Firstly, examining the algorithmic aspect of the mech-
anism we could conclude that, even if there is an un-
ambiguous intrinsic mechanism (e.g., a bag is posi-
tive iff at least one instance is positive), it can hardly
benefit a MIL algorithm deterministically due to the
unknown instance labels. Instead, possible instance
labels are usually leveraged in a probabilistic manner.
For example, (Zhang, 2001) computes posteriors of in-
stance labels in an EM-like algorithm; (Kwok, 2007)
marginalizes a kernel function over possible instance
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labels. In other words, virtually all instances in a bag
can contribute to a bag label.

Our second observation is that the intrinsic mecha-
nisms of how the instances determine the bag-labels
can vary in different application domains of MIL; these
mechanisms do not necessarily obey the original defi-
nition of MIL. Instead, they must be relaxed to allow
more flexibility. Recall that in the original definition of
MIL, a bag is positive iff at least one instance is posi-
tive. This clearly defines MIL problems in some appli-
cations such as drug activity prediction, because the
“positive” instances in these applications could serve
as strong or even definite evidence for labeling a bag
as positive. For example, if a molecule binds well to
some target protein (positive instance), the molecule
undoubtedly binds well and the associated bag is la-
beled positive. However, in other applications, this
restriction is too limiting. In many real world applica-
tions, the bag-label determining mechanism can allow
a bag label to be negative even when there exists a pos-
itive instance in it; such relationship between instances
and bags should be probabilistic in nature. For exam-
ple, in content-based image retrieval (Zhang, 2002),
images are represented as “bags” of localized features
(regions). The low-level instance representation, de-
scribing color, texture, and shape, may have no direct
correspondence to high-level image-labels (e.g., human
faces, buildings, the sky etc.). Instead, they only serve
as weak evidences that should be integrated together
to determine the image-label. Intuitively, the localized
image feature descriptors can be “a region appears
like a human eye or a region appears like a human
nose”. The decision to label an image as a “human
face” should leverage many such pieces of evidence,
because a non-face images (negative bags) can also
contain some other object that appears like a human
nose (positive instance). In this example, a positive in-
stance can be found in a negative bag, which violates
the traditional definition of MIL. Therefore, our solu-
tion to the MIL problem should be flexible enough to
allow for different bag-label determining mechanisms.

The mechanisms of how the instances determine the
bag labels is an essential issue in MIL. However, to
our best knowledge, none of existing MIL techniques
has explicitly addressed the issue of the cross-domain
differences of this mechanism. In this paper, we pro-
pose a new framework for MIL that includes the orig-
inal definition of MIL as a special case, and yet allows
for more flexible cases. Our solution is to automat-
ically adapt the instance-to-bag-label mechanism to
accommodate the differences in various formulations
of the MIL problems. Our main contribution is to
capture the mechanism by a simple model, embod-

ied in a parameter p of a kernel function (Schölkopf,
2001) defined over the bags. This parameter is learned
from labeled bags in the training data without a priori
knowledge of that mechanism.

Our adaptive framework for MIL is supported by a
number of motivations. First, explicitly describing the
mechanism (as (Dietterich, 1997) did for drug activity
prediction) for an application domain calls for strong
domain knowledge. Second, a hand-crafted mecha-
nism could be subjective and unreliable. Third, de-
signing different MIL methods for different application
domains is inefficient, given the large number of appli-
cations that has a potential to be formalized as MIL.
Thus it is better to design an adaptive formalism for
this task.

In our framework, a two-phase learning procedure is
adopted to characterize a kernel function on the bags,
which can be used as a distance function in classifi-
cation via algorithms such as SVM, or as a similarity
measure for information retrieval.

The first learning phase exploits the unlabeled in-
stances with a mixture model to characterize the in-
trinsic structures of the feature space of instances.
Each bag is represented by some aggregate posteriors
on a mixture of components, which summarizes the
bag as compositions of different “patterns”.

While the first learning phase adapts to different char-
acteristics of the instance space, the adaptive nature
of our approach is shown mostly in the second learn-
ing phase. We define a kernel mapping by computing
a power p of the aggregate posteriors. As we will show
in the rest of the paper, the parameter p explicitly
captures the domain-specific mechanism of how the
instances determine the bag-labels, where the parame-
ter p is learned by optimizing an objective function de-
fined over the labeled bags. In this way, our framework
can adapt MIL algorithms to different instance-to-bag-
label mechanisms in many application domains, even
if we have no a priori knowledge about them.

2. The p-Posterior Mixture Model
Kernel

2.1. Aggregate posteriors

We use lowercase x to denote instances, and upper-
case X to denote bags. In MIL, we are provided
with a training set {(Xi, yi)}N

i=1 consisting of labeled
bags, where yi ∈ {+1,−1} are labels1. Let {xi}n

i=1

1Although we address two-class classification in this pa-
per, it is straightforward to generalize our approach to
multi-class classification and continuous-output regression.

1137



Adaptive p-Posterior Mixture-Model Kernels for Multiple Instance Learning

be all instances available for the learning algorithm,
where each instance xi resides in a feature space RD.
The training set includes both the instances in labeled
bags and possibly a large number of other unlabeled
instances, because the unlabeled instances are often
much easier to obtain than the labeled bags in many
applications2. The distribution of instances in the
sampling domain could demonstrate sophisticated pat-
terns due to the underlying unknown generative model
of instances. Previous approaches usually impose over
simplified assumptions on the generative model; for
example, APR (Dietterich, 1997) assumes that “posi-
tive” instances reside in an axis-parallel rectangle, and
Diverse Density (Maron, 1998) assumes that the “pos-
itive” instances demonstrate a Gaussian-like pattern
around some concept point. In our approach, a mix-
ture model approximates the underlying generative
model of instances, which is much more flexible and
informative. We make no additional constraint on the
instances used; the instances are chosen for training as
long as they are from the same underlying generative
model. Note that this is different from semi-supervised
learning (Zhu, 2005), for which we usually require the
unlabeled samples to come from the specific classes of
labeled samples.

We approximate the underlying generative model of
instances by several mixture models in RD. Fitting
the mixture models to all unlabeled instances with a
given number of mixture components K results in the
optimal parameters and weights {(Λi, wi)}K

i=1. For
Gaussian mixture models (GMM) adopted in our ex-
periments, we have {(µi,Σi, wi)}K

i=1.

Given the above, the likelihood of an instance x under
the i-th mixture component is denoted as:

pi(x) := Pr(x|Λi) (1)

For a bag of instances X = {xi}M
i=1 and a mixture

model {(Λi, wi)}K
i=1, we define the aggregation poste-

riors of a bag on the mixture components:

Definition 1 (Aggregate Posteriors) The aggre-
gate posteriors of a bag of instances X = {xi}M

i=1

with respect to the mixture model {(Λi, wi)}K
i=1 is de-

noted as:

ψ(X) := C
M∑

i=1

(
w1p1(xi)∑K

j=1 wjpj(xi)
, · · · ,

wKpK(xi)∑K
j=1 wjpj(xi)

)

where C is a normalizing operator indicating dividing
a vector by the sum of all its elements.

2For example, we can extract image regions (instances)
in thousands of arbitrary unlabelled images collected from
the Internet. This is much easier than manually labeling
even a small number of these images which are bags.

It is straightforward to validate that wjpj(xi)∑K
j=1 wjpj(xi)

is

the posterior probability that xi is generated from the
j-th mixture component. The normalizing operator C
is induced such that the kernel function (defined later)
would be unbiased towards sizes of bags; “large” bags
and “small” bags are treated equally. The aggregate
posteriors summarize frequencies of different “pattern”
within the bag, which could be viewed as a “Bayesian”
histogram because a frequentist would replace the K-
component mixture model with K-means clustering,
and replace the posteriors with a deterministic vote.
Thus, the aggregate posteriors degenerate to a nor-
malized histogram.

The first learning phase of our framework is itself en-
dowed with much flexibility and can be customized
for specific situations. For example, in some appli-
cations the number of available unlabeled instances
may be small. We therefore have to reduce the de-
gree of freedom in the mixture model accordingly. For
example, we could add the restriction that the com-
ponents of the Gaussian mixture model have diagonal
covariance, or even isotropic covariance3. When the
dimensionality of the instance space is too high to fit
a Gaussian mixture model, we can also adopt the fre-
quentist’s point of view by representing the training
bags as histograms obtained by K-means clustering of
the instances.

2.2. The order-p kernel mapping

We have defined a mapping from bags of instances X
to aggregate posteriors ψ(X) ∈ SK , where SK is the
(K − 1)-simplex that consists of all positive constant-
sum real vectors. The aggregate posteriors summarize
frequencies of different patterns4 within the bag. For
example, consider a toy case where X1, X2, and X3

are three bags in some MIL problem, and we have:

ψ(X1) = (0, 0.3, 0.5, 0.2),

ψ(X2) = (0, 0.2, 0.6, 0.2),

ψ(X3) = (0.2, 0.1, 0.6, 0.1).

We will carefully examine this toy case for an intu-
itive understanding of our approach. Aggregate pos-
teriors of these bags all demonstrate relatively high
values on the third mixture component, and low val-
ues on others. According to the definition of aggregate
posteriors, the bags all have “major patterns” repre-
sented by the third mixture component, with a lot

3An isotropic covariance matrix is in the form λI.
4The “patterns” are represented by the components of

the mixture model.
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of instances contributing to that pattern, and “minor
patterns” represented by other components, with fewer
instances contributing to them.

The kernel function for the bags serves as a similarity
measure that affects the decisions in label prediction.
Therefore how to define the kernel function depends
on the intrinsical mechanism that the bag-labels are
determined. Since the mechanism varies in different
application domains, the kernel function should vary
accordingly. On one hand, in some applications such as
drug activity prediction, positive bags are determined
by a few (at least one, actually) positive instances
serving as strong evidences, and there can be many
negative instances in positive bags. Hence the “mi-
nor patterns” in the aggregate posteriors are endowed
with considerable significance, given that the “major
patterns” could be dominated by overwhelming neg-
ative instances. On the other hand, in other applica-
tions such as image classification, the positive bags are
determined by integrating a lot of low-level weak evi-
dences from instances. Hence we should focus on the
“major patterns” in accordance with the voting-like
mechanism. The “minor patterns”, however, should
be underrated because they are attributable to random
noise and outliers. For example, in an image classifi-
cation task, the “minor patterns” could be generated
by the image background clutter.

For the toy case, the similarity in minor patterns be-
tween X1 and X2 is greater than that between X2 and
X3, but the similarity in major patterns between X2

and X3 is greater than that between X1 and X2. Ac-
cording to our previous analysis, whether X2 should
be considered more similar to X1 or X3 depends on
whether we should place more emphasis on major or
minor patterns; the latter in turn depends on the
domain-specific instance-to-bag-label mechanism. To
endow the kernel function with such flexibility, we de-
fine the p-posterior-mixture-model (ppmm) kernel:

Definition 2 (p-Posterior-Mixture-Model Kernel)
The p-posterior-mixture-model (ppmm) kernel func-
tion on a pair of bags X1 and X2 is defined as

κp(X1,X2) :=< ψ(X1)p, ψ(X2)p >

where p ∈ (0,∞), and < •, • > denotes the standard
inner-product in RK .

For the toy case, it is easy to validate that:

κp(X1,X2) > κp(X2,X3), if p < 1;

κp(X1,X2) = κp(X2,X3), if p = 1;

κp(X1,X2) < κp(X2,X3), if p > 1.

The parameter p tunes the kernel in a way that a
larger p makes it put more emphasis on major pat-
terns, and a smaller p draws more attention to the
minor patterns. According to our previous analysis,
we can predict that a larger p is preferred in appli-
cations such as image classification, and a smaller p
is preferred in applications such as drug activity pre-
diction. However these judgements are based on the
fact that we already have sufficient a priori knowledge
about these two application domains. If we encounter
a novel application domain of MIL, for which we have
no a priori knowledge, the p-posterior-mixture-model
kernel can be adapted to that novel domain by learning
the domain-specific instance-to-bag-label mechanism.
Learning the mechanism is implemented by optimizing
an objective function of p defined on labeled bags.

Given labeled bags {(Xi, yi)}N
i=1, yi ∈ {+1,−1}, we

learn the parameter p via maximizing the alignment
(Cristianini, 2002) between the p-posterior-mixture-
model kernel and the ideal kernel, which measures the
kernel’s degree of agreement with the bag-labels:

arg max
p

< Kp , yyT >F√
< Kp , Kp >F < yyT , yyT >F

(2)

where < •, • >F denotes the Frobenius inner-product
between matrices. Kp is the p-posterior-mixture-
model kernel matrix.

The optimization problem in (2) is easily resolved by
exhaustive search within a certain interval of p (e.g.
p ∈ (0, 3] in our later experiments). Because the target
function is extremely easy to evaluate and empirically
quite smooth, and the search space is only one dimen-
sional, even the exhaustive search is fast and scales
linearly with respect to the interval considered.

3. Experiments

3.1. Synthetic data

To empirically validate our analysis in previous sec-
tions, we simulate three different multiple instance
learning datasets endowed with different instance-to-
bag-label mechanisms.

MIL dataset 1 is synthesized as follows: 1) randomly
generate isotropic-covariance Gaussian mixture mod-
els in RD with K equally weighted components, from
which N × S instances are sampled; 2) one mixture
component is randomly chosen, and the instances gen-
erated by that component are labeled as positive; 3) all
N × S instances are randomly put into N bags, with
S instances in each; 4) each bag is labeled as positive

1139



Adaptive p-Posterior Mixture-Model Kernels for Multiple Instance Learning

iff there is at least one positive instance in it.

MIL dataset 2 and 3 are synthesized similarly. But
the instances generated by K

5 mixture components are
labeled as positive in MIL dataset 2, and each bag is
labeled as positive iff positive instances in the bag ex-
ceed 20%. The instances generated by K

2 mixture com-
ponents are labeled as positive in MIL dataset 3, and
each bag is labeled as positive iff positive instances in
the bag exceed 50%.

Although the synthetic datasets are endowed with dif-
ferent instance-to-bag-label mechanisms, all other as-
pects of these datasets are the same, which can not
be exploited by the algorithm to distinguish these
datasets. They all have approximately the same ratio
of positive and negative bags if K and S are properly
chosen. Although these tasks have different ratios of
positive and negative instances, the instance labels are
kept from the learning algorithm, which only observe
50%-50% bag-labels. Our approach is expected to dis-
cover the mechanism difference among these datasets
in such a challenging setting. Moreover, in the first
learning phase, the number of mixture components is
deliberately set to be different from K, in order to sim-
ulate the fact that the characteristics of the underlying
true generative model are usually unknown.

We repeated this experiment for many different choices
of the bag size S, mixture model size K, instance space
dimensionality D, and we observed that the optimal p
value is almost always the smallest for MIL dataset 1,
intermediate for MIL dataset 2, and the largest for
MIL dataset 3. In Figure 1 we plotted the kernel
alignment as a function of p in a typical run of the
experiment with K = 20, D = 5, S = 13, and to-
tal number of bags N = 200. Note that this specific
setting results in approximately the same number of
positive bags and negative bags in all datasets.

3.2. MIL benchmark datasets

We tested our method on standard MIL benchmark
datasets5 (Andrews, 2003), which consist of MIL tasks
in various application domains including drug activity
prediction, image classification, and text classification.

3.2.1. Drug activity prediction

The concept of multiple instance learning had been
originated from the application of drug activity predic-
tion. In this application, the molecules are regarded as
bags, and various shapes a molecule can adopt consti-
tute instances within the bag. A molecule is considered

5The datasets used in this section are available online at
http://www.cs.columbia.edu/ andrews/mil/datasets.html
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Figure 1. p versus kernel alignment in synthetic MIL
dataset 1, 2, and 3. Kernel alignment values are normal-
ized by its maximum value in either dataset. The optimal
p values in these datasets justified our previous analysis.

a “positive” bag if it binds well to some target protein,
which is true if at least one of its shapes (instances)
binds well. The instances are represented as vectors
describing that shape. In bio-chemical experiments,
we can only observe whether a molecule binds well or
not, but if the molecule binds well, we cannot further
identify which shape(s) binds well and contributes to
the positive bag-label.

Datasets of drug activity prediction for MIL are
MUSK1 and MUSK2. The MUSK1 dataset consists
of 47 positive bags, 45 negative bags, and totally 476
instances, each represented as a 166 dimensional vec-
tor. The MUSK2 dataset consists of 39 positive bags,
63 negative bags, and totally 6598 instances.

3.2.2. Image classification

Content-based image classification/retrieval is another
application domain of multi-instance learning. Its ma-
jor difficulty arises from the fact that an image consists
of not only the object-of-interest, which determines its
category label, but also background clutter, which may
take up even a larger portion of the image. To segment
the object-of-interest from background clutter is yet a
challenging open problem in computer vision. A com-
mon strategy to perform classification without identi-
fying the object-of-interest beforehand is to represent
an image by many localized feature vectors instead of
a single global feature description. Each localized fea-
ture is computed based on a small region of the image,

1140



Adaptive p-Posterior Mixture-Model Kernels for Multiple Instance Learning

so we could expect that the object-of-interest is cap-
tured by a number of local features, even if there are
also other irrelevant local features arisen from back-
ground clutter. It is therefore quite natural to formal-
ized content-based image classification/retrieval as a
multi-instance learning problem, where images are the
bags and local features are the instances.

The MIL benchmark dataset includes three image clas-
sification tasks—to discriminate images that contain
elephant, tiger, and fox from irrelevant images, respec-
tively. Each image (bag) is segmented into a set of
regions (instances), and each region is represented as
a 230 dimensional vector describing its color, texture,
and shape characteristics. Each classification tasks has
100 positive bags and 100 negative bags.

3.2.3. Text classification

Another application domain of multiple instance learn-
ing is text classification/retrieval. A document can be
divided into a number of segments, which could have
different topic focuses. And the category label of the
whole document (bag) should be decided by taking
into account all these segments (instance), which con-
stitutes a multiple instance learning problem.

The MIL benchmark dataset contains text data cho-
sen from the OHSUMED (Hersh, 1994) dataset on
medical issues. We perform two text classification
tasks: TREC1 and TREC2. Each consists of 200
positive documents (bags) and 200 negative docu-
ments. Each document is segmented into overlapping
50-word-passages, which results in over 3000 passages
(instances) in either of the tasks. Each passage is in-
dexed by a sparse high-dimensional (over 60,000 index
terms) feature vector.

3.2.4. Results

In order to make our results comparable to previ-
ous published results on these datasets, our exper-
iments are conducted in the same way as in most
previous works. For each classification task, we use
10-fold cross-validation. Classification accuracies are
measured on the 10% hold-out data. Our method is
compared with a number of existing multiple instance
learning techniques. We replicated the results reported
in their original papers for comparison if their results
are measured similarly (using 10-fold cross-validation).
Some results not available in their papers are marked
as N/A (see Table 1).

For our approach (The PPMM Kernel), the only pa-
rameter that has to be manually set is the dimension-
ality K of aggregate posteriors (i.e. number of mix-

ture components). We set K = 30 for drug activ-
ity prediction data and image data, and K = 40 for
text data, since the instances in the text data have
higher dimensionality and there are more labeled bags
for training. Note that K is chosen subjectively but
not carefully tuned for each task—tuning the param-
eter for each task could results in higher classification
performance but may be impractical in real-world sce-
narios. Other implementation details of our approach
in these experiments are the same as in Section 3.1,
except that we adopt K-means clustering and his-
togram representations for these tasks, because they
generally have high dimensional instance representa-
tion, and relatively small number of instances. Due
to the local-optimal nature of K-means clustering, we
tried multiple randomly seeded runs of algorithm, and
chose the best one based on their performances on the
training set.

One major advantage of our approach is the capac-
ity to utilize a large number of unlabeled instances,
but no extra unlabeled instance is available for the
benchmark datasets, which implicates that the poten-
tial performance of our approach could possibly be un-
derestimated in these experiments. Nevertheless, our
approach performs generally better than or compara-
ble with other MIL techniques (see Table 1). Since the
benchmark datasets for MIL are rather small (number
of bags ranges from tens to hundreds), slight differ-
ences in classification accuracy should not be overly
emphasized. Instead, the most encouraging result
we obtained is the optimal p values learned in these
datasets. Note that the p values for drug activity
prediction tasks (MUSK1 and MUSK2) are generally
smaller than that for image classification tasks (ELE-
PHANT, TIGER, and FOX). Although the p value
learned in the FOX dataset is smaller than other im-
age datasets, we can further observe that all methods
perform unsatisfactorily on the FOX dataset, which
may indicate that this classification task itself could
be impractical, hence the learned p value may be unre-
liable. Interestingly, comparing Table 1 and Figure 1
we could observe that the p values learned in real-
world drug activity prediction tasks are close to that
learned in synthetic task 1, and the p values learned in
real-world image classification tasks are close to that
learned in task 2 and task 3. We can also observe that
the p values for text classification tasks (TREC1 and
TREC2) are also small; possibly this is because the in-
stance representation in the text domain are also high-
level, and serving as strong evidences for bag-labels. In
contrast, instance representation in the image domain
are generally low-level (e.g. color, texture, shape), and
they can only be considered as weak evidences for the
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Table 1. Empirical results of multiple instance learning methods, the last row shows the optimal p value learned in each
task. MUSK1 and MUSK2 are drug activity prediction datasets. ELEPHANT, TIGER, FOX are image classification
datasets. TREC1 and TREC2 are text classification datasets. Best performance in each task is in bold. The average
performance over all tasks is shown in the last column.

Datesets: musk1 musk2 elephant tiger fox trec1 trec2 Average

apr (Dietterich, 1997) 92.4% 89.2% N/A N/A N/A N/A N/A N/A
dd (Maron, 1998) 88.0% 84.0% N/A N/A N/A N/A N/A N/A
em-dd (Zhang, 2001) 84.8% 84.9% 78.3% 72.1% 56.1% 85.8% 84.0% 78.0%
citation k-nn (Wang, J., 2000) 91.3% 86.0% 80.5% 78.0% 60.0% 87.0% 81.0% 80.5%
mi-svm (Andrews, 2003) 87.4% 83.6% 82.0% 78.9% 58.2% 93.6% 78.2% 80.3%
MI-svm (Andrews, 2003) 77.9% 84.3% 81.4% 84.0% 59.4% 93.9% 84.5% 80.8%
Miss-svm (Zhou, 2007) 87.6% 80.0% N/A N/A N/A N/A N/A N/A
mg-acc kernel (Kwok, 2007) 90.1% 90.4% N/A N/A N/A N/A N/A N/A
PPMM KERNEL (this paper) 95.6% 81.2% 82.4% 80.2% 60.3% 93.3% 79.5% 81.8%

Optimal value of p 0.7 0.15 2.1 1.3 0.8 0.75 0.4

high-level bag-labels (i.e. elephant, tiger, fox).

4. Related Work

The concept of multiple instance learning was origi-
nally proposed in (Dietterich, 1997) for the applica-
tion of drug activity prediction. The author assumes
that positive instances all reside in an axis-parallel
rectangle (APR), which implicates specific constraints
that the shape should satisfy in order to bind well to
some target protein. Although this assumption can
be appropriate for this specific application, it is not
clear how to adapt it to other applications, which may
have more complex intrinsic structures in the instance
space, and different instance-to-bag-label mechanisms.

Diverse Density (DD) (Maron, 1998) is another general
framework for MIL. The author assumes that positive
instances form a Gaussian-like pattern around some
“concept point” in the instance space, which is ex-
pected to be close to at least one point in each pos-
itive bag and far away from all instances in negative
bags. This assumption on the structure of instance
space could also be over-simplified for some applica-
tions. And the algorithm, by definition, relies on the
instance-to-bag-label mechanism in the original defi-
nition of multiple instance learning.

Citation k-NN adapts the memory based classification
method k-NN to MIL, which considers not only the
references, but also the citers as neighbors of a bag
in determine its label, in order to be less affected by
the negative instances in positive bags. It had been
empirically proved to be more robust than standard
k-NN. Nevertheless, the role of instance-to-bag-label

mechanism is not clear in this framework.

Support vector machines (SVM) and the kernel trick
(Schölkopf, 2001) have been very successful in tradi-
tional supervised learning. There also have been many
attempts to apply them to MIL. These works falls
into two major categories as summarized in (Kwok,
2007). The first family of methods try to modify the
optimization problem of SVM, such as MI-SVM and
mi-SVM (Andrews, 2003), which may result in non-
convex optimization problems and suffer from local
minima. The second family of methods design kernel
functions on the bags, including (Gartner, 2002) and
(Kwok, 2007). Our approach also falls into the second
category, but it possesses a unique characteristic as
adapts to various application domains with different
instance-to-bag-label mechanisms.

The aggregate posteriors are essentially positive
constant-sum real vectors, which reside in a simplex.
Data in a simplex had been addressed from the met-
ric learning perspective (Lebanon, 2003; Wang, H.-Y.,
2007), which are related to our approach because the
kernel defined for aggregate posteriors also gives rise
to a distance metric on the simplex.

The idea of defining a kernel function based on pos-
terior probabilities on mixture models had also been
exploited in (Hertz, 2006). The author proposed the
KernelBoost algorithm for learning with a large num-
ber of unlabeled data and few labeled data, in which
the weak kernel mappings are defined as posterior
probabilities on mixture models.

The two-phase learning scheme in our approach makes
use of both unlabeled instances and labeled bags. It
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is therefore conceptually related to semi-supervised
learning (Zhu, 2005) and self-taught learning (Raina,
2007).

5. Conclusion

In this paper, we proposed a novel framework for
adapting multiple instance learning to different mech-
anisms of how the instances determine the bag-labels.
We showed that this mechanism is different in differ-
ent application domains of multiple instance learning,
and our approach well captures this domain-specific
mechanism through learning with unlabeled instances
and labeled bags.

To the best of our knowledge, this paper is the first
work that addresses the problem of adapting multiple
instance learning to different application domains with
different instance-to-bag-label mechanisms. The ma-
jor advantage of such a self-adaptive framework lies in
that, if we are encountered with some novel applica-
tion domain, which could be well formalized as multi-
ple instance learning, but we have no a priori knowl-
edge about the instance-to-bag-label mechanisms in
that domain, we can learn the mechanisms from la-
beled bags, and design a kernel function adapted to
this mechanism.
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Abstract

Graph transduction methods label input data
by learning a classification function that is
regularized to exhibit smoothness along a
graph over labeled and unlabeled samples. In
practice, these algorithms are sensitive to the
initial set of labels provided by the user. For
instance, classification accuracy drops if the
training set contains weak labels, if imbal-
ances exist across label classes or if the la-
beled portion of the data is not chosen at ran-
dom. This paper introduces a propagation al-
gorithm that more reliably minimizes a cost
function over both a function on the graph
and a binary label matrix. The cost func-
tion generalizes prior work in graph trans-
duction and also introduces node normaliza-
tion terms for resilience to label imbalances.
We demonstrate that global minimization of
the function is intractable but instead pro-
vide an alternating minimization scheme that
incrementally adjusts the function and the la-
bels towards a reliable local minimum. Un-
like prior methods, the resulting propagation
of labels does not prematurely commit to an
erroneous labeling and obtains more consis-
tent labels. Experiments are shown for syn-
thetic and real classification tasks including
digit and text recognition. A substantial im-
provement in accuracy compared to state of
the art semi-supervised methods is achieved.
The advantage are even more dramatic when
labeled instances are limited.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

1. Introduction

Graph transduction refers to a family of algorithms
that achieve state of the art performance in semi-
supervised learning and classification. These meth-
ods incur a tradeoff between a classification func-
tion’s accuracy on labeled examples and a regularizer
term that encourages the function to remain smooth
over a weighted graph connecting the data samples.
The weighted graph and the minimized function ulti-
mately propagate label information from labeled data
to unlabeled data to provide the desired transductive
predictions. Popular algorithms for graph transduc-
tion include the Gaussian fields and harmonic func-
tions based method (GFHF) (Zhu et al., 2003) as well
as the local and global consistency method (LGC)
(Zhou et al., 2004). Other closely related methods
include the manifold regularization framework pro-
posed in (Sindhwani et al., 2005; Belkin et al., 2006)
where graph Laplacian regularization terms are com-
bined with regularized least squares (RLS) or sup-
port vector machine (SVM) function estimation cri-
teria. These methods lead to graph-regularized vari-
ants denoted as Laplacian RLS (LapRLS) and Lapla-
cian SVM (LapSVM) respectively. For certain syn-
thetic and real data problems, graph transduction ap-
proaches do achieve promising performance. However,
this article identifies several realistic settings and la-
beling situations where this performance can be com-
promised. An alternative algorithm which generalizes
the previous techniques is proposed by defining a joint
iterative optimization over the classification function
and a balanced label matrix.

Even if one assumes the graph structures used in the
above methods faithfully describe the data manifold,
graph transduction algorithms may still be misled by
problems in the label information. Figure 1 depicts
several cases where the label information leads to in-
valid graph transduction solutions for all the aforemen-
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tioned algorithms. The top row of Figure 1 shows a
separable pair of manifolds where unbalanced label in-
formation affects the propagation results. Although a
clear separation region is visible between the two man-
ifolds, the imbalance in the labels misleads the previ-
ous algorithms which prefer assigning points to the
class with the majority of labels. In the bottom row
of Figure 1, a non-separable problem is shown where
two otherwise separable manifolds are peppered with
noisy outlier samples. Here, the outliers do not be-
long to either class but once again interfere with the
propagation of label information. In both situations,
conventional transductive learning approaches such as
GFHF, LGC, LapRLS, and LapSVM fail to give ac-
ceptable labeling results.

In order to handle such situations, we extend the graph
transduction optimization problem by casting it as a
joint optimization over the classification function and
the labels. The optimization is solved iteratively and
remedies the instability previous methods seem to have
vis-a-vis the initial labeling. In our novel framework,
initial labels simply act as the starting value of the
label matrix variable which is incrementally refined
until convergence. The overall minimization over the
continuous classification function and the binary label
matrix proceeds by an alternating minimization over
each term separately and converges to a local mini-
mum. Moreover, to handle the imbalanced labels is-
sue, a node regularizer term is introduced to balance
the label matrix among different classes. These two
fundamental changes to the graph transduction prob-
lem produce significantly better performance on both
artificial and real datasets.

The remainder of this paper is organized as the follows.
In Section 2, we revisit the graph regularization frame-
work of (Zhou et al., 2004) and extend it into a bi-
variate graph optimization problem. A corresponding
algorithm is provided that solves the new optimization
problem by iterative alternating minimization. Section
3 provides experimental validation for the algorithm
on both toy and real classification datasets, including
text classification and digital recognition. Compar-
isons with leading semi-supervised methods are made.
Concluding remarks and a discussion are then pro-
vided in Section 4.

2. Graph Transduction

Consider the dataset X = (Xl,Xu) of labeled in-
puts Xl = {x1, · · · ,xl} and unlabeled inputs Xu =
{xl+1, · · · ,xn} along with a small portion of cor-
responding labels {y1, · · · , yl}, where yi ∈ L =
{1, · · · , c}. For transductive learning, the objective is

to infer the labels {yl+1, · · · , yn} of the unlabeled data
{xl+1, · · · ,xn}, where typically l << n. The graph
transduction methods define an undirected graph rep-
resented by G = {X , E}, where the set of node or ver-
tices is X = {xi} and the set of edges is E = {eij}.
Each sample xi is treated as the node on the graph
and the weight of edge eij is wij . Typically, one uses
a kernel function k(·) over pairs of points to recover
weights, in other words wij = k(xi,xj) with the RBF
kernel being a popular choice. The weights for edges
are used to build a weight matrix which is denoted
by W = {wij}. Similarly, the node degree matrix

D = diag ([d1, · · · , dn]) is defined as di =
n∑

j=1

wij . The

binary label matrix Y is described as Y ∈ Bn×c with
Yij = 1 if xi has label yi = j and Yij = 0 oth-
erwise. This article will often refer to row and col-
umn vectors of such matrices, for instance, the ith row
and jth column vectors of Y are denoted as Yi· and
Y·j , respectively. The graph Laplacian is defined as
∆ = D −W and the normalized graph Laplacian is
L = D−1/2∆D−1/2 = I−D−1/2WD−1/2.

2.1. Consistent Label Propagation

Graph based semi-supervised learning methods propa-
gate label information from labeled nodes to unlabeled
nodes by treating all samples as nodes in a graph and
using edge-based affinity functions between all pairs
of nodes to estimate the weight of each edge. Most
methods then define a continuous classification func-
tion F ∈ Rn×c that is estimated on the graph to min-
imize a cost function. The cost function typically en-
forces a tradeoff between the smoothness of the func-
tion on the graph of both labeled and unlabeled data
and the accuracy of the function at fitting the label
information for the labeled nodes. Such is the case for
a large variety of graph based semi-supervised learn-
ing techniques ranging from the the mincuts method
(Blum & Chawla, 2001), the Gaussian fields and har-
monic functions (GFHF) method, and the local and
global consistency (LGC) method. A detailed survey
of these methods is available in (Zhu, 2005).

In trading off smoothness for accuracy, both GFHF
and LGC approaches attempt to preserve consistency
on the data manifold during the optimization of the
classification function. The loss function for both
methods involves the additive contribution of two
penalty terms the global smoothness Qsmooth and local
fitness Qfit as shown below:

F∗ = arg min
F
Q(F) = arg min

F
{Qsmooth(F) + Qfit(F)}

(1)
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(a) (e)(d)(c)(b)

Figure 1. A demonstration with artificial data of the sensitivity graph transduction exhibits for certain initial label settings.
The top row shows how imbalanced labels adversely affect even a well-separated 2D two-moon dataset. The bottom row
shows a 3D two-moon data where graph transduction is again easily misled by the introduction of a cloud of outliers. Large
markers indicate known labels and the two-color small markers represent the predicted classification results. Columns
depict the results from (a) the GFHF method (Zhu et al., 2003); (b) the LGC method (Zhou et al., 2004); (c) the LapRLS

method (Belkin et al., 2006); (d) the LapSVM method (Belkin et al., 2006); and (e) Our method (GTAM).

In particular, recall that LGC uses an elastic regular-
izer framework with the following cost function (Zhou
et al., 2004).

Q(F) =
1

2

(
n∑

i,j=1

wij

∥
∥
∥
∥

Fi·
√

Dii

−
Fj·

√
Djj

∥
∥
∥
∥

2

+ µ

n∑

i=1

‖Fi· − Yi·‖
2

)

(2)

where the coefficient µ balances global smoothness and
local fitting penalty terms. If we set µ = ∞ and use
a standard graph Laplacian for the smoothness term,
the above framework reduces to the harmonic function
formulation as shown in (Zhu et al., 2003).

While LGC and GFHF formulations remain popular
and have been empirically validated in the past, it is
possible to discern some key limitations. First, the
optimization can be broken up into a separate paral-
lel problems since the cost function decomposes into
terms that only depend on individual columns of the
matrix F. Because each column of F indexes the la-
beling of a single class, such a decomposition reveals
that biases may arise if the input labels are dispropor-
tionately imbalanced. In practice, both propagation
algorithms tend to prefer predicting the class with the
majority of labels. Second, both learning algorithms
are extremely dependent on the initial labels provided
in Y. This is seen in practice but can also be explained
mathematically by fact that Y is starts off extremely
sparse and has many unknown terms. Third, when
the graph contains background noise and makes class
manifolds nonseparable, these graph transduction ap-
proaches fail to output reasonable classification results.
These difficulties were illustrated in Figure 1 and seem
to plague many graph transduction approaches. How-

ever, the proposed method, graph transduction via al-
ternating minimization (GTAM) appears resilient.

To address these problems, we will make modifications
to the cost function in Eq. 1. The first one is to explic-
itly show the optimization over both the classification
function F and the binary label matrix Y:

(F∗,Y∗) = arg minF∈Rn×c,Y∈Bn×cQ(F,Y). (3)

Where Bn×c is the set of all binary matrices Y of size
n×c that satisfy

∑

j Yij = 1 and, for the labeled data
xi ∈ Xl, Yij = 1 if yi = j. More specifically, our loss
function is:

Q(F,Y) =
1

2
tr
{
FT LF + µ(F−VY)T (F−VY)

}

(4)
where we have introduced the matrix V which is a
node regularizer to balance the influence of labels from
different classes. The matrix V = diag(v) is a function
of the current label matrix Y:

v =

c∑

j=1

Y·j ⊙D~1

YT
·jD

~1
(5)

where the symbol ⊙ denotes the Hadamard product
and column vector ~1 represents ~1 = [1 · · · 1]T . This
node regularizer permits us to work with a normalized
version of the label matrix Z defined as: Z = VY.

By definition, we see that the normalized label matrix
satisfies

∑

i Zij = 1. Using the normalized label ma-
trix Z in a graph regularization allows labeled nodes
with high degree to contribute more during the graph
diffusion and label propagation process. However, the
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total diffusion of each class is kept equal and normal-
ized to be one. Therefore, the influence of different
classes is balanced even if the given class labels are
imbalanced. If class proportion information is known
a priori, it can be integrated by scaling the diffusion
with the prior class proportion. However, because of
the nature of graph transduction and unknown class
prior knowledge, equal class balancing leads to gen-
erally more reliable solutions than label proportional
weighting. This intuition is in line with prior work
that uses class proportion information in transductive
inference such as (Chapelle et al., 2007) where class
proportion is enforced as a hard constraint on the la-
bels or in (Mann & McCallum, 2007) where such infor-
mation is used as a regularizer. We next discuss the
alternating minimization procedure which is the key
modification to the overall framework.

2.2. Alternating Minimization Procedure

In our proposed graph regularization framework, the
cost function involves two variables to be optimized.
While simultaneously recovering both solutions is in-
tractable due to the mixed integer programming prob-
lem over binary Y and continuous F, we will pro-
pose a greedy alternating minimization approach. The
first update of the continuous classification function F

is straightforward since the resulting cost function is
convex and unconstrained allowing us to recover the
optimal F by setting the partial derivative ∂Q

∂F
to be

zero. However, since Y ∈ B is a binary matrix and
subject to linear constraints of the form

∑

j Yij = 1,
the other step in our alternating minimization requires
solving a linearly constrained max cut problem which
is NP (Karp, 1972). Due to the alternating minimiza-
tion outer loop, investigating guaranteed approxima-
tion schemes (Goemans & Williamson, 1995) to solve
a constrained max cut problem for Y is unjustified
due to the solution’s dependence on the dynamically
varying classification function F during the alternat-
ing minimization procedure. Instead, we use a greedy
gradient based approach to incrementally update Y,
while keeping the classification function F at the corre-
sponding optimal setting. Moreover, because the node
regularizer term V normalizes the labeled data, we
also interleave updates of V based on the revised Y.

Minimization for F :
The classification function F ∈ Rn×c is continuous and
its loss terms are convex allowing the minimum to be
recovered by zeroing the partial derivative:

∂Q
∂F∗

= 0 =⇒ LF∗ + µ(F∗ −VY) = 0

=⇒ F∗ = (L/µ + I)−1VY = PVY(6)

where we denote P = (L/µ + I)−1 as the propagation
matrix and assume the graph is symmetrically built
(i.e. L = LT ).

Greedy minimization of Y:

To update Y, first replace F in Eq. 4 by its optimal
vlue F∗ from the solution of Eq. 6.

Q(Y)=
1

2
tr(YT VT PT LPVY (7)

+µ(PVY −VY)T (PVY −VY))

=
1

2
tr
(
YT VT

[
PT LP + µ(PT − I)(P− I)

]
VY

)

The optimization still involves the node regularizer V

in Eq. 5, which depends on Y and normalizes the la-
bel matrix over columns. Due to the dependence on
the current estimate of F and V, only an incremental
step will be taken greedily to reduce Q(Y). In each
iteration, we find position (i∗, j∗) in the matrix Y and
change the binary value of Yi∗j∗ from 0 to 1. The di-
rection with largest negative gradient guides our choice
of binary step on Y. Therefore, we need to evaluate
‖ ▽QY‖ and find the largest negative value to deter-
mine (i∗, j∗).

Note that setting Yi∗,j∗ = 1 is equivalent to a similar
operation on the normalized label matrix Z by setting
Zi∗,j∗ = ǫ, 0 < ǫ < 1, and Y,Z have one to one corre-
spondence. Thus, the greedy optimization of Q with
respect to Y is equivalent to greedy minimization of
Q with respect to Z. More formally: ∂Q

∂Y
= ∂Q

∂Z
∂Z
∂Y

and
with straightforward algebra we see that:

(i∗, j∗) = arg min
i,j

∂Q
∂Y

= arg min
i,j

∂Q
∂Z

(8)

Then we can rewrite the loss function using the vari-
able Z as:

Q(Z) =
1

2
tr
(
ZT
[
PT LP + (PT − I)(P− I)

]
Z
)

=
1

2
tr
(
ZT AZ

)
(9)

where A represents A = PT LP + (PT − I)(P − I).
Notice that A is symmetric if the graph is symmetri-
cally built. We derive the gradient of the above loss
function and recover it with respect to Y as:

∂Q
∂Z

= AZ = AVY (10)

As described earlier, we search the gradient matrix
∇ZQ to find the minimal element for updating

(i∗, j∗) = arg minxi∈Xu,1≤j≤c∇Zij
Q (11)
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Then update the label matrix by setting Yi∗j∗ = 1.
Because of the binary nature of Y, we simply set
Yi∗j∗ = 1 instead of using a continuous gradient ap-
proach. In the t + 1th iteration, the node regularizer
vt+1 can be recalculated with the updated Yt+1.

The update Y is indeed greedy. Therefore, it could os-
cillate and backtrack from predicted labelings in pre-
vious iterations without convergence guarantees. We
propose a straightforward way to guarantee conver-
gence and avoid backtracking, inconsistency or un-
stable oscillation in the greedy propagation of labels.
Once an unlabeled point has been labeled, its labeling
can no longer be changed. Thus, we remove the most
recently labeled point (i∗, j∗) from future considera-
tion and only permit the algorithm to search for the
minimal gradient entries corresponding to the remain-
ing unlabeled examples. Thus, to avoid changing the
labeling of previous predictions, the new labeled node
xi∗ will be removed from Xu and added to Xl.

In the following, we summarize the updating rules from
step t to t + 1 in the alternative minimization scheme.
Although the optimal F∗ is being computed in each
iteration as shown in Eq. 6, we do not explicitly need
to update it. Instead, it is implicitly used in Eq. 8 to
directly update Y.

∇ZQt = Adiag(vt)Yt (12)

(i∗, j∗) = arg minxi∈Xu,1≤j≤c∇Zij
Qt

Yt+1
i∗j∗ = 1

vt+1 =
c∑

j=1

Yt+1
·j ⊙D~1

Yt+1
·j

T
D~1

X t+1
l ←− X t

l + xi∗ ; X t+1
u ←− X t

u − xi∗

The procedure above repeats until all points have been
labeled.

2.3. Algorithm Summary and Convergence

From the above discussion, our method is unique
in that it optimizes the loss function over both
continuous-valued F space and binary-valued Y space.
Starting from a few given labels, the method itera-
tively and greedily updates the label matrix Y, node
regularizer v, and gradient matrix ∇ZQ. In each indi-
vidual iteration, new labeled samples are obtained to
drive a better graph propagation in the next iteration.
In our approach, we directly acquire new labels instead
of calculating F∗ and then conducting a mapping to Y,
which is the regular procedure in other graph transduc-
tion methods like LGC and GFHF. This unique feature
makes the proposed algorithm very efficient since we
only update the gradient matrix ∇ZQ in each itera-

tion. Furthermore, similar to the graph superposition
approach introduced in (Wang et al., 2008), the cal-
culation of the node regularizer v and gradient matrix
∇ZQ can be more efficient by incremental updating as
a result of the newly gained labels.

Due to greedy assignment, the algorithm can only loop
the alternative minimization (or the gradient compu-
tation equivalently) at most n−l times. The update of
the graph gradient, finding the largest element in the
gradient and the matrix algebra involved can be done
efficiently by modifying only a single entry in Y per
loop. Each minimization step over F and Y thus re-
quires O(n2) time and the total runtime of the greedy
GTAM algorithm is O(n3). Empirically, the value of
the loss function Q decreases rapidly in the the first
dozen iterations and achieves steady convergence af-
terward. This phenomenon indicates that the label
propagation loop could be early stopped by solving for
the labels from the optimized F∗ (Eq. 6) after only a
few iterations. The above algorithm chart summarizes
the proposed GTAM method.

3. Experiments

In this section, we demonstrate the superiority of the
proposed GTAM method in comparison to state of the
art semi-supervised learning methods over both syn-
thetic and real data. For instance, on the WebKB
data, previous work shows that LapSVM and LapRLS
are better than other semi-supervised approaches, such
as Transductive SVMs TSVM (Joachims, 1999) and
∇TSVM. Therefore, we only compare our method
with LapRLS, LapSVM and two related methods,
LapRLSjoint and LapSVMjoint (Sindhwani et al.,
2005). In all experiments, we used the same param-
eter settings reported in the literature. The GTAM
approach only requires a single µ parameter which con-
trols the tradeoff between the global smoothness and
local fitting terms in the cost function. Although our
experiments show that GTAM is fairly robust to the
setting of µ, we set µ = 99 throughout all experiments.

For all real implementations of graph-based methods,
one needs a construction method that builds a graph
from the training data X , which involves a proce-
dure for computing the weight of links via a kernel or
similarity function. Typically, practitioners use RBF
kernels for image recognition and cosine distances for
text classification (Zhou et al., 2004; Ng et al., 2001;
Chapelle et al., 2003; Hein & Maier, 2006). However,
finding adequate parameters for the kernel or similar-
ity function, such as the RBF kernel size δ, is not
always straightforward particularly if labeled data is
scarce. Empirical evidence has shown that the prop-
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Algorithm 1 Graph Transduction via Alternating
Minimization (GTAM)

Input: data set X = {x1, · · · ,xl,xl+1, · · · ,xn},
labeled subset Xl = {x1, · · · ,xl}, unlabeled sub-
set Xu = {xl+1, · · · ,xn}, labels {y1, · · · , yj , · · · , yl},
where yj ∈ L = {1, · · · , l}. Affinity matrix W =
{wij}, node degree matrix D, initial label matrix
Y0;
Initialization:

iteration counter t = 0;
normalized graph Laplacian L = D−1/2∆D−1/2;
propagation matrix P = (L/µ + I)−1;
matrix A = PT LP + (PT − I)(P− I);

node regularizer v0 =
∑c

j=1

Y0

·j⊙D~1

Y0

·j

T
D~1

.

repeat

Compute graph gradient:
Zt = diag(vt)Yt, ∇ZtQt = AZt;

Find the optimal element in ∇ZtQt:
(i∗, j∗) = arg minxi∈Xu,1≤j≤c∇Zij

Qt;
Update label matrix to obtain Yt+1 by setting:

Yt+1
i∗j∗ = 1; also yi∗ = j∗;

Update node regularizer by:

vt+1 =
∑c

j=1

Y
t+1

·j
⊙D~1

Y
t+1

·j

T
D~1

;

Remove xi∗ from Xu: X t+1
u ←− X t

u − xi∗ ;
Add xi∗ to Xl: X t+1

l ←− X t
l + xi∗ ;

Update iteration counter: t = t + 1;
until X t

u = ∅
Output:

The labels of unlabeled samples {yl+1, · · · , yn}.

agation results highly depend on the kernel param-
eter selection. Motivated by the approach reported
in (Hein & Maier, 2006), we use an adaptive kernel
size based on the mean distance of k-nearest neigh-
borhoods (k = 6) for the experiments on real USPS
handwritten digit data. On the WebKB data, we use
the same graph construction suggested by (Sindhwani
et al., 2005). For each dataset, the same graph is used
for all the compared transductive learning approaches.

3.1. Two Moon Synthetic Data

Figure 1 illustrated synthetic experiments on 2D and
3D two-moon data. Despite the near-perfect classifica-
tion results reported on such datasets in the literature
(Zhou et al., 2004), we showed how small perturba-
tions to the problem can have adverse effects on prior
algorithms. The prior methods are overly sensitive to
locations of the initial labels, ratios of the two-class
labels, and the level of ambient noise or outliers.

A more thorough experimental study is also possible

(b)(a)

Figure 2. Performance comparison of LGC, GFHF,
LapRLS, LapSVM, and GTAM on noisy 3D two moon
data. Only one label is given for one class, while the other
class has a varying number of labels, shown as imbalance
ratio on the horizontal axis: (a) The mean of the test
error; (b) The standard deviation of the test error.

for the two-moon data by exploring the effect of class
imbalance. We start by fixing one class to have one
observed label and select r labels from the other class.
Here, r is also the imbalance ratio and the range we
explore is 1 ≤ r ≤ 20. These experiments use the 3D
noisy two-moon data which contain 300 positive and
300 negative sample points as well as 200 additional
background noise samples. Multiple round tests (100
trails) are evaluated for each imbalance condition by
calculating the average prediction accuracy on the rel-
evant 600 samples. For a fair comparison, we use the
same graph Laplacian, which is constructed using k-
NN (k = 6) neighbors with RBF weights. Moreover,
the parameter for LGC is set as α = 0.99. The param-
eters for LapRLS and LapSVM are γA = 1, γI = 1.

Figure 2 demonstrates the performance advantage of
the proposed GTAM approach versus the LGC, GFHF,
LapRLS, and LapSVM methods. From the figure, we
can conclude that all the four strawman approaches
are extremely sensitive to the initial labels and label
class imbalance since none of them can produce per-
fect accuracy and the error rates of LGC and GFHF
are dramatically increased when the label class be-
comes more imbalanced even though more information
is being provided to the algorithm. However, GTAM is
clearly superior, achieving the best accuracy regardless
of the imbalance ratio and despite contamination with
noisy samples. In fact only 1 or 2 of the 100 trails for
each individual setting of r were imperfect using the
GTAM method.

3.2. WebKB Dataset

For validation on real data, we first evaluated our
method using the WebKB dataset, which has been
widely used in semi-supervised learning experiments
(Joachims, 2003; Sindhwani et al., 2005). The WebKB
dataset contains two document categories, course and
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non-course. Each document has two types of informa-
tion, the webpage text content called page representa-
tion and link or pointer representation. For fair com-
parison, we applied the same feature extraction proce-
dure as discussed in (Sindhwani et al., 2005), obtained
1051 samples with 1840-dimensional page attributes
and 3000 link attributes. The graph was built based
on cosine-distance neighbors with Gaussian weights
(number of nearest neighbors is 200 as in (Sindhwani
et al., 2005)). We compared our method with four
of the best known approaches, LapRLS, LapSVM,
and the two problem specific methods, LapRLSjoint ,
LapSVMjoint reported in (Sindhwani et al., 2005). All
the compared approaches used the same graph con-
struction procedure and all parameter settings were set
according to (Sindhwani et al., 2005), in other words
γA = 10−6, γI = 0.01. We varied the number of la-
beled data to measure the performance gain with in-
creasing supervision. For each fixed number of labeled
samples, 100 random trails were tested. The means of
the test errors are shown in Figure 3.

Figure 3. Performance comparison on text classification
(WebKB dataset). The horizontal axis represents the num-
ber of randomly observed labels (guaranteeing there is at
least one label for each class). The vertical axis shows the
average error rate over 100 random trials.

As the Figure reveals, the proposed GTAM method
achieved significantly better accuracy than all the
other methods, except for the extreme case when only
four labeled samples were available. The performance
gain grows rapidly when the number of labeled sam-
ples increases, although in some cases the error rate
does not drop monotonically.

3.3. USPS digit data

We also evaluated the proposed method in an im-
age recognition task. Specifically, we used the data
in (Zhou et al., 2004) for handwritten digit classifi-

cation experiments. To evaluate the algorithms, we
reveal a subset of the labels (randomly chosen and
guaranteeing at least one labeled example is available
for each digit). We compared our method with LGC
and GFHF, LapRLS, and LapSVM. The error rates are
calculated based on the average over 20 trials.

Figure 4. Performance comparison on handwritten digit
classification (USPS database). The horizontal axis shows
the total number of randomly observed labels (guarantee-
ing there is at least one label for each class). The vertical
axis shows the average error rate over 20 random trials.

From Figure 4, we can conclude that GTAM signifi-
cantly improved the classification accuracy, compared
to the other approaches, especially when very few la-
beled samples are available. The mean accuracies of
GTAM are consistently low for different numbers of
labels and the standard deviation values are also very
small (10−4 level). This demonstrates that the GTAM
method is insensitive to the numbers and specified lo-
cations of the initially given labels. Only 1% of the
test digit images were mislabeled. These failure cases
are presented in Figure 5 and are often ambiguous or
extremely poorly drawn digits. Compared to the per-
formance on WebKB dataset shown in Figure 3, the
USPS digit database experiments exhibit even more
promising results. One possible reason is that the
USPS digit dataset has relatively more samples (3874)
and a lower feature dimensionality (256), compared to
the WebKB dataset (which has 1840 samples in 4800
dimensions). Therefore the graph construction pro-
cedure is more reliable and the estimation of graph
gradients in our algorithm is more robust.

Figure 5. USPS handwritten digit samples which are incor-
rectly classified.
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4. Conclusion and Discussion

Existing graph-based transductive learning methods
hinge on good labeling information and can easily be
misled if the labels are not distributed evenly across
classes, if the choice of initial label locations is varied
or if excessive noise or outliers corrupt the underlying
manifold structure. These degenerate settings seem
to plague real world problems as well, compromising
the performance of state-of-the-art graph transduction
methods. Our experiments over synthetic data sets
(two moon data sets) and real data sets (USPS dig-
its and WebKB) confirm the shortcomings of existing
tools.

This article addresses these shortcomings and pro-
poses a novel graph based semi-supervised learning
method, graph transduction via alternating minimiza-
tion (GTAM). Therein, both the classification function
and the label matrix are treated as variables in a cost
function that is iteratively minimized. While the op-
timal classification function can be estimated exactly,
greedy optimization is applied to update the label ma-
trix. The algorithm iterates an alternating minimiza-
tion between both variables and is guaranteed to con-
verge via a greedy scheme. In each individual iteration,
through the graph gradient, the unlabeled node with
the largest cost reduction is labeled. We gradually up-
date the label matrix by adding more labeled samples
while keeping the classification function at its optimal
setting. Furthermore, we enforce normalization of the
label matrix to avoid degeneracies. This results in an
algorithm that can cope with all the aforementioned
degeneracies and in practice achieves significant gains
in accuracy while remaining efficient and cubic in the
number of samples. Future work will include out of
sample extensions of this method such that new data
points can be added to the training and test set with-
out requiring a full retraining procedure.

5. Acknowledgments

The authors would like to thank Mr. Yongtao Su
and Shouzhen Liu for their valuable comments. We
also thank Mr. We Liu and Deli Zhao for the collec-
tion of the artificial data. TJ was supported by ONR
Award N000140710507 (ModNo: 07PR04918-00) and
NSF Award IIS-0347499.

References

Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Man-
ifold Regularization: A Geometric Framework for
Learning from Labeled and Unlabeled Examples.
JMLR, 7, 2399–2434.

Blum, A., & Chawla, S. (2001). Learning from labeled
and unlabeled data using graph mincuts. Proc. 18th
ICML (pp. 19–26).

Chapelle, O., Sindhwani, V., & Keerthi, S. (2007).
Branch and Bound for Semi-Supervised Support
Vector Machines. Proc. of NIPS.

Chapelle, O., Weston, J., & Scholkopf, B. (2003). Clus-
ter kernels for semi-supervised learning. Proc. NIPS,
15, 1.

Goemans, M., & Williamson, D. (1995). Improved ap-
proximation algorithms for maximum cut and satis-
fiability problems using semidefinite programming.
Journal of the ACM (JACM), 42, 1115–1145.

Hein, M., & Maier, M. (2006). Manifold denoising.
Proc. NIPS, 19.

Joachims, T. (1999). Transductive inference for text
classification using support vector machines. Proc.
of the ICML, 200–209.

Joachims, T. (2003). Transductive learning via spec-
tral graph partitioning. Proc. of ICML, 290–297.

Karp, R. (1972). Reducibility among combinatorial
problems. Complexity of Computer Computations,
43, 85–103.

Mann, G., & McCallum, A. (2007). Simple, robust,
scalable semi-supervised learning via expectation
regularization. Proc. of the ICML, 593–600.

Ng, A., Jordan, M., & Weiss, Y. (2001). On spectral
clustering: Analysis and an algorithm. Proc. NIPS,
14, 849–856.

Sindhwani, V., Niyogi, P., & Belkin, M. (2005). Be-
yond the point cloud: from transductive to semi-
supervised learning. Proc. of ICML.

Wang, J., Chang, S.-F., Zhou, X., & Wong, T. C. S.
(2008). Active microscopic cellular image annota-
tion by superposable graph transduction with im-
balanced labels. IEEE CVPR. Alaska, USA.

Zhou, D., Bousquet, O., Lal, T., Weston, J., &
Scholkopf, B. (2004). Learning with local and global
consistency. Proc. NIPS (pp. 321–328).

Zhu, X. (2005). Semi-supervised learning literature
survey (Technical Report 1530). Computer Sciences,
University of Wisconsin-Madison.

Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semi-
supervised learning using gaussian fields and har-
monic functions. Proc. 20th ICML.

1151



On Multi-View Active Learning and the Combination with
Semi-Supervised Learning

Wei Wang wangw@lamda.nju.edu.cn
Zhi-Hua Zhou zhouzh@lamda.nju.edu.cn

National Key Laboratory for Novel Software Technology, Nanjing University, China

Abstract

Multi-view learning has become a hot topic
during the past few years. In this paper,
we first characterize the sample complexity
of multi-view active learning. Under the α-
expansion assumption, we get an exponen-
tial improvement in the sample complexity
from usual Õ( 1

ε ) to Õ(log 1
ε ), requiring nei-

ther strong assumption on data distribution
such as the data is distributed uniformly over
the unit sphere in Rd nor strong assumption
on hypothesis class such as linear separators
through the origin. We also give an upper
bound of the error rate when the α-expansion
assumption does not hold. Then, we analyze
the combination of multi-view active learn-
ing and semi-supervised learning and get a
further improvement in the sample complex-
ity. Finally, we study the empirical behav-
ior of the two paradigms, which verifies that
the combination of multi-view active learning
and semi-supervised learning is efficient.

1. Introduction

Learning from labeled data is well-established in ma-
chine learning, but labeling the training data is time
consuming, sometimes may be very expensive since
it may need human efforts. In many machine learn-
ing applications, unlabeled data can often be obtained
abundantly and cheaply, so there has recently been
substantive interest in using large amount of unlabeled
data together with labeled data to achieve better learn-
ing performance.

There are two popular paradigms for using unla-
beled data to complement labeled data. One is semi-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

supervised learning. Some approaches use a genera-
tive model for the classifier and employ EM to model
the label estimation or parameter estimation process
(Dempster et al., 1977; Miller & Uyar, 1997; Nigam
et al., 2000); some approaches use the unlabeled data
to regularize the learning process in various ways, e.g.,
defining a graph on the data set and then enforcing
the label smoothness over the graph as a regularization
term (Belkin et al., 2001; Zhu et al., 2003; Zhou et al.,
2005); some approaches use the multi-view setting to
train learners and then let the learners to label unla-
beled examples (Blum & Mitchell, 1998; Goldman &
Zhou, 2000; Zhou & Li, 2005). The multi-view setting
is first formalized by Blum and Mitchell (1998), where
there are several disjoint subsets of features (each sub-
set is called as a view), each of which is sufficient for
learning the target concept. For example, the web
page classification task has two views, i.e., the text ap-
pearing on the page itself and the anchor text attached
to hyper-links pointing to this page (Blum & Mitchell,
1998); the speech recognition task also has two views,
i.e., sound and lip motion (de Sa & Ballard, 1998).

Another important paradigm for using unlabeled data
to complement labeled data, which is the focus of this
paper, is active learning (Cohn et al., 1994; Freund
et al., 1997; Tong & Koller, 2001; Melville & Mooney,
2004). In active learning, the learners actively ask the
user to label the most informative examples and hope
to learn a good classifier with as few labeled examples
as possible.

There have been many theoretical analyses on the sam-
ple complexity of single-view active learning. For some
simple learning tasks the sample complexity of active
learning can be O(log 1

ε ) which is exponentially im-
proved in contrast to O( 1

ε ) of passive learning taking
into account the desired accuracy bound ε. Unfortu-
nately, such an exponential improvement is not always
achievable in active learning. Dasgupta (2006) illus-
trated that if the hypothesis class H is linear separa-
tors in R2 and if the data distribution is some density

1152



On Multi-View Active Learning and the Combination with Semi-Supervised Learning

supported on the perimeter of the unit circle, there are
some target hypotheses in H for which Ω(1

ε ) labels are
needed to find a classifier with error rate less than ε, no
matter what active learning approach is used. Under
the strong assumptions that the hypothesis class is lin-
ear separators through the origin, that the data is dis-
tributed uniformly over the unit sphere in Rd, and that
the learning task is a realizable case (i.e., there exists a
hypothesis perfectly separating the data), the sample
complexity of active learning is Õ(d log 1

ε ) taking into
account the desired accuracy bound ε (Freund et al.,
1997; Dasgupta et al., 2005) 1. For some known data
distribution D and specific hypothesis class, Dasgupta
(2006) gave the coarse sample complexity bounds for
realizable active learning. The study of sample com-
plexity of active learning for realizable case without
strong assumptions on the data distribution and the
hypothesis class remains an open problem.

All the above results were obtained under the single-
view setting. The first algorithm for active learning
in multi-view setting is co-testing (Muslea et al., 2000;
Muslea et al., 2006). It focuses on the set of con-
tention points (i.e., unlabeled examples on which dif-
ferent views predict different labels) and asks the user
to label some of them. This is somewhat related to
Query-by-Committee (Freund et al., 1997) since co-
testing also uses more than one learners to identify
the most informative unlabeled examples to query, but
the typical Query-by-Committee works under a single-
view setting while co-testing exploits the multi-views
explicitly. It was reported that co-testing outperforms
existing active learners on a variety of real-world do-
mains such as wrapper induction, Web page classifica-
tion, advertisement removal and discourse tree pars-
ing. To the best of our knowledge, however, there
is no theoretical result on the sample complexity of
multi-view active learning.

In this paper, we first theoretically analyze the sample
complexity of multi-view active learning under the α-
expansion assumption which is first mentioned by Bal-
can et al. (2005) and prove that the sample complex-
ity of multi-view active learning can be exponentially
improved to Õ(log 1

ε ). A clear advantage is that we
do not use strong assumptions which were employed
in most previous studies, such as the hypothesis class
is linear separators through the origin and the data
is distributed uniformly over the unit sphere in Rd.
In case the α-expansion assumption does not hold, we
give an upper bound of the error rate. Second, we ana-
lyze the combination of multi-view active learning and

1The eO notation is used to hide factors log log( 1
ε
), log(d)

and log( 1
δ
)

semi-supervised learning and get an further improve-
ment in the sample complexity. Finally, we study the
empirical behavior of the two paradigms, which ver-
ifies that the combination of multi-view active learn-
ing and semi-supervised learning is more efficient than
pure multi-view active learning.

The rest of this paper is organized as follows. After in-
troducing some preliminaries in Section 2, we analyze
the sample complexity of multi-view active learning in
Section 3. Then we analyze the sample complexity
of the combination of multi-view active learning and
semi-supervised learning in Section 4 and study the
empirical behavior in Section 5. Finally we conclude
the paper in Section 6.

2. Preliminaries

In the multi-view setting, an example x is described
with several different disjoint sets of features. With-
out loss of generality, in this paper we only consider
the two-view setting for the sake of simplicity. Suppose
that the example space X = X1×X2 is with some un-
known distribution D, X1 and X2 are the two views,
and Y = {−1, 1} is the label space. Let c = (c1, c2)
be the underlying target concept, where c1 and c2 are
the underlying target concepts in the two views, re-
spectively. Suppose that the example space is consis-
tent, that is, there is no such example x = (x1, x2)
that c1(x1) 6= c2(x2) in X. Let H1 and H2 be the
hypothesis class in each view, respectively. For any
hj ∈ Hj and x = (x1, x2) we say xj ∈ hj if and only if
hj(xj) = cj(xj) (j = 1, 2). In this way any hypothesis
in Hj can be thought of as a subset of Xj .

In each round of iterative multi-view active learning,
the learners ask the user to label some unlabeled ex-
amples and add them into the labeled training data.
These newly labeled examples provide more informa-
tion about the data distribution. In this paper, we
consider the co-testing-like Paradigm 1 described in
Table 1. In Paradigm 1, the learners ask the user to
label some contention points to refine the classifiers. If
the confident set of each view is expanding by consider-
ing the other view together, Paradigm 1 may succeed.
Intuitively, we can use the α-expansion assumption to
analyze the process.

Suppose S1 ⊆ X1 and S2 ⊆ X2 denote the examples
that are correctly classified in each view, respectively.
Let Pr(S1∧S2) denote the probability mass on exam-
ples that are correctly classified in both views, while
Pr(S1⊕S2) denotes the probability mass on examples
that are correctly classified only in one view (i.e., ex-
amples disagreed by the two classifiers). Now we give
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Input:

Unlabeled data set U = {x1, x2, · · · , }, where each example xt is given as a pair (xt
1, x

t
2)

Process:

Ask the user to label m0 unlabeled examples drawn randomly from D to compose the labeled data set L
Iterate i = 0, 1, · · · , s

Train two classifiers hi
1 and hi

2 consistent with L in each view, respectively;

Apply hi
1 and hi

2 to the unlabeled data set U and find out the contention points set Qi;

Ask the user to label mi+1 unlabeled examples drawn randomly from Qi, then add them into L and

delete them from U .

Output:

hfinal = combine(hs
1, h

s
2)

Table 1. Paradigm 1: Multi-view active learning

our definition on α-expansion.

Definition 1 D is α-expansion if for any S1 ⊆ X1,
S2 ⊆ X2, we have

Pr(S1 ⊕ S2) ≥ α min[Pr(S1 ∧ S2), P r(S1 ∧ S2)].

We say that D is α-expanding with respect to hypothe-
sis class H1×H2 if the above holds for all S1 ∈ H1∩X1,
S2 ∈ H2∩X2 (here we denote by Hj∩Xj the set {h∩Xj

: h ∈ Hj} for j = 1, 2).

Note that Definition 1 on α-expansion is almost the
same as that in Balcan et al. (2005). To guarantee
the success of iterative co-training, they made several
assumptions such as that the learning algorithm used
in each view is confident about being positive and is
able to learn from positive examples only, and that
the distribution D+ over positive examples is expand-
ing. There are many concept classes, however, are not
learnable from positive examples only. Apparently, all
problems which satisfy the definition of Balcan et al.
(2005) also satisfy our definition.

We will make use of the following lemma when deriving
our sample complexity bound (Anthony & Bartlett,
1999).

Lemma 1 Let H be a set of functions from X to
{−1, 1} with finite VC-dimension V ≥ 1. Let P
be an arbitrary, but fixed probability distribution over
X × {−1, 1}. For any ε, δ > 0, if we draw a sample
from P of size N(ε, δ) = 1

ε (4V log( 1
ε ) + 2 log( 2

δ )), then
with probability 1 − δ, all hypotheses with error ≥ ε
are inconsistent with the data.

3. Sample Complexity of Multi-View
Active Learning

There are many strategies to combine the classifiers
in Paradigm 1, for example, weighted voting, majority

voting or winner-take-all (Muslea et al., 2006). In this
paper, we use the following simple combination scheme
for binary classification:

hi
com(x) =

{
hi

1(x1) if hi
1(x1) = hi

2(x2)
random guess if hi

1(x1) 6= hi
2(x2)

(1)

Assuming that the data distribution D is α-expanding
with respect to hypothesis class H1×H2, we will ana-
lyze how many labels the user should label to achieve
classifiers with error rate no larger than ε. We consider
the iterative process and let Si

1 ⊆ X1 and Si
2 ⊆ X2

where Si
1 and Si

2 corresponds to the classifiers hi
1 ∈ H1

and hi
2 ∈ H2 in the i-th round, respectively. The ini-

tial m0 unlabeled examples are randomly picked from
D and labeled by the user according to the target con-
cept c. Suppose m0 is sufficient for learning two clas-
sifiers h0

1 and h0
2 whose error rates are at most 1/4

(i.e., Pr(S0
1) ≥ 1 − 1/4 and Pr(S0

2) ≥ 1 − 1/4), and
thus Pr(S0

1 ∧ S0
2) ≥ 1/2. The α-expansion condition

suggests

Pr(S0
1 ⊕ S0

2) ≥ αPr(S0
1 ∧ S0

2).

In each round of Paradigm 1, the learners ask the user
to label some unlabeled examples according to the tar-
get concept c and add them into the labeled data set.
Then the two classifiers are refined. Some example x
in X might be predicted with different labels between
the i-th and (i + 1)-th round. Intuitively, in order to
get the classifiers improved in Paradigm 1, the reduced
size of confident set should be no more than the size of
contention set. Moreover, considering that there is no
noise in the labeled data since all the labels are given
by the user according to the target concept, and that
the amount of labeled training examples are monoton-
ically increasing, the asymptotic performance of PAC
learners increase, we can assume that

Pr(Si+1
j | Si

1 ∧ Si
2) ≤

αPr(Si
1 ⊕ Si

2)
16Pr(Si

1 ∧ Si
2)

(j ∈ {1, 2}) (2)
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Intuitively, by multiplying the denominator at the
right-hand to the left-hand (16 is used for a faster
convergence; it can be 2 for an easier understanding),
Eq. 2 implies that the total reduced size of confident
sets on both views after using the newly labeled con-
tention points is no more than the size of contention
set. Apparently, all problems that satisfy the assump-
tion of Balcan et al. (2005) also satisfy Eq. 2. Now we
give our main theorem.

Theorem 1 For data distribution D α-expanding with
respect to hypothesis class H1×H2, let ε and δ denote
the final desired accuracy and confidence parameters.
If s = d log α

8ε

log 1
C

e and mi = 16
α (4V log( 16

α )+2 log( 8(s+1)
δ ))

(i = 0, 1, · · · , s), Paradigm 1 will generate a classifier
with error rate no more than ε with probability 1− δ.

Here, V = max[V C(H1), V C(H2)] where V C(H) de-
notes the VC-dimension of the hypothesis class H and
constant C = α/4+1/α

1+1/α .

Proof. In Paradigm 1, we use Eq. 1 to combine
the two classifiers, thus the error rate of the combined
classifier hi

com is

errorhi
com

= Pr(Si
1 ∧ Si

2) +
1
2
Pr(Si

1 ⊕ Si
2)

≤ Pr(Si
1 ∧ Si

2) + Pr(Si
1 ⊕ Si

2)

= Pr(Si
1 ∧ Si

2)

With m0 = 16
α (4V log( 16

α ) + 2 log( 8(s+1)
δ )), using

Lemma 1 we have Pr(S0
1) ≤ α

16 and Pr(S0
2) ≤ α

16

with probability 1 − δ
4(s+1) . Generally, we have that

an arbitrary Si
j (j = 1, 2) being consistent with the

examples in L has an error rate at most α
16 with prob-

ability 1 − δ
4(s+1) . So we have Pr(Si

1 ∧ Si
2) ≥ 1 − α

8

with probability 1− δ
2(s+1) . Without loss of generality,

consider 0 < α ≤ 1 and therefore 1− α
8 > 1

2 . Thus the
α-expansion condition suggests

Pr(Si
1 ⊕ Si

2) ≥ αPr(Si
1 ∧ Si

2). (3)

For i ≥ 1, the learners ask the user to label mi

unlabeled examples drawn randomly from Si−1
1 ⊕

Si−1
2 according to the target concept c and obtain

two new classifiers Si
1 and Si

2. Similarly, if mi =
16
α (4V log( 16

α )+2 log( 8(s+1)
δ )), using Lemma 1 we have

Pr(Si
j | Si−1

1 ⊕ Si−1
2 ) ≤ α

16
(j ∈ {1, 2})

with probability 1− δ
4(s+1) . So we get that

Pr(Si
1 ∧ Si

2 | Si−1
1 ⊕ Si−1

2 ) ≤ α

8

with probability 1− δ
2(s+1) . Considering Eq. 2 we have

Pr(Si
1 ∧ Si

2 | Si−1
1 ∧ Si−1

2 ) ≤ αPr(Si−1
1 ⊕ Si−1

2 )
8Pr(Si−1

1 ∧ Si−1
2 )

.

Since

Pr(Si
1 ∧ Si

2) = Pr(Si
1 ∧ Si

2 | Si−1
1 ∧ Si−1

2 )

·Pr(Si−1
1 ∧ Si−1

2 )

+Pr(Si
1 ∧ Si

2 | Si−1
1 ⊕ Si−1

2 )
·Pr(Si−1

1 ⊕ Si−1
2 )

+Pr(Si
1 ∧ Si

2 | Si−1
1 ∧ Si−1

2 )
·Pr(Si−1

1 ∧ Si−1
2 ),

we have

Pr(Si
1 ∧ Si

2) ≤
α

4
Pr(Si−1

1 ⊕ Si−1
2 ) + Pr(Si−1

1 ∧ Si−1
2 ) .

From Eq. 3 we can get that

Pr(Si−1
1 ∧ Si−1

2 ) ≤ Pr(Si−1
1 ⊕ Si−1

2 )/α .

Thus, considering

Pr(Si−1
1 ∧ Si−1

2 ) = Pr(Si−1
1 ⊕ Si−1

2 ) + Pr(Si−1
1 ∧ Si−1

2 ),

we have

Pr(Si
1 ∧ Si

2)

Pr(Si−1
1 ∧ Si−1

2 )

≤
α
4 Pr(Si−1

1 ⊕ Si−1
2 ) + Pr(Si−1

1 ∧ Si−1
2 )

Pr(Si−1
1 ⊕ Si−1

2 ) + Pr(Si−1
1 ∧ Si−1

2 )

≤
α
4 Pr(Si−1

1 ⊕ Si−1
2 ) + Pr(Si−1

1 ⊕ Si−1
2 )/α

Pr(Si−1
1 ⊕ Si−1

2 ) + Pr(Si−1
1 ⊕ Si−1

2 )/α

=
α/4 + 1/α

1 + 1/α
.

Now we get

Pr(Ss
1 ∧ Ss

2) ≤ (
α/4 + 1/α

1 + 1/α
)sPr(S0

1 ∧ S0
2)

≤ α

8
(
α/4 + 1/α

1 + 1/α
)s .

So when s = d log α
8ε

log 1
C

e where C is a constant and
α/4+1/α
1+1/α < 1, we have Pr(Ss

1 ∧ Ss
2) ≤ ε. In other

words, we get a classifier hs
com whose error rate is no

more than ε with probability 1− δ. ¤

From Theorem 1 we know that we only need to label∑s
i=0 mi = O(log 1

ε log(log 1
ε )) examples to get a clas-

sifier with error rate no more than ε with probability
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1−δ. Thus, we achieve an exponential improvement in
sample complexity from Õ( 1

ε ) to Õ(log 1
ε ) as in Das-

gupta et al. (2005) and Balcan et al. (2007). Note
that we have not assumed a specific data distribution
and a specific hypothesis class which were assumed in
the studies of Dasgupta et al. (2005) and Balcan et al.
(2007). From the proof of Theorem 1 we can also know
that the proportion α

16 in Eq. 2 can be relaxed to close
to α

2 . Such relaxation will not affect the exponential
improvement, but will reduce the convergence speed.

Further, considering that not every data distribution
D is α-expanding with respect to hypothesis class
H1 × H2, we will give a coarse upper bound of the
generalization error for Paradigm 1 for cases when the
α-expansion assumption does not hold.

Let Pr(Si
1⊕Si

2) = αiPr(Si
1 ∧Si

2) (i = 0, 1, · · ·). If the
α-expansion assumption does not hold in Paradigm 1,
for any ε > 0 and any integer N > 0, the size of the set
{αi: i > N ∧ αi < ε} is infinite. We set a parameter
εc > 0 as the stop condition. When Pr(Si

1 ⊕ Si
2) is

less than εc, we terminate the iteration in Paradigm 1.
Now we make the definition on expanded region with
respect to εc.

Definition 2 Let γεc
denote the expanded region with

respect to εc in Paradigm 1,

γεc = Pr(S0
1 ∧ S0

2)− Pr(Si
1 ∧ Si

2),

where i = min{i : Pr(Si
1 ⊕ Si

2) < εc ∧ i ≥ 1}.

After i rounds the region in which both classifiers
wrongly predict becomes smaller and smaller, from
Pr(S0

1∧S0
2) to Pr(Si

1∧Si
2). This expanded region can

be thought of as an approximation of Σi
k=1Pr(Sk

1⊕Sk
2).

Theorem 2 When the α-expansion assumption does
not hold, set εc > 0 to terminate Paradigm 1. The
error rate of hi

com can be smaller than h0
com for γεc

+
1
2 (Pr(S0

1 ⊕ S0
2)− εc).

Proof. Considering errorhi
com

= Pr(Si
1 ∧

Si
2) + 1

2Pr(Si
1 ⊕ Si

2) and Pr(Si
1 ⊕ Si

2) < εc, we
have that errorh0

com
− errorhi

com
is larger than

γεc
+ 1

2 (Pr(S0
1 ⊕ S0

2)− εc). ¤

Theorem 2 implies that Paradigm 1 could not boost
the performance to arbitrarily high and gives a coarse
upper bound of the error rate, when the α-expansion
assumption does not hold. The improvement de-
pends on the expanded region γ and the disagree-
ment between the initial two classifiers. The larger

the expanded region γ, the better the improvement of
Paradigm 1. Theorem 2 can also be applied to one-
shot co-training (Balcan et al., 2005).

4. Sample Complexity of Combination
of Multi-View Active Learning and
Semi-Supervised Learning

We can try to reduce the sample complexity further
by combining multi-view active learning with semi-
supervised learning. Previously this has been tried
in some applications and led to good results (Zhou
et al., 2006), yet to the best of our knowledge, there
is no theoretical analysis which supports such argu-
ment. For computational simplicity, we consider the
following case in this section. Suppose that the hy-
pothesis class Hj is the subset of mappings from Xj

to [−1, 1] and y = sign(c(x)), c = (c1, c2) is the under-
lying target concept, where c1 and c2 is the underlying
target concept in each view, respectively. Let d(f, g)
denote the probability that the two classifiers f ∈ Hj

and g ∈ Hj predict different labels on an example xj

drawn randomly from Xj , then

d(f, g) = Prxj∈Xj

(
sign

(
f(xj)

) 6= sign
(
g(xj)

))
.

Suppose that for any f, g ∈ Hj , there exists some
constant L1 > 0 to hold that |f(xj) − g(xj)| ≤
L1 · d(f, g) · ‖xj‖2, where ‖xj‖2 denotes the 2-norm
of xj . Without loss of generality, suppose that there
exists some constant L2 > 0 to hold that ‖xj‖2 ≤ L2

for xj ∈ Xj (j = 1, 2). Now we have the following the-
orem for Paradigm 2 which combines multi-view active
learning with semi-supervised learning.

Theorem 3 For data distribution D α-expanding with
respect to hypothesis class H1×H2, let ε and δ denote
the final desired accuracy and confidence parameters.
If s = d log α

8ε

log 1
C

e, m0 = 1
L (4V log( 1

L )+2 log( 8(s+1)
δ )) and

mi = 16
α (4V log( 16

α ) + 2 log( 8(s+1)
δ )) (i = 1, 2, · · · ,),

Paradigm 2 will generate a classifier with error rate
no more than ε with probability 1− δ.

Here, V = max[V C(H1), V C(H2)] where V C(H) de-
notes the VC-dimension of the hypothesis class H, con-
stant C = α/4+1/α

1+1/α and constant L = min[ α
16 , 1

16L1L2
].

Proof. In Paradigm 2, we also use Eq. 1 to com-
bine the two classifiers. With m0 = 1

L (4V log( 1
L ) +

2 log( 8(s+1)
δ )) where constant L = min[ α

16 , 1
16L1L2

], us-

ing Lemma 1 we have Pr(S0
1) ≤ 1

L and Pr(S0
2) ≤ 1

L

with probability 1− δ
4(s+1) . Generally, we have that an
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Input:

Unlabeled data set U = {x1, x2, · · · , }, where each example xt is given as a pair (xt
1, x

t
2)

Threshold thr

Process:

Ask the user to label m0 unlabeled examples drawn randomly from D to compose the labeled data set L
Iterate i = 0, 1, · · · , s

Set counter ni+1
1 to 0. If D is expanding, set counter ni+1

2 to +∞; Otherwise, set counter ni+1
2 to 0;

Train two classifiers hi
1 and hi

2 consistent with L in each view, respectively;

Apply hi
1 and hi

2 to the unlabeled data set U and find out the contention points set Qi;

for k = 1, · · · , mi+1

Draw an example xk = (xk
1 , xk

2) randomly from Qi;

if |hi
1(x

k
1)| > thr then yk = sign(hi

1(x
k
1));

else if |hi
2(x

k
2)| > thr then yk = sign(hi

2(x
k
2));

else ask the user to label xk and ni+1
1 = ni+1

1 + 1;

Add (xk, yk) into L and delete it from U and Qi.

end for

for w = 1, 2, · · ·
if ni+1

2 ≥ mi+1 − ni+1
1 break;

Draw an example xw = (xw
1 , xw

2 ) randomly from U −Qi;

if |hi
1(x

w
1 )| > thr then yw = sign(hi

1(x
w
1 ));

else if |hi
2(x

w
2 )| > thr then yw = sign(hi

2(x
w
2 ));

else ask the user to label xw and ni+1
2 = ni+1

2 + 1;

Add (xw, yw) into L and delete it from U .

end for

Output:

hfinal = combine(hs
1, h

s
2)

Table 2. Paradigm 2: Combination of multi-view active learning and semi-supervised learning

arbitrary Si
j (j = 1, 2) being consistent with the exam-

ples in L has an error rate at most 1
L with probability

1− δ
4(s+1) . So, for any example x = (x1, x2),

|hi
j(xj)− cj(xj)| ≤ L1 · L2 · d(hi

j , cj) ≤ 1
16

.

We can set the threshold thr in Paradigm 2 to 1
16 . If

|hi
j(xj)| > 1

16 , hi
j and cj make the same prediction on

xj . When s = d log α
8ε

log 1
C

e, from the proof of Theorem

1 we have Pr(Ss
1 ∧ Ss

2) ≤ ε. Thus we get a classifier
hs

com whose error rate is no more than ε with proba-
bility 1− δ using Paradigm 2. ¤

The sample complexity of Paradigm 2 is m0+
∑s

i=1 ni
1,

which is much smaller than that of Paradigm 1. From
Theorem 3 we know that the sample complexity can
be further reduced by combining multi-view active
learning with semi-supervised learning, however, it
needs a stronger assumption on the hypothesis class
H1 × H2. If this assumption holds, in contrast to
Paradigm 1, when α-expansion does not hold, we can
query

∑s
i=1(mi − ni

1) more examples on which both
classifiers have small margin, which can help to reduce

the size of the region S1 ∧ S2.

5. Empirical Study

In this section we empirically study the performance of
the Paradigms 1 and 2 on a real-world data set, i.e., the
course data set (Blum & Mitchell, 1998). This data set
has two views (pages view and links view) and contains
1,051 examples each corresponds to a web page, and
the task is to predict whether an unseen web page is
a course page or not. There are 230 positive examples
(roughly 22%). We randomly use 25% data as the test
set and use the remaining 75% data as the unlabeled
set U in Tables 1 and 2. Then, we randomly draw 10
positive and 30 negative examples from U to generate
the initial m0 labeled examples.

In practice, the thr in Paradigm 2 can be determined
by cross validation on labeled examples. Here in our
experiments, for the ease of comparison, we do not set
thr and instead, we fix the number of examples to be
queried in both Paradigms. Thus, we can study their
performance under the same number of queries. In
detail, in the i-th round, Paradigm 1 picks out two
contention points randomly to query; while Paradigm
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Figure 1. Comparison of the performances

2 picks out the example with the smallest absolute sum
of the two classifiers’ outputs from Qi and U −Qi re-
spectively to query, and picks out the example with
the largest absolute sum of the two classifiers’ out-
puts from Qi and U − Qi respectively to label as
sign

(
hi

1(x1) + hi
2(x2)

)
. That is, the two examples to

be queried in Paradigm 2 are arg minx∈Qi

(|hi
1(x1) +

hi
2(x2)

∣∣) and arg minx∈U−Qi

(|hi
1(x1) + hi

2(x2)
∣∣), while

the two examples Paradigm 2 labels for itself by
semi-supervised learning are arg maxx∈Qi

(|hi
1(x1) +

hi
2(x2)

∣∣) and arg maxx∈U−Qi

(|hi
1(x1) + hi

2(x2)
∣∣). We

use Random Sampling as the baseline and implement
the classifiers with SMO in WEKA (Witten & Frank,
2005). The experiments are repeated for 20 runs and
Figure 1 plots the average error rates of the three
methods against the number of examples that have
been queried.

It can be found from Figure 1 that with the same
number of queried examples, although there are some
fluctuation, the performance of Paradigm 1 is gener-
ally better than that of Random Sampling, while the
performance of Paradigm 2 is better than that of the
others. In particular, the advantage of Paradigm 2
becomes more prominent as the number of queries
increases. This is not difficult to understand since
with more labeled data the learners become stronger
and thus the labels obtained from the semi-supervised
learning process become more helpful.

Overall, the empirical study verifies that comparing
with pure active learning, the combination of multi-
view active learning and semi-supervised learning can
reduce the sample complexity.

6. Conclusion

In this paper, we first characterize the sample complex-
ity of multi-view active learning and get an exponential
improvement in the sample complexity from Õ( 1

ε ) to

Õ(log 1
ε ). The α-expansion assumption we employed

is weaker than assumptions taken by previous theoret-
ical studies on active learning, such as that the data is
distributed uniformly over the unit sphere in Rd and
that the hypothesis class is linear separators through
the origin. We also give an upper bound of the er-
ror rate for cases where the α-expansion assumption
does not hold. Then, we analyze the combination of
multi-view active learning with semi-supervised learn-
ing and get that such a combination can reduce the
sample complexity further, which is verified by an em-
pirical study. This provides an explanation to that
why the method described in (Zhou et al., 2006) can
lead to good results.

Our work is the first theoretical analysis on the sam-
ple complexity of realizable multi-view active learning.
Recently, non-realizable active learning, where there
does not exist a hypothesis perfectly separating the
data, starts to attract attention (Balcan et al., 2006;
Balcan et al., 2007; Dasgupta et al., 2008). Extending
our work to non-realizable multi-view active learning
is a future work.
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Abstract

In this paper we study how to improve near-
est neighbor classification by learning a Ma-
halanobis distance metric. We build on a re-
cently proposed framework for distance met-
ric learning known as large margin nearest
neighbor (LMNN) classification. Our paper
makes three contributions. First, we describe
a highly efficient solver for the particular
instance of semidefinite programming that
arises in LMNN classification; our solver can
handle problems with billions of large margin
constraints in a few hours. Second, we show
how to reduce both training and testing times
using metric ball trees; the speedups from
ball trees are further magnified by learning
low dimensional representations of the input
space. Third, we show how to learn differ-
ent Mahalanobis distance metrics in different
parts of the input space. For large data sets,
the use of locally adaptive distance metrics
leads to even lower error rates.

1. Introduction

Many algorithms for pattern classification and ma-
chine learning depend on computing distances in a
multidimensional input space. Often, these distances
are computed using a Euclidean distance metric—a
choice which has both the advantages of simplicity and
generality. Notwithstanding these advantages, though,
the Euclidean distance metric is not very well adapted
to most problems in pattern classification.

Viewing the Euclidean distance metric as overly sim-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

plistic, many researchers have begun to ask how to
learn or adapt the distance metric itself in order to
achieve better results (Xing et al., 2002; Chopra et al.,
2005; Frome et al., 2007). Distance metric learning
is an emerging area of statistical learning in which
the goal is to induce a more powerful distance met-
ric from labeled examples. The simplest instance of
this problem arises in the context of k-nearest neigh-
bor (kNN) classification using Mahalanobis distances.
Mahalanobis distances are computed by linearly trans-
forming the input space, then computing Euclidean
distances in the transformed space. A well-chosen lin-
ear transformation can improve kNN classification by
decorrelating and reweighting elements of the feature
vector. In fact, significant improvements have been
observed within several different frameworks for this
problem, including neighborhood components analy-
sis (Goldberger et al., 2005), large margin kNN clas-
sification (Weinberger et al., 2006), and information-
theoretic metric learning (Davis et al., 2007).

These studies have established the general utility of
distance metric learning for kNN classification. How-
ever, further work is required to explore its promise
in more difficult regimes. In particular, larger data
sets raise new and important challenges in scalability.
They also present the opportunity to learn more adap-
tive and sophisticated distance metrics.

In this paper, we study these issues as they arise in
the recently proposed framework of large margin near-
est neighbor (LMNN) classification (Weinberger et al.,
2006). In this framework, a Mahalanobis distance met-
ric is trained with the goal that the k-nearest neigh-
bors of each example belong to the same class while
examples from different classes are separated by a large
margin. Simple in concept, useful in practice, the
ideas behind LMNN classification have also inspired
other related work in machine learning and computer
vision (Torresani & Lee, 2007; Frome et al., 2007).
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The role of the margin in LMNN classification is in-
spired by its role in support vector machines (SVMs).
Not surprisingly, given these roots, LMNN classifica-
tion also inherits various strengths and weaknesses of
SVMs (Schölkopf & Smola, 2002). For example, as in
SVMs, the training procedure in LMNN classification
reduces to a convex optimization based on the hinge
loss. However, as described in section 2, näıve imple-
mentations of this optimization do not scale well to
larger data sets.

Addressing the challenges and opportunities raised by
larger data sets, this paper makes three contributions.
First, we describe how to optimize the training pro-
cedure for LMNN classification so that it can readily
handle data sets with tens of thousands of training
examples. In order to scale to this regime, we have
implemented a special-purpose solver for the particu-
lar instance of semidefinite programming that arises
in LMNN classification. In section 3, we describe the
details of this solver, which we have used to tackle
problems involving billions of large margin constraints.
To our knowledge, problems of this size have yet to
be tackled by other recently proposed methods (Gold-
berger et al., 2005; Davis et al., 2007) for learning
Mahalanobis distance metrics.

As the second contribution of this paper, we explore
the use of metric ball trees (Liu et al., 2005) for LMNN
classification. These data structures have been widely
used to accelerate nearest neighbor search. In sec-
tion 4, we show how similar data structures can be
used for faster training and testing in LMNN classi-
fication. Ball trees are known to work best in input
spaces of low to moderate dimensionality. Mindful of
this regime, we also show how to modify the optimiza-
tion in LMNN so that it learns a low-rank Mahalanobis
distance metric. With this modification, the metric
can be viewed as projecting the original inputs into a
lower dimensional space, yielding further speedups.

As the third contribution of this paper, we describe
an important extension to the original framework for
LMNN classification. Specifically, in section 5, we
show how to learn different Mahalanobis distance met-
rics for different parts of the input space. The novelty
of our approach lies in learning a collection of different
local metrics to maximize the margin of correct kNN
classification. The promise of this approach is sug-
gested by recent, related work in computer vision that
has achieved state-of-the-art results on image classifi-
cation (Frome et al., 2007). Our particular approach
begins by partitioning the training data into disjoint
clusters using class labels or unsupervised methods.
We then learn a Mahalanobis distance metric for each

cluster. While the training procedure couples the dis-
tance metrics in different clusters, the optimization re-
mains a convex problem in semidefinite programming.
The globally coupled training of these metrics also
distinguishes our approach from earlier work in adap-
tive distance metrics for kNN classification (Hastie &
Tibshirani, 1996). To our knowledge, our approach
yields the best kNN test error rate on the extensively
benchmarked MNIST data set of handwritten digits
that does not incorporate domain-specific prior knowl-
edge (LeCun et al., 1998; Simard et al., 1993). Thus,
our results show that we can exploit large data sets to
learn more powerful and adaptive distance metrics for
kNN classification.

2. Background

Of the many settings for distance metric learning, the
simplest instance of the problem arises in the con-
text of kNN classification using Mahalanobis distances.
A Mahalanobis distance metric computes the squared
distances between two points ~xi and ~xj as:

d2
M

(~xi, ~xj) = (~xi − ~xj)
⊤M(~xi − ~xj), (1)

where M � 0 is a positive semidefinite matrix. When
M is equal to the identity matrix, eq. (1) reduces to the
Euclidean distance metric. In distance metric learning,
the goal is to discover a matrix M that leads to lower
kNN error rates than the Euclidean distance metric.

Here we briefly review how Mahalanobis distance met-
rics are learned for LMNN classification (Weinberger
et al., 2006). Let the training data consist of n la-
beled examples {(~xi, yi)}n

i=1 where ~xi ∈ Rd and yi ∈
{1, . . . , c}, where c is the number of classes. For LMNN
classification, the training procedure has two steps.
The first step identifies a set of k similarly labeled
target neighbors for each input ~xi. Target neighbors
are selected by using prior knowledge (if available) or
by simply computing the k nearest (similarly labeled)
neighbors using Euclidean distance. We use the nota-
tion j  i to indicate that ~xj is a target neighbor of ~xi.
The second step adapts the Mahalanobis distance met-
ric so that these target neighbors are closer to ~xi than
all other differently labeled inputs. The Mahalanobis
distance metric is estimated by solving a problem in
semidefinite programming. Distance metrics obtained
in this way were observed to yield consistent and sig-
nificant improvements in kNN error rates.

The semidefinite program in LMNN classification
arises from an objective function which balances two
terms. The first term penalizes large distances be-
tween inputs and their target neighbors. The second
term penalizes small distances between differently la-
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beled inputs; specifically, a penalty is incurred if these
distances do not exceed (by a finite margin) the dis-
tances to the target neighbors of these inputs. The
terms in the objective function can be made precise
with further notation. Let yij ∈{0, 1} indicate whether
the inputs ~xi and ~xj have the same class label. Also,
let ξijl ≥ 0 denote the amount by which a differently
labeled input ~xl invades the “perimeter” around input
~xi defined by its target neighbor ~xj . The Mahalanobis
distance metric M is obtained by solving the following
semidefinite program:

Minimize
∑

j i

[
d2
M

(~xi, ~xj) + µ
∑

l(1 − yil)ξijl

]

subject to:

(a) d2
M

(~xi, ~xl) − d2
M

(~xi, ~xj) ≥ 1 − ξijl

(b) ξijl ≥ 0

(c) M � 0.

The constant µ defines the trade-off between the two
terms in the objective function; in our experiments, we
set µ = 1. The constraints of type (a) encourage in-
puts (~xi) to be at least one unit closer to their k target
neighbors (~xj) than to any other differently labeled in-
put (~xl). When differently labeled inputs ~xl invade the
local neighborhood of ~xi, we refer to them as impos-
tors. Impostors generate positive slack variables ξijl

which are penalized in the second term of the objective
function. The constraints of type (b) enforce nonneg-
ativity of the slack variables, and the constraint (c)

enforces that M is positive semidefinite, thus defining
a valid (pseudo)metric. Noting that the squared Ma-
halanobis distances d2

M
(~xi, ~xj) are linear in the matrix

M, the above optimization is easily recognized as an
semidefinite program.

3. Solver

The semidefinite program in the previous section grows
in complexity with the number of training examples
(n), the number of target neighbors (k), and the di-
mensionality of the input space (d). In particular,
the objective function is optimized with respect to
O(kn2) large margin constraints of type (a) and (b),
while the Mahalanobis distance metric M itself is a
d × d matrix. Thus, for even moderately large and/or
high dimensional data sets, the required optimization
(though convex) cannot be solved by standard off-the-
shelf packages (Borchers, 1999).

In order to tackle larger problems in LMNN classifica-
tion, we implemented our own special-purpose solver.
Our solver was designed to exploit the particular struc-
ture of the semidefinite program in the previous sec-
tion. The solver iteratively re-estimates the Maha-

lanobis distance metric M to minimize the objective
function for LMNN classification. The amount of com-
putation is minimized by careful book-keeping from
one iteration to the next. The speed-ups from these
optimizations enabled us to work comfortably on data
sets with up to n=60, 000 training examples.

Our solver works by eliminating the slack variables ξijl

from the semidefinite program for LMNN classifica-
tion, then minimizing the resulting objective function
by sub-gradient methods. The slack variables are elim-
inated by folding the constraints (a) and (b) into the
objective function as a sum of “hinge” losses. The
hinge function is defined as [z]+ = z if z > 0 and
[z]+ = 0 if z < 0. In terms of this hinge function, we
can express ξijl as a function of the matrix M:

ξijl(M) =
[
1 + d2

M
(~xi, ~xj) − d2

M
(~xi, ~xl)

]

+
(2)

Finally, writing the objective function only in terms of
the matrix M, we obtain:

ε(M) =
∑

j i

[

d2
M

(~xi, ~xj) + µ
∑

l

(1 − yil)ξijl(M)

]

.

(3)
This objective function is not differentiable due to the
hinge losses that appear in eq. (2). Nevertheless, be-
cause it is convex, we can compute its sub-gradient and
use standard descent algorithms to find its minimum.
At each iteration of our solver, the optimization takes
a step along the sub-gradient to reduce the objective
function, then projects the matrix M back onto the
cone of positive semidefinite matrices. Iterative meth-
ods of this form are known to converge to the correct
solution, provided that the gradient step-size is suffi-
ciently small (Boyd & Vandenberghe, 2004).

The gradient computation can be done most efficiently
by careful book-keeping from one iteration to the next.
As simplifying notation, let Cij =(~xi − ~xj)(~xi − ~xj)

⊤.
In terms of this notation, we can express the squared
Mahalanobis distances in eq. (8) as:

dM(~xi, ~xj) = tr(CijM). (4)

To evaluate the gradient, we denote the matrix M at
the tth iteration as Mt. At each iteration, we also
define a set N t of triplet indices such that (i, j, l) ∈ N t

if and only if the triplet’s corresponding slack variable
exceeds zero: ξijl(M

t) > 0. With this notation, we can
write the gradient Gt = ∂ε

∂M

∣
∣
Mt at the tth iteration as:

Gt =
∑

j i

Cij + µ
∑

(i,j,l)∈N t

(Cij − Cil) . (5)

Computing the gradient requires computing the outer
products in Cij ; it thus scales quadratically in the
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input dimensionality. As the set N t is potentially
large, a näıve computation of the gradient would be
extremely expensive. However, we can exploit the fact
that the gradient contribution from each active triplet
(i, j, l) does not depend on the degree of its margin
violation. Thus, the changes in the gradient from one
iteration to the next are determined entirely by the
differences between the sets N t and N t+1. Using this
fact, we can derive an extremely efficient update that
relates the gradient at one iteration to the gradient at
the previous one. The update subtracts the contribu-
tions from triples that are no longer active and adds
the contributions from those that just became active:

Gt+1 = Gt − µ
∑

(i,j,l)∈N t−N t+1

(Cij − Cil) + µ
∑

(i,j,l)∈N t+1−N t

(Cij − Cil)

(6)
For small gradient step sizes, the set N t changes very
little from one iteration to the next. In this case, the
right hand side of eq. (6) can be computed very fast.

To further accelerate the solver, we adopt an active
set method. This method is used to monitor the large
margin constraints that are actually violated. Note
that computing the set N t at each iteration requires
checking every triplet (i, j, l) with j  i for a po-
tential margin violation. This computation scales as
O(nd2 + kn2d), making it impractical for large data
sets. To avoid this computational burden, we observe
that the great majority of triples do not incur mar-
gin violations: in particular, for each training exam-
ple, only a very small fraction of differently labeled
examples typically lie nearby in the input space. Con-
sequently, a useful approximation is to check only a
subset of likely triples for margin violations per gra-
dient computation and only occasionally perform the
full computation. We set this active subset to the list
of all triples that have ever violated the margin, ie
⋃t−1

i=1 N i. When the optimization converges, we verify
that the working set N t does contain all active triples
that incur margin violations. This final check is needed
to ensure convergence to the correct minimum. If the
check is not satisfied, the optimization continues with
the newly expanded active set.

Table 1 shows how quickly the solver works on prob-
lems of different sizes. The results in this table were
generated by learning a Mahalanobis distance metric
on the MNIST data set of 28×28 grayscale handwrit-
ten digits (LeCun et al., 1998). The digits were pre-
processed by principal component analysis (PCA) to
reduce their dimensionality from d = 784 to d = 169.
We experimented by learning a distance metric from
different subsets of the training examples. The experi-
ments were performed on a standard desktop machine

N time |active set| |total set| train error test error

60 9s 844 3.2K 0% 29.37%

600 37s 6169 323K 0% 10.79%

6000 4m 50345 32M 0.48% 3.13%

60000 3h25m 540037 3.2B 0% 1.72%

Table 1. Statistics of the solver on subsets of the data set
of MNIST handwritten digits. See text for details.

with a 2.0 GHz dual core 2 processor. For each ex-
periment, the table shows the number of training ex-
amples, the CPU time to converge, the number of ac-
tive constraints, the total number of constraints, and
the kNN test error (with k = 3). Note that for the
full MNIST training set, the semidefinite program has
over three billion large margin constraints. Neverthe-
less, the active set method converges in less than four
hours—from a Euclidean distance metric with 2.33%
test error to a Mahalanobis distance metric with 1.72%
test error.

4. Tree-Based Search

Nearest neighbor search can be accelerated by storing
training examples in hierarchical data structures (Liu
et al., 2005). These data structures can also be used to
reduce the training and test times for LMNN classifi-
cation. In this section, we describe how these speedups
are obtained using metric ball trees.

4.1. Ball trees

We begin by reviewing the use of ball trees (Liu et al.,
2005) for fast kNN search. Ball trees recursively par-
tition the training inputs by projecting them onto di-
rections of large variance, then splitting the data on
the mean or median of these projected values. Each
subset of data obtained in this way defines a hyper-
sphere (or “ball”) in the multidimensional input space
that encloses its training inputs. The distance to such
a hypersphere can be easily computed for any test in-
put; moreover, this distance provides a lower bound on
the test input’s distance to any of the enclosed train-
ing inputs. This bound is illustrated in Fig. 1. Let S

be the set of training inputs inside a specific ball with
radius r. The distance from a test input ~xt to any
training input ~xi ∈ S is bounded from below by:

∀~xi ∈ S ‖~xt − ~xi‖ ≥ max(‖~xt − ~c‖2 − r, 0). (7)

These bounds can be exploited in a tree-based search
for nearest neighbors. In particular, if the distance
to the currently kth closest input ~xj is smaller than
the bound from eq. (7), then all inputs inside the ball
S can be pruned away. This pruning of unexplored
subtrees can significantly accelerate kNN search. The
same basic strategy can also be applied to kNN search
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!xt
!c r ‖!xt − !c‖ − r

‖!xt − !xi‖!xi

!xj

‖!xt − !xj‖

Figure 1. How ball trees work: for any input ~xi ∈ S, the
distance ‖~xt − ~xi‖ is bounded from below by eq. (7) . If a
training example ~xj is known to be closer to ~xt, then the
inputs inside the ball can be ruled out as nearest neighbors.

under a Mahalanobis distance metric.

4.2. Speedups

We first experimented with ball trees to reduce the test
times for LMNN classification. In our experiments, we
observed a factor of 3x speed-up for 40-dimensional
data and a factor of 15x speedup for 15-dimensional
data. Note that these speedups were measured rel-
ative to a highly optimized baseline implementation
of kNN search. In particular, our baseline implemen-
tation rotated the input space to align its coordinate
axes with the principal components of the data; the
coordinate axes were also sorted in decreasing order of
variance. In this rotated space, distance computations
were terminated as soon as any partially accumulated
results (from leading principal components) exceeded
the currently smallest k distances from the kNN search
in progress.

We also experimented with ball trees to reduce the
training times for LMNN classification. To reduce
training times, we integrated ball trees into our
special-purpose solver. Specifically, ball trees were
used to accelerate the search for so-called “impostors”.
Recall that for each training example ~xi and for each
of its similarly labeled target neighbors ~xj , the im-
postors consist of all differently labeled examples ~xl

with dM (~xi, ~xl)
2 ≤ dM (~xi, ~xj)

2 +1. The search for im-
postors dominates the computation time in the train-
ing procedure for LMNN classification. To reduce the
amount of computation, the solver described in sec-
tion 3 maintains an active list of previous margin viola-
tions. Nevertheless, the overall computation still scales
as O(n2d), which can be quite expensive. Note that
we only need to search for impostors among training
examples with different class labels. To speed up train-
ing, we built one ball tree for the training examples in
each class and used them to search for impostors (as
the ball-tree creation time is negligible in comparison
with the impostor search, we re-built it in every iter-
ation). We observed the ball trees to yield speedups

ranging from a factor of 1.9x with 10-dimensional data
to a factor of 1.2x with 100 dimensional data.

4.3. Dimensionality reduction

Across all our experiments, we observed that the gains
from ball trees diminished rapidly with the dimen-
sionality of the input space. This observation is con-
sistent with previous studies of ball trees and NN
search. When the data is high dimensional, NN search
is plagued by the so-called “curse of dimensionality”.
In particular, distances in high dimensions tend to be
more uniform, thereby reducing the opportunities for
pruning large subtrees.

The curse of dimensionality is often addressed in ball
trees by projecting the stored training inputs into a
lower dimensional space. The most commonly used
methods for dimensionality reduction are random pro-
jections and PCA. Despite their widespread use, how-
ever, neither of these methods is especially geared to
preserve (or improve) the accuracy of kNN classifica-
tion.

We experimented with two methods for dimensionality
reduction in the particular context of LMNN classifica-
tion. Both methods were based on learning a low-rank
Mahalanobis distance metric. Such a metric can be
viewed as projecting the original inputs into a lower di-
mensional space. In our first approach, we performed
a singular value decomposition (SVD) on the full rank
solution to the semidefinite program in section 2. The
full rank solution for the distance metric was then re-
placed by a low rank approximation based on its lead-
ing eigenvectors. We call this approach LMNN-SVD.
In our second approach, we followed a suggestion from
previous work on LMNN classification (Torresani &
Lee, 2007). In this approach, we explicitly parame-
terized the Mahalanobis distance metric as a low-rank
matrix, writing M = L⊤L, where L is a rectangular
matrix. To obtain the distance metric, we optimized
the same objective function as before, but now in terms
of the explicitly low-rank linear transformation L. The
optimization over L is not convex unlike the original
optimization over M, but a (possibly local) minimum
can be computed by standard gradient-based methods.
We call this approach LMNN-RECT.

Fig. 2 shows the results of kNN classification from both
these methods on the MNIST data set of handwritten
digits. For these experiments, the raw MNIST im-
ages (of size 28× 28) were first projected onto their
350 leading principal components. The training pro-
cedure for LMNN-SVD optimized a full-rank distance
metric in this 350 dimensional space, then extracted a
low-rank distance metric from its leading eigenvectors.
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Figure 2. Graph of kNN error rate (with k = 3) on different
low dimensional representations of the MNIST data set.

The training procedures for LMNN-RECT optimized
a low-rank rectangular matrix of size r × 350, where r

varied from 15 to 40. Also shown in the figure are
the results from further dimensionality reduction us-
ing PCA, as well as the baseline kNN error rate in
the original (high dimensional) space of raw images.
The speedup from ball trees is shown at the top of the
graph. The amount of speedup depends significantly
on the amount of dimensionality reduction, but very
little on the particular method of dimensionality re-
duction. Of the three methods compared in the figure,
LMNN-RECT is the most effective, improving signif-
icantly over baseline kNN classification while operat-
ing in a much lower dimensional space. Overall, these
results show that aggressive dimensionality reduction
can be combined with distance metric learning.

5. Multiple Metrics

The originally proposed framework for LMNN clas-
sification has one clear limitation: the same Maha-
lanobis distance metric is used to compute distances
everywhere in the input space. Writing the metric
as M = L⊤L, we see that Mahalanobis distances are
equivalent to Euclidean distances after a global lin-
ear transformation ~x → L~x of the input space. Such a
transformation cannot adapt to nonlinear variabilities
in the training data.

In this section, we describe how to learn different Ma-
halanobis distance metrics in different parts of the in-
put space. We begin by simply describing how such a
collection of local distance metrics is used at test time.
Assume that the data set is divided into p disjoint par-
titions {Pα}p

α=1, such that Pα∩Pβ = {} for any α 6= β

and
⋃

α Pα = {~xi}n
i=1. Also assume that each parti-

tion Pα has its own Mahalanobis distance metric Mα

for use in kNN classification. Given a test vector ~xt,
we compute its squared distance to a training input ~xi

in partition αi as:

d2
Mαi

(~xt, ~xi) = (~xt − ~xi)
⊤Mαi

(~xt − ~xi). (8)

These distances are then sorted as usual to determine
nearest neighbors and label the test input. Note, how-
ever, how different distance metrics are used for train-
ing inputs in different partitions.

We can also use these metrics to compute distances
between training inputs, with one important caveat.
Note that for inputs belonging to different partitions,
the distance between them will depend on the par-
ticular metric used to compute it. This asymmetry
does not present any inherent difficulty since, in fact,
the dissimilarity measure in kNN classification is not
required to be symmetric. Thus, even on the train-
ing set, we can use multiple metrics to measure dis-
tances and compute meaningful leave-one-out kNN er-
ror rates.

5.1. Learning algorithm

In this section we describe how to learn multiple Ma-
halanobis distance metrics for LMNN classification.
Each of these metrics is associated with a particular
cluster of training examples. To derive these clusters,
we experimented with both unsupervised methods,
such as the k-means algorithm, and fully supervised
methods, in which each cluster contains the training
examples belonging to a particular class.

Before providing details of the learning algorithm, we
make the following important observation. Multiple
Mahalanobis distance metrics for LMNN classification
cannot be learned in a decoupled fashion—that is, by
solving a collection of simpler, independent problems
of the type already considered (e.g., one within each
partition of training examples). Rather, the metrics
must be learned in a coordinated fashion so that the
distances from different metrics can be meaningfully
compared for kNN classification. In our framework,
such comparisons arise whenever an unlabeled test ex-
ample has potential nearest neighbors in two or more
different clusters of training examples.

Our learning algorithm for multiple local distance met-
rics {Mα}p

α=1 generalizes the semidefinite program for
ordinary LMNN classification in section 2. First, we
modify the objective function so that the distances
to target neighbors ~xj are measured under the met-
ric Mαj

. Next, we modify the large margin constraints
in (a) so that the distances to potential impostors ~xl

are measured under the metric Mαl
. Finally, we re-

place the single positive semidefinite constraint in (c)
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Figure 3. Visualization of multiple local distance metrics
for MNIST handwritten digits. See text for details.

by multiple such constraints, one for each local met-
ric Mα. Taken together, these steps lead to the new
semidefinite program:

Minimize
∑

j i

[

d2
Mαj

(~xi, ~xj) + µ
∑

l(1 − yil)ξijl

]

subject to:

(a) d2
Mαl

(~xi, ~xl) − d2
Mαj

(~xi, ~xj) ≥ 1 − ξijl

(b) ξijl ≥ 0

(c) Mα � 0.

Note how the new constraints in (a) couple the dif-
ferent Mahalanobis distance metrics. By jointly op-
timizing these metrics to minimize a single objective
function, we ensure that the distances they compute
can be meaningfully compared for kNN classification.

5.2. Results

We evaluated the performance of this approach on five
publicly available data sets: the MNIST data set1

of handwritten digits (n = 60000, c = 10), the 20-
Newsgroups data set2 of text messages (n = 18827,
c = 20), the Letters data set3 of distorted computer
fonts (n=14000, c=26), the Isolet data set4 of spoken
letters (n=6238, c=26), and the YaleFaces5 data set
of face images (n = 1690, c = 38). The data sets were
preprocessed by PCA to reduce their dimensionality.
The amount of dimensionality reduction varied with
each experiment, as discussed below.

To start, we sought to visualize the multiple metrics
learned in a simple experiment on MNIST handwritten

1http://yann.lecun.com/exdb/mnist/
2http://people.csail.mit.edu/jrennie/20Newsgroups
3http://www.ics.uci.edu/∼mlearn/databases/letter-

recognition/letter-recognition.names
4http://archive.ics.uci.edu/ml/
5http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
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Figure 4. Test kNN error rates on the Isolet and MNIST
data sets as a function of the number of distance metrics.

digits of zeros, ones, twos, and fours. For ease of visu-
alization, we worked with only the leading two princi-
pal components of the MNIST data set. Fig. 3 shows
these two dimensional inputs, color-coded by class la-
bel. With these easily visualized inputs, we minimized
the objective function in section 5.1 to learn a special-
ized distance metric for each type of handwritten digit.
The ellipsoids in the plot reveal the directions ampli-
fied by the local distance metric of each digit class.
Notably, each distance metric learns to amplify the di-
rection perpendicular to the decision boundary for the
nearest, competing class of digits.

Our next experiments examined the performance of
LMNN classification as a function of the number of dis-
tance metrics. In these experiments, we used PCA to
reduce the input dimensionality to d=50; we also only
worked with a subset of n = 10000 training examples
of MNIST handwritten digits. To avoid overfitting,
we used an “early stopping” approach while monitor-
ing the kNN error rates on a held-out validation set
consisting of 30% of the training data.

Fig. 4 shows the test kNN error rates on the Isolet
and MNIST data sets as a function of the number of
distance metrics. In these experiments, we explored
both unsupervised and supervised methods for parti-
tioning the training inputs as a precursor to learning
local distance metrics. In the unsupervised setting, the
training examples were partitioned by k-means cluster-
ing, with the number of clusters ranging from 1 to 30
(just 1 cluster is identical to single-matrix LMNN). As
k-means clustering is prone to local minima, we aver-
aged these results over 100 runs. The figure shows the
average test error rates in red, as well as their stan-
dard deviations (via error bars). In the supervised set-
ting, the training examples were partitioned by their
class labels, resulting in the same number of clusters
as classes. The test error rates in these experiments
are shown as blue crosses. In both the unsupervised
and supervised settings, the test error rates decreased
with the use of multiple metrics. However, the im-
provements were far greater in the supervised setting.
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Figure 5. The classification train- and testerror rates with
one metric (LMNN) and multiple metrics. The value of k

was set by cross validation.

Finally, our last experiments explored the improve-
ment in kNN error rates when one distance metric
was learned for the training examples in each class. In
these experiments, we used the full number of train-
ing examples for each data set. In addition, we used
PCA to project the training inputs into a lower di-
mensional subspace accounting for at least 95% of the
data’s total variance. Fig. 5 shows generally consis-
tent improvement in training and test kNN error rates,
though overfitting is an issue, especially on the 20-
NewsGroups and YaleFaces data sets. This overfitting
is to be expected from the relatively large number of
classes and high input dimensionality of these data
sets: the number of model parameters in these exper-
iments grows linearly in the former and quadratically
in the latter. On these data sets, only the use of a
validation set prevents the training error from vanish-
ing completely while the test error skyrockets. On the
other hand, a significant improvement in the test er-
ror rate is observed on the largest data set, that of
MNIST handwritten digits. On this data set, multiple
distance metrics yield a 1.18% test error rate—a highly
competitive result for a method that does not take into
account prior domain knowledge (LeCun et al., 1998).

6. Discussion

In this paper, we have extended the original framework
for LMNN classification in several important ways: by
describing a solver that scales well to larger data sets,
by integrating metric ball trees into the training and
testing procedures, by exploring the use of dimension-
ality reduction for further speedups, and by showing
how to train different Mahalanobis distance metrics
in different parts of the input space. These exten-
sions should prove useful in many applications of kNN
classification. More generally, we also hope they spur
further work on problems in distance metric learning
and large-scale semidefinite programming, both areas
of great interest in the larger field of machine learning.
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Abstract

We show how nonlinear embedding algo-
rithms popular for use with shallow semi-
supervised learning techniques such as ker-
nel methods can be applied to deep multi-
layer architectures, either as a regularizer at
the output layer, or on each layer of the ar-
chitecture. This provides a simple alterna-
tive to existing approaches to deep learning
whilst yielding competitive error rates com-
pared to those methods, and existing shallow
semi-supervised techniques.

1. Introduction

Embedding data into a lower dimensional space or the
related task of clustering are unsupervised dimension-
ality reduction techniques that have been intensively
studied. Most algorithms are developed with the moti-
vation of producing a useful analysis and visualization
tool.

Recently, the field of semi-supervised learning
(Chapelle et al., 2006), which has the goal of improv-
ing generalization on supervised tasks using unlabeled
data, has made use of many of these techniques. For
example, researchers have used nonlinear embedding
or cluster representations as features for a supervised
classifier, with improved results.

Most of these architectures are disjoint and shallow,
by which we mean the unsupervised dimensionality
reduction algorithm is trained on unlabeled data sep-
arately as a first step, and then its results are fed
to a supervised classifier which has a shallow archi-
tecture such as a (kernelized) linear model. For ex-
ample, several methods learn a clustering or a dis-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

tance measure based on a nonlinear manifold embed-
ding as a first step (Chapelle et al., 2003; Chapelle &
Zien, 2005). Transductive Support Vector Machines
(TSVMs) (Vapnik, 1998) (which employs a kind of
clustering) and LapSVM (Belkin et al., 2006) (which
employs a kind of embedding) are examples of meth-
ods that are joint in their use of unlabeled data and
labeled data, but their architecture is still shallow.

Deep architectures seem a natural choice in hard AI
tasks which involve several sub-tasks which can be
coded into the layers of the architecture. As argued by
several researchers (Hinton et al., 2006; Bengio et al.,
2007) semi-supervised learning is also natural in such
a setting as otherwise one is not likely to ever have
enough labeled data to perform well.

Several authors have recently proposed methods for
using unlabeled data in deep neural network-based ar-
chitectures. These methods either perform a greedy
layer-wise pre-training of weights using unlabeled data
alone followed by supervised fine-tuning (which can be
compared to the disjoint shallow techniques for semi-
supervised learning described before), or learn unsu-
pervised encodings at multiple levels of the architec-
ture jointly with a supervised signal. Only considering
the latter, the basic setup we advocate is simple:

1. Choose an unsupervised learning algorithm.

2. Choose a model with a deep architecture.

3. The unsupervised learning is plugged into any (or
all) layers of the architecture as an auxiliary task.

4. Train supervised and unsupervised tasks using the
same architecture simultaneously.

The aim is that the unsupervised method will improve
accuracy on the task at hand. However, the unsu-
pervised methods so far proposed for deep architec-
tures are in our opinion somewhat complicated and
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restricted. They include a particular kind of genera-
tive model (a restricted Boltzmann machine) (Hinton
et al., 2006), autoassociators (Bengio et al., 2007), and
a method of sparse encoding (Ranzato et al., 2007).
Moreover, in all cases these methods are not compared
with, and appear on the surface to be completely dif-
ferent to, algorithms developed by researchers in the
field of semi-supervised learning.

In this article we advocate simpler ways of perform-
ing deep learning by leveraging existing ideas from
semi-supervised algorithms so far developed in shal-
low architectures. In particular, we focus on the idea
of combining an embedding-based regularizer with a
supervised learner to perform semi-supervised learn-
ing, such as is used in Laplacian SVMs (Belkin et al.,
2006). We show that this method can be: (i) general-
ized to multi-layer networks and trained by stochastic
gradient descent; and (ii) is valid in the deep learning
framework given above.

Our experimental evaluation is then split into three
parts: (i) stochastic training of semi-supervised multi-
layered architectures is compared with existing semi-
supervised approaches on several benchmarks, with
positive results; (ii) a demonstration of how to use
semi-supervised regularizers in deep architectures by
plugging them into any layer of the architecture is
shown on the well-known MNIST dataset; and (iii)
a case-study is presented using these techniques for
deep-learning of semantic role labeling of English sen-
tences.

The rest of the article is as follows. In Section 2 we
describe existing techniques for semi-supervised em-
bedding. In Section 3 we describe how to generalize
these techniques to the task of deep learning. Section 4
reviews existing techniques for deep learning, Section
5 gives an experimental comparison between all these
approaches, and Section 6 concludes.

2. Semi-Supervised Embedding

A key assumption in many semi-supervised algorithms
is the structure assumption1: points within the same
structure (such as a cluster or a manifold) are likely
to have the same label. Given this assumption, the
aim is to use unlabeled data to uncover this structure.
In order to do this many algorithms such as cluster
kernels (Chapelle et al., 2003), LDS (Chapelle & Zien,
2005), label propagation (Zhu & Ghahramani, 2002)
and LapSVM (Belkin et al., 2006), to name a few,
make use of regularizers that are directly related to

1This is often referred to as the cluster assumption or
the manifold assumption (Chapelle et al., 2006).

unsupervised embedding algorithms. To understand
these methods we will first review some relevant ap-
proaches to linear and nonlinear embedding.

2.1. Embedding Algorithms

We will focus on a rather general class of embedding al-
gorithms that can be described by the following type of
optimization problem: given the data x1, . . . , xU find
an embedding f(xi) of each point xi by minimizing

U∑
i,j=1

L(f(xi, α), f(xj , α),Wij)

w.r.t. α, subject to

Balancing constraint.

This type of optimization problem has the following
main ingredients:

• f(x) ∈ Rn is the embedding one is trying to learn
for a given example x ∈ Rd. It is parametrized by
α. In many techniques f(xi) = fi is a lookup table
where each example i is assigned an independent
vector fi.

• L is a loss function between pairs of examples.

• The matrix W of weights Wij specifying the sim-
ilarity or dissimilarity between examples xi and
xj . This is supplied in advance and serves as a
kind of label for the loss function.

• A balancing constraint is often required for cer-
tain objective functions so that a trivial solution
is not reached.

Many well known algorithms fit into this framework.

Multidimensional scaling (MDS) is a classical al-
gorithm that attempts to preserve the distance be-
tween points, whilst embedding them in a lower di-
mensional space, e.g. by using the loss function

L(fi, fj ,Wij) = (||fi − fj || − Wij)2

MDS is equivalent to PCA if the metric is Euclidean
(Williams, 2001).

ISOMAP (Tenenbaum et al., 2000) is a nonlinear
embedding technique that attempts to capture mani-
fold structure in the original data. It works by defin-
ing a similarity metric that measures distances along
the manifold, e.g. Wij is defined by the shortest path
on the neighborhood graph. One then uses those dis-
tances to embed using conventional MDS.
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Laplacian Eigenmaps (Belkin & Niyogi, 2003)
learn manifold structure by emphasizing the preserva-
tion of local distances. One defines the distance metric
between the examples by encoding them in the Lapla-
cian L = W − D, where Dii =

∑
j Wij is diagonal.

Then, the following optimization is used:∑
ij

L(fi, fj ,Wij) =
∑
ij

Wij ||fi − fj ||2 = f>Lf (1)

subject to the balancing constraint:

f>Df = I and f>D1 = 0. (2)

Siamese Networks (Bromley et al., 1993) are also
a classical method for nonlinear embedding. Neural
networks researchers think of such models as a network
with two identical copies of the same function, with the
same weights, fed into a “distance measuring” layer to
compute whether the two examples are similar or not,
given labeled data. In fact, this is exactly the same as
the formulation given at the beginning of this Section.

Several loss functions have been proposed for siamese
networks, here we describe a margin-based loss pro-
posed by the authors of (Hadsell et al., 2006):

L(fi, fj ,Wij) =

{
||fi − fj ||2 if Wij = 1,
max(0,m − ||fi − fj ||2) if Wij = 0

(3)
which encourages similar examples to be close, and dis-
similar ones to have a distance of at least m from each
other. Note that no balancing constraint is needed
with such a choice of loss as the margin constraint
inhibits a trivial solution. Compared to using con-
straints like (2) this is much easier to optimize by gra-
dient descent.

2.2. Semi-Supervised Algorithms

Several semi-supervised classification algorithms have
been proposed which take advantage of the algorithms
described in the last section. Here we assume the set-
ting where one is given L + U examples xi, but only
the first L have a known label yi.

Label Propagation (Zhu & Ghahramani, 2002)
adds a Laplacian Eigenmap type regularization to a
nearest-neighbor type classifier:

min
f

L∑
i=1

||fi − yi||2 + λ
L+U∑
i,j=1

Wij ||fi − fj ||2 (4)

The algorithm tries to give two examples with large
weighted edge Wij the same label. The neighbors of
neighbors tend to also get the same label as each other
by transitivity, hence the name label propagation.

LapSVM (Belkin et al., 2006) uses the Laplacian
Eigenmaps type regularizer with an SVM: minimize

||w||2 + γ
L∑

i=1

H(yif(xi)) + λ
L+U∑
i,j=1

Wij ||f(xi)− f(xj)||2

(5)
where H(x) = max(0, 1 − x) is the hinge loss.

Other Methods In (Chapelle & Zien, 2005) a
method called graph is suggested which combines a
modified version of ISOMAP with an SVM. The au-
thors also suggest to combine modified ISOMAP with
TSVMs rather than SVMs, and call it Low Density
Separation (LDS).

3. Semi-supervised Embedding for
Deep Learning

We would like to use the ideas developed in semi-
supervised learning for deep learning. Deep learning
consists of learning a model with several layers of non-
linear mapping. In this article we will consider multi-
layer networks with M layers of hidden units that give
a C-dimensional output vector:

fi(x) =
d∑

j=1

wO,i
j hM

j (x) + bO,i, i = 1, . . . , C (6)

where wO are the weights for the output layer, and
typically the kth layer is defined as

hk
i (x) = S

( ∑
j

wk,i
j hk−1

j (x) + bk,i
)
, k > 1 (7)

h1
i (x) = S

( ∑
j

w1,i
j xj + b1,i

)
(8)

and S is a non-linear squashing function such as tanh.
Here, we describe a standard fully connected multi-
layer network but prior knowledge about a particular
problem could lead one to other network designs. For
example in sequence and image recognition time delay
and convolutional networks (TDNNs and CNNs) (Le-
Cun et al., 1998) have been very successful. In those
approaches one introduces layers that apply convolu-
tions on their input which take into account locality
information in the data, i.e. they learn features from
image patches or windows within a sequence.

The general method we propose for semi-supervised
deep learning is to add a semi-supervised regularizer
in deep architectures in one of three different modes,
as shown in Figure 1:
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Figure 1. Three modes of embedding in deep architectures.

(a) Add a semi-supervised loss (regularizer) to the su-
pervised loss on the entire network’s output (6):

L∑
i=1

`(f(xi), yi) + λ
L+U∑
i,j=1

L(f(xi), f(xj),Wij) (9)

This is most similar to the shallow techniques de-
scribed before, e.g. equation (5).

(b) Regularize the kth hidden layer (7) directly:
L∑

i=1

`(f(xi), yi) + λ

L+U∑
i,j=1

L(fk(xi), fk(xj),Wij)

(10)
where fk(x) = (hk

1(x), . . . , hk
Nk

(x)) is the output
of the network up to the kth hidden layer.

(c) Create an auxiliary network which shares the first
k layers of the original network but has a new final
set of weights:

gi(x) =
∑

j

wAUX,i
j hk

j (x) + bAUX,i (11)

We train this network to embed unlabeled data
simultaneously as we train the original network
on labeled data.

In our experiments we use the loss function (3) for
embedding, and the hinge loss

`(f(x), y) =
C∑

c=1

H(y(c)fc(x)),

Algorithm 1 EmbedNN
Input: labeled data (xi, yi), i = 1, . . . , L, unlabeled
data xi, i = L + 1, . . . , U , set of functions f(·), and
embedding functions gk(·), see Figure 1 and equa-
tions (9), (10) and (11).
repeat

Pick a random labeled example (xi, yi)
Make a gradient step to optimize `(f(xi), yi)
for each embedding function gk(·) do

Pick a random pair of neighbors xi, xj .
Make a gradient step for λL(gk(xi), gk(xj), 1)
Pick a random unlabeled example xn.
Make a gradient step for λL(gk(xi), gk(xn), 0)

end for
until stopping criteria is met.

for labeled examples, where y(c) = 1 if y = c and -
1 otherwise. For neighboring points, this is the same
regularizer as used in LapSVM and Laplacian Eigen-
maps. For non-neighbors, where Wij = 0, this loss
“pulls” points apart, thus inhibiting trivial solutions
without requiring difficult constraints such as (2). To
achieve an embedding without labeled data the latter
is necessary or all examples would collapse to a sin-
gle point in the embedding space. We therefore prefer
this regularizer to using (1) alone. Pseudocode of our
approach is given in Algorithm 1.

Labeling unlabeled data as neighbors Training
neural networks online using stochastic gradient de-
scent is fast and can scale to millions of examples. A
possible bottleneck with our approach is computation
of the matrix W , that is, computing which unlabeled
examples are neighbors and have value Wij = 1. Em-
bedding algorithms often use k-nearest neighbor for
this task, and although many methods for its fast com-
putation do exist, this could still be slower than we
would like. One possibility is to approximate it with
sampling techniques.

However, there are also many other ways of collecting
neighboring unlabeled data, notably if one is given se-
quence data such as in audio, video or text problems.
For example, one can take images from two consecutive
frames of video as a neighboring pair with Wij = 1.
Such pairs are likely to have the same label, and are
collected cheaply. In Section 5 we apply this kind of
idea to text and train a semi-supervised semantic role
labeler using an unlabeled set of 631 million words.

When do we expect this approach to work?
One can see our approach as an instance of multi-task
learning (Caruana, 1997) using unsupervised auxiliary
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tasks. In common with other semi-supervised learn-
ing approaches, and indeed other deep learning ap-
proaches, we only expect this to work if p(x) is useful
for the supervised task p(y|x), i.e. if the structure as-
sumption is true. We believe many natural tasks have
this property.

We note that an alternative multi-task learning scheme
is presented in (Ando & Zhang, 2005) and applied to
neural networks in (Ahmed et al., 2008) which instead
constructs auxiliary supervised tasks from unlabeled
data by constructing tasks with labels y∗. This is use-
ful when p(y∗|x) is correlated to p(y|x), however an
expert must engineer a useful target y∗.

4. Existing Approaches to Deep
Learning

Hinton and coworkers (2006) proposed the Deep Be-
lief Net (DBN) which is a multi-layered network first
trained as a generative model with unlabeled data be-
fore being subsequently trained in supervised mode. It
is based around iteratively training Restricted Boltz-
mann machines (RBMs) for each layer. An RBM is
a two-layer network in which visible, binary stochas-
tic pixels v are connected to hidden binary stochastic
feature detectors h. The probability assigned to an
example x is:

P (x) =
∑
h∈H

P (x, h) =
∑
h∈H

e−E(x,h)

Z

E(x, h) = −
∑

i∈pixels

wP
i vi−

∑
j∈features

wF
j hj−

∑
i,j

vjhjwij

The idea is to obtain large values for the training ex-
amples, and small values elsewhere just as in any maxi-
mum likelihood density estimator. This is trained with
a procedure called contrastive divergence whereby one
pushes up the energy on training data and pushes
down the energy on samples generated by the model.
The authors used this method to pretrain a deep neigh-
borhood component analysis model (DBN-NCA) and
a regularized version that simultaneously trains an
autoencoder (DBN-rNCA) (Salakhutdinov & Hinton,
2007).

The authors of (Bengio et al., 2007) suggested a sim-
pler scheme: define an autoencoder that given an in-
put x tries to encode it in a low dimensional space
z = fenc(x), and then decode it again to reproduce it
as well as possible, e.g. so that

||x − fdec(fenc(x))||2

is small. (Actually you can also view RBMs in this
way, see (Ranzato et al., 2007).) The idea is to use

an autoencoder as a regularizer which is trained on
unlabeled data. If the autoencoder is linear it corre-
sponds to PCA (Japkowicz et al., 2000) and hence also
MDS, making a clear link to the embedding algorithms
we discussed in Section 2.1. The authors claim that
autoassociators have the advantage “that almost any
parametrizations of the layers are possible, as long as
the training criterion is continuous in the parameters
[...] the class of probabilistic models for which [DBNs]
can be applied is currently more limited.”

Finally, recently the authors of (Ranzato et al., 2007)
introduced another method of deep learning which also
amounts to a kind of encoder/decoder architecture,
called SESM. In this case they choose to learn large,
sparse codes as they believe these are good for classifi-
cation. They choose an encoder fenc(x) = w>x + benc

and a decoder with shared weights fdec(z) = wS(z) +
bdec. They then optimize the following loss:

αe||z − fenc(x)||22 + ||x− fdec(z)||22 + αsh(z) + αr||w||1
where the first term makes the output of the encoder
close to the code z (which is also learnt), the second
term makes the decoder try to reproduce the input,
and the third and fourth terms sparsify the codes z
and the weights of the encoder and decoder w. αe, αs

and αr are all hyperparameters. The training requires
an online coordinate descent scheme because both z
and w are being optimized.

We believe all of the methods just described are sig-
nificantly more complicated than our approach. Our
embedding approach can also be seen as an encoder
fenc(x) that embeds data into a low dimensional space.
However we do not need to decode during training (or
indeed at all). Further, if the data is high dimensional
and sparse there is a significant speedup from not hav-
ing to decode.

Finally, existing approaches advocate greedy layer-
wise training, followed by a “fine-tuning” step using
the supervised signal. The intention is that the un-
supervised learning provides a better initialization for
supervised learning, and hence a better final local min-
imum. Our approach does not use a pre-training step,
but instead directly optimizes our new objective func-
tion. We advocate that it is the new choice of objective
that can provide improved results.

5. Experimental Evaluation

We test our approach on several datasets summarized
in Table 1.

Small-scale experiments g50c, Text and Uspst
are small-scale datasets often used for semi-supervised
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Table 1. Datasets used in our experiments. The first three
are small scale datasets used in the same experimental
setup as found in (Chapelle & Zien, 2005; Sindhwani et al.,
2005; Collobert et al., 2006). The following six datasets
are large scale. The Mnist 1h,6h,1k,3k and 60k variants
are MNIST with a labeled subset of data, following the
experimental setup in (Collobert et al., 2006). SRL is a
Semantic Role Labeling task (Pradhan et al., 2004) with
one million labeled training examples and 631 million un-
labeled examples.

data set classes dims points labeled
g50c 2 50 500 50
Text 2 7511 1946 50
Uspst 10 256 2007 50
Mnist1h 10 784 70k 100
Mnist6h 10 784 70k 600
Mnist1k 10 784 70k 1000
Mnist3k 10 784 70k 3000
Mnist60k 10 784 70k 60000
SRL 16 - 631M 1M

learning experiments (Chapelle & Zien, 2005; Sind-
hwani et al., 2005; Collobert et al., 2006). We fol-
lowed the same experimental setup, averaging results
of ten splits of 50 labeled examples where the rest of
the data is unlabeled. In these experiments we test the
embedding regularizer on the output of a neural net-
work (see equation (9) and Figure 1(a)). We define a
two-layer neural network (NN) with hu hidden units.
We define W so that the 10 nearest neighbors of i
have Wij = 1, and Wij = 0 otherwise. We train for 50
epochs of stochastic gradient descent and fixed λ = 1,
but for the first 5 we optimized the supervised tar-
get alone (without the embedding regularizer). This
gives two free hyperparameters: the number of hidden
units hu = {0, 5, 10, 20, 30, 40, 50} and the learning
rate lr = {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}.

We report the optimum choices of these values opti-
mized by 5-fold cross validation and by optimizing on
the test set in Table 2. Note the datasets are very
small, so cross validation is unreliable. Several meth-
ods from the literature optimized their hyperparam-
eters using the test set (those that are not marked
with (cv)). Our EmbedNN is competitive with state-
of-the-art semi-supervised methods based on SVMs,
even outperforming them in some cases.

MNIST experiments We compare our method in
all three different modes (Figure 1) with conventional
semi-supervised learning (TSVM) using the same data
split and validation set as in (Collobert et al., 2006).
We also compare to several deep learning methods:
RBMs, SESM and DBN-NCA and DBN-rNCA (how-
ever, they are trained on a different data split). In

Table 2. Results on Small-Scale Datasets. We report the
best test error over the hyperparameters of our method,
EmbedNN, as in the methodology of (Chapelle & Zien,
2005) as well as the error when optimizing the param-
eters by cross-validation, EmbedNN(cv). LDS(cv) and
LapSVM(cv) also use cross-validation.

g50c Text Uspst
SVM 8.32 18.86 23.18
TSVM 5.80 5.71 17.61
LapSVM(cv) 5.4 10.4 12.7

LDS(cv) 5.4 5.1 15.8
Label propagation 17.30 11.71 21.30
Graph SVM 8.32 10.48 16.92

NN 10.62 15.74 25.13
EmbedNN 5.66 5.82 15.49
EmbedNN(cv) 6.78 6.19 15.84

Table 3. Results on MNIST with 100, 600, 1000 and 3000
labels. A two-layer Neural Network (NN) is compared to an
NN with Embedding regularizer (EmbedNN) on the output
(O), ith layer (Ii) or auxiliary embedding from the ith layer
(Ai) (see Figure 1). A convolutional network (CNN) is also
tested in the same way. We compare to SVMs and TSVMs.
RBM, SESM, DBN-NCA and DBN-rNCA (marked with
(∗)) taken from (Ranzato et al., 2007; Salakhutdinov &
Hinton, 2007) are trained on a different data split.

Mnst1h Mnst6h Mnst1k Mnst3k
SVM 23.44 8.85 7.77 4.21
TSVM 16.81 6.16 5.38 3.45

RBM(∗) 21.5 - 8.8 -

SESM(∗) 20.6 - 9.6 -

DBN-NCA(∗) - 10.0 - 3.8

DBN-rNCA(∗) - 8.7 - 3.3

NN 25.81 11.44 10.70 6.04
EmbedONN 17.05 5.97 5.73 3.59
EmbedI1NN 16.86 9.44 8.52 6.02
EmbedA1NN 17.17 7.56 7.89 4.93

CNN 22.98 7.68 6.45 3.35
EmbedOCNN 11.73 3.42 3.34 2.28
EmbedI5CNN 7.75 3.82 2.73 1.83
EmbedA5CNN 7.87 3.82 2.76 2.07

Table 4. Mnist1h dataset with deep networks of 2, 6, 8, 10
and 15 layers; each hidden layer has 50 hidden units. We
compare classical NN training with EmbedNN where we
either learn an embedding at the output layer (O) or an
auxiliary embedding on all layers at the same time (ALL).
.

2 4 6 8 10 15
NN 26.0 26.1 27.2 28.3 34.2 47.7
EmbedONN 19.7 15.1 15.1 15.0 13.7 11.8
EmbedALLNN 18.2 12.6 7.9 8.5 6.3 9.3
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Table 5. Full Mnist60k dataset with deep networks of 2, 6,
8, 10 and 15 layers, using either 50 or 100 hidden units. We
compare classical NN training with EmbedALLNN where
we learn an auxiliary embedding on all layers at the same
time.

2 4 6 8 10 15
NN (HUs=50) 2.9 2.6 2.8 3.1 3.1 4.2
EmbedALLNN 2.8 1.9 2.0 2.2 2.4 2.6

NN (HUs=100) 2.0 1.9 2.0 2.2 2.3 3.0
EmbedALLNN 1.9 1.5 1.6 1.7 1.8 2.4

these experiments we consider 2-layer networks (NN)
and 6-layer convolutional neural nets (CNN) for em-
bedding. We optimize the parameters of NN ( hu =
{50, 100, 150, 200, 400} hidden units and learning rates
as before) on the validation set. The CNN architecture
is fixed: 5 layers of image patch-type convolutions, fol-
lowed by a linear layer of 50 hidden units, similar to
(LeCun et al., 1998). The results given in Table 3 show
the effectiveness of embedding in all three modes, with
both NNs and CNNs.

Deeper MNIST experiments We then conducted
a similar set of experiments but with very deep archi-
tectures – up to 15 layers, where each hidden layer
has 50 hidden units. Using Mnist1h, we first compare
conventional NNs to EmbedALLNN where we learn an
auxiliary nonlinear embedding (50 hidden units and
a 10 dimensional embedding space) on each layer, as
well as EmbedONN where we only embed the outputs.
Results are given in Table 4. When we increase the
number of layers, NNs trained with conventional back-
propagation overfit and yield steadily worse test er-
ror (although they are easily capable of achieving zero
training error). In contrast, EmbedALLNN improves
with increasing depth due to the semi-supervised “reg-
ularization”. Embedding on all layers of the network
has made deep learning possible. EmbedONN (embed-
ding on the outputs) also helps, but not as much.

We also conducted some experiments using the full
MNIST dataset, Mnist60k. Again using deep networks
of up to 15 layers using either 50 or 100 hidden units
EmbedALLNN outperforms standard NN. Results are
given in Table 5. Increasing the number of hidden
units is likely to improve these results further, e.g. us-
ing 4 layers and 500 hidden units on each layer, one
obtains 1.27% using EmbedALLNN.

Semantic Role Labeling The goal of semantic role
labeling (SRL) is, given a sentence and a relation of
interest, to label each word with one of 16 tags that
indicate that word’s semantic role with respect to the

Table 6. A deep architecture for Semantic Role Labeling
with no prior knowledge outperforms state-of-the-art sys-
tems ASSERT and SENNA that incorporate knowledge
about parts-of-speech and parse trees. A convolutional
network (CNN) is improved by learning an auxiliary em-
bedding (EmbedA1CNN) for words represented as 100-
dimensional vectors using the entire Wikipedia website as
unlabeled data.

Method Test Error
ASSERT (Pradhan et al., 2004) 16.54%
SENNA (Collobert & Weston, 2007) 16.36%
CNN [no prior knowledge] 18.40%
EmbedA1CNN [no prior knowledge] 14.55%

action of the relation. For example the sentence ”The
cat eats the fish in the pond” is labeled in the following
way: ”TheARG0 catARG0 eatsREL theARG1 fishARG1

inARGM−LOC theARGM−LOC pondARGM−LOC” where
ARG0 and ARG1 effectively indicate the subject and
object of the relation “eats” and ARGM-LOC indi-
cates a locational modifier. The PropBank dataset
includes around 1 million labeled words from the Wall
Street Journal. We follow the experimental setup of
(Collobert & Weston, 2007) and train a 5-layer con-
volutional neural network for this task, where the
first layer represents the input sentence words as 50-
dimensional vectors. Unlike (Collobert & Weston,
2007), we do not give any prior knowledge to our classi-
fier. In that work words were stemmed and clustered
using their parts-of-speech. Our classifier is trained
using only the original input words.

We attempt to improve this system by, as before,
learning an auxiliary embedding task. Our embedding
is learnt using unlabeled sentences from the Wikipedia
web site, consisting of 631 million words in total using
the scheme described in Section 3. The same lookup
table of word vectors as in the supervised task is used
as input to an 11 word window around a given word,
yielding 550 features. Then a linear layer projects
these features into a 100 dimensional embedding space.
All windows of text from Wikipedia are considered
neighbors, and non-neighbors are constructed by re-
placing the middle word in a sentence window with
a random word. Our lookup table indexes the most
frequently used 30,000 words, and all other words are
assigned index 30,001.

The results in Table 6 indicate a clear improvement
when learning an auxiliary embedding. ASSERT
(Pradhan et al., 2004) is an SVM parser-based sys-
tem with many hand-coded features, and SENNA is a
NN which uses part-of-speech information to build its
word vectors. In contrast, our system is the only state-
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of-the-art method that does not use prior knowledge
in the form of features derived from parts-of-speech or
parse tree data. This application will be described in
more detail in a forthcoming paper.

6. Conclusion

In this work, we showed how one can improve su-
pervised learning for deep architectures if one jointly
learns an embedding task using unlabeled data. Our
results both confirm previous findings and generalize
them. Researchers using shallow architectures already
showed two ways of using embedding to improve gen-
eralization: (i) embedding unlabeled data as a sepa-
rate pre-processing step (i.e., first layer training) and;
(ii) using embedding as a regularizer (i.e., at the out-
put layer). More importantly, we generalized these ap-
proaches to the case where we train a semi-supervised
embedding jointly with a supervised deep multi-layer
architecture on any (or all) layers of the network, and
showed this can bring real benefits in complex tasks.
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Abstract

Exponential Family PSR (EFPSR) models
capture stochastic dynamical systems by rep-
resenting state as the parameters of an ex-
ponential family distribution over a short-
term window of future observations. They
are appealing from a learning perspective be-
cause they are fully observed (meaning ex-
pressions for maximum likelihood do not in-
volve hidden quantities), but are still expres-
sive enough to both capture existing models
and predict new models. While maximum-
likelihood learning algorithms for EFPSRs
exist, they are not computationally feasi-
ble. We present a new, computationally effi-
cient, learning algorithm based on an approx-
imate likelihood function. The algorithm can
be interpreted as attempting to induce sta-
tionary distributions of observations, features
and states which match their empirically ob-
served counterparts. The approximate like-
lihood, and the idea of matching stationary
distributions, may apply to other models.

1. Introduction

One of the basic problems in modeling controlled, par-
tially observable, stochastic dynamical systems is rep-
resenting and tracking state. In a reinforcement learn-
ing context, the state of the system is important be-
cause it can be used to make predictions about the fu-
ture, or to control the system optimally. Often, state is
viewed as an unobservable, latent variable, but models
with predictive representations of state (Littman et al.,
2002) propose an alternative: PSRs represent state as
statistics about the future.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

The original PSR models used the probability of spe-
cific, detailed futures called tests as the statistics of
interest. Recent work has introduced the more gen-
eral notion of using parameters that model the distri-
bution of length n futures as the statistics of interest
(Rudary et al., 2005; Wingate, 2008). To clarify this,
consider an agent interacting with the system. It ob-
serves a series of observations o1...ot, which we call a
history ht (where subscripts denote time). Given any
history, there is some distribution over the next n ob-
servations: p(Ot+1...Ot+n|ht) ≡ p(Fn|ht) (where Ot+i

is the random variable representing an observation i

steps in the future, and Fn is a mnemonic for future).
We emphasize that this distribution directly models
observable quantities in the system.

The Exponential Family PSR is a new family of models
of partially observable, stochastic dynamical systems.
EFPSR models assume that the distribution p(Fn|ht)
has an exponential family form, and that the param-
eters of that distribution are the state of the system
(Wingate, 2008). This idea has been shown to unify a
number of existing models of dynamical systems: for
example, if p(Fn|ht) is assumed to be Gaussian (and
certain other choices are made), the model can capture
any domain modeled by a Kalman filter.

Existing algorithms for learning EFPSR models from
data are based on maximizing exact likelihood, but
the algorithms are slow. This paper presents an effi-
cient algorithm for one particular EFPSR, named the
Linear-Linear EFPSR. We begin by presenting an ap-
proximate likelihood function, and then show that the
terms needed to maximize it can be efficiently com-
puted by virtue of the linearity of the Linear-Linear
EFPSR’s state update. The resulting algorithm is
computationally efficient, and can be interpreted in
terms of stationary distributions of observations, fea-
tures and states. It allows us to begin to learn models
of domains which are too large (in terms of the amount
of data required, and in terms of the complexity of the
observation space) to tackle with any other EFPSR.
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Figure 1. An illustration of extending and conditioning.

2. The Exponential Family PSR

We first review the EFPSR family of models, including
how state is represented and how it is maintained.

State. The EFPSR defines state as the parameters of
an exponential family distribution modeling p(Fn|ht),
which is a window of n future observations. To em-
phasize that these parameters represent state, we will
refer to them as st. The form of the distribution is:

p(Fn = fn|ht; st) = exp
{
s⊤t φ(fn)− log Z(st)

}
, (1)

with both { φ(fn), st } ∈ R
l×1. The vector φ(fn)

is a feature vector which controls the particular form
of the distribution. For example, φ(X) = [X,X2],
yields a Gaussian, but φ(X) = [X, log(X)] yields a
gamma. Since the distribution is over the future, φ

can be thought of as features of the future.

As the agent interacts with the system, p(Fn|ht)
changes because ht changes; therefore the parameters
st and hence state change. The feature vector φ(fn)
does not change over time.

Maintaining State. In addition to selecting the form
of p(Fn|ht), there is a dynamical component: given the
parameters of p(Fn|ht), how can we incorporate a new
observation to find the parameters of p(Fn|ht, ot+1)?
That is, how can we update state? Our strategy is to
extend and condition.

Extend. We assume that we have the parameters
of p(Fn|ht), denoted st. We extend the distribution
of Fn|ht to include Ot+n+1, which forms a new vari-
able Fn+1|ht, and we assume it has the distribution
p(Fn, Ot+n+1|ht) = p(Fn+1|ht). This is a temporary
distribution over (n + 1) observations.

To perform the extension, we define an extension func-
tion which maps the current state vector to the param-
eters of the extended distribution:

s+
t = extend(st; θ),

where θ is a vector of parameters controlling the ex-
tension function (and hence, the overall dynamics).

The extension function helps govern the kinds of dy-
namics that the model can capture. For example,
in the PLG family of work, a linear extension allows
the model to capture linear dynamics (Rudary et al.,
2005), while a non-linear extension allows the model
to capture non-linear dynamics (Wingate, 2008).

Condition. Once we have extended the distribution
to model the n + 1’st observation in the future, we
then condition on the actual observation ot+1, which
results in the parameters of p(Fn|ht+1):

st+1 = condition(s+
t , ot+1),

which is our state at time t + 1.

The entire process of extending and conditioning is il-
lustrated in Fig. 1. We have drawn graphs to suggest
that there can be structure in the distributions, and
to informally hint at the fact that the form of the dis-
tribution does not change over time. This, and other
constraints on the features and extension function, are
discussed in detail elsewhere (Wingate, 2008).

2.1. The Linear-Linear EFPSR

The EFPSR is a family of models. Specific members
of the family are chosen by selecting two things: the
features φ, and an extension function. For example, if
p(Fn|ht) is Gaussian, and a special extension function
is chosen, the predictively defined version of a linear
dynamical system (Kalman filter) is recovered.

The Linear-Linear EFPSR chooses features and an ex-
tension function designed to make it both analytically
tractable and efficiently approximable. The extension
function is linear, and features are chosen such that
conditioning is always a linear operation (hence the
name, “Linear-Linear”). In this paper, we also as-
sume the base observations are vectors of binary ran-
dom variables. If they are not, we assume that bi-
nary features are extracted from the observations, and
discard the original observations (we call these atomic
features, to distinguish them from the higher-order fea-
tures defined by φ).
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Features. Let each base observation Ot be a vector
∈ {0, 1}d; therefore, each Fn|ht ∈ {0, 1}nd. We re-
strict all features comprising the feature vector φ to
be conjunctions of the atomic binary variables in the
base observations. For example, if each Ot ∈ {0, 1}3,
there could be a feature φ(ot)k which is a conjunc-
tion of the second and third components of the ob-
servation: φ(ot)k = (ot)2(ot)3. By selecting features
this way, the resulting distribution can be conditioned
with an operator that is nonlinear in the observation
ot+1, but linear in the state st. We therefore define
the linear conditioning operator G(ot+1) to be a ma-
trix which transforms s+

t into st+1: st+1 = G(ot+1)s
+
t .

See (Wingate, 2008) for details.

Extension function. We choose a linear extension:

s+
t = Ast + B.

A ∈ R
k×l and B ∈ R

k×1 are our model parameters.

The combination of a linear extension and a lin-

ear conditioning operator means that the en-

tire extend-and-condition operation (ie, state

update) is a linear operation:

st+1 = G(ot+1) (Ast + B) .

This will be critical in the sequel.

3. Learning with Exact Likelihood

We now briefly sketch how to learn a Linear-Linear
EFPSR model from data by maximizing exact likeli-
hood. We do this to point out the two primary com-
putational bottlenecks that motivate this paper.

We assume we are given a sequence of T observa-
tions, [o1 · · · oT ], which we stack to create a sequence
of samples from the Fn|ht’s: ft|ht = [ot+1 · · · ot+n|ht].
The likelihood of the training data is p(o1, o2...oT ) =
∏T

t=1 p(ot|ht), but we will find it more convenient
to measure the likelihood of the corresponding ft’s:
p(o1, o2...oT ) ≈ n

∏T
t=1 p(ft|ht) (maximizing this is

equivalent to maximizing the standard likelihood).

The expected log-likelihood of the training ft’s under
the model defined in Eq. 1 is

LL =
1

T

(
T∑

t=1

−s⊤t φ(ft)− log Z(st)

)

(2)

Our goal is to maximize this quantity. Any opti-
mization method can be used to maximize the log-
likelihood. Two popular choices are gradient ascent
and quasi-Newton methods, such as (L-)BFGS, which
require the gradient of the likelihood with respect to
the parameters, which we will now compute.

We can differentiate with respect to our parameters:

∂LL
∂{A,B} =

T∑

t=1

∂LL
∂st

⊤ ∂st

∂θ
(3)

and with respect to each state:

∂LL
∂st

=
∂

∂st

[
−s⊤t φ(ft)− log Z(st)

]

= Est
[φ(Fn|ht)]− φ(ft) (4)

where Est
[φ(Fn|ht)] ∈ R

l×1 is the vector of expected
sufficient statistics at time t.

The gradient of st with respect to A is given by

∂st

∂A
= G(ot+1)

(

A
∂st−1

∂A
+ s⊤t−1 ⊗ I

)

,

where ⊗ is the Kronecker product, and I is an identity
matrix the same size as A. The gradient of the state
with respect to B is

∂st

∂B
= G(ot+1)

(

A
∂st−1

∂B
+ I

)

.

Note that the gradients at time t are temporally re-
cursive – they depend all previous gradients.

There are two bottlenecks which motivate this paper:

1. Computing Est
[φ(Fn|ht)] is a standard inference

problem in exponential family models, and is
computationally expensive because it scales ex-
ponentially with the number of atomic observa-
tion variables included in the domain of p(Fn|ht).
Even approximate inference is NP-hard (Dagum
& Luby, 1993), and it must be done T times.

2. The gradients are temporally recursive, but can
be computed in a single pass through the data.
However, the process is expensive. For the dis-
cussion, assume that we have l features in φ(ft),
and that we have k features in the extended dis-
tribution. This means that the matrix A ∈ R

k×l,
that the vector st ∈ R

l, and that there are kl to-
tal parameters describing A. The term ∂st/∂A

is a matrix, with l rows and kl columns. Given
∂st−1/∂A, part of computing ∂st/∂A involves
multiplying ∂st/∂A by A. This is an expensive
matrix-matrix multiplication, which scales poorly
as the number of features in the model grows, and
it must be performed T times to get the true gra-
dient of the likelihood, which scales poorly as the
size of the training set grows.

To summarize, the exact learning algorithm does not
scale well with either the number of training samples
T , the dimension of the observations, the window size
n, or the number of features |φ|.
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4. Approximate Likelihood

We now turn to the main contribution of this paper.
In order to achieve an efficient learning algorithm, we
will present an approximate expression for likelihood,
named L̂L, and show that its gradient can be effi-
ciently computed. We will also examine what happens
in the limit as T → ∞. The quantity L̂L could be
used with any model, not just the Linear-Linear EF-
PSR, but we will show that the Linear-Linear EFPSR
allows us to compute the needed terms easily.

We now present our approximate log-likelihood L̂L,
which is an approximate lower bound on the exact like-
lihood. To begin, we will make one central assumption:

Assumption 4.1. We assume that Cov[st, φ(ft)] = 0
and that Cov[st, ot] = 0, ∀t.

This assumes that the state does not covary with
observable quantities. It implies that E[s⊤t φ(ft)] =
E[st]

⊤E[φ(ft)], which will be repeatedly used in the
following derivation. This is not as severe of an as-
sumption as it may appear to be – in particular, that
this does not imply that st and φ(ft) are independent.

We derive L̂L using Assumption 4.1 and a lower bound
based on Jensen’s inequality:

LL =
1

T

(
T∑

t=1

−s⊤t φ(ft)− log Z(st)

)

= ET

[
−s⊤t φ(ft)− log Z(st)

]

= ET

[
−s⊤t φ(ft)

]
− ET [log Z(st)]

≈ ET [−st]
⊤

ET [φ(ft)]− ET [log Z(st)]

≥ ET [−st]
⊤

ET [φ(ft)]− log Z(ET [st])

≡ L̂L
where we have defined the operator

ET [X] ≡ 1

T

T∑

t=1

X.

The fourth line in the derivation follows because of
Assumption 4.1. The fifth line is obtained by a double
application of Jensen’s inequality:

E[− log Z(st)] = E

[

− log(

∫

exp(−s⊤t φ(F ))dF )

]

≥ − log(E

[∫

exp(−s⊤t φ(F ))dF

]

)

≥ − log(

∫

exp(E
[
−s⊤t φ(F )

]
)dF )

≈ − log(

∫

exp(E [−st]
⊤

E [φ(F )])dF )

= − log Z(E[st]).

Algorithm 1 LEARN-EFPSRS-W-APPROX-LL

Input: ET [ot], ET [φ(ft)]
Initialize A = 0, B = 0.
repeat

(L̂L,∇AL̂L,∇BL̂L)=GRADS-OF-APPROX-
LL(ET [ot],ET [φ(ft)], A,B)

// Use the gradients in an optimizer. Steepest
// descent would look like this:

A = A + α∇AL̂L
B = B + α∇BL̂L

until L̂L is maximized
Return A, B

The second and third lines follow because of the con-
vexity of the functions − log and exp, and the fourth
line follows by Assumption 4.1.

The approximate log-likelihood involves several new
terms, which we now explain. Consider ET [st]. Be-
cause this is an unconditional expectation, as T →∞,
this can be interpreted as the stationary distribution
of states induced by a particular setting of the param-
eters of the model.

At first glance, this term would appear to defeat the
point of our approximations: it appears to depend on
T and on the model parameters, which means that
we would have to recompute it, at cost T , every time
the parameters change (as they would inside any sort
of optimization loop). Fortunately, because it is the
stationary distribution of states, it can be efficiently
computed in the case of the Linear-Linear EFPSR as
the solution to a linear system of equations in a way
that does not depend on T .

The other terms have similar interpretations.
ET [φ(ft)] is empirically observed stationary distribu-
tion of features of n-step windows of observations.
Since it does not depend on the model parameters, it
can be computed once at the beginning of learning
in a single pass through the data. The quantity
log Z(ET [st]) is the log partition function Z computed
using the vector ET [st], and can be computed in the
same way as the partition function associated with
any ordinary state st.

4.1. Computing the Approximate Likelihood

Can the approximate log-likelihood L̂L and its deriva-
tives be computed efficiently? The answer is yes: Ap-
pendix A shows that in the case of the Linear-Linear
EFPSR, both L̂L and the derivative of L̂L with respect
to the model parameters can be computed efficiently.
The computation does not depend on T (the amount

1179



Efficiently Learning Linear-Linear EFPSRs

of training data), and only involves the solution to two
sparse linear systems of equations. Inference must be
performed on the graphical model only once. In addi-
tion, the expensive matrix-matrix multiplications are
completely eliminated.

4.2. Algorithm Summary

Let us pause for a brief summary. The exact log-
likelihood LL in Eq. 2 is intractable to maximize.
However, we have introduced L̂L, and shown that
it and its derivatives can be computed efficiently.
Putting everything together, we see that this learning
algorithm is attempting:

• to find a setting of the parameters A and B

• which generate a stationary distribution of states
ET [st],

• based on a transition operator defined using the
stationary distribution of observations ET [ot],

• which imply a stationary distribution of features
of length n trajectories EET [st][φ(Fn|ht)] as close
as possible to the empirically observed station-
ary distribution of features of length n trajectories
ET [φ(ft)].

With gradients in hand, any optimization method may
be used to find the optimal settings for A and B. The
final gradient algorithm is shown in Algorithm 2 (in
Appendix A), and a simple companion steepest de-
scent optimizer is shown in Algorithm 1.

5. A Low-Rank Parameterization

We briefly turn our attention to the parameter matri-
ces A and B. So far, we have implicitly assumed that
the matrix A is reasonably sized, but this assumption
is false in the case of a large number of features.

To clarify this, recall that our state st is a vector ∈
R

l×1, where l is the number of features of the future.
When we extend and condition, we implicitly compute
s+

t , which is a vector of parameters describing n + 1
observations: s+

t = Ast + B. If we assume that there
are k extended features, the A matrix is ∈ R

k×l.

One of the goals of EFPSRs is to be able to use many
features in order to capture state. If the number of
features l is very large (say, tens of thousands, or even
millions), the number of extended features k will be
even larger, and the matrix A will be too large to work
with. For example, if there are 10,000 features, and
if the extended distribution has 15,000 features, the
matrix A ∈ R

15,000×10,000, which is simply too large.

L̂L has another property which suggests a solution
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Figure 2. The setup of the bouncing ball problem.

to this problem: the gradients ∇AL̂L have a natu-
ral rank-one form, and therefore mesh well with sin-
gular value decomposition (SVD) update algorithms
(Brand, 2006). Instead of maintaining the full matrix
A, we can maintain a low-rank SVD of A. Given the
SVD of A and a rank-one gradient update, the param-
eters of the updated SVD can be efficiently computed.
The entire process can be meshed with a rank-aware
line search. The advantage is that the full matrix A

is never computed, but exact line searches can be con-
ducted. See (Wingate, 2008) for more details.

6. Experiments and Results

We now evaluate the quality of our approximations.
For large problems, we cannot compute the exact like-
lihoods to compare with, and since we are using ap-
proximate likelihoods, it is not clear what a compari-
son would mean. Instead, we use reinforcement learn-
ing to help measure the quality of the model: we use
the states generated by the EFPSR as the input to an
reinforcement learning planner. We conclude that our
model is good if the RL agent is able to use it gener-
ate performance comparable to that of the true model.
For comparison, we also tested RL using the raw ob-
servations as state (called the “reactive,” or first-order
Markov policy), and a random policy.

6.1. Planning in the EFPSR

We used the Natural Actor Critic (or NAC) algo-
rithm (Peters et al., 2005) to test our model. NAC
requires two things: a stochastic, parameterized pol-
icy and the gradients of the log probability of that
policy. We used a softmax function of a linear pro-
jection of the state: the probability of taking ac-
tion ai from state st given the policy parameters θ

is p(ai; st, θ) = exp
{
s⊤t θi

}
/
∑|A|

j=1 exp
{
s⊤t θj

}
, where

θ is to be learned. See (Wingate, 2008) for details.

6.2. Bouncing Ball

The first test domain is called the Bouncing Ball do-
main. In this domain, the observations are factored in
a way that is closely related to the dynamics of the sys-
tem. This domain was hand-crafted to be compatible
with the EFPSR: the domain has significant structure
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Figure 3. Results on the bouncing ball domain.

in the observations, and basically requires the use of a
model which is able to capture that structure.

Figure 2 describes the domain pictorially. The left fig-
ure shows the the ball bouncing. At each timestep,
the agent observes an 11x10 array of pixels which
may be black or white. One of these pixels represents
the “ball,” which bounces diagonally around the box
(shown as a gray trail in the figure). The agent has
two actions: 0 means “do nothing,” and 1 means “re-
verse the direction of the ball.” The reward signal is
shown in the middle. This domain is episodic: every
50 timesteps, the ball is reset to a random position.
We define three different versions of the domain. In
the noiseless version, the agent sees the exact position
of the ball. This domain is second-order Markov with
11 × 10 = 110 observations. The second version adds
a p=1% chance of flipping white pixels to black. This
domain is no longer second-order Markov, and has 2110

possible observations. The third version uses p=10%.

Figure 2 shows the features we used, which are hand-
coded to correspond with the known dynamics. We set
n = 2 and added singleton features for each observa-
tion. Pairwise features were added for each variable to
its diagonal neighbors in the next timestep (to capture
the diagonal motion of the ball). The extended distri-
bution p(F 3|ht) used quartets consisting of an action
and observation at time t, and diagonal observations at
time t+1 and t+2. There were 584 features describing
p(F 2|ht) and 1,292 features describing p(F 3|ht).

We used the timeless gradients, the low rank approx-
imation of A, and 100,000 training samples. Figure
3 collects the results. The EFPSR is able to consis-
tently improve over the best reactive policy, generat-
ing a policy with 30% higher reward in the noiseless
version, a policy with 25% higher reward when p=1%,
and a policy with 13% higher reward when p=10%. It
is an open question as to whether different feature sets
would improve these results further.

6.3. Robot Vision Domain

Together, the combination of the Linear-Linear EF-
PSR, the approximate maximum likelihood objective
function, and the low-rank decomposition of the pa-
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Figure 4. Setup of the vision domain.

rameter matrix allow experimentation on domains
with hundreds of observation variables and tens of
thousands of features, which is larger than any other
model with a predictive representation of state. Here,
we apply the entire suite of techniques to the task of
visual navigation, where a robot must navigate a maze
using only features of camera images as observations.

Figure 4 explains the setup. The latent state space
consists of a position x, y and orientation θ. The ex-
periments used two different maps (bottom left). The
agent has four actions: move forward, move backward,
turn left and turn right. We tested two kinds of dy-
namics: in the “coarse” dynamics, the agent took large
steps and turns, and in the “fine” dynamics, the agent
took small steps and turns. The initial observations
are 64x64 color images, from which binary features
are extracted (upper left). We tried two different sets
of binary features. The first set consisted of 884 fea-
tures like edges, corners and colors, and the second
feature set was a post-processed version of the first.
The idea of the second set was to create higher-order
features which represented things like walls and hall-
ways. To do this, images from Maze #1 were clustered
according to the latent states, and then the binary fea-
tures were averaged together to create a sort of filter.
New images were tested against each filter, triggering
if the response exceeded a threshold. There were 373
of these features. Note that while the images were all
taken from Maze #1, they were also used in Maze #2,
where the colors, hall geometry, etc. were all different.

We set n = 3. For the feature vector φ(), we used
“streamer features.” These connect each observation
variable only to its temporal successors (Fig. 4, right).
There were between 12,000 and 50,000 total features
in the final feature set. We trained on 200,000 sam-
ples generated with a random policy. For the NAC
parameters, we used a TD rate of λ = 0.85, a step-
size α = 10.0, gradient termination test ǫ = 0.001 and
remembering factor β = 0.0.

Figure 5 shows the results. The random policy per-
formed the same in both domains, regardless of map
or dynamics. Higher rewards were obtained in general

1181



Efficiently Learning Linear-Linear EFPSRs

Map 1 − Coarse Map 1 − Fine Map 2 − Coarse Map 2 − Fine
0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 r
ew

ar
d

Feature Set #1

 

 

EFPSR
Reactive
Random

Map 1 − Coarse Map 1 − Fine Map 2 − Coarse Map 2 − Fine
0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 r
ew

ar
d

Feature Set #2

 

 

EFPSR
Reactive
Random

Figure 5. Results on the vision domain.

with coarse dynamics, regardless of map, feature set,
or learning algorithm (presumably because the agent
can reach high-reward regions more quickly).

The difference between the two feature sets that is
most interesting. Using feature set #1, the EFPSR
performs just under the performance of the reactive
policy, regardless of map or dynamics. Perhaps this
means that the EFPSR was unable to capture any
meaningful dynamics, and instead learned to predict
the identity function, with some noise. This would
result in a policy equivalent to the reactive policy.

The results are reversed for feature set #2. Here, the
EFPSR consistently outperforms the reactive policy.
Together, these observations imply a coherent story.
For both feature sets, we used the same set of streamer
features. One plausible explanation for the results is
that low-order conjunctions of more abstract features
gives more modeling benefit than low-order conjunc-
tions of granular, low-level features. It is easy to imag-
ine that low-order conjunctions of granular features is
insufficient to capture useful abstract structure in the
domain. For example, to represent the corner of a wall,
the agent might need a conjunction of 10 features, but
we only had fourth order conjunctions. This was part
of the motivation for feature set #2: because the cam-
era images were clustered according to latent states,
they were typically images of the same thing, from
slightly different positions and angles. Using this fea-
ture set, the highest-order conjunction was still four
or five, but these conjunctions may represent more ab-
stract knowledge: if one feature represents “pink wall”
and another represents “pink corner,” perhaps a low-
order conjunction could express “I’m looking at a pink

wall, but if I turn left, I’ll see a pink corner.” The idea
that low-order conjunctions of more abstract features
gives more modeling benefit than low-order conjunc-
tions of granular, low-level features suggests several
directions for future improvement of these results.

Not reflected in the performance graphs is the com-
putation required. Learning the model was relatively
easy, taking only about 30 seconds. Because of the
intensive rendering and relatively large size of the do-
mains, the NAC algorithm required about a day to
generate the policies to be reported. Informal calcula-
tions indicated that it would take about a week to get
a single gradient with exact likelihood.

7. Conclusions and Future Work

We have presented a computationally efficient learning
algorithm for the Linear-Linear EFPSR model and il-
lustrated it on two domains. Our main contribution is
an approximate likelihood, and the insight that maxi-
mizing it is equivalent to attempting to match station-
ary distributions. This idea may find traction in other
learning problems. While evaluation of the model and
learning algorithm is challenging, it is only by virtue
of these approximations that we were able to attempt
at all domains like the Bouncing Ball or the Robot Vi-
sion domain, which have continuous state spaces, rich
observations, and tens of thousands of features. For
both domains, we obtained better-than-reactive con-
trol policies, suggesting that information from history
has successfully been incorporated into the state repre-
sentation. This is a positive result considering the size
of the data set and the number of features involved.
Future work needs to address the problem of learning
good atomic features and the graphical structure, since
these appear to be key factors affecting performance.

A. Computing L̂L and Its Derivatives

To compute L̂L we must compute three terms:
ET [st] (the stationary distribution of states), ET [φ(ft)]
(which is computed once from data), and the log par-
tition function log Z(ET [st]). We begin with ET [st].
Recall that our goal is to compute this term in a way
that is independent of T . This will be possible using
Assumption 4.1, the linearity of the state update, and
an insight related to stationary distributions:

ET [st] = ET [G(ot) (Ast−1 + B)]

≈ ET [G(ot)A] ET [st−1] + ET [G(ot)] B

= ET [G(ot)A] ET [st] + BG

= G(ET [ot])AET [st] + BG

= (I −G(ET [ot])A)
−1

BG (5)
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where I is an appropriately sized identity matrix, and
where BG = G(ET [ot])B. The second line follows by
Assumption 4.1.

The third and fourth lines are both interesting for dif-
ferent reasons. The fourth line follows by the linear-
ity of the operator G(·). The matrix G(E[ot]) can be
interpreted as the expected transition operator, and
is a simple function of the stationary distribution of
observations ET [ot]. The third line follows by the lim-
iting properties of our expectations: we assume that
ET [st] = ET [st−1] because as T → ∞, both represent
the stationary distribution of states.

The result is that ET [st] can be computed as the so-
lution to a linear system of equations. Note that
G(ET [ot]) will typically be very sparse, and a designer
may force the A part to be sparse or low-rank. If so,
a matrix-vector product can be computed efficiently,
and an iterative solver should be used to solve Eq. 5.

Computing Derivatives. We now compute the
derivatives of L̂L with respect to A and B:

∂L̂L
∂{A,B} =

∂L̂L
∂ET [st]

⊤
∂ET [st]

∂{A,B}
We begin with the left-hand term:

∂L̂L
∂ET [st]

= EET [st] [φ(F )]− ET [φ(ft)] ≡ ∆

This result has an appealing intuitive interpretation.
EET [st][φ(F )] can be interpreted as the expected fea-
tures that would be obtained if inference were per-
formed using ET [st] as the state – in other words, it
represents the stationary distribution of features un-
der the model. Since ET [φ(ft)] represents the em-
pirically observed stationary distribution, we see that
the gradient wishes to match the two. If we use a
variational method to compute the log partition func-
tion log Z(ET [st]), which is needed to determine the
value of the log-likelihood, then the expected features
EET [st][φ(F )] are available as a byproduct of the opti-
mization. This is a pleasing efficiency.

However, we are not done. We still must find the tran-
sition parameters which allow us to move the expected
sufficient statistics closer:

∂ET [st]

∂A
= (I −G(E[ot])A)

−1

(
∂

∂A
G(E[ot])A

)

ET [st]

We now find it convenient to remember that the
full derivative also includes the term ∂L̂L/∂ET [st] ≡
∆, which is a column vector. Let Γ ≡
∆⊤ (I −G(E[ot])A)

⊤−1
G(E[ot]). Then:

∆⊤ ∂ET [st]

∂A
=

∂

∂A
ΓAET [st] = Γ⊤ET [st]

⊤

Algorithm 2 GRADS-OF-APPROX-LL

Input: ET [ot], ET [φ(ft)], A, B

// Compute stationary distribution of states

ET [st] = (I −G(ET [ot])A)
−1

B

// Use ET [st] to perform inference
Compute EET [st][φ(F )] and log Z(ET [st])

// Compute the approximate log-likelihood:

L̂L = −ET [st]
⊤

EET [st][φ(F )]− log Z(ET [st]).

// Compute the gradient:
∆ = E[φ(ft)]− EET [st][φ(F )].

Γ = ∆⊤ (I −G(E[ot])A)
⊤−1

G(E[ot])

∇AL̂L = Γ⊤ET [st]
⊤ ← note: a rank-one matrix

∇BL̂L = G(ET [ot])
⊤∆

Return L̂L,∇AL̂L,∇BL̂L

The derivative with respect to B is similar:

∆⊤ ∂ET [st]

∂B
= ∆⊤ ∂

∂B
[G(E[ot])(AET [st] + B)]

=
∂

∂B
∆⊤G(E[ot])B = ∆⊤G(E[ot])

The completed algorithm is shown in Algorithm 2.
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Abstract

In EM and related algorithms, E-step compu-
tations distribute easily, because data items
are independent given parameters. For very
large data sets, however, even storing all of
the parameters in a single node for the M-
step can be impractical. We present a frame-
work that fully distributes the entire EM pro-
cedure. Each node interacts only with pa-
rameters relevant to its data, sending mes-
sages to other nodes along a junction-tree
topology. We demonstrate improvements
over a MapReduce topology, on two tasks:
word alignment and topic modeling.

1. Introduction

With dramatic recent increases in both data scale and
multi-core environments, it has become increasingly
important to understand how machine learning algo-
rithms can be efficiently parallelized. Many computa-
tions, such as the calculation of expectations in the E-
step of the EM algorithm, decompose in obvious ways,
allowing subsets of data to be processed independently.
In some such cases, the MapReduce framework (Dean
& Ghemawat, 2004) is appropriate and sufficient (Chu
et al., 2006). Specifically, MapReduce is suitable when
its centralized reduce operation can be carried out ef-
ficiently. However, this is not always the case. For ex-
ample, in modern machine translation systems, many
millions of words of example translations are aligned
using unsupervised models trained with EM (Brown
et al., 1994). In this case, one quickly gets to the point
where no single compute node can store the model pa-
rameters (expectations over word pairs in this case) for
all of the data at once, and communication required
for a centralized reduce operation dominates computa-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

tion time. The common solutions in practice are either
to limit the total training data or to process manage-
able chunks independently. Either way, the complete
training set is not fully exploited.

In this paper, we propose a general framework for dis-
tributing EM and related algorithms in which not only
is the computation distributed, as in the map and
reduce phases of MapReduce, but the storage of pa-
rameters and expected sufficient statistics is also fully
distributed and maximally localized. No single node
needs to store or manipulate all of the data or all
of the parameters. We describe a range of network
topologies and discuss the tradeoffs between commu-
nication bandwidth, communication latency, and per-
node memory requirements. In addition to a general
presentation of the framework, a primary focus of this
paper is the presentation of experiments in two ap-
plication cases: word alignment for machine transla-
tion (using standard EM) and topic modeling with
LDA (using variational EM). We show empirical re-
sults on the scale-up of our method for both applica-
tions, across several topologies.

Previous related work in the sensor network literature
has discussed distributing estimation of Gaussian mix-
tures using a tree-structured topology (Nowak, 2003);
this can be seen as a special case of the present ap-
proach. Paskin et al. (2004) present an approxi-
mate message passing scheme that uses a junction tree
topology in a related way, but for a different purpose.
In addition, Newman et al. (2008) present an asyn-
chronous sampling algorithm for LDA; we discuss this
work further, below. None of these papers have dis-
cussed the general case of distributing and decoupling
parameters in M-step calculations, the main contribu-
tion of the current work.

2. Expectation Maximization

Although our framework is more broadly applicable,
we focus on the EM algorithm (Dempster et al., 1977),
a technique for finding maximum likelihood param-
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∅ s1 s2 . . . sm

a1 a2 an· · ·

t1 t2 tn· · ·

Figure 1: IBM Model 1 word alignment model. The top
sentence is the source, and the bottom sentence is the tar-
get. Each target word is generated by a source word de-
termined by the corresponding alignment variable.

eters of a probabilistic model with latent or hidden
variables. In this setting, each datum di consists of a
pair (xi, hi) where xi is the set of observed variables
and hi are unobserved. We assume a joint model over
P (xi, hi|θ) with parameters θ. Our goal is to find a
θ that maximizes the marginal observed log-likelihood∑m

i=1 logP (xi|θ). Each iteration consists of two steps:

qi(hi)← P (hi|xi, θ) [E-Step]

θ ← arg max
θ

m∑
i=1

Eqi
P (xi|hi, θ) [M-Step]

where the expectation in the M-Step is taken with re-
spect to the distribution q(·) over the latent variables
found in the E-Step. When P (·|θ) is a member of the
exponential family, the M-Step reduces to solving a
set of equations involving expected sufficient statistics
under the distribution. Thus, the E-Step consists of
collecting expected sufficient statistics η = EθP (η|X)
with respect to qi for each datum xi. We briefly
present two EM applications we use for experiments.

2.1. Word Alignment

Word alignment is the task of linking words in a cor-
pora of parallel sentences. Each parallel sentence pair
consists of a source sentence S and its translation T
into a target language.1 The model we present here is
known as IBM Model 1 (Brown et al., 1994).2 In this
model, each word of T is generated from some word
of S or from a null word ∅ prepended to each source
sentence. The null word allows words to appear in the
target sentence without any evidence in the source.
Model 1 is a mixture model, in which each mixture
component indicates which source word is responsible
for generating the target word (see figure 1).

1Sometimes in the word alignment literature the roles
of S and T are reversed to reflect the decoding process.

2Although there are more sophisticated models for this
task, our concern is with efficiency in the presence of many
parameters. More complicated models do not contain sub-
stantially more parameters.

wzφ

N
M

θψ

γ

T

Figure 2: Latent Dirichlet Allocation model. Each word
is generated from a topic vocabulary distribution and each
topic is generated from a document topic distribution.

The formal generative model is as follows: (1) Select
a length n for the translation T based upon |S| = m
(typically uniform over a large range). (2) For each
j = 1, . . . , n, uniformly choose some source alignment
position aj ∈ {0, 1, . . . ,m}. (3) For each j = 1, . . . , n,
choose target word tj based on source word saj

with
probability θsaj

tj

In the data, the alignment variables a are unobserved,
and the parameters are the multinomial distributions
θs· for each source word s. The expected sufficient
statistics are expected alignment counts between each
source and target word that appear in a parallel sen-
tence pair. These expectations can be obtained from
the posterior probability of each alignment,

P (aj = i|S, T, θ) =
θsitj∑
i′ θsi′ tj

The E-Step computes the above posterior for each
alignment variable; these values are added to the cur-
rent expected counts of (s, t) pairings, denoted by
ηst. The M-Step consists of the following update:
θst ← ηstP

t′ ηst′
. Section 5.1 describes results for this

model on a data set with more than 243 million pa-
rameters (i.e., distinct co-occurring word pairs).

2.2. Topic Modeling

We present experiments in topic modeling via the La-
tent Dirichlet Allocation (Blei et al., 2003) topic model
(see figure 2). In LDA, we fix a finite number of topics
T and assume a closed vocabulary of size V . We as-
sume that each topic t has a multinomial distribution
θt· ∼ Dirichlet(Unif(V ), ψ). Each document draws a
topic distribution φ ∼ Dirichlet(Unif(T ), γ). For each
word position in a document, we draw an unobserved
topic index z from φ and then draw a word from θz·.

Our goal is to find the MAP estimate of θ for the
observed likelihood where the latent topic indicators
and document topic distributions φ have been inte-
grated out. In this setting, we can not perform an
exact E-Step because of the coupling of latent vari-
ables through the integral over parameters. Instead,
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we use a variational approximation of the posterior as
outlined in Blei et al. (2003), where all parameters
and latent variables are marginally independent. The
relevant expected sufficient statistics for θ are the ex-
pected counts ηtw over topic t and word w pairings
under the approximate variational distribution. The
M-Step, as in the case of our word alignment model
in section 2.1, consists of normalizing these counts:
θtw = ηtwP

w′ ηtw′
. Section 5.2 describes results for this

model. We note that the number of parameters in this
model is a linear function of the number of topics T .

3. Distributing EM

Given the amount of data and number of parameters
in many EM applications, it is worthwhile to distribute
the algorithm across many machines. We will consider
the setting in which our data set D has been divided
into k splits {D1, . . . ,Dk}.

3.1. Distributing the E-Step

Distributing the E-Step is relatively straightforward,
since the expected sufficient statistics for each datum
can be computed independently given a current esti-
mate of the parameters. Each of k nodes computes
expected sufficient statistics for one split of the data,

η(i) = Eθ [η|Di] [Distributed E-Step]

where we use the superscript (i) to emphasize that
these counts are partial and reflect only the contribu-
tions from split Di and not contributions from other
partitions. We will also write αi for the set of suffi-
cient statistic indices that have nonzero count in η(i),
and use η[αi] to indicate the projection of η onto the
subspace consisting of just those statistics in αi.

In order to complete the E-Step, we must aggregate
expected counts from all partitions in order to re-
estimate parameters. This step involves distributed
communication of a potentially large number of statis-
tics. We name this phase the C-Step and will examine
how to efficiently perform it in section 4. For the mo-
ment, we assume that there is a single computing node
which accumulates all partial sufficient statistics,

η =
k∑

i=1

η(i)[αi] [C-Step]

where we write η(i)[αi] to indicate that we only com-
municate non-zero counts. This is a simple and effec-
tive way to achieve near-linear speedup in the E-Step;
previous work has utilized it effectively (Blei et al.,
2003; Chu et al., 2006; Nowak, 2003).

3.2. Distributing the M-Step

A further possibility, which to our knowledge has not
been fully exploited, is distributing the M-Step. Often
in EM, it is the case that only a subset of parameters
may ever be relevant to a split Di of the data. For
instance, in the word alignment model of section 2.1,
if a word pairing (s, t) is not observed in some Di, node
i will never need the parameter θst. For our full word
alignment data set, when k = 20, less than 30 million
of the 243 million total parameters are relevant to each
node.

We will use βi to refer to the subset of parameter in-
dices relevant for Di. In order to distribute the M-
Step, each node must receive all expected counts nec-
essary to re-estimate all relevant parameters θ[βi]. In
section 4, we develop different schemes for how nodes
should communicate their partial expected counts, and
show that this choice of C-Step topology can dramat-
ically affect the efficiency of distributed EM.

One difficulty in distributing the M-Step lies in the fact
that re-estimating θ[βi] may require counts not found
in η[αi]. In the case of the word alignment model, θst

requires the counts ηst′ for all t′ appearing with s in
a sentence pair, even if t′ did not occur in Di. Often
these non-local statistics enter the computation only
via normalization terms. This is the case for the word
alignment and LDA models explored here. This obser-
vation suggests an easy way to get around the problem
presented above in the case of discrete latent variables:
we simply augment the set of sufficient statistics η with
a set of redundant sum terms that provide the missing
information needed to normalize parameter estimates.
For the word alignment model, we would include a suf-
ficient statistic ηs· to represent the sum

∑
t:(s,t)∈D ηst.

Then the re-estimated value of θst would simply be
ηst

ηs·
. With these augmented statistics, estimating θ[βi]

requires only ηst and ηs· for all (s, t) ∈ Di. It might
seem counterintuitive, but adding these extra statis-
tics actually decreases the total necessary amount of
communication, by trading a large number of sparse
statistics for a few dense ones.

4. Topologies for Distributed EM

This section will consider techniques for performing
the C-Step of distributed EM, in which a node i ob-
tains the necessary sufficient statistics η[αi] to esti-
mate parameters θ[βi]. We assume that the sets of
relevant count indices αi have been augmented as dis-
cussed at the end of section 3 so that η[αi] is sufficient
to re-estimate θ[βi].
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Figure 3: (a) MapReduce: Each node computes partial statistics in a local E-Step, sends these to a central “Reduce” node,
and receives back completed statistics relevant for completing its local M-Step. (b) AllPairs: Each node communicates
to each other node only the relevant partial sufficient statistics. For many applications, these intersections will be small.
(c) JunctionTree: The network topology is a tree, chosen heuristically to optimize any desired criteria (e.g., bandwidth).

4.1. MapReduce Topology

A straightforward way to implement the C-Step is to
have each node send its non-zero partial counts η(i)[αi]
to a central “Reduce” node for accumulation into η.
This central node then returns only the relevant com-
pleted counts η[αi] to the nodes so that they can inde-
pendently perform their local M-Steps. This approach,
depicted in figure 3(a), is roughly analogous to the
topology used in the MapReduce framework (Dean &
Ghemawat, 2004). When parameters are numerous,
this will already be more bandwidth-efficient than a
naive MapReduce approach, in which the Reduce node
would perform a global M-Step and then send all of the
new parameters θ back to all nodes for the next iter-
ation. To enable sending only relevant counts η[αi],
the actual iterations are preceded by a setup phase in
which each node constructs an array of relevant count
indices αi and sends this to the Reduce node. This
array also fixes an ordering on relevant statistics, so
that later messages of counts can be densely encoded.

This MapReduce topology3 may be a good choice
for the C-Step when nodes share most of the same
statistics. On the other hand, if sufficient statistics are
sparse and numerous, the central reduce node can be
a significant bandwidth and memory bottleneck in the
distributed EM algorithm. Indeed, in practice, with
either Model 1 or LDA, available amounts of train-
ing data can and do easily cause the sufficient statis-
tics vectors to exceed the memory of any single node.
The MapReduce topology for estimation of LDA has

3For the remainder of this paper we will use MapRe-
duce to refer to the topology used by the MapReduce sys-
tem (Dean & Ghemawat, 2004). While the particular de-
tails of our implementation will differ substantially from
the MapReduce system (e.g., we use a single reduce node),
many key results should hold more generally (e.g., the
MapReduce approach uses unnecessarily high bandwidth).

been discussed in related work, notably Newman et al.
(2008), though they do not consider the sparse distri-
bution of the M-step, which is necessary for very large
data sets.

4.2. AllPairs Topology

MapReduce takes a completely centralized approach
to implementing the C-Step, in which the accumula-
tion of η at the Reduce node can be slow or even infea-
sible. This suggests a decentralized approach, in which
nodes directly pass relevant counts to one another and
no single node need store all of η or θ. This section
describes one such approach, AllPairs, which in a
sense represents the opposite extreme from MapRe-
duce. In AllPairs, the network graph is a clique
on the k nodes, and each node i passes a message
mij = η(i)[αi ∩ αj ] to each other node j containing
precisely the statistics j needs and nothing more (see
figure 3(b)). Each node j then computes its completed
set of sufficient statistics with a simple summation:

η[αi] = η(i) +
∑
j 6=i

mji

= η(i) +
∑
j 6=i

η(j)[αi ∩ αj ]

AllPairs requires a more complicated setup phase,
where each node i calculates, for roughly half of the
other nodes, the intersection αi ∩ αj of its parame-
ters with the other node j’s.4 Node i then sends the
contents of this intersection to j.

In each iteration, message passing proceeds asyn-
chronously, and each node begins its local M-Step as

4Note that the C-Step time is now sensitive to how our
data is partitioned. An interesting area for future work is
intelligently partitioning the data so that data split inter-
sections are small.
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soon as it has finished sending and receiving the neces-
sary counts. An important point is that, to avoid dou-
ble counting, a received count cannot be folded into a
node’s local statistics until the local copy of that count
has been incorporated into all outgoing messages.

AllPairs is attractive because it lacks the bandwidth
bottleneck of MapReduce, all paths of communica-
tion are only one hop long, and each node need only
be concerned with precisely those statistics relevant for
its local E- and M-steps. On the down side, AllPairs
needs a full crossbar connection between nodes, and
requires unnecessarily high bandwidth for dense suffi-
cient statistics that are relevant to datums on many
nodes. In particular, a statistic that is relevant to k′

nodes must be passed k′(k′−1) times, as compared to
an optimal value of 2(k′ − 1) (see section 4.3).

4.3. JunctionTree Topology

A tree-based topology related to the junction tree ap-
proach used for belief propagation in graphical models
(Pearl, 1988) can avoid the bandwidth bottleneck of
MapReduce and the bandwidth explosion of All-
Pairs. In this approach, the k nodes are embedded in
an arbitrary tree structure T , and messages are passed
along the edges in both directions (see figure 3(c)). We
are certainly not the first to exploit such structures for
distributing computation; see particularly Paskin et al.
(2004), who use it for inference rather than estimation.

We first describe the most bandwidth-efficient method
for communicating partial results about a single statis-
tic, and then show how this can be extended to pro-
duce an algorithm that works for the entire C-Step.
Consider a single sufficient statistic ηx (e.g., some ηst

for Model 1) which is only relevant to E- and M-Steps
on some subset of machines S. Before the C-Step,
each node has η(i)

x , and after communication each node
should have ηx =

∑
i∈S η

(i)
x . We cannot hope to ac-

complish this goal by passing fewer than 2(|S| − 1)
pairwise messages; clearly, it must take at least |S|−1
messages before any node completes its counts, and
then another |S| − 1 messages for each of the other
|S|−1 nodes to complete theirs too. This is fewer mes-
sages than either MapReduce or AllPairs passes.

This theoretical minimum bandwidth can be achieved
by embedding the nodes of S in a tree. After desig-
nating an arbitrary node as the root, each node accu-
mulates a partial sum from its subtree and then passes
it up towards the root. Once the root has accumu-
lated the completed sum ηx, it is recursively passed
back down the tree until all nodes have received the
completed count, for a total of 2(|S| − 1) messages.

Of course, each node must obtain a set of complete
relevant statistics η[αi] rather than a single statistic
ηx. One possibility is to pass messages for each suffi-
cient statistic on a separate tree; while this represents
the bandwidth-optimal solution for the entire C-step, in
practice the overhead of managing 240 million different
message trees would likely outweigh the benefits.

Instead, we can simply force all statistics to share the
same global tree T . In each iteration we proceed much
as before, designating an arbitrary root node and pass-
ing messages up and then down, except that now the
message mij from node i to j conveys the intersec-
tion of their relevant statistics αi ∩ αj rather than a
single number. For this to work properly, we require
that T has the following running intersection property:
for each sufficient statistic, all concerned nodes form a
connected subtree of T . In other words, for all triples
of nodes (i, x, j) where x is on the path from i to j,
we must have (αi ∩ αj) ⊆ αx. We can assume that
this property holds, by augmenting sets of statistics at
interior nodes if necessary.

When the running intersection property holds, the
message contents can be expressed as

mij = η(Ti)[αi ∩ αj ] towards root
mji = η[αi ∩ αj ] away from root

where Ti is used to represent the subtree rooted at
i, and η(Ti) is the sum of statistics from nodes in this
subtree. Thus, the single global message passing phase
can be thought of as |α| separate single-statistic mes-
sage passing operations proceeding in parallel, where
the root of each such sub-phase is the node in its sub-
tree closest to the global root, and irrelevant opera-
tions involving other nodes and statistics can be ig-
nored. In our actual implementation, we instead use
an asynchronous message-passing protocol common in
probabilistic reasoning systems (Pearl, 1988), which
avoids the need to designate a root node in advance.

The setup phase for JunctionTree proceeds as fol-
lows: (1) All pairwise intersections of statistics are
computed and saved to shared disk. (2) An arbitrary
node chooses and broadcasts a directed, rooted tree T
on the nodes which optimizes some criterion. (3) Each
node (except the root) constructs the set of statistics
that must lie on its incoming edge, by taking the union
of the intersections of statistics (which can be reread
from disk) for all pairs of nodes on opposite sides of the
edge.5 (4) Each node passes the constructed edge set
along its incoming edge, fixing future message struc-
tures in the process. (5) Each node augments its αi to

5More efficient algorithms are possible, but they require
more memory.
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include all statistics in local outgoing messages, thus
enforcing the running intersection property.

To choose a heuristically good topology, we use the
maximum spanning tree (MST) with edge weights
equal to the sizes of the intersections |αi ∩αj |, so that
nodes with more shared statistics tend to be closer to-
gether. This heuristic has been successfully used in the
graphical models literature (Pearl, 1988) to construct
junction trees. However, in general one can imagine
much better heuristics that also consider, e.g., max
degree, tree diameter or underlying network structure.

If statistics tend to be well-clustered within and be-
tween nodes, we can expect this MST to require less
bandwidth than either alternate topology, and (like
AllPairs) there should be no central bandwidth bot-
tleneck. On the other hand, if statistics tend to be
shared between only a few nodes and this sharing is
not appropriately clustered, bandwidth and memory
may increase because many statistics will have to be
added to enforce the running intersection property.6

Furthermore, if the diameter of the tree is large, la-
tency may become an issue as many sequential message
sending and incorporation steps will have to be per-
formed. Finally, the setup phase takes longer because
choosing the tree topology and enforcing the running
intersection property may be expensive. Despite these
potential drawbacks, we will see that MST generally
performs best of the three topologies investigated here
in terms of both bandwidth and total running time.

As a final note, if T is a “hub and spoke” graph, and
the hub’s statistics are augmented to contain all of η,
a MapReduce variant is recovered as a special case of
JunctionTree. This is the version of MapReduce
we actually implemented; it differs from the version
described in section 4.1 only in that the role of reduce
node is assigned to one of the workers rather than a
separate node, which reduces bandwidth usage.

5. Experiments

We performed experiments using the word alignment
model from section 2.1 and the LDA topic model
from section 2.2. For each of these models, we com-
pared the network topologies used to perform the C-
Step and how they affect the overall efficiency of EM.
We implemented the following topologies (described
in section 4): MapReduce, AllPairs, and Junc-
tionTree. Although our implementation was done in
Java, every reasonable care was taken to be time and
memory efficient in our choice of data structures and in

6This could be avoided by using different trees for dif-
ferent sets of statistics; we leave this for future work.

network socket communication. All experiments were
performed on a cluster of identical, load-free 3.0 GHz
32-bit Intel machines. Running times per iteration
represent the median over 10 runs of the maximum
time on any node. We also examine the bandwidth
of each topology, measured by the number of counts
communicated across the network per iteration.

5.1. Word Alignment Results

We performed Model 1 (see section 2.1) experiments
on the UN Arabic English Parallel Text TIDES Ver-
sion 2 corpus, which consists of about 3 million sen-
tences of translated UN proceedings from 1994 until
2001.7 For the full data set, there are more than 243
million distinct parameters.

In table 1(a), we present results where the number
of sentence-pair datums per node is held constant at
145K and the number of nodes (and thus total training
data) is varied. For 10 or more nodes, the MapRe-
duce topology runs out of memory due to the num-
ber of statistics that must be stored in memory at
the Reduce node.8 In contrast, both AllPairs and
JunctionTree complete training for the full data set
distributed on 20 nodes.

We also experimented with the setting where we fix the
total amount of data at 200K sentences, but add more
nodes to distribute the work. Figure 4 gives iteration
times for all three topologies broken down according
to E-, C-, and M-Steps. The MapReduce graph (fig-
ure 4(a)) shows that the C-Step begins dominating
run time as the number of nodes increases. This effect
reduces the benefit from distributing EM for larger
numbers of nodes. Both AllPairs and Junction-
Tree have substantially smaller C-Steps, which con-
tributes to much faster per-iteration times and also
allows larger numbers of nodes to be effective.

On the full dataset, JunctionTree outperforms All-
Pairs, but not by a substantial margin. Although
the two topologies have roughly comparable running
times, they have different network behaviors. Figure 5,
which compares bandwidth usage in billions of counts
transferred over the network per iteration, shows that
AllPairs uses substantially more bandwidth than ei-
ther MapReduce or JunctionTree. This is due
to the O(k2) number of messages sent per iteration.
In contrast, JunctionTree typically has a higher la-

7LDC catalog #LDC2004E13. See http://projects.
ldc.upenn.edu/TIDES/index.html.

8This issue could be sidestepped by using multiple Re-
duce nodes as in the MapReduce system; however, the fun-
damental inefficiency of the MapReduce topology would
remain.

1189



Fully Distributed EM for Very Large Datasets

 0

 50

 100

 150

 200

 250

 1  2  5  10  20

It
er

a
ti

o
n

 t
im

e 
(s

)

# of nodes

MapReduce

M-Step
C-Step
E-Step

 0

 50

 100

 150

 200

 250

 1  2  5  10  20

# of nodes

AllPairs

M-Step
C-Step
E-Step

 0

 50

 100

 150

 200

 250

 1  2  5  10  20

# of nodes

JunctionTree

M-Step
C-Step
E-Step

(a) (b) (c)

Figure 4: Speedup of median iteration time for three topologies as a function of the number of nodes, training Model 1
on 200k total sentence pairs. Time for each iteration is broken down into E-, C-, and M-Step time. The M-Step is present
but difficult to see due to its brevity.
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duce ran out of memory when run on more than 5 nodes.

tency due to the fact that nodes must wait to receive
messages before they can send their own. AllPairs
and JunctionTree with the MST heuristic represent
a bandwidth and latency tradeoff, and the choice of
which to use depends on the properties of the partic-
ular network.

5.2. Topic Modeling Results

We present results for the variational EM LDA topic
model presented in section 2.2. Our results are on
the Reuters Corpus Volume 1 (Lewis et al., 2004).
This corpus consists of 804,414 newswire documents,
where all tokens have been stemmed and stopwords
removed.9 There are approximately 116,000 unique
word types after pre-processing. The number of pa-
rameters of interest is therefore 116,000T , where T is
the number of topics that we specify.

We experimented with this model on the entire corpus
and varied the number of topics. The largest num-

9We used the processed version of the corpus provided
by Lewis et al. (2004).
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ber of topics we used was T = 1,000, which yields 116
million unique parameters. Our results on iteration
time are presented in figure 6. Note that the number
of parameters depends linearly on the number of top-
ics, which can roughly be seen in figure 6. This figure
demonstrates that the efficiency of the AllPairs and
JunctionTree topologies as the number of parame-
ters increases. We see that JunctionTree edges out
AllPairs for a larger number of topics.

Table 1(b) shows detailed results for the experiment
depicted in figure 6. Besides the difference in itera-
tion times for the three algorithms as the number of
topics (and statistics) grows, there are at least two
other salient points. First, while the number of to-
tal statistics grows similarly to in the word alignment
experiments, here the number of unique statistics is
significantly smaller (i.e., each statistic, on average, is
relevant to more nodes). This leads to significantly
worse performance, especially in terms of bandwidth,
for AllPairs. A second point is that setup times are
much lower than for word alignment, because sets of
relevant words can be determined first, and only then
expanded to (word, topic) pairs.
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Model 1, 145k sentence pairs per node LDA, all 804k documents, 20 nodes
# nodes 1 2 5 10 20
# Unique Stats (in M) 29.37 47.84 90.58 147.65 243.01
# Total Stats (in M) 29.37 58.18 146.96 297.30 597.95
Opt Bandwidth (M of stats) 0.00 20.68 112.76 299.31 709.88

MapReduce
Setup Time (s) 138.37 185.01 458.72 * *
E-Step Time (s) 149.66 177.73 196.45 * *
C-Step Time (s) 0.002 8.41 282.43 * *
M-Step Time (s) 3.18 5.48 10.65 * *
Iteration Time (s) 152.85 191.62 489.54 * *
Max Hops 0 1 2 * *
Bandwidth (M of stats) 0.00 58.75 233.18 * *
Bottleneck (M of stats) 0.00 58.75 233.18 * *

AllPairs
Setup Time (s) 138.37 262.98 332.52 584.08 1003.11
E-Step Time (s) 149.66 163.37 166.99 168.66 204.63
C-Step Time (s) 0.002 2.91 17.64 56.51 594.18
M-Step Time (s) 3.18 3.43 3.53 3.49 3.61
Iteration Time (s) 152.85 169.71 188.16 228.66 802.43
Max Hops 0 1 1 1 1
Bandwidth (M of stats) 0.00 20.68 207.64 915.35 3615.97
Bottleneck (M of stats) 0.00 10.34 42.13 93.68 189.04

JunctionTree
Setup Time (s) 138.37 262.98 393.77 868.22 2392.72
E-Step Time (s) 149.66 163.37 167.32 196.00 222.14
C-Step Time (s) 0.002 2.91 24.73 51.89 536.80
M-Step Time (s) 3.18 3.43 4.20 6.05 8.85
Iteration Time (s) 152.85 169.71 196.25 253.94 767.79
Max Hops 0 1 3 6 13
Bandwidth (M of stats) 0.00 20.68 142.51 475.82 1424.26
Bottleneck (M of stats) 0.00 10.34 54.50 92.84 171.12

# topics 10 50 100 500 1000
# Unique Stats (in M) 1.16 5.82 11.64 58.18 116.36
# Total Stats (in M) 5.03 25.17 50.34 251.71 503.43
Opt Bandwidth (M of stats) 7.74 38.71 77.41 387.07 774.15

MapReduce
Setup Time (s) 3.90 14.17 23.58 96.50 225.85
E-Step Time (s) 9.36 24.65 47.16 260.44 524.09
C-Step Time (s) 5.18 26.37 51.91 599.32 993.60
M-Step Time (s) 0.20 2.69 6.51 39.19 89.88
Iteration Time (s) 14.73 53.72 105.58 898.95 1607.56
Max Hops 2 2 2 2 2
Bandwidth (M of stats) 9.52 47.60 95.20 475.99 951.98
Bottleneck (M of stats) 9.52 47.60 95.20 475.99 951.98

AllPairs
Setup Time (s) 20.44 29.72 35.19 213.49 549.89
E-Step Time (s) 9.15 23.19 46.97 265.74 518.71
C-Step Time (s) 2.62 13.09 24.23 146.24 572.00
M-Step Time (s) 0.05 0.49 1.45 8.85 20.01
Iteration Time (s) 11.82 36.78 72.65 420.83 1110.72
Max Hops 1 1 1 1 1
Bandwidth (M of stats) 52.29 261.43 522.87 2614.33 5228.65
Bottleneck (M of stats) 2.68 13.40 26.80 134.00 268.01

JunctionTree
Setup Time (s) 22.92 25.15 25.16 67.54 124.36
E-Step Time (s) 8.99 23.25 68.59 256.60 514.02
C-Step Time (s) 3.81 19.10 30.58 173.23 330.98
M-Step Time (s) 0.11 1.18 3.13 20.66 43.62
Iteration Time (s) 12.91 43.53 102.30 450.49 888.62
Max Hops 14 14 14 14 14
Bandwidth (M of stats) 12.85 64.23 128.46 642.30 1284.60
Bottleneck (M of stats) 1.39 6.93 13.87 69.33 138.67

(a) (b)

Table 1: (a) Results for scaling up number of nodes, training Model 1 with 145k sentence pairs per node. (b) Results
for scaling up number of topics, training LDA with all 804k documents on 20 nodes. All times are measured in seconds,
statistics are counted in millions, and bandwidths are measured in millions of statistics passed per iteration. # unique
stats measures |α|, whereas # total stats measures

P
i |αi|. Opt bandwidth is theoretically optimal bandwidth (see section

4.3). Setup time includes all time until all nodes started the first E-Step. Median total time per iteration is given, as well
as a breakdown into E-, C-, and M-Steps. Max hops is the diameter of the graph. Bottleneck is maximum bandwidth in
and out of any single node. (*) indicates an out-of-memory error.

We note that the total bandwidth is actually lower
for MapReduce than JunctionTree since the MST
only heuristically minimizes the number of discon-
nected statistic components, rather than the true cost
of enforcing the running intersection property. Despite
this, the bandwidth bottleneck for JunctionTree is
still much lower than for MapReduce.

6. Conclusion

We have demonstrated theoretically and empirically
that a distributed EM system can function success-
fully, allowing for both significant speedup and scaling
up to computations that would be too large to fit in
the memory of a single machine. Future work will con-
sider applications to other machine learning methods,
alternative junction tree heuristics, and more general
graph topologies.
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Abstract

This paper aims to conduct a study on the
listwise approach to learning to rank. The
listwise approach learns a ranking function by
taking individual lists as instances and min-
imizing a loss function defined on the pre-
dicted list and the ground-truth list. Exist-
ing work on the approach mainly focused on
the development of new algorithms; methods
such as RankCosine and ListNet have been
proposed and good performances by them
have been observed. Unfortunately, the un-
derlying theory was not sufficiently studied
so far. To amend the problem, this paper
proposes conducting theoretical analysis of
learning to rank algorithms through inves-
tigations on the properties of the loss func-
tions, including consistency, soundness, con-
tinuity, differentiability, convexity, and effi-
ciency. A sufficient condition on consistency
for ranking is given, which seems to be the
first such result obtained in related research.
The paper then conducts analysis on three
loss functions: likelihood loss, cosine loss,
and cross entropy loss. The latter two were
used in RankCosine and ListNet. The use of
the likelihood loss leads to the development of

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).
*The work was performed when the first author was an
intern at Microsoft Research Asia.

a new listwise method called ListMLE, whose
loss function offers better properties, and also
leads to better experimental results.

1. Introduction

Ranking, which is to sort objects based on certain fac-
tors, is the central problem of applications such as in-
formation retrieval (IR) and information filtering. Re-
cently machine learning technologies called ‘learning
to rank’ have been successfully applied to ranking, and
several approaches have been proposed, including the
pointwise, pairwise, and listwise approaches.

The listwise approach addresses the ranking problem
in the following way. In learning, it takes ranked lists
of objects (e.g., ranked lists of documents in IR) as
instances and trains a ranking function through the
minimization of a listwise loss function defined on the
predicted list and the ground truth list. The listwise
approach captures the ranking problems, particularly
those in IR in a conceptually more natural way than
previous work. Several methods such as RankCosine
and ListNet have been proposed. Previous experi-
ments demonstrate that the listwise approach usually
performs better than the other approaches (Cao et al.,
2007)(Qin et al., 2007).

Existing work on the listwise approach mainly fo-
cused on the development of new algorithms, such as
RankCosine and ListNet. However, there was no suf-
ficient theoretical foundation laid down. Furthermore,
the strength and limitation of the algorithms, and the
relations between the proposed algorithms were still
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not clear. This largely prevented us from deeply un-
derstanding the approach, more critically, from devis-
ing more advanced algorithms.

In this paper, we aim to conduct an investigation on
the listwise approach.

First, we give a formal definition of the listwise ap-
proach. In ranking, the input is a set of objects, the
output is a permutation of the objects1, and the model
is a ranking function which maps a given input to an
output. In learning, the training data is drawn i.i.d.
according to an unknown but fixed joint probability
distribution between input and output. Ideally we
would minimize the expected 0− 1 loss defined on the
predicted list and the ground truth list. Practically
we instead manage to minimize an empirical surrogate
loss with respect to the training data.

Second, we evaluate a surrogate loss function from four
aspects: (a) consistency, (b) soundness, (c) mathemat-
ical properties of continuity, differentiability, and con-
vexity, and (d) computational efficiency in learning.
We give analysis on three loss functions: likelihood
loss, cosine loss, and cross entropy loss. The first one
is newly proposed in this paper, and the last two were
used in RankCosine and ListNet, respectively.

Third, we propose a novel method for the listwise ap-
proach, which we call ListMLE. ListMLE formalizes
learning to rank as a problem of minimizing the likeli-
hood loss function, equivalently maximizing the likeli-
hood function of a probability model. Due to the nice
properties of the loss function, ListMLE stands to be
more effective than RankCosine and ListNet.

Finally, we have experimentally verified the correct-
ness of the theoretical findings. We have also found
that ListMLE can significantly outperform RankCo-
sine and ListNet.

The rest of the paper is organized as follows. Section
2 introduces related work. Section 3 gives a formal
definition to the listwise approach. Section 4 conducts
theoretical analysis of listwise loss functions. Section 5
introduces the ListMLE method. Experimental results
are reported in Section 6 and the conclusion and future
work are given in the last section.

2. Related Work

Existing methods for learning to rank fall into three
categories. The pointwise approach (Nallapati, 2004)
transforms ranking into regression or classification on

1In this paper, we use permutation and ranked list in-
terchangeably.

single objects. The pairwise approach (Herbrich et al.,
1999) (Freund et al., 1998) (Burges et al., 2005) trans-
forms ranking into classification on object pairs. The
advantage for these two approaches is that existing
theories and algorithms on regression or classification
can be directly applied, but the problem is that they
do not model the ranking problem in a straightforward
fashion. The listwise approach can overcome the draw-
back of the aforementioned two approaches by tackling
the ranking problem directly, as explained below.

For instance, Cao et al. (2007) proposed one of the first
listwise methods, called ListNet. In ListNet, the list-
wise loss function is defined as cross entropy between
two parameterized probability distributions of permu-
tations; one is obtained from the predicted result and
the other is from the ground truth. Qin et al. (2007)
proposed another method called RankCosine. In the
method, the listwise loss function is defined on the ba-
sis of cosine similarity between two score vectors from
the predicted result and the ground truth2. Experi-
mental results show that the listwise approach usually
outperforms the pointwise and pariwise approaches.

In this paper, we aim to investigate the listwise ap-
proach to learning to rank, particularly from the view-
point of loss functions. Actually similar investigations
have also been conducted for classification. For in-
stance, in classification, consistency and soundness of
loss functions are well studied. Consistency forms the
basis for the success of a loss function. It is known
that if a loss function is consistent, then the learned
classifier can achieve the optimal Bayes error rate in
the large sample limit. Many well known loss func-
tions such as hinge loss, exponential loss, and logis-
tic loss are all consistent (cf., (Zhang, 2004)(Bartlett
et al., 2003)(Lin, 2002)). Soundness of a loss func-
tion guarantees that the loss can represent well the
targeted learning problem. That is, an incorrect pre-
diction should receive a larger penalty than a correct
prediction, and the penalty should reflect the confi-
dence of prediction. For example, hinge loss, exponen-
tial loss, and logistic loss are sound for classification.
In contrast, square loss is sound for regression but not
for classification (Hastie et al., 2001).

3. Listwise Approach

We give a formal definition of the listwise approach
to learning to rank. Let X be the input space whose

2In a broad sense, methods directly optimizing evalua-
tion measures, such as SVM-MAP (Yue et al., 2007) and
AdaRank (Xu & Li, 2007) can also be regarded as listwise
algorithms. We will, however, limit our discussions in this
paper on algorithms like ListNet and RankCosine.
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elements are sets of objects to be ranked, Y be the out-
put space whose elements are permutations of objects,
and PXY be an unknown but fixed joint probability
distribution of X and Y . Let h : X → Y be a ranking
function, and H be the corresponding function space
(i.e., h ∈ H). Let x ∈ X and y ∈ Y , and let y(i) be
the index of object which is ranked at position i. The
task is to learn a ranking function that can minimize
the expected loss R(h), defined as:

R(h) =
∫

X×Y

l(h(x),y)dP (x,y), (1)

where l(h(x),y) is the 0 − 1 loss function such that

l(h(x),y) =
{

1, if h(x) 6= y
0, if h(x) = y,

(2)

That is to say, we formalize the ranking problem as
a new ‘classification’ problem on permutations. If the
permutation of the predicted result is the same as the
ground truth, then we have zero loss; otherwise we
have one loss. In real ranking applications, the loss
can be cost-sensitive, i.e., depending on the positions
of the incorrectly ranked objects. We will leave this
as our future work and focus on the 0 − 1 loss in this
paper first. Actually, in the literature of classification,
people also studied the 0 − 1 loss first, before they
eventually moved onto the cost-sensitive case.

It is easy to see that the optimal ranking func-
tion which can minimize the expected loss R(hB) =
inf R(h) is given by the Bayes rule,

hB(x) = arg max
y∈Y

P (y|x), (3)

Since PXY is unknown, formula (1) cannot be directly
solved and thus hB(x) cannot be easily obtained. In
practice, we are given independently and identically
distributed (i.i.d) samples S = {(x(i),y(i))}m

i=1 ∼
PXY , we instead try to obtain a ranking function
h ∈ H that minimizes the empirical loss.

RS(h) =
1
m

m∑
i=1

l(h(x(i)),y(i)). (4)

Note that for efficiency consideration, in practice the
ranking function usually works on individual objects.
It assigns a score to each object (by employing a scor-
ing function g), sorts the objects in descending order of
the scores, and finally creates the ranked list. That is
to say, h(x(i)) is decomposable with respect to objects.
It is defined as

h(x(i)) = sort(g(x(i)
1 ), . . . , g(x(i)

ni
)). (5)

where x
(i)
j ∈ x(i), ni denotes the number of objects

in x(i), g(·) denotes the scoring function, and sort(·)
denotes the sorting function. As a result, (4) becomes:

RS(g) =
1
m

m∑
i=1

l(sort(g(x(i)
1 ), . . . , g(x(i)

ni
)),y(i)). (6)

Due to the nature of the sorting function and the
0 − 1 loss function, the empirical loss in (6) is inher-
ently non-differentiable with respect to g, which poses
a challenge to the optimization of it. To tackle this
problem, we can introduce a surrogate loss as an ap-
proximation of (6), following a common practice in
machine learning.

Rφ
S(g) =

1
m

m∑
i=1

φ(g(x(i)),y(i)), (7)

where φ is a surrogate loss function and g(x(i)) =
(g(x(i)

1 ), . . . , g(x(i)
ni )). For convenience in notation, in

the following sections, we sometimes write φy(g) for
φ(g(x),y) and use bold symbols such as g to denote
vectors since for a given x, g(x) becomes a vector.

4. Theoretical Analysis

4.1. Properties of Loss Function

We analyze the listwise approach from the viewpoint
of surrogate loss function. Specifically, we look at
the following properties 3 of it: (a) consistency , (b)
soundness, (c) continuity, differentiability, and convex-
ity, and (d) computational efficiency in learning.

Consistency is about whether the obtained ranking
function can converge to the optimal one through the
minimization of the empirical surrogate loss (7), when
the training sample size goes to infinity. It is a nec-
essary condition for a surrogate loss function to be a
good one for a learning algorithm (cf., Zhang (2004)).

Soundness is about whether the loss function can in-
deed represent loss in ranking. For example, an in-
correct ranking should receive a larger penalty than
a correct ranking, and the penalty should reflect the
confidence of the ranking. This property is particu-
larly important when the size of training data is small,
because it can directly affect the training results.

4.2. Consistency

We conduct analysis on learning to rank algorithms
from the viewpoint of consistency. As far as we know,

3In addition, convergence rate is another issue to con-
sider. We leave it as future work.
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this is the first work discussing the consistency issue
for ranking.

In the large sample limit, minimizing the empirical
surrogate loss (7) amounts to minimizing the following
expected surrogate loss

Rφ(g) = EX,Y {φy(g(x))} = EX{Q(g(x))} (8)

where Q(g(x)) =
∑
y∈Y

P (y|x)φy(g(x)).

Here we assume g(x) is chosen from a vector Borel
measurable function set, whose elements can take any
value from Ω ⊂ Rn.

When the minimization of (8) can lead to the min-
imization of the expected 0 − 1 loss (1), we say the
surrogate loss function is consistent. A equivalent def-
inition can be found in Definition 2. Actually this
equivalence relationship has been discussed in related
work on the consistency of classification (Zhang, 2004).
Definition 1. We define Λy as the space of all possible
probabilities on the permutation space Y, i.e., ΛY ,
{p ∈ R|Y | :

∑
y∈Y py = 1, py ≥ 0}.

Definition 2. The loss φy(g) is consistent on a set
Ω ⊂ Rn with respect to the ranking loss (1), if the
following conditions hold: ∀p ∈ ΛY , assume y∗ =
arg maxy∈Y py and Y c

y∗ denotes the space of permu-
tations after removing y∗, we have

inf
g∈Ω

Q(g) < inf
g∈Ω,sort(g)∈Y c

y∗
Q(g)

We next give sufficient conditions of consistency in
ranking.
Definition 3. A permutation probability space ΛY is
order preserving with respect to object i and j, if the
following conditions hold: ∀y ∈ Yi,j , {y ∈ Y :
y−1(i) < y−1(j)} where y−1(i) denotes the position for
object i in y, denote σ−1y as the permutation which
exchanges the positions of object i and j while hold
others unchanged for y, we have py > pσ−1y.
Definition 4. The loss φy(g) is order sensitive on a
set Ω ⊂ Rn, if φy(g) is a non-negative differentiable
function and the following two conditions hold:

1. ∀y ∈ Y , ∀i < j, denote σy as the permutation
which exchanges the object on position i and that
on position j while holds others unchanged for y,
if gy(i) < gy(j), then φy(g) ≥ φσy(g) and with at
least one y, the strict inequality holds.

2. If gi = gj, then either ∀y ∈ Yi,j,
∂φy(g)

∂gi
≤ ∂φy(g)

∂gj
,

or ∀y ∈ Yi,j,
∂φy(g)

∂gi
≥ ∂φy(g)

∂gj
, and with at least

one y, the strict inequality holds.

Theorem 5. Let φy(g) be an order sensitive loss func-
tion on Ω ⊂ Rn. ∀n objects, if its permutation prob-
ability space is order preserving with respect to n − 1
objective pairs (j1, j2), (j2, j3), · · · , (jn − 1, jn). Then
the loss φy(g) is consistent with respect to (1).

Due to space limitations, we only give the proof sketch.
First, we can show if the permutation probability space
is order preserving with respect to n−1 objective pairs
(j1, j2), (j2, j3), · · · , (jn − 1, jn), then the permutation
with the maximum probability is y∗ = (j1, j2, · · · , jn).
Second, for an order sensitive loss function, for any or-
der preserving object pairs (j1, j2), the vector g which
minimizes Q(g) in (8) should assign a larger score to
j1 than to j2. This can be proven by the change of loss
due to exchanging the scores of j1 and j2. Given all
these results and Definition 2, we can prove Theorem
5 by means of contradiction.

Theorem 5 gives sufficient conditions for a surrogate
loss function to be consistent: the permutation prob-
ability space should be order preserving and the func-
tion should be order sensitive. Actually, the assump-
tion of order preserving has already been made when
we use the scoring function and sorting function for
ranking. The property of order preserving has also
been explicitly or implicitly used in previous work,
such as Cossock and Zhang (2006). The property of
order sensitive shows that starting with a ground truth
permutation, the loss will increase if we exchange the
positions of two objects in it, and the speed of increase
in loss is sensitive to the positions of objects.

4.3. Case Studies

We look at the four properties of three loss functions.

4.3.1. Likelihood Loss

We introduce a new loss function for listwise approach,
which we call likelihood loss. The likelihood loss func-
tion is defined as:

φ(g(x),y) = − log P (y|x;g) (9)

where P (y|x;g) =
n∏

i=1

exp(g(xy(i)))∑n
k=i exp(g(xy(k)))

.

Note that we actually define a parameterized exponen-
tial probability distribution over all the permutations
given the predicted result (by the ranking function),
and define the loss function as the negative log likeli-
hood of the ground truth list. The probability distri-
bution turns out to be a Plackett-Luce model (Marden,
1995).

The likelihood loss function has the nice properties as
below.
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First, the likelihood loss is consistent. The following
proposition shows that the likelihood loss is order sen-
sitive. Therefore, according to Theorem 5, it is consis-
tent. Due to the space limitations, we omit the proof.

Proposition 6. The likelihood loss (9) is order sen-
sitive on Ω ⊂ Rn.

Second, the likelihood loss function is sound. For sim-
plicity, suppose that there are two objects to be ranked
(similar argument can be made when there are more
objects). The two objects receive scores of g1 and g2

from a ranking function. Figure 1(a) shows the scores,
and the point g = (g1, g2). Suppose that the first ob-
ject is ranked below the second object in the ground
truth. Then the upper left area above line g2 = g1 cor-
responds to correct ranking; and the lower right area
incorrect ranking. According to the definition of likeli-
hood loss, all the points on the line g2 = g1 +d has the
same loss. Therefore, we say the likelihood loss only
depends on d. Figure 1(b) shows the relation between
the loss function and d. We can see the loss function
decreases monotonously as d increases. It penalizes
negative values of d more heavily than positive ones.
This will make the learning algorithm focus more on
avoiding incorrect rankings. In this regard, the loss
function is a good approximation of the 0 − 1 loss.

2d

dgg =− 12

12 gg =2g

1g

g

(a)

d

φ

(b)

Figure 1. (a) Ranking scores of predicted result; (b) Loss
φ v.s. d for the likelihood loss.

Third, it is easy to verify that the likelihood loss is
continuous, differentiable, and convex (Boyd & Van-
denberghe, 2004). Furthermore, the loss can be com-
puted efficiently, with time complexity of linear order
to the number of objects.

With the above good properties, a learning algorithm
which optimizes the likelihood loss will become pow-
erful for creating a ranking function.

4.3.2. Cosine Loss

The cosine loss is the loss function used in RankCosine
(Qin et al., 2007), a listwise method. It is defined on
the basis of the cosine similarity between the score

vector of the ground truth and that of the predicted
result.

φ(g(x),y) =
1
2
(1 − ψy(x)T g(x)

‖ψy(x)‖‖g(x)‖
). (10)

The score vector of the ground truth is produced by a
mapping ψy(·) : Rd → R, which retains the order in a
permutation, i.e, ψy(xy(1)) > · · · > ψy(xy(n)).

First, we can prove that the cosine loss is consistent,
given the following proposition. Due to space limita-
tions, we omit the proof.

Proposition 7. The cosine loss (10) is order sensitive
on Ω ⊂ Rn.

Second, the cosine loss is not very sound. Let us again
consider the case of ranking two objects. Figure 2(a)
shows point g = (g1, g2) representing the scores of the
predicted result and point gψ representing the ground
truth (which depends on the mapping function ψ). We
denote the angle from point g to line g2 = g1 as α, and
the angle from gψ to line g2 = g1 as αgψ

. We inves-
tigate the relation between the loss and the angle α.
Figure 2(b) shows the cosine loss as a function of α.
From this figure, we can see that the cosine loss is
not a monotonously decreasing function of α. When
α > αgψ

, it increases quickly, which means that it
can heavily penalize correct rankings. Furthermore,
the mapping function and thus αgψ

can also affect the
loss function. Specifically, the curve of the loss func-
tion can shift from left to right with different values
of αgψ

. Only when αgψ
= π/2, it becomes a rela-

tively satisfactory representation of loss for the learn-
ing problem.

ψg

1g

2g
12 gg =g

α

(a)

−π αgψ π α

φ

(b)

Figure 2. (a) Ranking scores of predicted result and ground
truth; (b) Loss φ v.s. angle α for the cosine loss.

Third, it is easy to see that the cosine loss is contin-
uous, differentiable, but not convex. It can also be
computed in an efficient manner with a time complex-
ity linear to the number of objects.
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4.3.3. Cross Entropy Loss

The cross entropy loss is the loss function used in List-
Net (Cao et al., 2007), another listwise method. The
cross entropy loss function is defined as:

φ(g(x),y) = D(P (π|x; ψy)||P (π|x;g)) (11)

where P (π|x; ψy) =
n∏

i=1

exp(ψy(xπ(i)))∑n
k=i exp(ψy(xπ(k)))

P (π|x;g) =
n∏

i=1

exp(g(xπ(i)))∑n
k=i exp(g(xπ(k)))

where ψ is a mapping function whose definition is sim-
ilar to that in RankCosine.

First, we can prove that the cross entropy loss is con-
sistent, given the following proposition. Due to space
limitations, we omit the proof.

Proposition 8. The cross entropy loss (11) is order
sensitive on Ω ⊂ Rn.

Second, the cross entropy loss is not very sound.
Again, we look at the case of ranking two objects.
g = (g1, g2) denotes the ranking scores of the predicted
result. gψ denotes the ranking scores of the ground
truth (depending on the mapping function). Similar
to the discussions in the likelihood loss, the cross en-
tropy loss only depends on the quantity d. Figure 3(a)
illustrates the relation between g, gψ, and d. Figure
3(b) shows the cross entropy loss as a function of d. As
can be seen that the loss function achieves its minimum
at point dgψ

, and then increases as d increases. That
means it can heavily penalize those correct rankings
with higher confidence. Note that the mapping func-
tion also affects the penalization. According to map-
ping functions, the penalization on correct rankings
can be even larger than that on incorrect rankings.

2d

dgg =− 12

12 gg =

2g

1g

ψgg

(a)

dgψ d

φ

(b)

Figure 3. (a) Ranking scores of predicted result and ground
truth; (b) Loss φ v.s. d for the cross entropy loss.

Third, it is easy to see that the cross entropy loss is
continuous and differentiable. It is also convex because
the log of a convex function is still convex, and the

Algorithm 1 ListMLE Algorithm
Input: training data{(x(1),y(1)), . . . , (x(m),y(m))}
Parameter: learning rate η, tolerance rate ε
Initialize parameter ω
repeat

for i = 1 to m do
Input (x(i),y(i)) to Neural Network and compute
gradient 4ω with current ω
Update ω = ω − η ×4ω

end for
calculate likelihood loss on the training set

until change of likelihood loss is below ε
Output: Neural Network model ω

set of convex function is closed under addition (Boyd
& Vandenberghe, 2004). However, it cannot be com-
puted in an efficient manner. The time complexity is
of exponential order to the number of objects.

Table 1 gives a summary of the properties of the loss
functions. All the three loss functions as aforemen-
tioned are consistent, as well as continuous and differ-
entiable. The likelihood loss is better than the cosine
loss in terms of convexity and soundness, and is better
than the cross entropy loss in terms of time complexity
and soundness.

5. ListMLE

We propose a novel listwise method referred to as
ListMLE. In learning of ListMLE, we employ the like-
lihood loss as the surrogate loss function, since it is
proven to have all the nice properties as a surrogate
loss. On the training data, we actually maximize the
sum of the likelihood function with respect to all the
training queries.

m∑
i=1

log P (y(i)|x(i);g). (12)

We choose Stochastic Gradient Descent (SGD) as the
algorithm for conducting the minimization. As rank-
ing model, we choose linear Neural Network (param-
eterized by ω). Algorithm 1 shows the learning algo-
rithm based on SGD.

6. Experimental Results

We conducted two experiments to verify the correct-
ness of the theoretical findings. One data set is syn-
thetic data, and the other is the LETOR benchmark
data for learning to rank (Liu et al., 2007).
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Table 1. Comparison between different surrogate losses.

Loss Consistency Soundness Continuity Differentiability Convexity Complexity

Likelihood
√ √ √ √ √

O(n)
Cosine

√
×

√ √
× O(n)

Cross entropy
√

×
√ √ √

O(n! · n)

6.1. Experiment on Synthetic Data

We conducted an experiment using a synthetic data
set. We created the data as follows. First, we ran-
domly sample a point according to the uniform dis-
tribution on the square area [0, 1] × [0, 1]. Then we
assign to the point a score using the following rule,
y = x1 + 10x2 + ε where ε denotes a random variable
normally distributed with mean of zero and standard
deviation of 0.005. In total, we generate 15 points and
their scores in this way, and create a permutation on
the points based on their scores, which forms an in-
stance of ranking. We repeat the process and make
100 training instances, 100 validation instances, and
100 testing instances. We applied RankCosine, List-
Net4, and ListMLE to the data.

We tried different score mapping functions for
RankCosine and ListNet, and used five most represen-
tative ones, i.e., log(15− r),

√
15 − r, 15− r, (15− r)2

and exp(15 − r), where r denotes the positions of ob-
jects. We denote the mapping functions as log, sqrt,
l, q, and exp for simplicity. The experiments were re-
peated 20 times with different initial values of param-
eters in the Neural Network model. Table 2 shows
the means and standard deviations of the accuracies
and Mean Average Precision (MAP)(Baeza-Yates &
Ribeiro-Neto, 1999) of the three algorithms. The ac-
curacy measures the proportion of correctly ranked in-
stances and MAP5 is a commonly used measure in IR.

As shown in the table, ListMLE achieves the best per-
formance among all the algorithms in terms of both
accuracy and MAP, owing to good properties of its loss
function. The accuracies of RankCosine and ListNet
vary according to the mapping functions. Especially,
RankCosine achieves an accuracy of only 0.047 when
using the mapping function exp while 0.917 when using
the mapping function l. This result indicates that the
performances of the cosine loss and the cross entropy
loss depend on the mapping functions, while finding a
suitable mapping function is not easy. Furthermore,
RankCosine has a larger variance than ListMLE and
ListNet. The likely explanation is that RankCosine’s

4The top-1 version of the cross entropy loss was em-
ployed as in the original work (Cao et al., 2007).

5When calculating MAP, we treated the top-1 items as
relevant and the other as irrelevant.

Table 2. The performance of three algorithms on the syn-
thetic data set.

Algorithm Accuracy MAP

ListMLE 0.92 ± 0.011 0.999 ± 0.002
ListNet-log 0.905 ± 0.010 0.999 ± 0.002
ListNet-sqrt 0.917 ± 0.009 0.999 ± 0.002
ListNet-l 0.767 ± 0.021 0.995 ± 0.003
ListNet-q 0.868 ± 0.028 0.999 ± 0.002
ListNet-exp 0.832 ± 0.074 0.997 ± 0.004
RankCosine-log 0.180 ± 0.217 0.948 ± 0.034
RankCosine-sqrt 0.080 ± 0.159 0.886 ± 0.056
RankCosine-l 0.917 ± 0.112 0.999 ± 0.002
RankCosine-q 0.102 ± 0.161 0.890 ± 0.060
RankCosine-exp 0.047 ± 0.163 0.746 ± 0.136

performance is sensitive to the initial values of param-
eters due to the non-convexity of its loss function.

6.2. Experiment on OHSUMED Data

We also conducted an experiment on OHSUMED, a
benchmark data set for learning to rank provided in
LETOR. There are in total 106 queries, and 16,140
query-document pairs upon which relevance judg-
ments are made. The relevance judgments are either
definitely relevant, possibly relevant, or not relevant.
The data was in the form of feature vector and rele-
vance label. There are in total 25 features. We used
the data split provided in LETOR to conduct five-fold
cross validation experiments. In evaluation, besides
MAP, we adopted another measures commonly used in
IR: Normalized Discounted Cumulative Gain (NDCG)
(Jarvelin & Kekanainen, 2000).

Note that here the ground truth in the data is given as
partial ranking, while the methods need to use total
ranking (permutation) in training. To bridge the gap,
for RankCosine and ListNet, we adopted the methods
proposed in the papers (Cao et al., 2007) (Qin et al.,
2007). For ListMLE we randomly selected one perfect
permutation for each query from among the possible
perfect permutations based on the ground truth.

We applied RankCosine, ListNet, and ListMLE to
the data. The results reported below are those aver-
aged over five trials. As shown in Figure 4, ListMLE
achieves the best performance among all the algo-
rithms. Especially, on NDCG@1, it has more than
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5-point gains over RankCosine which is at the sec-
ond place. We also conducted the t-test on the im-
provements of ListMLE over the other two algorithms.
The results show that the improvements are statisti-
cally significant for NDCG@5, NDCG@7, NDCG@8,
NDCG@9, and NDCG@10 (p-value < 0.05).

0.5

0.52

0.54

0.56

0.58

ListMLE

ListNet

0.42

0.44

0.46

0.48

0.5

MAP NDCG@1 NDCG@2 NDCG@3 NDCG@4 NDCG@5 NDCG@6 NDCG@7 NDCG@8 NDCG@9 NDCG@10

RankCosine

Figure 4. Ranking performance on OHSUMED data.

7. Conclusion

In this paper, we have investigated the theory and al-
gorithms of the listwise approach to learning to rank.
We have pointed out that to understand the effective-
ness of a learning to rank algorithm, it is necessary to
conduct theoretical analysis on its loss function. We
propose investigating a loss function from the view-
points of (a) consistency, (b) soundness, (c) continu-
ity, differentiability, convexity, and (d) efficiency. We
have obtained some theoretical results on consistency
of ranking. We have conducted analysis on the likeli-
hood loss, cosine loss, and cross entropy loss. The re-
sult indicates that the likelihood loss has better prop-
erties than the other two losses. We have then de-
veloped a new learning algorithm using the likelihood
loss, called ListMLE and demonstrated its effective-
ness through experiments.

There are several directions which we can further ex-
plore. (1) We want to conduct more theoretical anal-
ysis on the properties of loss functions, for example,
weaker conditions for consistency and the rates of con-
vergence. (2) We plan to study the case where cost-
sensitive loss function is used instead of the 0 − 1 loss
function in defining the expected loss. (3) We plan
to investigate other surrogate loss functions with the
tools we have developed in this paper.
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Abstract
Previous algorithms for learning lexicographic
preference models (LPMs) produce a “best
guess” LPM that is consistent with the observa-
tions. Our approach is more democratic: we do
not commit to a single LPM. Instead, we approx-
imate the target using the votes of a collection
of consistent LPMs. We present two variations
of this method—variable voting and model vot-
ing—and empirically show that these democratic
algorithms outperform the existing methods. We
also introduce an intuitive yet powerful learning
bias to prune some of the possible LPMs. We
demonstrate how this learning bias can be used
with variable and model voting and show that the
learning bias improves the learning curve signif-
icantly, especially when the number of observa-
tions is small.

1. Introduction
Lexicographic preference models (LPMs) are one of the
simplest preference representations. An LPM defines an
order of importance on the variables that describe the ob-
jects in a domain and uses this order to make preference
decisions. For example, the meal preference of a vegetar-
ian with a weak stomach could be represented by an LPM
such that a vegetarian dish is always preferred over a non-
vegetarian dish, and among vegetarian or non-vegetarian
items, mild dishes are preferred to spicy ones. Previous
work on learning LPMs from a set of preference obser-
vations has been limited to autocratic approaches: one of

Appearing in Proceedings of the 25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

many possible LPMs is picked heuristically and used for
future decisions. However, it is highly likely that auto-
cratic methods will produce poor approximations of the tar-
get when there are few observations.

In this paper, we present a democratic approach to LPM
learning, which does not commit to a single LPM. Instead,
we approximate a target preference using the votes of a col-
lection of consistent LPMs. We present two variations of
this method: variable voting and model voting. Variable
voting operates on the variable level and samples the con-
sistent LPMs implicitly. The learning algorithm based on
variable voting learns a partial order on the variables where
all linearizations correspond to an LPM consistent with the
observations. Model voting explicitly samples the consis-
tent LPMs and employs weighted voting where the weights
are computed using Bayesian priors. The additional com-
plexity of voting-based algorithms is tolerable: both algo-
rithms have low-order polynomial time complexity. Our
experiments show that these democratic algorithms outper-
form more than half of the LPMs that can be produced by
an autocratic algorithm, greatly increasing the chance of a
positive outcome.

To further improve the performance of the learning algo-
rithms when the number of observations is small, we in-
troduce an intuitive yet powerful learning bias. The bias
defines equivalence classes on the variables, indicating the
most important set of variables, the second most important
set, and so on. We demonstrate how this learning bias can
be used with variable and model voting and show that the
learning bias improves the learning curve significantly on
appropriate problems, especially when the number of ob-
servations is small.

In the rest of the paper, we give some background on LPMs,
then introduce our voting-based methods. We then intro-
duce the learning bias and show how we can generalize the
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voting methods to utilize such a bias. Finally, we present
the results of our experiments, followed by related work
and concluding remarks.

2. Lexicographic Decision Models
In this section, we briefly introduce the lexicographic pref-
erence model (LPM) and summarize previous results on
learning LPMs. Before going into the definition of an LPM,
we state that we only consider binary variables whose do-
main is {0, 1}.1 Like others before us, we assume that the
preferred value of each variable is known. Without loss of
generality, we will assume that 1 is always preferred to 0.

Given a set of variables, X = {X1 . . . Xn}, an object A
over X is a vector of the form [x1, . . . , xn]. We use the
notation A(Xi) to refer the value of Xi in the object A.
A lexicographic preference model L on X is a total order
on a subset R of X . We denote this total order with @L.
Any variable in R is relevant with respect to L; similarly,
any variable in X −R is irrelevant with respect to L. If A
and B are two objects, then the preferred object given L is
determined as follows:

• Find the smallest variable X∗ in @L such that X∗ has
different values in A and B. The object that has the
value 1 for X∗ is the most preferred.

• If all relevant variables in L have the same value in A
and B, then the objects are equally preferred (a tie).

Example 1 Suppose X1 < X2 < X3 is the total order
defined by an LPM L, and consider objects A = [1, 0, 1, 1],
B = [0, 1, 0, 0], C = [0, 0, 1, 1] and D = [0, 0, 1, 0]. A is
preferred over B because A(X1) = 1, and X1 is the most
important variable in L. B is preferred over C because
B(X2) = 1 and both objects have the same value for X1.
Finally, C and D are equally preferred because they have
the same values for the relevant variables.

An observation o = (A,B) is an ordered pair of objects,
connoting that A is preferred to B. In many practical ap-
plications, however, preference observations are gathered
from demonstration of an expert who breaks ties arbitrar-
ily. Thus, for some observations, A and B may actually be
tied. An LPM L is consistent with an observation (A,B)
iff L implies that A is preferred to B or that A and B are
equally preferred.

The problem of learning an LPM is defined as follows.
Given a set of observations, find an LPM L that is con-
sistent with the observations. Previous work on learning
LPMs was limited to the case where all variables are rel-
evant. This assumption entails that, in every observation

1The representation can easily be generalized to monotonic
preferences with ordinal variables such that 1 corresponds to a
preference on the increasing order and 0 on decreasing order.

Algorithm 1 greedyPermutation
Require: A set of variables X and a set of observations O.
Ensure: An LPM that is consistent with O, if one exists.
1: for i = 1, . . . , n do
2: Arbitrarily pick one of Xj ∈ X such that

MISS(Xj , O) = minXk∈X MISS(Xk, O)
3: π(Xj) := i, assign the rank i to Xj

4: Remove Xj from X
5: Remove all observations (A, B) from O such that

A(Xj) 6= B(Xj)
6: Return the total order @ on X such that Xi < Xj iff

π(Xi) < π(Xj)

(A,B), A is strictly preferred to B, since ties can only hap-
pen when there are irrelevant attributes.

Schmitt and Martignon (2006) proposed a greedy algo-
rithm that is guaranteed to find one of the LPMs that is
consistent with the observations if one exists. They have
also shown that for the noisy data case, finding an LPM
that does not violate more than a constant number of the
observations is NP-complete. Algorithm 1 is Schmitt and
Martignon’s greedy variable-permutation algorithm, which
we use as a performance baseline. The algorithm refers to a
function MISS(Xi, O), which is defined as |{(A,B) ∈ O :
A(Xi) < B(Xi)}|; that is, the number of observations vi-
olated in O if the most important variable is selected as Xi.
Basically, the algorithm greedily constructs a total order by
choosing the variable at each step that causes the minimum
number of inconsistencies with the observations. If multi-
ple variables have the same minimum, then one of them is
chosen arbitrarily. The algorithm runs in polynomial time,
specifically O(n2m), where n is the number of variables
and m is the number of observations.

Dombi et al. (2007) have shown that if there are n variables,
all of which are relevant, then O(n log n) queries to an or-
acle suffice to learn an LPM. Furthermore, it is possible to
learn any LPM with O(n2) observations if all pairs differ
in only two variables. They proposed an algorithm that can
find the unique LPM induced by the observations. In case
of noise due to irrelevant attributes the algorithm does not
return an answer.

In this paper, we investigate the following problem: Given
a set of observations with no noise, but possibly with arbi-
trarily broken ties, find a rule for predicting preferences that
agrees with the target LPM that produced the observations.

3. Voting Algorithms
We propose a democratic approach for approximating the
target LPM that produced a set of observations. Instead
of finding just one of the consistent LPMs, it reasons with
a collection of LPMs that are consistent with the observa-
tions. Given two objects, such an approach prefers the one
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that a majority of its models prefer. A naive implementa-
tion of a voting algorithm would enumerate all LPMs that
are consistent with a set of observations. However, since
the number of models consistent with a set of observations
can be exponential, the naive implementation is infeasible.

In this section, we describe two methods—variable voting
and model voting—that sample the set of consistent LPMs
and use voting to predict the preferred object. Unlike ex-
isting algorithms that learn LPMs, these methods do not
require all variables to be relevant or observations to be tie-
free. The following subsections explain the variable voting
and model voting methods and summarize some of our the-
oretical results.

3.1. Variable Voting

Variable voting uses a generalization of the LPM represen-
tation. Instead of a total order on the variables, variable
voting reasons with a partial order (�) to find the preferred
object in a given pair. Among the variables that are dif-
ferent in both objects, the ones that have the smallest rank
(and are hence the most salient) in the partial order vote to
choose the preferred object. The object that has the most
“1” values for the voting variables is declared to be the
preferred one. If the votes are equal, then the objects are
equally preferred.

Definition 1 (Variable Voting) Suppose X is a set of vari-
ables and � is a partial order on X . Given two objects, A
and B, the variable voting process with respect to � for
determining which of the two objects is preferred is:

• Define D, the set of variables that differ in A and B.
• Define D∗, the set of variables in D that have the

smallest rank among D with respect to �.
• Define NA as the number of variables in D∗ that favor

A (i.e., that have value 1 in A and 0 in B) and NB , as
the number of variables in D∗ that favor B.

• If NA > NB , then A is preferred. If NA < NB , then
B is preferred. Otherwise, they are equally preferred.

Example 2 Suppose � is the partial order {X2, X3} <
{X1} < {X4, X5}. Consider objects A = [0, 1, 1, 0, 0]
and B = [0, 0, 1, 0, 1]. D is {X2, X5}. D∗ is {X2} be-
cause X2 is the smallest ranking variable in D with respect
to �. X2 favors A because A(X2) = 1. Thus, variable
voting with � prefers A over B.

Algorithm 2 presents the algorithm learnVariableRank,
which learns a partial order � on the variables from a set
of observations such that variable voting with respect to
� will correctly predict the preferred objects in the ob-
servations. Specifically, it finds partial orders that define
equivalence classes on the set of variables. The algorithm

Algorithm 2 learnVariableRank
Require: A set of X of variables, and a set O of observations
Ensure: A partial order on X .
1: Π(x) = 1,∀ x ∈ X
2: while Π can change do
3: for Every observation (A, B) ∈ O do
4: Let D be the variables that differ in A and B
5: D∗ = {x ∈ D|∀y ∈ D, Π(x) ≤ Π(y)}
6: VA is the set of variables in D∗ that are 1 in A.
7: VB is the set of variables in D∗ that are 1 in B.
8: if |VB | ≥ |VA| then
9: for x ∈ VB such that Π(x) < |X| do

10: Π(x) = Π(x) + 1;
11: Return partial order � on X such that x � y iff Π(x) <

Π(y).

Table 1. The rank of the variables after each iteration of the for-
loop in line 3 of the algorithm learnVariableRank.

Observations X1 X2 X3 X4 X5

Initially 1 1 1 1 1
[0, 1, 1, 0, 0], [1, 1, 0, 1, 1] 2 1 1 2 2
[0, 1, 1, 0, 1], [1, 0, 0, 1, 0] 2 1 1 2 2
[1, 0, 1, 0, 0], [0, 0, 1, 1, 1] 2 1 1 3 3

maintains the minimum possible rank for every variable
that does not violate an observation with respect to vari-
able voting. Initially, all variables are considered equally
important (rank of 1). The algorithm loops over the set of
observations until the ranks converge. At every iteration
and for every pair, variable voting predicts a winner. If it
is correct, then the ranks stay the same. Otherwise, the
ranks of the variables that voted for the wrong object are
incremented, thus reducing their importance 2. Finally, the
algorithm builds a partial order � based on the ranks such
that x � y if and only if x has a lower rank than y.

Example 3 Suppose X = {X1, X2, X3, X4, X5} and
O consists of ([0, 1, 1, 0, 0],[1, 1, 0, 1, 1]), ([0, 1, 1, 0, 1],
[1, 0, 0, 1, 0]) and ([1, 0, 1, 0, 0] ,[0, 0, 1, 1, 1]). Table 1 il-
lustrates the ranks of every variable in X after each iter-
ation of the for-loop in line 3 of the algorithm learnVari-
ableRank. The ranks of the variables stay the same during
the second iteration of the while-loop, thus, the loop termi-
nates. The partial order � based on ranks of the variables
is the same as the order given in Example 2.

We next summarize our theoretical results about the algo-
rithm learnVariableRank.

Correctness: Suppose � is a partial order returned by
learnVariableRank(X ,O). It can be shown that any LPM
L such that @L is a topological sort of � is consistent with

2In our empirical results, we also update the ranks when the
prediction was correct but not unanimous. This produces a heuris-
tic speed-up without detracting from the worst case guarantees.
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O. Furthermore, learnVariableRank never increments the
ranks of the relevant variables beyond their actual rank in
the target LPM. The ranks of the irrelevant variables can be
incremented as far as the number of variables.

Convergence: learnVariableRank has a mistake-bound
of O(n2), where n is the number of variables, because each
mistake increases the sum of the potential ranks by at least
1 and the sum of the ranks the target LPM induces is O(n2).
This bound guarantees that given enough observations (as
described in the background section), learnVariableRank
will converge to a partial order � such that every topologi-
cal sort of � has the same prefix as the total order induced
by the target LPM. If all variables are relevant, then � will
converge to the total order induced by the target LPM.

Complexity: A very loose upper bound on the time com-
plexity of learnVariableRank is O(n3m), where n is the
number of variables and m is the number of observations.
This bound holds because the while-loop on line 2 runs at
most O(n2) times and the for-loop in line 3, runs for m ob-
servations. The time complexity of one iteration of the for-
loop is O(n); therefore, the overall complexity is O(n3m).
We leave the investigation of tighter bounds and the aver-
age case analysis for future work.

3.2. Model Voting

The second method we present employs a Bayesian ap-
proach. This method randomly generates a sample set, S,
of distinct LPMs, that are consistent with the observations.
When a pair of objects is presented, the preferred one is
predicted using weighted voting. That is, each L ∈ S casts
a vote for the object it prefers, and this vote is weighted
according to its posterior probability P (L|S).

Definition 2 (Model Voting) Let U be the set of all LPMs,
O be a set of observations, and S ⊂ U be a set of LPMs
that are consistent with O. Given two objects A and B,
model voting prefers A over B with respect to S if∑

L∈U

P (L|S)V L
(A>B) >

∑
L∈U

P (L|S)V L
(B>A), (1)

where V L
(A>B) is 1 if A is preferred with respect to L, and

0 otherwise. V L
(B>A) is defined analogously. P (L|S) is the

posterior probability of L being the target LPM given S,
calculated as discussed below.

We first assume that all LPMs are equally likely a priori.
In this case, given a sample S of size k, the posterior prob-
ability of an LPM L will be 1/k if and only if L ∈ S, and 0
otherwise. Note that if S is maximal this case degenerates
into the naive voting algorithm. However, it is generally not

Algorithm 3 sampleModels
Require: A set of variables X , a set of observations O, and

rulePrefix, an LPM to be extended.
Ensure: An LPM (possibly aggregated) consistent with O.
1: candidates is the set of variables {Y : Y /∈ rulePrefix |

∀(A, B) ∈ O, A(Y ) = 1 orA(Y ) = B(Y )}.
2: while candidates 6= ∅ do
3: if O = ∅ then
4: return (rulePrefix, ∗).
5: Randomly remove a variable Z from candidates .
6: Remove any observation (C, D) from O such that

C(Z) 6= D(Z).
7: Extend rulePrefix: rulePrefix = (rulePrefix, Z).
8: Recompute candidates.
9: return rulePrefix

feasible to have all consistent LPMs—in practice, the sam-
ple has to be small enough to be feasible and large enough
to be representative.

In constructing S, we exploit the fact that many consistent
LPMs share prefixes in the total order that they define on
the variables. We wish to discover and compactly repre-
sent such LPMs. To this end, we introduce the idea of ag-
gregated LPMs. An aggregated LPM, (X1, X2 . . . , Xk, ∗),
represents a set of LPMs that define a total order with the
prefix X1 < X2 < . . . < Xk. Intuitively, an aggre-
gated LPM states that any possible completion of the prefix
is consistent with the observations. The algorithm sam-
pleModels in Algorithm 3 implements a “smart sampling”
approach by constructing an LPM that is consistent with
the given observations, returning an aggregated LPM when
possible. We start with an arbitrary consistent LPM (such
as the empty set, which is always consistent) and add more
variable orderings extending the input LPM. We first iden-
tify the variables that can be used in extending the prefix—
that is, all variables Xi such that in every observation, ei-
ther Xi is 1 in the preferred object or is the same in both
objects. We then select one of those variables randomly
and extend the prefix. Finally, we remove the observations
that are explained with this selection and continue with the
rest of the observations. If at any point, no observations
remain, then we return the aggregated form of the prefix,
since every completion of the prefix will be consistent with
the null observation. Running sampleModels several times
and eliminating duplicates will produce a set of (possibly
aggregated) LPMs.

Example 4 Consider the same set of observations O as
in Example 3. Then, the LPMs that are consistent with O
are as follows: (), (X2), (X2, X3), (X2, X3, X1, ∗), (X3),
(X3, X1, ∗), (X3, X2) and (X3, X2, X1, ∗). To illustrate
the set of LPMs that an aggregate LPM represents, con-
sider (X2, X3, X1, ∗), which has a total of 5 extensions:
(X2, X3, X1), (X2, X3, X1, X4), (X2, X3, X1, X5),
(X2, X3, X1, X4, X5), (X2, X3, X1, X5, X4). Every
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time the algorithm sampleModels runs, it will randomly
generate one of the aggregated LPMs: (X2, X3, X1, ∗),
(X3, X1, ∗), or (X3, X2, X1, ∗). Note that the shorter
models that are not produced by sampleModels are all
sub-prefixes of the aggregated LPMs and it is easy to
modify sampleModels to return those models as well.

An aggregate LPM in a sample saves us from enumerat-
ing all possible extensions of a prefix, but it also introduces
complications in computing the weights (posteriors) of the
LPMs, as well as their votes. For example, when compar-
ing two objects A and B, some extensions of an aggregate
LPM might vote for A and some for B. Thus, we need
to find the total number of LPMs that an aggregate LPM
represents and determine what proportion of them favor A
over B (or vice versa), without enumerating all extensions.
Suppose there are n variables and L is an aggregated LPM
with a prefix of length k. Then, the number of extensions
of L is denoted by FL and is equal to fn−k, where fm is
defined to be:

fm =
m∑

i=0

(
m

i

)
× i! =

m∑
i=0

(m)!
(m− i)!

. (2)

Intuitively, fm counts every possible permutation with at
most m items. Note that fm can be computed efficiently
and that the number of all possible LPMs when there are n
variables is given by fn.

Consider a pair of objects A and B. We wish to deter-
mine how many extensions of an aggregate LPM L =
(X1, X2, . . . , Xk, ∗) would vote for one of the objects. We
will call the variables X1 . . . Xk the prefix variables. If A
and B have different values for at least one prefix variable,
then all extensions will vote in accordance with the small-
est such variable. Suppose all prefix variables are tied and
m is the set of all non-prefix variables. Then, m is com-
posed of three disjoint sets a, b, and w, such that a is the
set of variables that favor A, b is the set of variables that
favor B, and w is the set of variables that are neutral (that
is, that have the same value in A and B).

An extension L′ of L will produce a tie iff all variables in
a and b are irrelevant in L′. The number of such exten-
sions is f|w|. The number of extensions that favor A over
B is directly proportional to |a|/(|a|+ |b|). The number of
extensions of L that will vote for A over B is denoted by
NL

A>B , which is given by:

NL
A>B =

|a|
|b|+ |a|

× (fm − f|w|). (3)

The number of extensions of L that will vote for B over A
is computed similarly. Note that the computation of NL

A>B ,
NL

B>A, and FL can be done in linear time by caching the
recurrent values.

Table 2. The posterior probabilities and number of votes of all
LPMs in Example 5.

LPMs P (L|S1) P (L|S2) NL
A>B NL

B>A

() 1/31 0 0 0
(X2) 1/31 0 1 0
(X2, X3) 1/31 0 1 0
(X2, X3, X1, ∗) 5/31 5/26 5 0
(X3) 1/31 0 0 0
(X3, X1, ∗) 16/31 16/26 7 7
(X3, X2) 1/31 0 1 0
(X3, X2, X1, ∗) 5/31 5/26 5 0

Algorithm 4 modelVote
Require: A set of LPMs, S, and two objects, A and B.
Ensure: Returns either one of A or B or tie.
1: Initialize sampleSize to the number of non-aggregated

LPMs in S.
2: for every aggregated LPM L ∈ S do
3: sampleSize+=FL.
4: Vote(A) = 0 ; Vote(B) = 0 ;
5: for every LPM L ∈ S do
6: if L is not an aggregate rule then
7: winner is the object L prefers among A and B.
8: Increment Vote(winner) by 1/sampleSize.
9: else

10: if A and B differ in at least one prefix variable of L
then

11: L∗ is an extension of L referring only the prefix.
12: winner is the object L∗ prefers among A and B
13: Vote(winner) += FL/sampleSize.
14: else
15: Vote(A) += NL

A>B/sampleSize.
16: Vote(B) += NL

B>A/sampleSize.
17: if Vote(A) = Vote(B) then
18: Return a tie
19: else
20: Return the object obj with the highest Vote(obj ).

Example 5 Suppose X and O are as defined in Example
3. The first column of Table 2 lists all LPMs that are con-
sistent with O. The second column gives the posterior prob-
abilities of these models given the sample S1, which is the
set of all consistent LPMs. The third column is the pos-
terior probability of the models given the sample S2 =
{(X2, X3, X1, ∗), (X3, X1, ∗), (X3, X2, X1, ∗)}. Given
two objects A = [0, 1, 1, 0, 0] and B = [0, 0, 1, 0, 1], the
number of votes for each object based on each LPM is
given in the last two columns. Note that the total number
of votes for A and B does not add up to the total number of
extensions of (X3, X1, ∗) because two of its extensions—
(X3, X1) and (X3, X1, X4)—prefer A and B equally.

Algorithm 4 describes modelVote, which takes a sample of
consistent LPMs and a pair of objects as input, and predicts
the preferred object using the weighted votes of the LPMs
in the sample.
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Returning to Example 5, the reader can verify that model
voting will prefer A over B. Next, we present our theoreti-
cal results on the sampleModels and modelVote algorithms.

Complexity: The time complexity of sampleModels is
bounded by O(n2m), where n is the number of variables
and m is the number of observations: the while-loop in line
2 runs at most n times; at each iteration, we have to pro-
cess every observation, each time performing computations
in O(n) time. If we call sampleModels s times, then the to-
tal complexity of sampling is O(sn2m). For constant s,
this bound is still polynomial. Similarly, the complexity of
modelVote is O(sn) because it considers each of the s rules
in the sample, counting the votes of each rule, which can
be done in O(n) time.

Comparison to variable voting: The set of LPMs that
is sampled via learnVariableRank is a subset of the LPMs
that sampleModels can produce. The running example in
the paper demonstrates that sampleModels can generate the
LPM (X3, X1, ∗); however, none of its extensions is con-
sistent with the partial order learnVariableRank returns.

4. Introducing Bias
In general, when there are not many training examples for
a learning algorithm, the space of consistent LPMs is large.
In this case, it is not possible to find a good approxima-
tion of the target model. To overcome this problem, we can
introduce bias (domain knowledge), indicating that certain
solutions should be favored over the others. In this section,
we propose a bias in the form of equivalence classes over
the set of attributes. These equivalence classes indicate the
set of most important attributes, second most important at-
tributes, and so on. For example, when buying a used car,
most people consider the most important attributes of a car
to be the mileage, the year, and the make of the car. The
second most important set of attributes is the color, number
of doors, and body type. Finally, perhaps the least impor-
tant properties are the interior color and the wheel covers.
We now formally define a learning bias and what it means
for an LPM to be consistent with a learning bias.

Definition 3 (Learning Bias) A learning bias B for learn-
ing a lexicographic preference model on a set of variables
X is a total order on a partition of X . B has the form
E1 < E2 < . . . < Ek, where ∪iEi = X . Intuitively, B
defines a partial order on X such that for any two variables
x ∈ Ei and y ∈ Ej , x < y iff Ei < Ej . We denote this
partial order by �B .

Definition 4 Suppose that X = {X1, . . . Xn} is a set of
variables, B a learning bias, andL an LPM.L is consistent
with B iff the total order @L is consistent with the partial

order �B.

Intuitively, an LPM that is consistent with a learning bias
respects the variable orderings induced by the learning bias.
The learning bias prunes the space of possible LPMs. The
size of the partition determines the strength of the bias;
for example, if there is a single variable per set, then the
bias defines a specific LPM. In general, the number of
LPMs that is consistent with a learning bias of the form
E1 < E2 < . . . < Ek can be computed with the following
recursive formula:

G([e1, . . . ek, ]) = fe1 + e1!× (G([e2, . . . ek])− 1), (4)

where ei = |Ei| and the base case for the recursion is
G([]) = 1. The first term in the formula counts the number
of possible LPMs using only the variables in E1, which are
the most important variables. The definition of consistency
entails that a variable can appear in @L iff all of the more
important variables are already in @L, hence the term e1!.
Note that the recursion on G is limited to the number of
sets in the partition, which is bounded by the number of
variables; therefore, it can also be computed in linear time
by caching precomputed values of f .

To illustrate the power of a learning bias, consider a learn-
ing problem with nine variables. Without a bias, the total
number of LPMs is 905,970. If a learning bias partitions
the variables into three sets, each with three elements, then
the number of LPMs consistent with the bias is only 646.
A bias with four sets, where the first set has three variables
and the rest have two, limits the number to 190.

We can easily generalize the learnVariableRank algorithm
to utilize the learning bias, by changing only the first line of
learnVariableRank which initializes the ranks of the vari-
ables. Given a bias of the form S1 < . . . < Sk, the gener-
alized algorithm assigns the rank 1 (most important rank)
to the variables in S1, rank |S1| + 1 to those in S2, and so
forth. This initialization ensures that an observation (A,B)
is used for learning the order of variables in a class Si only
when A and B have the same values for all variables in
classes S1 . . . Si−1 and have different values for at least one
variable in Si.

The algorithm modelVote can also be generalized to use a
learning bias B. In the sample generation phase, we use
sampleModels as presented earlier, and then eliminate all
rules whose prefixes are not consistent with the bias. Note
that even if the prefix of an aggregated LPM L is consistent
with a bias, this may not be the case for every extension of
L. Thus, in the algorithm modelVote, we need to change
any references to FL and NL

A<B (or NL
B<A) with FB

L and
NL,B

A<B (or NL,B
B<A), respectively, where:

• FB
L is the number of extensions of L that are consis-

tent with B, and
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• NL,B
A<B is the number of extensions of L that are con-

sistent with B and prefer A. (NL,B
B<A is similar.)

Suppose that B is a learning bias E1 < . . . < Em. Let Y
denote the prefix variables of an aggregate LPM L and Ek

be the first set such that at least one variable in Ek is not in
Y . Then, FB

L = G([|Ek −Y |, |Ek+1−Y |, . . . |Em−Y |]).

When counting the number of extensions of L that are con-
sistent with B and prefer A, we again need to examine
the case where the prefix variables equally prefer the ob-
jects. Suppose Y is as defined as above and Di denotes
the set difference between Ei and Y . Let Dj be the first
non-empty set and Dk be the first set such that at least one
variable in Dk has different values in the two objects. Obvi-
ously, only the variables in Dk will influence the prediction
of the preferred object. If

• di = |Di|, the cardinality of Di, and

• a is the set of variables in Dk that favor A, b is the
set of variables in Dk that favor B, and w is the set of
variables in Dk that are neutral,

then NL,B
A>B , the number of extensions of L that are consis-

tent with B and prefer A, can be computed as follows:

NL,B
A>B =

|a|
|a|+ |b|

× (FB
L −G([dj . . . dk−1, |w|])). (5)

5. Experiments
In this section, we explain our experimental methodology
and discuss the results of our empirical evaluations. We
define the prediction performance of an algorithm P with
respect to a set of test observations T as:

performance(P, T ) =
Correct(P, T ) + 0.5× Tie(P, T )

|T |
(6)

where Correct(P, T ) is the number of observations in T
that are predicted correctly by P and Tie(P, T ) is the num-
ber of observations in T that P predicted as a tie. Note that
an LPM returned by greedyPermutation never returns a tie.
In contrast, variable voting with respect to a partial order in
which every variable is equally important will only return
ties, so the overall performance will be 0.5, which is no bet-
ter than randomly selecting the preferred objects. We will
use MV , V V , and G to denote the model voting, variable
voting, and the greedy approximations of an LPM.

Given sets of training and test observations, (O, T ), we
measure the average and worst performances of V V , MV
and G. When combined with learnVariableRank, V V is a
deterministic algorithm, so the average and worst perfor-
mances of V V are the same. However, this is not the case

Figure 1. The average and worst prediction performance of the
greedy algorithm, variable voting and model voting.

for MV with sampling, because sampleModels is random-
ized. Even for the same training and test data (O, T ), the
performance of MV can vary. To mitigate this, we ran
MV 10 times for each (O, T ) pair, and called sampleMod-
els S times on each run (thus the sample size is at most S),
recording the average and worst of its performance. The
greedy algorithm G is also randomized (in line 2, one vari-
able is picked arbitrarily), so we ran G 200 times for every
(O, T ), recording its average and worst performance.

For our experiments, the control variables are R, the num-
ber of relevant variables in the target LPM; I , the number
of irrelevant variables; NO, the number of training observa-
tions; and NT , the number of test observations. For MV ex-
periments we used sample sizes (S) of 50 and 200. Larger
sample sizes (e.g. 800) slightly improved performance, but
are omitted for space. For fixed values of R and I , an LPM
L is randomly generated. (If a bias B is given, then L is
also consistent with B.) We randomly generated NO and
NT pairs of objects, each with I +R variables. Finally, we
labeled the preferred objects according to L.

Figure 1a shows the average performance of G, MV with
two different sample sizes and V V for R = 15, I = 0, and
NT = 20, as NO ranges from 2 to 20. Figure 1b shows the
worst performance for each algorithm. In these figures, the
data points are averages over 20 different pairs of training
and test sets (O, T ). The average performance of V V and
MV is better than the average performance of G, and the
difference is significant at every data point. Also, note that
the worst case performance of G after seeing two observa-
tions is around 0.3, which suggests a very poor approxima-
tion of the target. V V and MV ’s worst case performances
are much better than the worst case performance of G, jus-
tifying the additional complexity of the algorithms MV
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and V V . We have observed the same behavior for other
values of R and I , and have also witnessed a significant
performance advantage for MV over V V in the presence
of irrelevant variables when training data is scarce. Space
limitations prevent us from presenting these results.

Figure 2 shows the positive effect of learning bias on the
performance of voting algorithms for R = 10, I = 0,
and NT = 20, as NO ranges from 2 to 20. In ad-
dition, this experiment aims to show that bias does not
undermine the advantage voting algorithms held over the
greedy algorithm in the unbiased case. To this end we
have trivially generalized G to produce LPMs that are
consistent with a given bias. The data points are av-
erages over 20 different pairs of training and test sets
(O, T ). We have arbitrarily picked two biases: B1 :
{X1, X2, X3, X4, X5} < {X6, X7, X8, X9, X10} and
B2 : {X1, X2, X3} < {X4, X5} < {X6, X7, X8} <
{X9, X10}. The performance of V V improved greatly with
the introduction of learning biases. B2 is a stronger bias
than B1 and prunes the space of consistent LPMs more than
B1. As a result, the performance gain due to B2 is greater
than that due to B1. The difference between the bias curves
and the non-bias curve is statistically significant except at
the last point. Note that the biases are particularly effective
when the number of training observations is small. The
worst case performance of G with biases B1 and B2 are
also shown in Figure 2. For both biases, the worst case per-
formance of G is significantly lower than the performance
of V V with the corresponding bias. We obtained very sim-
ilar results with MV but due to space constraints we can
not include them in this paper.

6. Related Work
Lexicographic orders and other preference models have
been utilized in several research areas, including multicrite-
ria optimization (Bertsekas & Tsitsiklis, 1997), linear pro-
gramming , and game theory (Quesada, 2003). The lexico-
graphic model and its applications were surveyed by Fish-
burn (1974). The most relevant existing work for learn-
ing and/or approximating LPMs is by Schmitt and Mar-
tignon (2006) and Dombi et al. (2007), which were summa-
rized in Section 2. Another analogy, described by Schmitt
and Martignon (2006), is between LPMs and decision lists
(Rivest, 1987). Specifically, it was shown that LPMs are a
special case of 2-decision lists, and that the algorithms for
learning these two classes of models are not directly appli-
cable to each other.

7. Conclusions and Future Work
In this paper, we presented democratic approximation
methods for learning a lexicographic preference model
(LPM) given a set of preference observations. Instead of
committing to just one of the consistent LPMs, we main-

Figure 2. The effect of bias on VV and G.

tain a set of models and predict based on the majority of
votes. We described two such methods: variable voting and
model voting. We showed that both methods can be imple-
mented in polynomial time and exhibit much better worst-
and average-case performance than the existing methods.
Finally, we have defined a learning bias that can improve
performance when the number of observations is small and
incorporated this bias into the voting-based methods, sig-
nificantly improving their empirical performance.

The future directions of this work are twofold. First, we
plan to generalize our algorithms to learn the preferred val-
ues of a variable as well as the total order on the variables.
Second, we intend to develop democratic approximation
techniques for other kinds of preference models.
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Abstract

This paper extends many of the recent pop-
ular policy evaluation algorithms to a gener-
alized framework that includes least-squares
temporal difference (LSTD) learning, least-
squares policy evaluation (LSPE) and a vari-
ant of incremental LSTD (iLSTD). The basis
of this extension is a preconditioning tech-
nique that solves a stochastic model equa-
tion. This paper also studies three signifi-
cant issues of the new framework: it presents
a new rule of step-size that can be computed
online, provides an iterative way to apply pre-
conditioning, and reduces the complexity of
related algorithms to near that of temporal
difference (TD) learning.

1. Introduction

In Reinforcement Learning (RL), a primary concern is
how to reuse experience in an intelligent and fast way.
To achieve this we must consider two major issues,
namely, the data efficiency and the computational effi-
ciency. Recently these two issues were widely studied
by the research on temporal difference (TD) leaning.
TD is a classical algorithm well suited for policy eval-
uation (Sutton, 1988), and achieves great success for
its wide applications in control and AI games (Sutton
& Barto, 1998). One of its significant advantages is its
superior computational efficiency. If the feature vec-
tor has K components, TD requires O(K) complexity.
However, previous research shows that TD uses expe-
rience inefficiently (Lin & Mitchell, 1992)(Geramifard
et al., 2006a). The reason is that TD throws the tran-
sition information away after using it for one update of
weights. One way to reuse this information is to accu-
mulate it into a data set once it has been experienced.
Then TD methods are repeatedly applied to the data

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

set. This pattern is known as experience replay (Lin
& Mitchell, 1992), and has a high efficiency in using
experience because each transition is exploited to the
maximum extent. However, this method may be inef-
ficient to perform online because the data set is possi-
ble to grow extremely large if the exploration process
runs for a long time1. Another way is to extract some
data structure from the sequence of experience and up-
date the weights with the help of this structure. This
way is more desirable because the data structure re-
quires much smaller size of memory than the data set,
and leads to recent popular algorithms such as least-
squares temporal difference (LSTD) (Boyan, 1999) and
least-squares policy evaluation (LSPE) (Nedić & Bert-
sekas, 2003). Compared to TD, the two algorithms are
more data efficient, but similar to the experience re-
play, are still computationally expensive.

LSTD inverts some accumulated matrix per time step,
and generally requires O(K3). Recursive LSTD (RL-
STD) computes the inversion of LSTD’s matrix iter-
atively using Sherman-Morison formula and reduces
the complexity to O(K2) (Bradtke & Barto, 1996)(Xu
et al., 2002). LSPE is similar to LSTD and will
be examined later. Recently incremental LSTD (iL-
STD) was proposed to strike a balance between LSTD
and TD (Geramifard et al., 2006a)(Geramifard et al.,
2006b): its data efficiency is almost as good as LSTD,
but its computational cost is very near to that of
TD. However, iLSTD still requires tuning the step-size
manually as TD. In contrast, LSTD has no parameter
to tune.

The aim of this paper is to explore the relations among
recent popular policy evaluation algorithms. A frame-
work of policy evaluation algorithms called the precon-
ditioned temporal difference (PTD) learning is intro-
duced, which includes LSTD, LSPE and a variant of
iLSTD, etc. Furthermore, we maintain LSTD’s prop-

1Lin avoided this problem by using only a window of
most recent experience (Lin & Mitchell, 1992). This, how-
ever, results in loss of information and it is in general dif-
ficult to prespecify the window size.
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erty of ease of tuning. This paper proposes an adap-
tive step-size that can be computed online by all PTD
algorithms.

To reduce computational complexity O(K2) of the
PTD algorithms due to the inversion of the precon-
ditioner matrix, we develop an efficient incremental
process to apply preconditioning, which leads to a set
of incremental PTD algorithms. Incremental PTD al-
gorithms take advantage of the sparse nature of RL
tasks, storing and manipulating only the valid expe-
rience by a condensed structure every time step. We
also present an efficient adaptive step-size for incre-
mental PTD algorithms. Results on Boyan chain ex-
ample show that PTD algorithms using the adaptive
step-size gives much faster convergence than using pre-
vious rule of step-size; incremental PTD algorithms via
condensed implementation have a high efficiency in us-
ing data while a low complexity similar to iLSTD.

1.1. Stationary Model Equation

Given a state space S = {1, 2, . . . , N}, the problem of
policy evaluation is to predict the long-term optimal
reward of a policy for each state s:

J(s) =

∞∑

t=0

γtr(st, st+1), s0 = s, 0 < γ ≤ 1,

where γ is the discount factor, and r(st, st+1) is the
reward received by the agent at time t. Given K(K ≤
N) feature functions ϕk (·) : S 7→ R, k = 1, . . . ,K, the
feature of state st is φt = [ϕ1(st), ϕ2(st), . . . , ϕK(st)]

′.

The optimal reward vector J can now be approximated
by Ĵ = Φw, where w is the weight vector, and Φ is
the feature matrix whose entries are Φ(j, k) = ϕk(j),
k = 1, . . . ,K; j = 1, . . . , N .

For an ergodic Markov chain that has steady-
state probabilities π(1), π(2), . . . , π(N), (Tsitsiklis &
Van Roy, 1997) proved that TD(λ) eventually finds a
weight vector w∗ that satisfies a linear system

Aw∗ = −b, (1)

where A and b are defined by

A = Φ′D(γP−I)
∞∑

k=0

(λγP )kΦ, b = Φ′D

∞∑

k=0

(λγP )kr̄,

D is the diagonal matrix with diagonal entries π(i),
i = 1, . . . , N ; λ ∈ [0, 1] is the eligibility trace fac-
tor; P is the transition probability matrix; I is the
identity matrix; and r̄ is the vector with components
r̄i =

∑N
j=1 Pi,jr(i, j), i = 1, . . . , N . For each λ ∈ [0, 1],

w∗ is also the limit point of LSTD(λ), LSPE(λ) and

iLSTD(λ). Equation (1) is only useful for analysis but
not applicable in practice and will be called the sta-
tionary model equation.

1.2. Law of Large Numbers

A common structure grown by LSTD(λ), LSPE(λ)
and iLSTD(λ) is updated incrementally. If the cur-
rent transition from st to st+1 incurs a reward rt, then
a matrix and a vector are updated by

Ãt+1 = Ãt + zt(γφt+1 − φt)
′; b̃t+1 = b̃t + ztrt,

where zt is the eligibility trace, computed recursively
by zt+1 = λγzt + φt+1. Because the components of
Ãt+1 and b̃t+1 can get to infinity it is better to use
some well-defined term. For infinite-horizon problems,
(Tadić, 2001)(Nedić & Bertsekas, 2003) used the fol-
lowing structure

At+1 =
1

t + 1
Ãt+1; bt+1 =

1

t + 1
b̃t+1, (2)

which satisfies the law of large numbers. However, (2)
are no longer consistent estimations of A and b for ab-
sorbing Markov chains such as Boyan chain example.
In Section 2.1, such an extension is proposed.

1.3. Related Algorithms

At time t, the rule of LSTD(λ) for updating weights
can be specified as wt+1 = −Ã−1

t+1b̃t+1. In practice, Ãt

can be singular and a perturbation which sets Ã0 to
δ−0 I (δ−0 < 0) should be used.

LSPE(λ) was proposed for infinite-horizon problem
(Nedić & Bertsekas, 2003). If the current step-size
is αt, LSPE updates w by

wt+1 = wt + αt(Dt+1)
−1

(At+1wt + bt+1) , (3)

where

Dt+1 =
1

t + 1

(

δ+
0 I +

t∑

k=0

φkφ′
k

)

, δ+
0 > 0.

In the long run, Dt+1 converges to Φ′DΦ.

1.4. Preconditioning

Generally, solutions to a linear system like (1) can be
categorized into two classes. The first is the direct
methods (Saad, 2003), which factorize A into easily in-
vertible matrices, including Gaussian elimination and
LU/QR factorization, etc. However, the complexity
involved in factorizing A is not practical for large scale
systems. The second class, known as the iterative so-
lutions, scales well with the problem size and is very
efficient for large and sparse linear systems.
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According to the literature of iterative solutions, pre-
conditioning is especially effective for symmetric sys-
tem (Saad, 2003), but usually for RL tasks, matrix A

is not symmetric. Therefore, the original stationary
model equation is first transformed into the following
symmetric form

A′Aw∗ = −A′b, (4)

which can be solved by Richardson’s iteration (Saad,
2003)

wτ+1 = wτ − αA′ (Awτ + b) , (5)

where α is some positive scalar that should satisfy

ρ(I − αA′A) < 1.

The technique of preconditioning refers to a general
technique which preconditions a system before solv-
ing it. For example, preconditioning (4) gives us the
preconditioned symmetric model equation

C−1A′Aw∗ = −C−1A′b,

where C is an invertible matrix, usually called the pre-
conditioner. Then the model equation is solved by the
iteration

wτ+1 = wτ − C−1A′ (Awτ + b) . (6)

Convergence rate of (6) is governed by the spectral
radius of I − C−1A′A: the smaller the radius is,
the faster the solution will be (Saad, 2003). There-
fore a good preconditioner should make the precon-
ditioned radius smaller than the original radius, i.e.,
ρ(I − C−1A′A) < ρ(I − αA′A).

2. The Generalized Framework

We first give consistent estimations of A and b for ab-
sorbing Markov chains, and then we show how to apply
them together with preconditioning to policy evalua-
tion.

2.1. Robbins-Monro for Absorbing Chains

A trajectory of an absorbing Markov chain is a finite
sequence s0, . . . , sq, where sq is the absorbing state.
Given trajectories 1, . . . ,M , where the mth trajectory
has length Lm, the consistent estimations of A and b

are

AM =
1

T

M∑

m=1

Lm∑

t=0

zt(γφt+1 − φt)
′, (7)

and

bM =
1

T

M∑

m=1

Lm∑

t=0

ztrt, (8)

where T is the number of all observed state visits in
M trajectories, and zt is the eligibility trace. Simi-
larly, for absorbing Markov chain, LSPE should use
the following structure to estimate Φ′DΦ:

DM =
1

T

M∑

m=1

Lm∑

t=0

φtφ
′
t. (9)

On a transition from st to st+1, estimations (7),
(8) and (9) can be updated incrementally, which is
achieved by a Robbins-Monro (RM) procedure:

At+1 = At +
1

T
(zt(γφt+1 − φt)

′ − At), (10)

bt+1 = bt +
1

T
(ztrt − bt), (11)

and

Dt+1 = Dt +
1

T
(φtφ

′
t − Dt), (12)

where T is updated by T = T + 1 after the three
estimations. The convergence of RM procedure can be
proved in similar manner to the case of infinite-horizon
problems (Tadić, 2001)(Nedić & Bertsekas, 2003).

2.2. The Framework

Given At+1 and bt+1 estimated by RM, we can define
a stochastic model equation

At+1w = −bt+1.

Because RM estimations have some error, the stochas-
tic model equation is not satisfied, and there exists a
nonzero residual vector

et+1(w) = At+1w + bt+1. (13)

A natural idea is that the current weights can be im-
proved by minimizing the residual error ||et+1(w)||2,
which produces a gradient descent algorithm

wt+1 = wt − αtA
′
t+1(At+1wt + bt+1),

where αt is a positive step-size. Gradient descent al-
gorithm is a stochastic form of the iteration (5).

The general preconditioned temporal difference (PTD)
learning applies the technique of preconditioning to
improve the convergence rate of gradient descent. As-
sume Ct+1 is a chosen preconditioner, the rule of PTD
can be cast as

wt+1 = wt − αtC
−1
t+1A

′
t+1(At+1wt + bt+1), (14)

where αt is some scalar but not necessarily positive.
With the rule proposed in Section 3, the step-size guar-
antees the convergence of PTD algorithms and makes
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them more flexible in stochastic environments than
(6).

The choice of preconditioner is a key issue. Generally,
preconditioner should decrease the spectral radius of
gradient descent:

ρ(I − αtC
−1
t+1A

′
t+1At+1) < ρ(I − αtA

′
t+1At+1).

Gradient descent makes no preconditioning because it
chooses the identity matrix as preconditioner. Good
examples of preconditioner can be found in recent pop-
ular policy evaluation algorithms.

2.3. Relations to Previous Algorithms

LSTD, LSPE and iLSTD are all special forms of ap-
plying preconditioner to gradient descent algorithm:

Ct+1 = −A′
t+1Dt+1, where Dt+1 is defined in (12).

One can easily verify that this is a variant of LSPE(λ).

Ct+1 = A′
t+1At+1. This is an extended form of

LSTD: wt+1 = (1 − αt)wt + αt(−A−1
t+1bt+1). Using

1 as the step-size, we get exactly LSTD(λ). Later we
will see that LSTD is optimal in choosing its step-size
because certain residual error is minimized.

Ct+1 = −A′
t+1. This approach is a variant of

iLSTD(λ) (Yao & Liu, 2008).

3. The Rule of Step-size

This section presents an adaptive process to compute
the step-size online for gradient descent algorithm,
LSTD, iLSTD and LSPE. The four algorithms all use
a preconditioner in the form of A′

t+1Bt+1, which is as-
sumed to be used by general PTD algorithms.

The update direction of PTD is provided by a precon-
ditioned residual (p-residual) vector

δt = B−1
t+1et+1(wt), (15)

where et+1 is the residual vector defined in (13). This
p-residual is an “old” one, because it is obtained before
the weight update. After the weight update, the p-
residual vector changes to

θt+1 = B−1
t+1et+1(wt+1).

From (14) and (15), θt+1 can be rewritten as

θt+1 = B−1
t+1(At+1(wt − αtδt) + bt+1)

= δt − αtB
−1
t+1At+1δt.

Because θt+1 stands for an improved difference be-
tween the two sides of the preconditioned stochastic

model equation, naturally we hope that the new p-
residual error is smaller than the old one: ||θt+1||2 <

||δt||2. This can be guaranteed by requiring that θt+1

be orthogonal to θt+1 − δt. Accordingly, we obtain a
new rule of step-size

αt =
δ′tB

−1
t+1At+1δt

(B−1
t+1At+1δt)′(B

−1
t+1At+1δt)

. (16)

This step-size is the optimal value that minimizes
the new p-residual error over α ∈ R, i.e., αt =
arg min ||θt+1||2. Obviously the step-size is positive
when B−1

t+1At+1 is positive definite, which is true for
gradient descent algorithm, iLSTD, and LSTD.

It is interesting that in (16), if Bt+1 = At+1, then the
step-size is equal to 1. This indicates that LSTD’s
choice of step-size is optimal in the sense that the
p-residual error ||(1 − αt)(wt + A−1

t+1bt+1)||2 is mini-
mized. When Bt+1 = −I, the residual error ||(I +
αtAt+1)et+1(wt)||2 is minimized; for ease of later com-
parisons with previous step-size of iLSTD, this variant
will be called the Minimal Residual (MR) algorithm.

To compute p-residual vector and step-size, PTD al-
gorithms have to carry out matrix inversion, which re-
quires O(K3). Sherman-Morison formula is a solution
to reduce this complexity to O(K2). Another efficient
solution is to apply preconditioning incrementally and
take advantage of the sparse nature of RL tasks.

4. Incremental PTD

The key of incremental preconditioning is to approx-
imate the p-residual and the adaptive step-size in an
iterative way.

4.1. Iterative P-residual and Approximated

Step-size

Let κt be the error caused by the residual and the
current iterative p-residual, defined by

κt = et+1(wt) − Bt+1δ̂t. (17)

The new estimation of δt can be improved by

δ̂t+1 = δ̂t − βtκt, (18)

where βt is computed by

βt = − κ′
t(Bt+1κt)

(Bt+1κt)′(Bt+1κt)
. (19)

Substituting the p-residual δt in (14) with the iterative

p-residual δ̂t, we get the general form of incremental
PTD algorithms

wt+1 = wt − α̂tδ̂t, (20)
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Algorithm 1 Efficient matrix-vector multiplication
using CSR.

Input: Zt+1
Q (a, c, d) and a vector βt

Output: A vector ot = Qt+1βt

for k = 1 to K do

k1 = dt+1(k)
k2 = dt+1(k + 1) − 1
ot(k) = at+1(k1 : k2)

′βt(ct+1(k1 : k2))
end for

where α̂t is computed by the following steps.

Given the iterative p-residual δ̂t, steps (21a)–(21d)
compute a vector v, which is an approximation of
B−1

t+1At+1δt; then the approximated step-size is com-
puted by (21e):

ξt = At+1δ̂t, (21a)

χt = ξt − Bt+1vt, (21b)

ηt = − χ′
t(Bt+1χt)

(Bt+1χt)′(Bt+1χt)
, (21c)

vt+1 = vt − ηtχt, (21d)

α̂t =
δ̂′tvt+1

v′
t+1vt+1

. (21e)

If Bt+1 = −I, iterative p-residual reproduces p-
residual exactly and we get MR(λ); If Bt+1 = −Dt+1,
we get an incremental form of LSPE(λ) (iLSPE(λ))
that applies preconditioning via iterative p-residual.

4.2. Incremental PTD Using CSR

If the function approximation used is sparse, then
matrix Φ is sparse. While this seems a restrictive
condition, several popular linear function approxima-
tion schemes such as lookup table, Boyan’s linear in-
terpolation approximation and tile coding (Sutton &
Barto, 1998), are indeed sparse. If the transition ma-
trix is also sparse, matrices At+1 and Bt+1 will both
have many zero entries, implying that “no experience
is available for the states related to these entries”.
Therefore, it is better to remove the void experience
and store only the valid experience by a condensed
structure. Here the Compressed Sparse Row (CSR)
format (Saad, 2003) is used. Let Qt stand for At or
Bt. The CSR format is a triplet Zt

Q(at, ct, dt), where
at is a real array containing all the real values of the
nonzero elements of Qt; ct is an integer array contain-
ing the column indices of the elements stored in at;
and dt is an integer array containing the pointers to
the beginning of each row in at and ct.

When Qt+1 is sparse, the need for fast matrix-vector
multiplication offers a place where CSR fits in. The

Figure 1. Boyan chain example with N + 1 states. The
transition probabilities are marked on the arch.

details are shown by Algorithm 1, whose complexity
is O(lt+1), where lt+1 is the number of nonzero entries
in Qt+1. Now (17), (19), (21a), (21b) and (21c) can
make a call to Algorithm 1, and the complexity of
incremental PTD is given by the following theorem
which is proved in (Yao & Liu, 2008).

Theorem 4.2.1 (Complexity of incremental PTD).
The per-time-step complexity of incremental PTD us-
ing CSR is O(qK), where q is a small positive real
related to the sparsity of matrix A.

5. Boyan Chain Example

Boyan chain and the features are shown in Figure 1.
Transition from N to N + 1 incurs a reward −2; tran-
sition from N + 1 incurs 0; the other transitions incur
−3. The discount factor γ is set to 1.

The first experiment is another implementation of ex-
perience replay. As RM procedure is able to extract
compressed experience information by estimations of
A and b, it is natural to ask whether experience can
be well replayed by repeatedly presenting RM’s esti-
mations to PTD algorithms. Two questions arise for
this approach. Will it lead to convergence? What is
the role of λ for PTD(λ)?

RM(λ) were first run and averaged over 10 sets
of 10000 trajectories, and then their estimated
structures were repeatedly presented to Gradi-
ent descent(GRAD(λ)), iLSTD(λ), LSPE(λ) and
LSTD(λ). All compared algorithms used the adaptive
step-size derived in Section 3, and converged to satis-
factory solutions for a variety of problem sizes with all
λ ∈ [0, 1]. The case of N = 12 is shown in Figure 2. It
is very interesting that for all PTD algorithms smaller
λ gives better performance; λ = 0 performs best and
λ = 1 performs worst, —exactly the same role with
that for TD(λ) under repeated presentation training
paradigm (Sutton, 1988). Explanation can be given if
we view TD as a model exploration process: although
TD does not use the model A and b explicitly, its learn-
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Figure 2. Effects of λ: the (same) RMS errors by
GRAD(λ), MR(λ), LSPE(λ) and LSTD(λ).

ing requires exploring and sampling temporal values of
the model. It appears that both TD and PTD algo-
rithms rely on the model data reflected by the sets of
trajectories.

To explore λ’s effect for algorithms, we only have to
study its role for the model data, which is extracted by
RM procedure. Results are shown in Figure 3, where
the model errors are measured by ||AT −A||2 and ||bT −
b||2, averaged over 10 sets of 10000 trajectories. It
can be observed that smaller λ has smaller modeling
errors for A and b, —the role of λ for RM(λ) is just
what should be consistent with that for TD(λ) and
PTD(λ).

Although all PTD algorithms converge to the same
solution, their rates of convergence are quite different.
The case of λ = 1 is shown in Figure 4. MR, LSPE
and LSTD are faster than Gradient descent because
they make use of preconditioning and their spectral
radii are smaller than that of Gradient descent. Figure
5 compares the spectral radii ρ(I − αtC

−1
t A′

tAt) of
different algorithms.

Algorithms were also compared under the same learn-
ing paradigm as Boyan (Boyan, 1999), where weights
were updated immediately after RM estimations at
each time step. All compared algorithms used the
adaptive rule except that iLSPE used the approximate
step-size developed in Section 4.1. For both adaptive
step-size and approximated step-size, a satisfactory
convergence was obtained. Results are shown in Fig-
ure 6 and Figure 7, where each point was the averaged
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Figure 3. Model errors by RM(λ) procedures.

RMS error over 10 sets of data. It is clear that some
intermediate value of λ performs best in both learning
error and convergence rate for all algorithms. Gener-
ally, four preconditioned algorithms learns faster than
Gradient descent algorithm. However, the convergence
rate advantages of MR(λ), iLSPE(λ), LSPE(λ) and
LSTD(λ) over Gradient descent are becoming smaller
as λ increases. The reason may be that larger λ causes
larger model error and deteriorates the effects of pre-
conditioning.

Experiment was also run to compare the adaptive step-
size with the rule used by (Geramifard et al., 2006a),

which takes αt = c0(c1+1)

traj#+c1

, where c0 was chosen from

{0.01, 0.1, 1}, and c1 was chosen from {100, 1000, 106}.
The best performance of all the nine combinations of
the two constants was experimentally chosen for iL-
STD. Figure 8 shows that RMS error of MR (adap-
tive step-size) is faster to decrease than that of iL-
STD. From Figure 8, we can also observe that PTD’s
predictions (such as those given by LSTD and LSPE)
have larger variations than incremental PTD’s (such
as those given by MR and iLSPE). The reason is that
PTD algorithms are based on the inversion of precon-
ditioner, which is not well conditioned at the beginning
stage of learning; while incremental PTD algorithms
avoid numerical instability via iterative p-residual.

Table 1 compares the complexity of PTD and incre-
mental PTD algorithms, where CSR are used for MR
(one CSR for At) and iLSPE (one CSR for At and
one CSR for Dt). We can see that incremental PTD
algorithms have a clear computational advantage over
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Figure 4. The role of preconditioner (λ = 1). Algorithms
are stopped if RMS error is smaller than 0.01.

Table 1. Comparison of per-time-step running time (ms) of
PTD and incremental PTD algorithms on K = 401 (λ =
0). The machine used is Pentium(R) 4 PC (CPU 3.00GHZ;
RAM 1.00GB).

LSTD LSPE iLSTD MR iLSPE
72.3 120.3 5.9 10.6 21.9

Table 2. Comparison of memory requirements for A using
CSR and full matrix for a variety of problem sizes (λ = 0).

N 12 100 400 800 1200 1600
l

K2 0.75 0.1479 0.04 0.0198 0.0132 0.01

PTD algorithms. Reason lies in that CSR enables in-
cremental PTD to manipulate much smaller size of
data than PTD. Table 2 shows the relative memory
requirements of CSR and full matrix for a variety of
problem sizes by the ratio l/K2, where l is the nonzero
entries of A. We can observe that the larger the size
of state space is, the more advantages will be gained
by using CSR.

6. Conclusion

In this paper we proposed two general frameworks,
PTD and incremental PTD, which are more data
efficient than TD. Generally PTD approaches such
as LSTD and LSPE are computationally expensive,
whereas incremental PTD algorithms such as MR and
iLSPE can take advantage of sparse nature of RL
tasks, and have complexity near to that of iLSTD and
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Figure 5. Spectral radius comparisons (λ = 1). LSTD’s
spectral radius is 0 permanently, thus not shown.

TD. We also develop an adaptive process for comput-
ing the step-size online for PTD algorithms, and an
approximated process for computing the step-size for
incremental PTD algorithms.

Acknowledgement

We are thankful to Lihong Li, George Konidaris and
Andrew Barto for helpful discussions with a draft of
this paper. We appreciate for the suggestions by the
four reviewers that help improve this paper in many
aspects. This research has been partially supported
by RGC CERG grant No. CityU 1178/06 (9041147)
from Hong Kong UGC.

References

Boyan, J. A. (1999). Least-squares temporal difference
learning. Proceedings of the Sixteenth International
Conference on Machine Learning (pp. 49–56). Mor-
gan Kaufmann.

Bradtke, S., & Barto, A. G. (1996). Linear least-
squares algorithms for temporal difference learning.
Machine Learning, 22, 33–57.

Geramifard, A., Bowling, M., & Sutton, R. S. (2006a).
Incremental least-squares temporal difference learn-
ing. Twenty-First National Conference on Artificial
Intelligence (AAAI-06) (pp. 356–361). AAAI Press.

Geramifard, A., Bowling, M., Zinkevich, M., & Sut-
ton, R. S. (2006b). iLSTD: Eligibility traces and

1214



Preconditioned Temporal Difference Learning

0 0.2 0.4 0.6 0.8 1

0.0174

0.0175

0.0177

0.0179

0.018

0.0181

λ

R
M

S
 E

rr
or

s

GRAD(λ)
MR(λ)
iLSPE(λ)
LSPE(λ)
LSTD(λ)

Figure 6. The RMS errors at 90000th visit by GRAD(λ),
MR(λ), iLSPE(λ), LSPE(λ) and LSTD(λ).

0 0.2 0.4 0.6 0.8 1
0.142

0.143

0.144

0.145

0.146

0.147

0.148

λ

R
M

S
 E

rr
or

s

GRAD(λ)
MR(λ)
iLSPE(λ)
LSPE(λ)
LSTD(λ)

Figure 7. Comparison of convergence rate in terms of RMS
errors at 900th state visit.

convergence analysis. Advances in Neural Informa-
tion Processing Systems 19 (pp. 441–448).

Lin, L.-J., & Mitchell, T. M. (1992). Mem-
ory approaches to reinforcement learning in non-
markovian domains (Technical Report CMU-CS-92-
138). Carnegie Mellon University, Pittsburgh, PA
15213.
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Abstract

We extend the well-known BFGS quasi-
Newton method and its limited-memory vari-
ant LBFGS to the optimization of nonsmooth
convex objectives. This is done in a rig-
orous fashion by generalizing three compo-
nents of BFGS to subdifferentials: The local
quadratic model, the identification of a de-
scent direction, and the Wolfe line search con-
ditions. We apply the resulting subLBFGS
algorithm to L2-regularized risk minimiza-
tion with binary hinge loss, and its direction-
finding component to L1-regularized risk
minimization with logistic loss. In both set-
tings our generic algorithms perform compa-
rable to or better than their counterparts in
specialized state-of-the-art solvers.

1. Introduction

The (L)BFGS quasi-Newton method (Nocedal and
Wright, 1999) is widely regarded as the workhorse
of smooth nonlinear optimization due to its combi-
nation of computational efficiency with good asymp-
totic convergence. Given a smooth objective function
J : Rd → R and a current iterate wt ∈ Rd, BFGS
forms a local quadratic model of J :

Qt(p) := J(wt) + 1
2 p>B−1

t p +∇J(wt)>p, (1)

where Bt � 0 is a positive-definite estimate of the in-
verse Hessian of J . Minimizing Qt(p) gives the quasi-
Newton direction

pt := −Bt∇J(wt), (2)

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

which is used for the parameter update:

wt+1 = wt + ηtpt. (3)

The step size ηt ∈ R+ is normally determined by a line
search obeying the Wolfe conditions:

J(wt+1) ≤ J(wt) + c1ηt∇J(wt)>pt

and ∇J(wt+1)>pt ≥ c2∇J(wt)>pt, (4)

with 0 < c1 < c2 < 1. The matrix Bt is then modified
via the incremental rank-two update

Bt+1 = (I − %tsty
>
t )Bt(I − %tyts

>
t ) + %tsts

>
t , (5)

where st := wt+1−wt and yt := ∇J(wt+1)−∇J(wt)
denote the most recent step along the optimization tra-
jectory in parameter and gradient space, respectively,
and %t := (y>t st)−1. Given a descent direction pt, the
Wolfe conditions ensure that (∀t) s>t yt > 0 and hence
B0 � 0 =⇒ (∀t) Bt � 0.

Limited-memory BFGS (LBFGS) is a variant of BFGS
designed for solving large-scale optimization problems
where the O(d2) cost of storing and updating Bt would
be prohibitively expensive. LBFGS approximates the
quasi-Newton direction directly from the last m pairs
of st and yt via a matrix-free approach. This reduces
the cost to O(md) space and time per iteration, with
m freely chosen (Nocedal and Wright, 1999).

Smoothness of the objective function is essential for
standard (L)BFGS because both the local quadratic
model (1) and the Wolfe conditions (4) require the
existence of the gradient ∇J at every point. Even
though nonsmooth convex functions are differentiable
everywhere except on a set of Lebesgue measure zero
(Hiriart-Urruty and Lemaréchal, 1993), in practice
(L)BFGS often fails to converge on such problems
(Lukšan and Vlček, 1999; Haarala, 2004). Various
subgradient-based approaches, such as subgradient de-
scent (Nedich and Bertsekas, 2000) or bundle methods
(Teo et al., 2007), are therefore preferred.
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Although a convex function might not be differentiable
everywhere, a subgradient always exists. Let w be a
point where a convex function J is finite. Then a sub-
gradient is the normal vector of any tangential sup-
porting hyperplane of J at w. Formally, g is called a
subgradient of J at w if and only if

J(w′) ≥ J(w) + (w′ −w)>g ∀w′. (6)

The set of all subgradients at a point is called the
subdifferential, and is denoted by ∂J(w). If this set
is not empty then J is said to be subdifferentiable at
w. If it contains exactly one element, i.e., ∂J(w) =
{∇J(w)}, then J is differentiable at w.

In this paper we systematically modify the standard
(L)BFGS algorithm so as to make it amenable to sub-
gradients. This results in sub(L)BFGS, a new subgra-
dient quasi-Newton method which is applicable to a
wide variety of nonsmooth convex optimization prob-
lems encountered in machine learning.

In the next section we describe our new algorithm
generically, before we discuss its application to L2-
regularized risk minimization with hinge loss in Sec-
tion 3. Section 4 compares and contrasts our work
with other recent efforts in this area. Encouraging
experimental results are reported in Section 5. We
conclude with an outlook and discussion in Section 6.

2. Subgradient BFGS Method

We modify the standard BFGS algorithm to derive
our new algorithm (subBFGS, Algorithm 1) for non-
smooth convex optimization. These modifications can
be grouped into three areas, which we elaborate on in
turn: generalizing the local quadratic model, finding a
descent direction, and finding a step size that obeys a
subgradient reformulation of the Wolfe conditions.

2.1. Generalizing the Local Quadratic Model

Recall that BFGS assumes the objective function J is
differentiable everywhere, so that at the current iter-
ate wt we can construct a local quadratic model (1)
of J(wt). For a nonsmooth objective function, such a
model becomes ambiguous at non-differentiable points
(Figure 1). To resolve the ambiguity, we could simply
replace the gradient ∇J(wt) in (1) with some subgra-
dient gt ∈ ∂J(wt). However, as will be discussed later,
the resulting quasi-Newton direction pt := −Btgt is
not necessarily a descent direction. To address this
fundamental modeling problem, we first generalize the

Algorithm 1 Subgradient BFGS (subBFGS)

1: Initialize: t := 0, w0 = 0, B0 = I;
2: Set direction-finding stopping tolerances ε, kmax ∈ R+;
3: Compute subgradient g0 ∈ ∂J(w0);
4: while not converged do
5: pt = descentDirection(gt, ε, kmax); (Algorithm 2)
6: if pt = failure then
7: Return wt;
8: end if
9: Find ηt that obeys (14); (e.g., Algorithm 3)

10: st = ηtpt;
11: wt+1 = wt + st;
12: Compute subgradient gt+1 ∈ ∂J(wt+1);
13: yt = gt+1 − gt;
14: Update Bt+1 via (5);
15: t := t + 1;

16: end while

Figure 1. Quadratic models (dashed) vs. tightest pseudo-
quadratic fit (7) (bold dashes) to the objective function
(solid line) at a subdifferentiable point (solid disk).

local quadratic model as follows:

Qt(p) := J(wt) + Mt(p), where

Mt(p) := 1
2 p>B−1

t p + sup
g∈∂J(wt)

g>p. (7)

Note that where J is differentiable, (7) reduces to
the familiar BFGS quadratic model (1). At non-
differentiable points, however, the model is no longer
quadratic, as the supremum may be attained at differ-
ent elements of ∂J(wt) for different directions p. In-
stead it can be viewed as the tightest pseudo-quadratic
fit to J at wt (Figure 1).

Ideally, we would like to minimize Qt(p), or equiva-
lently Mt(p), in (7) to obtain the best search direction,

p∗ := arginf
p∈Rd

Mt(p). (8)

This is generally intractable due to the presence of a
supremum over the entire subdifferential set ∂J(wt).
In many machine learning problems, however, the set
∂J(wt) has some special structure that simplifies cal-
culation of the supremum in (7). In what follows,
we develop an iteration that is guaranteed to find a
quasi-Newton descent direction, assuming an oracle
that supplies argsupg∈∂J(wt) g>p for a given direction
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Algorithm 2 pt = descentDirection(g(1), ε, kmax)
input subgradient g(1) ∈ ∂J(wt),

tolerance ε ∈ R+, iteration limit kmax;
output descent direction pt;
1: Initialize: i := 1, ḡ(1) = g(1), p(1) = −Btg

(1);
2: g(2) = argsupg∈∂J(wt)

g>p(1);

3: Calculate ε(1) via (13);

4: while (g(i+1)>p(i) > 0 or ε(i) > ε) and i < kmax do

5: µ∗ := min

»
1,

(g(i+1) − ḡ(i))>p(i)

(g(i+1) − ḡ(i))>Bt(g(i+1) − ḡ(i))

–
;

6: ḡ(i+1) = (1− µ∗)ḡ(i) + µ∗g(i+1);

7: p(i+1) = (1− µ∗)p(i) − µ∗Btg
(i+1);

8: g(i+2) = argsupg∈∂J(wt)
g>p(i+1);

9: Calculate ε(i+1) via (13);
10: i := i + 1;
11: end while
12: if g(i+1)>p(i) > 0 then
13: return failure;
14: else
15: return argminj≤i Mt(p

(j)).

16: end if

p ∈ Rd. In Section 3.1 we provide an efficient im-
plementation of such an oracle for L2-regularized risk
minimization with the hinge loss.

2.2. Finding a Descent Direction

A direction pt is a descent direction if and only if
g>pt < 0 ∀g ∈ ∂J(wt) (Belloni, 2005), or equivalently

sup
g∈∂J(wt)

g>pt < 0. (9)

In particular, for a smooth convex function the quasi-
Newton direction (2) is always a descent direction be-
cause ∇J(wt)>pt = −∇J(wt)>Bt∇J(wt) < 0 holds
due to the positivity of Bt.

For nonsmooth functions, however, the quasi-Newton
direction pt := −Btgt for a given gt ∈ ∂J(wt) may not
fulfill the descent condition (9), making it impossible
to find a step that obeys (4), thus causing a failure of
the line search. We now present an iterative approach
to finding a quasi-Newton descent direction.

Inspired by bundle methods (Teo et al., 2007), we build
the following convex lower bound on Mt(p):

M
(i)
t (p) := 1

2 p>B−1
t p + sup

j≤i
g(j)>p, (10)

where i, j ∈ N. Given a p(i) ∈ Rd the lower bound
(10) is successively tightened by computing

g(i+1) := argsup
g∈∂J(wt)

g>p(i), (11)
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Figure 2. Geometric interpretation of the subgradient
Wolfe conditions (14). Solid disks are subdifferentiable
points; the slopes of dashed lines are indicated.

such that M
(i)
t (p) ≤ M

(i+1)
t (p) ≤ Mt(p) ∀p ∈ Rd.

Here we set g(1) ∈ ∂J(wt), and assume that g(i+1) is
provided by an oracle. To solve infp∈Rd M

(i)
t (p), we

rewrite it as a constrained optimization problem:

inf
p,ξ

(
1
2 p>B−1

t p + ξ
)

s.t. g(j)>p ≤ ξ ∀j ≤ i. (12)

This problem can be solved exactly via quadratic pro-
gramming, but doing so may incur substantial com-
putational expense. Instead we adopt an alterna-
tive approach (Algorithm 2) which does not solve
infp∈Rd M

(i)
t (p) to optimality. The key idea is to write

the proposed descent direction at iteration i + 1 as a
convex combination of p(i) and −Btg

(i+1). The op-
timal combination coefficient µ∗ can be computed ex-
actly (Step 5 of Algorithm 2) using an argument based
on maximizing dual progress. Finally, to derive an im-
plementable stopping criterion, we define ε(i) to be

min
j≤i

[
p(j)>g(j+1) − 1

2 (p(j)>ḡ(j) + p(i)>ḡ(i))
]
, (13)

where ḡ(i) is an aggregated subgradient (Step 6 of
Algorithm 2) which lies in the convex hull of g(j) ∈
∂J(wt) ∀j ≤ i. ε(i) is monotonically decreasing, and
upper bounds the distance from the optimal value of
the dual of Mt(p), leading us to a practical stopping
criterion (Step 4 of Algorithm 2) for our direction-
finding procedure. Yu et al. (2008) provide details,
and prove that Algorithm 2 converges to the optimal
dual objective value with precision ε at an O(1/ε) rate.

2.3. Subgradient Line Search

Given the current iterate wt and a search direction
pt, the task of a line search is to find a step size
η ∈ R+ which decreases the objective function along
the line wt+ηpt, i.e., J(wt+ηpt) =: Φ(η). The Wolfe
conditions (4) are used in line search routines to en-
force a sufficient decrease in the objective value, and

1218



A Quasi-Newton Approach to Nonsmooth Convex Optimization

to exclude unnecessarily small step sizes (Nocedal and
Wright, 1999). However, the original Wolfe conditions
require the objective function to be smooth. To extend
them to nonsmooth convex problems, we propose the
following subgradient reformulation:

J(wt+1) ≤ J(wt) + c1ηt sup
g∈∂J(wt)

g>pt

and sup
g′∈∂J(wt+1)

g′>pt ≥ c2 sup
g∈∂J(wt)

g>pt, (14)

where 0 < c1 < c2 < 1. Figure 2 illustrates how these
conditions enforce acceptance of non-trivial step sizes
that decrease the objective value. Yu et al. (2008)
formally show that for any given descent direction we
can always find a positive step size that satisfies (14).

2.4. Limited-Memory Subgradient BFGS

It is straightforward to implement an LBFGS variant
of our subBFGS algorithm: We simply modify Algo-
rithms 1 and 2 to compute all products of Bt with a
vector by means of the standard LBFGS matrix-free
scheme (Nocedal and Wright, 1999).

3. sub(L)BFGS Implementation for
L2-Regularized Risk Minimization

Many machine learning algorithms can be viewed as
minimizing the L2-regularized risk

J(w) :=
c

2
‖w‖2 +

1
n

n∑
i=1

l(w>xi, zi), (15)

where xi ∈ X ⊆ Rd are the training instances,
zi ∈ Z ⊆ R the corresponding labels, and the loss
l is a non-negative convex function of w which mea-
sures the discrepancy between zi and the predictions
arising from w via w>xi. A loss function commonly
used for binary classification is the hinge loss

l(w>x, z) := max(0, 1− z w>x), (16)

where z ∈ {±1}. L2-regularized risk minimization
with binary hinge loss is a convex but nonsmooth
optimization problem; in this section we show how
sub(L)BFGS (Algorithm 1) can be applied to it.

Differentiating (15) after plugging in (16) yields

∂J(w) = cw − 1
n

n∑
i=1

βizixi = w̄ − 1
n

∑
i∈M

βizixi,

(17)

where w̄ := cw − 1
n

∑
i∈E zixi and

βi :=

 1 if i ∈ E , E := {i : 1− ziw
>xi > 0},

[0, 1] if i ∈M, M := {i : 1− ziw
>xi = 0},

0 if i ∈ W, W := {i : 1− ziw
>xi < 0}.

E , M, and W index the set of points which are in
error, on the margin, and well-classified, respectively.

3.1. Realizing the Direction-Finding Method

Recall that our sub(L)BFGS algorithm requires an or-
acle that provides argsupg∈∂J(wt) g>p for a given di-
rection p. For L2-regularized risk minimization with
binary hinge loss we can implement such an oracle at
computational cost linear in the number |Mt | of cur-
rent marginal points. (Normally |Mt | � n.) Towards
this end we use (17) to obtain

sup
g∈∂J(wt)

g>p = sup
βi,i∈Mt

(
w̄t −

1
n

∑
i∈Mt

βizixi

)>
p

= w̄>
t p − 1

n

∑
i∈Mt

inf
βi∈[0,1]

βizix
>
i p. (18)

Since for a given p the first term of the right-hand side
of (18) is a constant, the supremum is attained when
we set βi ∀i ∈Mt via the following strategy:

βi :=

{
0 if zix

>
i pt ≥ 0,

1 if zix
>
i pt < 0.

(19)

3.2. Implementing the Line Search

The one-dimensional convex function Φ obtained by
restricting (15) to a line can be evaluated efficiently.
To see this, rewrite the objective as

J(w) :=
c

2
‖w‖2 +

1
n
1>max(0,1− z ·Xw), (20)

where 0 and 1 are column vectors of zeros and ones,
respectively, · denotes the Hadamard (component-
wise) product, and z ∈ Rn collects correct la-
bels corresponding to each row of data in X :=
[x1,x2, · · · ,xn]> ∈ Rn×d. Given a search direction
pt at an iterate wt, this allows us to write

Φ(η) := J(wt + ηpt) =
1
n

δ(η)>[1− (f+ η∆f)] (21)

+
c

2
‖wt‖2 + cηw>

t pt +
cη2

2
‖pt‖2

where f := z ·Xwt, ∆f := z ·Xpt, and

δi(η) :=

 1 if fi + η ∆fi < 1,
[0, 1] if fi + η ∆fi = 1,

0 if fi + η ∆fi > 1
(22)

for 1 ≤ i ≤ n. We cache f and ∆f , expending O(nd)
computational effort. We also cache c

2‖wt‖2, cw>
t pt,

and c
2‖pt‖2, each of which requires O(n) work. The
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Figure 3. Nonsmooth convex function Φ of step size η.
Solid disks are subdifferentiable points; the optimal η∗ falls
on such a point (left), or between two such points (right).

evaluation of δ(η) and its inner product with 1− (f +
η ∆f) both take O(n) effort. All other terms in (21)
can be computed in constant time, thus reducing the
amortized cost of evaluating Φ(η) to O(n). We are now
in a position to introduce an exact line search which
takes advantage of this scheme.

3.2.1. Exact Line Search

Differentiating (21) with respect to η and setting the
gradient to zero shows that η∗ := argminη Φ(η) satis-
fies η∗ = (δ(η∗)>∆f/n− cw>

t pt)/(c ‖pt‖2). It is easy
to verify that Φ(η) is piecewise quadratic, and differen-
tiable everywhere except at ηi := (1−fi)/∆fi, where it
becomes subdifferentiable. At these points an element
of the indicator function δ(η) (22) changes from 0 to 1
or vice versa; otherwise δ(η) remains constant. Thus
for a smooth interval (ηa, ηb) between subdifferentiable
points ηa and ηb (cf. Figure 3), if the candidate step

η∗a,b =
δ(η′)>∆f/n− cw>

t pt

c ‖pt‖2
, η′ ∈ (ηa, ηb) (23)

lies in the interval, it is optimal: η∗a,b ∈ [ηa, ηb] ⇒ η∗ =
η∗a,b. Otherwise, the interval boundary is optimal if its
subdifferential contains zero: 0 ∈ ∂ Φ(ηa) ⇒ η∗ = ηa.
Sorting the subdifferentiable points ηi facilitates effi-
cient search over intervals; see Algorithm 3 for details.

4. Related Work

Lukšan and Vlček (1999) propose an extension of
BFGS to nonsmooth convex problems. Their al-
gorithm samples gradients around non-differentiable
points in order to obtain a descent direction. In many
machine learning problems evaluating the objective
function and its gradient is very expensive. Therefore,
our direction-finding algorithm (Algorithm 2) repeat-
edly samples subgradients from the set ∂J(w) via the
oracle, which is computationally more efficient.

Recently, Andrew and Gao (2007) introduced a vari-

Algorithm 3 η = linesearch(wt,pt, c, f ,∆f)
input wt, pt, c, f , and ∆f as in (21);
output step size η;
1: b = c w>

t pt, h = c ‖pt‖2;
2: n = length(f), j := 1;
3: α := [(1− f)/∆f , 0]; (subdifferentiable points)
4: π = sort(α); (index vector)
5: while απj ≤ 0 do
6: j := j + 1;
7: end while
8: η := απj /2;
9: for i := 1 to n do

10: δi :=


1 if fi + η ∆fi < 1;
0 otherwise;

11: end for
12: % := δ>∆f/n;
13: while j ≤ length(π) do
14: η := (%− b)/h; (candidate step)
15: if η ∈ [απj−1 , απj ] then
16: return η;
17: else if η < απj−1 then
18: return η := απj−1 ;
19: else
20: repeat

21: % :=


%−∆fπj /n if δπj = 1,
% + ∆fπj /n otherwise;

22: j := j + 1;
23: until απj 6= απj−1

24: end if

25: end while

ant of nonsmooth BFGS, the Orthant-Wise Limited-
memory Quasi-Newton (OWL-QN) algorithm, suit-
able for optimizing L1-regularized log-linear models:

J(w) := c‖w‖1 +
1
n

n∑
i=1

ln(1 + e−ziw
>xi), (24)

where the logistic loss is smooth, but the regularizer
is only subdifferentiable at points where w has zero
elements. From the optimization viewpoint this ob-
jective is very similar to the L2-regularized hinge loss;
the direction finding and line search methods that we
discussed in Sections 3.1 and 3.2, respectively, can be
applied to this problem with slight modifications.

OWL-QN is based on the observation that the L1 reg-
ularizer is linear within any given orthant. Therefore,
it maintains an approximation Bow to the inverse Hes-
sian of the logistic loss, and uses an efficient scheme
to select orthants for optimization. In fact, its suc-
cess greatly depends on its direction-finding subrou-
tine, which demands a specially chosen subgradient
gow (Andrew and Gao, 2007, Equation 4) to produce
the quasi-Newton direction, pow = π(p, gow), where
p := −Bowgow and the projection π returns a search
direction by setting the ith element of p to zero when-
ever pig

ow
i > 0. As shown in Section 5, the direction-
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Table 1. Datasets, regularization constants c, direction-finding convergence criterion ε, and the overall number k of
direction-finding iterations for L1-regularized logistic loss and L2-regularized hinge loss minimization tasks, respectively.

Dataset Tr./Test Data Dimen. Density cL1 εL1 kL1 kL1rand cL2 εL2 kL2

Covertype 522911/58101 54 22.22% 10−6 10−5 0 0 10−6 10−8 44
CCAT 781265/23149 47236 0.16% 10−6 10−5 356 467 10−4 10−8 66
Astro 29882/32487 99757 0.077% 10−5 10−3 1668 2840 5 · 10−5 10−8 17
MNIST 60000/10000 780 19.22% 10−4 10−5 60 102 1.4286 · 10−6 10−8 244

finding subroutine of OWL-QN can be replaced by Al-
gorithm 2, which in turn makes the algorithm more
robust to the choice of subgradients.

Many optimization techniques use past gradients to
build a model of the objective function. Bundle
method solvers like SVMStruct (Joachims, 2006) and
BMRM (Teo et al., 2007) use them to lower-bound the
objective by a piecewise linear function which is min-
imized to obtain the next iterate. This fundamentally
differs from the BFGS approach of using past gradients
to approximate the (inverse) Hessian, hence building
a quadratic model of the objective function.

Vojtěch and Sonnenburg (2007) speed up the conver-
gence of a bundle method solver for the L2-regularized
binary hinge loss. Their main idea is to perform a line
search along the line connecting two successive iter-
ates of a bundle method solver. Although developed
independently, their line search algorithm is very rem-
iniscent of the method we describe in Section 3.2.1.

5. Experiments

We now evaluate the performance of our subLBFGS al-
gorithm, and compare it to other state-of-the-art non-
smooth optimization methods on L2-regularized hinge
loss minimization. We also compare a variant of OWL-
QN that uses our direction-finding routine to the orig-
inal on L1-regularized logistic loss minimization.

Our experiments used four datasets: the Covertype
dataset of Blackard, Jock & Dean, CCAT from the
Reuters RCV1 collection, the Astro-physics dataset of
abstracts of scientific papers from the Physics ArXiv
(Joachims, 2006), and the MNIST dataset of handwrit-
ten digits with two classes: even and odd digits. We
used subLBFGS with a buffer of size m = 15 through-
out. Table 1 summarizes our parameter settings, and
reports the overall number of direction-finding itera-
tions for all experiments. We followed the choices of
Vojtěch and Sonnenburg (2007) for the L2 regulariza-
tion constants; for L1 they were chosen from the set
10{−6,−5,··· ,−1} to achieve the lowest test error.

On convex problems such as these every convergent op-
timizer will reach the same solution; comparing gener-

alisation performance is therefore pointless. We com-
bined training and test datasets to evaluate the con-
vergence of each algorithm in terms of the objective
function value vs. CPU seconds. All experiments were
carried out on a Linux machine with dual 2.8 GHz
Xeon processors with 4GB RAM.

5.1. L2-Regularized Hinge Loss

For our first set of experiments, we applied subLBFGS
together with our exact line search (Algorithm 3) to
the task of L2-regularized hinge loss minimization.
Our control methods are the bundle method solver
BMRM (Teo et al., 2007) and an optimized cutting
plane algorithm, OCAS version 0.6.0 (Vojtěch and
Sonnenburg, 2007), both of which demonstrated strong
results on the L2-regularized hinge loss minimization
in their corresponding papers.

Figure 4 shows that subLBFGS (solid) reaches the
neighbourhood of the optimum (less than 10−3 away)
noticeably (up to 7 times) faster than BMRM
(dashed). As BMRM’s approximation to the objec-
tive function improves over the course of optimiza-
tion, it gradually catches up with subLBFGS, though
ultimately subLBFGS still converges faster on 3 out
of 4 datasets. The performance of subLBFGS and
OCAS (dash-dotted) are very similar: OCAS con-
verges slightly faster than subLBFGS on the Astro-
physics dataset but is outperformed by subLBFGS on
the MNIST dataset.

5.2. L1-Regularized Logistic Loss

To demonstrate the utility of our direction-finding rou-
tine (Algorithm 2) in its own right, we plugged it
into the OWL-QN algorithm (Andrew and Gao, 2007)
as an alternative direction-finding method, such that
pow = descentDirection(gow, ε, kmax),1 and com-
pared this variant (denoted by OWL-QN*) with the
original on L1-regularized logistic loss minimization.

Using the stopping criterion suggested by Andrew and
Gao (2007), we run experiments until the averaged rel-

1Note for the objective (24) it is trivial to construct an
oracle that supplies argsupg∈∂J(wt)

g>p.
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Figure 4. Objective function value vs. CPU seconds on L2-regularized hinge loss minimization tasks.

ative change in the objective value over the previous 5
iterations falls below 10−5. Figure 5 shows only minor
differences in convergence between the two algorithms.

To examine the algorithms’ sensitivity to the choice of
subgradients, we also ran them with random subgradi-
ents (as opposed to the specially chosen gow used be-
fore) fed to their corresponding direction-finding rou-
tines. OWL-QN relies heavily on its particular choice
of subgradients, hence breaks down completely under
these conditions: The only dataset where we could
even plot its (poor) performance was Covertype (dot-
ted OWL-QN(2) line in Figure 5). Our direction-
finding routine, by contrast, is self-correcting and thus
not affected by this manipulation: The curves for
OWL-QN*(2) (plotted for Covertype in Figure 5) lie
virtually on top of those for OWL-QN*. Table 1 shows
that in this case more direction-finding iterations are
needed, i.e., kL1rand ≥ kL1 . This empirically confirms
that as long as argsupg∈∂J(wt) g>p is given, Algo-
rithm 2 can indeed be used as a canned quasi-Newton
direction-finding routine.

6. Outlook and Discussion

We proposed an extension of BFGS suitable for han-
dling nonsmooth problems often encountered in the
machine learning context. As our experiments show,

our algorithms are versatile and applicable to many
problems, while their performance is comparable to if
not better than that of their counterparts in custom-
built solvers.

In some experiments we observe that subLBFGS ini-
tially makes rapid progress towards the solution but
slows down closer to the optimum. We hypothesize
that initially its quadratic model allows subLBFGS to
make rapid progress, but closer to the optimum it is
no longer an accurate model of an objective function
dominated by the nonsmooth hinges. We are therefore
contemplating hybrid solvers which seamlessly switch
between sub(L)BFGS and bundle solvers.

In this paper we applied subLBFGS to L2-regularized
risk minimization with binary hinge loss. It can also be
extended to deal with generalizations of the hinge loss,
such as multi-class, multi-category, and ordinal regres-
sion problems; this is part of our ongoing research.

Finally, to put our contributions in perspective, recall
that we modified three aspects of the standard BFGS
algorithm, namely the quadratic model (Section 2.1),
the descent direction finding (Section 2.2), and the line
search (Section 2.3). Each of these modifications is
versatile enough to be used as a component in other
nonsmooth optimization algorithms. This not only of-
fers the promise of improving existing algorithms, but
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Figure 5. Objective function value vs. CPU seconds on L1-regularized logistic loss minimization tasks.

may also help clarify connections between them. We
hope that this will focus attention on those core sub-
routines that need to be made more efficient in order
to handle larger and larger datasets.
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L. Lukšan and J. Vlček. Globally convergent variable
metric method for convex nonsmooth unconstrained
minimization. Journal of Optimization Theory and
Applications, 102(3):593–613, 1999.

A. Nedich and D. P. Bertsekas. Convergence rate of
incremental subgradient algorithms. In S. Uryasev
and P. M. Pardalos, editors, Stochastic Optimiza-
tion: Algorithms and Applications, pages 263–304.
Kluwer Academic Publishers, 2000.

J. Nocedal and S. J. Wright. Numerical Optimization.
Springer Series in Operations Research. Springer,
1999.

C. Teo, Q. Le, A. Smola, and S. Vishwanathan. A
scalable modular convex solver for regularized risk
minimization. In Proc. ACM Conf. Knowledge Dis-
covery and Data Mining (KDD). ACM, 2007.
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Abstract

In many retrieval tasks, one important goal
involves retrieving a diverse set of results
(e.g., documents covering a wide range of top-
ics for a search query). First of all, this re-
duces redundancy, effectively showing more
information with the presented results. Sec-
ondly, queries are often ambiguous at some
level. For example, the query “Jaguar” can
refer to many different topics (such as the
car or feline). A set of documents with high
topic diversity ensures that fewer users aban-
don the query because no results are relevant
to them. Unlike existing approaches to learn-
ing retrieval functions, we present a method
that explicitly trains to diversify results. In
particular, we formulate the learning prob-
lem of predicting diverse subsets and derive
a training method based on structural SVMs.

1. Introduction

State of the art information retrieval systems com-
monly use machine learning techniques to learn rank-
ing functions (Burges et al., 2006; Chapelle et al.,
2007). Existing machine learning approaches typically
optimize for ranking performance measures such as
mean average precision or normalized discounted cu-
mulative gain. Unfortunately, these approaches do not
consider diversity, and also (often implicitly) assume
that a document’s relevance can be evaluated indepen-
dently from other documents.

Indeed, several recent studies in information retrieval
have emphasized the need to optimize for diversity
(Zhai et al., 2003; Carbonell & Goldstein, 1998; Chen
& Karger, 2006; Zhang et al., 2005; Swaminathan
et al., 2008). In particular, they stressed the need to
model inter-document dependencies. However, none of

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

these approaches addressed the learning problem, and
thus either use a limited feature space or require exten-
sive tuning for different retrieval settings. In contrast,
we present a method which can automatically learn a
good retrieval function using a rich feature space.

In this paper we formulate the task of diversified re-
trieval as the problem of predicting diverse subsets.
Specifically, we formulate a discriminant based on
maximizing word coverage, and perform training using
the structural SVM framework (Tsochantaridis et al.,
2005). For our experiments, diversity is measured us-
ing subtopic coverage on manually labeled data. How-
ever, our approach can incorporate other forms of
training data such as clickthrough results. To the best
of our knowledge, our method is the first approach that
can directly train for subtopic diversity. We have also
made available a publicly downloadable implementa-
tion of our algorithm1.

For the rest of this paper, we first provide a brief sur-
vey of recent related work. We then present our model
and describe the prediction and training algorithms.
We finish by presenting experiments on labeled query
data from the TREC 6-8 Interactive Track as well as a
synthetic dataset. Our method compares favorably to
conventional methods which do not perform learning.

2. Related Work

Our prediction method is most closely related to the
Essential Pages method (Swaminathan et al., 2008),
since both methods select documents to maximize
weighted word coverage. Documents are iteratively
selected to maximize the marginal gain, which is also
similar to approaches considered by (Zhai et al., 2003;
Carbonell & Goldstein, 1998; Chen & Karger, 2006;
Zhang et al., 2005). However, none of these previous
approaches addressed the learning problem.

Learning to rank is a well-studied problem in machine
learning. Existing approaches typically consider the
one-dimensional ranking problem, e.g., (Burges et al.,

1http://projects.yisongyue.com/svmdiv/
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2006; Yue et al., 2007; Chapelle et al., 2007; Zheng
et al., 2007; Li et al., 2007). These approaches max-
imize commonly used measures such as mean average
precision and normalized discounted cumulative gain,
and generalize well to new queries. However, diversity
is not considered. These approaches also evaluate each
document independently of other documents.

From an online learning approach, Kleinberg et al.
(2008) used a multi-armed bandit method to minimize
abandonment (maximizing clickthrough) for a single
query. While abandonment is provably minimized,
their approach cannot generalize to new queries.

The diversity problem can also be treated as learning
preferences for sets, which is the approach taken by
the DD-PREF modeling language (desJardins et al.,
2006; Wagstaff et al., 2007). In their case, diversity
is measured on a per feature basis. Since subtopics
cannot be treated as features (it is only given in the
training data), their method cannot be directly applied
to maximizing subtopic diversity. Our model does not
need to derive diversity directly from individual fea-
tures, but does require richer forms of training data
(i.e., subtopics explicitly labeled).

Another approach uses a global class hierarchy over
queries and/or documents, which can be leveraged to
classify new documents and queries (Cai & Hofmann,
2004; Broder et al., 2007). While previous studies on
hierarchical classification did not focus on diversity,
one might consider diversity by mapping subtopics
onto the class hierarchy. However, it is difficult for
such hierarchies to achieve the granularity required to
measure diversity for individual queries (see beginning
of Section 6 for a description of subtopics used in our
experiments). Using a large global hierarchy also in-
troduces other complications such as how to generate
a comprehensive set of topics and how to assign doc-
uments to topics. It seems more efficient to collect la-
beled training data containing query-specific subtopics
(e.g., TREC Interactive Track).

3. The Learning Problem

For each query, we assume that we are given a set of
candidate documents x = {x1, . . . , xn}. In order to
measure diversity, we assume that each query spans a
set of topics (which may be distinct to that query). We
define T = {T1, . . . , Tn}, where topic set Ti contains
the subtopics covered by document xi ∈ x. Topic sets
may overlap. Our goal is to select a subset y of K
documents from x which maximizes topic coverage.

If the topic sets T were known, a good solution could be
computed via straightforward greedy subset selection,

which has a (1 − 1/e)-approximation bound (Khuller
et al., 1997). Finding the globally optimal subset takes
n choose K time, which we consider intractable for
even reasonably small values of K. However, the topic
sets of a candidate set are not known, nor is the set
of all possible topics known. We merely assume to
have a set of training examples of the form (x(i),T(i)),
and must find a good function for predicting y in the
absence of T. This in essence is the learning problem.

Let X denote the space of possible candidate sets x, T
the space of topic sets T, and Y the space of predicted
subsets y. Following the standard machine learning
setup, we formulate our task as learning a hypothesis
function h : X → Y to predict a y when given x.
We quantify the quality of a prediction by considering
a loss function ∆ : T × Y → < which measures the
penalty of choosing y when the topics to be covered
are those in T.

We restrict ourselves to the supervised learning sce-
nario, where training examples (x,T) consist of both
the candidate set of documents and the subtopics.
Given a set of training examples, S = {(x(i),T(i)) ∈
X×T : i = 1, . . . , N}, the strategy is to find a function
h which minimizes the empirical risk,

R∆
S (h) =

1
N

N∑
i=1

∆(T(i), h(x(i))).

We encourage diversity by defining our loss function
∆(T,y) to be the weighted percentage of distinct
subtopics in T not covered by y, although other for-
mulations are possible, which we discuss in Section 8.

We focus on hypothesis functions which are parame-
terized by a weight vector w, and thus wish to find w
to minimize the empirical risk, R∆

S (w) ≡ R∆
S (h(·;w)).

We use a discriminant F : X × Y → < to compute
how well predicting y fits for x. The hypothesis then
predicts the y which maximizes F :

h(x;w) = argmax
y∈Y

F(x,y;w). (1)

We assume our discriminant to be linear in a joint
feature space Ψ : X ×Y → <m, which we can write as

F(x,y;w) = wT Ψ(x,y). (2)

The feature representation Ψ must enable meaningful
discrimination between high quality and low quality
predictions. As such, different feature representations
may be appropriate for different retrieval settings. We
discuss some possible extensions in Section 8.
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Figure 1. Visualization of Documents Covering Subtopics

4. Maximizing Word Coverage

Figure 1 depicts an abstract visualization of our pre-
diction problem. The sets represent candidate docu-
ments x of a query, and the area covered by each set
is the “information” (represented as subtopics T) cov-
ered by that document. If T were known, we could use
a greedy method to find a solution with high subtopic
diversity. For K = 3, the optimal solution in Fig-
ure 1 is y = {D1, D2, D10}. In general however, the
subtopics are unknown. We instead assume that the
candidate set contains discriminating features which
separates subtopics from each other, and these are pri-
marily based on word frequencies.

As a proxy for explicitly covering subtopics, we for-
mulate our discriminant Ψ based on weighted word
coverage. Intuitively, covering more (distinct) words
should result in covering more subtopics. The relative
importance of covering any word can be modeled using
features describing various aspects of word frequencies
within documents in x. We make no claims regarding
any generative models relating topics to words, but
rather simply assume that word frequency features are
highly discriminative of subtopics within x.

We now present a simple example of Ψ from (2). Let
V (y) denote the union of words contained in the docu-
ments of the predicted subset y, and let φ(v,x) denote
the feature vector describing the frequency of word v
amongst documents in x. We then write Ψ as

Ψ(x,y) =
∑

v∈V (y)

φ(v,x). (3)

Given a model vector w, the benefit of covering word v
in candidate set x is wTφ(v,x). This benefit is realized
when a document in y contains v, i.e., v ∈ V (y). We
use the same model weights for all words. A prediction
is made by choosing y to maximize (2).

This formulation yields two properties which enable
optimizing for diversity. First, covering a word twice

This word appears ...
... in a document in y.
... at least 5 times in a document in y.
... with frequency at least 5% in a document in y.
... in the title of a document in y.
... within the top 5 TFIDF of a document in y.

Table 1. Examples of Importance Criteria

The word v has ...
... a |D1(v)|/n ratio of at least 40%
... a |D2(v)|/n ratio of at least 50%
... a |D`(v)|/n ratio of at least 25%

Table 2. Examples of Document Frequency Features

provides no additional benefit. Second, the feature
vector φ(v,x) is computed using other documents in
the candidate set. Thus, diversity is measured locally
rather than relative to the whole corpus. Both prop-
erties are absent from conventional ranking methods
which evaluate each document individually.

In practical applications, a more sophisticated Ψ may
be more appropriate. We develop our discriminant by
addressing two criteria: how well a document covers a
word, and how important it is to cover a word in x.

4.1. How well a document covers a word

In our simple example (3), a single word set V (y) is
used, and all words that appear at least once in y are
included. However, documents do not cover all words
equally well, which is something not captured in (3).
For example, a document which contains 5 instances
of the word “lion” might cover the word better than
another document which only contains 2 instances.

Instead of using only one V (y), we can use L such
word sets V1(y), . . . , VL(y). Each word set V`(y) con-
tains only words satisfying certain importance criteria.
These importance criteria can be based on properties
such as appearance in the title, the term frequency in
the document, and having a high TFIDF value in the
document (Salton & Buckley, 1988). Table 1 contains
examples of importance criteria that we considered.
For example, if importance criterion ` requires appear-
ing at least 5 times in a document, then V`(y) will be
the set of words which appear at least 5 times in some
document in y. The most basic criterion simply re-
quires appearance in a document, and using only this
criterion will result in (3).

We use a separate feature vector φ`(v,x) for each im-
portance level. We will describe φ` in greater detail
in Section 4.2. We define Ψ from (2) to be the vector
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Algorithm 1 Greedy subset selection by maximizing
weighted word coverage
1: Input: w, x
2: Initialize solution ŷ← ∅
3: for k = 1, . . . ,K do
4: x̂← argmaxx:x/∈ŷ wT Ψ(x, ŷ ∪ {d})
5: ŷ← ŷ ∪ {x̂}
6: end for
7: return ŷ

composition of all the φ` vectors,

Ψ(x,y) =


∑

v∈V1(y) φ1(v,x)
...∑

v∈VL(y) φL(v,x)∑n
i=1 yiψ(xi,x)

 . (4)

We can also include a feature vector ψ(x,x) to encode
any salient document properties which are not cap-
tured at the word level (e.g., “this document received
a high score with an existing ranking function”).

4.2. The importance of covering a word

In this section, we describe our formulation for the
feature vectors φ1(v,x), . . . , φL(v,x). These features
encode the benefit of covering a word, and are based
primarily on document frequency in x.

Using the importance criteria defined in Section 4.1,
let D`(v) denote the set of documents in x which cover
word v at importance level `. For example, if the im-
portance criterion is “appears at least 5 times in the
document”, then D`(v) is the set of documents that
have at least 5 copies of v. This is, in a sense, a com-
plementary definition to V`(y).

We use thresholds on the ratio |D`(v)|/n to define fea-
ture values of φ`(v,x) that describe word v at different
importance levels. Table 2 describes examples of fea-
tures that we considered.

4.3. Making Predictions

Putting the formulation together, wT
` φ`(v,x) denotes

the benefit of covering word v at importance level `,
where w` is the sub-vector of w which corresponds to
φ` in (4). A word is only covered at importance level
` if it appears in V`(y). The goal then is to select K
documents which maximize the aggregate benefit.

Selecting the K documents which maximizes (2) takes
n choose K time, which quickly becomes intractable
for even small values of K. Algorithm 1 describes
a greedy algorithm which iteratively selects the doc-

ument with highest marginal gain. Our prediction
problem is a special case of the Budgeted Max Cov-
erage problem (Khuller et al., 1997), and the greedy
algorithm is known to have a (1− 1/e)-approximation
bound. During prediction, the weight vector w is as-
sumed to be already learned.

5. Training with Structural SVMs

SVMs have been shown to be a robust and effective
approach to complex learning problems in information
retrieval (Yue et al., 2007; Chapelle et al., 2007). For
a given training set S = {(T(i),x(i))}Ni=1, we use the
structural SVM formulation, presented in Optimiza-
tion Problem 1, to learn a weight vector w.

Optimization Problem 1. (Structural SVM)

min
w,ξ≥0

1
2
‖w‖2 +

C

N

N∑
i=1

ξi (5)

s.t. ∀i,∀y ∈ Y \ y(i) :

wT Ψ(x(i),y(i)) ≥ wT Ψ(x(i),y) + ∆(T(i),y)− ξi (6)

The objective function (5) is a tradeoff between model
complexity, ‖w‖2, and a hinge loss relaxation of the
training loss for each training example,

∑
ξi, and the

tradeoff is controlled by the parameter C. The y(i) in
the constraints (6) is the prediction which minimizes
∆(T(i),y(i)), and can be chosen via greedy selection.

The formulation of Ψ in (4) is very similar to learning
a straightforward linear model. The key difference is
that each training example is now a set of documents
x as opposed to a single document. For each training
example, each “suboptimal” labeling is associated with
a constraint (6). There are now an immense number
of constraints to define for SVM training.

Despite the large number of constraints, we can use
Algorithm 2 to solve OP 1 efficiently. Algorithm 2 is a
cutting plane algorithm, iteratively adding constraints
until we have solved the original problem within a de-
sired tolerance ε (Tsochantaridis et al., 2005). The
algorithm starts with no constraints, and iteratively
finds for each example (x(i),y(i)) the ŷ which encodes
the most violated constraint. If the corresponding con-
straint is violated by more than ε we add ŷ into the
working setWi of active constraints for example i, and
re-solve (5) using the updatedW. Algorithm 2’s outer
loop is guaranteed to halt within a polynomial number
of iterations for any desired precision ε.

Theorem 1. Let R̄ = maxi maxy ‖Ψ(x(i),y(i)) −
Ψ(x(i),y)‖, ∆̄ = maxi maxy ∆(T(i),y), and for any

1227



Predicting Diverse Subsets Using Structural SVMs

Algorithm 2 Cutting plane algorithm for solving
OP 1 within tolerance ε.
1: Input: (x(1),T(1)), . . . , (x(N),T(N)), C, ε
2: Wi ← ∅ for all i = 1, . . . , n
3: repeat
4: for i = 1, . . . , n do
5: H(y;w) ≡ ∆(T(i),y) + wT Ψ(x(i),y) −

wT Ψ(x(i),yi)
6: compute ŷ = argmaxy∈Y H(y;w)
7: compute ξi = max{0,maxy∈Wi

H(y;w)}
8: if H(ŷ;w) > ξi + ε then
9: Wi ←Wi ∪ {ŷ}

10: w← optimize (5) over W =
⋃

iWi

11: end if
12: end for
13: until no Wi has changed during iteration

ε > 0, Algorithm 2 terminates after adding at most

max
{

2n∆̄
ε
,
8C∆̄R̄2

ε2

}
constraints to the working set W. See (Tsochantaridis
et al., 2005) for proof.

However, each iteration of the inner loop of Algorithm
2 must compute argmaxy∈Y H(y;w), or equivalently,

argmax
y∈Y

∆(T(i),y) + wT Ψ(x(i),y), (7)

since wT Ψ(x(i),y(i)) is constant with respect to y.
Though closely related to prediction, this has an addi-
tional complication with the ∆(T(i),y) term. As such,
a constraint generation oracle is required.

5.1. Finding Most Violated Constraint

The constraint generation oracle must efficiently solve
(7). Unfortunately, solving (7) exactly is intractable
since exactly solving the prediction task,

argmax
y∈Y

wT Ψ(x(i),y(i)),

is intractable. An approximate method must be used.
The greedy inference method in Algorithm 1 can be
easily modified for this purpose. Since constraint gen-
eration is also a special case of the Budgeted Max
Coverage Problem, the (1−1/e)-approximation bound
still holds. Despite using an approximate constraint
generation oracle, SVM training is still known to ter-
minate in a polynomial number of iterations (Finley
& Joachims, 2008). Furthermore in practice, training
typically converges much faster than the worst case
considered by the theoretical bounds.

Intuitively, a small set of the constraints can approx-
imate to ε precision the feasible space defined by the
intractably many constraints. When constraint gener-
ation is approximate however, the ε precision guaran-
tee no longer holds. Nonetheless, using approximate
constraint generation can still offer good performance,
which we will evaluate empirically.

6. Experiment Setup

We tested the effectiveness of our method using the
TREC 6-8 Interactive Track Queries2. Relevant docu-
ments are labeled using subtopics. For example, query
392 asked human judges to identify different applica-
tions of robotics in the world today, and they identified
36 subtopics among the results such as nanorobots and
using robots for space missions.

The 17 queries we used are 307, 322, 326, 347, 352, 353,
357, 362, 366, 387, 392, 408, 414, 428, 431, 438, and
446. Three of the original 20 queries were discarded
due to having small candidate sets, making them un-
interesting for our experiments. Following the setup in
(Zhai et al., 2003), candidate sets only include docu-
ments which are relevant to at least one subtopic. This
decouples the diversity problem, which is the focus of
our study, from the relevance problem. In practice, ap-
proaches like ours might be used to post-process the
results of a commercial search engine. We also per-
formed Porter stemming and stop-word removal.

We used a 12/4/1 split for our training, validation and
test sets, respectively. We trained our SVM using C
values varying from 1e-5 to 1e3. The best C value
is then chosen on the validation set, and evaluated on
the test query. We permuted our train/validation/test
splits until all 17 queries were chosen once for the test
set. Candidate sets contain on average 45 documents,
20 subtopics, and 300 words per document. We set
the retrieval size to K = 5 since some candidate sets
contained as few as 16 documents.

We compared our method against Okapi (Robertson
et al., 1994), and Essential Pages (Swaminathan et al.,
2008). Okapi is a conventional retrieval function which
evaluates the relevance of each document individually
and does not optimize for diversity. Like our method,
Essential Pages also optimizes for diversity by select-
ing documents to maximize weighted word coverage
(but based on a fixed, rather than a learned, model).
In their model, the benefit of document xi covering a
word v is defined to be

TF (v, xi) log
(

1
DF (v,x)

)
,

2http://trec.nist.gov/
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Method Loss
Random 0.469
Okapi 0.472

Unweighted Model 0.471
Essential Pages 0.434

SVM∆
div 0.349

SVM∆
div2 0.382

Table 3. Performance on TREC (K = 5)

where TF (v, xi) is the term frequency of v in xi and
DF (v,x) is the document frequency of v in x.

We define our loss function to be the weighted per-
centage of subtopics not covered. For a given candi-
date set, each subtopic’s weight is proportional to the
number of documents that cover that subtopic. This
is attractive since it assigns a high penalty to not cov-
ering a popular subtopic. It is also compatible with
our discriminant since frequencies of important words
will vary based on the distribution of subtopics.

The small quantity of TREC queries makes some eval-
uations difficult, so we also generated a larger synthetic
dataset of 100 candidate sets. Each candidate set has
100 documents covering up to 25 subtopics. Each doc-
ument samples 300 words independently from a multi-
nomial distribution over 5000 words. Each document’s
word distribution is a mixture of its subtopics’ distri-
butions. We used this dataset to evaluate how per-
formance changes with retrieval size K. We used a
15/10/75 split for training, validation, and test sets.

7. Experiment Results

Let SVM∆
div denote our method which uses term fre-

quencies and title words to define importance crite-
ria (how well a document covers a word), and let
SVM∆

div2 denote our method which in addition also
uses TFIDF. SVM∆

div and SVM∆
div2 use roughly 200

and 300 features, respectively. Table 1 contains exam-
ples of importance criteria that could be used.

Table 3 shows the performance results on TREC
queries. We also included the performance of ran-
domly selecting 5 documents as well as an unweighted
word coverage model (all words give equal benefit
when covered). Only Essential Pages, SVM∆

div and
SVM∆

div2 performed better than random.

Table 4 shows the per query comparisons between
SVM∆

div, SVM∆
div2 and Essential Pages. Two stars in-

dicate 95% significance using the Wilcoxon signed rank
test. While the comparison is not completely fair since
Essential Pages was designed for a slightly different

Method Comparison Win / Tie / Lose
SVM∆

divvs Essential Pages 14 / 0 / 3 **
SVM∆

div2vs Essential Pages 13 / 0 / 4
SVM∆

divvs SVM∆
div2 9 / 6 / 2

Table 4. Per Query Comparison on TREC (K = 5)
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Figure 2. Comparing Training Size on TREC (K = 5)

setting, it demonstrates the benefit of automatically
fitting a retrieval function to the specific task at hand.

Despite having a richer feature space, SVM∆
div2 per-

forms worse than SVM∆
div. We conjecture that the top

TFIDF words do not discriminate between subtopics.
These words are usually very descriptive of the query
as a whole, and thus will appear in all subtopics.

Figure 2 shows the average test performance of
SVM∆

div as the number of training examples is var-
ied. We see a substantial improvement in performance
as training set size increases. It appears that more
training data would further improve performance.

7.1. Approximate Constraint Generation

Using appoximate constraint generation might com-
promise our model’s ability to (over-)fit the data. We
addressed this concern by examining the training loss
as the C parameter is varied. The training curve of
SVM∆

div is shown in Figure 3. Greedy optimal refers to
the loss incurred by a greedy method with knowledge
of subtopics. As we increase C (favoring low training
loss over low model complexity), our model is able to
fit the training data almost perfectly. This indicates
that approximate constraint generation is acceptable
for our training purposes.

7.2. Varying Predicted Subset Size

We used the synthetic dataset to evaluate the behavior
of our method as we vary the retrieval size K. It is dif-
ficult to perform this evaluation on the TREC queries
– since some candidate sets have very few documents
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or subtopics, using higher K would force us to discard
more queries. Figure 4 shows that the test perfor-
mance of SVM∆

div consistently outperforms Essential
Pages at all levels of K.

7.3. Running Time

Predicting takes linear time. During training, Algo-
rithm 2 loops for 10 to 100 iterations. For ease of de-
velopment, we used a Python interface3 to SVMstruct.
Even with our unoptimized code, most models trained
within an hour, with the slowest finishing in only a
few hours. We expect our method to easily accomo-
date much more data since training scales linearly with
dataset size (Joachims et al., to appear).

8. Extensions

8.1. Alternative Discriminants

Maximizing word coverage might not be suitable for
other types of retrieval tasks. Our method is a general
framework which can incorporate other discriminant
formulations. One possible alternative is to maximize
the pairwise distance of items in the predicted subset.
Learning a weight vector for (2) would then amount to
finding a distance function for a specific retrieval task.

3http://www.cs.cornell.edu/~tomf/svmpython2/

Any discriminant can be used so long as it captures
the salient properties of the retrieval task, is linear in
a joint feature space (2), and has effective inference
and constraint generation methods.

8.2. Alternative Loss Functions

Our method is not restricted to using subtopics to
measure diversity. Only our loss function ∆(T,y)
makes use of subtopics during SVM training. We
can also incorporate loss functions which can penal-
ize other types of diversity criteria and also use other
forms of training data, such as clickthrough logs. The
only requirement is that it must be computationally
compatible with the constraint generation oracle (7).

8.3. Additional Word Features

Our choice of features is based almost exclusively on
word frequencies. The sole exception is using title
words as an importance criterion. The goal of these
features is to describe how well a document covers a
word and the importance of covering a word in a can-
didate set. Other types of word features might prove
useful, such as anchor text, URL, and any meta infor-
mation contained in the documents.

9. Conclusion

In this paper we have presented a general machine
learning approach to predicting diverse subsets. Our
method compares favorably to methods which do
not perform learning, demonstrating the usefulness of
training feature rich models for specific retrieval tasks.
To the best of our knowledge, our method is the first
approach which directly trains for subtopic diversity.
Our method is also efficient since it makes predictions
in linear time and has training time that scales linearly
in the number of queries.

In this paper we separated the diversity problem from
the relevance problem. An interesting direction for fu-
ture work would be to jointly model both relevance and
diversity. This is a more challenging problem since it
requires balancing a tradeoff for presenting both novel
and relevant information.

The non-synthetic TREC dataset is also admittedly
small. Generating larger (and publicly available) la-
beled datasets which encode diversity information is
another important direction for future work.
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Abstract
Low-rank matrix approximation is an effective
tool in alleviating the memory and computa-
tional burdens of kernel methods and sampling,
as the mainstream of such algorithms, has drawn
considerable attention in both theory and prac-
tice. This paper presents detailed studies on the
Nyström sampling scheme and in particular, an
error analysis that directly relates the Nyström
approximation quality with the encoding pow-
ers of the landmark points in summarizing the
data. The resultant error bound suggests a sim-
ple and efficient sampling scheme, thek-means
clustering algorithm, for Nystr̈om low-rank ap-
proximation. We compare it with state-of-the-art
approaches that range from greedy schemes to
probabilistic sampling. Our algorithm achieves
significant performance gains in a number of su-
pervised/unsupervised learning tasks including
kernel PCA and least squares SVM.

1. Introduction

Kernel methods play a central role in machine learning and
have demonstrated huge success in modelling real-world
data with highly complex, nonlinear structures. Examples
include the support vector machine, kernel Fisher discrimi-
nant analysis and kernel principal component analysis. The
key element of kernel methods is to map the data into a
kernel-induced Hilbert spaceϕ(·) where dot product be-
tween points can be computed equivalently through the ker-
nel evaluation〈ϕ(xi), ϕ(xj)〉 = K(xi, xj). Givenn sam-
ple points, this necessitates the calculation of ann×n sym-
metric, positive (semi-)definite kernel matrix. The resultant
complexities in terms of both space (quadratic) and time
(usually cubic) can be quite demanding for large problems,
posing a big challenge on practical applications.

Appearing inProceedings of the25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

A useful way to alleviate the memory and computational
burdens of kernel methods is to utilize the rapid decay-
ing spectra of the kernel matrices (Williams & Seeger,
2000) and perform low-rank approximation in the form of
K = GG′, whereG ∈ R

n×m with m ≪ n. However, the
optimal (eigenvalue) decomposition takesO(n3) time and
efficient alternatives have to be sought. In the following,
we give a brief review on efficient techniques for low-rank
decompositions of symmetric, positive (semi-)definite ker-
nel matrices.

Greedy approaches have been applied in several fast al-
gorithms for approximating the kernel matrix. In (Smola
& Schölkopf, 2000), the kernel matrixK is approximated
by the subspace spanned by a subset of its columns. The
basis vectors are chosen incrementally to minimize an up-
per bound of the approximation error. The algorithm takes
O(m2nl) time using a probabilistic heuristic, wherel is the
random subset size. In (Ouimet & Bengio, 2005), a greedy
sampling scheme is proposed based on how well a sample
point can be represented by a (constrained) linear combi-
nation of the current subspace basis in the feature space.
Their algorithm scales asO(m2n). Another well-known
greedy approach for low-rank approximation of positive
semi-definite matrices is the incomplete Cholesky decom-
position (Fine & Scheinberg, 2001; Bach & Jordan, 2005;
Bach & Jordan, 2002). It is a variant of the Cholesky
decomposition that skip pivots below a certain threshold,
and factorizes the kernel matrixK as K = GG′ where
G ∈ R

n×m is a lower triangular matrix.

Another class of low-rank approximation algorithms stem
from the Nystr̈om method. The Nyström method was orig-
inally designed to solve integral equations (Baker, 1977).
Given a kernel matrixK, the Nystr̈om method can be
deemed as choosing a subset ofm columns (hence rows)
E ∈ R

n×m, and reconstructing the complete kernel ma-
trix by K ≃ EW−1E′, whereW is the intersection of
the selected rows and columns ofK. The most popular
sampling scheme for Nyström method is random sampling,
which leads to fast versions of kernel machines (Williams
& Seeger, 2001; Lawrence & Herbrich, 2003) and spectral
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clustering (Fowlkes et al., 2004). In (Platt, 2005), several
variants of multidimensional scaling are all shown to be re-
lated to the Nystr̈om approximation.

There are also a large body of randomized algorithms for
low-rank decomposition of arbitrary matrices (Frieze et al.,
1998; Achlioptas & McSherry, 2001; Drineas et al., 2003),
where the goal is to design column/row sampling proba-
bilities that achieve provable probabilistic bounds. These
algorithms are designed for a more general purpose and
will not be the focus of this paper. However, we note that
one of these randomized algorithms has been recently re-
vised for efficient low-rank approximation of the symmet-
ric Gram matrix (Drineas & Mahoney, 2005). Therefore
we will use it as a representative of randomized algorithms
in our empirical evaluations. The basic idea of (Drineas &
Mahoney, 2005) is to sample the columns of the kernel ma-
trix based on a pre-computed distribution using the norms
of the columns. The reconstruction of the kernel matrix is
also normalized by the sampling distribution.

In terms of efficiency, greedy approaches usually take
O(m2n) time for sampling, while the random scheme only
needsO(n) and is much more efficient. Probabilistic ap-
proaches, or randomized algorithms in general, are usually
more expensive in that the sampling distributions have to
be computed based on the original matrix, which require
at leastO(n2). In terms of memory, note that the matrices
(E andW ) needed in the Nyström method with random
sampling can be simply computed on demand. This greatly
reduces the memory requirement for very large-scale prob-
lems. In contrast, the intermediate matrices for greedy ap-
proaches have to be incrementally updated and stored.

Although the Nystr̈om method possesses desirable scaling
properties and has been applied with success in various ma-
chine learning problems, analysis on its key step of choos-
ing the landmark set is relatively limited. In (Drineas &
Mahoney, 2005), a probabilistic error bound is provided
on the Nystr̈om low-rank approximation. However, the
error bound only applies to the specially designed sam-
pling scheme, which needs to compute the norms of all
the rows/columns of the kernel matrix and is hence quite
expensive. In (Zhang & Kwok, 2006), a block quantiza-
tion scheme is proposed for fast spectral embedding. The
kernel eigen-system is approximated by first computing
a block-wise constant kernel matrix and then extrapolat-
ing its eigenvectors through the weighted Nyström exten-
sion. However, the error analysis is only on the block-
quantization step, and how the Nyström method affects the
approximation quality in general remains unclear. Thus,
the motivation of this paper is to provide a more concrete
analysis on how the sampling scheme (or the choice of the
landmark points) in general influences the Nyström low-
rank approximation, and to improve the sampling strategy

while still preserving its computational efficiency.

Our key finding is that the Nyström low-rank approxima-
tion depends crucially on the quantization error induced by
encoding the sample set with the landmark points. This
suggests that, instead of applying the greedy or probabilis-
tic sampling, the landmark points can be simply chosen as
thek-means cluster centers, which finds a local minimum
of the quantization error. To the best of our knowledge,
thek-means has not been applied in the Nyström low-rank
approximation. The complexity ofk-means is only linear
in the sample size and dimension and, as our analysis ex-
pected, it demonstrates very encouraging performance that
is consistently better than all known variants of Nyström.
We also compare it with the greedy approach of incomplete
Cholesky decomposition and again obtain positive results.

The rest of the paper is organized as follows. In Section 2,
we give a brief introduction of the Nyström method. In
Section 3, we present an error analysis on how the Nyström
low-rank approximation is affected by the chosen landmark
points, and propose thek-means algorithm for the sam-
pling step. In Section 4, we compare our approach with
a number of state-of-the-art low-rank decomposition tech-
niques (including both greedy and probabilistic sampling
approaches). The last section gives concluding remarks.

2. Nyström Method

The Nystr̈om method is originated from the numerical
treatment of integral equations of the form

∫

p(y)k(x, y)φi(y)dy = λiφi(x), (1)

wherep(·) is the probability density function,k is a posi-
tive definite kernel function, andλ1 ≥ λ2 ≥ · · · ≥ 0 and
φ1, φ2, . . . are the eigenvalues and eigenfunctions of the in-
tegral equation, respectively. Given a set of i.i.d. samples
{x1, x2, . . . , xq} drawn fromp(·), the basic idea is to ap-
proximate the integral in (1) by the empirical average:

1

q

q
∑

j=1

k(x, xj)φi(xj) ≃ λiφi(x). (2)

Choosingx in (2) from{x1, x2, . . . , xq} leads to a standard
eigenvalue decompositionK(q)U (q) = U (q)Λ(q), where
K

(q)
ij = k(xi, xj) for i, j = 1, 2, . . . , q, U (q) ∈ R

q×q

has orthonormal columns andΛ(q) ∈ R
q×q is a diagonal

matrix. The eigenfunctionsφi’s and eigenvaluesλi’s in
(1) can be approximated byU (q) andΛ(q), as (Williams &
Seeger, 2001):

φi(xj) ≃
√

qU
(q)
ji , λi ≃ λ

(q)
i /q. (3)

This means, the Nyström method using different subset
sizesq’s are all approximations toλi andφi in the inte-
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gral equation (1). As a result, the Nyström method us-
ing a smallq can also be deemed as approximating the
Nyström method using a largeq. Suppose the sample set
X = {xi}n

i=1, with the correspondingn × n kernel matrix
K. Then the Nystr̈om method that randomly chooses a sub-
setZ = {zi}m

i=1 of m landmark points will approximate
the eigen-system of the full kernel matrixKΦK = ΦKΛK

by (Williams & Seeger, 2001)

ΦK ≃
√

m

n
EΦZΛ−1

Z , ΛK ≃ n

m
ΛZ . (4)

Here,E ∈ R
n×m with Eij = k(xi, zj), andΦZ ,ΛZ ∈

R
m×m contain the eigenvectors and eigenvalues ofW ∈

R
m×m whereWij = k(zi, zj). Using the approximations

in (4), K can be reconstructed as

K ≃
(√

m

n
EΦZΛ−1

Z

)( n

m
ΛZ

)(
√

m

n
EΦZΛ−1

Z

)′

= EW−1E′. (5)

Equation (5) is the basis for Nyström low-rank approx-
imation of the kernel matrix (Williams & Seeger, 2001;
Fowlkes et al., 2004).

3. Error Analysis of the Nyström Method

In this section we analyze how the Nyström approximation
error depends on the choice of landmark points. We first
provide an important observation (Section 3.1), and then
derive the error bound in more general settings based on a
“clustered” data model (Section 3.2-3.4). The error bound
gives important insights on the design of efficient sam-
pling schemes for accurate low-rank approximation (Sec-
tion 3.5).

3.1. Observation

Proposition 1. Given the data setX = {xi}n
i=1, and the

landmark point setZ = {zj}m
j=1. Then the Nystr̈om recon-

struction of the kernel entryK(xi, xj) will be exact if there
exist two landmark points such thatzp = xi, andzq = xj .

Proof. Let Kxk,Z ∈ R
1×m be the similarity betweenxk

and the landmark pointsZ. Then the Nystr̈om reconstruc-
tion of the kernel entry will beKxi,ZW−1K ′

xj ,Z , where
W ∈ Rm×m is the kernel matrix defined on the land-
mark setZ. Let W (k) be thekth row of W , then we
haveKxi,Z = W (p) andKxj ,Z = W (q) sincexi = zp,
andxj = zq. As a result, the reconstructed entry will be
W (p)W−1(W (q))′ = Wpq = K(zp, zq) = K(xi, xj).

Proposition 1 indicates that the landmark points should be
chosen to overlap sufficiently with the original data. How-
ever, it is often impossible to use a small landmark set to
represent every sample point accurately.

3.2. Approximation Error of Sub-Kernel Matrix

In this section we apply a “clustered” data model to analyze
the quality of Nystr̈om low rank approximation. Here, the
data clusters can be naturally obtained by assigning each
sample to the closest landmark point. As will be seen, this
model allows us to derive an explicit error bound for the
Nyström approximation.

Again, suppose that the landmark set isZ = {zi}m
i=1, and

the whole sample setX is partitioned intom disjoint clus-
tersSk ’s. Let c(i) be the function that maps each sam-
ple xi ∈ X to the closest landmark pointzc(i) ∈ Z, i.e.,
c(i) = arg minj=1,2,··· ,m ‖xi − zj‖. Our goal is to study
the approximation error in (5):

E =
∥
∥K − EW−1E′

∥
∥

F
, (6)

where‖ · ‖F denotes the matrix Frobenious norm.

First, we consider the simpler notion ofpartial approxima-
tion error defined as follows.

Definition 1. Suppose each cluster hasT samples1. Re-
peat the following sampling processT times: at each time
t, pick one sample from each cluster, and denote the set of
samples chosen at timet asXIt

. ThenX = {XI1
∪ XI1

∪
...∪XIT

}, and the whole kernel matrix will be correspond-
ingly decomposed intoT 2 blocks, each of sizem × m. Let
KIi,Ij

, andEIi,Z be them×m similarity matrices defined
on(XIi

,XIi
) and(XIi

,Z), respectively, andW ∈ R
m×m

the kernel matrix defined onZ. Thepartial approximation
error is the difference betweenKIi,Ij

and its Nystr̈om ap-
proximation under the Frobenius norm

EIi,Ij
= ‖KIi,Ij

− EIi,ZW−1E′
Ij ,Z‖F . (7)

We assume the kernelk satisfies the following property:

(k(a, b)−k(c, d))2≤Ck
X

(
‖a − c‖2+‖b − d‖2

)
,∀a, b, c, d

(8)
whereCk

X is a constant depending onk and the sample set
X . The validity of this assumption on a number of com-
monly used kernels will be proved in Section 3.4.

Proposition 2. For kernel k satisfying property (8), the
partial approximation errorEIi,Ij

is bounded by

EIi,Ij
≤
√

2mCk
X (eIi

+ eIj
) +

√

mCk
X eIi

+
√

mCk
X eIj

+ mCk
X
√

eIi
eIj

‖W−1‖F . (9)

whereeIi
is the quantization error induced by coding each

sample inXIi
by the closest landmark point inZ, i.e.,

eIi
=
∑

xi∈XIi

∥
∥xi − zc(i)

∥
∥

2
. (10)

1If cluster sizes differ, add “virtual samples” to each cluster
such that all the clusters have the same size (which is equal to
T = maxk |Sk|). The virtual samples added to clusterSk are
chosen as the landmark pointzk for that cluster, so they will not
induce extra quantization errors but will loosen the bound.
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Proof. We will first define the following matrices

AIi,Ij
= KIi,Ij

− W ;BIi,Z = EIi,Z − W ;

CIj ,Z = EIj ,Z − W, (11)

and then show that they have bounded Frobenius norms.
Without loss of generality, we specify the indices as fol-
lows: KIi,Ij

(p, q) = k(xIi(p), xIj(q)); EIi,Z(p, q) =
k(xIi(p), zq); EIj ,Z(p, q) = k(xIj(p), zq); andW (p, q) =
k(zp, zq). With property (8), we have

‖AIi,Ij
‖2

F =

m∑

p,q=1

(
k(xIi(p), xIj(q)) − k(zp, zq)

)2

≤ Ck
X

m∑

p,q=1

(∥
∥xIi(p) − zp

∥
∥

2
+
∥
∥xIi(q) − zq

∥
∥

2
)

= mCk
X

(
m∑

p=1

∥
∥xIi(p) − zp

∥
∥

2
+

m∑

q=1

∥
∥xIj(q) − zq

∥
∥

2

)

= 2mCk
X

(
eIi

+ eIj

)
,

whereeIi
is the same as that in (10) sincec(I(q)) = q.

For matrixBIi,Z , we have

‖BIi,Z‖2
F =

∑

p,q

(
k(xIi(p), zq) − k(zp, zq)

)2

≤ mCk
X

m∑

p=1

∥
∥xIi(p) − zp

∥
∥

2
= mCk

X eIi
,

and similarly for matrixCIj ,Z ‖CIj ,Z‖2
F ≤ mCk

X eIj
.

Note that the partial approximation errorEIi,Ij
(7) can be

re-written as follows using (11).

‖ EIi,Ij
‖F =

∥
∥W +AIi,Ij

−(W + BIi,Z)W−1(W +CIj,Z)′
∥
∥

F

=
∥
∥
∥W +AIi,Ij

−W
′
−C

′
Ij,Z−BIi,Z−BIi,ZW

−1
C

′
Ij ,Z

∥
∥
∥

F

≤ ‖AIi,Ij
‖F +‖BIi,Z‖F +‖CIj,Z‖F +‖BIi,Z‖F ‖CIj,Z‖F ‖W

−1
‖F

Using the bounds on‖AIi,Ij
‖, ‖BIi,Z‖, ‖CIj ,Z‖ together

with the definition in (11), we have Proposition 2

3.3. Approximation Error of Complete Kernel Matrix

With the estimated partial approximation error, we can now
obtain a bound on the complete error for Nyström approx-
imation (6). The basic idea is to sum up the partial errors
EIi,Ij

over alli, j = 1, 2, ..., T .

Proposition 3. The error of the Nystr̈om approximation (6)
is bounded by

E ≤ 4T

√

mCk
X eT + mCk

XTe‖W−1‖F (12)

whereT = max
k

|Sk|, ande =
∑n

i=1

∥
∥xi − zc(i)

∥
∥

2
is the

total quantization error of coding each samplexi ∈ X with
the closest landmark pointzj ∈ Z.

Proof. Here we sum up the terms in (9) separately.

T∑

i,j=1

√

2mCk
X (eIi

+eIj
)=
√

2mCk
X

T∑

i=1





T∑

j=1

√
eIi

+eIj





≤
√

2mCk
X

T∑

i=1




√

T

√
√
√
√TeIi

+

T∑

j=1

eIj



≤ 2T

√

mCk
XTe

wheree =
∑T

j=1 eIj
=
∑

xi∈X ‖xi − zc(i)‖2 is the same
as defined in proposition 3. Similarly, the second term (and
the third term) in (9) can be summarized as

T∑

i,j=1

√

mCk
X eIi

=
√

mCk
X

T∑

j=1

(
T∑

i=1

√
eIi

)

≤T

√

mCk
X eT

The last term in (9) can be summarized as

T∑

i,j=1

mCk
X
√

eIi
eIj

‖W−1‖F = mCk
X‖W−1‖F

(
T∑

i=1

√
eIi

)2

≤mCk
X ‖W−1‖F Te

By combining all these terms, we arrive at Proposition 3.

3.4.Ck
X Under Different Kernels

In this section, we show that many commonly used ker-
nel functions satisfy the property in (8). Consider the sta-
tionary kernelk (x, y) = κ

(∥
∥x−y

σ

∥
∥
)
, including the Gaus-

sian kernelκ(α) = exp(−α2), Laplacian kernelκ(α) =
exp(−α), and inverse distance kernelκ(α) = (α + ǫ)−1.
By using the mean value theorem and triangular inequality,
we have, for anya, b, c, d ∈ Rd,

(k(a, b) − k(c, d))2 = (κ (‖a − b‖/σ)− κ (‖c − d‖/σ))
2

= [κ′(ξ)/σ]2 (‖a − b‖ − ‖c − d‖)2 .

Let v1 = a−c andv2 = b−d. Note that we have‖c−d‖ ≤
‖a− b‖+ ‖v1‖+ ‖v2‖ and similarly‖a− b‖ ≤ ‖c− d‖+
‖v1‖ + ‖v2‖. So‖a − b‖ − ‖c − d‖ is always bounded by

(‖a − b‖ − ‖c − d‖)2 ≤ (‖a − c‖ + ‖b − d‖)2

≤ 2
(
‖a − c‖2 + ‖b − d‖2

)
.

So Ck
X can be chosen asmax[2κ′(ξ)/σ]2 which is often

bounded (Ck
X is 1

2σ2 for the Gaussian,1σ2 for the Laplacian,
and 1

σ2ǫ4 for the inverse distance). Similarly, for polyno-

mial kernels of the formk(x, y) = (〈x, y〉 + ǫ)
d,

(k(a, b) − k(c, d))2 =
(
(a′b + ǫ)d − (c′d + ǫ)d

)2

= (p′(ξ)(a′b − c′d))
2
= (p′(ξ) ((a − c)′b + (b − d)′c))

2

≤ [2p′(ξ)]2
(
‖(a − c)′b‖2 + ‖(b − d)′c‖2

)

≤ [2p′(ξ)R]2
(
‖a − c‖2 + ‖b − d‖2

)
,
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whereR is the larger one of the two quantities: the max-
imum pairwise distance between samples, and maximum
distance between samples and the origin point; andp(z) =
zd. SoCk

X can be chosen asmax[κ′(ξ)R]2 = d2Rd.

3.5. Sampling Procedure

The error bound in Proposition 3 provides important in-
sights on how to choose the landmark points in the Nyström
method. As can be seen, consistently, that for a number of
commonly used kernels, the most important factor that in-
fluences the approximation quality ise, the error of quan-
tizing each of the samples inX with the closest landmark in
Z. If this quantization error is zero, the Nyström low-rank
approximation of the kernel matrix will also be exact. This
agrees well with the ideal case discussed in Section 3.1.

Motivated by this observation and the fact thatk-means
clustering can find a local minimum of the quantization er-
ror (Gersho & Gray, 1992), we propose to use the centers
obtained from thek-means as the landmark points. Here,k

is the desired number of landmark points inZ. The larger
the k, the more accurate the approximation though at the
cost of higher computations. Despite its simplicity, thek-
means procedure can greatly improve the approximation
quality compared to other sampling schemes, as will be
demonstrated empirically in Section 4. Recent advances
in speeding up thek-means algorithms (Elkan, 2003; Ka-
nungo et al., 2001) also make thisk-means-based sampling
strategy particularly suitable for large-scale problems.

4. Experiments

This section presents empirical evaluations of the various
low-rank approximation schemes. First, we discuss how
the low rank approximation fits into different applications.
One is to solve linear systems of the form(K + σI)x = a,
whereK is the kernel matrix,σ ≥ 0 is a regularization
parameter andI is then × n identity matrix. Given the
low-rank approximationK ≃ GG′, the following holds
(Williams & Seeger, 2001) by the Woodbury formula

(K + σI)−1 ≃ 1

σ

(
I − G(σI + G′G)−1G′

)
, (13)

which only needsO(m2n) time and O(mn) memory.
Therefore, it can be used in speeding up the Gaussian pro-
cesses (Williams & Seeger, 2001) and least-squares SVM
(LS-SVM) (Suykens & Vandewalle, 1999).

The second application is to reconstruct the eigen-system
of a matrix approximated by its low-rank decomposition.

Proposition 4. Given the low-rank approximationK ≈
GG′, whereG ∈ R

n×m andm ≪ n, the topm eigenvec-
torsU of K can be obtained asU ≈ GV Λ−1/2 in O(m2n)
time, whereV,Λ ∈ R

m×m are from the eigenvalue decom-

position of them × m matrixS = G′G = V ΛV ′.

Proof can be found in (Fowlkes et al., 2004). Therefore
low-rank approximation is useful for algorithms that rely
on eigenvectors of the kernel matrix, such as kernel PCA
(Scḧolkopf et al., 1998), Laplacian eigenmap (Belkin &
Niyogi, 2002) and normalized cut.

Note that the Nystr̈om method, when designed originally
to solve integral equations, did not provide orthogonal ap-
proximations to the kernel eigenfunctions. Thanks to the
matrix completion view (5) (Fowlkes et al., 2004; Williams
& Seeger, 2001), the Nyström method can be utilized for
obtaining orthogonal eigenvectors (Proposition 4), though
the time complexity increases from the simple Nyström ex-
tension (4) ofO(mn) to O(m2n). In the experiments we
focus on the orthogonalized eigenvector approximation.

Table 1.Complexities of basis selection for the different methods.

Ours Nystr̈om Drineas ICD
time O(mn) O(n) O(n2) O(m2n)
space O(mn) O(mn) O(mn) O(mn)

We compare altogether five low-rank approximation algo-
rithms, including: 1. incomplete Cholesky decomposition
(ICD)2; 2. Nystr̈om method (with random sampling); 3.
the method in (Drineas & Mahoney, 2005); 4. our method
(for simplicity, the maximum number ofk-means iterations
is restricted to10); 5. SVD. Note that SVD (or eigenvalue
decomposition in our context) provides the best low-rank
approximation in terms of both the Frobenius norm and
spectral norm (Golub & Van Loan, 1996). The complexi-
ties of basis selection (i.e., choosingE andW in Nyström,
or sampling the columns in (Drineas & Mahoney, 2005)
and ICD) in the different algorithms are listed in Table 1.
Evaluations are performed in the contexts of kernel matrix
approximation (Section 4.1), kernel PCA (Section 4.2), and
LS-SVM classification (Section 4.3). We use core(TM)-
dual PC with 2.13GHz CPU and the codes are in matlab.

4.1. Approximating the Kernel Matrix

We first examine the performance of the low-rank approx-
imation schemes by measuring their approximation errors
(in terms of the Frobenius norm) on the kernel matrix. We
choose a number of benchmark data sets from the LIB-
SVM archive3, summarized in Table 2. Note that our ap-
proximation error bound in Proposition 3 applies to most
kernel functions (Section 3.4), and preliminary experimen-
tal results with these kernels have shown the superiority
of our sampling scheme compared with other low-rank ap-
proximation methods. However, due to lack of space, we

2http://www.di.ens.fr/∼fbach/kernel-ica/index.htm
3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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Table 2.A summary of data sets.
data german splice adult1a dna
size 1000 1000 1605 2000

dimension 24 60 123 180
data segment w1a svmgd1a satimage
size 2310 2477 3089 4435

dimension 19 300 4 36

will only report results for the Gaussian kernelK(x, y) =
exp(−‖x − y‖2/γ). Here, γ is chosen as the average
squared distance between data points and the mean of each
data set. We gradually increase the subset sizem from 1%
to 10% of the data size. To reduce statistical variability, re-
sults of methods 2, 3, and 4 are based on averages over 20
repetitions.

The approximation errors are plotted in Figure 1. As can
be seen, our algorithm is only inferior to SVD on most data
sets. Moreover, though the method in (Drineas & Mahoney,
2005) involves a more complicated probabilistic sampling
scheme, its performance is only comparable or sometimes
even worse than the Nyström method with simple random
sampling. Similar observations have also been reported in
the context of SVD (Drineas et al., 2003). ICD seems to be
inferior on several data sets. However, for data sets whose
kernel spectra decay rapidly to zero4 (such as thesegment,
svmguide1a andsatimage), ICD can also quickly attain
performance comparable to others.

We also examine empirically the relationship betweenE
ande under different sampling schemes. Figure 2 reports
the results on thegerman data, wherem = 100 and each
sampling scheme is repeated 100 times. As can be seen,
there is a strong, positive correlation betweenE ande. This
is observed on most data and agrees with our error analysis.

4.2. Kernel PCA

In kernel PCA, the key step is to obtain eigenvectors of the
centered kernel matrixHKH, whereH = I − 1

n11′ ∈
R

n×n. Following Proposition 2 of (Ouimet & Bengio,
2005), with the low-rank decompositionK ≃ GG′, the
centered kernel matrix can be written as(HG)(HG)′ or
(G− Ḡ)(G− Ḡ)′, whereḠ ∈ Rn×m and all its rows equal
to the mean of rows inG. Hence the topm eigenvectors can
be obtained inO(m2n) time according to Proposition 4.

We evaluate the low rank approximation schemes by the
embedding onto the top 3 principal directions. We align
the approximate embeddings (Ũ ) with the standard KPCA
embedding (U ) through a linear transform, and report the

4Note that the (squared) rank-m approximation error of SVD
is
∑n

i=m+1
σ2

i , whereσi’s are the singular values ofK sorted in
descending order (Golub & Van Loan, 1996). Therefore, if SVD’s
error in Figure 1 drops rapidly, so does the spectrum ofK.
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Figure 2.Low-rank approximation error versus quantization error
for different sampling schemes.

minimum misalignment error:minA∈R3×3 ‖U − ŨA‖F .
The parameter setting is the same as in Section 4.1, ex-
cept that we fixm = 0.05n for all the low-rank decom-
position algorithms. Again, results of methods 2, 3, 4 in
Table 3 are averaged over 20 repetitions. As we can seen,
our algorithm is the best on most data sets, next comes the
standard Nystr̈om and the method by (Drineas & Mahoney,
2005). The time consumptions of all low-rank approxima-
tion schemes are significantly lower than SVD.

4.3. Least Squares SVM

Given the kernel matrixK, the training labelsy ∈
{±1}n×1, and the regularization parameterC > 0, the LS-
SVM classifierf(x) =

∑n
i=1 αiφ(x, xi) + b is solved by

b = y′M−11/y′M−1y, andα = M−1(1 − by), where
1 is a vector of all ones, andM = Y (K + I/C)Y and
Y = diag(y). Note thatM−1 = Y (K + I/C)−1Y can be
computed efficiently using (13).

We evaluate different low-rank approximation schemes in
LS-SVM, using some difficult pairs of theUSPS digits5.
We use Gaussian kernelexp(−‖x − y‖2/γ) andC = 0.5.
Table 4 reports the classification performance of the stan-
dard LS-SVM, and those with different low-rank approxi-
mation schemes, atm = 0.05n and0.1n. Again, methods
2, 3, 4 are repeated 20 times. Form = 0.05n, our approach
is significantly better than methods 1,2,3 with a confidence
level that is at least99.5%. For m = 0.1n, ours is also
better with a confidence level that is at least97.5% on the
first 7 pairs. For the last 4 pairs, the differences between
our approach and methods 1,2,3 are not statistically signif-
icant. Note, however, that the testing errors obtained by the
various approximation algorithms on these 4 pairs are all
close to those of the exact LS-SVM, i.e., all approximation
algorithms have reached their possibly best performance.

5ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/data/
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Figure 1.Approximation errors (in terms of the Frobenius norm) on the kernel matrix by different low-rank approximation schemes.

Table 3.Approximation errors and CPU time consumed for the different low-rank approximation schemes in the context of kernel PCA.
Due to the lack of space, we do not show the standard deviation of the CPU time.

approximation error CPU time (seconds)
data Ours Nystr̈om Drineas ICD SVD Ours Nystr̈om Drineas ICD

german (4.40±0.58)×10−2 (2.64±0.58)×10−1 (2.71±0.34)×10−1 5.11×10−1 27.6 0.8 0.03 0.3 0.09
splice (3.44±0.43)×10−1 (1.06±0.11)×100 (1.07±0.11)×100 1.27×100 24.2 0.9 0.05 0.6 0.1
adult1a (4.41±0.49)×10−2 (2.86±0.42)×10−1 (2.84±0.66)×10−1 6.19×10−1 134.8 3.0 0.2 4.0 0.7

dna (1.88±0.21)×10−1 (1.09±0.08)×100 (1.01±0.14)×100 1.17×100 197.0 6.6 0.5 10.6 1.5
segment (7.87±4.43)×10−4 (8.37±4.08)×10−3 (1.84±0.99)×10−2 2.37×10−2 322.8 4.2 0.3 1.8 1.0

w1a (1.55±0.78)×10−1 (2.81±0.62)×10−1 (6.05±3.39)×10−1 1.11×100 394.0 12.8 1.8 35.3 3.6
svmguide1a (5.16±2.12)×10−4 (3.71±2.26)×10−3 (2.78±1.60)×10−2 5.07×10−4 650.4 6.7 0.5 2.4 2.3

satimage (5.20±0.97)×10−4 (6.19±0.28)×10−3 (6.80±1.01)×10−2 2.47×10−2 2762.8 16.1 1.5 15.9 7.5

5. Conclusion

The Nystr̈om method is a useful technique for low-rank ap-
proximation. However, analysis on its key step of choos-
ing the landmark points and especially that in terms of
approximation quality is still limited. In this paper, we
draw an intuitive but important connection between the
Nyström approximation quality and the encoding capaci-
ties of landmark points. Our analysis suggests the k-means
as a natural sampling scheme. Despite its simplicity, the
k-means-based sampling gives encouraging performance
when empirically compared with state-of-the-art low-rank
approximation techniques. One future direction is to uti-
lize label/side information for task-specific decomposition,
where one excellent example is (Bach & Jordan, 2005) in
the context of incomplete Cholesky decomposition.
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Abstract

EM algorithm is a very popular iteration-
based method to estimate the parameters of
Gaussian Mixture Model from a large obser-
vation set. However, in most cases, EM al-
gorithm is not guaranteed to converge to the
global optimum. Instead, it stops at some lo-
cal optimums, which can be much worse than
the global optimum. Therefore, it is usually
required to run multiple procedures of EM
algorithm with different initial configurations
and return the best solution. To improve the
efficiency of this scheme, we propose a new
method which can estimate an upper bound
on the logarithm likelihood of the local opti-
mum, based on the current configuration af-
ter the latest EM iteration. This is accom-
plished by first deriving some region bound-
ing the possible locations of local optimum,
followed by some upper bound estimation on
the maximum likelihood. With this estima-
tion, we can terminate an EM algorithm pro-
cedure if the estimated local optimum is def-
initely worse than the best solution seen so
far. Extensive experiments show that our
method can effectively and efficiently accel-
erate conventional multiple restart EM algo-
rithm.

1. Introduction

Gaussian Mixture Model (GMM) (McLachlan & Peel,
2000) is a powerful tool in unsupervised learning to
model unlabelled data in a multi-dimensional space.
However, given an observation data set, estimating the
parameters of the underlying Gaussian Mixture Model

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

of the data is not a trivial task, especially when the
dimensionality or the number of components is large.
Usually, this model estimation problem is transformed
to a new problem, which try to find parameters max-
imizing the likelihood probability on the observations
from the Gaussian distributions. In the past decades,
EM algorithm (Dempster et al., 1977) has become the
most widely method used in the problem of learning
Gaussian Mixture Model (Ma et al., 2001; Jordan &
Xu, 1995; McLachlan & Krishnan, 1996).

Although EM algorithm can converge in finite iter-
ations, there is no guarantee on the convergence to
global optimum. Instead, it usually stops at some lo-
cal optimum, which can be arbitrarily worse than the
global optimum. Although there have been extensive
studies on how to avoid bad local optimums, it is still
required to run EM algorithm with different random
initial configurations and the best local optimum is re-
turned as final result. This leads to a great waste of
computation resource since most of the calculations do
not have any contribution to the final result.

In this paper, we propose a fast stopping method to
overcome the problem of trapping into bad local opti-
mums. Given any current configuration after an EM
iteration, our method can estimate an upper bound
on the final likelihood of the local optimum current
configuration is leading to. Therefore, if the estimated
local optimum is definitely not better than the best
local optimum achieved in previous runs, current pro-
cedure can be terminated immediately.

To facilitate such local optimum estimation, we first
prove that a region in the parameter space can defi-
nitely cover the unknown local optimum. If a region
covers the current configuration and any configuration
on the boundary of the region gives lower likelihood
than the current one does, we can show that the local
optimum is “trapped” in the region; and we call such
region as a maximal region. In this paper, we adopt a
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special type of maximal region, which can be computed
efficiently. Since the best likelihood of any configura-
tion in a maximal region can be estimated in relatively
short time, it can be decided immediately on whether
current procedure still has potential to achieve a bet-
ter local optimum. In our experiments, such method
is shown to greatly improve the efficiency of original
EM algorithm for GMM, on both synthetic and real
data sets.

The rest of the paper is organized as follows. We first
introduce the definitions and related works on Gaus-
sian Mixture Model and EM algorithm in Section 2
. Section 3 proves the local trapping property of EM
algorithm on GMM; and Section 4 presents our study
on maximal region of local optimum. We propose our
algorithm on estimating the likelihood of a local opti-
mum in Section 5 . Section 6 shows some experimental
result. Finally, section 7 concludes this paper.

2. Model and Related Works

In this section, we review the basic models of Gaussian
Mixture Model, EM algorithm, and some acceleration
method proposed for a special type of Gaussian Mix-
ture Model (K-Means Algorithm).

2.1. Gaussian Mixture Model

In GMM model (McLachlan & Peel, 2000), there ex-
ist k underlying components {ω1, ω2, . . . , ωk} in a d-
dimensional data set. Each component follows some
Gaussian distribution in the space. The parameters
of the component ωj include Θj = {µj ,Σj , πj}, in
which µj = (µj [1], . . . ,µj [d]) is the center of the Gaus-
sian distribution, Σj is the covariance matrix of the
distribution and πj is the probability of the compo-
nent ωj . Based on the parameters, the probability
of a point coming from component ωj appearing at
x = (x[1], . . . , x[d]) can be represented by

Pr(x|Θj) =
|Σ−1

j |1/2

(2π)d/2
exp

{

−
1

2
(x − µj)

T
Σ

−1

j (x − µj)

}

Thus, given the component parameter set Θ =
{Θ1,Θ2, . . . ,Θk} but without any component infor-
mation on an observation point x, the probability of
observing x is estimated by

Pr(x|Θ) =

k
∑

j=1

Pr(x|Θj)πj

The problem of learning GMM is estimating the
parameter set Θ of the k component to maxi-

mize the likelihood of a set of observations D =
{x1,x2, . . . ,xn}, which is represented by

Pr(D|Θ) =
n

∏

i=1

Pr(xi|Θ) (1)

Based on the parameters of the GMM model, the pos-
terior probability of xi from component ωj (or the
weight of xi in component j), τij , can be calculated as
follows.

τij =
Pr(xi|Θj)πj

∑k
l=1

Pr(xi|Θl)πl

(2)

To simplify the notations, we use Φ to denote the set
of all τij for any pair of i, j, and use Ψ(Θ) to denote
the corresponding Φ based on current configuration Θ.
For ease of analysis, the original optimization problem
on equation (1), is usually transformed to an equal
maximization problem on the following variable, called
log likelihood.

L(Θ,Φ) =

n
∑

i=1

k
∑

j=1

τij(ln
πj

τij
+

ln |Σ−1

j |

2
−

(xi − µj)
T Σ−1

j (xi − µj)

2
) (3)

L is actually a function over Θ and Φ, the latter of
which is usually optimized according to Θ. Thus,
the problem of learning GMM is finding an optimal
parameter set Θ∗ which can maximize the function
L(Θ∗,Ψ(Θ∗)).

2.2. EM Algorithm

EM algorithm (Dempster et al., 1977) is a widely used
technique for probabilistic parameter estimation. To
estimate Θ = {Θ1, . . . ,Θk}, it starts with a randomly
chosen initial parameter configuration Θ0. Then, it
keeps invoking iterations to recompute Θt+1 based on
Θt. Every iteration consists of two steps, E-step and
M-step. In E-step, the algorithm computes the ex-
pected value of τij for each pair of i and j based on
Θt = {Θt

1, . . . ,Θ
t
k} and equation (2).

In M-step, the algorithm finds a new group of param-
eters Θt+1 to maximize L based on Φt = {τ t

ij} and
{x1,x2, . . . ,xn}. The details of the update process
for µj , Σj and πj are listed below.

µ
t+1

j [l] =

∑n
i=1

τ t
ijxi[l]

∑n
i=1

τ t
ij

(4)
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Σ
t+1

j =

∑n
i=1

τ t
ij(xi − µ

t+1

j )(xi − µ
t+1

j )T

∑n
i=1

τ t
ij

(5)

π
t+1

j =

∑n
i=1

τ t
ij

n
(6)

The iteration process stops only when ΘN = ΘN−1

after N iterations. We note that both E-step and
M-step always improve the objective function, i.e.
L(Θt,Φt) ≥ L(Θt,Φt−1) ≥ L(Θt−1,Φt−1). Based on
this property, EM-algorithm will definitely converge
to some local optimum. The convergence properties of
EM algorithm over GMM have been extensively stud-
ied in (Xu & Jordan, 1996; Ma et al., 2001).

2.3. K-Means Algorithm and Its Acceleration

K-Means algorithm can be considered as a special
problem of GMM learning with several constraints.
First, the covariance matrix for each component must
be identity matrix. Second, the posterior probability
τij can only be 0 or 1. Therefore, in E-step of the
algorithm, each point is assigned to the closest center
under Euclidean distance; whereas in M-step, the set
of geometric center of each cluster is used to replace
the old set.

With the problem simplification from GMM to K-
Means, there have been many methods proposed to
accelerate the multiple restart EM algorithm for K-
Means. In (Kanungo et al., 2002), for example, Ka-
nungo et al. applied indexing technique to achieve
a much more efficient implementation of E-step. In
(Elkan, 2003), Elkan accelerated both E-step and M-
step by employing triangle inequality of Euclidean dis-
tance to reduce the time for distance computations. In
(Zhang et al., 2006), Zhang et al. introduced a lower
bound estimation on the k-means local optimums to
efficiently cut the procedures not leading to good so-
lutions. However, all these methods proposed for k-
means algorithm cannot be directly extended to the
general GMM. As far as we know, our paper is the
first study on acceleration of the multiple restart EM
algorithm with robustness guarantee.

To improve the readability of the paper, we summarize
all notations in Table 1.

3. Local Trapping Property

In this section, we prove the local trapping property
of EM algorithm on GMM. To derive the analysis, we
first define a solution space S, containing (d2 + d +
1)k dimensions where d is the dimensionality of the
original data space. Any configuration Θ, either valid

Table 1: Table of Notations

Notation Description

n number of points in data
d dimensionality of data space
k number of components
ωj component j
Θj parameter set of ωj

µj center of ωj

Σj covariance matrix of ωj

πj probability of ωj

Θ configuration of all components
xi ith point in the data
τij posterior probability Pr(ωj |xi)
Φ the set of all τij

Ψ(Θ) the optimal Φ with Θ
S solutions space for configurations
L(Θ,Φ) objective log likelihood function
∆ a parameter for a maximal region

or invalid, can be represented by a point in S. Without
loss of generality, we use Θ to denote the configuration
as well as the corresponding point in solution space
S. The rest of the section will be spent to prove the
following theorem.

Theorem 1 Given a closed region R in the solution

space S covering current configuration Θt, EM algo-

rithm converges to a local optimum in R if every con-

figuration Θ on the boundary of R has L(Θ,Ψ(Θ)) <
L(Θt,Φt)

Given two configurations Θt and Θt+1 across one EM
iteration, we define a path between Θt and Θt+1 in S
as follows. This path consists of two parts, called P 1

and P 2 respectively. P 1 starts at Θt and ends at Θ#,
where Θ# = {Θ#

j }. Here Θ#
j = {µt

j ,Σ
#
j , πt

j}, and

Σ#
j =

∑

i τ t
ij(xi −µ

t
j)(xi −µ

t
j)

T /
∑

i τ t
ij . An interme-

diate configuration between Θt and Θ# is defined as
Θα, in which µ

t
j and πt

j remain the same, while Σα
j

in Θα is ((1 − α)(Σt)−1 + α(Σ#)−1)−1. When α in-
creases from 0 to 1, we can move from Θt to Θ# in the
solutions space S. The second part of the path starts
at Θ# and ends at Θt+1. Any intermediate configu-
ration Θβ = {Θβ

j }, where µ
β
j = (1 − β)µt

j + βµ
t+1
j ,

Σβ
j =

∑

i τ t
ij(xi − µ

β
j )(xi − µ

β
j )T /

∑

i τ t
ij , and πβ

j =

(πt
j)

1−β(πt+1
j )β . Similarly, a continuous movement

from Θ# to Θt+1 can be made by increasing β from 0
to 1. The following lemmas prove that any intermedi-
ate configuration on the path is a better solution than
Θt.
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Lemma 1 Given any intermediate configuration Θα

between Θt and Θ#, we have L(Θα,Ψ(Θα)) ≥
L(Θt,Φt).

Proof: By the optimality property of Ψ(Θα), we have
L(Θα,Ψ(Θα)) ≥ L(Θα,Φt).

Since Σ#
j =

∑

i τ t
ij(xi − µ

t
j)(xi − µ

t
j)

T /
∑

i τ t
ij is the

optimal choice for Σj if τ t
ij , µ

t
j and πt

j are fixed, we

also have L(Θ#,Φt) ≥ L(Θt,Φt).

By the definition of Θα and the property of Θ# above,
the following equations can be easily derived.

L(Θα,Φt)

= (1 − α)L(Θt,Φt) + αL(Θ#,Φt)

≥ L(Θt,Φt)

Therefore, it is straightforward to reach the conclusion
that L(Θα,Ψ(Θα)) ≥ L(Θt,Φt). 2

Lemma 2 Given any intermediate configuration Θβ

between Θ# and Θt+1, we have L(Θβ ,Ψ(Θα)) ≥
L(Θt,Φt).

Proof: Again, the basic inequality L(Θβ ,Ψ(Θβ)) ≥
L(Θβ ,Θt) holds. Based on this, we can prove the
lemma by showing L(Θβ ,Φt) ≥ L(Θ#,Φt), since
L(Θ#,Φt) ≥ L(Θt,Φt).

If Σβ
j =

∑

i τ t
ij(xi − µ

β
j )(xi − µ

β
j )T /

∑

i τ t
ij ,

a very interesting result is that
∑

j

∑

i τ t
ij(xi −

µ
β
j )T (Σβ

j )−1(xi − µ
β
j ) remains constant for any β, as

is shown below.

∑

j

∑

i

τ t
ij(xi − µ

β
j )T (Σβ

j )−1(xi − µ
β
j ) = nd

Therefore, for any Θβ , we only need to consider the

sum
∑

i

∑

j τ t
ij

(

ln(πβ
j /τ t

ij) − ln(|Σβ
j |)/2

)

.

By the definition of πβ
j , since πβ

j = (πt
j)

1−β(πt+1
j )β , we

have lnπβ
j = (1 − β) ln πt

j + β lnπt+1
j . Then,

n
∑

i=1

τ t
ij ln

πβ
j

τ t
ij

= (1 − β)

n
∑

i=1

τ t
ij ln

πt
j

τ t
ij

+ β

n
∑

i=1

τ t
ij ln

πt+1
j

τ t
ij

(7)

Therefore,
∑

i

∑

j τ t
ij ln

π
β
j

τt
ij

≥
∑

i

∑

j τ t
ij ln

πt
j

τt
ij

, since

∑n

i=1 τ t
ij ln

π
t+1

j

τt
ij

≥
∑n

i=1 τ t
ij ln

πt
j

τt
ij

.

On the other hand, based on the definition of Σβ
j , we

can prove that

Σβ
j =

n
∑

i=1

τ t
i,j(xi − µ

t
j)(xi − µ

t
j)

T +

(β2 − 2β)(

n
∑

i=1

τ t
i,j)(µ

t+1
j − µ

t
j)(µ

t+1
j − µ

t
j)

T

Since β2−2β ≤ 0 for any β between 0 and 1, ln |Σβ
j | ≤

ln |Σ#
j |. And thus, we have − ln |Σβ

j |/2 ≥ − ln |Σ#
j |/2.

Combing the results above, we reach the conclusion
that L(Θβ ,Φt) ≥ L(Θ#,Φt), leading to the correct-
ness of the lemma. 2

Proof for Theorem 1

Proof: We prove the theorem by contradiction. If
R satisfies the boundary condition but EM algorithm
converges to some configuration out of R in S, there is
at least one pair of configurations {Θs,Θs+1} that Θs

is in R but Θs+1 is not. By setting up the path {Θα}∩
{Θβ} between Θs and Θs+1 as defined above, we know
there is at least one Θα (Θβ) that Θα (Θβ) is exactly
on the boundary of R. By Lemma 1 (Lemma 2), we
know L(Θα,Ψ(Θα)) ≥ L(Θs,Φs) (L(Θβ ,Ψ(Θβ)) ≥
L(Θs,Φs)). On the other hand, any Θα or Θβ is
better than Θt by the definition of R. This leads to
the contradiction, since L(Θs,Φs) > L(Θt,Φt). 2

4. Maximal Region

Based on Theorem 1, we define the concept of Max-

imal Region in GMM as follows. Given the current
configuration Θt, a region R in S is the maximal re-
gion for Θt, if (1) R covers Θt, and (2) any boundary
configuration Θ of R has L(Θ,Ψ(Θ)) < L(Θt,Φt),
by Theorem 1, EM algorithm converges to some local
optimum in R.

Given the current configuration Θt, there are infi-
nite number of valid maximal regions in the solution
space, most of which are hard to verify and manip-
ulate. To facilitate efficient computation, we further
propose a special class of maximal regions. Given Θt

and a positive real value ∆ < 1, we define a closed
region R(Θt,∆) ⊆ S as the union of any configu-
ration Θ, each θj = {µj ,Σj , πj} of which satisfies
all of the conditions below: (1) (1 − ∆)πt

j ≤ πj ≤

(1 + ∆)πt
j ; (2) −∆ ≤ tr(Σ−1

j (Σt
j) − I) ≤ ∆; and (3)

(µj − µ
t
j)

T (Σt
j)

−1(µj − µ
t
j) ≤ ∆2; where tr(M) de-

notes the trace of the matrix M and I is the identity
matrix of dimension d.
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Theorem 2 Any configuration Θ on the bound-

ary of R(Θt,∆) has L(Θ,Φt−1) ≤ L(Θt,Φt−1) −
nminj πt

j∆
2/6.

Proof: Given any R(Θt,∆), any configuration on the
boundary must satisfy one of the following conditions
for at least one j (1 ≤ j ≤ k): (1) (1 −∆)πt

j = πj ; (2)

πt
j = (1 + ∆)πt

j ; (3) |tr(Σ−1
j (Σt

j) − I)| = ∆; and (4)

(µj − µ
t
j)

T (Σt
j)

−1(µj − µ
t
j) = ∆2.

If Θ satisfies condition (1) for some component l,
L(Θ,Φt−1) is maximized if µ

t
j and Σt

j remain un-

changed for all j, while πj =
1−(1−∆)πt

l

1−πt
l

πt
j for all j 6= l.

Therefore, we have the following upper bound.

L(Θ,Φ
t−1) − L(Θt

,Φ
t−1)

≤ nπ
t
l ln(1 − ∆) + n(1 − π

t
l ) ln

1 − (1 − ∆)πt
l

1 − πt
l

= nπ
t
l ln(1 − ∆) + n(1 − π

t
l ) ln

(

1 +
∆πt

l

1 − πt
l

)

≤ nπ
t
l

(

−∆ −
∆2

2

)

+ n(1 − π
t
l )

∆πt
l

1 − πt
l

= −
nπt

l ∆
2

2

The second inequality from the bottom is achieved by
applying Taylor expansion on ln(1 − ∆). By iterat-
ing l with all k components, we have L(Θ,Φt−1) ≤
L(Θt,Φt−1) − minj nπt

l∆
2/2.

If Θ satisfies condition (2) for some component l,
L(Θ,Φt−1) can be maximized similarly. We have

L(Θ,Φ
t−1) − L(Θt

,Φ
t−1)

≤ nπ
t
l ln(1 + ∆) + n(1 − π

t
l ) ln

1 − (1 + ∆)πt
l

1 − πt
l

= nπ
t
l ln(1 + ∆) + n(1 − π

t
l ) ln

(

1 −
∆πt

l

1 − πt
l

)

≤ nπ
t
l

(

∆ −
∆2

2
+

∆3

3

)

+ n(1 − π
t
l )

∆πt
l

1 − πt
l

≤ −
nπt

l ∆
2

6

Again, the third inequality from the bottom is due to
Taylor expansion of ln(1 + ∆). The last inequality is
because ∆3 ≤ ∆2 for any 0 ≤ ∆ ≤ 1.

If Θ satisfies condition (3) for some component l, L
is maximized if all other parameters remain the same.
Thus,

L(Θ,Φ
t−1) − L(Θt

,Φ
t−1)

≤
nπt

l

2

(

ln |Σ−1

l Σ
t
l | − tr

((

Σ
−1

l − (Σt
l)

−1
)

Σ
t
l

))

=
nπt

l

2

(

tr
(

log
(

Σ
−1

l Σ
t
l

))

− tr
(

Σ
−1

l Σ
t
l − I

))

≤
nπt

l

2

(

−
tr(Σ−1

l Σt
l − I)2

2

)

= −
nπt

l ∆
2

4

The fourth equality is derived by the definitions of Σt
l

and πt
l . And the second inequality from bottom is due

to the taylor expansion on the logarithm matrix.

Finally, if Θ satisfies condition (4) for some component

l, L is maximized if Σl =
∑

τil(xi−µl)(xi−µl)
T

∑

τil
. In this

case,
∑

i τ t−1
l (xi −µj)

T Σ−1
j (xi −µj) =

∑

i τ t−1
l (xi −

µ
t
j)

T (Σt
j)

−1(xi − µ
t
j) = nπjd. Thus, the only differ-

ence on the log likelihood function L stems from the
change on the determinant of the covariance matrix.

L(Θ,Φ
t−1) − L(Θt

,Φ
t−1)

≤
n

∑

i=1

τil

2

(

− ln |Σl| + ln |Σt
l |
)

=

n
∑

i=1

τil

2

(

− ln |Σt
l + (µl − µ

t
l)(µl − µ

t
l)

T )| + ln |Σt
l |
)

≤
n

∑

i=1

τil

2

(

− ln
(

|Σt
l | + |(µl − µ

t
l)(µl − µ

t
l)

T |
)

+ ln |Σt
l |
)

≤
n

∑

i=1

τil

2

(

− ln
(

|Σt
l | + ∆2|Σt

l |
)

+ ln |Σt
l |
)

= −
n

∑

i=1

τil ln(1 + ∆2)

2

≤ −
nπt

l ∆
2

2

The fourth inequality applies the property of positive
definite matrices that |A + B| > |A|+ |B| (Lutkepohl,
1996) .

In all of the four cases, the reduction on the likelihood

function L is at least −
n minj πt

j∆
2

6 . This completes the
proof of the theorem. 2

Last theorem implies that Θ will reduce the log likeli-
hood function by at least nmint

j πj∆
2/6 if Φ remains

Φt−1. The following question is how much we can
increase the likelihood if we use the optimal Ψ(Θ) in-
stead of Φt−1.
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Lemma 3 Given Θ ∈ R(Θt,∆), Pr(xi|θj)πj

is no larger than (1 + ∆)1.5 |(Σt

j)
−1|1/2

(2π)d/2 exp{−(1 −

∆)M(x,Θj)
2/2}πt

j, where M(x,Θj) is

max
{

√

((x − µ
t
j)

T (Σt
j)

−1(x − µ
t
j)) − ∆, 0

}

Lemma 4 Given Θ ∈ R(Θt,∆), Pr(xi|θj)πj is

no smaller than (1 − ∆)1.5 |(Σt

j)
−1|1/2

(2π)d/2 exp{−(1 +

∆)N(x,Θj)
2/2}πt

j, where N(x,Θj) is

√

((x − µ
t
j)

T (Σt
j)

−1(x − µ
t
j)) + ∆

.

The proofs of Lemma 3 and Lemma 4 are available in
(Zhang et al., 2008).

Lemma 5 Given a region R(Θt,∆) as defined above,

an upper bound, Uij, on τij ∈ Ψ(Θ) for any Θ ∈
R(Θt,∆) can be calculated in constant time.

Proof: For any configuration Θ on the boundary of
R(Θt,∆), the optimal value of τij can be calculated
by equation (2). By Lemma 3 and Lemma 4, we can
compute maxΘ Pr(xi|ωj)πj and minΘ Pr(xi|ωj)πj .
Therefore,

τij ≤ Uij =
maxΘ Pr(xi|ωj)πj

∑

l minΘ Pr(xi|ωl)πj

τij ≥ Lij =
minΘ Pr(xi|ωj)πj

∑

l maxΘ Pr(xi|ωl)πj

The calculations can be finished in constant time with
the two sums pre-computed. 2

By Lemma 5, the increase upper bound from
L(Θ,Φt−1) to L(Θ,Ψ(Θ)) can be calculated by the
following equation.

L(Θ, Ψ(Θ)) − L(Θ,Φ
t−1)

≤ ln
∑ ∑

Uij max
Θ

Pr(xi|ωj)πj −

ln
∑ ∑

τij max
Θ

Pr(xi|ωj)πj (8)

The following theorem gives a sufficient condition on
a maximal region R(Θt,∆) for some positive value ∆.

Theorem 3 R(Θt,∆) is a maximal region for Θt

if ln

∑

i

∑

j Uij maxΘ Pr(xi|ωj)πj
∑

i

∑

j τij maxΘ Pr(xi|ωj)πj
− nmin πt

j∆
2/6 <

L(Θt,Φt) − L(Θt,Φt−1)

Proof: By the definition of L, we have

L(Θ, Ψ(Θ)) − L(Θt
,Φ

t−1) ≤ ln

∑

i

∑

j Uij Pr(xi|ωj)πj
∑

i

∑

j τij Pr(xi|ωj)πj

It is not hard to verify that the derivative of
L(Θ,Ψ(Θ)) − L(Θt,Φt−1) to Pr(xi|ωj)πj is always
positive. Therefore, the equation above can be maxi-
mized if we employ the maximum value of Pr(xi|ωj)πj .
Based on the analysis above, we know that

L(Θ, Ψ(Θ)) − L(Θt
,Φ

t−1)

≤ ln

∑

i

∑

j Uij maxΘ Pr(xi|ωj)πj
∑

i

∑

j τij maxΘ Pr(xi|ωj)πj

By Theorem 2, L(Θ,Φt−1) − L(Θt,Φt−1) ≤
nminj πt

j∆
2/6. Therefore, by Theorem 1,

L(Θ,Ψ(Θ)) < L(Θt,Φt) if the condition of the
theorem is satisfied. 2

For any local optimum Θ∗ in the maximal region
R(Θt,∆), the following theorem upper bound the like-
lihood function L(Θ∗,Ψ(Θ∗)).

Theorem 4 Given a valid maximal region R(Θt,∆),
if EM algorithm converges to local optimum Θ∗,

L(Θ∗,Ψ(Θ∗)) ≤ L(Θt,Φt) + nmin πt
j∆

2/6.

Proof: Since
∑

i

∑

j(Uij − τ t
ij)maxΘ Pr(ωj |xi) <

nmin πt
j∆

2/6 by Theorem 3 and L(Θ,Ψ(Θ)) −

L(Θ,Φt) ≤
∑

i

∑

j(Uij − τ t
ij)maxΘ Pr(ωj |xi), we

have L(Θ,Ψ(Θ)) − L(Θt,Φt) ≤ L(Θ,Ψ(Θ)) −
L(Θ,Φt) ≤ nmin πt

j∆
2/6. 2

5. Algorithm

Theorem 3 provides an easy way to verify whether
R(Θt,∆) is a valid maximal region. On the other
hand, Theorem 4 implies that a smaller ∆ can lead
to tighter bound on the likelihood function L. How-
ever, it is not necessary to get the tightest bound on
local optimum in our algorithm, since the goal of our
algorithm is estimating whether the current configura-
tion can lead to better solution. Instead, we set ∆ as

min

{

1,

√

6(L∗−L(Θt
,Φt

))
n min πt

j

}

, where L∗ is the best re-

sult we have seen so far. This ∆ is the maximal one of
all ∆ values, which are able to prune the current EM
procedure by Theorem 4

The details of the algorithm are summarized in Algo
1. In this algorithm, conventional M-step and E-step
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Algorithm 1 New Iteration(Data Set D, Cur-
rent Θt−1, current Φt−1, component number k,
sample number m, current best result L∗)

1: Compute new Θt by M-Step.
2: Compute new Φt by E-Step.
3: if L(Θt,Φt) < L∗ then

4: Let ∆ = min

{

1,

√

6(L∗−L(Θt
,Φt

))
n min πt

j

}

5: S = X = 0
6: for each xi do
7: for each dimension j do
8: Get lij = maxΘ Pr(xi|θj)πj by Lemma 3.
9: Get sij = minΘ Pr(xi|θj)πj by Lemma 4.

10: Get Uij by Lemma 5.
11: S+ = Uij ∗ lij
12: X+ = τ t−1

ij ∗ lij
13: end for
14: end for
15: if lnS − lnX − nmin πj∆

2/6 < L(Θt,Φt) −
L(Θt,Φt−1) then

16: Stop the current procedure of EM algorithm.
17: end if
18: else
19: Return (Θt,Φt)
20: end if

are invoked first. If the current configuration is better
than the best solution we have seen before, there is no
need to test the upper bound of the local optimum.
Otherwise, the value of ∆ is set according to min πt

j ,

L∗ and L(ΘT ,Φt). For each point and each compo-
nent, lij , sij and Uij are collected according to Lemma
3, Lemma 4 and Lemma 5 respectively. With the in-
formation collected from each point, the condition of
Theorem 1 can be tested. If this condition is satisfied,
we can assert that current local optimum can never
be better than L∗, leading to the termination of the
current procedure.

6. Experiments

In this section, we report the experimental results
on the comparison of our accelerated EM algorithm
(AEM) and the conventional EM algorithm (OEM).
We note that in our implementation, either AEM or
OEM will be stopped if it does not converge after 100
iterations.

We employ both synthetic and real data sets in our em-
pirical studies. The synthetic data sets are generated
in a d-dimensional unit cube. There are k components
in the space. Each component follows some Gaussian
distribution. The center, size and covariance matrix
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Figure 1: Performance vs. varying dimensionality
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Figure 2: Performance vs. varying component number

of each component are randomly generated indepen-
dently. Two real data sets are also tested, including
Cloud and Spam, both of which are available on UCI
Machine Learning Repository. The Cloud data set
consists of 1024 points in 10-dimensional space, while
Spam data set has 4601 points in 58 dimensions. Both
of the real data set are normalized before being used
in our experiments.

Two performance measurements are recorded in our
experiments, including CPU time and number of it-
erations. An algorithm is supposed to be better if it
spends less CPU time and invokes less time of itera-
tions. All of the experiments are compiled and run on
a Fedora Core 6 linux machine with 3.0 GHz Proces-
sor, 1GB of memory and GCC 4.1.2.

In the experiments on the data sets, we test the perfor-
mances of the algorithms with varying dimensionality
D, number of components k, and the number of points
in the data S. The default setting of our experiments
is D = 20, k = 20, and S = 100K. The time of EM
restart is fixed at 100 in all tests. More experimen-
tal results are available in the technical report (Zhang
et al., 2008).

6.1. Results on Synthetic Data

In Figure 1(a) and Figure 1(b), we present the experi-
mental result by varying the dimensionality from 10 to
40. The results show that AEM is much more efficient
than OEM. On data set with low dimensionality, AEM
is almost two times faster than OEM, both on the CPU
time and the number of iterations. The advantage is
very obvious, even on high dimensional space.

The results of our experiments on varying component
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Figure 4: Performance vs. varying component number
on Spam data

number are summarized in Figure 2(a) and Figure
2(b). From the figures, we can see the performance
advantage of AEM is stable, with the increase of com-
ponent number. The CPU time and number of itera-
tions on AEM is only about half of those of OEM.

As is shown in Figure 3(a), Figure 3(b) AEM has much
better performance than OEM when we increase the
data size from 50K to 200K. AEM can detect those
worse local optimums much earlier, if there are more
data available. The number of iterations invoked by
AEM is almost the same, even when the data has been
doubled. The ratio of CPU time is more stable when
the data size is larger.

6.2. Results on Real Data

On Spam data set, AEM also show great advantage
over OEM, on CPU time (Figure 4(a)) and on the
number of iterations (Figure 4(b)). AEM is more ef-
ficient than OEM by one magnitude, independent to
the number of components k.

However, the experiments on Cloud data set show
quite different results than the pervious results, where
AEM has very limited advantage. We believe the dif-
ference on the results stems from normalization prob-
lem.

7. Conclusion

In this paper, we propose a new acceleration method
for multiple restart EM algorithm over Gaussian Mix-
ture Model. We derive an upper bound on the lo-
cal optimum of the likelihood function in the solution
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space. This upper bound computation turns out to
be both efficient and effective in pruning un-promising
procedures of EM algorithm.
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Abstract

This paper presents a cutting plane algorithm
for multiclass maximum margin clustering

(MMC). The proposed algorithm constructs
a nested sequence of successively tighter re-
laxations of the original MMC problem, and
each optimization problem in this sequence
could be efficiently solved using the con-

strained concave-convex procedure (CCCP).
Experimental evaluations on several real
world datasets show that our algorithm con-
verges much faster than existing MMC meth-
ods with guaranteed accuracy, and can thus
handle much larger datasets efficiently.

1. Introduction

Clustering (Duda et al., 2001; Shi & Malik, 2000; Ding
et al., 2001) aims at dividing data into groups of sim-
ilar objects, i.e. clusters. Recently, motivated by the
success of large margin methods in supervised learn-
ing, (Xu et al., 2004) proposed maximum margin clus-

tering (MMC), which borrows the idea from the sup-

port vector machine theory and aims at finding the
maximum margin hyperplane which can separate the
data from different classes in an unsupervised way.

Technically, what MMC does is to find a way to label
the samples by running an SVM implicitly, and the
SVM margin obtained would be maximized over all
possible labelings (Xu et al., 2004). However, unlike
supervised large margin methods which are usually for-
mulated as convex optimization problems, maximum

margin clustering is a non-convex integer optimization

problem, which is much more difficult to solve.

Several attempts have been made to solve the maxi-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

mum margin clustering problem in polynomial time.
(Xu et al., 2004) and (Valizadegan & Jin, 2007) made
several relaxations to the original MMC problem and
reformulated it as a semi-definite programming (SDP)
problem. However, even with the recent advances in
interior point methods, solving SDPs is still computa-
tionally very expensive. Consequently, the algorithms
can only handle very small datasets containing several
hundreds of samples. More recently, Zhang et al. uti-
lized alternating optimization techniques to solve the
MMC problem (Zhang et al., 2007), in which the max-

imum margin clustering result is obtained by solving
a series of SVM training problems. However, there is
no guarantee on how fast it can converge and the algo-
rithm is still time demanding on large scale datasets.
Moreover, the methods described above can only han-
dle binary clustering problems (Zhao et al., 2008), and
there are significant complications to deriving an effec-
tive maximum margin clustering approach for the mul-
ticlass scenario1. Therefore, how to efficiently solve the
multiclass MMC problem to make it capable of clus-
tering large scale dataset is a very challenging research
topic.

In this paper, we propose a cutting plane multi-

class maximum margin clustering algorithm CPM3C.
Specifically, the algorithm constructs a nested se-
quence of successively tighter relaxations of the origi-
nal multiclass MMC problem, and each optimization
problem in this sequence could be efficiently solved us-
ing the constrained concave-convex procedure (CCCP).
Moreover, we show that the computational time of
CPM3C scales roughly linearly with the dataset size.
Our experimental evaluations on several real world
datasets show that CPM3C performs better than ex-
isting MMC methods, both in efficiency and accuracy.

1It should be noted that (Xu & Schuurmans, 2005) pro-
posed a multiclass extension for MMC, however, their al-
gorithm has a time complexity of O(n7), which renders it
impractical for real world datasets.
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The rest of this paper is organized as follows. Section
2 will show the CPM3C algorithm in detail, and the
time complexity analysis of CPM3C will be presented
in section 3. Section 4 presents the experimental re-
sults on several real world datasets, followed by the
conclusions in section 5.

2. Cutting Plane Multiclass Maximum

Margin Clustering

We will formally present the cutting plane multiclass

maximum margin clustering (CPM3C ) algorithm in
this section.

2.1. Multiclass Maximum Margin Clustering

Maximum margin clustering (MMC) extends the the-
ory of support vector machine (SVM) to the un-
supervised scenario. Specifically, given a point set
X = {x1, ¢ ¢ ¢ ,xn} and their labels y = (y1, . . . , yn) ∈
{1, . . . , k}n, SVM defines a weight vector wp for
each class p ∈ {1, . . . , k} and classifies sample x by
y∗=arg maxy∈{1,...,k} wT

y x with the weight vectors ob-
tained as follows 2(Crammer & Singer, 2001)

min
w1,...,wk,ξ

1

2
¯

k
∑

p=1

||wp||
2+

n
∑

i=1

ξi (1)

s.t. ∀i = 1, . . . , n, r = 1, . . . , k

w
T

yi
xi+±yi,r¡w

T

r xi¸1¡ξi

where the data samples in X are mapped into a high
(possibly infinite) dimensional feature space, and by
using the kernel trick, this mapping could be done im-
plicitly. However, in those cases where kernel trick
cannot be applied, it is possible to compute the co-
ordinates of each sample in the kernel PCA basis

(Schölkopf et al., 1999) according to kernel K. There-
fore, throughout the rest of this paper, we use xi to
denote the sample mapped by the kernel function.

Instead of finding a large margin classifier given labels
on the data as in SVM, MMC targets to find a label-
ing that would result in a large margin classifier (Xu
et al., 2004). That is to say, if we subsequently run an
SVM with the labeling obtained from MMC, the mar-
gin would be maximal among all possible labelings.
multiclass MMC could be formulated as follows:

min
w1,...,wk,ξ,y

1

2
¯

k
∑

p=1

||wp||
2+

1

n

n
∑

i=1

ξi (2)

s.t. ∀i = 1, . . . , n, r = 1, . . . , k

w
T

yi
xi+±yi,r¡w

T

r xi¸1¡ξi

2Although we focus on the multiclass SVM formulation
of (Crammer & Singer, 2001), our method can be directly
applied to other multiclass SVM formulations.

where
∑n

i=1 ξi is divided by n to better capture how
the regularization parameter ¯ scales with the dataset
size. Different from SVM, where the class labels are
given and the only variables are (w1, . . . ,wk), MMC

targets to find not only the optimal weight vectors,
but also the optimal labeling vector y∗.

2.2. Cutting Plane Algorithm

In this section, we will reformulate problem (2) to re-
duce the number of variables. Specifically,

Theorem 1 Problem (2) is equivalent to

min
w1,...,wk,ξ

1

2
¯

k
∑

p=1

||wp||
2+

1

n

n
∑

i=1

ξi (3)

s.t. ∀i = 1, . . . , n, r = 1, . . . , k

k
∑

p=1

w
T

pxi

k
∏

q=1,q 6=p

I(wT
p xi>wT

q xi)

+

k
∏

q=1,q 6=r

I(wT
r xi>wT

q xi)
¡w

T

rxi¸1¡ξi

where I(¢) is the indicator function and the label for

sample xi is determined as

yi =

k
∑

p=1

p

k
∏

q=1,q 6=p

I(wT
p xi>wT

q xi)
(4)

Proof. We will show that for every (w1, . . . ,wk) the
smallest feasible

∑n

i=1 ξi are identical for problem (2)
and problem (3), and their corresponding labeling vec-
tors are the same. For a given (w1, . . . ,wk), the ξi in
problem (2) can be optimized individually. According
to the constraint in problem (2),

ξi ¸ 1 ¡ (wT

yi
xi+±yi,r¡w

T

r xi), ∀r = 1, . . . , k (5)

As the objective is to minimize 1
n

∑n

i=1 ξi, the optimal
value for ξi is

ξ
(1)

i
= min

yi=1,...,k

max
r=1,...,k

{1 ¡ (wT

yi
xi+±yi,r¡w

T

r xi)} (6)

and we denote the corresponding class label by y
(1)
i .

Without loss of generality, we assume the following
relationship

w
T

i1
xi ¸ w

T

i2
xi ¸ . . . ¸ w

T

ik
xi (7)

where (i1, i2, . . . , ik) is a permutation of (1, 2, . . . , k).
For yi 6= i1, maxr=1,...,k{1¡ (wT

yi
xi+δyi,r¡wT

r xi)} ¸

1, while for yi = i1, maxr=1,...,k{1 ¡ (wT
yi

xi +δyi,r¡

wT
r xi)} ≤ 1, therefore, y

(1)
i = i1 and

ξ
(1)

i
= max

r=1,...,k

{1 ¡ (wT

i1
xi+±i1,r¡w

T

r xi)} (8)

= max{0, 1 ¡ (wT

i1
xi¡w

T

i2
xi)}

Similarly, for problem (3), the optimal value for ξi is
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ξ
(2)

i
= max

r=1,...,k







1 ¡





k
∑

p=1

w
T

pxi

k
∏

q=1,q 6=p

I(wT
p xi>wT

q xi)

+
k

∏

q=1,q 6=r

I(wT
r xi>wT

q xi)
¡w

T

rxi











(9)

= max
r=1,...,k

{1 ¡ (wT

i1
xi+±i1,r¡w

T

r xi)}

= max{0, 1 ¡ (wT

i1
xi¡w

T

i2
xi)}

and the class label could be calculated as

y
(2)

i
=

k
∑

p=1

p

k
∏

q=1,q 6=p

I(wT
p xi>wT

q xi)
= i1 (10)

Therefore, the objective functions of both optimiza-
tion problems are equivalent for any (w1, . . . ,wk) with
the same optimal ξi, and consequently so are their op-
tima. Moreover, their corresponding labeling vectors
y are the same. Hence, we proved that problem (2) is
equivalent to problem (3). 2

By reformulating problem (2) as problem (3), the num-
ber of variables involved is reduced by n, but there are
still n slack variables ξi in problem (3). Define ep as
the k £ 1 vector with only the p-th element being 1
and others 0, e0 as the k £ 1 zero vector and e as the
all one vector. To further reduce the number of vari-
ables involved in the optimization problem, we have
the following theorem

Theorem 2 Problem (3) can be equivalently formu-

lated as problem (11), with ξ∗ = 1
n

∑n

i=1 ξ∗i .

min
w1,...,wk,ξ≥0

1

2
¯

k
∑

p=1

||wp||
2+ξ (11)

s.t. ∀ci ∈ {e0, e1, . . . , ek}, i = 1, . . . , n

1

n

n
∑

i=1

{

c
T

i e

k
∑

p=1

w
T

pxizip+
k

∑

p=1

cip(zip¡w
T

pxi)

}

¸
1

n

n
∑

i=1

c
T

i e¡ξ

where zip =
∏k

q=1,q 6=p I(wT
p xi>wT

q xi) ∀i = 1, . . . , n; p =
1 . . . , k and each constraint c is represented as a k£n
matrix c = (c1, . . . , cn).

Proof. To justify the above theorem, we will show
that problem (3) and problem (11) have the same
objective value and an equivalent set of constraints.
Specifically, we will prove that for every (w1, . . . ,wk),
the smallest feasible ξ and

∑n

i=1 ξi are related by
ξ = 1

n

∑n

i=1 ξi. This means, with (w1, . . . ,wk) fixed,
(w1, . . . ,wk, ξ) and (w1, . . . ,wk, ξi) are optimal solu-
tions to problem (3) and (11) respectively, and they
result in the same objective function value.

For any given (w1, . . . ,wk), the ξi in problem (3) can
be optimized individually and the optimum is achieved
as

ξ
(2)

i
= max{0, 1 ¡ (wT

i1
xi¡w

T

i2
xi)} (12)

where we assume the relation in (7) holds.

Similarly for problem (11), the optimal ξ is

ξ
(3)= max

c1,...,cn∈{e0,...,ek}

{

1

n

n
∑

i=1

c
T

i e¡
1

n

n
∑

i=1

[

c
T

i e

k
∑

p=1

w
T

pxizip (13)

+
k

∑

p=1

cip(zip¡w
T

pxi)

]}

Since each ci are independent in Eq.(13), they can be
optimized individually. Therefore,

ξ
(3)=

1

n

n
∑

i=1

max
ci

{c
T

i e¡c
T

i e

k
∑

p=1

w
T

pxizip¡

k
∑

p=1

cip(zip¡w
T

pxi)}

=
1

n

n
∑

i=1

max

½

0, max
p=1,...,k

[1 ¡ (wT

i1
xi+±i1,p¡w

T

p xi)]

¾

=
1

n

n
∑

i=1

max
{

0, max[0, 1 ¡ (wT

i1
xi¡w

T

i2
xi)]

}

=
1

n

n
∑

i=1

max{0, 1 ¡ (wT

i1
xi¡w

T

i2
xi)}=

1

n

n
∑

i=1

ξ
(2)

i

Hence, for any (w1, . . . ,wk), the objective functions
for problem (3) and problem (11) have the same value
given the optimal ξ and ξi. Therefore, the optima of
the two optimization problems are the same. 2

Putting theorems 1 and 2 together, we could there-
fore solve problem (11) instead to find the same max-

imum margin clustering solution, with the number of
variables reduced by 2n ¡ 1. Although the number
of variables in problem (11) is greatly reduced, the
number of constraints increases from nk to (k + 1)n.
The algorithm we propose in this paper targets to find
a small subset of constraints from the whole set of
constraints in problem (11) that ensures a sufficiently
accurate solution. Specifically, we employ an adapta-
tion of the cutting plane algorithm (Kelley, 1960) to
solve problem (11), where we construct a nested se-
quence of successively tighter relaxations of problem
(11). Moreover, we can prove theoretically (see sec-
tion 3) that we can always find a polynomially sized
subset of constraints, with which the solution of the
relaxed problem fulfills all constraints from problem
(11) up to a precision of ². That is to say, the remain-
ing exponential number of constraints are guaranteed
to be violated by no more than ², without the need for
explicitly adding them to the optimization problem
(Tsochantaridis et al., 2005). Specifically, the CPM3C

algorithm keeps a subset Ω of working constraints and
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computes the optimal solution to problem (11) subject
to the constraints in Ω. The algorithm then adds the
most violated constraint in problem (11) into Ω. In
this way, a successively strengthening approximation
of the original MMC problem is constructed by a cut-
ting plane that cuts off the current optimal solution
from the feasible set (Kelley, 1960). The algorithm
stops when no constraint in (11) is violated by more
than ². Here, the feasibility of a constraint is measured
by the corresponding value of ξ, therefore, the most vi-
olated constraint is the one that results in the largest
ξ. Since each constraint in problem (11) is represented
by a k £ n matrix c, then we have

Theorem 3 Define p∗ = arg maxp(w
T
p xi) and r∗ =

arg maxr 6=p∗(wT
r xi) for i = 1, . . . , n, the most violated

constraint could be calculated as follows

ci =

½

er∗ if (wT

p∗xi¡wT

r∗xi)<1
0 otherwise

, i = 1, . . . , n (14)

Proof. The most violated constraint is the one that
would result in the largest ξ. As each ci in the con-
straint is independent, in order to fulfill all constraints
in problem (11), the value of ξ is as follows

ξ
∗ =

1

n

n
∑

i=1

max
ci

{c
T

i e¡c
T

i e

k
∑

p=1

w
T

pxizip¡

k
∑

p=1

cip(zip¡w
T

pxi)}

=
1

n

n
∑

i=1

max
ci

{c
T

i [e ¡ w
T

p∗xie ¡ zi + ti]}

where ti =(wT
1 xi, . . . ,w

T
k xi)

T . Since ci∈{e0, . . . , ek},
ci selects the largest element of the vector e¡wT

p∗xie¡

zi+ti, which could be calculated as 1¡(wT
p∗xi¡wT

r∗xi).
Therefore, the most violated constraint c that results
in the largest ξ∗ could be calculated as in Eq.(14). 2

The CPM3C algorithm iteratively selects the most vi-
olated constraint under the current weight vectors and
adds it into the working constraint set Ω until no vio-
lation of constraints is detected. Moreover, if a point
(w1, . . . ,wk, ξ) fulfills all constraints up to precision ²

∀ci ∈ {e0, e1, . . . , ek}
n
, i = 1, . . . , n (15)

1

n

n
∑

i=1

{

c
T

i e

k
∑

p=1

w
T

pxizip+
k

∑

p=1

cip(zip¡w
T

pxi)

}

¸
1

n

n
∑

i=1

c
T

i e¡ξ¡²

then the point (w1, . . . ,wk, ξ + ²) is feasible. Further-
more, as in the objective function of problem (11),
there is a single slack variable ξ that measures the clus-
tering loss. Hence, we could simply select the stopping
criterion as all samples satisfying the inequality (15).
Then, the approximation accuracy ² of this approxi-
mate solution is directly related to the training loss.

2.3. Enforcing the Class Balance Constraint

In 2-class maximum margin clustering, a trivially “op-
timal” solution is to assign all patterns to the same
class, and the resultant margin will be infinite (Xu
et al., 2004). Similarly, for the multiclass scenario,
a large margin can always be achieved by eliminat-
ing classes (Xu & Schuurmans, 2005). Therefore, we
add the following class balance constraints to avoid the
trivially “optimal” solutions

¡l ·

n
∑

i=1

w
T

pxi¡

n
∑

i=1

w
T

qxi· l, ∀p, q=1, . . . , k (16)

where l ¸ 0 controls the class imbalance. Therefore,
multiclass maximum margin clustering with working
constraint set Ω could be formulated as follows

min
w1,...,wk,ξ≥0

1

2
¯

k
∑

p=1

||wp||
2+ξ (17)

s.t.
1

n

n
∑

i=1

{

c
T

i e

k
∑

p=1

w
T

pxizip+

k
∑

p=1

cip(zip¡w
T

pxi)

}

¸
1

n

n
∑

i=1

c
T

i e¡ξ, ∀[c1, . . . , cn] ∈ Ω

¡l·

n
∑

i=1

w
T

pxi¡

n
∑

i=1

w
T

qxi· l, ∀p, q=1, . . . , k

Before getting into details of solving problem (17), we
first present the CPM3C approach in Algorithm 1.

Algorithm 1 Cutting Plane Multiclass MMC

Initialize Ω = φ
repeat

Solve problem (17) for (w1, . . . ,wk) under the
current working constraint set Ω and select the
most violated constraint c with Eq.(14). Set
Ω = Ω ∪ {c}.

until (w1, . . . ,wk) satisfies c up to precision ²

2.4. Optimization via the CCCP

In each iteration of the CPM3C algorithm, we need
to solve problem (17) to obtain the optimal classifying
hyperplanes under the current working constraint set
Ω. Although the objective function in (17) is convex,
the constraints are not, and this makes problem (17)
difficult to solve. Fortunately, the constrained concave-

convex procedure (CCCP) is just designed to solve
those optimization problems with a concave-convex
objective function under concave-convex constraints
(Smola et al., 2005). In the following, we will show
how to utilize CCCP to solve problem (17).
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The objective function in (17) and the second con-
straint are convex. Moreover, the first constraint is, al-
though non-convex, the difference of two convex func-
tions. Hence, we can solve (17) with CCCP. Notice

that while 1
n

∑n

i=1

[

cT
i e

∑k

p=1w
T
pxizip+

∑k

p=1 cipzip

]

is

convex, it is a non-smooth function of (w1, . . . ,wk).
To use CCCP, we need to calculate the subgradients:

∂wr

{

1

n

n
∑

i=1

[

c
T

i e

k
∑

p=1

w
T

pxizip+
k

∑

p=1

cipzip

]}
¯

¯

¯

¯

¯

w=w(t)

(18)

=
1

n

n
∑

i=1

c
T

i ez
(t)

ip
xi ∀r = 1, . . . , k

Given an initial point (w
(0)
1 , . . . ,w

(0)
k ), CCCP com-

putes (w
(t+1)
1 , . . . ,w

(t+1)
k ) from (w

(t)
1 , . . . ,w

(t)
k ) by re-

placing 1
n

∑n

i=1

[

cT
i e

∑k

p=1w
T
pxizip+

∑k

p=1cipzip

]

in the

constraint with its first order Taylor expansion at

(w
(t)
1 , . . . ,w

(t)
k ), i.e.

1

n

n
∑

i=1

{

c
T

i e

k
∑

p=1

w
(t)

p

T

xiz
(t)

ip
+

k
∑
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(t)

ip

}

(19)

+
1

n

n
∑

i=1

c
T
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∑
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(wp¡w
(t)

p )T
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ip

=
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k
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k
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ip

}

By substituting the above first-order Taylor expansion
into problem (11), we obtain the following quadratic

programming (QP) problem:

min
w1,...,wk,ξ≥0

1

2
¯

k
∑

p=1

||wp||
2+ξ (20)

s.t. ∀[c1, . . . , cn] ∈ Ω

1

n

n
∑
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c
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i e¡ξ+
1

n

n
∑
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∑
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cipw
T

pxi

¡
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ip
+
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cipz
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}

·0

¡l·

n
∑

i=1

w
T

pxi¡

n
∑

i=1

w
T

qxi· l, ∀p, q=1, . . . , k

Moreover, the dual problem of (20) is a QP problem
with |Ω| + 2 variables and could be solved in polyno-
mial time, where |Ω| denotes the total number of con-
straints in Ω. Putting everything together, according
to the formulation of the CCCP (Smola et al., 2005),
we solve problem (17) with the approach presented in
Algorithm 2, where we set the stopping criterion in
CCCP as the difference between two iterations less
than ®% and set ®% = 0.01, which means the current

Algorithm 2 Solve problem (17) with CCCP

Initialize wp = w0
p for p = 1, . . . , k.

repeat
Find (wt+1

1 , . . . ,wt+1
k ) as the solution to the

quadratic programming problem (20).
Set wp = wt+1

p , p = 1, . . . , k
until stopping criterion satisfied.

objective function is larger than 1¡ ®% of the objec-
tive function in last iteration, since CCCP decreases
the objective function monotonically.

2.5. Theoretical Analysis

We provide the following theorem regarding the cor-
rectness of the CPM3C algorithm.

Theorem 4 For any dataset X = (x1, . . . ,xn) and

any ² > 0, if (w∗

1, . . . ,w
∗

k, ξ∗) is the optimal solution

to problem (11) with the class balance constraint, then

our CPM3C algorithm returns a point (w1, . . . ,wk, ξ)
for which (w1, . . . ,wk, ξ+²) is feasible in problem (11)

and satisfies the class balance constraint. Moreover,

the corresponding objective value is better than the one

corresponds to (w∗

1, . . . ,w
∗

k, ξ∗).

Based on the above theorem, ² indicates how close one
wants to be to the error rate of the best classifying
hyperplanes and can thus be used as the stopping cri-
terion (Joachims, 2006).

3. Time Complexity Analysis

In this section, we will provide analysis on the time
complexity of CPM3C. For the high-dimensional (say,

d-dimensional) sparse data commonly encountered in
applications like text mining and bioinformatics, we
assume each sample has only s¿ d non-zero features,
i.e., s implies the sparsity, while for non-sparse data,
by simply setting s = d, all our theorems still hold.

Theorem 5 Each iteration of CPM3C takes time

O(snk) for a constant working set size |Ω|.

Moreover, for the binary clustering scenario, we have
the following theorem

Theorem 6 For any ² > 0, ¯ > 0, and any dataset

X = {x1, . . . ,xn} with samples belonging to two dif-

ferent classes, the CPM3C algorithm terminates after

adding at most R
²2

constraints, where R is a constant

number independent of n and s.

It is true that the number of constraints can poten-
tially explode for small values of ², however, experi-
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ence with CPM3C shows that relatively large values
of ² are sufficient without loss of clustering accuracy.
Since the number of iterations in CPM3C (with k = 2)
is bounded by R

²2
, a constant independent of n and s,

and each iteration of the algorithm takes time O(snk)
(O(sn) for the binary clustering scenario), we arrive
at the following theorem

Theorem 7 For any dataset X = {x1, . . . ,xn} with

n samples belonging to 2 classes and sparsity of s, and

any fixed value of ¯ > 0 and ² > 0, the CPM3C algo-

rithm takes time O(sn) to converge.

For the multiclass scenario, experimental results
shown in section 4 also demonstrate that the compu-
tational time of CPM3C scales roughly linearly with
the dataset size n.

4. Experiments

In this section, we will validate the accuracy and effi-
ciency of the CPM3C algorithm on several real world
datasets. Moreover, we will also analyze the scaling be-
havior of CPM3C with the dataset size and the sensi-
tivity of CPM3C to ², both in accuracy and efficiency.
All the experiments are performed with MATLAB 7.0
on a 1.66GHZ Intel CoreTM2 Duo PC running Win-
dows XP with 1.5GB main memory.

4.1. Datasets

We use eight datasets in our experiments, which are
selected to cover a wide range of properties: Dig-
its, Letter and Satellite from the UCI repository,
MNIST3, 20 newsgroup4, WebKB5, Cora (Mc-
Callum et al., 2000) and RCVI (Lewis et al., 2004).
In order to compare CPM3C with other MMC algo-
rithms which can only perform binary clustering, we
choose the first two classes from Letter and Satel-
lite. For the 20 newsgroup dataset, we choose
the topic rec which contains autos, motorcycles, base-

ball and hockey from the version 20-news-18828. For
WebKB, we select a subset consists of about 6000
web pages from computer science departments of four
schools (Cornell, Texas, Washington, and Wisconsin).
For Cora, we select a subset containing the research
paper of subfield data structure (DS), hardware and
architecture (HA), machine learning (ML), operating
system (OS) and programming language (PL). For
RCVI, we use the data samples with the highest four
topic codes (CCAT, ECAT, GCAT and MCAT) in the

3http://yann.lecun.com/exdb/mnist/
4http://people.csail.mit.edu/jrennie/20Newsgroups/
5http://www.cs.cmu.edu/∼WebKB/

“Topic Codes” hierarchy in the training set.

Table 1. Descriptions of the datasets.
Data Size (n) Feature (N) Class Sparsity
Letter 1555 16 2 98.9%
UCIDig 1797 64 10 51.07%
UCISat 2236 36 2 100%
MNIST 70000 784 10 19.14%
Cora-DS 751 6234 9 0.68%
Cora-HA 400 3989 7 1.1%
Cora-ML 1617 8329 7 0.58%
Cora-OS 1246 6737 4 0.75%
Cora-PL 1575 7949 9 0.56%
WK-CL 827 4134 7 2.32%
WK-TX 814 4029 7 1.97%
WK-WT 1166 4165 7 2.05%
WK-WC 1210 4189 7 2.16%
20-news 3970 8014 4 0.75%
RCVI 21251 47152 4 0.16%

4.2. Comparisons and Clustering Results

Besides our CPM3C algorithm, we also implements
some other competitive algorithms and present their
results for comparison. Specifically, we use K-Means
(KM) and Normalized Cut (NC) as baselines, and
also compared with Maximum Margin Cluster-
ing (MMC) (Xu et al., 2004), Generalized Maxi-
mum Margin Clustering (GMC) (Valizadegan &
Jin, 2007) and Iterative Support Vector Regres-
sion (SVR) (Zhang et al., 2007) which all aim at
clustering data with the maximum margin hyperplane.
Technically, for k-means, the cluster centers are ini-
tialized randomly. For NC, the implementation is the
same as in (Shi & Malik, 2000), and the width of the
Gaussian kernel is set by exhaustive search from the
grid {0.1σ0, 0.2σ0, . . . , σ0}, where σ0 is the range of
distance between any two data points in the dataset.
Moreover, for MMC and GMC, the implementation
is the same as in (Xu et al., 2004; Xu & Schuurmans,
2005) and (Valizadegan & Jin, 2007) respectively. Fur-
thermore, the implementation code for SVR is down-
loaded from http://www.cse.ust.hk/»twinsen and the
initialization is based on k-means with randomly se-
lected initial data centers, and the width of the Gaus-
sian kernel is set in the same way as in NC.

In the experiments, we set the number of clusters equal
to the true number of classes k for all the clustering
algorithms. To assess clustering accuracy, we follow
the strategy used in (Xu et al., 2004) where we first
take a set of labeled data, remove the labels for all
data samples and run the clustering algorithms, then
we label each of the resulting clusters with the major-
ity class according to the original training labels, and
finally measure the number of correct classifications
made by each clustering. Moreover, we also calculate
the Rand Index (Rand, 1971) for each clustering re-
sult. The clustering accuracy and Rand index results
are summarized in table 2 and table 3 respectively,
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Table 2. Clustering accuracy(%) comparisons.
Data KM NC MMC GMC SVR CPM3C

Dig 3-8 94.68 65.00 90.00 94.40 96.64 96.92

Dig 1-7 94.45 55.00 68.75 97.8 99.45 100.0

Dig 2-7 96.91 66.00 98.75 99.50 100.0 100.0

Dig 8-9 90.68 52.00 96.25 84.00 96.33 97.74

Letter 82.06 76.80 - - 92.80 94.47

UCISat 95.93 95.79 - - 96.82 98.48

Text-1 50.53 93.79 - - 96.82 95.00
Text-2 50.38 91.35 - - 93.99 96.28

UCIDig 96.38 97.57 - - 98.18 99.38

MNIST 89.21 89.92 - - 92.41 95.71

Dig 0689 42.23 93.13 94.83 - - 96.63

Dig 1279 40.42 90.11 91.91 - - 94.01

Cora-DS 28.24 36.88 - - - 43.75

Cora-HA 34.02 42.00 - - - 59.75

Cora-ML 27.08 31.05 - - - 45.58

Cora-OS 23.87 23.03 - - - 58.89

Cora-PL 33.80 33.97 - - - 46.83

WK-CL 55.71 61.43 - - - 71.95

WK-TX 45.05 35.38 - - - 69.29

WK-WT 53.52 32.85 - - - 77.96

WK-WC 49.53 33.31 - - - 73.88

20-news 35.27 41.89 - - - 70.63

RCVI 27.05 - - - - 61.97

where the results for k-means and iterative SVR are
averaged over 50 independent runs and ‘-’ means the
corresponding algorithm cannot handle the dataset in
reasonable time. Since GMC and iterative SVR can
only handle binary clustering problems, we also pro-
vide experiments on several 2-class problems: Let-
ters, Satellite, autos vs. motorcycles (Text-1)
and baseball vs. hockey (Text-2). Moreover, for
the UCI-Digits and MNIST datasets, we enumerate
all 45 possible class pairs, and report the average clus-
tering results. Furthermore, as the MMC and GMC

algorithms can only handle datasets with no more than
a few hundred samples, we perform experiments on
UCI Digits and focus on those pairs (3 vs 8, 1 vs
7, 2 vs 7, 8 vs 9, 0689 and 1279) that are difficult to
differentiate. From the tables we can clearly observe

Table 3. Rand Index comparisons.
Data KM NC MMC GMC SVR CPM3C

Dig 3-8 0.904 0.545 0.823 0.899 0.940 0.945

Dig 1-7 0.995 0.504 0.571 0.962 0.995 1.00

Dig 2-7 0.940 0.550 0.978 0.994 1.00 1.00

Dig 8-9 0.835 0.500 0.929 0.733 0.934 0.956

Letter 0.706 0.644 - - 0.867 0.897

UCISat 0.922 0.919 - - 0.939 0.971

Text-1 0.500 0.884 - - 0.939 0.905
Text-2 0.500 0.842 - - 0.887 0.929

UCIDig 0.933 0.956 - - 0.967 0.989

MNIST 0.808 0.818 - - 0.860 0.921

Dig 0689 0.696 0.939 0.941 - - 0.968

Dig 1279 0.681 0.909 0.913 - - 0.943

Cora-DS 0.589 0.744 - - - 0.735
Cora-HA 0.385 0.659 - - - 0.692

Cora-ML 0.514 0.720 - - - 0.754

Cora-OS 0.518 0.522 - - - 0.721

Cora-PL 0.643 0.675 - - - 0.703

WK-CL 0.603 0.602 - - - 0.728

WK-TX 0.604 0.514 - - - 0.707

WK-WT 0.616 0.581 - - - 0.747

WK-WC 0.581 0.509 - - - 0.752

20-news 0.581 0.496 - - - 0.782

RCVI 0.471 - - - - 0.698

that our CPM3C algorithm can beat other competi-

tive algorithms on almost all the datasets.

4.3. Speed of CPM3C

Table 4 compares the CPU-time of CPM3C with
other competitive algorithms. According to the ta-
ble, CPM3C is at least 18 times faster than SVR, 200
times faster than GMC. As reported in (Valizadegan &
Jin, 2007), GMC is about 100 times faster than MMC.
Hence, CPM3C is still faster than MMC by about four
orders of magnitude. Moreover, as the sample size in-
creases, the CPU-time of CPM3C grows much slower
than that of iterative SVR, which indicates CPM3C

has much better scaling property with the sample size
than SVR. Finally, CPM3C also performs much faster
than conventional kmeans, which is a very appealing
result. As for the Ncut method, since the calculation
of the similarity matrix is very time consuming and
usually takes several hours on the text datasets, we do
not report the time it spends here.

Table 4. CPU-time (seconds) comparisons.
Data KM GMC SVR CPM3C

Dig 3-8 0.51 276.16 19.72 1.10
Dig 1-7 0.54 289.53 20.49 0.95
Dig 2-7 0.50 304.81 19.69 0.75
Dig 8-9 0.49 277.26 19.41 0.85
Letter 0.08 - 2133 0.87
UCISat 0.19 - 6490 4.54
Text-1 66.09 - 930.0 19.75
Text-2 52.32 - 913.8 16.16

Dig 0689 34.28 - - 9.66
Dig 1279 17.78 - - 17.47
Cora-DS 839.67 - - 35.31
Cora-HA 204.43 - - 24.35
Cora-ML 22781 - - 69.04
Cora-OS 47931 - - 13.98
Cora-PL 7791.4 - - 165.0
WK-CL 672.69 - - 9.534
WK-TX 766.77 - - 10.53
WK-WT 4135.2 - - 10.67
WK-WC 1578.2 - - 9.041
20-news 2387.8 - - 215.6
RCVI 428770 - - 587.9

4.4. Dataset size n vs. Speed

In the theoretical analysis section, we state that the
computational time of CPM3C scales linearly with the
number of samples. We present numerical demonstra-
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Figure 1. CPU-Time (seconds) of CPM3C as a function of
dataset size n.
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tion for this statement in figure 1, where a log-log plot
of how computational time increases with the size of
the data set is shown. Specifically, lines in the log-log
plot correspond to polynomial growth O(nd), where
d is the slope of the line. Figure 1 shows that the
CPU-time of CPM3C scales roughly O(n), which is
consistent with the statement in section 3.

4.5. ² vs. Accuracy & Speed

Theorem 6 states that the total number of iterations
involved in CPM3C is at most R

²2
, and this means with

higher ², the algorithm might converge fast. However,
as ² is directly related to the training loss in CPM3C,
we need to determine how small ² should be to guar-
antee sufficient accuracy. We present in figure 2 and
figure 3 how clustering accuracy and computational
time scale with ². According to figure 2, ² = 0.01
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Figure 2. Clustering accuracy of CPM3C vs. ².

10−4 10−2 10010−1

100

101

102

103

Epsilon

C
P

U
−T

im
e 

(s
ec

on
ds

)

Cora & 20News

 

 

Cora−DS
Cora−HA
Cora−ML
Cora−OS
Cora−PL
20News

O(x−0.5)

10−4 10−2 100

10−2

100

102

104

Epsilon

C
P

U
−T

im
e 

(s
ec

on
ds

)

WebKB & RCVI

 

 

WK−CL
WK−TX
WK−WT
WK−WC
RCVI

O(x−0.5)

Figure 3. CPU-time (seconds) of CPM3C vs. ².

is small enough to guarantee clustering accuracy. The
log-log plot in figure 3 verifies that the CPU-time of
CPM3C decreases as ² increases. Moreover, the em-
pirical scaling of roughly O( 1

²0.5 ) is much better than
O( 1

²2
) in the bound from theorem 6.

5. Conclusions

We propose the cutting plane multiclass maximum

margin clustering (CPM3C) algorithm in this paper,
to cluster data samples with the maximum margin hy-
perplane. Preliminary theoretical analysis of the algo-
rithm is provided, where we show that the computa-
tional time of CPM3C scales linearly with the sample
size n with guaranteed accuracy. Moreover, experi-
mental evaluations on several real world datasets show
that CPM3C performs better than existing MMC

methods, both in efficiency and accuracy.
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Abstract

We propose Laplace max-margin Markov
networks (LapM3N), and a general class of
Bayesian M3N (BM3N) of which the LapM3N
is a special case with sparse structural bias,
for robust structured prediction. BM3N gen-
eralizes extant structured prediction rules
based on point estimator to a Bayes-predictor
using a learnt distribution of rules. We
present a novel Structured Maximum Entropy
Discrimination (SMED) formalism for com-
bining Bayesian and max-margin learning of
Markov networks for structured prediction,
and our approach subsumes the conventional
M3N as a special case. An efficient learn-
ing algorithm based on variational inference
and standard convex-optimization solvers for
M3N, and a generalization bound are offered.
Our method outperforms competing ones on
both synthetic and real OCR data.

1. Introduction

In recent years, log-linear models based on compos-
ite features that explicitly exploit the structural de-
pendencies among elements in high-dimensional in-
puts (e.g., DNA strings, text sequences, image lat-
tices) and structured interpretational outputs (e.g.,
gene segmentation, natural language parsing, scene de-
scription) have gained substantial popularity in learn-
ing structured predictions from complex data. Ma-
jor instances of such models include the conditional
random fields (CRFs) (Lafferty et al., 2001), Markov
networks (MNs) (Taskar et al., 2003), and other spe-
cialized graphical models (Altun et al., 2003). Adding
to the flexibilities and expressive power of such mod-
els, different learning paradigms have been explored,

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

such as maximum likelihood estimation (Lafferty et al.,
2001), and max-margin learning (Altun et al., 2003;
Taskar et al., 2003; Tsochantaridis et al., 2004).

For domains with complex feature space, it is often
desirable to pursue a “sparse” representation of the
model that leaves out irrelevant features. Learning
such a sparse model is key to reduce the rick of over-
fitting and achieve good generalizability. In likelihood-
based estimation, sparse model fitting has been exten-
sively studied. A commonly used strategy is to add an
L1-penalty to the likelihood function, which can also
be viewed as a MAP estimation under a Laplace prior.
Recent work along this line includes (Lee et al., 2006;
Wainwright et al., 2006; Andrew & Gao, 2007).

This progress notwithstanding, little progress has been
made so far on learning sparse MNs or log-linear
models in general based on the max-margin principle,
which is arguably a more desirable paradigm for train-
ing highly discriminative structured prediction models
in a number of application contexts. While sparsity
has been pursued in maximum margin learning of cer-
tain discriminative models such as SVM that are “un-
structured” (i.e., with a univariate output), by using
L1-regularization (Bennett & Mangasarian, 1992) or
by adding a cardinality constraint (Chan et al., 2007),
generalization of these techniques to structured output
space turns out to be extremely non-trivial. For exam-
ple, although it appears possible to formulate sparse
max-margin learning as a convex optimization prob-
lem as for SVM, both the primal and dual problems
are hard to solve since there is no obvious way to ex-
ploit the conditional independence structures within a
regularized MN to efficiently deal with the typically
exponential number of margin constraints. Another
empirical insight as we will show in this paper is that
the L1-regularized estimation is not so robust. Dis-
carding the features that are not completely irrelevant
can potentially hurt generalization ability.

In this paper, we propose a new formalism
called Structured Maximum Entropy Discrimination
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(SMED), which offers a general framework to com-
bine Bayesian learning and max-margin learning of
log-linear models for structured prediction. SMED is
a generalization of the maximum entropy discrimina-
tion (Jaakkola et al., 1999) methods originally devel-
oped for classification to the broader problem of struc-
tured learning. It facilitates posterior inference of a
full distribution of feature coefficients (i.e., weights),
rather than a point-estimate as in the standard max-
margin Markov network (M3N) (Taskar et al., 2003),
under a user-specified prior distribution of the coeffi-
cients and generalized maximum margin constraints.
One can use the learned posterior distribution of co-
efficients to form a Bayesian max-margin Markov net-
work (BM3N) that is equivalent to a weighted sum
of differentially parameterized M3Ns, or one can ob-
tain a MAP BM3N. We show that, by using a Laplace
prior for the feature coefficients, the resulting BM3N
is effectively a “sparse” max-margin Markov network,
which we refer to as a Laplace M3N (LapM3N). But
unlike the L1-regularized maximum likelihood estima-
tion, where sparsity is due to a hard threshold intro-
duced by the Laplace prior (Kaban, 2007), the effect of
Laplace prior in LapM3N is a biased posterior weight-
ing of the parameters. Smaller parameters are shrunk
more and thus robust estimation is achieved when the
data have irrelevant features. The Bayesian formalism
also makes the LapM3N less sensitive to regularization
constants. Interestingly, a trivial assumption on the
prior distribution of the coefficients, i.e., a standard
(zero-mean and identity covariance) normal, reduces
BM3N to the standard M3N, as shown in Theorem 3.

The paper is structured as follows. The next section
reviews the basic structured prediction formalism and
sets the stage for our model. Sec. 3 presents the
SMED formalism and basic results on BM3N. Sec. 4
presents LapM3N and a novel learning algorithm. Sec.
5 presents a generalization bound of BM3N. Sec. 6
shows empirical results. Sec. 7 concludes this paper.

2. Preliminaries

Consider a structured prediction problem such as nat-
ural language parsing, image understanding, or DNA
decoding. The objective is to learn a predictive func-
tion h : X 7→ Y from a structured input x ∈ X (e.g.,
a sentence or an image) to a structured output y ∈ Y
(e.g., a sentence parsing or a scene annotation), where
Y = Y1 × · · · × Yl with Yi = {y1, . . . , ymi} represents
a combinatorial space of structured interpretations of
multi-facet objects. For example, Y could correspond
to the space of all possible instantiations of the part-of-
speech (POS) tagging in the parse tree of a sentence,
or the space of all possible ways of labeling entities

over some segmentation of an image. The prediction
y ≡ (y1, . . . , yl) is structured because each individual
label yi ∈ Yi within y must be determined in the con-
text of other labels yj 6=i, rather than independently as
in a standard classification problem.

Let F : X × Y 7→ R represent a discriminant function
over the input-output pairs from which one can
define the predictive function h. A common choice
of F is a linear model, which is based on a set of
feature functions fk : X × Y 7→ R and their weights
wk, i.e., F (x,y; w) = w>f(x,y). Given F , the
prediction function h is typically defined in terms of
an optimization problem that maximizes F over the
response variable y given input x:

h0(x; w) = arg max
y∈Y(x)

F (x,y; w). (1)

Depending on the specific choice of the objective func-
tion C(w) for estimating the parameter w (e.g., likeli-
hood, or margin), incarnations of the general struc-
tured prediction formalism described above can be
seen in models such as the CRFs (Lafferty et al., 2001),
where C(w) is the conditional likelihood of the true
structured label; and the M3N (Taskar et al., 2003),
where C(w) is the margin between the true label and
any other label. Recent advances in structured pre-
diction has introduced regularizations of C(w) in the
CRF context, so that a sparse w can be learned (An-
drew & Gao, 2007). To the best of our knowledge, ex-
isting max-margin structured prediction methods uti-
lize a single discriminant function F ( · ; w) defined
by the “optimum” estimate of w, similar to a prac-
tice in Frequentist statistics. In this paper, we pro-
pose a Bayesian version of the predictive rule in Eq.
(1) so that the prediction function h can be obtained
from a posterior mean over multiple (indeed infinitely
many) F ( · ; w); and we also propose a new for-
malism and objective C(w) that lead to a Bayesian
M3N, which subsumes the standard M3N as a spe-
cial case, and can achieve a posterior shrinkage effect
on w that resembles L1-regulatiztion. To our knowl-
edge, although sparse graphical model learning based
on various likelihood-based principles has recently re-
ceived substantial attention (Lee et al., 2006; Wain-
wright et al., 2006), learning sparse networks based on
the maximum margin principle has not yet been suc-
cessfully explored. Our proposed method represents
an initial foray in this important direction.

Before dwelling into exposition of the proposed ap-
proach, we end this section with a brief recapitulation
of the basic M3N that motivates this work, and pro-
vides a useful baseline that grounds the proposed ap-
proach. Under a max-margin framework, given train-
ing data D = {〈xi,yi〉}Ni=1, we obtain a point estimate
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of the weight vector w by solving the following max-
margin problem P0 (Taskar et al., 2003):

P0 (M3N) : min
w,ξ

1
2
‖w‖2 + C

N∑
i=1

ξi

s.t. ∀i,∀y 6= yi : w>∆fi(y) ≥ ∆`i(y)− ξi, ξi ≥ 0 ,
where ∆fi(y) = f(xi,yi) − f(xi,y) and w>∆fi(y) is
the “margin” between the true label yi and a predic-
tion y, ∆`i(y) is a loss function with respect to yi, and
ξi is a slack variable that absorbs errors in the train-
ing data. Various loss functions have been proposed in
the literature (Tsochantaridis et al., 2004). In this pa-
per, we adopt the hamming loss used in (Taskar et al.,
2003): ∆`i(y) =

∑|xi|
j=1 I(yj 6= yij), where I(·) is an

indicator function that equals to one if the argument
is true and zero otherwise. The optimization prob-
lem P0 is intractable because the feasible space for w,
F0 = {w : w>∆fi(y) ≥ ∆`i(y) − ξi; ∀i,∀y 6= yi}, is
defined by O(N |Y|) number of constraints, and Y it-
self is exponential to the size of the input x. Exploring
sparse dependencies among individual labels yi in y,
as reflected in the specific design of the feature func-
tions (e.g., based on pair-wise labeling potentials), and
convex duality of the objective, efficient algorithms
based on cutting-plane (Tsochantaridis et al., 2004) or
message-passing (Taskar et al., 2003) have been pro-
posed to obtain an approximate optimum solution. As
described shortly, these algorithms can be directly em-
ployed as subroutines in solving our proposed model.

3. Bayesian Maximum Margin Markov
Networks

In this paper, we take a Bayesian approach and learn
a distribution p(w), rather than a point estimate of
w, in a max-margin manner. For prediction, we take
the average over all the possible models, that is:

h1(x) = arg max
y∈Y(x)

∫
p(w)F (x,y; w) dw . (2)

Now, the open question is how we can devise an ap-
propriate objective function over p(w), in a similar
spirit as the L2-norm cost over w in P0, that leads
to an optimum estimate of p(w). Below, we present a
structured maximum entropy discrimination (SMED)
framework that facilitates the estimation of a Bayesian
M3N defined by p(w). As we show in the sequel, our
Bayesian max-margin learning formalism offers several
advantages like the PAC-Bayes generalization guaran-
tee and estimation robustness.

3.1. SMED and the Bayesian M3N

Given a training set D, analogous to the feasible
space F0 for weight vector w in an M3N (i.e., problem
P0), the feasible subspace F1 of weight distribution

p(w) is defined by a set of expected margin constraints:
F1 = {p(w) : 〈∆Fi(y; w)−∆`i(y)〉p(w) ≥ −ξi, ∀i,y 6= yi},

where ∆Fi(y; w) = F (xi,yi; w)−F (xi,y; w) and 〈·〉p
denotes the expectations with respect to p.

To choose the best distribution p(w) from F1, the
maximum entropy principle suggests that one can con-
sider the distribution that minimizes its relative en-
tropy with respect to some chosen prior p0, as mea-
sured by the Kullback-Leibler divergence, KL(p||p0) =
〈log(p/p0)〉p. To accommodate the discriminative pre-
diction problem we concern, instead of minimizing the
usual KL, we optimize the generalized entropy (Dud́ık
et al., 2007; Lebanon & Lafferty, 2001), or a regular-
ized KL-divergence, KL(p(w)||p0(w)) + U(ξ), where
U(ξ) is a closed proper convex function over the slack
variables. This leads to the following Structured Max-
imum Entropy Discrimination Model:

Definition 1 (The Structured Maximum En-
tropy Discrimination Model) Given training data
D = {〈xi,yi〉}Ni=1, a discriminant function F (x,y; w),
a loss function ∆`x(y), and an ensuing feasible sub-
space F1 (defined above) for parameter distribution
p(w), the SMED model that leads to a prediction
function of the form of Eq. (2) is defined by the
following generalized relative entropy minimization
with respect to a parameter prior p0(w):

P1 : min
p(w),ξ

KL(p(w)||p0(w)) + U(ξ)

s.t. p(w) ∈ F1, ξi ≥ 0,∀i.
The P1 defined above is a variational optimization
problem over p(w) in a subspace of valid parameter
distributions. Since both the KL and the function U
in P1 are convex, and the constraints in F1 are lin-
ear, P1 is a convex program, which can be solved via
applying the calculus of variations to the Lagrangian
to obtain a variational extremum, followed by a dual
transformation of P1. Due to space limit, a detailed
derivation is given in an extended version of this paper,
and below we state the main results as a theorem.
Theorem 2 (Solution to SMED) The variational
optimization problem P1 underlying the SMED model
gives rise to the following optimum distribution of
Markov network parameters w:
p(w) =

1

Z(α)
p0(w) exp{

X
i,y

αi(y)[∆Fi(y; w)−∆`i(y)]}, (3)

where the Lagrangian multipliers αi(y) (corresponding
to constraints in F1) can be obtained by solving the
dual problem of P1:

D1 : max
α
− logZ(α)− U?(α)

s.t. αi(y) ≥ 0, ∀i, ∀y,

where U?(·) represents the conjugate of the slack func-
tion U(·), i.e., U?(α) = supξ

(∑
i,y αi(y)ξi − U(ξ)

)
.
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For a closed proper convex function φ(µ), its conjugate
is defined as φ?(ν) = supµ[ν>µ − φ(µ)]. In problem
D1, by convex duality, the log normalizer logZ(α) can
be shown to be the conjugate of the KL-divergence.
If the slack function is U(ξ) = C‖ξ‖ = C

∑
i ξi,

it is easy to show that U?(α) = I∞(
∑

y αi(y) ≤
C, ∀i), where I∞(·) is a function that equals to zero
when its argument holds true and infinity otherwise.
Here, the inequality corresponds to the trivial solu-
tion ξ = 0, that is, the training data are perfectly
separative. Ignoring this inequality does not affect
the solution since the special case ξ = 0 is still in-
cluded. Thus, the Lagrangian multipliers αi(y) in
the dual problem D1 comply with the set of con-
straints that

∑
y αi(y) = C, ∀i. Another example

is U(ξ) = KL(p(ξ)||p0(ξ)) by introducing uncertainty
on the slack variables (Jaakkola et al., 1999). Some
other U functions and their dual functions are studied
in (Lebanon & Lafferty, 2001; Dud́ık et al., 2007).

The optimum parameter distribution p(w) defined by
Eq. (3), along with the predictive function h1(x; w)
given by Eq. (2), jointly form what we would like to
call a Bayesian M3N (BM3N). The close connection
of BM3N and M3N is suggested by the striking isomor-
phisms of the opt-problem P1, the feasible space F1,
and the predictive function h1 underlying an BM3N,
to their counterparts P0, F0, and h0, respectively, un-
derlying an M3N. Indeed, by making a special choice
of a parameter prior in Eq. (3), based on the above
discussion of conjugate functions in D1, we arrive at
a reduction of D1 to an M3N optimization problem.
The following theorem makes this explicit.

Theorem 3 (Reduction of BM3N to M3N)
Assuming F (x,y; w) = w>f(x,y), U(ξ) =

∑
i ξi,

and p0(w) = N (w|0, I), where I denotes an identity
matrix, then the Lagrangian multipliers αi(y) are
obtained by solving the following dual problem:

max
α

X
i,y

αi(y)∆`i(y)− 1

2
‖
X
i,y

αi(y)∆fi(y)‖2

s.t.
X
y

αi(y) = C; αi(y) ≥ 0, ∀i, ∀y,

which, when applied to h1, lead to a predictive function
that is identical to h0(x; w) given by Eq. (1).
Proof: (sketch) Replacing p0(w) in Eq. (3) with
N (w|0, I), we can obtain the following closed-form
expression of the Z(α) in p(w):Z

1

(2π)
K
2

exp{−w>w

2
+
X
i,y

αi(y)[w>∆fi(y)−∆`i(y)]} dw

= exp

„
−
X
i,y

αi(y)∆`i(y) +
1

2
‖
X
i,y

αi(y)∆fi(y)‖2
«
.

As we have stated, the constraints
∑

y αi(y) = C are
due to the conjugate of U(ξ) =

∑
i ξi.

Theorem 3 shows that in the supervised learning set-
ting, M3N is subsumed by the SMED model, and can
be viewed as a special case of a Bayesian M3N when
the slack function is linear and the parameter prior is
a standard normal. As described later, this connec-
tion renders many existing techniques for solving the
M3N directly applicable for solving the BM3N. Note
that although the distribution p(w) in Eq. (3) has the
same form as that of Bayesian CRFs (Qi et al., 2005),
the underlying principles are fundamentally different.

Recent trend in pursuing “sparse” graphical mod-
els has led to the emergence of regularized version
of CRFs (Andrew & Gao, 2007) and Markov net-
works (Lee et al., 2006; Wainwright et al., 2006). Inter-
estingly, while such extensions have been successfully
implemented by several authors in maximum likeli-
hood learning of various sparse graphical models, they
have not yet been explored in the context of maxi-
mum margin learning. Such a gap is not merely due
to a negligence. Indeed, learning a sparse M3N can be
significantly harder as we discuss below.

As Theorem 3 reveals, an M3N corresponds to a BM3N
with a standard normal prior for the weight vector w.
To encourage a sparse model, when using zero-mean
normal prior, the weights of irrelevant features should
peak around zero with very small variances. However,
the isotropy of the variances in all dimensions in the
standard normal prior makes M3N infeasible to adjust
the variances in different dimensions to fit sparse data.
One way to learn a sparse model is to adopt the strat-
egy of L1-SVM to use L1-norm instead of L2-norm (a
detailed description of this formulation and the duality
derivation is available in the extended version of this
paper). However, in both the primal and dual of an
L1-regularized M3N, there is no obvious way to exploit
the sparse dependencies among variables of the MN
in order to efficiently deal with typically exponential
number of constraints, which makes direct optimiza-
tion or LP-formulation expensive. In this paper, we
adopt the SMED framework that directly leads to a
Bayesian M3N, and employ a Laplace prior for w to
learn a Laplace M3N. When fitted to training data, the
parameter posterior p(w) under a Laplace M3N has a
shrinkage effect on small weights, which is similar to
the L1-regularizer in an M3N. Although exact learning
of a Laplace M3N is still very hard, we show that it can
be efficiently approximated by a variational inference
procedure based on existing methods.

4. Laplace M3N

The Laplace prior is p0(w) =
∏K
k=1

√
λ

2 e−
√
λ|wk| =(√

λ
2

)K
e−
√
λ‖w‖. The Laplace density is heavy tailed
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and peaked at zero. Thus, it encodes the prior belief
that the distribution of w is strongly peaked around
zero. Another nice property is that the Laplace den-
sity is log-convex, which can be exploited to get convex
estimation problems like LASSO (Tibshirani, 1996).

4.1. Variational Learning with Laplace Prior

Although in principle we have a closed-form solution
of p(w) in Theorem 2, the parameters αi(y) are hard
to estimate when using the Laplace prior. As we shall
see in Section 4.2, exact integration will lead to a dual
function that is difficult to maximize. Thus, we present
a variational approximate learning approach.

Our approach is based on the hierarchical interpre-
tation (Figueiredo, 2003) of the Laplace prior, that
is, each wk has a zero-mean Gaussian distribution
p(wk|τk) = N (wk|0, τk) and the variance τk has an
exponential hyper-prior density,

p(τk|λ) =
λ

2
exp

{
− λ

2
τk
}
, for τk ≥ 0.

Let p(w|τ) =
∏K
k=1 p(wk|τk), p(τ |λ) =

∏K
k=1 p(τk|λ),

then, p0(w) =
∫
p(w|τ)p(τ |λ) dτ . Using the hier-

archical representation and applying the Jensen’s
inequality, we get the following upper bound:

KL(p||p0) = −H(p)− 〈log

Z
p(w|τ)p(τ |λ) dτ 〉p

≤ −H(p)− 〈
Z
q(τ) log

p(w|τ)p(τ |λ)

q(τ)
dτ 〉p

, L(p(w), q(τ)),

where q(τ) is a variational distribution which is used
to approximate p(τ |λ).

Substituting this upper bound for the KL in P1, we
now solve the following problem,

min
p(w)∈F1;q(τ);ξ

L(p(w), q(τ)) + U(ξ). (4)

This problem can be solved with an iterative minimiza-
tion algorithm alternating between p(w) and q(τ), as
outlined in Algorithm 1, and detailed below.

Algorithm 1 Variational Bayesian Learning

Input: data D = {〈xi,yi〉}Ni=1, constants C and λ, iter-
ation number T
Output: posterior mean 〈w〉Tp
Initialize 〈w〉1p ← 0, Σ1

w ← I
for t = 1 to T − 1 do

Step 1: solve (5) or (6) for 〈w〉t+1
p = Σtwη; update

〈ww>〉t+1
p ← Σtw + 〈w〉t+1

p (〈w〉t+1
p )>.

Step 2: use (7) to update Σt+1
w ← diag(

q
〈w2

k
〉t+1
p

λ
).

end for

Step 1: Keep q(τ) fixed, we optimize (4) with respect
to p(w). Taking the same procedure as in solving P1,

we get the posterior distribution p(w) as follows,

p(w)∝ exp{
Z
q(τ) log p(w|τ) dτ − b} · exp{w>η − L}

∝ exp{−1

2
w>〈A−1〉qw − b+ w>η − L}

= N (w|µw,Σw),

where η =
∑
i,y αi(y)∆fi(y), L =

∑
i,y αi(y)∆`i(y),

A = diag(τk), and b = KL(q(τ)||p(τ |λ)) is a constant.
The posterior mean and variance are 〈w〉p = µw =
Σwη and Σw = (〈A−1〉q)−1 = 〈ww>〉p − 〈w〉p〈w〉>p ,
respectively. The dual parameters α are estimated by
solving the following dual problem:

max
α

X
i,y

αi(y)∆`i(y)− 1

2
η>Σwη (5)

s.t.
X
y

αi(y) = C; αi(y) ≥ 0, ∀i, ∀y.

This dual problem can be directly solved using exist-
ing algorithms developed for M3N, such as (Taskar
et al., 2003; Bartlett et al., 2004). Alternatively, we
can solve the following primal problem:

min
w,ξ

1

2
w>Σ−1

w w + C

NX
i=1

ξi (6)

s.t. w>∆fi(y) ≥ ∆`i(y)− ξi; ξi ≥ 0, ∀i, ∀y 6= yi.

It is easy to show that the solution of problem (6) leads
to the posterior mean of w under p(w). The primal
problem can be solved with subgradient (Ratliff et al.,
2007) or extragradient (Taskar et al., 2006) methods.

Step 2: Keep p(w) fixed, we optimize (4) with respect
to q(τ). Take the derivative of L with respect to q(τ)
and set it to zero, then we get q(τ) =

∏K
k=1 q(τk).

Each q(τk) is computed as follows:

∀k : q(τk) ∝ p(τk|λ) exp
{
〈log p(wk|τk)〉p

}
∝ N (

√
〈w2

k〉p|0, τk) exp(−1
2
λτk).

The normalization factor is
∫
N (
√
〈w2

k〉p|0, τk) ·
λ
2 exp(− 1

2λτk) dτk =
√
λ

2 exp(−
√
λ〈w2

k〉p). The ex-
pectations 〈τ−1

k 〉q required in calculating 〈A−1〉q are
calculated as follows,

〈 1

τk
〉q =

Z
1

τk
q(τk) dτk =

s
λ

〈w2
k〉p

. (7)

We iterate between the above two steps until conver-
gence. Then, we use the posterior distribution p(w) to
make prediction. For irrelevant features, the variances
should converge to zeros and thus lead to a sparse esti-
mation. The intuition behind this iterative minimiza-
tion algorithm is as follows. First, we use a Gaussian
distribution to approximate the Laplace distribution
and thus get a QP problem that is analogous to that
of M3N; then, the second step updates the covariance
matrix in the QP problem with an exponential hyper-
prior on the variance.
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4.2. Insights

To see how the Laplace prior affects the posterior dis-
tribution, we do the following calculations. Substitute
the hierarchical representation of the Laplace prior
into p(w) in Theorem 2, and we get:

Z(α) =

Z Z
p(w|τ)p(τ |λ) dτ · exp{w>η − L}dw

=

Z
p(τ |λ)

Z
p(w|τ) · exp{w>η − L} dw dτ

= exp{−L}
KY
k=1

λ

λ− η2
k

, (8)

where ηk =
∑
i,y αi(y)(fk(xi,yi) − fk(xi,y)) and an

additional constraint is ∀k, η2
k < λ. Otherwise, the

integration is infinity. Using the result (8), we can get:
∂logZ
∂αi(y)

= µ>∆fi(y)−∆`i(y), (9)

where µ is a column vector and µk = 2ηk

λ−η2
k
, ∀1 ≤ k ≤

K. An alternative way is using the definition of Z :
Z =

∫
p0(w) · exp{w>η − L} dw . We can get:

∂logZ

∂αi(y)
= 〈w〉>p ∆fi(y)−∆`i(y). (10)

Comparing Eqs. (9) and (10), we get 〈w〉p = µ, that
is, 〈wk〉p = 2ηk

λ−η2
k
, ∀1 ≤ k ≤ K. Similar calculation

can lead to the result that in M3N (standard normal
prior) 〈w〉p = η. Figure 1 shows the posterior means
(any dimension) when the priors are standard normal,
Laplace with λ = 4, and Laplace with λ = 6. We
can see that with a Laplace prior, the parameters are
shrunk around zero. The larger the λ value is, the
greater the shrinkage effect. For a fixed λ, the shape
of the posterior mean is smoothly nonlinear but no
component is explicitly discarded, that is, no weight is
set to zero. This is different from the shape of a L1-
regularized maximum likelihood estimation (Kaban,
2007) where an interval exists around the origin and
parameters falling into this interval are set to zeros.

Note that if we use the exact integration as in Eq. (8),
the dual problem D1 will maximize L−

∑K
k=1 log λ

λ−η2
k

.

Since η2
k appears within a logarithm, the optimization

problem would be very hard to solve. Thus, we turn
to a variational approximation method.

5. Generalization bound

The PAC-Bayes bound (Langford et al., 2001) provides
a theoretical motivation to learn an averaging model
as in P1 which minimizes the KL-divergence and si-
multaneously satisfies the discriminative classification
constraints. To apply it to our structured learning
setting, we assume that the discriminant functions are
bounded, that is, F ∈ H : X × Y → [−c, c] for all w,

Figure 1. Posterior mean with different priors against the
estimation of M3N (i.e. with the standard normal prior).

where c is a positive constant. Recall that our aver-
aging model is h(x,y) = 〈F (x,y; w)〉p(w). We define
the margin of an example (x,y) for such a function h
as M(h,x,y) = h(x,y) − maxy′ 6=y h(x,y′). Clearly,
the model h makes a wrong prediction on (x,y) only
if M(h,x,y) ≤ 0. Let Q be a distribution over X ×Y,
and let D be a sample of N examples randomly drawn
from Q. We have the following PAC-Bayes theorem.

Theorem 4 (PAC-Bayes Bound of BM3N) Let
p0 be any continuous probability distribution over H
and let δ ∈ (0, 1). If F ∈ H : X × Y → [−c, c] for all
w, then with probability at least 1 − δ over random
samples D of Q, for very distribution p over H and
for all margin thresholds γ > 0:

PrQ(M(h,x,y) ≤ 0) ≤ PrD(M(h,x,y) ≤ γ)

+O

„r
γ−2KL(p||p0) ln(N |Y|) + lnN + ln δ−1

N

«
.

Here, PrQ(.) stands for 〈.〉Q and PrD(.) stands for the
empirical average on D. The proof follows the same
structure as the original PAC-Bayes bound proof, with
consideration of the margins. Due to space limit, de-
tails of the proof are given in the extended paper.

6. Experiments

In this section, we present some empirical results of
LapM3N on both synthetic and real data sets. We
compare LapM3N with M3N, CRFs, L1-regularized
CRFs (L1-CRFs), and L2-regularized CRFs (L2-
CRFs). We use the quasi-Newton method (Andrew
& Gao, 2007) to learn L1-CRFs.

6.1. Synthetic Data Sets

6.1.1. I.I.D Features

The first experiment is conducted on synthetic se-
quence data with 100 i.i.d features. We generate three
types of data sets with 10, 30, and 50 relevant features.
For each setting, we randomly generate 10 linear-chain
CRFs with 8 binary labeling states. The feature func-
tions include: a real valued state-feature function over
a one dimensional input feature and a class label; and
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Figure 2. Evaluation results on data sets with i.i.d features.

4 (2× 2) binary transition-feature functions capturing
pairwise label dependencies. For each model we gen-
erate a data set of 1000 samples. For each sample,
we first independently draw the 100 features from a
standard normal distribution, and then apply a Gibbs
sampler to assign a label sequence with 5000 iterations.

For each data set, we randomly draw a part as train-
ing data and use the rest for testing. The numbers
of training data are 30, 50, 80, 100, and 150. The
QP problem is solved with the exponentiated gradient
method (Bartlett et al., 2004). In all the following ex-
periments, the regularization constant of L1-CRFs and
L2-CRFs is chosen from {0.01, 0.1, 1, 4, 9, 16} by a 5-
fold cross-validation in training. For LapM3N, we use
the same method to choose λ from 20 roughly evenly
spaced values between 1 and 268. For each setting, the
average over 10 data sets is the final performance.

The results are shown in Figure 2. All the results of
LapM3N are achieved with 3 iterations of the varia-
tional learning. Under different settings LapM3N con-
sistently outperforms M3N and performs comparably
with L1-CRFs. But note that the synthetic data come
from simulated CRFs. Both L1-CRFs and L2-CRFs
outperform the un-regularized CRFs. One interesting
result is that M3N and L2-CRFs perform comparably.
This is reasonable because as derived by Lebanon and
Lafferty (2001) and noted by Globerson et al. (2007)
the L2-regularized MLE of CRFs has a similar con-
vex dual as that of M3N. The only difference is the
loss they try to optimize. CRFs optimize the log-loss
while M3N optimizes the hinge-loss. As the number of
training data increase, all the algorithms consistently
get higher performance. The advantage of LapM3N is
more obvious when there are fewer relevant features.

6.1.2. Correlated Features

In reality, most data sets contain redundancy and the
features are usually correlated. So, we evaluate our
models on synthetic data sets with correlated features.
We take the similar procedure as in generating the
data sets with i.i.d features to first generate one linear-
chain CRF model. Then, we use the CRF model to
generate 10 data sets of which each sample has 30 rele-
vant features. The 30 relevant features are partitioned
into 10 groups. For the features in each group, we first
draw a real-value from a standard normal distribution

Figure 3. Results on data sets with 30 relevant features.

and then ‘spoil’ the feature with a random Gaussian
noise to get 3 correlated features. The noise Gaussian
has a zero mean and standard variance 0.05. Here
and in all the remaining experiments, we use the sub-
gradient method (Ratliff et al., 2007) to solve the QP
problem in both M3N and LapM3N. We use the learn-
ing rate and complexity constant that are suggested by
the authors, that is, αt = 1

2β
√
t

and C = 200β, where
β is a parameter we introduced to adjust αt and C.
We do K-fold CV on each data set and take the av-
erage over the 10 data sets as the final results. Like
(Taskar et al., 2003), in each run we choose one part
to do training and test on the rest K-1 parts. We vary
K from 20, 10, 7, 5, to 4. In other words, we use 50,
100, about 150, 200, and 250 samples during the train-
ing. We use the same grid search to choose λ and β
from {9, 16, 25, 36, 49, 64} and {1, 10, 20, 30, 40, 50, 60}
respectively. Results are shown in Figure 3. We can
get the same conclusions as in the previous results.

6.2. Real-World OCR Data Set

The OCR data set is partitioned into 10 subsets for 10-
fold CV (Taskar et al., 2003; Ratliff et al., 2007). We
randomly select N samples from each fold for our ex-
periments. We vary N from 100, 150, 200, to 250, and
denote the selected data sets by OCR100, OCR150,
OCR200, and OCR250 respectively. When β = 4
on OCR100 and OCR150, β = 2 on OCR200 and
OCR250, and λ = 36, results are shown in Figure 4.

Overall, as the number of training data increases, all
algorithms achieve lower error rates and smaller vari-
ances. Generally, LapM3N consistently outperforms
all the other models. M3N outperforms the standard,
non-regularized, CRFs and the L1-CRFs. Again, L2-
CRFs perform comparably to M3N. This is a bit sur-
prising but still reasonable due to the understanding
of their only difference on loss functions (Globerson
et al., 2007). By examining the prediction accuracy,
we can see an obvious over-fitting in CRFs and L1-
CRFs. In contrast, L2-CRFs are very robust. This
is because unlike the synthetic data sets, features in
real-world data are usually not completely irrelevant.
In this case, putting small weights to zero as in L1-
CRFs will hurt generalization ability and also lead to
instability to regularization constants as shown later.
Instead, L2-CRFs do not put small weights to zero but
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Figure 4. Evaluation results on OCR data set with differ-
ent numbers of selected data.

Figure 5. Error rates of different models on OCR100 with
different regularization constants. From left to right, the
regularization constants are 0.0001, 0.001, 0.01, 0.1, 1, 4,
9, 16, and 25 for L1-CRFs and L2-CRFs, and for M3N and
LapM3N they are 1, 4, 9, 16, 25, 36, 49, 64, and 81.

shrink them towards zero as in LapM3N. The non-
regularized MLE can also easily lead to over-fitting.

6.3. Sensitivity to Regularization Constants

Figure 5 shows the error rates of different models on
OCR100. From the results, we can see that the L1-
CRFs are much sensitive to the regularization con-
stants. However, L2-CRFs, M3N, and LapM3N are
much less sensitive. Among all the models, LapM3N
is the most stable one. The stability of LapM3N is due
to the posterior weighting instead of hard-thresholding
to set small weights to zero as in L1-CRFs.

7. Conclusions

We proposed a Structured Maximum Entropy Discrim-
ination formalism for Bayesian max-margin learning
in structured prediction. This formalism gives rise to
a general class of Bayesian M3Ns and subsumes the
standard M3N as a spacial case where the predictive
model is assumed to be linear and the parameter prior
is a standard normal. We show that the adoption of
a Laplace prior of the parameter leads to a Laplace
M3N that enjoys properties expected from a sparsi-
fied Bayesian M3N. Unlike the L1-regularized MLE
which sets small weights to zeros to achieve sparsity,
LapM3N weights the parameters a posteriori. Features
with smaller weights are shrunk more. This posterior
weighting effect makes LapM3N more stable with re-
spect to the magnitudes of the regularization coeffi-
cients and more generalizable.
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