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Preface

This volume contains the papers accepted to the 25 International Conference on Machine
Learning (ICML 2008). ICML is the annual conference of the International Machine Learning
Society (IMLS), and provides a venue for the presentation and discussion of current re-
search in the field of machine learning. These proceedings can also be found online at
http://www.machinelearning.org.

This year, ICML was held July 5—9 at the University of Helsinki, in Helsinki, Finland, and
was co-located with COLT-2008, the 21" Annual Conference on Computational Learning
Theory, and UAI-2008, the 24th Conference on Uncertainty in Artificial Intelligence.

No less than 583 papers were submitted to ICML 2008. There was a very thorough review
process, in which each paper was reviewed double-blind by three program committee (PC)
members. Authors were able to respond to the initial reviews, and the PC members could
then modify their reviews based on online discussions and the content of this author response.
There were two discussion periods led by the senior program committee (SPC), one just be-
fore and one after the submission of author responses. At the end of the second discussion
period, the SPC members gave their recommendations and provided a summary review for
each of their papers. Some papers were checked by the SPCs to ensure that reviewer com-
ments had been addressed. Apart from the length restrictions on papers and the compressed
time frame, the review process for ICML resembles that of many journal publications. In
total, 158 papers were accepted to ICML this year, including a small number of papers which
were initially conditionally accepted, yielding an overall acceptance rate of 27%.

ICML authors presented their papers both orally and in a poster session, allowing time for
detailed discussions with any interested attendees of the conference. Each day of the main
conference included one or two invited talks by a prominent researcher. We were very fortu-
nate to be able to host Michael Collins, of the Massachusetts Institute of Technology; Andrew
Ng, of Stanford University; and Luc De Raedt, of the Katholieke Universiteit Leuven, and
John Winn of Microsoft Research Cambridge. In addition to the technical talks, ICML-
2008 also included nine tutorials held before the main conference, presented by Alex Smola,
Arthur Gretton, and Kenji Fukumizu; Bert Kappen and Marc Toussaint; Neil Lawrence; Mar-
tin Wainwright; Ralf Herbrich and Thore Graepel; Andreas Krause and Carlos Guestrin; Shai
Shalev-Shwartz and Yoram Singer; Rob Fergus; and Matthias Seeger. This year our work-
shops were organized jointly with COLT and UAI as part of a special “overlap day,” consist-
ing of eleven workshops selected and arranged collaboratively by the respective workshop
chairs of the three conferences. This day provided a rich opportunity for interaction among
the attendees of the conferences.

This year, ICML enlarged its award offerings to match several other well-established confer-
ences. We hope these will help build our community, celebrate our advances, and encourage
applications and long-term thinking. In addition to our previously traditional “Best Paper”
and “Best Student Paper” awards, we also gave awards for “Best Application Paper” and
“10-year Best Paper” (for the best paper of ICML 1998, optionally given in conjunction with

xiii



a co-located conference). We thank the Machine Learning Journal for sponsoring some of
our paper awards.

The organization of ICML-2008 involved efforts from many people, to whom we are ex-
tremely grateful. As program chairs, we worked closely with the general chair, William
Cohen, and the local arrangements chair, Hannu Toivonen. The tutorials chair, Chris Williams,
and the workshop co-chairs, Sanjoy Dasgupta and Michael Littman, also made valuable con-
tributions to the program, and the publication chair, Ricardo Silva, performed a substan-
tial and invaluable service in arranging for publication of the proceedings and ensuring the
quality and uniformity of the papers it contained. We wish to thank Lise Getoor and Rich
Caruana, the funding co-chairs for IMLS, who secured numerous sponsors for ICML; Noah
Smith, the student funding chair, who dispersed student travel awards; and Matti Kééridinen,
the volunteer chair, who arranged for student volunteers, and made sure the conference ran
smoothly, and Carlos Guestrin, who chaired our awards sub-committee. We also wish to
thank Steven Scott, the treasurer of IMLS, for his support and advice on financial issues,
and Greger Lindén for his work as webmaster for ICML-2008. We also wish to thank Rich
Gerber and Paolo Gai, of SoftConf.com, who administered the START V2 software used for
the conference.

For more general support, we are grateful to the members of IMLS for their advice. We are
also very grateful to the many financial sponsors of ICML (who are listed elsewhere in these
proceedings) for their support of this conference.

No technical conference is possible without the efforts of reviewers, so we wish to thank the
Senior Program Committee, the Program Committee, and the additional reviewers for [CML-
2008 for their careful and conscientious reviewing, which ensured the technical quality of
the papers in these proceedings. Finally, and perhaps most importantly, we wish to thank
the authors who elected to submit their work to ICML-2008, and the people who attended
the conference. We hope that this volume will be a useful resource to them, and the other
members of the machine learning community.

Sincerely,

Andrew McCallum and Sam Roweis
ICML 2008 Program Co-chairs
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Structured Prediction Problems in Natural Language
Processing

Michael Collins
Massachussets Institute of Technology, U.S.A.

Abstract:

Modeling language at the syntactic or semantic level is a key problem in natural language
processing, and involves a challenging set of structured prediction problems. In this talk
I’1l describe work on machine learning approaches for syntax and semantics, with a particu-
lar focus on lexicalized grammar formalisms such as dependency grammars, tree adjoining
grammars, and categorial grammars. I'll address key issues in the following areas: 1) the de-
sign of learning algorithms for structured linguistic data; 2) the design of representations that
are used within these learning algorithms; 3) the design of efficient approximate inference
algorithms for lexicalized grammars, in cases where exact inference can be very expensive.
In addition, I’ll describe applications to machine translation, and natural language interfaces.
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STAIR: The STanford Artificial Intelligence Robot Project

Andrew Ng
Stanford University, U.S.A.

Abstract:

This talk will describe the STAIR home assistant robot project, and several satellite projects
that led to key STAIR components such as (i) robotic grasping of previously unknown ob-
jects, (i1) depth perception from a single still image, and (iii) apprenticeship learning for
control.

Since its birth in 1956, the Al dream has been to build systems that exhibit broad-spectrum
competence and intelligence. STAIR revisits this dream, and seeks to integrate onto a single
robot platform tools drawn from all areas of Al including learning, vision, navigation, ma-
nipulation, planning, and speech/NLP. This is in distinct contrast to, and also represents an
attempt to reverse, the 30 year old trend of working on fragmented Al sub-fields. STAIR’s
goal is a useful home assistant robot, and over the long term, we envision a single robot that
can perform tasks such as tidying up a room, using a dishwasher, fetching and delivering
items, and preparing meals.

STAIR is still a young project, and in this talk I’ll report on our progress so far on having
STAIR fetch items from around the office. Specifically, I'll describe: (i) learning to grasp
previously unseen objects (including its application to unloading items from a dishwasher);
(ii) probabilistic multi-resolution maps, which enable the robot to open/use doors; (iii) a
robotic foveal+peripheral vision system for object recognition and tracking. I'll also outline
some of the main technical ideas — such as learning 3-d reconstructions from a single still
image, and reinforcement learning algorithms for robotic control — that played key roles in
enabling these STAIR components.
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Logical and Relational Learning Revisited

Luc De Raedt
Katholieke Universiteit Leuven, Belgium

Abstract:

I use the term logical and relational learning (LRL) to refer to the subfield of machine
learning and data mining that is concerned with learning in expressive logical or relational
representations. It is the union of inductive logic programming, (statistical) relational learning
and multi-relational data mining and constitutes a general class of techniques and method-
ology for learning from structured data (such as graphs, networks, relational databases) and
background knowledge.

During the course of its existence, logical and relational learning has changed dramatically.
Whereas early work was mainly concerned with logical issues (and even program synthesis
from examples), in the 90s its focus was on the discovery of new and interpretable knowledge
from structured data, often in the form of rules or patterns. Since then the range of tasks
to which logical and relational learning has been applied has significantly broadened and
now covers almost all machine learning problems and settings. Today, there exist logical
and relational learning methods for reinforcement learning, statistical learning, distance- and
kernel-based learning in addition to traditional symbolic machine learning approaches.

At the same time, logical and relational learning problems are appearing everywhere. Ad-
vances in intelligent systems are enabling the generation of high-level symbolic and struc-
tured data in a wide variety of domains, including the semantic web, robotics, vision, social
networks, and the life sciences, which in turn raises new challenges and opportunities for
logical and relational learning,

These developments have led to a new view on logical and relational learning and its role
in machine learning and artificial intelligence. In this talk, I shall reflect on this view by
identifying some of the lessons learned in logical and relational learning and formulating
some challenges for future developments.
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Probabilistic Models for Understanding Images

John Winn
Microsoft Research Cambridge, United Kingdom

Abstract:

Getting a computer to understand an image is challenging due to the numerous sources of
variability that influence the imaging process. The pixels of a typical photograph will depend
on the scene type and geometry, the number, shape and appearance of objects present in the
scene, their 3D positions and orientations, as well as effects such as occlusion, shading and
shadows. The good news is that research into physics and computer graphics has given us a
detailed understanding of how these variables affect the resulting image. This understanding
can help us to build the right prior knowledge into our probabilistic models of images. In
theory, building a model containing all of this knowledge would solve the image understand-
ing problem. In practice, such a model would be intractable for current inference methods.
The open challenge for machine learning and machine vision researchers is to create a model
which captures the imaging process as accurately as possible, whilst remaining tractable for
accurate inference. To illustrate this challenge, I will show how different aspects of the
imaging process can be incorporated into models for object detection and segmentation, and
discuss techniques for making inference tractable in such models.
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Overview of Workshops and Tutorials

Once again, ICML solicited and hosted world-class workshops on topics related to machine
learning. This year, we were delighted to collaborate with the workshop chairs of the UAI
(Nando de Freitas) and COLT (John Langford) conferences to put together an exciting joint
program. We constructed a slate of 13 workshops that represent a wide range of perspectives
and fields, as seen in the summaries below. All workshops were held on July 9th, immediately
after the main conference days. We would like to thank all of the workshop organizers for
their service to the community in putting together these high-quality meetings. We also thank
the outstanding local arrangement chairs and the general and program chairs for ICML and
the other conferences for creating another exciting and successful conference.

Sanjoy Dasgupta and Michael L. Littman
ICML 2008 Workshop Chairs

As in previous years we were pleased to have a strong programme of tutorials for ICML
2008. These were held on 5 July, immediately preceding the main conference. The pro-
gramme featured nine tutorials covering a wide range of methods in and applications of
machine learning. There were tutorials on: embedding distributions in reproducing ker-
nel Hilbert spaces (Smola, Gretton, Fukumizu); stochastic optimal control theory (Kappen,
Toussaint); probabilistic dimensionality reduction (Lawrence); message-passing and relax-
ations in graphical models (Wainwright); machine learning applications in computer games
(Herbrich, Graepel); submodularity in machine learning (Krause, Guestrin); theory and ap-
plications of online learning (Shalev-Shwartz, Singer); visual object recognition and retrieval
(Fergus); and sparse linear models (Seeger). We would like to thank the community for the
high-quality tutorial proposals that were received, the presenters for their extensive efforts in
preparing and delivering the selected tutorials, and the local arrangements, programme and
general chairs of ICML for their hard work in organizing such a stimulating conference.

Chris Williams
ICML 2008 Tutorial Chair

Workshops

W1: Bayesian Modelling Applications

Suzanne M. Mahoney, Innovative Decisions, Inc, U.S.A.
Silja Renooij, Utrecht University, the Netherlands
Hermi J.M. Tabachneck-Schijf, Utrecht University, the Netherlands

The Bayesian Modelling Applications Workshop provides a focused but informal forum for
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fruitful exchanges among theorists, practitioners and tool developers, covering research ques-
tions and insights, methodologies, techniques, and experiences with applications of Bayesian
models to any particular problem domain. Apart from an overall focus on Bayesian mod-
elling, this years 6th edition has as special theme “HOW BIASED ARE OUR NUMBERS?”.
This theme focusses on issues relating to (probability) biases in applications of Bayesian net-
works. We seek insight in and examples of and solutions to encountered biases in sources of
probabilistic information, or introduced by the methods, new or existing, for obtaining and
communicating the numbers. In addition, we are interested in methods for identifying biases
in the numbers, and for establishing their effect on model behaviour.

W2: The 3rd Workshop on Evaluation Methods for Machine Learning

Chris Drummond, NRC Institute for Information Technology, Canada
Nathalie Japkowicz, University of Ottawa, Canada

William Klement, University of Ottawa, Canada

Sofus A. Macskassy, Fetch Technologies, U.S.A.

This workshop is the third in a series, the previous ones having taken place at AAAI over
the past two years. Our continuing goal is to encourage debate within the machine learning
community into how we experimentally evaluate new algorithms. The earlier workshops
were successful in that they began the process of presentation, and discussion, of new ideas
for evaluation. However, they did not raise all the high-level questions we believe must be
addressed by the community. For this reason, we have changed the format of the workshop.
First, we will hold it at ICML. Here, with access to a much larger group of ML researchers
we expect to hear from many more voices that have an interesting take on the issue. Second,
we solicited position papers rather than research papers. This way instead of getting lost into
the nitty-gritty details of particular new evaluation methods, we can address the important,
high-level, issues surrounding machine learning evaluation.

W3: International Workshop on Machine Learning and Music (MML 2008)

Rafael Ramirez, Universitat Pompeu Fabra, Spain
Christina Anagnostopoulou, University of Athens, Greece
Darrell Conklin, City University, United Kingdom

José Manuel Ifiesta, Alicante University, Spain

Xavier Serra, Universitat Pompeu Fabra, Spain

With the current explosion and quick expansion of music in digital formats, research on ma-
chine learning and music is gaining increasing popularity. As complexity of the problems
investigated by researchers on this area increases, there is a need to develop new algorithms
and methods to solve these problems. Machine learning has proved to provide efficient so-
lutions to many music-related problems. The application of related techniques to the devel-
opment of music processing systems is an active, exciting and significant area of research
which has become an established field of research. The goal of the workshop is to bring
together researchers who are using machine learning in musical applications, providing the
opportunity to promote, present and discuss ongoing work in the area.
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W4: Machine Learning for Health Care Applications

Milos Hauskrecht, University of Pittsburgh, U.S.A.
Dale Schuurmans, University of Alberta, Canada
Csaba Szepesvdri, University of Alberta, Canada

Health-care applications have been and continue to be the source of inspiration for many ar-
eas of artificial intelligence research. Many advances in various sub-specialties of Al have
been inspired by challenges posed by medical problems. A new challenge for Al in general,
but machine learning in particular, arises from the wealth and variety of data generated in
modern medical and health-care settings. Extensive electronic health and medical records —
with thousands of fields recording patient conditions, diagnostic tests, treatments, outcomes,
and so on — provide an unprecedented source of information that can provide clues leading
to potential improvements in disease detection, chronic disease management, design of clini-
cal trials, and other aspects of health-care. The purpose of this workshop is to bring together
machine learning researchers interested in problems and applications in health-care, with
the goal of exchanging ideas and perspectives, identifying important and challenging appli-
cations, and raising awareness of potential health-care applications in the machine learning
community. The workshop program will consists of presentations by invited speakers and
authors of the papers submitted and accepted to the workshop. A panel session focusing on
the main challenges and open problems in the field will be held at the end of the workshop.

WS: Nonparametric Bayes

Yee Whye Teh, University College London, United Kingdom
Romain Thibaux, University of California, Berkeley, U.S.A.
Athanasios Kottas, University of California, Santa Cruz, U.S.A.
Zoubin Ghahramani, University of Cambridge, United Kingdom
Michael Jordan, University of California, Berkeley, U.S.A.

One of the major problems driving current research in statistical machine learning is the
search for ways to exploit highly-structured models that are both expressive and tractable.
Nonparametric Bayesian methodology provides significant leverage on this problem. In the
nonparametric Bayesian framework, the prior distribution is not a fixed parametric form, but
is rather a general stochastic process — a distribution over a possibly uncountably infinite
number of random variables. This generality makes it possible to work with prior and poste-
rior distributions on objects such as trees of unbounded depth and breadth, graphs, partitions,
sets of monotone functions, sets of smooth functions and sets of general measures. Applica-
tions of nonparametric Bayesian methods have begun to appear in disciplines such as infor-
mation retrieval, natural language processing, machine vision, computational biology, cogni-
tive science and signal processing. This workshop is intended to bring together the growing
community of nonparametric Bayesian researchers. The issues we wish to address include:
development of general-purpose software packages for nonparametric Bayesian models, ef-
ficient inference, and new models, methodologies, theoretical frameworks and applications.
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W6: PASCAL Large Scale Learning Challenge

Soeren Sonnenburg, Fraunhofer Institute FIRST, Germany
Vojtech Franc, Fraunhofer Institute FIRST, Germany

Elad Yom-Tov, IBM Haifa Research Lab, Israel

Michele Sebag, LRI, France

With the exceptional increase in computing power, storage capacity and network bandwidth
of the past decades, ever growing datasets are collected. While the data size growth leaves
computational methods as the only viable way of dealing with data, it poses new challenges
to ML methods. The PASCAL Large Scale Learning challenge is concerned with the scal-
ability and efficiency of existing ML approaches with respect to computational, memory or
communication resources.

Indeed many comparisons are presented in the literature; however, these usually focus on
assessing few algorithms and aspects. As a result it is difficult to determine how a method
compares to others in terms of test error, training time and memory requirements, which are
the practically relevant criteria.

The workshop will serve to disseminate the challenge results and announce the winners of
the competition. Authors of the best and most original contributions will present their work.
Furthermore a panel discussion will be devoted to establishing a principled framework for
the validation of large scale learning methods.

W?7: Second Planning to Learn Workshop (PlanLearn)

Pavel Brazdil, University of Porto, Portugal
Avi Bernstein, University of Zurich, Switzerland
Larry Hunter, University of Colorado at Denver and Health Sciences Center, USA

The task of constructing composite systems, that is systems composed of more than one part,
can be seen as interdisciplinary area which builds on expertise in different domains. The
aim of this workshop is to explore the possibilities of constructing such systems with the aid
of Machine Learning and exploiting the know-how of Data Mining. One way of producing
composite systems is by inducing the constituents and then by putting the individual parts
together. This problem can be seen as a problem of planning to resolve multiple (possibly
interacting) tasks. So, one important issue that needs to be addressed is how these multiple
learning processes can be coordinated. Each task is resolved using certain ordering of oper-
ations. Meta-learning and knowledge transfer can be useful in this process. It can help us to
retrieve previous solutions conceived in the past and re-use them in new settings. The aim
of the workshop is to explore the possibilities of this new area, offer a forum for exchanging
ideas and experience concerning the state-of-the art, permit to bring in knowledge gathered
in different but related and relevant areas and outline new directions for research.
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WS8: Prior Knowledge for Text and Language Processing

Marc Dymetman, Xerox Research Centre Europe, France
Guillaume Bouchard, Xerox Research Centre Europe, France
Hal Daumé III, University of Utah, U.S.A.

Yee Whye Teh, University College London, United Kingdom

The aim of the workshop is to present and discuss recent advances in machine learning ap-
proaches to text and natural language processing that capitalize on rich prior knowledge
models in these domains.

Traditionally, in Machine Learning, a strong focus has been put on data-driven methods that
assume little a priori knowledge on the part of the learning mechanism. Such techniques
have proven quite effective not only for simple pattern recognition tasks, but also, more
surprisingly, for such tasks as language modeling in speech recognition using basic n-gram
models. However, when the structures to be learned become more complex, even large train-
ing sets become sparse relative to the task, and this sparsity can only be mitigated if some
prior knowledge comes into play to constrain the space of fitted models. We currently see
a strong emerging trend in the field of machine learning for text and language processing
to incorporate such prior knowledge for instance in language modeling (e.g. through non-
parametric Bayesian priors) or in document modeling (e.g. through hierarchical graphical
models). There are complementary attempts in the field of statistical computational linguis-
tics (e.g in statistical machine translation) to build hybrid systems that do not rely uniquely on
corpus data, but also exploit some form of a priori grammatical knowledge, bridging the gap
between purely data-oriented approaches and the traditional purely rule-based approaches,
that do not rely on automatic corpus training, but only indirectly on human observations
about linguistic data. The domain of text and language processing thus appears as a very
promising field for studying the interactions between prior knowledge and raw training data,
and this workshop aims at providing a forum for discussing recent theoretical and practical
advances in this area.

W9: Recent Breakthroughs in Minimum Description Length Learning

Tim van Erven, CWI, the Netherlands

Peter Griinwald, CWI, the Netherlands

Petri Myllymdiki, University of Helsinki, Finland

Teemu Roos, Helsinki Institute for Information Technology, Finland
loan Tabus, Tampere University of Technology, Finland

During the last few years (2004-2007), there have been several breakthroughs in the area
of Minimum Description Length (MDL) modeling, learning and prediction. These break-
throughs concern the efficient computation and proper formulation of MDL in parametric
problems based on the “normalized maximum likelihood”, as well as altogether new, and
better, coding schemes for nonparametric problems. This essentially solves the so-called
AIC-BIC dilemma, which has been a central problem in statistical model selection for more
than 20 years now. The goal of this workshop is to introduce these exciting new develop-
ments to the ML and UAI communities, and to foster new collaborations between interested
researchers.
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W10: Second Annual Reinforcement Learning Competition (RL 2008)

Shimon Whiteson, Universiteit van Amsterdam, the Netherlands
Adam White, University of Alberta, Canada

Rich Sutton, University of Alberta, Canada

Doina Precup, McGill University, Canada

Peter Stone, University of Texas at Austin, U.S.A.

Michael Littman, Rutgers University, U.S.A.

Nikos Vlassis, Technical University of Crete, Greece

Martin Riedmiller, Universitdit Osnabriick, Germany

The Second Annual Reinforcement Learning Competition is an opportunity for reinforce-
ment learning researchers to rigorously compare the performance of their methods on a suite
of challenging domains, including: the game of Tetris; robot soccer keepaway, based on
the RoboCup simulator; a real-time strategy (RTS) game; and a helicopter control problem,
based on the work of Andrew Ng and collaborators. This year’s competition will utilize new
evaluation paradigms designed to encourage algorithms that generalize well to previously
unseen tasks. In particular, each domain will be parameterized and test parameters will differ
from those used for training. As a result, only learning algorithms that are robust across a
range of parameters can expect to perform well. The competition concludes with a work-
shop at which the winners will be announced. Top competitors will give short presentations
about their methods and several moderated discussions will be held on topics including the
challenges of empirical RL and the future of the competition.

W11: Sparse Optimization and Variable Selection

Irina Rish, IBM T. J. Watson Research Center, U.S.A.
Guillermo Cecchi, IBM T. J. Watson Research Center, U.S.A.
Rajarshi Das, IBM T. J. Watson Research Center, U.S.A.

Tony Jebara, University of Columbia, U.S.A.

Gerry Tesauro, IBM T. J. Watson Research Center, U.S.A.
Martin Wainwright, University of California, Berkeley, U.S.A.

Variable selection is an important issue in many applications of machine learning and statis-
tics where the main objective is discovering predictive patterns in data that would enhance
our understanding of underlying physical, biological and other natural processes, beyond just
building accurate *black-box’ predictors. Examples include biomarker selection in biological
applications, identifying brain areas related to various mental states’ based on brain imaging
data, identifying a small number of bottlenecks in a large-scale computer network that best
explain the network performance, and so on. Recent years have witnessed a flurry of research
on algorithms and theory for variable selection and estimation involving sparsity constraints.
Various types of convex relaxation, particularly L1-regularization, have proven very effec-
tive: examples include the LASSO, Elastic Net, L1-regularized GLMs, sparse classifiers such
as sparse (1-norm) SVM, as well as sparse dimensionality reduction methods (e.g. sparse
component analysis such as sparse PCA and sparse NMF). Applications of these methods
are wide-ranging, including computational biology, neuroscience, graphical model selection,
and the rapidly growing area of compressed sensing. Theoretical work has provided some
conditions when various relaxation methods are capable of recovering an underlying sparse
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signal, provided bounds on sample complexity, and investigated trade-offs between differ-
ent choices of design matrix properties that guarantee good performance. The goal of this
workshop is to bring together researchers working on the methodology, theory and appli-
cations of sparse models and selection methods to share their experiences and insights into
both the basic properties of the methods, and the properties of the application domains that
make particular methods more (or less) suitable. We hope to further explore connections
between variable selection and related areas such as dimensionality reduction, optimization
and compressed sensing.

Tutorials

T1: Painless Embeddings of Distributions: the Function Space View

Alex Smola, NICTA, Australia
Arthur Gretton, Max Planck Institute for Biological Cybernetics, Germany
Kenji Fukumizu, Institute of Statistical Mathematics, Japan

In the early days of kernel machines research, the “kernel trick” was considered a useful
way of constructing nonlinear algorithms from linear ones. More recently, however, it has
become clear that a potentially more far reaching use of kernels is as a linear way of dealing
with higher order statistics. For instance, in kernel independent component analysis, general
nonlinear dependencies show up as linear correlations once they are computed in a suitable
reproducing kernel Hilbert space. This tutorial provides an introduction to embeddings of
probability distributions into reproducing kernel Hilbert spaces, as a way of painlessly deal-
ing with high order statistics. We will cover both theoretical issues, such as conditions under
which different probability distributions have unique mappings; as well as practical applica-
tions ranging from tests of distribution properties (homogeneity, independence, conditional
independence) to density estimation to causal inference.

T2: Stochastic Optimal Control Theory

Bert Kappen, Radboud University, the Netherlands
Marc Toussaint, Technical University, Germany

Stochastic optimal control theory concerns the problem of how to act optimally when reward
is only obtained at a later time. The stochastic optimal control problem is central to model-
ing of intelligent behavior in animals or machines. Examples are the control of multi-joint
robot arms, navigation of vehicles, coordination of multi-agent systems, and decision mak-
ing in financial applications. Classical optimal control theory is based on principles like the
Hamilton-Jacobi-Bellman equation, the Pontryagin maximum principle, and special cases
like the LQ-case and the Ricatti equations. More familiar to the Machine Learner are Re-
inforcement Learning or (Partially Observable) Markov Decision Processes which can be
viewed as special cases of stochastic control theory. This tutorial aims to introduce to the
classical principles as well as the more modern frameworks and thereby to provide an in-
tegrative view on the different notions. Special emphasis is given on newer approaches of
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using inference techniques to solving stochastic optimal control problems. The tutorial is
introductory and aimed at the average’ machine learning researcher. No background in con-
trol theory and/or reinforcement learning is assumed. A basic understanding of Bayesian
networks and statistical inference is assumed.

T3: Dimensionality Reduction, the Probabilistic Way
Neil Lawrence, University of Manchester, United Kingdom

The main focus of this tutorial will be probabilistic interpretations of dimensional reduc-
tion. It is aimed to complement the tutorial given by Lawrence Saul at NIPS 2005 on
“Spectral Methods for Dimensional Reduction”. Its particular focus will be probabilistic
approaches to dimensional reduction based on generative models. These approaches have
become increasingly popular in graphics and vision through the Gaussian Process Latent
Variable Model. However, there also is a history to these methods which is perhaps less
widely known amoungst the newer generation of researchers. In particular the Generative
Topographic Mapping and Latent Density Networks. This tutorial will give grounding to
these methods through unifying them in the context of probabilistic latent variable models.
This will involve a introduction to these approaches through the mechanism of probabilistic
PCA, then a discussion of density networks leading into the generative topographic mapping.
Finally the dual interpretation of probabilistic PCA and its extension to the GP-LVM will be
given. Throughout the tutorial we will develop intuition about the methods with an ongoing
set of example data sets. A particular focus of these example data sets will be motion capture
data. Motion capture data is a nice example to use because it is easy for the human eye to tell
when samples from the model are realistic. One aspect of the tutorial will be the difference
between the probabilistic approaches and the more commonly applied spectral approaches.
In particular we will emphasise the distance preservation character of the probabilistic ap-
proaches: namely that local distances in the data are not necessarily preserved in the latent
space. This contrasts with spectral algorithms which typically aim to preserve such local
distances. These different characteristics mean that probabilistic approaches complement the
spectral approaches, but the bring their own range of associated problems, in particular local
minima in the optimisation space. Heuristics for avoiding these local minima will also be
discussed.

T4: Graphical Models and Variational Methods: Message-passing and Relaxations
Martin Wainwright, University of California, Berkeley, U.S.A.

Graphical models provide a flexible framework for capturing dependencies among large col-
lections of random variables, and are by now an essential component of the statistical ma-
chine learning toolbox. Any application of graphical models involves a core set of computa-
tional challenges, centered around the problems of marginalization, mode-finding, parameter
estimation, and structure estimation. Although efficiently solvable for graphs without cycles
(trees) and graphs of low treewidth more generally, exact solutions to these core problems
are computationally challenging for general graphical models with large numbers of nodes
and/or state space sizes. Consequently, many applications of graphical models require effi-
cient methods for computing approximate solutions to these core problems. The past decade
and a half has witnessed an explosion of activity on approximate algorithms for graphical
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models. This tutorial will show how a wide class of methods — including mean field theory,
sum-product or belief propagation algorithms, expectation-propagation, and max-product al-
gorithms — are all variational methods, meaning that they can be understood as algorithms for
solving particular optimization problems on graphs. The perspective also forges connections
to convex optimization, including linear programming and other type of conic relaxations.

TS: Playing Machines: Machine Learning Applications in Computer Games

Ralf Herbrich, Microsoft Research Cambridge, United Kingdom
Thore Graepel, Microsoft Research Cambridge, United Kingdom

The tutorial will give an introduction to the emerging area of applying machine learning to
computer games and of using computer games as test beds for machine learning. One of
the key problems in computer games is the creation of Al driven agents that interact with
the player so as to create a great interactive gaming experience. As a consequence a sub-
stantial part of the tutorial will consider adaptive and learning game Al based on supervised
and reinforcement learning. However, computer games also offer a great variety of other
challenges including problems in graphics, sound, networking, player rating and matchmak-
ing, interface design, narrative generation etc. Selected problems from some of these areas
will be discussed together with machine learning approaches to solve them. Since this is an
application area, the tutorial will focus on past and recent applications, open problems and
promising avenues for future research. It will also provide resources available to people who
would like to work in this fascinating and fun research space.

T6: Beyond Convexity: Submodularity in Machine Learning

Andreas Krause, Carnegie Mellon University, U.S.A.
Carlos Guestrin, Carnegie Mellon University, U.S.A.

Convex optimization has become a main workhorse for many machine learning algorithms
during the past ten years. When minimizing a convex loss function for, e.g., training a Sup-
port Vector Machine, we can rest assured to efficiently find an optimal solution, even for large
problems. In recent years, another fundamental problem structure, which has similar bene-
ficial properties, has emerged as very useful in a variety of machine learning applications:
Submodularity is an intuitive diminishing returns property, stating that adding an element to
a smaller set helps more than adding it to a larger set. Similarly to convexity, submodularity
allows one to efficiently find provably (near-)optimal solutions. In this tutorial, we will give
an introduction to the concept of submodularity, discuss algorithms for optimizing submodu-
lar functions and — as the main focus — illustrate their usefulness in solving difficult machine
learning problems, such as active learning and sparse experimental design, informative path
planning, structure learning, clustering, influence maximization and ranking.

T7: Tutorial on Theory and Applications of Online Learning

Shai Shalev-Shwartz, Toyota Technological Institute, U.S.A.
Yoram Singer, Google, U.S.A.

Online learning is a well established learning paradigm which has both theoretical and prac-
tical appeals. The goal of online learning is to make a sequence of accurate predictions
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given knowledge of the correct answer to previous prediction tasks and possibly additional
available information. The roots of online learning goes back to Hannan’s work in the 50s.
Online learning became of great interest to practitioners due the recent emergence of large
scale web applications. Notable examples of web-based applications are online advertise-
ment placement and online web ranking. The tutorial is targeted at people from all areas
of machine learning and covers the formal foundations along with algorithmic and practical
aspects of online learning. The goal is to provide a high-level, broad, and rigorous overview
of the formal framework. By the end of tutorial the attendees should have acquired enough
knowledge to be able to pin-point an online algorithm that best matches an application.

The tutorial starts with a simple example of predicting the next element of a binary sequence.
We then formally introduce the basic definitions of online learning and the notion of regret
analysis. Next we describe the problem of predicting with experts advice by analyzing a few
algorithms and contrasting them with an impossibility result. This basic setting is then re-
examined in the context of online learning of general linear predictors. We give a recent anal-
ysis which reveals an underlying primal-dual apparatus for the analysis of online algorithms.
We conclude the formal part of the tutorial with a description of extensions and generaliza-
tions of online learning tasks while underscoring connections to game theory, information
theory, and reinforcement learning. We recap the tutorial with two complete examples that
demonstrate the usage of online learning for portfolio selection and for text filtering.

T8: Visual Object Recognition and Retrieval
Rob Fergus, New York University, U.S.A.

The tutorial will address the problem of recognizing visual object classes in images, cur-
rently the focus of much interest in Computer Vision. As recent innovations in the area draw
heavily on machine learning concepts, the tutorial will attempt to highlight the growing in-
tersection between the two areas. The material will be divided five sections, covering (i) bag
of words models; (ii) parts and structure models; (iii) discriminative methods; (iv) combined
recognition and segmentation and (v) retrieval schemes for large datasets. The emphasis will
be on the important general concepts rather than in depth coverage of contemporary papers.
The tutorial is a revised version of the prize-winning short course given at ICCV 2005 and
CVPR 2007 in conjunction with Fei-Fei Li (Princeton) and Antonio Torralba (MIT).

T9: Sparse Linear Models: Bayesian Inference and Experimental Design
Matthias Seeger, Max Planck Institute for Biological Cybernetics, Germany

Sparse linear models are cornerstones of applied statistics, embodying fundamental ideas
such as feature selection, shrinkage, and automatic relevance determination. While much
progress has been made recently in understanding point estimation of sparse signals, Bayesian
inference is needed to drive higher-level tasks such as experimental design, where valid un-
certainties and covariances are more important than point estimates. In this tutorial, the ma-
jor determnistic inference approximations to date (expectation propagation, sparse Bayesian
learning, variational mean field Bayes) will be introduced for the sparse linear model, and
their mathematics (scale mixtures, convex duality, moment matching) will be clarified. Se-
quential Bayesian design, with the application to optimizing an image measurement archi-
tecture, serves as motivation for this effort.
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Abstract

Stationarity is often an unrealistic prior as-
sumption for Gaussian process regression.
One solution is to predefine an explicit non-
stationary covariance function, but such co-
variance functions can be difficult to spec-
ify and require detailed prior knowledge of
the nonstationarity. We propose the Gaus-
sian process product model (GPPM) which
models data as the pointwise product of two
latent Gaussian processes to nonparametri-
cally infer nonstationary variations of ampli-
tude. This approach differs from other non-
parametric approaches to covariance function
inference in that it operates on the outputs
rather than the inputs, resulting in a signifi-
cant reduction in computational cost and re-
quired data for inference. We present an ap-
proximate inference scheme using Expecta-
tion Propagation. This variational approx-
imation yields convenient GP hyperparame-
ter selection and compact approximate pre-
dictive distributions.

1. Introduction

The Gaussian process (Rasmussen & Williams, 2006)
is a useful and popular prior for nonlinear regression.
It can be used to construct a distribution over scalar
functions via a prior on smoothness. This prior is spec-
ified through a positive-definite kernel, which deter-
mines the covariance between two outputs as a func-
tion of their corresponding inputs. Often, this covari-
ance function is taken to be stationary, i.e., a function
only of the distance between the input points. Sta-
tionary covariance functions are appealing due to their
intuitive interpretation and their relative ease of con-
struction via Bochner’s Theorem (Gibbs, 1997).

Appearing in Proceedings of the 25" International Confer-
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Unfortunately, stationarity is often an unrealistic
assumption. We expect many problems of interest
to have nontrivial nonstationarity in the form of
input-dependent noise, length scale or amplitude.
While input-dependent noise and length-scale have
been well-studied in the literature, nonstationarity in
the form of varying amplitude has received relatively
little attention.

One approach to modeling such data is to directly
specify a covariance function with nonstationary prop-
erties (Gibbs, 1997; Higdon et al., 1999). In machine
learning, however, we find it undesirable to need to
specify the covariance nonstationarity a priori; rather
we wish to infer it. Moreover, as the objective with
Gaussian process regression is to perform nonparamet-
ric inference, we would prefer a representation of the
nonstationarity which is also nonparametric.

Several approaches have been proposed to solve the
problem of learning a length scale that varies across
the input space. Ome of the first techniques was
that of Sampson and Guttorp (1992), who model a
spline-based mapping to a latent input space in which
the data are stationary. This approach was given a
nonparametric Bayesian treatment by Schmidt and
O’Hagan (2003). Recently, Paciorek and Schervish
(2004) extended the work of Higdon et al. (1999) to
learn nonparametric variation of the covariance ker-
nel. Other approaches involve Gaussian process mix-
tures (Rasmussen, 2000), augmentation of the input
space (Pfingsten et al., 2006), and weighted sums of
locally-stationary processes (Nott & Dunsmuir, 2002).

A related problem is input-dependent observation
noise in the Gaussian process, addressed by Goldberg
et al. (1998), who model a log-noise term in the co-
variance function with another Gaussian process, and
by Le et al. (2005) who model nonstationary noise by
performing regression in the natural parameter space
of the exponential family. Snelson and Ghahramani
(2006) achieve nonstationary noise as a side effect of
the combination of input dimensionality reduction and
a sparse approximation using pseudo-data.
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In this paper, we propose the Gaussian process
product model (GPPM) to address smooth input-
dependent changes in amplitude. The GPPM models
the data as the pointwise product of two latent sta-
tionary Gaussian processes. This approach has the
notable computational advantage over remappings of
the input space in that high dimensional problems pose
no intrinsic scalability problems. Remapping the input
nonparametrically while maintaining the input dimen-
sion requires at least as many latent processes as input
dimensions. In contrast, the GPPM uses only a sin-
gle additional GP regardless of input dimension. We
develop a quadrature-based Expectation Propagation
(EP) algorithm for efficient approximate inference in
the GPPM model. The EP approach allows us to use
the estimated marginal likelihood of the model to learn
empirical settings of the Gaussian process hyperpa-
rameters. The approximate inference procedure we de-
scribe yields uncertainty in the nonstationarity, while
avoiding expensive MCMC methods that are typically
required. We additionally develop useful approxima-
tions for the predictive distribution arising from the
EP approximation, and discuss rapid learning of a
MAP estimate of the nonstationarity when observa-
tions can be considered noise free. This model is simi-
lar to that presented by Turner and Sahani (2008), who
modulate sounds with Gaussian processes, however the
GPPM is intended for the general regression problem
and our inference approach differs significantly.

2. Gaussian Process Regression

In Gaussian process regression, we find a distribution
over functions of the form f : & — R, X = R™.
For a comprehensive introduction see Rasmussen and
Williams (2006). The data consist of N input/output
pairs D = {x,,yn}V, ©, € X, y, € R. A vector of
output points has a Gaussian prior distribution with a
mean function p(x), which we take to be zero, and a
positive-definite covariance function C(x,2’;6). This
construction gives an analytic Gaussian predictive dis-
tribution for an unseen output y, ~ N (px, vy):

Mo = k};,C]_VlyN, v, = C(@y, ) — k-IJ;TCJ:flkNﬂ
where ky = [C(zs,x1;0),.. .,C’(a:*,:cN;G)]T, and
C'y is the covariance matrix formed from the observed
data. The log evidence, or log marginal likelihood af-
ter integrating out all possible functions is

1 1 N
Ez—§1n|CN\—§y]T\,C;,1yN—?ln27r. (1)

Stationary covariance functions only depend on a dis-
tance measure d between @ and ', for example the

Figure 1. A graphical model describing the GPPM. The
thick lines connecting the values of f and g represent undi-
rected connections associated with the Gaussian process.
The double-lined circles around the y values represent ob-
servables. Both f(z) and g(x) have the same input space.

Mahalanobis distance d(x,z’) = (z —x') "W (z —z')
with positive definite W. Covariance functions that
depend only on distance are appealing due to the intu-
ition that the outputs of the function should covary in
inverse proportion to how far the inputs are from each
other. The model proposed in this paper attempts to
retain this intuition while providing a mechanism for
the relationship between distance and covariance to
vary across the input space.

3. The Gaussian Process Product Model

In the Gaussian process product model (GPPM), the
observed outputs {y,}" are modeled by a pointwise
product of two latent functions, plus independent zero-
mean Gaussian noise with variance o?. One latent
function f : X — R, is modulated by the other func-

tion ¢ : X — R that has been exponentiated, so that
Yn ~ N(f(mn)eg(mn)’ 02)' (2)

We place independent zero-mean Gaussian process
priors on f(x) and g(x), with covariance functions
Cy(x,x';0¢) and Cy(z,x’;0,), respectively. Figure 1
shows a graphical interpretation of this model. Our
convention is that f(x) captures local near-stationary
variations in the observed function and g(x) captures
slowly-varying amplitude nonstationarity. The length-
scale hyperparameters of these covariance functions
(and their hyperpriors) should be chosen to reflect
prior beliefs about such variations. To give the fla-
vor of this model, Figure 2 shows several samples from
the GPPM.
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Figure 2. Three samples from the GPPM with different pa-
rameters. In the top plot, the length scales are [y = 0.5 and
lg = 4.0. In the middle plot, both are shorter: [y = 0.25
and [, = 2.0. In the bottom plot, Iy = 0.5 and [, = 2.0,
but f(x) also has additive noise.

Note that the pointwise product of a Gaussian process
prior with any known function a(x) results in a covari-
ance function given by C'(x,2’) = a(x)C(x,x')a(x’)
and that this function is guaranteed to be positive def-
inite. In the GPPM we use an exponentiated form
a(x) = exp{g(x)} in order to reduce the multimodal-
ity of the posterior on the latent functions, but this
is not critical for the validity of the covariance func-
tion. Without restricting the sign of one of the func-
tions, there would be at least 2V posterior modes, as
each observation could be explained by the same latent
function values with flipped signs.

4. Factor Inference in the GPPM

The basic GPPM inference task is to determine
the posterior distribution over the values of the la-
tent functions f(x) and g(x) at the input loca-
tions {x, }". These latent function values will be de-
noted f, = f(x,) and g, = g(x,) for brevity.
Additionally we will write the vectors of these la-
tent values in bold type: f = [f1, ..., fN]T and
g = lg, -, gN}T. With this notation and with C
and C, representing the GP-derived covariance matri-
ces on f(x) and g(x) respectively, the posterior distri-
bution of the latent functions is

p(f,91D,0) x N(f; 0,C;)N(g; 0,C,)

N
< [T Nns fae?, o). (3)

n=1

4.1. Approximate Inference

Approximate inference via variational methods is ap-
pealing due to its determinism and potential computa-
tional savings. In the GPPM, several properties affect
our choice of approximation. First, we expect that the
posterior will be approximately Gaussian, as we have
strong Gaussian process priors and a near-Gaussian
likelihood. Second, the likelihood factorizes to IV inde-
pendent terms, each involving one point from the two
latent functions. Third, these likelihood factors intro-
duce nontrivial dependencies between f and g so that
a factorized approximation is inappropriate. We ad-
dress these properties using Expectation Propagation.

4.1.1. EXPECTATION PROPAGATION

Expectation Propagation (Minka, 2001) makes succes-
sive local approximations of factors in a joint den-
sity, typically using exponential-family distributions,
to yield a global approximation that is optimal under
a divergence measure. EP is particularly well-suited
for approximation of Bayesian posterior distributions
with i.i.d. data as in Equation 3, as each factor only
involves a few of the unknown parameters.

Our construction of the EP approximation is similar
to that used by Rasmussen and Williams (2006) for
binary Gaussian process classification. The prior on
f and g is Gaussian with zero mean and a block co-
variance matrix arising from the independent Gaus-
sian process priors. For notational convenience, we
will write ¢ to be the concatenation of f and g so
that ¢ = [f1,...,fN,91,---,9n]7, and ¢,, to be the
nth pair [f, g.]". The prior can now be written

W) =NOZw).  Zee= |G L.

The aim of EP is to approximate the exact posterior
distribution of Equation 3 with a tractable alternative

N
Q(f,g|D70)O< N(072GP)H£n(fnugn)' (4)

n=1

Each of the exact likelihood terms

1 1 2
= — JE— In __
En(fnvgn) 0_\/2? €Xp { 202 (fne yn) }

is approximated with an unnormalized bivariate Gaus-
sian on f,, and g,:

N . 1 e _
tn(fnagn) = Zn eXp{_2(¢n _l’l’n)TEn (¢n _iu’n)} :
The product of these likelihood approximations is an

unnormalized Gaussian with a block-diagonal covari-
ance matrix.

A 1 ~—1 A
[T =exo{ -0~ a6~} [] 2

1
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The overall approximation is Gaussian as well, as it is
the product of these Gaussian likelihood approxima-
tions and the Gaussian process prior.

q(f,guze):/v(as:[ﬂ;u,z) (5)

_1 ~—1\ 1 1o
2:<EGP+2 ) p=33"q
The Expectation Propagation algorithm proceeds by
iteratively updating the parameters of the local ap-
proximations ¢,,, leaving all other approximate factors
fixed. In this iterative procedure the update of the nth
site can be understood as the minimization of the KL
divergence between two approximating distributions:
the product of the cavity distribution times the ezact
local likelihood, and the product of the cavity distri-
bution times the approzrimate local likelihood. The
insight of EP is that the cavity distribution “focuses”
the approximation on the most relevant area.

exact factor

. —_——N—
ﬂnv 3, = arggln KL N(I"'/na z3/n) X En(fnvgn) ||
“/7 ’

N(H/m z:/n) X b (fry gnlpt’, 27)
—_——
approximation

The cavity distribution for site n is the product of the
prior and all approximate sites excluding the nth. This
is Gaussian with parameters

Spw= (-5 (6)
=S (500, — 2 R,) . (D)

As shown by Minka (2001), the minimum of an in-
clusive KL divergence is achieved when the moments
are equal. Thus to find the best-fitting Gaussian, it is
sufficient to find the first and second moments of the
product of the cavity distribution and the exact likeli-
hood. We also find the “zeroth moment,” which is the
normalization constant Zn. Calculation of these mo-
ments is done numerically via Gaussian quadrature,
addressed in Section 4.1.2.

Once the moments of the product have been found,
we use them to recover the optimal parameters of the
local approximation:

= (8w

~ a1 _

M

. 1 - 1 1 _+=-1_
I Z, =l Z, — 5 [8| + 5 [S)] + 5;&2" i,

LR - I ore-1.
+ iu/nz/np'/n - Eu’nzn oy, -

Taken together these equations define a fixed-point
iteration scheme for approximating the posterior in
Equation 3. We initialize the approximations so that
the initial estimate of the mean of f is y and the mean
of g is zero. We then iterate over each of the IV lo-
cal approximations, and update the overall posterior
approximation using Equation 5. To facilitate conver-
gence of EP it is helpful to use damping to update
local sites, which we implement in natural parameter
space. Convergence of EP is not guaranteed, but given
sufficient damping it is found to convergence for the
problems we considered so far. Local approximations
may not necessarily be positive definite, but as long as
the overall approximation remains a valid Gaussian,
this does not present a problem. Following from the
treatment by Minka (2001) of negative variances, we
skip the update of local approximations that would
result in invalid global covariance matrices. This has
not appeared to affect the accuracy of the global ap-
proximation in practice. Figure 3(b) shows the result
of applying the EP procedure to a synthetic data set.
Marginal error bars are shown for each function and
site location.

4.1.2. GAUSSIAN QUADRATURE FOR EP

Unfortunately, the moments that minimize the KL
divergence of Section 4.1.1 are not available analyti-
cally. To resolve this, we use the approach proposed
by Zoeter and Heskes (2005) of approximating the
moment integrals using Gaussian quadrature. When
a definite integral is the product of a nonnegative
“weighting function” w(v) and another function z(v),
it can be approximated by a sum of weighted evalua-
tions of z(v)

a K
/ dv w(v)z(v) =~ Zwkz(vk)
b k=1

where the weights {wy} and abscissae {vy} are deter-
mined by the integration interval, the weighting func-
tion w(v), and the number of evaluation points K.
This sum is exact where z(v) is a polynomial of degree
2K —1. In the case of interest here, the weighting func-
tion is the Gaussian cavity distribution, which implies
Gauss-Hermite quadrature.

One difficulty is that Gaussian quadrature is gener-
ally oriented towards univariate definite integrals and
we must solve a two-dimensional integral. When the
weighting function is factorizable, this is done straight-
forwardly by defining a lattice of abscissae and using
the Cartesian product of the weights. In the GPPM,
however, the cavity distribution has nonzero mean and
is not generally factorizable, so we must transform
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the integrand prior to to performing Gauss-Hermite
quadrature. The factorizable form can be recovered by
transforming the abscissae with the inverse Cholesky
decomposition of the cavity covariance matrix and
the cavity mean. The Gaussian parameters resulting
from these moment calculations are denoted Z S TH
and 3, in Section 4.1.1.

4.2. Noise-free MAP Learning

In some applications of the GPPM, it may be that the
observations can be considered noise-free. For exam-
ple, one may model the noise as coming exclusively
from the locally-varying function f(x). The appeal
of this restricted model is that proposals of the non-
stationarity can now be evaluated as O(N?) rather
than O(N?3). This is particularly valuable for finding
rapid maximum a posteriori (MAP) estimates of the
latent modulating function g(z). The computational
advantage in the noise-free case comes from the deter-
ministic coupling of the latent functions, given y; we
can now consider the posterior of g alone:

p(g|8y,0,) xp(D]g,0r)p(g|8y). (8)

In this form, conditioning on g corresponds to a simple
linear transformation of the GP prior on f. Using the

notational shortcut G = diag([e9t,e92,...,e9V]), the
log likelihood is
1
np(D|g,0r) = -5 mn|GC;G|
1 N
— §yT[ngg]_1y iy In 27,

The log posterior over g, eliminating irrelevant terms
and using 1 to indicate a column vector of ones, is

lllp(g|D70fa09) = 79 [ngg]
1
— igTCg_lg + const

and the gradient in terms of g is

0 .
% h'lp(g | D,Of, 05]) =-1+ Y[gcfg]ily - Cg lg
where Y = diag(y). As the difficult O(N3) opera-

tions of decomposition or inversion of C'y and C, can
be done in advance, the computational complexity of
taking a step in g space is O(N?). In practice, we
have found the MAP estimate to be best when f(x)
has additive noise and g(z) is smooth.

5. Making Predictions

As with the standard regression model, the primary
task of interest is prediction at locations where data

1
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Figure 3. Figure 3(a) shows synthetic data generated from
the GPPM with known settings and o = 0.05. We applied
the Expectation Propagation algorithm to the data and
the Gaussian marginal posterior distributions over f and
g are shown in Figure 3(b), along with the true f(z) and
g(x) indicated as circles. Figure 3(c) shows the result of
applying the MAP approximation to the data, despite the
known observation noise. The true values are shown for
comparison.

have not been observed. For the GPPM we must make
predictions for both latent functions, and find the re-
sulting distribution, integrating out the posterior dis-
tribution over the latent functions, as in

p(y” |z, D,6y,0,)

/f p(y*|m*7fag)p(fvg|pa0f709)
g



Gaussian Process

Product Models

The EP scheme of Section 4.1 finds an approximate
Gaussian distribution over f and g, and this results in
a convenient joint Gaussian distribution on f* and g*,
the values of the latent functions at «*, with parame-

ters
1

N\ —1
p=KT (EGP n 2) D > KT<EGP n z:) K,

where

[ C(x*,x1;07) 0 i
C(x*, x2;07) 0
K = me*ﬁEN;ef) 0
0 C(x*,x1;0,)
L O(m*a IN; 09)_
_|C(x*,x*;05) 0
o 0 Cla*,z*:0,)

We expect that the resulting predictive distribution on
y* will be heavy-tailed and have similar properties to
the noncentral Student’s ¢ distribution. To approxi-
mate the true distribution’s heavy tails analytically,
one approach is to generate several samples from g¢g*
and use the conditional distribution on f* to create a
mixture of Gaussians:

p(y" |a”, D, 0y, 8, ZNy Mf\gelvflgeg)
We have used p% - and v} - to indicate the con-
ditional Gaussian parameters on f* given the ith
marginal sample from g*.

If the heavy-tailed properties are not significant for
the application, and a single Gaussian distribution is
preferred, then a more tractable alternative is to lin-
earize the model around the mean p*. This is a sim-
ilar approach to the Extended Kalman Filter (EKF)
(Haykin, 2001), which uses the first terms of the Tay-
lor series of a nonlinear function to maintain Gaussian
uncertainty in latent state estimation. The resulting
approximation is

et [ =n
eg el—tq + |: :| |: f:|
Fet it ety gt — uy

which transforms the Gaussian on f* and ¢g* into one
on y* with parameters

T

* e”; e“;
* * * * 2
SR v [u}e”g] L?e“g] e
6. Hyperparameter Learning

When performing Gaussian process regression, we are
commonly interested in appropriate settings of the

hyperparameters controlling the covariance function.
These hyperparameters generally determine the length
scale of correlations, the output variation (or ampli-
tude) of the function, and the noise level. In the
GPPM, we wish to find appropriate hyperparame-
ter settings for both latent functions, given the data.
While the vanilla Gaussian process offers the marginal
likelihood analytically, it is not available directly in the
GPPM. Fortunately, the EP algorithm of Section 4.1
provides a convenient estimate of the marginal likeli-
hood, using the zeroth moments mentioned previously.

1 1=
ln|2| — fln|EGP| S D>

In Zgp = i
N
+ uTE w+ Z

In principle it is also possible to evaluate the gradients
of In Zgp with respect to hyperparameters following
for instance (Seeger, 2005). In practice however, the
quadrature-based moment calculation is numerically
not stable enough to provide precise gradients. We
hence reverted to gradient-free optimization methods
to determine hyper parameter settings. We suggest
setting hyperpriors to reflect the intuition described
in Section 3 of f(x) capturing local near-stationary
variations and g(z) capturing slowly varying nonsta-
tionarity on a larger lengthscale.

7. Results

We evaluated the GPPM model on three data sets.
First, we examined the motorcycle data set (Parker &
Rice, 1985), a well-studied example of a nonstationary
regression task. The data are acceleration force in g’s
on a helmet during impact, as a function of time in mil-
liseconds. Figure 4(a) in the upper plot shows the EP
approximation found for the latent g(z) function, and
in the lower plot shows the Gaussian approximation
to the predictive distribution, overlaid with the true
data. The GPPM finds a good fit in most regions ex-
cept where the g(z) function becomes quite small. In
these regions the uncertainty in the modulating func-
tion creates unrealistically large prediction error bars.
We evaluated the accuracy of predictions using a fill-in
test, where a fraction of the data are removed from the
training set and compared to the model’s predictions.
Figure 4(d) depicts the mean log probability and the
mean squared error for missing data as a function of
the fraction of missing data. The GPPM outperforms
both a vanilla GP and the sparse pseudo-input pro-
cess (SPGP) (Snelson & Ghahramani, 2006) using ei-
ther of the performance measures. We chose the SPGP
for comparison to the GPPM, as it is one of the few
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Figure 4. Top panel: Predictive distribution of GPPM for three different data sets.
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approximation to the posterior of the log-modulating function g(z) with 2o error bars. The lower plot shows the raw data,
along with the 20 approximate predictive distribution. Lower panel: Fill-in test for corresponding data sets comparing
three models. The upper plot shows the mean log probability of the missing data as a function of the fill-in rate. The
lower plot shows the root mean squared error for these data. Both plots show mean values and 20 error bars, calculated

from four training/test splits.

methods capable of representing nonstationarity with-
out requiring MCMC. Hyperparameters for the SPGP
and the vanilla GP were set via ML-II optimization
(Rasmussen & Williams, 2006). To set hyperparame-
ters in the GPPM, a grid search was used, centered on
the settings for the vanilla GP.

We also examined the performance of the GPPM for
daily log returns of the S&P 500 stock index during
2007. We expect that these data will be well-modeled
by a latent f(z) comprised primarily of noise. The log
modulating function g(z) can be interpreted roughly
as the log “volatility” of the stochastic process and
is shown in the upper plot of Figure 4(b). The cor-
responding expected envelope is shown against the
true data in the lower plot. Performance measures
against the standard Gaussian process and the SPGP
are shown in Figure 4(e). In this example mean predic-
tions are equally good for three all models, but GPPM
yields nonstationary uncertainty which results in an
improved mean log probability.

As a last application we applied the GPPM to 23
hours of heart rate data, sampled at 5 minute intervals.
Based on the physiological properties of heart rates,

we expect correlations on a short time scale to be cap-
tured by f(z). These local correlations will be mod-
ulated by an activity profile over a daily time scale.
Figure 4(c) illustrates that these amplitude modula-
tions are picked up by the latent g(x) leading to im-
proved predictive performance compared to the vanilla
GP and SPGP, as shown in Figure 4(f).

8. Discussion

We have introduced the Gaussian process product
model for modeling nonstationary amplitude in re-
gression. We have presented an approximate infer-
ence algorithm using Expectation Propagation to infer
the latent functions in this model and have exploited
this approximation to make tractable predictions and
enable hyperparameter learning. When examined on
real-world data, the GPPM has yielded promising re-
sults, outperforming the vanilla Gaussian process. It
has also outperformed an alternative approach to non-
stationary regression in the SPGP, although it should
be noted that the SPGP’s focus is purely on efficient
regression and not on modeling nonstationarity per se.
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Computationally, the model we have presented, com-
bined with the EP implementation has two appealing
properties. First, as we expect the number of EP itera-
tions to be independent of the number of data (Minka,
2001), and each local calculation is a O(N?) rank-one
update of the inverse, the overall algorithm is O(N3).
The GPPM is therefore only a constant multiple more
expensive than performing standard Gaussian process
regression. Second, in contrast to methods of model-
ing nonstationarity on the input side, the GPPM does
not introduce additional latent spaces if the input di-
mensionality increases. The additional computational
complexity of using the GPPM is essentially indepen-
dent of input dimension.

In future work, a more comprehensive examination of
inference of hyperparameters is warranted. We also
expect that the basic idea of this model can be used to
perform vector regression with correlation that varies
across the input space.
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Abstract

The problem of identifying the minimal gene
set required to sustain life is of crucial im-
portance in understanding cellular mecha-
nisms and designing therapeutic drugs. This
work describes several kernel-based solutions
for predicting essential genes that outper-
form existing models while using less train-
ing data. Our first solution is based on a
semi-manually designed kernel derived from
the Pfam database, which includes several
Pfam domains. We then present novel and
general domain-based sequence kernels that
capture sequence similarity with respect to
several domains made of large sets of protein
sequences. We show how to deal with the
large size of the problem — several thousands
of domains with individual domains some-
times containing thousands of sequences — by
representing and efficiently computing these
kernels using automata. We report results
of extensive experiments demonstrating that
they compare favorably with the Pfam ker-
nel in predicting protein essentiality, while
requiring no manual tuning.

1. Motivation

Identifying the minimal gene set required to sustain
life is of crucial importance for understanding the fun-
damental requirements for cellular life and for select-
ing therapeutic drug targets. Gene knockout stud-
ies and RNA interference are experimental techniques

Appearing in Proceedings of the 25" International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

for identifying an organism’s “essential” genes, or the
set of genes whose removal is lethal to the organism.
However, these techniques are expensive and time-
consuming. Recent work has attempted to extract
from experimental knockout studies relevant features
of essentiality, which aid in identifying essential genes
in organisms lacking experimental results.

Several features have been proposed as indicators
for essentiality, including evolutionary conservation,
protein size, and number of paralogs (Chen & Xu,
2005). Using these basic features, Chen and Xu (2005)
constructed a model of essentiality for S. cerevisiae
(baker’s yeast). Using Naive Bayes Classifiers (NBC),
Gustafson et al. (2006) subsequently created a model
of essentiality for S. cerevisiae and FE. coli using an ex-
tended set of features generated from sequence data.

This work presents kernel methods to improve upon
existing models. We first use several sequence ker-
nels recently introduced by the computational biology
community and show that the Pfam kernel (Ben-Hur
& Noble, 2005) is most effective in selecting essential
genes for S. cerevisiae. The Pfam kernel has recently
been applied successfully in several biologically moti-
vated learning tasks, and is generated from the Pfam
database, the leading resource for storing protein fam-
ily classification and protein domain data. However,
the Pfam database is an ad-hoc solution relying on
semi-manually tuned information.

In the second part of this work, we design general se-
quence kernels that produce effective similarity mea-
sures while bypassing the manual tuning of the Pfam
database. We present two sequence kernels that are in-
stances of rational kernels, a class of sequence kernels
defined by weighted automata that are effective for an-
alyzing variable-length sequences (Cortes et al., 2004).
Using automata to represent and compute these ker-
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nels is crucial in order to handle the large number of
Pfam domains and the size of each of domain — we work
with 6190 domains with the largest domain contain-
ing over 3000 protein sequences. These novel kernels
are designed from the same domain-specific data used
by the Pfam library, and we show how they compare
favorably to the Pfam kernel at predicting protein es-
sentiality. They are general domain-based kernels that
can be used in many problems in bioinformatics or
other applications where similarity needs to be defined
in terms of proximity to several large sets of sequences.

The remainder of the paper is organized as follows.
Section 2 describes the various sequence kernels and
outlines the model used to improve prediction accu-
racy of protein essentiality in S. cerevisiae. Section 3
describes and analyzes the novel rational kernels we
present as alternatives to the Pfam kernel. Section 4
presents the results of extensive experiments compar-
ing these domain-based kernels to the Pfam kernel.

2. Pfam-Based Solution

Our first model uses Support Vector Machines (SVMs)
(Cortes & Vapnik, 1995) to predict protein essential-
ity with choices of kernels including the RBF kernel as
well as three sequence kernels. In the following sub-
sections, we define the sequence kernels, outline the
experimental design, and present our first results.

2.1. Sequence Kernels
Pram KERNEL

The Pfam database is a collection of multiple sequence
alignments and Hidden Markov Models (HMMs) rep-
resenting many common protein domains and fami-
lies. Pfam version 10.0 contains 6190 domains, and
for each domain an HMM is constructed from a set of
proteins experimentally determined to be part of the
domain (‘seed’ proteins). Each HMM is trained using
a manually-tuned multiple alignment of the seed pro-
teins with gaps inserted to normalize sequence length.
Once constructed, the HMM is evaluated in an ad-hoc
fashion and the entire process is repeated if the align-
ment is deemed ‘unsatisfactory.” See (Sonnhammer
et al., 1997) for further details.

When applied to a test sequence, a Pfam domain
HMM generates an E-value statistic that measures the
likelihood of the test sequence containing the domain.
Given a dataset of protein sequences, the Pfam se-
quence kernel matrix is constructed by representing
each protein in the dataset as a vector of 6190 log
E-values and computing explicit dot products from
these feature vectors (Ben-Hur & Noble, 2005). The
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Figure 1. SVM’s performance for RBF and Sequence Ker-
nels using a reduced training set. Note that accuracy for
NBC corresponds to a model trained on 50% of training
data.

Pfam kernel has recently been applied successfully in
learning tasks ranging from protein function (Lanck-
riet et al., 2004) to protein-protein interaction (Ben-
Hur & Noble, 2005).

SPECTRUM AND MOTIF KERNELS

The Spectrum and Motif kernels are two recently pro-
posed sequence kernels used in learning tasks to esti-
mate protein similarity (Leslie & Kuang, 2004; Ben-
Hur & Brutlag, 2003). Both kernels model a protein
in a feature space of subsequences, with each feature
measuring the extent to which the protein contains
a specific subsequence. The Spectrum kernel models
proteins in a feature space of all possible n-grams, rep-
resenting each protein as a vector of n-gram counts (in
our studies we set n = 3). Alternatively, the Motif ker-
nel uses a feature space consisting of a set of discrete
sequence motifs (we use a set of motifs extracted from
the eMotif database (Ben-Hur & Noble, 2005)). For
both kernels, the resulting kernel matrices are com-
puted as an explicit dot product using these features.

2.2. Data

We used the dataset of S. cerevisiae proteins from
Gustafson et al. (2006), consisting of 4728 yeast pro-
teins of which 20.4% were essential. We constructed
the RBF kernel matrix from a set of 16 features gen-
erated directly from protein sequences, corresponding
to the ‘easily attainable’ features from Gustafson et al.
(2006). We used data from Ben-Hur and Noble (2005)
to construct the Pfam, Spectrum and Motif kernel ma-
trices, each of which was constructed following the
steps outlined in Section 2.1 and subsequently centered
and normalized. In addition to the RBF and the three
sequence kernels, we also used a combined Pfam/RBF

10
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kernel, which we computed by additively combining
the RBF kernel matrix with the normalized Pfam ker-
nel matrix (RBF kernels are by definition normalized).

2.3. Experimental Design

We ran experiments with 100 trials. For each trial,
we randomly chose 8.3% of the data as a training set
and used the remaining points as a test set, subject
to the constraint that an equal number of essential
proteins were in each set.! We used the training set to
train an SVM, and used the resulting model to make
predictions on the test set in the form of probabilities
of essentiality. We used libsvin’s functionality (Chang
& Lin, 2001) to estimate the outputs of an SVM as
probabilities by fitting its results to a sigmoid function
(Platt, 2000). To calculate the predicted probability of
essentiality for each protein, we took the average over
the predictions from each trial in which the protein
appeared in the test set.

We measured the accuracy of the model for the pro-
teins with the highest predicted probability of essen-
tiality, using positive predictive value (PPV) as a per-
formance indicator. Grid search was used to determine
the optimal values for parameters C and gamma. Stan-
dard deviations were calculated from 10 ‘super-trials,’
each corresponded to a 100-trial experiment described
above. The Naive Bayes classifier (NBC) results were
taken from Gustafson et al. (2006) and standard devi-
ations were not reported.

2.4. First Results

Figure 1 shows SVM’s performance using the set of
kernels outlined above. The results show that the
Pfam kernel is the most effective of the three sequence
kernels at predicting essentiality. They also clearly
show that the combined Pfam/RBF kernel outper-
forms all other models. The importance of the phyletic
retention feature is a possible reason for the superior
performance of the combined kernel compared with
Pfam alone. As shown by Gustafson et al. (2006) and
verified in our work, phyletic retention (a measure of
gene conservation across species) is a powerful predic-
tor of essentiality. This feature is used by RBF but
not by Pfam (or by the domain-based kernels defined
in Section 3) because it requires comparing sequences
across organisms.

These results improve upon the leading model for pre-
diction of protein essentiality while reducing the size
of the training set more than five fold. Further, this is

!Gustafson et al. (2006) used 50% of the data for train-
ing, but otherwise, our experimental designs are identical.

Figure 2. (a) Example of weighted transducer T'. (b) Ex-
ample of weighted automaton A. A can be obtained from
T by projection on the output and T'(aab, bba) = A(bba) =
I1X2Xx6x8+2x4x5x8.

the first result showing the effectiveness of the Pfam
kernel for this task, a fact that motivates the following
sections of this paper, in which we seek a more general
alternative to the Pfam kernel.

3. Domain-Based Sequence Kernels

In the previous section, we tested various sequence ker-
nels, all introduced precisely to compute the similarity
between protein sequences. Our results showed that
the Pfam kernel was the most effective of these ker-
nels, and we now aim to find a more general solution
free of the manual tuning associated with the Pfam
database.

Specifically, we wish to determine a method to extract
similarities between protein sequences based on their
similarities to several domains, each represented by a
set of sequences, i.e., Pfam domains. Although sev-
eral sequence kernels have been recently introduced
in the machine learning community, e.g., mismatch,
gappy, substitution and homology kernels (Leslie &
Kuang, 2004; Eskin & Snir, 2005), none of these ker-
nels provides a solution to our domain-based learning
problem. Indeed, these kernels are not designed to ef-
ficiently compute the similarity between a string and a
large set of strings, which in our case consists of 6190
Pfam domains each containing tens to thousands of
sequences.

Alternatively, large sets of strings, such as the Pfam
domains, can be efficiently represented by minimal de-
terministic automata. Hence, an efficient way to de-
fine a similarity measure between such sets is to use
automata-based kernels. This leads us to consider
the framework for automata-based kernels proposed
by Cortes et al. (2004). An additional benefit of this
framework is that most commonly used string kernels
are special instances of this scheme.

11
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3.1. Representation and Algorithms

We will follow the definitions and terminology given
by Cortes et al. (2004). The representation and com-
putation of the Domain-based kernels are based on
finite-state transducers, which are finite automata in
which each transition is augmented with an output la-
bel in addition to the familiar input label (Salomaa
& Soittola, 1978). Input (output) labels are concate-
nated along a path to form an input (output) sequence.
Weighted transducers are finite-state transducers in
which each transition carries some weight in addition
to the input and output labels. The weights of the
transducers considered in this paper are real values.

Figure 2(a) shows an example of a weighted finite-state
transducer. In this figure, the input and output labels
of a transition are separated by a colon delimiter, and
the weight is indicated after the slash separator. A
weighted transducer has a set of initial states repre-
sented in the figure by a bold circle, and a set of final
states, represented by double circles. A path from an
initial state to a final state is an accepting path.

The weight of an accepting path is obtained by first
multiplying the weights of its constituent transitions
and multiplying this product by the weight of the ini-
tial state of the path (which equals one in our work)
and the weight of the final state of the path (dis-
played after the slash in the figure). The weight asso-
ciated by a weighted transducer T to a pair of strings
(z,y) € £* x £* is denoted by T'(z,y) and is obtained
by summing the weights of all accepting paths with in-
put label z and output label y. For example, the trans-
ducer of Figure 2(a) associates the weight 416 to the
pair (aab, bba) since there are two accepting paths la-
beled with input aab and output bba: one with weight
96 and another one with weight 320.

The standard operations of sum 4, product or con-
catenation -, and Kleene-closure * can be defined for
weighted transducers (Salomaa & Soittola, 1978). For
any pair of strings (z,y),

(Ty + T2)(z,y) = Th(z,y) + To(,y)
(Ty - T2) (w,y) = Z Ti(z1,91) - To(x2,y2). (1)

X1T2=T
Yiy2=y

For any transducer T, T~' denotes its inverse, that is
the transducer obtained from T by swapping the input
and output labels of each transition. For all z,y € ¥*,
we have T~ 1(x,y) = T(y, ).

The composition of two weighted transducers 77 and
T5 with matching input and output alphabets 3, is a

weighted transducer denoted by T3 oTh when the sum:

(TioTo)(x,y) = Y Tilr,2)-Ta(zy)  (2)
1S

is well-defined and in R for all z,y (Salomaa & Soit-
tola, 1978).

Weighted automata can be defined as weighted trans-
ducers A with identical input and output labels, for
any transition. Since only pairs of the form (x,x) can
have a non-zero weight associated to them by A, we
denote the weight associated by A to (z,z) by A(z)
and call it the weight associated by A to x. Similarly,
in the graph representation of weighted automata, the
output (or input) label is omitted. Figure 2(b) shows
an example of a weighted automaton. When A and B
are weighted automata, Ao B is called the intersection
of A and B. Omitting the input labels of a weighted
transducer T results in a weighted automaton which
is said to be the output projection of T

3.2. Automata-Based Kernels

A string kernel K : ¥* x ¥* — R is rational if it co-
incides with the function defined by a weighted trans-
ducer U, that is for all z,y € ¥*, K(z,y) = U(x,y).
Not all rational kernels are positive definite and sym-
metric (PDS), or equivalently verify the Mercer condi-
tion, which is crucial for the convergence of training for
discriminant classification algorithms such as SVMs.
But, for any weighted transducer T, U = T o T~ is
guaranteed to define a PDS kernel (Cortes et al., 2004).

Furthermore, most rational kernels used in computa-
tional biology and natural language processing are of
this form (Haussler, 1999; Leslie & Kuang, 2004; Lodhi
et al., 2002; Zien et al., 2000; Collins & Duffy, 2001;
Cortes & Mohri, 2005). For instance, the n-gram ker-
nel is a rational kernel. The n-gram kernel K, is de-

fined as
Ko@y) = 3 cul2)ey(2), 3)

|z|=n

where ¢;(z) is the number of occurrences of z in z.
K, is a PDS rational kernel since it corresponds to the
weighted transducer 15,07, I where the transducer 7,
is defined such that T, (z, z) = ¢, (2) for all z,z € E*
with |z| = n. The transducer Ty for ¥ = {a,b} is
shown in Figure 3.

We will now extend this formalism to measure the sim-
ilarity between domains, or sets of strings represented
by an automaton. Let us define the count of a string
z in a weighted automaton A as:

calz) = Y cul(z)A(u). (4)

uex*
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Figure 3. Counting transducer 1> for ¥ = {a, b}.

The similarity between two sets of strings represented
by the weighted automata A and B according to n-
gram kernel K,, can then be defined by:

Kn(A,B)= Y (AoT,oT," oB)(x,y)

T,yeX*

= Z ca(z)ep(2).

|z|=n

(5)

Other rational kernels can be extended into a similar-
ity measure between sets of strings in the same way.
We will now define two families of kernels that can be
used in a variety of applications where similarity with
respect to domains is needed.

3.3. Independent Domain Kernel

The Independent Domain kernel (IDK) measures the
similarity between two sequences in our dataset D
by comparing their similarities to each domain, e.g.,
Pfam domains.? For the i-th Pfam domain (with
1 < i< P =6190), let P; be the set of all seed pro-
tein sequences for that domain. Each sequence in P;
is represented as a string in an alphabet, X, consist-
ing of |X| = 21 characters, 20 for different amino acids
plus an optional gap character used to represent gaps
in the seed alignment. We denote by D; the mini-
mal deterministic automaton representing the set of
strings P;. For a given sequence z in our dataset,
we can use the m-gram kernel K, to compute the
similarity between z and the i-th Pfam domain P;:
K, (z, D;). This leads to an overall similarity measure
vector s(x) € RY between x and the set of domains:
s(z) = (Kn(x,D1),...,Ky(x,Dp)). We now define
the IDK K7 as, for all x, y in ¥*:

P
KI(:C7 y) = Z K’!L(x7 Di)Kn(y7 Dz)

(6)

1:)1
D (D eal@)en ()Y ey(2)ep, (2)).
i=1 |

z|=n |z|=n

K7 is PDS since it is constructed via an explicit dot-
product. Any PDS kernel K with positive eigenvalues

2Both the IDK and spectrum kernels represent se-
quences as vectors of n-gram counts but only the IDK ac-
counts for the n-gram spectrums of the domains of interest.

can be normalized to take values between 0 and 1 by
defining K’ as

K(z,y) '
VK (z,2)K(y,y)

We apply this normalization to K to account for the
varying lengths of proteins in our dataset, since longer
proteins will contain more n-grams and will thus tend
to have more n-gram similarity with every domain.

K'(x,y) = (7)

The kernel K7 can be efficiently computed by comput-
ing Kp,(z,D;) for all 1 <4 < P as follows:

1. Compute D; for each P; by representing each se-
quence in P; by an automaton and determinizing
and minimizing the union of these automata.

2. Forall1 < i < P compute T,,0D;, and for each se-
quence z in the dataset compute T3, 0 X, where X
is the automaton representing . Optimize the re-
sults by projecting onto outputs, applying epsilon-
removal, determinizing and minimizing to obtain
weighted automata A; and Y.

3. Compute K, (z, D;) by intersecting A; and Y, and
using a generic single-source shortest-distance al-
gorithm (Cortes et al., 2004) to compute the sum
of all the paths in the resulting automaton.

The complexity of computing K, (z, D;) for a fixed set
of domains grows linearly in the length of z, hence
the complexity of computing K(x,y) grows linearly
in the sum of the length of z and y, i.e. in O(|z|+ |y|).
Thus, this kernel is efficient to compute. However, it
does not capture the similarity of two sequences in as
fine a way as the next kernel we present.

3.4. Joint Domain Kernel

Let us consider two sequences x and y and a given
domain P;. Let X be the set of n-grams in common
between x and P;, and ) the set of n-grams in common
between y and P;. When computing the similarity
between x and y according to P;, the IDK K takes
into account all n-grams in common between z and P;
and between y and P;, i.e., all the n-grams in X U ),
regardless of whether these n-grams appear in both x
and y. Thus, K1 may indicate that x and y are similar
according to P; even if X and Y differ significantly, or
in other words, even if x and y are similar to P; for
different reasons. In contrast, the Joint Domain kernel
(JDK) only takes into consideration the n-grams in
common to z, y and P;, that is the n-grams in X N Y,
when determining the similarity between z and y. It
will thus declare x and y similar according to P; iff
and y are similar to P; for the same reason.

13
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Figure 4. Counting transducer T2 with ¥ = {a, b}, ‘7’ rep-
resenting the gap symbol and an expansion penalty weight
of 0.5.

For each domain P;, the JDK defines a kernel K; that
measures the similarity between two sequences x and
y according to P;, using as a similarity measure the
count of the n-grams in common among x, y and P;.
More precisely, we define K; : ¥* x ¥* — R as follows:

Y cal(2)eh, (2)ey (). (®)

|z|=n

Ki(z,y) =

Each K; is normalized as shown in Equation 7. We
then combine these P kernels to obtain the kernel K :
¥* x 3* — R defined as follows:

Ky(z,y) = K( y)

E CD»L

We will now show that each K; and thus K ; is a PDS
rational kernel. Let A; be the weighted automata ob-
tained by composing D; with 7T, and projecting the
result onto its output: A; = ma(D; o T},). From the
definition of T, it follows that A;(z) = ¢p,(z) and
¢ (2) = Ty(x,2) for all |z] = n. Thus, for all (z,y),
K;(z,y) can be rewritten as:

9)

HM ”M“

z)cy(2).

Ai(2)Ai(2)Ta(y, 2)
|z|=n (10)

:(Tn o Az o Al o (Tn)il)(x’ y)

Observe that (T, 0A4;)™' = A7 PoT,7 ! = A;0T, ! since
for an automaton the inverse A;l coincides with Aj;.

Thus, K;(x,y) = ((Tn o Ai) o (T, 0 A;)~")(x,y), which
is of the form 7o T~! and thus K; is PDS. Since PDS
kernels are closed under sum, K; is also PDS.

The computation of the kernel K ; is more costly than
that of Ky since a full D x D kernel matrix needs to
be computed for each Pfam domain. This leads to
D? x P rational kernel computations to compute K ;,
compared to only D x P rational kernel computations
for K. This is significant when P = 6190. Thus, it
is important to determine an efficient way to compute
the kernels K;. The following is an efficient method
for computing K ; that we adopt in our experiments,

in which the complexity of computing K ;(z,y) for a
fixed set of domains linearly depends on the product
of the length of 2 and y, i.e. in O(|z||y]|):

1. Compute each A; and optimize using epsilon-
removal, determinization and minimization.

2. For each sequence x in the dataset, compute
Y., = ma(T,, 0 X) where X is the automaton repre-
senting = and optimize Y, using epsilon-removal,
determinization and minimization.

3. K;(z,y) is obtained by computing A; o Y, and
A; oY, computing the intersection of the result-
ing automata and using a generic single-source
shortest-distance algorithm (Cortes et al., 2004)
to compute the sum of all paths in the resulting
automaton.

GAP SYMBOL HANDLING

The sequence alignments in the Pfam domain (7P;) con-
tain a gap symbol used to pad the alignments. In the
previous two sections, we either ignored the gap sym-
bol (when dealing with raw sequence data) or treated
it as a regular symbol (when dealing with aligned se-
quences). In the latter case, since this symbol does
not, appear in the sequences in the dataset, the result
is that all n-grams containing the gap symbol are ig-
nored during the computation of K; and K.

Alternatively, we can treat the gap symbol as a wild-
card, allowing it to match any regular symbol. This
can be achieved by modifying the transducer T, to
match any gap symbol on its input to any regular sym-
bol on its output (these transitions can also be assigned
a weight to penalize gap expansion). We denote by T',,
the resulting transducer and replace T,, by T, when
composing with D;. Figure 4 shows T, for |X| = {a, b}
with the symbol ‘?” representing the gap symbol and
an expansion penalty weight of 0.5.

3.5. Domain Kernels Based on Moments of
Counts

Although counting common n-grams leads to informa-
tive kernels, this technique affords a further general-
ization that is particularly suitable when defining ker-
nels for domains. We can view the sum of the counts
of an n-gram in a domain as its average count after
normalization. One could extend this idea to consider
higher moments of the counts of an n-gram, as this
could capture useful information about how similarity
varies across the sequences within a single domain.

Remarkably, it is possible to design efficiently com-
putable domain kernels based on these quantities by
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PPV5 PPV10 PPV20

Figure 5. SVM’s performance with various kernels aver-
aged over all datasets.

generalizing the domain kernels from Sections 3.3 and
3.4 in a way similar to what is described by Cortes and
Mohri (2005). Let m be a positive integer. We can de-
fine the m-th moment of the count of the sequence z
in a weighted automata A, denoted by ca m(z), as:

cam(z) =Y c'(z)A(u). (11)

ues*

Both of our kernel families can then be generalized to
a similarity measure based on the m-th moment of the
n-gram counts as follows:

Ko (2,y) Z Y cam(2)en,m(2)( Y eym(2)en,m(2))
i=1 |z|=n |z|=n
KJ LE y Z Z Ca m CDI,m(Z)Cy’m(Z)'

i=1 |z]=n

These kernels can be efficiently computed by using, in
place of T},, a transducer 7} that can be defined such
that T (z,2) = (cz(2))™ = cp.m(z) for all z,z € ¥*
with |z| = n.

4. Experimental Results

We evaluated the domain-based kernels described in
Section 3 (with n = 3) using an experimental de-
sign similar to Section 2.3. In order to test these ker-
nels under various conditions, we chose to work with
datasets sampled from the yeast dataset used in Sec-
tion 2. We constructed 10 datasets, each containing
500 sampled data points randomly chosen from the
4728 initial points, subject to the constraint that we
maintained the same ratio of positively and negatively
labeled points. We worked on a large cluster machines
and used the OpenFst and OpenKernel libraries to
construct similarity matrices for each sample dataset
for varying kernels (Allauzen et al., 2007; Allauzen

I RBF
[ PFAM+RBF

Il JDK-GAP-W+RBF|
[ JDK-GAP+RBF
[ 1IDK+RBF

[ RANDOM
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Figure 6. SVM’s performance with various kernels com-
bined with RBF kernel averaged over all datasets.

& Mohri, 2007). Generating similarity matrices took
less than 30 minutes for IDK, 1 hour for JDK, and 2.5
hours for JDK with gaps treated as wildcards. We do
not show results for the top 1% since it is an unre-
liable statistic when working with 500 points. In all
reported results we exclude results from one sampled
dataset that generated pathological results for all se-
quence kernels.

Figure 5 shows the average prediction performance
over the sampled datasets for various kernels. The fig-
ure shows that the average performance of the JDK
with gaps treated as wildcards (JDK-GAPS-W) is
slightly better than the Pfam kernel, as it outperforms
the Pfam kernel for the top 10% and 20% predictions.
The figure also presents results for variants of the JDK
that either ignore gaps in the seed alignment (JDK)
or treat them as a distinct symbol (JDK-GAPS). The
results show that, regardless of the treatment of gaps,
the JDK drastically outperforms the IDK.

Based on these results, we next tested the effectiveness
of the JDK combined with the RBF kernel. Similar to
the results in Figure 1, average prediction performance
over the sampled datasets was better using combina-
tion kernels in contrast to any kernel alone.® Figure
6 shows that the combined JDK is comparable to the
combined Pfam kernel. Further, in contrast to the re-
sults in Figure 5, the treatment of gaps by the JDK
does not significantly alter prediction efficiency. In
other words, the JDK is able to match the best results
of the Pfam kernel using only raw Pfam sequence data
(JDK), while completely ignoring the hand-curated
multiple sequence alignments that are vital to param-
eterizing the HMMs of the Pfam Library. We did
not perform experiments using higher moments of the
count, as described in Section 3.5, though we suspect

3As in Figure 1, RBF alone outperforms all sequence
kernels alone, possibly due to the phyletic retention feature.
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that these more refined kernels would lead to further
improvements over the Pfam kernel.

5. Conclusion

We presented novel domain-based sequence kernels
that require no hand-crafted information, in contrast
to the Pfam kernel. The joint domain kernels we de-
fined were shown to match or outperform the best pre-
vious results for predicting protein essentiality. These
kernels and their generalization based on moments of
counts can be used for any application requiring sim-
ilarity between sequences that may be extracted from
proximity to several large sequence domains. In bioin-
formatics, such applications may include remote ho-
mology prediction, subcellular localization, and pre-
diction of protein-protein interaction.
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Abstract

The kernel stick-breaking process (KSBP) is em-
ployed to segment general imagery, imposing the
condition that patches (small blocks of pixels)
that are spatially proximate are more likely to
be associated with the same cluster (segment).
The number of clusters is not set a priori and
is inferred from the hierarchical Bayesian model.
Further, KSBP is integrated with a shared Dirich-
let process prior to simultaneously model mul-
tiple images, inferring their inter-relationships.
This latter application may be useful for sorting
and learning relationships between multiple im-
ages. The Bayesian inference algorithm is based
on a hybrid of variational Bayesian analysis and
local sampling. In addition to providing details
on the model and associated inference frame-
work, example results are presented for several
image-analysis problems.

1. Introduction

The segmentation of general imagery is a problem of long-
standing interest. There have been numerous techniques
developed for this purpose, including K-means and associ-
ated vector quantization methods (Ding & He, 2004), sta-
tistical mixture models (McLachlan & Basford, 1988), as
well as spectral clustering (Ng et al., 2001). This list of
existing methods is not exhaustive, although these methods
share attributes associated with most existing algorithms.
First, the clustering is based on the features of the image,
and when clustering these features one typically does not

Appearing in Proceedings of the 25'™ International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

account for their physical location within the image (al-
though the location may be appended as a feature compo-
nent). Secondly, the segmentation or clustering of images
is typically performed one image at a time, and therefore
there is no attempt to relate the segments of one image to
segments in other images (i.e., to learn inter-relationships
between multiple images). Finally, in many of the tech-
niques cited above one must a priori set the number of an-
ticipated segments or clusters. The techniques developed
in this paper seek to perform clustering or segmentation in
a manner that explicitly accounts for the physical locations
of the features within the image, and multiple images are
segmented simultaneously (termed “multi-task learning”)
to infer their inter-relationships. Moreover, the analysis is
performed in a semi-parametric manner, in the sense that
the number of segments or clusters is not set a priori, and
is inferred from the data. There has been recent research
wherein spatial information has been exploited when clus-
tering (Figueiredo et al., 2007), but that segmentation has
been performed one image at a time, and therefore not in a
multi-task setting.

To address the goals elucidated above within a statistical
setting, we employ a class of hierarchical models related to
the Dirichlet process (DP) (Ferguson, 1973). The Dirichlet
process is a statistical prior that may be summarized suc-
cinctly as follows. Assume that the n-th patch is repre-
sented by feature vector x,,, and the total image is com-
posed of N such feature vectors {x,, },—1,5. The feature
vector associated with each patch is assumed drawn from a
parametric distribution f(¢,,), where ¢,, represents the pa-
rameters associated with the n-th feature vector. A DP prior
can be placed on ¢,,, which is characterized by the non-
negative parameter « and the “base” distribution G,. We
adopt the stick-breaking construction developed by Sethu-
raman (Sethuraman, 1994), and the hierarchical model may
be expressed as
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N e
G = Y mds, (1)
h=1
h—1
m = Vi [Ja-W)
=1

v, Beta(l, a)

iid
0, ~ G

This is termed a “stick-breaking” representation of DP be-
cause one sequentially breaks off “sticks” of length 7
from an original stick of unit length (3>_,2, 7, = 1).
As a consequence of the properties of the distribution
Beta(1, «), for relatively small « it is likely that only
a relatively small set of sticks m;, will have appreciable
weight/size, and therefore when drawing parameters ¢,
from the associated G it is probable multiple ¢,, will share
the same “atoms” 6 (those associated with the large-
amplitude sticks). The parameter o therefore plays an im-
portant role in defining the number of clusters that are con-
stituted, and therefore in practice one typically places a
non-informative Gamma prior on a (Xue et al., 2007).

The form of the model in (1) imposes the prior belief that
the feature vectors {a:n}n:L n~ associated with an image
should cluster, and the data are used to infer the most prob-
able clustering distribution, via the posterior distribution on
the parameters {¢,, } ,=1,n5. Such semi-parametric cluster-
ing has been studied successfully in many settings (Xue
et al., 2007; Rasmussen, 2000). However, there are two
limitations of such a model, with these defining the focus
of this paper. First, while the model in (1) captures our
belief that the feature vectors should cluster, it does not im-
pose our additional belief that the probability that two fea-
ture vectors are in the same cluster should increase as their
physical locations within the image become more proxi-
mate; this is an important factor when one is interested in
segmenting an image into contiguous regions. Secondly,
typical semi-parametric clustering has been performed one
image or dataset at a time, and here we wish to cluster mul-
tiple images simultaneously, to infer the inter-relationships
between clusters in different images, thereby inferring the
inter-relationships between the associated multiple images
themselves.

As an extension of the DP-based mixture model, we here
consider the recently developed kernel stick-breaking pro-
cess (KSBP) (Dunson & Park, 2008), introduced by Dun-
son and Park. As detailed below, this model is similar to
that in (1), but now the stick-breaking process is augmented

to employ a kernel function to quantify the prior belief as-
sociated with spatially proximate patches. In (Dunson &
Park, 2008) a Markov chain Monte Carlo (MCMC) sampler
was used to estimate the posterior on the model parameters.
In the work considered here we are interested in relatively
large data sets, and therefore we develop an inference en-
gine that exploits ideas from variational Bayesian analysis
(Beal, 2003).

There are problems for which one may wish to perform
segmentation on multiple images simultaneously, with the
goal of inferring the inter-relationships between the differ-
ent images. This is referred to as multi-task learning (MTL)
(Thrun & O’Sullivan, 1996; Xue et al., 2007), where here
each “task” corresponds to clustering feature vectors from
a particular image. As presented below, it is convenient to
simultaneously cluster/segment multiple images by linking
the multiple associated KSBP models with an overarching
DP. There are at least three applications of MTL in the con-
text of image analysis: (¢) one may have a set of images,
some of which are labeled, and others of which are unla-
beled, and by performing an MTL analysis on all of the
images one may infer labels for the unlabeled image seg-
mentation, by drawing upon the relationships to the labeled
imagery; (i2) by inferring the inter-relationships between
the different images, one may sort the images as well as
sort components within the images; (4¢¢) one may identify
abnormal images and locations within an image in an un-
supervised manner, by flagging those locations that are al-
located to a segmentation component that is locally rare. A
similar scenario has been studied in (Sudderth et al., 2006),
where the spatial translations are handled with transformed
Dirichlet processes.

2. Kernel Stick-Breaking Process
2.1. KSBP prior for image processing

The stick-breaking representation of the Dirichlet process
(DP) was summarized in (1), and this has served as the
basis of a number of generalizations of the DP. The de-
pendent DP (DDP) proposed by MacEachern (MacEach-
ern, 1999) assumes a fixed set of weights, 7r, while allow-
ing the atoms § = {6y,--- ,6x} to vary with the predic-
tor & according to a stochastic process. Dunson and Park
(Dunson & Park, 2008) have proposed the kernel stick-
breaking process (KSBP), which is particularly attractive
for image-processing applications. Rather than simply con-
sidering the feature vector {x,, },—1 5, We now consider
{Zn, Tn}n=1N, Where r,, is tied to the location of the pixel
or block of pixels used to constitute feature vector x,,. We
let K(r,r',¢) — [0, 1] define a bounded kernel function
with parameter v, where r and r’ represent general loca-
tions in the image of interest. One may choose to place a
prior on the kernel parameter 1/; this issue is revisited be-
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low. A draw G,. from a KSBP prior is a function of position
r, and is represented as

G, = Z 7 (75 Vi, Ty 1) 06,

h=1
T (r; Vi, Ty ) = VaK(r,Dn, ) TI15 L — VIK (r, T, )]
Vi o~ Beta(a,b) )
I
0, < aq,.

Dunson and Park (Dunson & Park, 2008) prove the valid-
ity of GG, as a probability measure. Comparing (1) and
(2), both priors take the general form of a stick-breaking
representation, while the KSBP prior possesses several
interesting properties. For example, the stick weights
7w (r; Vi, T, ¢) are a function of r. Therefore, although
the atoms {6}, }—1 o are the same for all r, the weights
effectively shift the probabilities of different 6;, based on
7. The basis functions I'j, serve to localize in the space of
r regions (clusters) in which the weights 7 (7; Vi, T, 9)
are relatively constant, with the size of these regions tied to
the kernel parameter .

If f(¢y,) is the parametric model (with parameter ¢,,) re-
sponsible for the generation of x,,, we now assume that the
augmented data {x,,, r,, } ,=1,n are generated as

T i’T\L’d f(d)n)
on G 3)
G, ~ KSBP(a,b,Go, H).

The notation G,, ~ KSBP(a,b,9,G,, H) is meant to
convey that GG,. is drawn one time from the KSBP, and is
a parametric function of location r, and it is evaluated at
specific locations {7y, } =1, .

The generative model in (3) states that two feature vectors
that come from the same region in the image (defined via
r) will have similar 7, (r; Vi, Ty, 4), and therefore they
are likely to share the same atoms 6. The settings of a
and b control how much similarity there will be in drawn
atoms for a given spatial cluster centered about a particular
T'p. If we set a = 1 and b = «, analogous to the DP, small
concentration parameter « and/or small kernel parameter 1)
will impose that 7, is likely to be near one, and therefore
only a relatively small number of atoms 6}, are likely to be
dominant for a given cluster spatial center I',. On the other
hand, if two features are generated from distant parts of a
given image, the associated atoms @}, that may be promi-
nent for each feature vector are likely to be different, and

therefore it is of relatively low probability that these feature
vectors would have been generated via the same parameters
¢. It is possible that the model may infer two distinct and
widely separated clusters/segments with similar parameters
(atoms); if the GG, within the KSBP is itself drawn from a
DP, as it will be below when analyzing multiple images,
widely separated clusters may share the exact same atoms.

For the case ¢ = 1 and b = «, which we consider below, we
employ the notation G, ~ KSBP(a,v,G,, H). Below
we will also assume that f(¢) corresponds to a multivariate
Gaussian distribution.

2.2. Spatial correlation properties

As indicated above, the functional form of the kernel
function is important and needs to be chosen carefully.
A commonly used kernel is given as K(r,I',¢) =
exp (—1||r — T'||?) for ¢» > 0, which allows the associated
stick weight to change continuously from V}, Hf;ll (1-V)
to 0 conditional on the distance between r and I'. By
choosing a kernel we are also implicitly imposing the de-
pendency between the priors of two samples, G, and G,..
Specifically, both priors are encouraged to share the same
atoms 0y, if » and r’ are close, with this discouraged other-
wise. Dunson and Park (Dunson & Park, 2008) derive the
correlation coefficient between two probability measures
G, and G, to be

corr{Gr,Gp}
_ Y oney T (15 Vi, Doy ) (r's Vi, Ty )
\/220:1 7Th(7"; Vh7 Fh7 ¢)2\/ZZO:1 ﬂ-h('rl; Vh7 Fh, ¢)2 .

The coefficient approaches unity in the limit as r — 7.
Since the correlation is a strong function of the kernel pa-
rameter 1), below we will consider a distinct 1, for each
stick. This implies that the spatial extent within the image
over which a given stick is important will vary as a function
of the stick (to accommodate textural regions of different
sizes).

3. Multi-Task Image Segmentation with a
Hierarchical KSBP

We now consider the problem for which we wish to
jointly segment M images, where each image has an
associated set of feature vectors with location informa-
tion, in the sense discussed above. Aggregating the data
across the M images, we have the set of feature vectors
{%nm, Trm fn=1,N,,; m=1,m. The image sizes may be dif-
ferent, and therefore the number of feature vectors N,;, may
vary between images. The premise of the model discussed
below is that the cluster or segment characteristics may be
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similar between multiple images, and the inference of these
inter-relationships may be of value. Note that the assump-
tion is that sharing of clusters may be of relevance for the
feature vectors, but not for the associated locations.

3.1. Model

A relatively simple means of sharing feature-vector clus-
ters between the different images is to let each image be
processed with a separate K.SBP(a,, Yy G, Hin). To
achieve the desired sharing of feature-vector clusters be-
tween the different images, we impose that G,, = G
and G is drawn G ~ DP(vy,G,). Recalling the stick-
breaking form of a draw from DP(y,G,), we have G =
> ne Thdg,, in the sense summarized in (1). The discrete
form of G is very important, for it implies that the different
G, will share the same set of discrete atoms {0, }=1,00. It
is interesting to note that for the case in which the kernel
parameter v is set such that K (r,I';,v¢) — 1, the hierar-
chical KSBP (H-KSBP) model reduces to the hierarchical
Dirichlet process (HDP) (Teh et al., 2005).

Therefore, the H-KSBP model is represented as

N (Gnm)

wnm
¢nm Z,Tll'}d G"'nm, (4)
G, ~ KSBP(apm,¥m,G, Hy)
G ~ DP(% GO)v

where N (-) is a Gaussian distribution. Assume that G is
composed of the atoms {6, }5=1,c0, from the perspective of
the stick-breaking representation in (1). These same atoms
are shared across all {G,.  }n=1 N, .m=1 drawn from
the associated KSBPs, but with respective stick weights
unique to the different images, and a function of position
within a given image. The posterior inference allows one
to infer which clusters of features are unique to a particu-
lar image, and which clusters are shared between multiple
images. The density functions H,, are tied to the support
of the m-th image, and in practice this is set as uniform
across the image extent. The distinct o, for each of which
a Gamma hyper-prior may be imposed, encourages that the
number of clusters (segments) may vary between the differ-
ent images, although one may simply wish to set a,,, = «
for all M tasks.

For notational convenience, in (4) it was assumed that the
kernel parameter 1, varied between tasks, but was fixed
for all sticks within a given task; this is overly restrictive.
In the implementation that follows the parameter 1y,,,, may
vary across tasks and across the task-specific KSBP sticks.

3.2. Posterior inference

For inference purposes, we truncate the number of sticks
in the KSBP to 7', and the number of sticks in the trun-
cated DP to K (the truncation properties of the stick-
breaking representation of DP are discussed in (Ishwaran
& James, 2001), although we emphasize that when trun-
cating KSBP one must take into account the draws from
the Beta distribution and the properties of the kernel,
to assure that the truncated set of sticks sum to one).
Due to the discreteness of G = Zszl Brde,, each
draw of the KSBP, G,., = Zle ThmOgyn,» can only
take atoms {Pnm }h=1,7; m=1,m from K unique possi-
ble values {6y }x=1,; when drawing atoms ¢, from
G, the respective probabilities for {6y }r=1,x are given
by {0k }r=1K, and for a given r,,, the respective prob-
abilities for different {¢pm, th=1,1, m=1,m are defined by
{Thm }h=1,1; m=1,m. In order to reflect the correspon-
dences between the data and atoms explicitly, we further
introduce two auxiliary indicator variables. One iS 2,
this indicating which stick of the KSBP the feature vec-
tor @, is associated, and the other is ¢, this indicating
which mixing component 6}, the atom ¢y, is associated
with.

With this specification we can represent our H-KSBP mix-
ture model via a stick-breaking characterization. A graph-
ical representation of the proposed H-KSBP model is pro-

5,
oo
5,

N
|

Figure 1. A graphical representation of the H-KSBP mixture
model.

M|

For the large-scale problems of interest here we employ
variational Bayesian (VB) inference, which has proven to
be a relatively fast (compared to MCMC) and accurate in-
ference tool for many models and applications (Beal, 2003;
Blei & Jordan, 2004). To employ VB, a conjugate prior is
required for all variables in the model. In the proposed
model, we however cannot obtain a closed form for the
variational posterior distribution of the node V},,,, because
of the the kernel function. Alternatively, motivated by
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the Monte Carlo Expectation Maximization (MCEM) al-
gorithm (Wei & Tanner, 1990), we develop a Monte Carlo
Variational Bayesian (MCVB) inference algorithm, where
the intractable nodes are approximated with Monte Carlo
samples from their conditional posterior distributions. The
resulting algorithm combines the benefits of both MCMC
and VB, and has proven to be effective for the examples we
have considered (some of which are presented here).

Given the H-KSBP mixture model detailed in Section
3.1, we can follow standard variational Bayesian infer-
ence (Beal, 2003) to infer the variables of interests. All
the updates are analytical except for Vj,,, which is es-
timated with the samples from its conditional posterior
distributions. Due to the limited space, we only con-
sider the update for V},,,. To obtain the conditional pos-
terior distribution of Vj,,, we rewrite z,, = min{h :
Apmnr = Bpmpn = 1}, with two auxiliary variables
defined as: Ay ~ Bernoulli(Vyy,) and Bppyp ~
Bernoulli(K (Trnm, Thim, Um))-

The conditional posterior distributions of V4,,,, are

Beta(l + Z Anm,ha o+ Z (1 - Anmvh))7

n:Zpm>h n:Zpm>h

where

(1_th)(1_K('rnm7Fhm7wm))
I_thK(rnmyrhmvwm)

. _ _ (I_th)K(rnmarhmzdjm)

p(Anm,h - Oanm,h = 1) - 1_thK(7'nm,Fhmﬂ/Jm)

_ _ _ th(lfK(”"nmthmvwm))
P(Awm = 1 B = 0) = 000 R v D m)

p(An'm,h = BnnL,h - O) -

forh =1,2,---, zpm — 1, and Ay p, = Bpm,p = 1 for
h = zum.

The hyper-parameters «, «y, and 1) are assumed to be con-
stant for inference of the other parameters. However, since
the model performance may be sensitive to the settings of
those hyper-parameters, we can relax this assumption by
placing non-informative priors. The updates are straight-
forward (Beal, 2003) and therefore omitted here.

3.3. Convergence

To monitor the convergence of our MCVB algorithm, we
compute the lower bound of the log model evidence at each
iteration. Because of the sampling of some variables, the
lower bound does not in general increase monotonically,
but we observed in all experiments that the lower bound
increases sequentially for the first several iterations, with
generally small fluctuations after it has converged to the
local optimal solution.

4. Experimental Results

We have applied the H-KSBP multi-task image-
segmentation algorithm to both synthetic and real images.
We first present results on synthesized imagery, wherein
we compare KSBP-based clustering of a single image
with associated DP-based clustering. We then consider
H-KSBP as applied to actual imagery, taken from a widely
utilized database. The hyper-priors in the model for the
examples are set as follows: Gamma priors, G(719, T20)
and G/(730, T40), for a and «y with parameter 719 = le™2,
oo = le™2, 139 = 3e72, 740 = 3e~ 2, respectively; a
normal-Wishart prior, N (pex|po, 1o2k) W (Zk|ws, Xy,
conjugate to the Gaussian distribution with gy = O,
no = 1, w, = d+ 2, ¥, = 5 x I; the discrete priors for
I" and v with uniform weights over all candidates. The
stick-breaking truncations are K = 40, T = 40.

4.1. Single image segmentation

In this simple illustrative example, each feature vector is
associated with a particular pixel, and the feature is simply
a real number, corresponding to its intensity; the pixel lo-
cation is the auxiliary information within the KSBP, while
this information is not employed by the DP-based segmen-
tation algorithm. Figure 2 shows the original image and
the segmentation results of both algorithms. In Figure 2(a)
we note that there are five contiguous regions for which
the intensities are similar. There is a background region
with a relatively fixed intensity, and within this are four
distinct contiguous sub-regions, and of these there are pairs
for which the intensities are comparable. The data in Fig-
ure 2(a) were generated as follows. Each pixel in each re-
gion is generated independently as a draw from a Gaussian
distribution; the standard deviation of each of the Gaus-
sians is 10, and the background has mean intensity 5, and
the two pairs are generated with mean intensities of 40 and
60. The color bar in Figure 2(a) denotes the pixel ampli-
tudes. The DP and KSBP segmentation results are shown
in Figures 2(b) and 2(c), respectively. A distinct color is as-
sociated with distinct cluster parameters. In the DP results
we note that the four subregions are generally properly seg-
mented, but there is significant speckle in the background
region. The KSBP segmentation algorithm is beset by far
less speckle. Further, in the KSBP results there are five
distinct clusters (dominant KSBP sticks), where in the DP
results there are principally three distinct sticks (in the DP,
the spatially separated segments with the same features are
treated as one cluster, while in the KSBP each contiguous
region is represented by its own stick).

In the next set of results, on real imagery, we employ the
H-KSBP algorithm, and therefore at the task level segmen-
tation is performed as in Figure 2(c). Alternatively, using
the HDP model (Teh et al., 2005), at the task level one em-
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ploys clustering of the form in Figure 2(b). The relative
performance of H-KSBP and HDP is analyzed.

g .
0 el

ERECE]

(a)

Figure 2. A synthetic image example. (a) Original synthetic im-
age, (b) image-segmentation results of DP-based model, and (c)
image-segmentation results of KSBP-based model.

4.2. H-KSBP applied to a set of real images

Within the subsequent image analysis we employ features
constituted by the independent feature subspace analy-
sis (ISA) technique, developed by Hyvirinen and Hoyer
(Hyvirinen & Hoyer, 2000). These features have proven
to be relatively shift or translation invariant, which enables
them to be widely applicable to many type of images.

We test the H-KSBP model on a subset of images
from Microsoft Research Cambridge, available at
http://research.microsoft.com/vision/cambridge/recognition/.
There are seven types of images used in this database:
buildings, clouds, countryside, faces, fireworks, offices
and urban. Twenty images are randomly selected from
the database for each type, yielding a total of 140 images.
To capture textural information within the features, we
first divided each image into a contiguous 24 x 24-pixel
non-overlapping patches (more than 70,000 patches in
total) and then extract ISA features from each patch; color
images are considered, and the RGB colors are handled
within ISA feature extraction as in (Hoyer & Hyvirinen,
2000). Concerning learning the ISA independent feature
subspaces, we randomly select 150 patches out of each
of the 140 images from the seven classes, and these 150
image patches are used for basis training. The posterior
on the H-KSBP (and HDP) model parameters is inferred
based on the proposed MCVB algorithm, processing all
140 images simultaneously; as discussed in Section 2,
the HDP analysis is performed by a special setting of the
H-KSBP parameters. To mitigate the influence of random
samples and VB initialization, we perform the experiment
ten times and report the average results.

Borrowing the successful “bag of words” assumption in
text analysis (Blei & Lafferty, 2005), we assume each im-
age is a bag of atoms, which results in a measurable quan-
tity of inter-relationship between images, specifically simi-
lar images should share similar distribution over those mix-
ture components. An important aspect of the H-KSBP al-

gorithm is that while in text analysis the “bag of words”
may be set a priori, here the “bag of atoms” is inferred
from the data itself, within the clustering process. Related
concepts have been employed previously in image analysis
(Quelhas et al., 2007), but in that work one had to set the
canonical set of image atoms (shapes) a priori, which is
somewhat ad hoc.

As an example, for the data considered, we show one real-
ization of H-KSBP in Figure 3. In the figure, we display
canonical atom usage across all 140 images. Figure 3 is
a count matrix, where each square represents the relative
number of counts in a given image for a particular atom
(atoms indexed along the vertical axis in Figure 3).

Clouds  Buildings Countryside  Faces  Fireworks Urban Office

Figure 3. Matrix on the usage of atoms across the different im-
ages. The size of each box represents the relative frequency with
which a particular atom is manifested in a given image. These
results are computed via H-KSBP.
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Figure 4. Demonstration of different atoms as inferred by an ex-
ample run of the H-KSBP algorithm. Each row of the figure cor-
responds to one atom. Every two images form a set, with the orig-
inal images at left and areas assigns to a particular atom shown at
right.

Figure 4 gives a representation of most of the atoms. For
example the 4-th, 31-st and 39-th atoms are associated with
clouds and sky; the 38-th atom is principally modeling
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buildings; and the 11-th atom is associated with trees and
grasses. While performing the experiment, we also noticed
it was relatively easy to segment clouds, fireworks, coun-
tryside, and urban images while harder to obtain contigu-
ous segments within office images (these typically have far
more details, and less large regions of smooth texture; this
latter issue may be less an issue of the H-KSBP, but rather
of the features employed). An example of this difficulty
is observable in Figure 5, as office images are composed
of many different atoms. Fortunately, the office images
still tend to share similar usage of atoms so that they can
be grouped together (sorted) when quantifying similarities
between images based on the histogram over atoms (dis-
cussed next).

The results in Figure 5, in which both H-KSBP and HDP
segmentation results are presented, demonstrate general
properties observed when analyzing the images considered
here: (¢) the segmentation characteristics of HDP were gen-
erally good, but on some occasions they were markedly
worse (less detailed) than those of H-KSBP; and (¢%) the
H-KSBP was generally more sensitive to detailed textu-
ral differences in the images, thereby generally inferring
a larger number of principal atoms (increased number of
large sticks).

200 400 600

200 200 20
H [
400 400 | 400

200 400 600 200 400 600 200 400 600

200 400 600 200 400 600 200 400 600

200 200 200
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200 400 600 200 400 600

200 400 600
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100 200 300 100 200 300 100 200 300 200400600800 200400600800 200400600800

Figure 5. Representative set of segmentation results, comparing
H-KSBP and HDP. While these two algorithms tend to generally
yield comparable segmentations for the images considered, the H-
KSBP is generally more sensitive to details, with this sometimes
yielding better segmentations (e.g., the top-level and bottom-right
results).

To demonstrate the image-sorting potential of the H-KSBP,
we compute the Kullback-Leibler (KL) divergence on the
histogram over atoms between any two images, by aver-
aging histograms of the form in Figure 3 over ten random
MCYVB initializations. For each image, we rank its simi-
larity to all other images based on the associated KL diver-
gence. Performance is addressed quantitatively as follows.
For each of the 140 images, we quantify via KL divergence
its similarity to all other 139 images, wherein we achieve

in ordered list. In Figure 6 we present a confusion ma-
trix, which represents the fraction of the top-ten members
of this ordered list that are within the same class (among
seven classes) as the image under test.

Clouds
Buildings
Countryside

Faces

Fireworks
Urban

Offices

Figure 6. The confusion matrix over image types, generated using
H-KSBP.

As demonstrated in Figure 6, the H-KSBP performs well
in distinguishing clouds, faces and fireworks images. The
buildings and urban images often share some similar atoms,
mainly representing buildings, and therefore these are
somewhat confused (reasonably, it is felt). The offices im-
ages are often related to other relatively complex scenes.
Some typical image ranking results are given in Figure 7. It
was found that the HDP produced similar sorting results as
produced by H-KSBP (e.g., the associated confusion ma-
trix for HDP is similar to that in Figure 6), and therefore
the HDP sorting results are omitted here for brevity. This
indicates that while in some cases the HDP segmentation
results are inferior to those of H-KSBP, in general the abil-
ity of HDP and H-KSBP to sort images is comparable (at
least for the set of images considered).

The H-KSBP results on the 140-image database were per-
formed in non-optimized Matlab™™ software, on a PC
with 3 GHz CPU and 2 GB memory. It required about 3
hours to compute one run of the MCVB code for 80 iter-
ations, with typically 40-50 iterations required to achieve
convergence. The H-KSBP and HDP algorithms were run
with comparable computation times.

5. Conclusions

The kernel stick-breaking process has been extended for
use in image segmentation. The algorithm explicitly im-
poses the belief that feature vectors that are generated from
proximate locations in an image are more likely to be as-
sociated with the same image segment. We have also ex-
tended the KSBP algorithm to the MTL setting, exploring
the inter-relationship of images by sharing the same mix-
ing components. Generally superior segmentation perfor-
mance of H-KSBP was observed relative to HDP, when
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Figure 7. Sample image sorting results, as generated by H-KSBP.
The top left image is the original image followed by the five most
similar images and then the five most dissimilar images.

segmenting multiple images simultaneously. In addition to
segmenting multiple images, the H-KSBP and HDP algo-
rithms also yield information about the inter-relationships
between the images, based on the underlying sharing mech-
anisms inferred among the associated clusters. For the im-
ages considered, it was found that the H-KSBP and HDP
yielded very similar sorting results.
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Abstract

Point clouds are sets of points in two or three di-
mensions. Most kernel methods for learning on
sets of points have not yet dealt with the specific
geometrical invariances and practical constraints
associated with point clouds in computer vision
and graphics. In this paper, we present exten-
sions of graph kernels for point clouds, which al-
low one to use kernel methods for such objects as
shapes, line drawings, or any three-dimensional
point clouds. In order to design rich and numer-
ically efficient kernels with as few free parame-
ters as possible, we use kernels between covari-
ance matrices and their factorizations on prob-
abilistic graphical models. We derive polyno-
mial time dynamic programming recursions and
present applications to recognition of handwrit-
ten digits and Chinese characters from few train-
ing examples.

point clouds, with applications to classification of line
drawings—such as handwritten digits (LeCun et al., 1998)
or Chinese characters (Srihari et al., 2007)—or shapes (Be-
longie et al., 2002). The natural geometrical structure of
point clouds is hard to represent in a few real-valued fea-
tures (see, e.g., Forsyth and Ponce (2003)), in particular
because of (a) the required local or global invariances by
rotation, scaling, and/or translation, (b) the lack of pre-
established registrations of the point clouds (i.e., points
from one cloud are not given matched to points from an-
other cloud), and (c) the noise and occlusion that impose
that only portions of two point clouds ought to be com-
pared.

One of the leading principles for designing kernels between
structured objects is to decompose each object into parts
and to compare all parts of one object to all parts of another
object (Shawe-Taylor & Cristianini, 2004). Even if there

is an exponential number of such decompositions, which
is a common case, this is numerically possible under two

conditions: (@) the object must lead itself to an efficient
enumeration of subparts, and (b) the similarity function be-
tween subparts (i.e., thecal kerne), beyond being a posi-

tive definite kernel, must be simple enough so that the sum

In recent years, kernels for structured data have been deyer a potentially exponential number of terms can be re-
signed in many domains, such as bioinformatics (Vert etal.¢yrsively performed in polynomial time through factoriza-
2004), text processing (Lodhi et al., 2002) and computer Vitign.

sion (Harchaoui & Bach, 2007; Parsana et al., 2008). They L o _ _ o
provide an elegant way of including knovenpriori infor- One of the m_ost striking instantiations of this design princi-
mation, by using directly the natural topological structureP!€ are thestring kernelgsee, e.g., Shawe-Taylor and Cris-
of objects. Usinga priori knowledge through kernels on tianini (2004)), which consider all substrings of a given
structured data have proved beneficial because it allow§tring but still allow efficient computation in polynomial
(a) to reduce the number of training examples, (b) to relime. The same principle can also be applied to graphs:
use existing data representations that are already well dédtuitively, the graph kernels(Ramon & Gartner, 2003;
veloped by experts of those domains and (c) to bring td(ash_lma et al., 2004; Borgwardt et al., 2005) conS|_der all
bear the rapidly developing kernel machinery, and in par_pos:yble subgraphs and compare and count matching sub-
ticular semi-supervised learning—see, e.g., Chapelle et afiraphs. However, the set of subgraphs (or even the set of
(2006)—and hyperparameter learning for supervised kerpaths) has exponential size and cannot be efficiently de-
nel methods—see, e.g., Bach et al. (2004). scribed recursively. By choosing appropriate substructures,
. - o such asvalksor tree-walks, and fully factorized local ker-
In this paper, we propose a positive definite kernel betweeRe|s, matrix inversion formulations (Kashima et al., 2004)
and efficient dynamic programming recursions (Harchaoui
& Bach, 2007) allow one to sum over an exponential num-
ber of substructures in polynomial time (for more details

1. Introduction

Appearing inProceedings of the25'" International Conference
on Machine LearningHelsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).
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Graph Kernels between Point Clouds

then, our graph kernels consider all partial matches be-

tween two neighborhood graphs and sum over those. How-

ever, the straightforward application of graph kernels poses

a major problem: in the context of computer vision, sub-

structures correspond to matched sets of points, and deakigure 1.(top left) path, (top right)l-walk which is not &2-walk,
ing with local invariances by rotation and/or translation im- (bottom left)2-walk which is not 88-walk, (bottom right) 4-walk.
poses to use a local kernel that cannot be readily expressed

as a product of separate terms for each pair of points, and

the usual dynamic programming and matrix inversion ap-gjmilarity measures based on existing techniques from the
proaches cannot then be directly applied. One of the mailyann matching literature, that can be made positive def-
contributions of this paper is to design a local kernel that ISpite by ad hocmatrix transformations; this includes the

not fully factorized but can be instead factorized accordingedit-distance kernel (Neuhaus & Bunke, 2006) and the op-
to the graph underlying the substructure. This is naturally;,q assignment kernel (Bhlich et al., 2005; Vert, 2008).
done through probabilistic graphical models and the design

of positive definite kernels for covariance matrices that facAnother class of graph kernels relies on a set of substruc-
torize on graphical models (see Section 3). With this novefures of the graphs. The most natural ones are paths, sub-
local kernel, we derive new polynomial time dynamic pro- trees and more generally subgraphs; however, they do not
gramming recursions in Section 4. In Section 5, we presenfead to positive definite kernels with polynomial time com-

on graph kernels, see Section 2.1).

In this paper, we consider the application of graph kernels
to point clouds. Indeed, we assume that each point cloud
has a graph structure (most often a neighborhood graph);

simulations on handwritten character recognition. putation algorithms—see, in particular, NP-hardness re-
sults by Ramon and &tner (2003)—and recent work has
2. Graph Kernels focused on larger sets of substructures. In particuéar;

dom walkkernels consider all possible walks and sum a
In this section, we consider two labelled undirected graphsocal kernel over all possible walks of the graphs (with
G = (V,E,a,z) andH = (W, F,b,y), whereV, W are  all possible lengths). With a proper length-dependent fac-
vertex setsF, F' are edge sets and b, z,y are vertex la-  tor, the computation can be achieved by solving a large
belling functions (Diestel, 2005). Two types of labels aresparse linear system (Kashima et al., 2004; Borgwardt
considered:attributes, which are denoted(v) € A for et al., 2005), whose running time complexity has been re-
vertexv € V andb(w) € A for vertexw € W andpo-  cently reduced (Vishwanathan et al., 2007). When consid-
sitions, which are denoted(v) € X andy(w) € X. We  ering fixed-length walks, efficient dynamic programming
assume that the graphs have no self-loops. Our motivatingecursions can de derived (Harchaoui & Bach, 2007) that
examples are line drawings, whete= A = R? (i.e., the  drive down the computation time, at the cost of consider-
position is itself also an attribute). In this case, the grapting a smaller feature space. These however have the ad-
is naturally obtained from the drawings by considering 4-vantage of allowing extensions to other types of substruc-
connectivity or 8-connectivity (Forsyth & Ponce, 2003). In tures, namely “tree-walks” (Ramon &#Btner, 2003), that
other cases, graphs can be easily obtained from neareste now present.
neighbor graphs.

2.2. Paths, Walks, Subtrees and Tree-walks

2.1. Related work Given an undirected grapfi with vertex setl’, apathis
Graph data occur in many application domains, and kernela sequence of distinct connected vertices, whileaik is

for attributed graphs have received increased interest in th& sequence of possibly non distinct connected vertices. In
applied machine learning literature, in particular in bioin- order to prevent the walks from going back and forth too
formatics (Kashima et al., 2004; Borgwardt et al., 2005)quickly (a phenomenon referred to tsttering by Maheé

and computer vision (Harchaoui & Bach, 2007). Note thatand Vert (2006)), we further restrain the set of walks; that
in this paper, we only consider kernels between graphss, for any positive integeB, we define3-walks as walks
(each data point is a graph), as opposed to kernels for a siguch that any + 1 successive vertices are distinttwalks

gle dataset with associated graph information between datare regular walks); see examples in Figure 1. Note that
points (see, e.g., Shawe-Taylor and Cristianini (2004)).  when the grapi is a tree (no cycles), then the set®f
walks is equal to the set of paths. More generally, for any
raph,s-walks of lengthg + 1 are exactly paths of length
+1. Note that the intege? corresponds to the “memory”

Current graph kernels can roughly be divided in two
classes: the first class is composed of non positive definit%
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Figure 2.(left) binary 2-tree-walk, which in fact a subtree, (right) cee ® 90

binary 1-tree-walk which is not 2-tree-walk. ;. A .’& ;\'
O O

of the walk, i.e., the_ number of past vertices it needs tc’Figure 3.Graph kernels between two graphs (each color repre-
remember before going on. sents a different label). We display all binary 1-tree walks with

A subtree ofG is a subgraph of: with no cycles. A sub- a specific tree structure, extracted from two simple graphs; the

tree of G can thus be seen as a connected subset of distin@faph kernels is computing and summing the local kernels be-

nodes ofG with an underlying tree structure. The notion tween all those extracted tree-walks. In the case of the Dirac ker-

of walk is extending the notion of path b aliowin nodes nel (hard matching), only one pair of tree-walks is matched (for
=ncing P ya 9 both labels and structures).

to be equal; similarly, we can extend the notion of subtrees

to tree-walks, which can have nodes that are equal. More ) )

precisely, we define an-ary tree-walk of depth of Gasa  sociated with the nodes in the tree-walks (remember that

rooted labellech-ary tree of depth with nodes labelled by €ach node of and H has two labels, a position and

vertices inG?, and such that the labels of neighbors in the@n attribute). Given a tree structuieand consistent la-

tree-walk must be neighbors i@ (we refer to all allowed bellingsI € J3(T',G) andJ € Js(T, H), we let denote

such set of labels asonsistentiabels). We assume that ¢r.1,7(G, H) the value of the local kernel between two

the tree-walks are not necessarily complete trees, i.e., eadfge-walks defined by the same structiirand labellings’

node may have less than children. Tree-walks can be andJ.

plotted on top of the original graph, as shown in Figure Z’Following Ramon and &rtner (2003), we can define the
and may be represented by a tree struciiiigver the ver-  yeq_kemelas the sum over all matching tree-walks @f
tex set{1,...,|T|} and a tuple of consistent but possibly 5nq 7 of the local kernel. i.e.:

non distinct labeld € V17! (i.e., the labels of neighboring
vertices inT” must be neighboring vertices ). Finally, in kapA (G H) = Z Paw(T)x

this paper, we consider only rooted subtrees, i.e., subtrees TeTay

where a specific node is identified as the root; moreover, all > > arss (G H). (1)
the trees that we consider are unordered trees (i.e., no order 1€J5(T,G) JeJs(T,H)

is considered among siblings). When considering 1-walks (i.eqq = 3 = 1), and letting

We can also defing-tree-walks, as tree-walks such that the maximal walk lengthy tend to+oco, we get back the

for each node irfl), its label (which is an element of the random walk kernel (Ramon & @tner, 2003; Kashima
original vertex set’) and the ones of all its descendants up€t al., 2004). If the kernejr ; ;(G, H) has nonnegative

to the 3-th generation are all distinct. With that definition, values and is equal to 1 if the two tree-walks are equal, it
1-tree-walks are regular tree-walks (see Figure 2), and ifan be seen as a soft matching indicator, and then the kernel
o = 1, we get back3-walks. From now on, we refer to the in Eq. (1) simply counts the softly matched tree-walks in

descendants up to thieth generation as thé-descendants. the two graphs (see Figure 3 for an illustration with hard
matching).
We let denoteZ, ., the set of rooted tree structures of depth

less thany and with at mostv children per node; for exam- We add a nonnegative penalizatiy, (7)) depending only

ple, 7;  is exactly the set of chain graphs of length lessOn the tree-structure. Besides the usual penalization of the
than~y. ForT € 7,., we denote7;(T,G) the set of number of nodesT|, we also add a penalization of the
consistent labellings o by vertices inV leading tog- ~ nhumber of leaf node&(T’) (i.e., nodes with no children).
tree-walks. With these definitions, &tree-walk of G is ~ More precisely, we use the penalizatign, = 71,4,

characterized by (a) a tree structifee 7, -, and (b) a  This penalization, suggested by Maknd Vert (2006), is
labellingI € J5(T, G). essential in our situation to avoid that trees with nodes of

higher degrees dominate the sum.

2.3. Graph Kernels If ¢r1.7(G, H) is obtained from a positive definite kernel
We assume that we are given a positive definite kernel bebetween (labelled) tree-walks, théf} ; (G, H) also de-
tween tree-walks that share the same tree structure, whidimes a positive definite kernel. The kerﬂqﬁﬁﬂ(G, H)

we refer to as théocal kernel. This kernel depends on the sums thdocal kernelgr ;,;(G, H) over all tree-walks of
tree structurel’ and the set of attributes and positions as-G' and H that share the same tree structure; the number
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of such matching tree-walks is exponential in the depth local kernelq}. ; (G, H) = kp(Kr, Ly)ga(a(l),b(J])).

thus, in order to deal with potentially deep trees, a recursivédowever, this local kerney?. ; ;(G, H) does not yet de-
definition is needed. As we now detall, it requires a specifiqpend on the tree structufe and the recursion may be ef-
type of local kernels, which can be decomposed accordingcient only if ¢%. , ;(G, H) can be computed recursively.

to tree structures. The factorized termy4(a(I),b(J)) does not cause any
problems; however, for the teris (K, L), we need an
2.4.Local Kernels approximation based dfi. As we show in Section 3, this

The local kernel is used between tree-walks which can hay2n e obtained by a factorization according to the appro-
large depths (note that everything we propose will turn oufPriate graphical model, |.e.,'we.W|II replace each kernel ma-
to have linear time complexity in the dept). We use trix qf the form K;bya projection onto a subset of kernel
the product of a kernel for attributes and a kernel for posi-Matrices which allow efficient recursions.

tions. For attributes, we use the following usual factorized o ) )

form qa(a(1),6(.1)) = [T, ka(a(Z,).b(J,)), wherek,, 3. Positive Matrices and Graphical Models

is & positive definite kemel oml x A. This allows the e main idea underlying the factorization of the kernel is
separate comparison of each matched pair of points ang .onsider symmetric positive definite matrices as covari-
efficient dynamic programming recursions (Harchaoui & 5nce matrices and to look at probabilistic graphical models
Bach, 2007). However, for our local kemel on positions, yefined for Gaussian random vectors with those covariance
we need a kernel thgointly depends on the whole vectors arrices. The goal of this section is to show that by ap-
x(I) € X!l andy(J) € X1, and not only on the pairs propriate graphical model techniques, we can design prop-

(x(Lp), y(Jp)) € X x X. Indeed, we do not assume that gy factorized approximations of Eq. (2), namely through
the pairs areegistered, i.e., we do not know the matching Eq. (6) and Eq. (7).

between points indexed kyin the first graph and the ones
indexed by.J in the second graph. More precisely, we assume that we haveandom vari-

ables 71, ..., Z, with probability distributionp(z) =
p(z1,...,2,). Given a kernel matrix< (in our case de-
fined asK;; = e vllz—=iI” for positionszy, ..., z,),

In this paper, we focus oA = R¢ andtranslation invari-

ant local kernels, which implies that the local kernel for
positions may only depend on differences) — «(i') and ) . L .
y(j) — y(j") for (i.i") € I x Tand(j,j") € J x J. We we consider jointly Gaussian distributed random variables

/ . 1,...,Zy such thatov(Z;, Z;) = K;;. In this section,

I?;;hsﬁgtzggl:ﬁ\?;:;:ﬁf ptc())sli(tie\/rg?jler;?r?ittrtlacizrfvgir(e:csp(ingIr;g to fith this ide_ntification,_we consider covariance matrices as

. N L~ "2)  Kkernel matrices, and vice-versa.
Depending on the applicatioh, may or may not be rota-
tion invariant. In simulations, we use the rotation invariant : ;
Gaussian kernel of the fort (zy, z2) = e~ vllz1—721 3.1. Graphical Modelsand Junction Trees
Graphical models provide a flexible and intuitive way of
defining factorized probability distributions. Given any
undirected grapld) with vertices in{1, ..., n}, the distri-
butionp(z) is said to factorize irQ if it can be written as

a product of potentials over all cligues (completely con-

Thus, we reduce the set of all positionsif”| and X"V
to full kernel matricesk’ € RIVI*IVI andL € RIWIxIWI
for each graph, defined ds(v,v") = kx(z(v) — z(v'))
(and similarly for ). These matrices are by construction

symmetric positive semi-definite and, for simplicity, we as- nected subgraphs) of the gragh When the distribution is
sume that these matrices are positive definite (i.e., inverte . \«<ian with covariance matrix c R"™" the distribu-

ible), which can be enforced by adding a multiple of the ;- - torizes if and only if K~1);, = 0 for each(i, )
identity matrix. The local kernel will thus only depend on 1.1 is not an edge i) (Lauritzenj 1996). ’

the submatriced{; = K;randL; = L ;, which are

positive definite matrices. Note that we use kernel matrice$n this paper, we only considetecomposablgraphical

K andL to represent the geometry of each graph, and thafmodels, for which the graphy is triangulated(i.e., there
we use a positive definite kernel on such kernel matrices. exists no chordless cycle of length strictly larger than 3).
In this case, the joint distribution is uniquely defined from
its marginalspc(z¢) on the cliquesC of the graph@.
Namely, ifC(Q) is the set of maximal cliques @, we can
build a tree of cliques, gunction tree, such thagi(z) =

We consider the following positive definite kernel on
positive matricesk’ and L, the (squared) Bhattacharyya
kernelkg, defined as (Kondor & Jebara, 2003):

k(K L) = |K[V2|L|V2 | KL~ @ lleecgre(zo)/ e crec@),cner Pencr (zoner) (see
_ Figure 4 for an example of a graphical model and a junction
where| K| denotes the determinant &f. tree). The set§' N C’ are usually referred to aeparators

By taking the product of the attribute-based local kernel2nd We letdenots(Q) the set of such separators. Note that
and the position-based local kernel, we get the followingfor a zero mean normally distributed vector, the marginals
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(1) Q‘Q 3.3. Graphical Models and Kernels

O—G)r—5) We now propose several ways of defining a kernel adapted
‘ to graphical models. All of them are based on replacing

@ ® determinantsM | by |IIg (M), and their different decom-

positions in Eq. (3) and Eq. (4). Simply using Eqg. (3), we

Figure 4.(left) original graph, (middle) a single ex- obtain the similarity measure:

tracted tre-walk, (right) decomposable graphical model

Q1(T) with added edges in red, defined in Section 3.4. kgo(K,L):HkB(KC,LC) HkB(Ks,Ls)*l- (5)

The junction tree is a chain composed of the cliques ’ CEC(Q) SES(Q)

{1,2},{2,3,6},{5,6,9}, {4,5,8}, {4, 7}. which turns out not to be a positive definite kernel for gen-
eral covariance matrices:

pc(zc) are characterized by the marginal covariance maproposition 1 For any decomposable mod@| the kernel
trix Ko = Kc,c. Projecting onto a graphical model will 1 ' defined in Eq. (5) is a positive definite kernel on the
preserve the marginal over all maximal cliques, and thusset of covariance matrice&” such that for all separators
preserve the local kernel matrices, while imposing zeros ing ¢ S(Q), Ks.s = I. In particular, when all separators
the inverse ofx'. have cardinal one, this is a kernel on correlation matrices.

3.2. Graphical Modelsand Projections In order to remove the condition on separators (i.e.,
we want more sharing between cliques than through a
single variable), we consider the rooted junction tree
representation in Eq. (4). A straightforward kernel is
%o compute the product of the Bhattacharyya kernels
variance matrices onto a graphical model, which is a clas’BEClig(C): Leipg () for each conditional covariance
matrix. However, this does not lead to a true distance on

sical tool in probabilistic modelling (Lauritzen, 1996). We ; . .
L ! covariance matrices that factorize ghbecause the set of
leave the study of the approximation properties of such g - . . . :
LT . conditional covariance matrices do not characterize entirely
projection (i.e., for a giverk(, how dense the graph should

be to approximate the full local kernel correctly?) to futureth(?.Se distributions. Rather, we consider the following ker-

work—see, e.g., Caetano et al. (2006) for related results.

We let denotell, (K) the covariance matrix that factor-
izes in@ which is closest tax for the Kullback-Leibler
divergence between normal distributions. In this paper, w
essentially replac&” by Il (K); i.e., we project all our co-

Clpa(C
kg(K’ L) = HCeC(Q) ks‘pQ( )(K» L); (6)
Practically, since our kernel on kernel matrices involves ] Rz
determinants, we simply need to complif&, (K)| effi-  for the root cllque,cwe gef'”ezs (K, L) = ks(Kr, Lr)
ciently. For decomposable graphical modéls;(K) can  and the kernelﬂcg‘p‘?( )(K, L) are defined as kernels
be obtained in closed form (Lauritzen, 1996) and its deterbetween conditional Gaussian distributions 2 given
minant has the following simple expression: Zpo(c)- We use
k@ 1y K@ PILewa@”? o)
= — . B )T 1 )
o el czc: vl s; oelfisl @) 2K cipae)+3Loimeo) +MMT]
€@ 5@ where the additional term M is equal to
1 -1 1 .
The determinanfil, (K)| is thus a ratio of terms (determi- §(K07PQ(C)KpQ(_C) *LC7_17Q(C)_Lp9(C))_- This exactly cor-
nants over cliques and separators), which will restrict the®Sponds to putting a prior with identity covariance matrix
applicability of the projected kernels (see Proposition 1).0n variablesZ,, ) and considering the kernel between
In order to keep only products, we consider the fo||OWingthe resulting joint covariance matrices on variables indexed
equivalent form: if the junction tree is rooted (by choosing PY (€, pq(C)). We now have a positive definite kernel on
any clique as the root), then for each clique but the root, &Il covariance matrices:
unique parent clique is defined, and we have:

Proposition 2 For any decomposable modgl the kernel
g [Tlo(K)| = 3 log e kg(K, L) defined in Eq. (6) and Eq. (7) is a positive defi-
Q CeC(@Q) 78 [Kpg o) nite kernel on the set of covariance matrices.

>ceco) 108 Kepoo)l  (4)

Note that the kernel is not invariant by the choice of the
particular root of the junction tree. However, in our setting,
this is not an issue because we have a natural way of rooting
the junction trees (i.e, following the rooted tree-walk, see

where pg(C) is the parent cligue ofQ) (and @ for
the root cligue) and the conditional covariance ma-

trix is def'?fd’ as usual, a¥cpec) = Koo = gegion 3.4). Note that these kernels could be useful in
K po ) (0) po () Kpo(c).c (Lauritzen, 1996). other domains than point clouds and computer vision.
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In Section 4, we will use the notatioifif;‘b"]l“]2 (K,L)
for |[I;| = |I2] and|Ji| = |J2| to denote the kernel
between covariance matricés;, j;, and Ly, ;, adapted
to the conditional distributiond; |1, and J,|J>, defined
through Eq. (7).

3.4. Choice of Graphical Models Figure 5.(left) undirected grapldZ, (right) graphG ».

Given the rooted tree structufeof a g-tree-walk, we now o . ) ]

need to define the graphical mod@) (7)) that we use to f of R, are distinct from the nodes iR,. This defines a
project our kernel matrices. A natural candidatefist- ~ 9raPhGa,s = (Va,s, Ea 5) and a neighborhoallc, , ()
self, however, as shown in Section 4, in order to computdor 12 € Va5 (see Figure 5 for an example). Similarly we
efficiently the kernel we simply need that the local ker-defineagrapttl, s = (Wa, s, Fo, ) for the graphti. Note
nel is a product of terms that only involve a node and itsthat whem =1, Vi s is the set of paths of length less than
3-descendants. The densest graph (remember that deng¥requal toj.

graphs lead to better approximations when projecting ont@or a j-tree-walk, the root with its3-descendants must
the graphical model) we may use is exactly the following: have distinct vertices and thus corresponds exactly to an el-
we defineQg(T") such that for all nodes ifi’, the node to-  gment ofV, 5. We denotei? , (G, H, Ry, S,) the same
gether with all its3-descendants form a clique, i.e., a nodekernel as defined in Eq. (8), but restricted to tree-walks that
is connected to itg3-descendants and ali-descendants gtgrt respectively with?, andS,. Note that if By and S,

are also mutually connected (see Figure 4 for example fogre not equivalent, thehgﬁ (G, H, Ry, So) = 0.
6 = 1): the set of cliques are thus the setfamilies of o

depths + 1 (i.e., with 3 + 1 generations). Thus, our final We obtain the following recursion between depthand

kernel is: depthy—1, for all Ry €V, g and andS, € W, s such that
Ry~ S():
Kapr(GH) = 3 fru(D)x i T
TeTa,~ ka7ﬁ,»~/(G7 H7 R07 SO) = ka7ﬁ,~/—1(Ga Ha R07 SO)
T «@
> Y B PELL)aaad).bT). @) +> > >

I€Js(T,G) JETs(T,H) P=L Ri,..., Ry € NG, ;,(Ro) Si,...,5p € Nu, ;(S0)

The main intuition behind this definition is to sum local Ry,..., R, disjoint S, ..., Sp disjoint

similarities over all matching subgraphs. In order to obtain
a tractable formulation, we simply needed (a) to extend the
set of subgraphs (to tree-walks of depthand (b) to fac-

A H ka(a(root(R;)), b(root(Si)))x

torize the local similarities along the graphs. We now show =i il fo-izi Silo e py (2
how these elements can be combined to derive efficient re- 17, k55K, L) Hlk&vﬂﬂ—l(a H,Ri, S:) | |-
cursions. . 7 .

Note that if any of the treesR; is not equivalent

4. Dynamic Programming Recursions to S;, it does not contribute to the sum. The
In order to derive dynamic programming recursions Werecursion 's inttialized with kiB’W(G’H’ Bo,So) =

' | Foly£(Fo) Kg,, Ls,) while the final
follow Mahé and Vert (2006) anq rely on thg fact that ﬁernel is o({)?a(iciw(gjO)Bs(gammg\g IEJ\;erSEi)HO an?jtsf, P :
ary g-tree-walks ofG can essentially be defined through ; 7 (G, H) =Y KT . (G, H, Ro, So)
1-tree-walks on the augmented graph of all rooted subtrees®%7* Ro~eSo a8y N0 200 10,20/
of G of depth at most3 and arity less tham. We thus
consider the seY, 3 of non complete rooted (unordered)
subtrees ol = (V, E), of depths less thag and arity
less tham. Given two different rooted unordered labelled
trees, they are saieluivalentor isomorphic) if they share
the same tree structure, and this is denoted

Computational Complexity The complexity of comput-
ing one kernel between two graphs is linearifthe depth

of the tree-walks), and quadratic in the sizelgf 3 and
Wa.3. However, those sets may have exponential sizé in
and«a in general (in particular if graphs are densely con-
nected). And thus, we are limited to small values (typically
On this setl, g, we define alirectedgraph with edge set o < 3 andg < 6) which are sufficient for good classifica-
E, s as follows: Ry € V, g is connected ta?, € V,, gif  tion performance (in particular, higheror o do not nec-
“the tree R, extends the tred?, one generation further”, essarily mean better performance, see Section 5). Overall,
i.e., if and only if (a) the firsi3 — 1 generations o, are  one can deal with any graph size, as long as the “sufficient
exactly equal to one of the complete subtred?gfrooted  statistics” (i.e., the unique local neighorhoodsiins) are

at a child of the root ofRy, and (b) the nodes of depth not too numerous.
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In this paper, we have defined a family of kernels, corre-
» ) sponding to different values of the following free parame-
ters (shown with their possible values): arity of tree-walks
! l\/ (o = 1,2), order of tree-walks{ = 1,2,4,6), depth of
tree-walks ¢ = 1,2, 4,8, 16, 24), penalization on number
Figure 6.For digits and Chinese characters: (left) original charac-of nodes (X=1), penalization on number of leaf nodes
ters, (right) thinned and subsampled characters. .1, .01), bandwidth for kernel on positions & .05, .01, .1),

ridge parameters = .001), bandwidth for kernel on at-

) o ~_ tributes ¢ =.05,.01,.1).
For example, for the handwritten digits we use in sim-

ulations, the average number of nodes in the graphs ighe first two sets of parameters, (3, v, A, v) are param-

18 + 4, while the average cardinal df, 5 and running ~ eters of the graph kernel, independent of the application,
times' for one kernel evaluation are, for walk kernels of While the last set (7, , y-are parameters of the kernels for
depth 24: [V, 5] = 36, T = 2ms (o« = 1, 8 = 2), attributes and positions. Note that with only a few impor-
Vol =37, T = 3ms (o = 1, 8 = 4); and for tree-  tant scaleT parameters éandv), we are a_ble to characterize
kernels: [V 5] = 56, T = 25 ms (@ = 2, 8 = 2), complex interactions between the vertices and edges of the
Vgl =70, T = 32ms (a = 2, § = 4). graphs. In practice, this is important to avoid considering

) i ~many more distinct parameters for all sizes and topologies
Finally, we may reduce the computational load by consideryt g ptrees.

ing a set of trees of smaller arity in the previous recursions;

of arity o > 1. validation: in the outer loop, we consider 5 different train-

ing folds with their corresponding testing folds. On each
training fold, we consider all possible values®fand .

For all of those values, we select all other parameters (in-
We have tested our new kernels on the task of isolatedluding the regularization parameters of the SVM) by 5-
handwritten character recognition, handwritten arabic nufold cross-validation (the inner folds). Once the best pa-
merals (MNIST dataset) and Chinese characters (ETL9Bameters are found only by looking only at the training
dataset). We selected the first 100 examples for thdold, we train on the whole training fold, and test on the
ten classes in the MNIST dataset, while for the ETL9Btesting fold. We output the means and standard deviations
dataset, we selected the five hardest classes to discrimif the testing errors for each testing fold. We show in Fig-
nate among 3,000 classes (by computing distances betweene 7 the performance for various valuescoind 5. We
class means) and then selected the first 50 examples peompare those favorably to three baseline kernels with hy-
class. Our learning task it to classify those characters; w@erparameters learned by cross-validation in the same way:
use a one-vs-rest multiclass scheme with 1-norm suppofifa) theGaussian-RBF kerneln the vectorized original im-
vector machines (see, e.g., Shawe-Taylor and Cristianirkges, which leads to testing errorslaf6 +5.4% (MNIST)
(2004)). and50.4 + 6.2% (ETL9B); (b) the regularandom walk

We consider characters as drawings&if, which are sets kernelwhich sums over all walk lengths, which leads to
9 testing errors oR.6 + 1.3% (MNIST) and 34.8 + 8.4%

of possibly intersecting contours. Those are naturally rep- i .
resented as undirected planar graphs. We have thinned ar&?TLgB)' and (c) thepyramid match kerne{Grauman &

. : arrell, 2007), which is commonly used for image clas-
subsampled uniformly each character to reduce the sizes gt.. . :
R Sification and leads here to testing errors1of8 + 3.6%
the graphs (see two examples in Figure 6).

(MNIST) and45.2 + 3.4% (ETLOB).

5. Application to Character Recognition

" . B 2
The kernel on positions @X(I’y) N eXp.( 7l y”. )+ These results show that our new family of kernels that
k0(x,y), but could take into account different weights on . X

use the natural structure of line drawings are outperform-

horizontal and vertical directions. We add the positionsin other kernels on structured data (regular random walk
from the center of the bounding box as features, to tak 9 g

. " . %ernel and pyramid match kernel) as well as the “blind”
into account the global positions, i.e., we usg(z,y) = , . .

(—v|lz — ||2). This is necessary because the rOblemGaussmn-RBF kernel which does not take into account ex-
SXPL=UIT — Yl ). ary b P plicitly the structure of images but still leads to very good
of _han_dwrl'gten character recognition is not globally trans'performance with more training data (LeCun et al., 1998).
lation invariant. Note that for arabic numerals, higher arity does not help,

Those do not take into account preprocessing and were evalwhich is not surprising since most digits have a linear struc-
uated on an Intel Xeon 2.33 GHz processor from MATLAB/C tyre (i.e, graphs are chains). On the contrary, for Chinese
code, and are to be compared to the simplest recursions WhltharaCterS, which exhibit higher connectivity, best perfor-

correspond to the usual random walk kernel £ 1, 8 = 1), . . .
whereT — 1 ms. mance is achieved for binary tree-walks.
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Graph Kernels between Point Clouds

X”\ilslT g/IILIISQT 5T7L91B 51}928 Frohlich, H., Wegner, J. K., Sieker, F., & Zell, A. (2005).
T 6146 99139 568 L4650 L84 Optimal assignment kernels for attributed molecular
56+31 | 56+30 | 292488 | 25.2+2.7 graphs.Proc. ICML

54+36 | 54+£31| 324+£39 | 29.6£4.3
56+33 | 6E£3.5 29.6 £4.6 | 28.4+4.3

e TR eRey
[

[ e

Grauman, K., & Darrell, T. (2007). The pyramid match

- — : kernel: Efficient learning with sets of featurek.Mach.
Figure 7.Error rates (multiplied by 100) on handwritten character Learn. Res.8, 725-760

classification tasks.

) Harchaoui, Z., & Bach, F. (2007). Image classification with
6. Conclusion segmentation graph kerneBroc. CVPR

We have presented a new kernel for point clouds which iscashima, H., Tsuda, K., & Inokuchi, A. (2004). Kernels for

based on comparisons of local subsets of the point clouds. graphs.Kernel Methods in Comp. BiologIT Press.
Those comparisons are made tractable by (a) considerin
subsets based on tree-walks and walks, and (b) using Igondor, R. I., & Jebara, T. (2003). A kernel between sets
specific factorized form for the local kernels between tree- Of vectors.Proc. ICML
walks, namely a factorization on a properly defined probay ayritzen, S. (1996)Graphical models. Oxford U. Press.
bilistic graphical model.

o . LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Moreover, we have reported applications to handwritten 5 54dient-based learning applied to document recogni-
character recognition where we showed that the kernels 5 proc. IEEE 86, 2278-2324.

were able to capture the relevant information to allow

good predictions from few training examples. We are cur-Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N.,
rently investigating other domains of applications of points & Watkins, C. (2002). Text classification using string
clouds, such as shape mining in computer vision (Belongie kernels.J. Mach. Learn. Res2, 419-444.

et al., 2002), and prediction of protein functions from theirMahé P., & Vert, J.-P. (2006)Graph kernels based on tree
three-dimensional structures (Qiu et al., 2007). patterns for molecule§Tech. report HAL-00095488).

Neuhaus, M., & Bunke, H. (2006). Edit distance based ker-

nel functions for structural pattern classificatidattern
We would like to thank Zal Harchaoui and Jean-Philippe  Recognition39, 1852—-1863.

Vert for fruitful discussions related to this work.
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Abstract ing vectors with many zeros, and thus performs model se-
lection. Recent works (Zhao & Yu, 2006; Yuan & Lin,
2007; Zou, 2006; Wainwright, 2006) have looked precisely
at the model consistency of the Lasso, i.e., if we know
that the data were generated from a sparse loading vector,
does the Lasso actually recover the sparsity pattern when
the number of observed data points grows? In the case of
a fixed number of covariates, the Lasso does recover the
sparsity pattern if and only if a certain simple condition on
the generating covariance matrices is verified (Yuan & Lin,
2007). In particular, in low correlation settings, the Lasso
is indeed consistent. However, in presence of strong corre-
lations between relevant variables and irrelevant variables,
the Lasso cannot be consistent, shedding light on potential
problems of such procedures for variable selection. Adap-
tive versions where data-dependent weights are added to

ple, then intersecting the supports of the Lasso the¢;-norm then allow to keep the consistency in all situa-

bootstrap estimates leads to consistent model se- tions (Zou, 2006).
lection. This novel variable selection algorithm, In this paper, we first derive a detailed asymptotic analysis
referred to as the Bolasso, is compared favorably  of sparsity pattern selection of the Lasso estimation pro-
to other linear regression methods on synthetic ~ cedure, that extends previous analysis (Zhao & Yu, 2006;
data and datasets from the UCI machine learning Yuan & Lin, 2007; Zou, 2006), by focusing on a spe-
repository. cific decay of the regularization parameter. Namely, we
show that when the decay is proportionabito!/2, where
n is the number of observations, then the Lasso will se-
1. Introduction lect all the variables that should enter the model tie
evantvariables) with probability tending to one exponen-
tially fast with n, while it selects all other variables (the
Z?f'r::elevant variables) with strictly positive probability. If

We consider the least-square linear regression
problem with regularization by thé -norm, a
problem usually referred to as the Lasso. In this
paper, we present a detailed asymptotic analy-
sis of model consistency of the Lasso. For var-
ious decays of the regularization parameter, we
compute asymptotic equivalents of the probabil-
ity of correct model selection (i.e., variable selec-
tion). For a specific rate decay, we show that the
Lasso selects all the variables that should enter
the model with probability tending to one expo-
nentially fast, while it selects all other variables
with strictly positive probability. We show that
this property implies that if we run the Lasso for
several bootstrapped replications of a given sam-

Regularization by thé,-norm has attracted a lot of inter-
est in recent years in machine learning, statistics and sign

Ff:ocersi)lln?r.] Iin the c<|7ntre>]<(t ?rf Igetlst—sq:gare Im_;z;r L??rsiss'ogteveral datasets generated from the same distribution were
e problem is usually referred to as thasso(Tibshirani, available, then the latter property would suggest to con-

199.4)' Much of the early_ effort_ has been dedl_cgted to al"sider the intersection of the supports of the Lasso estimates
gorithms to solve the optimization problem efficiently. In

ticular. thel lqorithm of Ef tal. (2004) all for each dataset: all relevant variables would always be se-
particuiar, arsalgorithm ot =fron et al. ( ) allows lected for all datasets, while irrelevant variables would en-
to find the entire regularization path (i.e., the set of solu

tions for all values of the regularization parameters) at thetert.h(.a models ranQome, and intersecting the supports from
cost of a single matrix inversion sufficiently many .dlfferen't datasets would S|mp!y e!lmlnate

: them. However, in practice, only one dataset is given; but
Moreover, a well-known justification of the regularization resampling methods such as theotstrapare exactly dedi-
by the/;-norm is that it leads teparsesolutions, i.e., load- cated to mimic the availability of several datasets by resam-
- pling from the same unique dataset (Efron & Tibshirani,
Appearing inProceedings of the25*" International Conference 1998). In this paper, we show that when using the bootstrap

on Machine LearningHelsinki, Finland, 2008. Copyright 2008 . : .
by the author(s)/owner(s). and intersecting the supports, we actually get a consistent
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model estimatewithoutthe consistency condition required
by the regular Lasso. We refer to this new procedure a ; \ I
the Bolasso(bootstrap-enhancetbastabsolute shrinkage S = Sign(w) the sign pattern ofv, ande = ¥ — X 'w

operator). Finally, our Bolasso framework could be Seenthe additive noisé.Note that our assumption regarding cu-

as a voting scheme applied to the supports of the bootmulantgenerating functions is satisfied wh€rande have

strap Lasso estimates; however, our procedure may rathGPMPact supports, and also when the densitie¥ @inde

be considered as a consensus combination scheme, as (&€ light tails.
keep the (largest) subset of variables on whadlhregres-  We consideindependent and identically distributéid.d.)

We let denote] = {j,w; # 0} the sparsity pattern of,

sors agree in terms of variable selection, which is in ourdata(z;, ;) € R? x R, = 1,...,n, sampled fromPxy;
case provably consistent and also allows to get rid of a pothe data are given in the form of matricgs € R” and
tential additional hyperparameter. X € R"Xp,

The paper is organized as follows: in Section 2, we presentjote that the i.i.d. assumption, together with1(3), are

the asymptotic analysis of model selection for the Lassothe simplest assumptions for studying the asymptotic be-
in Section 3, we describe the Bolasso framework, while inhavior of the Lasso; and it is of course of interest to allow
Section 4, we illustrate our results on synthetic data, wherenore general assumptions, in particular growing number of
the true sparse generating model is known, and data fromariablesp, more general random variables, etc., which are
the UCI machine learning repository. Sketches of proofsputside the scope of this paper—see, e.g., Meinshausen and
can be found in Appendix A. Yu (2008); Zhao and Yu (2006); Lounici (2008).

Notations For a vectorv € RP, we denote||v|s = 22 |Lasso Estimation

(vT0)1/2 its Ly-norm, [|v]|ec = max;e(r, . py Vi its loo- . i N

norm and|jv]; = 7, | its £1-norm. Fora € R, We consider the square loss funcU%_Zi_:l(yi —
sign(a) denotes the sign of, defined asign(a) = 1if w'i)* = 5-|Y — Xw]3 and the regularization by the
a>0,—1if a <0,and0if a = 0. For avectow ¢ R,  f1-norm defined agwl(|; = >7_, [w;|. Thatis, we look

sign(v) € RP denotes the the vector of signs of elementsat the following Lasso optimization problem (Tibshirani,
of v. 1994)

1Y Y12
Moreover, given a vectow € RP and a subsef of el 2 lIY = X[z + pnwll1, @

{1,...,p}, v; denotes the vector IRC>*4()) of elements of ) o
vindexed byl. Similarly, for a matrixA € R?*?, A; ; de- wherep,, > 0 is the regularization parameter. We denote

notes the submatrix of composed of elements dfwhose @ @ny global minimum of Eq. (1)—it may not be unique in
rows are inl and columns are id. general, but will with probability tending to one exponen-

tially fast under assumptioA\@).

2. Asymptotic Analysis of Model Selection for

2.3. Model Consistency - General Results
the Lasso

. _ _ o _In this section, we detail the asymptotic behavior of the
In this section, we describe existing and new asymptotiq_asso estimatey, both in terms of the difference in norm
results regarding the model selection capabilities of thewith the population valuev (i.e., regular consistency) and

Lasso. of the sign patternsign (@), for all asymptotic behaviors
of the regularization parameter,. Note that information
2.1. Assumptions about the sign pattern includes information aboutgbp-

port, i.e., the indices for which w; is different from zero;
moreover, wheno is consistent, consistency of the sign
pattern is in fact equivalent to the consistency of the sup-
port.

We consider the problem of predicting a respolise R
from covariatesX = (Xi,...,X,)" € R?. The only
assumptions that we make on the joint distributiégy of
(X,Y) are the following:
i . ) We now consider five mutually exclusive possible situa-
(A1) The cumular;t generating functionBexp(s[|X2)  tions which explain various portions of the regularization
andE exp(sY™") are finite for somes > 0. path (we assume (A1-3)); many of these results appear else-
where (Yuan & Lin, 2007; Zhao & Yu, 2006; Fu & Knight,
2000; Zou, 2006; Bach, 2008; Lounici, 2008) but some of
the finer results presented below are new (see Section 2.4).

(A2) The joint matrix of second order momen@ =
EXX'T € RP*Pis invertible.

(A3) E(Y|X) = X "w andvar(Y|X) = o a.s. for some Throughout this paper, we use boldface fonts for population
w € RP ando € R, quantities.
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1. If u, tends to infinity, thenv = 0 with probability  In this paper, we now consider the specific case where
tending to one. pn = pon~ Y% for ug € (0,00), where we derive new
asymptotic results. Indeed, in this situation, we get the cor-

rect signs of the relevant variables (thosd)rwith proba-

bility tending to one, but we also get all possible sign pat-
mum of %A(w -w) Qw— W) + polwl1. Thus, the ternys consisqtent with this, i.e., all gther vgriables (th%sepnot
estimated never converges in probability t, while i, 3y ay be non zero with asymptotically strictly posi-
the sign pattern tends to the one of the previous globafyq hrohability. However, if we were to repeat the Lasso
minimum, which may or may not be the same as theggtimation for many datasets obtained from the same dis-
one ofw. tribution, we would obtain for eachy, a set of active vari-

3. If 4, tends to zero slower than1/2, thenw con-  ables, all of which includel with probability tending to
verges in probability tow (regular consistency) and ©On€, but potentially containing all other subsets. By inter-
the sign pattern converges to the sign pattern of thésecting those, we would get exacily
global minimum ofjv " Qu+ vy sign(wy) +[lus<[li.  However, this requires multiple copies of the samples,
This sign pattern is equal to the population sign vectoryich are not usually available. Instead, we consider boot-
s = sign(w) if and only if the following consistency  strapped samples which exactly mimic the behavior of hav-
condition is satisfied: ing multiple copies. See Section 3 for more details.

c3Q7 1 si <1 2
1QaeaQyy sign(wa)lloc 2) 2.4. Model Consistency with Exact Root-n

Thus, if Eq. (2) is satisfied, the probability of correct ~ Regularization Decay
sign estimation is tending to one, and to zero other
wise (Yuan & Lin, 2007).

2. If u,, tends to a finite strictly positive constang, then
w converges in probability to the unique global mini-

‘In this section we present detailed new results regarding
the pattern consistency for, tending to zero exactly at
4.1 jn = pon—/2 for g € (0, 00), then the sign pat- raten™'/* (see proofs in Appendix A):
tern ofw agrees od with the one ofw with probabil-
ity tending to one, while for all sign patterns consistent
on J with the one ofw, the probability of obtaining
this pattern is tending to a limit if0, 1) (in particular
strictly positive); that is, all patterns consistent &n
are possible with positive probability. See Section 2.4 P(sign (i) = s) — p(s, o) = O(n*1/2 logn).
for more details.

Proposition 1 Assume (A1-3) ands, = pon~ /2, with
1o > 0. Then for any sign pattera € {—1,0,1}? such
that s; = sign(wy), P(sign(w) = s) tends to a limit
p(s, o) € (0,1), and we have:

Proposition 2 Assume (A1-3) andi, = pon~'/?, with
1o > 0. Then, for any patters € {—1,0, 1}? such that
sy # sign(wy), there exist a constamt(so) > 0 such that

5. If u,, tends to zero faster tharr /2, them is consis-
tent (i.e., converges in probability @) but the sup-
port of w is equal tof1, . . ., p} with probability tend-

ing to one (the signs of variablesJdii may be negative log P(sign(w) = s) < —nA(ug) + O(n~/?).
or positive). That is, thé;-norm has no sparsifying
effect. The last two propositions state that we get all relevant vari-

ables with probability tending to onexponentially fast,
Among the five previous regimes, the only ones with con-while we get exactly get all other patterns with probabil-
sistent estimates (in norm) and a sparsity-inducing effecity tending to a limitstrictly between zero and one. Note
are u, tending to zero angu,n'/? tending to a limit that the results that we give in this paper are validffer
1o € (0,00] (i.e., potentially infinite). Wheny = +oo, nite n, i.e., we can derive actual bounds on probability of
then we can only hope for model consistent estimates if theign pattern selections with known constants that explictly
consistency condition in Eq. (2) is satisfied. This some-depend orw, Q and the joint distributiorPxy .
what disappointing result for the Lasso has led to various
improvements on t_he Lassq t_o ensure model consistencg_ Bolasso: Bootstrapped L asso
even when Eq. (2) is not satisfied (Yuan & Lin, 2007; Zou,
2006). Those are based on adaptive weights based on ti@&ven then i.i.d. observationgz;,y;) € R? x R, i =
non regularized least-square estimate. We propose in Set;...,n, put together into matricest € R™*? and
tion 3 an alternative way which is based on resampling. Y <€ R", we considenn bootstrapreplications of then

" ?Here and in the third regime, we do not take into account thedata points (Efron & Tibshirani, 1998); that is, fér =
i i ime, wi i u ; k o,k p
pathological cases where the sign pattern of the limit in unstable,l’ -, m, We consider ghost sampléz;, y;) € R” x R,

. L —k —k
i.e., the limit is exactly at a hinge point of the regularization path. = 1, ..., n, given by matricesY € R"*? andY < R".
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Then pairs (z¥,y¥),i = 1,...,n, are sampled uniformly ~ Therefore, iflog(m) tends to infinity slower tham when

at randomwith replacemenfrom the n original pairs in  n tends to infinity, the Bolasso asymptotically selects with

(X,Y). The sampling of thevm pairs of observations is overwhelming probability the correct active variable, and

independent. In other words, we defined the distributionby regular consistency of the restricted least-square esti-
of the ghost sampl(—:Y*,Y*) by samplingn points with  mate, the correct sign pattern as well. Note that the previ-
replacement froniX,Y), and, given(X,Y), them ghost  ous bound is true whether the condition in Eqg. (2) is sat-

samples are independently sampled i.i.d. from the distribuisfied or not, but could be improved on if we suppose that
tion of (Y*, 7*). Eq. (2) is satisfied. See Section 4.1 for a detailed compari-

The asymptotic analysis from Section 2 suggests to esti?" with the Lasso on synthetic examples.

mate the supportd, = {j, wf # 0} of the Lasso esti- _ )
matesd* for the bootstrap sampleg, = 1,...,m, and 4 Simulations
to intersect them to define the Bolasso model estimate

m ) % this section, we illustrate the consistency results obtained
the support:.J = (,_, Jx. Once.J is selected, we es-

. by th larived | . ictod in this paper with a few simple simulations on synthetic
timatew by the unregularized least-square fit restricte toexamples and some medium scale datasets from the UCI

variables inJ. The detailed algorithm is given in Algo- . -hine jearning repository (Asuncion & Newman, 2007).
rithm 1. The algorithm has only one extra parameter (the

number of bootstrap samples). Following Proposition 3,
log(m) should be chosen growing with asymptotically
slower thann. In simulations, we always use = 128  For a given dimensiop, we sampled¥ € R? from a nor-

4.1. Synthetic examples

(except in Figure 3, where we study the influencen)f mal distribution with zero mean and covariance matrix gen-
erated as follows: (a) samplea p matrix G with indepen-
Algorithm 1 Bolasso dent standard normal distributions, (b) fo@ = GG,
Input: data(X,Y) € R**@+D) (c) scaleQ to unit diagonal. We then selected the first

Card(J) = r variables and sampled non zero loading vec-
regularization parameter tors as follows: (a) sample each loading signgnl, 1}
for k — 1 tom do uniformly at random and (b) rescale those by a scaling
Generate bootstrap samp(e)?k,?k) c R7X(p+1) which is uniform at random betweeh and 1 (to ensure
minjey [w;| > 1/3). Finally, we chose a constant noise
level o equal to0.1 times(E(w " X)?)'/2, and the additive
noises is normally distributed with zero mean and variance
end for . o2, Note that the joint distribution ofiX, Y') thus defined
Compute{ =M= e _ satisfies with probability one (with respect to the sampling
Computew, from (X, Y) of the covariance matrix) assumptiomsl¢3).

number of bootstrap replicates

Compute Lasso estimaté® from (Yk,Yk)
Compute suppory, = {j, &% # 0}

_ ) . In Figure 1, we sampled two distributiorfd¢y with p =
Note that in practice, the Bolasso estimate can be computeg} o4, — s relevant variables. one for which the consis-

simultaneously for a large number of regularization param—tency condition in Eq. (2) is satisfied (left), one for which

eters because of the efficiency of the Lars algorithm (whichy \vas not satisfied (right). For a fixed number of sample

we use in simulations), that allows to find the entire regular-,, _ 1000, we generated 256 replications and computed the

ization path for the Lasso at the (empirical) cost of a singlegmirical frequencies of selecting any given variable for
matrix inversion (Efron et al., 2004). 'I;hus ghe computa-ihe | ass0 as the regularization parametarries. Those
tional complexity of the Bolasso 8(m(p” + pn)). plots show the various asymptotic regimes of the Lasso de-
The following proposition (proved in Appendix A) shows tailed in Section 2. In particular, on the right plot, although
that the previous algorithm leads to consistent model seled?0 1 leads to perfect selection (i.e., exactly variables with
tion. indices less than = 8 are selected), there is a range where
all relevant variables are always selected, while all others
Proposition 3 Assume (A1-3) and., = pon~ /2, with  are selected with probability withif0, 1).
uo > 0. Then, for allm > 1, the probability that the
Bolasso does not exactly select the correct model, i.e
P(J # J), has the following upper bound:

In Figure 2, we plot the results under the same condi-
tions for the Bolasso (with a fixed number of bootstrap
replicationsm = 128). We can see that in the Lasso-
consistent case (left), the Bolasso widens the consistency
region, while in the Lasso-inconsistent case (right), the Bo-
lasso “creates” a consistency region.

P(J # J) < mAje= 4o A58 4 4, loslm)

ni/2

where Ay, Ay, Az, A4 are strictly positive constants.
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Figure 1.1 asso: log-odd ratios of the probabilities of selection Figure 3.Bolasso (red, dashed) and Lasso (black, plain): prob-

of each variable (white = large probabilities, black = small prob- ability of correct sign estimation vs. regularization parame-

abilities) vs. regularization parameter. Consistency condition inter. Consistency condition in Eq. (2) satisfied (left) and not

Eq. (2) satisfied (left) and not satisfied (right). satisfied (right). The number of bootstrap replicationsis in
{2,4,8,16,32,64,128,256}.
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Figure 2.Bolasso: log-odd ratios of the probabilities of selection - riqre 4 Comparison of several variable selection methods:

of each variable (white = large probabilities, black = small prob-| 5550 (black circles), Bolasso (green crosses), forward greedy

abilities) vS. _regulanzatlon parar_ngter. (_30n3|stency condition iNimagenta diamonds), thresholded LS estimate (red stars), adap-

Eq. (2) satisfied (left) and not satisfied (right). tive Lasso (blue pluses). Consistency condition in Eq. (2) satis-
fied (left) and not satisfied (right). The averaged (over 32 replica-
tions) variable selection error is computed as the square distance

In Figure 3, we selected the same two distributions andetween sparsity pattern indicator vectors.

compared the probability of exactly selecting the correct

support pattern, for the Lasso, and for the Bolasso with

varying numbers of bootstrap replications (those probabilif€search. Note in particular that we compare with bagging

ties are computed by averaging over 256 experiments witl®f least-square regressions (Breiman, 1996a) followed by

the same distribution). In Figure 3, we can see that in thé thresholding of the loading vector, which is another sim-

Lasso-inconsistent case (right), the Bolasso indeed allowBle way of using bootstrap samples: the Bolasso provides

to fix the unability of the Lasso to find the correct pattern.& more efficient way to use the extra information, not for

Moreover, increasing. looks always beneficial; note that usual stabilization purposes (Breiman, 1996b), but directly

although it seems to contradict the asymptotic analysis iffor model selection. Note finally, that the bagging of Lasso

Section 3 (which imposes an upper bound for consistency)gstimates requires an additional parameter and is thus not

this is due to the fact that not selecting (at least) the relevariested.

variables has very low probability and is not observed with

only 256 replications. 4.2. UCI datasets

Finally, in Figure 4, we compare various variable selectionThe previous simulations have shown that the Bolasso is
procedures for linear regression, to the Bolasso, with twasuccesful at performing model selection in synthetic exam-
distributions where» = 64, » = 8 and varyingn. For all  ples. We now apply it to several linear regression prob-
the methods we consider, there is a natural way to select exems and compare it to alternative methods for linear re-
actly r variables with no free parameters (for the Bolasso,gression, namely, ridge regression, Lasso, bagging of Lasso
we select the most stable pattern witlelements, i.e., the estimates (Breiman, 1996a), and a soft version of the Bo-
pattern which corresponds to most values:df We can  lasso (referred to as Bolasso-S), where instead of intersect-
see that the Bolasso outperforms all other variable seledng the supports for each bootstrap replications, we select
tion methods, even in settings where the number of samplekose which are present in at led@t% of the bootstrap
becomes of the order of the number of variables, which refeplications. In Table 1, we consider data randomly gener-
quires additional theoretical analysis, subject of ongoingated as in Section 4.1 (with= 32, r = 8, n = 64), where
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the true model is known to be composed of a sparse Ioading . N
L X . able 1.Comparison of least-square estimation meth-
vector, while in Table 2, we consider regression datasets

f he UCI hine | ; : f hich 0ds, data generated as described in Section 4.1, with
rom the machine learning repository, for which we K = HQJCJQEJISJHoo (cf. Eq. (2)). Performance is mea-

have no.indication regarding the sparsity of the F’eSF lin-syred through mean squared prediction error (multiplied by
ear predictor. For all of those, we perform 10 replications00).

of 10-fold cross validation and for all methods (which all [~

have one free regularization parameter), we select the be idge
regularization parameter on the 100 folds and plot the meal 5550
squarepredictionerror and its standard deviation.

0.93

8.8 £4.5
7.6+ 3.8
Bolasso | 5.4 &+ 3.0

Note that when the generating model is actually sparse (TaBagging | 7-8+47

ble 1), the Bolasso outperforms all other models, while inBolasso-$5.7 & 3.8

other cases (Table 2) the Bolasso is sometimes too strict

in intersecting models, i.e., the softened version works bet- . N
. - . . __Table 2.Comparison of least-square estimation methods, UCI

ter and is more competitive with other methods. Studying . .

he eff f thi ftened sch hich i ._Jregression datasets. Performance is measured through mean

the effects of this softened scheme (which is more SImI'squared prediction error (multiplied by 100).

lar to usual voting schemes), in particular in terms of th

1.20
4.9+25
44423
34+24
4.6£3.0
3.0£23

1.42
73£3.9
4.7+£2.5
34+£1.7
5.4+4.1
3.1+£28

1.28
8.1+8.6
5.1+£6.5
3.7+10.2
5.8 +8.4
3.2+82

X ; N Autompg | Imports | Machine | Housing
thesubjectofo’ngoingwork : Lasso |18.64+4.9 | 7.8+5.2 |5.8+19.8|28.0+5.7
' Bolasso | 18.144.7 [ 20.74+9.8 | 4.6+21.4 | 26.94+2.5

Bagging | 18.6+5.0 | 8.0+5.2 | 6.0+18.9 | 28.1+6.6

5. Conclusion Bolasso-$17.945.0 | 8.2+4.9 |4.6+19.9 | 26.846.4

We have presented a detailed analysis of the variable se-

leﬁt'on pdrolpertl_es of a boostréipped \;ersu()jn of the rl]‘assotimization problems, namely that if the sign pattern of the
The mode estimation procedure, reterre to as the _Boéolution is known, then we can get the solution in closed
lasso, is provably consistent under general assumptiong,

This work brings to light that poor variable selection re-

sults of the Lasso may be easily enhanced thanks to 24 Optimality Conditions
simple parameter-free resampling procedure. Our contri-
bution also suggests that the use of bootstrap samples kye et denote =V — Xw € R*, Q = YTY/H c RPxP

L. Breiman in Bagging/Arcing/Random Forests (Bre|man,andq _ YTé/n c RP. First, we can equivalently rewrite

1998) may have been so far slightly overlooked and consid: .

. . . Eqg. (1) as:
ered a minor feature, while using boostrap samples may ac-
tually be a key computational feature in such algorithms for | . 1 (w—w)TQ(w—w)—qT (w—w)+ i |Jw]1. (3)
good model selection performances, and eventually goodwek? 2 "

rediction performances on real datasets. o . , :
P P The optimality conditions for Eqg. (3) can be written in

The current work could be extended in various ways: firstterms of the sign pattera = s(w) = sign(w) and the
we have focused on a fixed total number of variables, andparsity pattern/ = J(w) = {j, w; # 0} (Yuan & Lin,
allowing the numbers of variables to grow is important in 2007):

theory and in practice (Meinshausen & Yu, 2008). Second,

the same technique can be applied to similar settings than H(QJcJQ;}QJJ —Qey)wy + (QJcJQ;}qJ —qye)
least-square regression with thenorm, namely regular- +MnQJcJQ}}SJ loo < fins  (4)
ization by block¢;-norms (Bach, 2008) and other losses Sign(Q 71 Qsaws + Q7 ay — Q7 tss) = 55, (5)
such as general convex classification losses. Finally, theo- > &'\ ¢JJ<IIWI T8 47 = Hn¥e g y87) = 57
retical and practical connections could be made with othey, (s paper, we focus on regularization parameterof
work on resampling methods and boostingufBnann, the formu,, = on—"/2. The main idea behind the results

2006). is to consider that@, ¢) are distributed according to their
limiting distributions, obtained from the law of large num-
bers and the central limit theorem, i.€),converges taQ

, _ , a.s. andh!/?q is asymptotically normally distributed with
In this appendix, we give sketches of proofs for the asympy,aan zero and covariance matri®Q. When assuming

totic results presented in Section 2 and Section 3. Th‘:t'his, Propositions 1 and 2 are straightforward. The main
proofs rely on the well-known property of the Lasso 0p- ¢qrt is to make sure that we can safely replé€eq) by

A. Proof of Model Consistency Results
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their limiting distributions. The following lemmas give suf

ficient conditions for correct estimation of the signs of vari-

ables inJ and for selecting a given pattesn(note that all
constants could be expressed in termQoéndw, details
are omitted here):

Lemmal Assume (A2) andl@Q — Q|2 < Amin(Q)/2.
Thensign(wy) # sign(wy) implies|Q~/2q|l, > C; —
1, Co, WhereCy, Cy > 0.

Lemma2 Assume (A2) and let € {—1,0,1}? such that
sy = sign(wy). LetJ = {j,s; # 0} D J. Assume

1Q — Qll2 < min {n1, Amin(Q)/2}, (6)
1Q™"%q|l2 < min{n2, C1 — p1,Ca}, (7)

1QsesQ7 747 — @re — tn Qe Q7 500 < fin
—Csnipin, — Ceminz,  (8)

Vie \J, i [Q75(qs—pnss)], = pnCrm+Csmnz, (9)
with Cy, Cs, Cg, C7,Cy are positive constants. Then
sign(w) = sign(w).

whereC(s, 3) is the set ot such that (a)|Q.-;Q7jt; —
tre — BQrsQ7755lle < B and (b) for alli €
I\, s [Q7y(ts—Bsy)], = 0. Note that with
a = O((logn)n~'/?), which tends to zero, we have:
B{t ¢ Cls. to(1— )} < B{t ¢ Cls, o)} + O(a). Al
terms (if A is large enough) are thu3((log n)n~—1/?).

This shows thaP(sign(w) = sign(w)) = p(s, po) +
O((logn)n=1/2) where p(s, 10) = P{t € C(s, o)} €

(0, 1)—the probability is strictly between 0 and 1 because
the set and its complement have non empty interiors and
the normal distribution has a positive definite covariance
matrix o2Q. The other inequality can be proved similarly.
Note that the constant i@((logn)n~'/?) depends o

but by carefully considering this dependencegnwe can
make the inequality uniform i, as long ag:, tends to
zero or infinity at most at a logarithmic speed (i.e., de-
viates fromn—1/2 by at most a logarithmic factor). Also,

it would be interesting to consider uniform bounds on por-
tions of the regularization path.

A.4. Proof of Proposition 2

Those two lemmas are useful because they relate optimalitifrom Lemma 1, the probability of not selecting any of the
of certain sign patterns to quantities from which we canvariables inJ is upperbounded by

derive concentration inequalities.

A.2. Concentration Inequalities

P(|Q™?qll2> C1 = 1nCa) +P(| Q= Qll2 > Amin(Q)/2),

which is straightforwardly upper bounded (using Sec-
tion A.2) by a term of the required form.

Throughout the proofs, we need to provide upper bounds

on the following quantitiesP(|Q~'/%¢|. > «) and
P(|Q — Q|2 > n). We obtain, following standard argu-
ments (Boucheron et al., 2004): df < Cy andn < Cqg
(whereCy, Co > 0 are constants),

2
P(IQ/ ]2 > a) < dpexp (325 )

n 2
P(IQ = Qll2 > 1) < 4p% exp (— 57 )

We also consider multivariatBerry-Esseen inequalities
(Bentkus, 2003); the probabilif§(n'/2q € C) can be esti-
mated afP(¢ € C) wheret is normal with mean zero and
covariance matrix>Q. The error|P(n'/%2q € C) — P(t €
C)| is thenuniformly (for all convex set€’) upperbounded
by:

400p 402 Xin (Q) 2Bl P || X ||3 = Cran~ /2.

A.3. Proof of Proposition 1

By Lemma 2, for anyd andn large enough, the probability
that the sign is different from is upperbounded by

— A(logn)'/? ogn)/?
P(IQ /2l > A0%2") 1 P (Q - QIfp > A0

+P{t ¢ C(s,po(l — )} + 20n" 2,

A.5. Proof of Proposition 3

In order to simplify the proof, we made the simplifying
assumption that the random variabl&sands have com-
pact supports. Extending the proofs to take into account the
looser condition that X || ands? have non uniformly infi-
nite cumulant generating functions (i.e., assumptitamh))

can be done with minor changes. The probability that
Ny, Ji is different fromJ is upper bounded by the sum
of the following probabilities:

(a) Probability of missing at least one variablein J in
any of them replications. by Lemma 1, the probability
that for thek-th replication, one index id is not selected,
is upper bounded by

P(1Q"2¢*]|l2 > C1/2) + P(IQ — Q*[l2 > Amin(Q)/2),

where ¢* corresponds to the ghost sample; as common
in theoretical analysis of the bootstrap, we relateto ¢

as follows: P(|Q1/2¢*|» > C1/2) < P(||Q~Y%(¢* —

Q)2 > C1/4) +P(||Q~/2¢||2 > C1/4) (and similarly for
P(|Q — @*|l2 > Amin(Q)/2)). Because we have assumed
that X ande have compact supports, the bootstrapped vari-
ables have also compact support and we can use concentra-
tion inequalities (given the original variablés, and also
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after expectation with respect ). Thus the probability References
for one bootstrap replication is upperbounded By ¢"
where B and C' are strictly positive constants. Thus the
overall contribution of this part is less thamBe ™.
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ing repository.
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Abstract

We describe an algorithm for learning in the
presence of multiple criteria. Our technique
generalizes previous approaches in that it can
learn optimal policies for all linear preference
assignments over the multiple reward criteria
at once. The algorithm can be viewed as an
extension to standard reinforcement learning
for MDPs where instead of repeatedly back-
ing up maximal expected rewards, we back
up the set of expected rewards that are max-
imal for some set of linear preferences (given
by a weight vector, w). We present the algo-
rithm along with a proof of correctness show-
ing that our solution gives the optimal policy
for any linear preference function. The solu-
tion reduces to the standard value iteration
algorithm for a specific weight vector, w.

1. Introduction

In Reinforcement Learning (RL), an agent interacts
with the environment to learn optimal behavior. (Sut-
ton & Barto, 1998) Most RL techniques are based on
a scalar reward, i.e., they aim to optimize an objective
that is expressed as a function of a scalar reinforce-
ment. A natural extension to traditional RL tech-
niques is thus the case where there are multiple re-
wards. In many realistic domains, actions depend on
satisfying multiple objectives simultaneously (such as
achieving performance while keeping costs low, a robot
moving efficiently toward a goal while being close to
a recharging station, or a government funding both
military and social programs). Learning optimal poli-
cies in many real-world domains thus depends on the
ability to learn in the presence of multiple rewards.
However, the resulting policies depend heavily on the
preferences over these rewards, and they may change

Appearing in Proceedings of the 25" International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).
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swiftly as preferences vary. We present both an al-
gorithm for the general case of learning all optimal
policies under all assignments of linear priorities for
the reward components, and a proof showing the cor-
rectness of our algorithm.

We start with a motivating example of a simple task
with multiple rewards in Section 2. The paper then
proceeds to the main algorithm in Section 3. We ad-
dress related work in Section 4, and then Section 5
discusses the complexity of our algorithm including re-
alistic and tractable specializations of our algorithm.
Section 6 describes the application of this algorithm
to an example domain, and Section 7 discusses exten-
sions to this technique, such as implementations using
other RL methods (such as temporal difference meth-
ods) and applications of our algorithm to infer another
agent’s preferences based on observing their behavior.
Section 8 outlines the proof of the algorithm’s correct-
ness.

2. Explanation and Motivating
Example

We assume that instead of getting a single reward
signal, the agent gets a reward divided up into sev-
eral components, a reward vector. That is, we
decompose the reward signal r(s,a) (where s is a
state and a is an action) into a vector 7' (s,a) =
[r1(s,a),r2(s,a),...,mn(s,a)]. An agent could poten-
tially optimize many different functions of these re-
wards, but the simplest function is a weighted sum:
for every fixed weight vector w we obtain a total re-
ward scalar 74 (s,a) = W - 7 (s,a). There is thus an
optimal policy % for each weight vector w.

Consider, for example, a lab guinea pig running a fa-
miliar maze, shown in Figure 1. The guinea pig runs
through the maze to one of four stashes of food. Once
it has reached a stash and eaten the food, the ex-
perimenter takes it out of the maze and returns it
to its cage, so it can only hope to eat one of the
stashes per run of the maze. Assume that there are
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3<W r=[0.6, 0.6] r=[1,0] |1
4<W r=[0.7, 0.4] r=10.1] | 2

Figure 1. An example maze with rewards, split into 2 com-
ponents, at 3 different locations

only 2 types of food provided (hay and carrot), so re-
ward vectors take the form [hay,carrot]. Location 1
contains hay (77 = [1,0]), location 2 contains carrot
(7 = [0,1]), and locations 3 and 4 contain a little of
both (7 = [0.6,0.6] and [0.7,0.4], respectively). Be-
cause the magze is familiar, the animal knows where the
food is placed and what sort of food is in each location.

The experimenter has several different guinea pigs and
has discovered that each has different tastes. For in-
stance, Chester likes only hay (w = [1,0]), and Milo
likes only carrot (w = [0,1]), but greedy Louis likes
both equally (w = [0.5,0.5]). (Without loss of gen-
erality, assume that all animals’ weight vectors sat-
isfy Y, w; = 1: they describe relative preferences, not
absolute utilities.) So, if Chester goes to location 4
(7 =[0.7,0.4]), then he gets reward r = w - 7 = 0.7.
Milo would get 0.4, and Louis would get a reward of
0.55.

Looking at the maze, we see that although there are
4 possible strategies (with rewards shown in Figure 2,
only 3 of them are optimal for any values of W. One
strategy occurs when the weight vector has wg > 0.6
(and hence w1 = 1 —wp < 0.4): then the guinea pig
should head straight for location 1, because the reward
elsewhere will be no more than 0.6. By the exact same
logic, when the weight vector has wy > 0.6 (and wg <
0.4), then the animal should go to location 2. In all
other cases (0.4 < wp < 0.6), it will optimize its reward
by going to location 3. Under no circumstances would
an optimal agent go to location 4! No matter what its
weight vector, some other location dominates location
4. We would like to determine exactly this: which
policies are viable and which are not (even without
knowing w ).

Our method learns the set of optimal policies for all w
at the same time. Once the agent has learned all these
policies, it can change reward weights at runtime to
get a new optimal behavior, without having to do any

1Pk
3
R2
)
1
0 R1 1

Figure 2. The potential reward vectors in the guinea pig
example

relearning. For a fixed priority scheme (fixed weight
vector w) over the multiple reward components, our
algorithm results in the standard recurrence for Q-
values that is analogous to the equation for the average
weighted reward case as in (Natarajan & Tadepalli,
2005):

Q% (s,a) =E [E) -7 (s,a) + ymax Q%(s/, a')ls,a
a/

In the general case, where we do not know the relative
priorities over the reward components, our algorithm
exploits the fact that the extrema of the set of Q-values
vectors (Q vectors that are maximal for some weight
setting) is the same as the convex hull of the Q-value
vectors. (The convex hull is defined as the smallest
convex set that contains all of a set of points. In this
case, we mean the points that lie on the boundary
of this convex set, which are of course the extreme
points—the ones that are maximal in some direction.
This is somewhat similar to the Pareto curve, since
both are maxima over trade-offs in linear domains.)
Now we can rewrite the general RL recurrence in terms
of operations on the convex hull of Q-values, and we
show this recurrence to be correct and convergent to
the value iteration algorithm in the fixed weight vector
case. Many standard RL algorithms in the literature
can be seen as limiting cases of our more general algo-
rithm. While the worst-case complexity of our general
algorithm is exponentially higher than that of fixed-w
cases, it not only solves all the fixed-w cases but also
determines which cases are worth solving. We also give
some constraints and techniques that can help reduce
the complexity.

3. Convex Hull Value Iteration

In this section, we introduce the problem definition
in the context of a traditional MDP setting and our
approach and algorithm.
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3.1. Preliminaries and Notation

Our approach is based on an MDP which is a tuple
(S, A, T,~,7), where S is a finite set of N states, A =
{a1,...,a;} is a set of k actions, T = {Ps(s')} is
the set of state transition probabilities (Pg,(s’) is the
transition probability of going to state s’ € S by taking
action a € A from state s € S), v € [0,1) is the
discount factor, and 7 : S x A — R is the reward
function giving d-component reward vector ?(s,a).
This differs from the standard formulation only in that
reward now comes as a vector.

A policy, 7, is the map S — A, and the value func-
tion for any policy 7, evaluated at some state s; is the
vector

—T

1% (Sz) = E[?(SZ, CLi) + ’}/?(Slqu, ai+1) + ... |7T] (1)

where the expectation is over the distribution of the
state and reward sequence (Si, T, Sit1, T itls---),
that is obtained on executing the policy 7 starting
from the state s;. The Q-function is the vector

—T

—T
Q (87 a) = E?(s,a),s’fvPS@ ?(87 a) + /YV (8/)} (2)

where 7 (s,a),s’ ~ P,, means that the expectation
with respect to s’ and 7 (s,a) distributed according
to P,,. The optimal Q function for a weight w is

Q% (s,a) = sup, W - @ (s,a).

3.2. Approach: Convex Hulls

Given some W, the resulting reward for taking an ac-
tion is r(s,a) = W - 7'(s,a). This gives us the follow-
ing recurrence for optimal Q-values, which is exactly
equivalent to the equation for a single reward compo-
nent:

Qu(s,0) =E[@ - 7 (5.0) + ymax Qe (s, s a

We can solve this recurrence directly, or we can use it
to get converging approximations to the optimal value
function—this gives rise to the value iteration method,
Q-learning, and so on.

An alternative view is that each possible policy gives a
different expected reward Zj(s, a), and we simply want
to select a policy by maximizing the dot product of this
with w. For a fixed w, only one such 6(3, a) can be
optimal, but in general we might care about any st
that are maximal for some w. But this set of Q-values
that are extrema is exactly the convex hull of the Q-
values! This allows us to use standard convex hull
operations to pare down the set of points we consider
and gives rise to the following proposition.

Proposition 1. The convex hull over @Q-values con-
tains the optimal policy over the average expected re-
ward 7(s,a) = W - 7 (s,a) for any w.

To make this operational and derive an algorithm that
maintains all optimal policies for any weight vector w,
we need a few definitions for relevant operations on the
convex hull.

[e]
We write Q(s,a) to represent the vertices of the con-
vex hull of possible Q-value vectors for taking action
a at state s. We then define the following operations
on convex hulls which will be used to construct our
learning algorithm.

Definition 1. Translation and scaling operations
W) = (WAbTTEQ) ()
Definition 2. Summing two convex hulls

Q+U = Wml{T+7:TeQ@el} ()

Definition 3. Extracting the Q-value To extract
the best Q-value for a given w, we perform a simple
maximum.:

w-q (5)

Given these definitions, we are now ready to illustrate
the basic algorithm.

3.3. Convex Hull Value Iteration Algorithm

Our algorithm extends the single-w case (which is the
standard expected discounted reward framework (Bell-
man, 1957)) into the following recurrence:

(o)

Q(s,a) =E | F(s,a) + yhull| JQ(s',a))]s,a|  (6)

That is, instead of repeatedly backing up maximal ex-
pected rewards, we back up the set of expected rewards
that are maximal for some w. While the expectation
over hulls looks awkward, it is the natural equivalent
of an expectation of maxima, and it arises for the same
reason. We must take an expectation over s’, but once
in s’, we can choose the best action, no matter what
our w. The expectation’s computation can be broken
down, in the usual way, into the scalings and sums we
have already defined.

This leads us to define Algorithm 1, which extends
the value iteration algorithm (Bellman, 1957) to learn
optimal Q-values for all possible wW. A proof of its
correctness is given in Section 8.
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Algorithm 1 Value iteration algorithm modified from
that of Bellman (1957)

Initialize Q(s,a) arbitrarily Vs, a
while not converged do
for all s € S,a€ Ado

Q(s,a) — E[7'(s,a)

+~hulllJ,, Q(s,a’)|s, a
end for
end while

[e]
return @

4. Related Work

There is now a body of work addressing multi-reward
reinforcement learning. There have been algorithms
that assume a fixed ordering between different re-
wards, such as staying alive and not losing food (Gabor
et al., 1998), techniques based on formulating the mul-
tiple reward problem as optimizing a weighted sum of
the discounted total rewards for multiple reward types
(Feinberg & Schwartz, 1995), and techniques that de-
compose the reward function into multiple components
which are learned independently (with a single pol-
icy) (Russell & Zimdars, 2003). In all these cases, the
preference over rewards is assumed to be fixed and
time-invariant. In a slightly more flexible formulation,
Mannor and Shimkin (2004) take multiple reward com-
ponents and perform learning that results in expected
rewards lying in a particular region of reward space.

More recently, (Natarajan & Tadepalli, 2005) formu-
late the multiple reward RL problem as we do, using a
weighted expected discounted reward framework, and
they store both the currently best policy and its Q-
values as vectors. When priorities change dynamically
(as reflected in changes in the weight vector), the agent
can calculate new reward scalars from the vectors and
thus start from the Q-values of the best policy learned
so far rather than resetting entirely. As far as we are
aware, none of the techniques proposed tackle the gen-
eral case of learning optimal policies for all linear pref-
erence assignments over the multiple reward compo-
nents.

4.1. Relation to POMDPs

Our problem, and hence its solution, is closely related
to the standard partially observable Markov decision
process (POMDP) formulation. In a POMDP, we have
a model of both observed and unobserved variables
and use Bayesian reasoning to infer a joint distribution
over the hidden variables. Then, we must choose an

I

\
azo

Figure 3. A POMDP formulation of multiple reward com-
ponents

optimal action based on both the observed state and
the continuous beliefs. (Kaelbling et al., 1998)

Consider the POMDP shown in Figure 3; here, the
reward depends on an unobserved multinomial ran-
dom variable, so E[r] = >, P(w = t)r;. If we define
P(w¢|wi—1) to be the identity, the distribution of w
will not change with ¢. Then, the expected reward de-
pends linearly on our prior distribution over w, and
the dual of the usual POMDP maximum-hyperplane
algorithm corresponds to a convex hull operation over
reward components. It is thus possible to write our
multiple-reward problem as a POMDP problem. This
suggests a natural route to extend our algorithm to op-
erate on POMDPs. It remains future work, however,
to see if the approximation algorithms used for solving
POMDPs can yield useful results in our domain.

5. Complexity

This algorithm relies on four convex hull operations,
whose complexity we will analyze in terms of the num-
ber of points on the hull, n; in the limit, this num-
ber converges to the number of optimal policies in the
environment. We must both scale (by probabilities
and discounts) and translate (by rewards) our con-
vex hulls; these operations only require touching every
point once, resulting in a complexity of O(n). We must
also merge two or more convex hulls. This takes time
at most O((kn)L¥/2l) if d > 3, where k is the number
of hulls involved, n is the number of points in each
hull, and d is the dimension (number of reward com-
ponents) (Clarkson & Shor, 1989). Finally, we must
add two convex hulls. If done naively by adding all
pairs of points and taking a hull, this takes time at
most O(n?l%/21). All these operations must be per-
formed whenever we back up Q-values, so we multiply
the complexity of ordinary reinforcement learning by
O(n2l4/2). (However, in the d = 2 and d = 3 cases,
there are efficient ways to perform these operations.)

In the long run, the number of points on each convex
hull, n, must converge to a limit as the Q-values con-
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R1 | E2

El R2

Figure 4. A resource-collection domain

verge to their optimal values. Eventually, there will
be exactly one point on each convex hull for each opti-
mal policy. However, in the short term, the number of
short-range policies we might have to track might be
much lower or even higher. Also, the number of opti-
mal policies n depends on the environment in a com-
plicated way, with the worst case being that all policies
(|A|'S! of them) may be optimal for some weight vec-
tor.

5.1. Reducing the Complexity

The complexity result of our algorithmic modifications
is an exponential blowup with the number of reward
components. There are a few main ways of tackling
this. The first is to simply restrict the number of re-
ward components; with only, say, 5 or fewer, this ad-
ditional computation is likely not to be an undue bur-
den. In practice, there are currently very few problems
studied with more reward components than this.

When we must handle a high-dimensional problem,
we can reduce the complexity by applying constraints
on the weight vectors that we might optimize for.
Given the geometric nature of our approach, if we have
knowledge about the directions of allowable vectors,
such as @ - w > 0, then we can simply take a partial
convex hull. This will, on average, reduce the com-
plexity of the convex hull computation by half. So, if
we know that all d elements of w must be positive,
then we can write that as d such constraints to divide
the convex hull complexity by 2¢.

In addition, the convergence of Q-values means that
we are essentially performing the same convex hull op-
erations again and again; this means that we might be
able to reuse the information from the last iteration.
The idea is to annotate each point with a “witness”, or
proof of its status: if a point is not on the convex hull,
then we note down a set of faces that enclose it, and
if it is on the hull, we note down a direction in which
it is the extremum. Then, on the next iteration, when
these points have moved slightly and we must compute
a convex hull again, we can simply check these proofs

R2

Figure 5. Optimal rewards in the resource-collection do-
main

R2

06 | —

02 3 4

0 0.2 0.4 0.6 0.8 1

(E) R1

Figure 6. Regions of preference space in which policies are
optimal. Axes are reward components R1 and R2; the
enemy weight is £ =1 — R1 — R2.

(in at most O(n?) time). If all the proofs are correct,
then our convex hull remains correct and the locations
of the points have moved only slightly. On the other
hand, if any proof is violated, we can simply rebuild
the convex hull in the ordinary, expensive way. In the
limit as the Q-values and policy converge, the policy
must stop changing, so this trick may greatly reduce
the complexity of refining Q-values.

policy

Go directly to R2, dodging Es

Go to both Rs, through both Es

Go to R1, through E1 both ways

Go to both Rs, dodging E1 but through E2
Go to R1, dodging all Es

Go to R1, going through E1 only once

o | ot| | ol nof =3k

Table 1. The optimal policies for the example domain
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6. Example Application: Resource
Gathering

In order to demonstrate the application of this
method, we have tested it on a resource-collecting
problem similar to that of many strategy games. We
model this as a resource-collecting agent moving (in
the 4 cardinal directions) around in a grid environ-
ment shown in Figure 4, starting from the home base,
labelled H. Its goal is to gather resources and take
them back to the home base. If it reaches location R1,
it then picks up resource 1, and at R2 it gets resource
2; it can carry both at the same time. When the agent
returns to H, it receives a reward for each resource it
brings back. Also, if it steps on one of the two enemy
spaces, labeled E1 and E2, with a 10% probability it
will be attacked, receiving a penalty and resetting to
the home space, losing all it carries. Its reward space
is then [enemy, resourcel, resource2], so it can get a
penalty of [-1,0,0] for being attacked, or a reward of
[0,1,0], [0,0,1], or [0,1,1] for bringing back one or both
resources. We use a discounting rate of v = 0.9.

Depending on the relative values of the resources and
attack, the agent may find different policies to be valu-

o
able. The convex hull of values starting at H, V(H),
is shown in Figure 5. The points on the hull corre-
spond to optimal policies, described in Table 1; each
policy is valid for some range of preferences @, which
are shown in Figure 6.

7. Extensions and Current Work

This same convex-hull technique can be used with
other RL algorithms, such as the temporal difference
learning algorithm. The critical thing to recall is that
because we are learning more than one policy at once,
we can use only off-policy learning algorithms.

Our solution can also be used for inferring the pref-
erence function from observation data. This is closely
related to the inverse reinforcement learning problem
(Ng & Russell, 2000; Abeel & Ng, 2004). The basic
idea behind inverse reinforcement learning is to use
observed behavior to infer weights from a user that
can then be used to find optimal policies. In our case,
the method for learning all policies at once can also
be used in reverse to learn the range of reward weights
that an agent must have. If we assume that an agent
we observe is rational and uses a policy that is opti-
mal for its reward weights, then we can use our obser-

We do not show the ranges of policies optimal where
the values of the rewards are less than 0 (w; < 0); these
policies, while sometimes interesting, are not valuable for
the task.

vations of the agent to infer its reward weights. We
simply repeatedly observe its choice of action a and

use our knowledge of Q(s,a) to identify which values
of W are consistent with that action. Then, we take
the intersection of the constraints.

The multi-criterion RL approach also allows us to ex-
amine reward at different time scales. Instead of hav-
ing a single discounting factor -, we could have a dis-
counting factor v; for each component. This allows
us to use a sum of exponentials with different time
constants to approximate non-exponential discounting
rates, which are helpful in explaining the preferences of
humans (Ainslie, 2001). With our convex hull method,
we can find what policies are optimal for a whole range
of discounting rates.

8. Appendix: Proof of Correctness

We prove that YV Algorithm 1 gives the optimal pol-
icy by reducing the recurrence to the standard value
iteration recurrence for any w. First, recall the basic
recurrence of our algorithm, Equation 6.

[e]

Q(s,a) «— E |7 (s,a) + 7hu11U 52(3’, a')ls, a]

Now apply Equation 5 to the both sides (to extract
the optimal value for w):

Qw(s,a) «— max{w-q:7q € E[?(s,a)

~+7 hull U C?)(s', a’)ls, a} }.

a

Next, apply the definition of an expectation
—max {W-q:qE¢€ Yo T (s.a) P(s', 7 (s,a)|s,a)
: (?(87 a) + ’Yhull Ua’ Q(Slu a/)> }7

then use Equations 3 and 4 and rewrite

— max{w-q:7q € hull{

> Pl T(sa)lsi0) (T(s,a) 77 )

0,7 (s,a)

: ?/5’1 IS hullUQ(s’l,a’), .. }}
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?/5’1 € hullUQ(s’l,a’), . }

s,a]

—l—vZP(sﬂs, a)w - ?/S/ :
i

— maX{E[E) -7 (s,0)

7;/1 € hullUQ(s'l, a),.. }
a/
Pull 7 (s,a) (added independently to the entire set)
and ~ (non-negative) out of the maximum.
— E[W-7(s,a)s, a
+ max{ ZP(SHS, a)w - ?/S/ :
i
7;/1 € hullUQ(s'l, a),.. }
a/
But the max of a sum over different sets is the sum of
the sets” maxima, which we simplify.

— E[w-7(s,a)|s,a] +

’}/ZP(S“S, a) rnax{@> . E)/S: :
i

?; € hull U Cf?(s;, a’)}

i

+72P(3§|3, a) max{@> TR

7. € Qs d)d € A(s;>}

— =

— E[w -7 (s,a)|s,a]
— =/
+v g P(sils,a)max max W -7qg

o k2
i q., €Q(s},a’)
i

But we re-order the maxima and rewrite an expecta-
. . —_—
tion, and so we recover our recurrence for a single w.

s,a]

)

Qw(s,a) — E[E} -7 (s,0) + ymax Qz (s, a’)

Given a w, at any point in the algorithm, this gives
the same Q-value as ordinary value iteration. There-
fore, the proof of convergence for the value iteration
algorithm applies to our method, and our method con-
verges exactly as quickly as ordinary value iteration
(for every w).
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Abstract

This paper introduces a novel machine learn-
ing model called multiple instance ranking
(MIRank) that enables ranking to be per-
formed in a multiple instance learning set-
ting. The motivation for MIRank stems
from the hydrogen abstraction problem in
computational chemistry, that of predicting
the group of hydrogen atoms from which
a hydrogen is abstracted (removed) during
metabolism. The model predicts the pre-
ferred hydrogen group within a molecule by
ranking the groups, with the ambiguity of
not knowing which hydrogen atom within the
preferred group is actually abstracted. This
paper formulates MIRank in its general con-
text and proposes an algorithm for solving
MIRank problems using successive linear pro-
gramming. The method outperforms multi-
ple instance classification models on several
real and synthetic datasets.

1. Introduction

This paper introduces a new machine learning
paradigm called multiple instance ranking (MIRank),
bringing the concept of ranking to the framework of
multiple instance learning. Some problems that MI-
Rank could potentially solve based on prior data are:

1. For a given country, predict the city that contains
the most profitable store.

Appearing in Proceedings of the 25" International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

2. For a given state, predict the congressional dis-
trict that contains the politician that delivers the
most subsidies.

3. For a given document, predict the para-
graph/passage that contains the most pertinent
sentence/phrase/word.

4. For a given molecular class, predict the molecule
with the conformation having the highest human
immunodeficiency virus (HIV) inhibition efficacy.

5. For a given state, predict the division that con-
tains the town with the highest median housing
unit price.

6. For a given molecule, predict the site of
metabolism from which a hydrogen atom is ab-
stracted (removed).

It is this last application, that of hydrogen abstraction
from the field of computational chemistry, that moti-
vated this work. The fifth application, which involves
making predictions from the census, is also explored
here. Later in this paper, a general formulation for
multiple instance ranking is provided, an algorithm
for MIRank is proposed, and this algorithm is tested
on datasets that stem from both applications as well
as synthetic data.

As introduced by Dietterich et al. (1997), the setup
for multiple instance learning differs somewhat from
the standard learning framework. In standard classi-
fication, the task is to predict the class of each item.
Each item has a corresponding binary classification la-
bel, and features defined for each item are used to build
the model. In multiple instance classification (MIC),
each item belongs to a bag. The task is to predict the
class of each bag of items. Features are defined for
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Figure 1. Schematic of multiple instance classification.
Bags are ellipses, active bags contain stars and inactive
bags contain parallelograms.

each item, but the class label is assigned to each bag.
For simplicity of presentation, assume there are two
classes: active and inactive. By definition, an active
bag must contain at least one active item, while an
inactive bag contains exclusively inactive items. It is
not known which item is active.

Figure 1 illustrates MIC, in which bags are ellipses,
items in active bags are represented as stars, and items
in inactive bags are marked as parallelograms. The
straight line is the separating line representing the clas-
sification function. Notice that at least one item from
each active bag is found above the line, while all items
in inactive bags are located below the line.

The difficulty is that there exists an ambiguity as to
which items in an active bag are actually active. For
example, consider the drug discovery application (Di-
etterich et al., 1997), with molecules as bags and con-
formations (three-dimensional molecular shapes that
differ from each other by the rotation of atom groups
about one or more bonds) as items. If a molecule pos-
sesses one—or possibly several—conformations that
are active, then it is known that the molecule is ac-
tive. However, it is not known which conformation
is active. On the other hand, if none of a molecule’s
conformations are active, then the molecule is deemed
inactive, and in this case, it is inferred that all of that
molecule’s conformations are inactive.

Other applications of MIC include automatic image
annotation (Andrews et al., 2003), context-based im-
age indexing (Maron & Ratan, 1998), text catego-
rization (Andrews et al., 2003) and hard-drive fail-
ure prediction (Murray et al., 2005). Algorithms for
MIC stem from diverse density (Maron & Ratan, 1998;
Zhang & Goldman, 2001), neural networks (Ramon &

-
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Figure 2. Schematic of multiple instance ranking. Boxes

are rectangles, bags are ellipses, preferred bags contain
stars, and other bags contain parallelograms.

Raedt, 2000), and generalisations of support vector
machines (Andrews et al., 2003; Mangasarian & Wild,
2008). The drug discovery application later inspired
Ray & Davis (2001) to formulate multiple instance re-
gression, where this time the response assigned to each
bag is a real number quantifying the activity of the
molecules.

Multiple instance ranking differs in that a classification
label is not known for each bag. Rather, some pref-
erence information is available for pairs of bags. For
example, it may be known that bag A ranks higher
than both bags B and C, while the relative ranking
of bags B and C may not be known. In many appli-
cations, even more structure exists. In these cases, it
is convenient to think of every bag as belonging to a
box. Within each box, exactly one bag ranks higher
than the other ones in the box, and this bag is des-
ignated the preferred bag. It is not known how the
other bags in the box rank with respect to each other.
Further, it is not known how bags rank with respect to
each other across boxes. Additionally, there remains
the ambiguity of which items in the preferred bags are
preferred and which ones are not preferred. Figure
2 illustrates the situation. Large rectangles represent
boxes. As was the case in Figure 1, bags are ellipses,
items in preferred bags are represented as stars and
items in the other bags are marked as parallelograms.
Instead of being fixed, the separating line (represent-
ing the ranking function) slides from one box to the
next. For each box, the ranking function separates at
least one item of the preferred bag from the remaining
items of the box.

The hydrogen abstraction application fits perfectly
into this framework. For each molecule (box), the task
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is to find the group (bag) from which a hydrogen atom
(item) is abstracted. It is not known which hydrogen
atom is abstracted, only to which group it belongs.

The organization of this paper is as follows. Section
2 defines some mathematical notation. Section 3 mo-
tivates multiple instance ranking through the compu-
tational chemistry problem of hydrogen abstraction.
Multiple instance ranking is formulated, and an al-
gorithm for MIRank is proposed, in Section 4. The
model and algorithm are generalized to nonlinear MI-
Rank problems in Section 5. Section 6 describes the
datasets used in this paper, and Section 7 specifies the
modeling results. Finally, Sections 8 and 9 constitute
a discussion and outlook, respectively.

2. Notation

Let « denote a vector in R" and let &’ mark the
transpose of . Let 0 denote the vector of all zeros
and e denote the vector of all ones. Let |z| denote
the cardinality of «, that is, the number of entries in
the vector. Let ||x|; denote the 1-norm of x, equal
to the sum of the absolute values of the entries of the
vector. If & has nonnegative entries, then this equals
e’x. Let X € R**™ and H € R™*™ denote matrices.
I and J indicate index sets. The cardinality of the
set I is indicated by |I|. The matrix X indicates the
matrix in R’1*™ with rows restricted to the index set
I. A kernel matrix K(X, H') maps R¥*" and R"*™
into R*¥*™_ Each entry of the mapping results from a
function (such as the radial basis function) applied to
one row of X applied to one row of H.

3. Motivating application

Bioavailability of a drug, or its ability to be adminis-
tered orally, is a major concern to the pharmaceuti-
cal industry. This characteristic depends on a drug’s
capability to withstand degradation by intestinal and
hepatic enzymes during first-pass metabolism in or-
der to cross the intestinal lining and make it into
the bloodstream so that its medicinal effect may be
felt (Thummel et al., 1997). Hence, this process of
drug metabolism needs to be better understood. More
specifically, it is important to discover the attributes
of molecules that identify sites which are vulnerable to
enzymatic degradation.

Cytochrome CYP3A4 is but one of many metabolis-
ing enzymes found in the human liver and small intes-
tine, yet this enzyme metabolises nearly 50% of mar-
keted drugs (Guengerich, 1999; Rendic, 1997). For
CYP3A4 substrates, approximately half of the known
metabolism reactions occur via hydroxylation, the rate

Figure 3. Stick model of an Adinazolam molecule. Large
spheres represent nonhydrogen atoms while small spheres
represent hydrogen atoms. Two groups of hydrogens are
evidenced. The top group, indicated by a thick arrow, has a
hydrogen abstracted during metabolism. The lower group,
indicated by a thin arrow, does not.

limiting step of which is hydrogen atom abstraction
(Sheridan et al., 2007). Knowing where a molecule is
preferentially oxidized by this cytochrome would aid
the modification of compounds to improve their kinetic
or pharmacological profiles (Afzelius et al., 2007).

Normally, experimental techniques are used to identify
the molecular sites susceptible to metabolism. This is
a time- and labor-intensive process. While in wvitro
studies are increasingly high throughput, the in silico
identification of metabolic liability early on in the drug
discovery process will help prevent taking forward poor
drug candidates. In addition, the constraints of the
biological problem fit perfectly into the framework of
a MIRank application, leading to a potential in silico
solution.

The goal is to build a model that predicts, for each
molecule, the site of abstraction of a hydrogen atom
during metabolism. In order to accomplish this, in-
dividual hydrogen atoms are first grouped together
according to molecular equivalence: hydrogens are
placed within the same group if and only if the ab-
straction of any hydrogen from within the group would
result in the same metabolised molecule. In this way,
groups are equivalent representations of potential sites
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of metabolism. Note that experimental data do not
show which individual hydrogen is abstracted during
metabolism, but rather to which group this hydrogen
atom belongs. This setup perfectly fits that of mul-
tiple instance ranking. Molecules can be viewed as
boxes, groups as bags, and individual hydrogens as
items. Figure 3 illustrates these using a stick repre-
sentation of a molecule.

Two prior modeling attempts are described. Firstly,
Singh et al. (2003) chose the hydrogen atom that has
the minimum estimated abstraction energy, with a suf-
ficiently large surface area (of 8 squared Angstroms),
as the abstracted hydrogen. Allowing 1 guess per
molecule, their rule-based model performed correctly
in 44% of molecules. Sheridan et al. (2007) later
reported that this model has a prediction rate of
51%, allowing for 2 guesses per molecule. Secondly,
Sheridan et al. (2007) assembled a database of 316
molecules (including the 50 molecules used by Singh
et al. (2003)). They used a random forest applied to
molecular descriptors, and found a model that cor-
rectly predicted the site of abstraction for 77% of
molecules, allowing for 2 guesses per molecule.

4. Formulation

Let (I, J) denote an ordered pair of bags where I and
J are lists of indices referring to their items. Let x;
denote a vector of n features for an item ¢, and let
matrix X;’s rows contain the features for each index
in I. Further let f denote the ranking function. Then
the statement bag I is preferred over bag J is expressed
mathematically as

max f(a:) > max f(a;).

The maximum operator on the right hand side can be
replaced with all of the items it operates over, hence
the inequality is rewritten as

max f(@;) > f(z;) ¥ j€J.
The maximum operator on the left hand side is also
replaced. A convex combination of the items in bag
I is taken, following the lead of Mangasarian & Wild
(2008) in their formulation of MIC. This convex com-
bination is achieved through vector vy, ; whose cardi-
nality is that of I. In a slight abuse of notation, vy, s
means the vector corresponding to the pair of bags
(I,J). This vector is nonnegative vy, y > 0, and its
entries sum to one: eT'UI’J = 1. This vector multi-
plies matrix Xi:

f(XTvrg)> f(m;) ¥ jeEJ

Let the model be linear defined by vector w, i.e.
flz) =z w. (1)
In this case, we have
'UI’JTXI'U) > acJT'w

This paper focuses on linear models, because chemists
are interested model interpretation. However, this for-
mulation is readily kernelized, as discussed in Section
5.

Now introduce an empirical risk scalar £;; based
on the hinge-loss, allowing for errors in training the
model:

’UI’JTX[’w — :BJT'w Z 1— 517]"

This inequality resembles the main constraint in
Joachims’ ranking support vector machine (2002). It
is also the key constraint in an optimization problem
whose objective function is to minimize

VEemp(§) + Lreg(w)

where v > 0 is the tradeoff parameter and Le,,, and
Lyeq are arbitrary loss functions.

Choosing the 1-norm for both loss functions makes the
objective linear in the variables, a choice that was also
made by Mangasarian & Wild (2008). Furthermore,
using the 1-norm on w makes for sparse models, fa-
cilitating the interpretability of linear models. There-
upon, the 1-norm MIRank optimization problem is

min veT€ + ], @)
Ewvr g

subject to

'UI’JTX[’LU — (E?w Z 1 —§[}j v (I, J,]) (3)

elvi =1V (I,J) (4)
v,y >0V (I,J) (5)
£>0. (6)

The entries of empirical risk vector £ are {;; as they
appear in the first constraint. This notation signifies
that, for each pair (I,J), there is an empirical risk
contribution from each item j € J. These are non-
negative quantities, as per 6. Note that there are as
many vectors vy, y as there are pairs (I, J). These vec-
tors are forced to be nonnegative and to sum to one in
constraints 4 and 5.

Since the first constraint is linear and the remaining
terms are linear, this is a bilinear optimization prob-
lem. We use the successive linear programming algo-
rithm given in Algorithm 1 to find a locally optimal
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Algorithm 1 Multiple instance ranking algorithm

Select tolerance 7 and tradeoff parameter v.
Initialise uz,y = ‘% Y (I,J).
repeat
Set Vr,g =ur,g A (I,J)
Fix the vy, ’s and solve the linear program 2-6
for £ and w.
Fix w and solve the linear program 2-6 for £ and
the uy j’s.
until ||[vr —ur|) <7V (I,J)

solution of the bilinear problem. This proposed MI-
Rank algorithm belongs to a family of algorithms that
has proven to find good local solutions on a variety of
bilinear machine learning problems. The subproblem
solutions are not necessarily unique, but this has no
impact on algorithm convergence.

The convergence proof for the MIC algorithm in Man-
gasarian & Wild (2008) can be readily adapted to Al-
gorithm 1. Specifically, the algorithm converges be-
cause the sequence of objective function values

{ve"¢ + w1}

at each iteration is nonincreasing and bounded below
by zero, and every accumulation point satisfies a lo-
cal minima property. The formal proof is omitted for
brevity; see Mangasarian & Wild (2008).

Algorithm 1, as well the Mangasarian & Wild
(2008) algorithm for MIC, were implemented in Mat-
lab using the linear programming solver MOSEK
(www.mosek. com).

5. Nonlinear Formulation

A nonlinear MIRank function can be generated by
kernel transformations (Shawe-Taylor & Cristianini,
2004). We adopt the notation and direct kernel ap-
proach used for MIC in Mangasarian & Wild (2008).
The linear ranking function 1 is replaced by the non-
linear function:

flx) =K« H" )ax (7)

where € R" is an item, o € R™ are the dual vari-
ables and the matrix H € R™ ™ has as its rows all
of the m items found collectively in all of the bags
and boxes, and K (7, HT) is an arbitrary kernel map.
The bilinear program generating the nonlinear MI-
Rank function becomes:

min  vel€ + l|lwl|1 (8)
§avrg

subject to

v,y ' K(X, HNw—K(z] , H )ae > 1-¢15 ¥ (1, J,5)

(9)

efvry=1V (I,J) (10)
vr1,J Z oV (I, J) (11)
£>0. (12)

The kernel formulation remains a bilinear program and
thus can be solved using Algorithm 1 by substituting
a for w and bilinear program 8-12 for bilinear program
2-6.

6. Datasets

In addition to the hydrogen abstraction dataset, sev-
eral additional datasets are used in modeling experi-
ments. All three are described here.

6.1. CYP3A4 substrate dataset

The CYP3A4 substrate dataset is made up of 227
small drug-like compounds. A series of 36 descriptors
for each hydrogen atom for all molecules are calcu-
lated:

e the charge of the hydrogen;
e the surface area of the hydrogen;

e the non hydrogen surface area of the base atom
the hydrogen is attached to;

e the hydrophobic moment: the hydrogen’s location
with regards to the hydrophobic or hydrophilic
end of the molecule;

e the span: a measure of whether the candidate hy-
drogen is located at the end or within the middle
of the molecule.

e the topological neighborhood: the distributions of
atom types within a various topological distances
from the hydrogen.

Recall that, for each molecule, the goal is to predict
from which group a hydrogen atom is abstracted, and
it is not known which hydrogen from the abstracted
site is removed.

These 227 molecules form are a subset of the 305 non-
proprietary molecules used by Sheridan et al. (2007),
and represent all those for which descriptor generation
could be completed.
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Figure 4. Synthetic dataset visualisation. Preferred bags
contain circles and other bags contain dots. Sliding line
represents the ranking function found by MIRank that sep-
arates at least one circle from remaining items in each box.

6.2. Synthetic datasets

This dataset consists of 227 boxes, five bags per box
and five items per bag. There are two features. Each
feature is calculated as follows:

pbo® 4 b

+ M;ﬁctem

with pb°® drawn from the uniform distribution
Uu(-1,1), ,u?“g drawn from the distribution U(—A, A)
and pi'*™ drawn from the distribution 4(—B, B). Put
in words, the center of each box is chosen from a uni-
form distribution, and the center of each bag with
respect to its box is chosen from a different uniform
distribution, and each item with respect to its bag is
chosen from yet another uniform distribution. Param-
eters A and B characterize these synthetic datasets.
For each item, the response is the sum of the features.
The goal is, for each box, to find the bag containing the
item of greatest response. Five boxes of this dataset
are portrayed as Figure 4. It illustrates the difficulty in
constructing a linear function separating at least one
circle from each box from the remaining circles and
dots, as MIC attempts to do. On the other hand, it
it possible to find a ranking function (the sliding line)
that does this for each box, as MIRank does.

Different values for dataset parameters A and B were
attempted:

e Synthetic-1 set A = B = 0.01.

e Synthetic-2 set A =0.1 and B = 0.01.

Table 1. Prediction accuracies

DATASET MIC MIRANK

CYP3A4 SUBSTRATE 67.1% £ 7.1 70.9% + 6.9
SYNTHETIC-1 90.8% + 8.6  99.8% + 0.53
SYNTHETIC-2 96.8% + 4.6 99.1% + 1.8
SYNTHETIC-3 95.5% +8.3  99.9% + 0.38
SYNTHETIC-4 95.7% £ 5.2  99.7% 4+ 0.91
CENSUS-16H 52.8% +17.4 60.3% £15.1
CENSUS-16L 46.2% £ 177  57.5% £ 16.0

e Synthetic-3 set A =0.01 and B =0.1.

e Synthetic-4 set A= B =0.1.

6.3. Census datasets

The two (census-16h  and

Data  for FEwvaluat-

census datasets
census-161) belong to the

ing Learning in Valid FEzperiments (DELVE,
http://www.cs.toronto.edu/~delve/) reposi-
tory. It consists of 22784 towns spread amongst the
50 states of the United States of America. This study
only considered the 3054 towns of more than 10000
inhabitants. FEach town is assigned a 5-digit Federal
Information Processing Standard (FIPS) place code
(that is not a zip code). Typically, this dataset is used
in a regression setting to model the response—which is
the town’s median housing unit price. The census-16h
and census-161 datasets differ in their features: each
consists of 16 features drawn from the 1990 census.

These datasets are fitted into the multiple instance
ranking framework as follows. States are boxes, di-
visions of towns are bags and towns are items. For
each state, towns whose place code begin with the
same number are assigned to the same division. As
no place code commences with the number 9, there
are up to 9 divisions per state. The task is to predict,
for each state, the division that contains the town with
the highest median housing unit price.

7. Results

For each dataset, results were obtained using both the
MIC and MIRank algorithms. For MIC, preferred bags
were treated as active bags and other bags were treated
as inactive bags. All results reported are for linear
functions.

The experimental design is as follows. Each dataset
was randomly split into training, validation and test-
ing subsets consisting of 60%, 20% and 20% of the
boxes, respectively. The training subset was used to
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Table 2. Hypothesis testing

DATASET P-vALUE

CYP3A4 SUBSTRATE 5.59-1073

SYNTHETIC-1 1.62-1076
SYNTHETIC-2 1.31-1072
SYNTHETIC-3 5.84-1073
SYNTHETIC-4 1.46-1074
CENSUS-16H 4.51-1072
CENSUS-16L 3.92.107*

train both MIC and MIRank models for 19 values of
tradeoff parameter v spread logarithmically over the
range [1073,10°]. The model corresponding to the
value of v that resulted in the best prediction accu-
racy over the validation set was retained, and a pre-
diction using this model was obtained for the testing
subset. This process was repeated 32 times, and the
average performance across these 32 testing subsets is
reported in Table 1, along with the standard deviation
as a measure of spread.

All results in Table 1 are presented as a percentage
of boxes for which the preferred bag was accurately
predicted, allowing for 2 guesses per box, which is the
metric employed by Sheridan et al. (2007). The al-
gorithm tolerance 7 defined in Algorithm 1 was set to
1073.

For all datasets, the hypothesis that MIC and MIRank
results are statistically equal is dismissed using paired
t-testing at a 5% significance level. The p-values are
reported in Table 2.

8. Discussion

The results of Section 7 make a strong case supporting
the hypothesis that these problems, when framed in a
multiple instance ranking paradigm, are better solved
by an algorithm that is designed to solve problems of
that paradigm over one that is not. Forcing MIRank
problems into a MIC paradigm was not as successful.
In other words, the improvement is due to choosing a
model that better fits the problem.

The MIRank result for the CYP3A4 substrate dataset
reported in this paper compare favourably with ex-
isting approaches to hydrogen abstraction. It clearly
outperforms the results of Singh et al. (2003). Their
results are reproducible and their reported error holds
on new molecules. Comparison with Sheridan et al.
(2007) is more difficult. Reproduction of their results
is challenging since since their descriptors are not pub-

lic and the details of the learning and model selection
methods they used are not entirely clear. Our de-
scriptors attempt to reproduce those of Sheridan et al.
(2007), but could not be generated for all molecules.
Hence, we regard their results as optimistic.

A future controlled experiment is needed to fully com-
pare the approaches of Sheridan et al. (2007) and
those of this paper. This experiment would val-
idate which descriptor set and modeling paradigm
is most well suited for this chemistry applica-
tion. To facilitate future investigations into MIRank
and hydrogen abstraction, the datasets and Matlab
source codes used in this paper are available from
http://www.rpi.edu/~bennek/MIRank/.

9. Conclusion

This paper introduced a framework that tackles a
novel machine learning question arising from an im-
portant chemistry problem. A first working algorithm
produces excellent results on it and other problems.
We believe that this first paper for MIRank will gen-
erate future research into new algorithms and appli-
cations. This section explores several possible exten-
sions.

In the chemistry domain, we often restrict ourselves to
sparse and linear models because model interpretabil-
ity is a desired property in the particular application of
drug discovery. However, this interpretability analysis
is a paper of its own, and does not appear here.

Hydrogen abstraction is an important application of
MIRank modeling of great practical value for drug dis-
covery. We are working to expand the efficacy and ap-
plicability of the MIRank hydrogen abstraction models
in several ways. First, we are increasing the number of
molecules in the database of CYP3A4 substrates that
can be used to develop and test new MIRank models.
Second, we hope to build databases and models for new
substrates, such as CYP2D6 and CYP2C9. Third, we
are developing novel descriptors that are believed to
be indicative of hydrogen abstraction.

We are working to improve the MIRank modeling
paradigm and investigating other potential multiple
instance ranking problems. Reports here are limited
to the linear MIRank models, but as discussed the ap-
proach can be readily applied with nonlinear models
using kernel functions. Research is needed to investi-
gate how modeling results are affected by changing the
loss functions in the empirical risk and/or regulariza-
tion terms of the optimization problem.

Finally, further improvements to the MIRank algo-
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rithm are possible. More scalable and efficient algo-
rithms for finding locally optimal solutions could be
developed by exploiting recent developments in large
scale support vector machine algorithms. In addition,
integer programming or cutting plane algorithms could
be used to find global minima of the optimization prob-
lem, but at much greater computational cost.
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Abstract

We address the problem of learning classi-
fiers for a large number of tasks. We derive
a solution that produces resampling weights
which match the pool of all examples to the
target distribution of any given task. Our
work is motivated by the problem of predict-
ing the outcome of a therapy attempt for a
patient who carries an HIV virus with a set
of observed genetic properties. Such predic-
tions need to be made for hundreds of possi-
ble combinations of drugs, some of which use
similar biochemical mechanisms. Multi-task
learning enables us to make predictions even
for drug combinations with few or no train-
ing examples and substantially improves the
overall prediction accuracy.

1. Introduction

In multi-task learning one seeks to solve many clas-
sification problems in parallel. Some of the classifi-
cation problems will likely relate to one another, but
one cannot assume that the tasks share a joint con-
ditional distribution of the class label given the input
variables. The challenge of multi-task learning is to
come to a good generalization across tasks: each task
should benefit from the wealth of data available for the
entirety of tasks, but the optimization criterion needs
to remain tied to the individual task at hand.

Our work is motivated by the problem of predicting the
therapeutic success of a given combination of drugs for
a given strain of the Human Immunodeficiency Virus-1
(HIV-1). HIV is associated with the acquired immun-
odeficiency syndrome (AIDS). Being a disease that

Appearing in Proceedings of the 25" International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

claimed more than 25 million lives since 1981, AIDS is
one of the most destructive epidemics in recorded his-
tory. Currently there are more than 33 million people
infected with HIV (UNAIDS/WHO, 2007).

Antiretroviral therapy is hampered by HIV’s strong
ability to mutate and develop viral quasi-species that
can quickly be dominated by resistant variants. In or-
der to decide on a course of therapy, virus samples
taken from each individual patient are tested for a
set of resistance-relevant mutations. Given this set of
identified mutations together with the patient’s med-
ication history, a medical practitioner needs to decide
which combination of drugs to administer. The large
number of genetic mutations and the wide array of
available drug combinations render the process of pre-
dicting the success of a potential therapy difficult, at
best, for a human doctor.

Historic treatment records of HIV patients cover only
a small portion of all possible drug combinations. For
many of these combinations, only few treatments have
been recorded. This scarceness of training data pre-
cludes separate training of a powerful prediction model
for each combination from only records of treatments
which used the same drug combination. Distinct com-
binations can have similar effects when they intersect
in jointly contained drugs, or when they include drugs
that use similar mechanisms to affect the virus. There-
fore, in order to predict the outcome of a given drug
combination, it is desirable to exploit data from re-
lated combinations and thereby achieve generalization
over both virus mutations and combinations of drugs.

We contribute a new multi-task learning model that
can handle arbitrarily different data distributions for
different tasks without making assumptions about the
data generation process or the relation between tasks.
We show that by appropriately weighting each in-
stance in the pool of all examples, one can match the
distribution that governs the pool of examples of all
tasks to each of the single task distributions. We show
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how appropriate weights can be obtained by discrimi-
nating the labeled sample for a given task against the
pooled sample.

The rest of this paper is structured as follows. After
formalizing the problem setting in Section 2, we review
related transfer learning models in Section 3. We de-
vise the model for multi-task learning by distribution
matching in Section 4. In Section 5 we describe the
data sets and the experimental setting and report on
experimental results. Section 6 concludes.

2. Problem Setting

In supervised multi-task learning, each of several
tasks z is characterized by an unknown joint dis-
tribution p(x,y|z) of features x and label y given
the task z. The joint distributions of different
tasks may differ arbitrarily but usually some tasks
have similar distributions. A training sample D =
((x1,Y1,21); -+, (Xim, Ym, 2m)) collects examples from
all tasks. There may be tasks with no data. For each
example, input attributes x;, class label y;, and the
originating task z; are known. The entire sample D is
governed by the mixed joint density p(z)p(x,y|z). The
prior p(z) specifies the task proportions.

The goal is to learn a hypothesis f, : x — y for each
task z. This hypothesis f.(x) should correctly predict
the true label y of unseen examples drawn from p(x|z)
for all z. That is, it should minimize the expected loss

E(x,p)~p(x,y12) [E(f2(%), Y)]

with respect to the unknown joint distribution
p(x,y|z) for each individual z.

This abstract problem setting models the HIV therapy
screening application as follows. Input x describes the
genotype of the virus that a patient carries, together
with the patient’s treatment history. Genotype infor-
mation is encoded as a binary vector indicating the
presence and absence of each out of a predefined set
of resistance-relevance mutations, respectively. The
treatment history can be represented as a binary vec-
tor indicating which drugs have been administered
over the course of past treatments. A candidate com-
bination of drugs plays the role of the task z: each task
has an associated binary vector z that indicates a set
of drugs that a medical practitioner is currently giv-
ing consideration. The binary class label y indicates
whether the therapy will be successful.

In addition to training data, we may have prior knowl-
edge on the similarity of tasks which is encoded in a
kernel function k(z,z’). Prediction models for differ-
ent drug combinations can be similar because the sets

of drugs intersect (we will later refer to this as the
drug feature kernel), or because similar sets of muta-
tions in the virus render the drugs in the set ineffective
(mutation table kernel).

3. Prior Work

One obvious strategy for multi-task learning is to learn
independent models for each target task ¢ by mini-
mizing an appropriate loss function on the portion of
D; = {(xi,yi,2i) € D : z; = t}. The other extreme
could be a one-size-fits-all model f,(x) trained on the
entire sample.

In many applications, task-level descriptions or prior
knowledge on task similarity encoded in a kernel are
available. Bonilla et al. (2007) study an extension of
the one-size-fits-all model and find that training with a
kernel defined as the multiplication of an input feature
kernel and a task-level kernel outperforms a gating net-
work. Task-level features have also been utilized for
task clustering and for a task-dependent prior on the
model parameters (Bakker & Heskes, 2003).

Another simple extension to the one-size-fits-all model
would be to train a model for a target task from all
data with weighted examples from other tasks, using
one fixed uniform weight for each task. Such a model
is described by Wu and Dietterich (2004).

Our work is inspired by learning under covariate shift.
In the covariate shift setting the marginals piqqin(X)
and preste(x) of training and test distributions dif-
fer, but the conditionals are identical piqin(y|x) =
Drest(y]|x). If training and test distributions were
known, then the loss on the test distribution could be
minimized by weighting the loss on the training distri-
bution with an instance-specific factor. Shimodaira
(2000) illustrates that the scaling factor has to be

z?:Ttn(();)) Bickel et al. (2007) derive a discriminative
expression for this marginal density ratio that can be
estimated — without estimating the potentially high-
dimensional densities of training and test distributions

— by discriminating training against test data.

Hierarchical Bayesian models for multi-task learning
are based on the assumption that task-specific model
parameters are drawn from a common prior. The
task dependencies are captured by estimating the com-
mon prior. Yu et al. (2005) impose a normal-inverse
Wishart hyperprior on the mean and covariance of
a Gaussian process prior that is shared by all task-
specific regression functions. Mean and covariance of
the Gaussian process are estimated using the EM al-
gorithm. A Dirichlet process can serve as prior in a hi-
erarchical Bayesian model and cluster the tasks (Xue
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et al., 2007); all tasks in one cluster share the same
model parameters. Evgeniou and Pontil (2004) derive
a kernel that is based on a hierarchical Bayesian model
with Gaussian prior (covariance matrix is scalar) on
the parameters of a regularized regression.

Larder et al. (2007) tackle the problem of predicting
virological response to a given HIV drug combination
with neural networks. Lathrop and Pazzani (1999) ap-
ply combinatorial optimization to the same problem
using features extracted from the viral genotype and
the drugs in the combination. Altmann et al. (2007)
approach the problem by including various phenotypic
information and an estimate of future evolutionary de-
velopment of the virus in the learning process.

4. Multi-Task Learning by Distribution
Matching

In learning a classifier f;(x) for target task t, we seek
to minimize the loss function with respect to p(x, y|t).
Simply pooling the available data for all tasks would
create a sample governed by ). p(2)p(x,ylz). Our
approach now is to create a task-specific resampling
weight r4(x,y) for each element of the pool of exam-
ples. The sampling weights match the pool to the
target distribution p(x,y|t). The weighted sample is
governed by the correct target distribution, but is still
larger as it draws from the sample pool for all tasks.

Instead of sampling from the pool, one can weight
the loss incurred by each instance by the resampling
weight. The expected weighted loss with respect to the
mixture distribution that governs the pool equals the
loss with respect to the target distribution p(x,ylt).
Equation 1 defines the resampling weights.

E(x y)~p(xyit) [((f(%,1), )] (1)
= E(x,y)NZ L p(z)p(x,ylz) [Tt (X7 y)€<f(x7 t)a y)]

In the following, we will show that

p(x,ylt)

r) = e, g17)

satisfies Equation 1. Equation 2 expands the ex-
pectation and introduces a fraction that equals one.
Equation 3 expands the sum over z in the numerator
to run over the entire expression because the integral
over (x,y) is independent of z. Equation 4 is the ex-
pected loss over the distribution of all tasks weighted

p(x,ylt)
by s

E ()~ (el [0 (%, 1), )] (2)
TP x0),

- (e yl2)

B p(x, p(x,y[t)

B /Z( P, ylz )Zz/p(z’)p(X»yIZ’) ®)
e(f(x,w,y))dxdy

= E(xyy)NZzp(Z)p(me) (4)

p(x,y[t)
[zz, Pl gl ) y)}

y)dxdy

Equation 4 signifies that we can train a hypothesis for
task ¢ by minimizing the expected loss over the distri-
bution of all tasks weighted by r;(x,y). This amounts
to minimizing the expected loss with respect to the
target distribution p(x, y|t).

Equation 4 leaves us with the problem of estimat-
ing the joint density ratio r(x,y) = %.
One might be tempted to train density estimators for

p(x,y|t) and Y, p(2)p(x,y|z). However, obtaining es-

timators for potentially high-dimensional densities is
unnecessarily difficult because ultimately only a scalar
weight is required for each example.

4.1. Discriminative Density Ratio Model

In this section, we derive a discriminative model that
directly estimates the resampling weights r(x,y) =

% without estimating the individual den-

sities. We reformulate the density ratio %
in terms of a conditional model p(¢|x,y). This con-

ditional has the following intuitive meaning: Given
that an instance (x,y) has been drawn at random from
the pool U, D, = D of samples for all tasks (includ-
ing D;); the probability that (x,y) originates from D;
is p(t|x,y). The following equations assume that the
prior on the size of the target sample is greater than
zero, p(t) > 0. In Equation 6 Bayes’ rule is applied
twice and in Equation 7 p(x,y) and p(z) are canceled
out. Equation 8 follows by >, p(z|x,y) = 1.

_ el

(X, y) = S p(2)p(x, y]2) (5)
_ pltxy)p(x,y) 1 o

pit) X, p(z) PG

L k)
op(t) > p(z|x,y) (7)
_ plxy)
o p(t) (8)
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The significance of Equation 8 is that it shows how the
resampling weights r;(x,y) = % can be de-
termined without knowledge of any of the task densi-
ties p(x,y|z). The right hand side of Equation 8 can be
evaluated based on a model p(t|x, y) that discriminates
labeled instances of the target task against labeled in-
stances of the pool of examples for all tasks. Intu-
itively, p(t|x,y) characterizes how much more likely
(x,y) is to occur in the target distribution than it is to
occur in the mixture distribution of all tasks. Instead
of potentially high-dimensional densities p(x,y|t) and
p(x,y|z), a conditional distribution with a single vari-
able needs to be modeled. One can apply any proba-
bilistic classifier to model this conditional distribution.

4.2. Soft-Max Model for Density Ratio
Estimation

We model p(t|x,y) of Equation 8 for all tasks jointly
with a soft-max model (the multi-class generalization
of the logistic model) with model parameters v, dis-
played in Equation 9. The parameter vector v is a
concatenation of task-specific subvectors v, one for
each task z. With this model an estimate for p(¢|x,y)
is given by p(z = t|x,y, v); this is the evaluation of the
soft-max model with respect to task t.
exp(v] ®(x,y))

S S A N7 B
Equation 9 requires a problem-specific feature map-
ping ®(x,y). Without loss of generality we define
this mapping for binary labels y € {+1, -1} in Equa-
tion 10; ¢ is the Kronecker delta. In the absence of
prior knowledge about the similarity of classes, input
features x of examples with different class labels y are
mapped to disjoint subsets of the feature vector.

0y, +1)P(x)
[ 5(y, 1) (x) } (10)

®(x,y)

With this feature mapping the models for positive and
negative examples do not interact and can be trained
independently.

For training the soft-max model we maximize the reg-
ularized log-likelihood of the data. Prior knowledge on
the similarity of tasks in the form of a positive semi-
definite kernel function k(z,2’) can be be encoded in
the covariance matrix of a Gaussian prior N(0,%) on
parameter vector v. We set all main diagonal entries
of ¥ to the scalar parameter o2 and set the secondary
diagonal entries corresponding to the covariances be-
tween v, and v/, to k(z, 2’)po2 (assuming kernel values
0 < k(z,2') < 1). Parameter o2 specifies the variance
of each element in v. k(z,2')p is the correlation co-
efficient between elements of subvectors v, and v’;

parameter p specifies the strength of this correlation.
The covariance matrix ¥ is required to be invertible
and therefore 0 < p < 1. All other entries of X are set
to zero. When prior knowledge on the task similarities
is encoded in the prior on the model parameters, then
this prior knowledge dominates the optimization cri-
terion for small samples while the data-driven portion
of the criterion becomes dominant and overrides prior
beliefs as more data arrives.

Optimization Problem 1 Owver parameters v, mazx-
mize

Z log(p(2i|xi, yi, v)) + v E v,
(xi,yi,2:) €D

The solution of Optimization Problem 1 is a maximum
a posteriori estimation of the soft-max model (Equa-
tion 9) over the model parameters v using a Gaussian
prior with covariance matrix . Tasks with no training
examples are covered naturally in Optimization Prob-
lem 1. In this case, the Gaussian prior with the task
kernel k(z, z') encoded in the covariance matrix deter-
mines the model.

For our experiments we use a kernelized variant of Op-
timization Problem 1 by applying the representer theo-
rem. Details on the kernelization of multi-class logistic
regression can be learned from Zhu and Hastie (2002).

4.3. Weighted Empirical Loss and Target
Model

The multi-task learning procedure first determines re-
sampling weights r,(x,y) for all tasks and instances
by solving Optimization Problem 1. In this section we
describe the second step of training an array of target
models, one for each task, using weighted examples.

With the results of Optimization Problem 1 the dis-
criminative expression for the weights of Equation 8
can be estimated. Using these weights we can evalu-
ate the expected loss over the weighted training data
as displayed in Equation 11. It is the regularized em-
pirical counterpart of Equation 4.

p(t|X,y,V) W;I—Wt
p(t)

An instance of Optimization Problem 2 is solved for
each task independently to produce a separate model
for this task. Optimization Problem 2 minimizes
Equation 11, the weighted regularized loss over the
training data using a standard Gaussian log-prior with
variance o2, on the parameters w;. Each example
is weighted by the discriminatively estimated density

E(x7y)~D f(f(X, t)a y) + (11)

2
208,
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fraction from Equation 8 using the solution of Opti-
mization Problem 1.

Optimization Problem 2 For task t: over parame-
ters Wy, minimize

t 19 15 7
Z p( |X Y V)e(f(xhwt)yyi) + Wi ‘;Vt.
(xi,yi)€ED p(t) 20w

5. HIV Therapy Screening

We model HIV therapy screening as a multi-task learn-
ing problem. The input x to the prediction problem
is given by attributes of the viral genotype and the
patient’s treatment history. The combination of drugs
z plays the role of the task. Success or failure of the
therapy constitutes class-label y.

In the next subsections we describe the data sets, ref-
erence methods, and the empirical results of our study.

5.1. Data Sets and Prior Knowledge on Task
Similarity

We use data from the EuResist project (Rosen-Zvi
et al., 2008). The data set comprises a total number
of 52846 treatment records from the treatment histo-
ries of 16999 HIV patients treated in hospitals in the
period of 1977 through 2007.

We use two different definitions of therapeutic success
and failure to tag the data: wirus load labeling and
multi-conditional labeling.

According to our virus load labeling definition a ther-
apy is successful if the viral load (number of virus
copies per ml blood plasma, c¢p/ml) drops below the
established level of virus detection of 400 cp/ml during
the time of the treatment. Otherwise the treatment is
a failure. In multi-conditional labeling, a therapy is
successful if the viral load measured in the time range
between 28 and 84 days after the start of the therapy
decreases by at least 2 orders of magnitude compared
to the most recent viral load measured one to three
months before the start of the therapy, or the viral
load drops below 400 cp/ml 56 days after the start of
the therapy. A drawback of this definition is that due
to the strict time intervals it imposes on the measure-
ments, class labels that adhere to this labeling are only
available for a small number of records. The virus load
labeling does not require these strict time intervals by
making use of any viral load measurement during the
course of therapy to label it.

Out of all available treatment records we extract two
different data sets using the two labelings. With the
virus load labeling we extract 3260 and with the multi-

virus load data set multi-condition data set
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Figure 1. Histogram over number of treatment records for
drug combinations (tasks) in the virus load data set (left)
and multi-condition data set (right).

conditional labeling 2011 treatment records with cor-
responding ratios of 65.7% and 64.1% successful treat-
ments. The size of these data sets is much smaller than
the size of the original data due to missing viral load
measurements, or missing virus sequence information.

A number of 545 distinct drug combinations (tasks z)
occur at least once in the virus load data set; 433 occur
in the the multi-conditional data set. The histogram
over sample sizes per task is displayed in Figure 1.
For many combinations, only a few examples occur in
the data. For instance, in the virus load data set we
observe 253 out of 545 drug combinations with only
one data point and 411 with less than 5 instances.
Similarly, the multi-conditional data set has 213 out
of 433 drug combinations with a single data point and
331 with less than 5 observations.

We extract two types of features for each instance:
a genotypic description of the virus and information
about the treatment history of the patient. We use the
viral genotype taken from the patient shortly before
the treatment and represent it by a binary vector in-
dicating the presence of resistance-relevant mutations
of the viral sequence (Johnson et al., 2007). Drug-
resistant viral quasi-species evolve during the course
of the treatment due to selective pressure imposed by
the drug. As they remain in the patient’s body, the
treatment history plays an important role for predict-
ing the outcome of a potential treatment. Hence, we
extract all drugs given to the patient in previous treat-
ments and use a binary vector representation with a
one entry for each drug given to the patient in the
treatment history. The 82-dimensional feature vector
x for each data point results from the concatenation
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Table 1. Classification accuracies with standard errors of differences to distribution matching method (ste.A). Symbols
(e,0,%,0) indicate statistical significance according to a paired ¢-test with significance level o = 0.05, (o) compared to

179y

separate baseline, (o) compared to pooled baseline, (%) compared to hierarchical Bayesian kernel baseline, (¢) compared

to hierarchical Bayesian Gaussian process baseline.

prior hier. Bayes hier. Bayes distribution

data set knowledge | separate ste.A | pooled ste.A kernel  ste.A | Gauss. proc. ste.A matching
virus load none 67.87% 1.80 | 75.00% 1.47 76.69%  1.39 76.53% 1.36 | e0%¢79.14%
drug.feat. | 67.87% 1.76 | 75.46% 1.39 75.31% 1.34 eox 77.91%
mut.table | 67.87% 1.78 | 75.61% 1.37 76.84% 1.16 eox 79.29%
multi- none 64.64% 2.41 76.67% 1.13 77.17% 1.29 76.43% 1.44 | e0%x079.40%
condition | drug.feat. | 64.64% 2.29 | 78.41% 1.63 75.19% 1.44 e x 78.16%
mut.table | 64.64% 2.38 | 78.66% 1.11 77.42% 1.24 . 79.16%

of 65 genotypic and 17 historic treatment features.

We have prior knowledge about the similarity of com-
binations and encode this knowledge into two differ-
ent task similarity kernels k(z,z’). The binary drug
indicator vector has an entry for each drug; entries
of one indicate the presence of a drug in the combi-
nation. The drug indicator kernel is the inner prod-
uct between the normalized drug indicator vectors of
two combinations. The mutation table kernel is based
on tables about the resistance-associated mutations of
single drugs (Johnson et al., 2007). We construct bi-
nary vectors indicating resistance-relevant mutations
for the set of drugs occurring in a combination. The
kernel computes the normalized inner product between
such binary vectors for two drug combinations.

5.2. Reference Methods

The first reference method is training of a separate
logistic regression model for each task without any in-
teraction (“separate”). Tasks without any training ex-
amples get a constant classifier that assigns each test
example with 50% to each of both classes.

The next baseline is a one-size-fits-all model; all ex-
amples are pooled and only one common logistic re-
gression is trained for all tasks (“pooled”). For the
experiments with prior knowledge on task similarity
we multiply the feature kernel with the task kernel
values k(x,x’)(k(z,2') + 1) and train one model using
this kernel (Bonilla et al., 2007). For task kernels that
can have a value of zero we include a “+1” term to
ensure that the feature kernel does not vanish.

The third reference method (“hier. Bayes kernel”) is a
logistic regression with the hierarchical Bayesian ker-
nel kppayes(x,x") = (A4 0(z, 2'))k(x,x") of Evgeniou
and Pontil (2004); §(z, 2’) is the Kronecker delta and A

is a tuning parameter. For the experiments with task
similarity kernel the hierarchical Bayes and the task
kernel are multiplied. As second hierarchical Bayesian
method (“hier. Bayes Gauss. proc.”) we use the Gaus-
sian process regression of Yu et al. (2005).

5.3. Experimental Setting and Results

In our experiments we study the benefit of distribu-
tion matching for HIV therapy screening compared to
the reference methods described in Section 5.2. Op-
timization Problem 1 is solved with limited-memory
BFGS and Optimization Problem 2 with Newton gra-
dient descent using a logistic loss. For the prior term
p(t) required in Optimization Problem 2 we use a MAP
estimate % with a symmetric Dirichlet prior.

We use RBF kernels for all methods.

We apply a training-test split of the data consistent
with the dates of the treatment records. We sort the
treatment records by date and use the first 80% of the
records as training data and the last 20% as test data.
This procedure yields 653 and 403 test examples for
the virus load and multi-conditional data set, respec-
tively. The date consistent split is necessary because
new drugs get approved over time, and under pressure
of new drugs the viral population evolves. In such en-
vironments, the prediction models should be able to
learn from data seen in the past and perform well on
unseen data in the future.

We tune the prior and regularization parameters of all
methods, the Dirichlet parameter v, and the variance
of the RBF kernels on tuning data resulting from a
date consistent split of the training data.

The evaluation measure is the accuracy of predicting
the correct label (success or failure of a treatment)
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Figure 2. Accuracy over different number of training examples for target combination; virus load data set (left), multi-
condition data set (right). Error bars indicate the standard error of the differences to distribution matching. The key can

be found in the box right above the diagrams.

on the test set. Table 1 shows the results of the pre-
diction accuracy for all methods over both data sets
without and with two different types of prior knowl-
edge on combination similarity. The columns “ste.A”
placed next to the accuracy columns display the stan-
dard error of the differences to the distribution match-
ing method.

Multi-task learning by distribution matching outper-
forms, or is as good as, the best alternative method in
all cases. The improvement over the separate model
baseline is about 10-14%. We can reject the null hy-
pothesis that the pooled and the hierarchical Bayesian
kernel baseline is at least as accurate as distribution
matching in four and five cases respectively out of six
according to a paired t-test at a = 0.05.

For distribution matching, prior knowledge does not
improve the accuracy. The pooled baseline benefits
from prior knowledge for the multi-condition data set.
For the case without prior knowledge we do not ob-
serve a statistically significant difference of the two

hierarchical Bayesian methods, but they are both sig-
nificantly worse than distribution matching according
to the paired t-test. Note that the Gaussian process
baseline is a regression model; all other methods are
classification models.

Figure 2 displays the accuracy over the combinations
in the test set grouped by the number of available ex-
amples for the settings without and with the mutation
table kernel. For instance, an accuracy of 74% for the
first group “0-2” means, that only test examples from
combinations are selected that have zero, one, or two
training examples each, and the accuracy on this sub-
set of the test examples is 74%. Each of the four groups
covers about the same number of test examples. The
error bars indicate the standard error of the differences
to the distribution matching method. Note, that the
statistical tests described above are based on all test
data and are not directly related to the group-specific
error bars in the diagrams.

All methods benefit from larger numbers of training
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examples per drug combination. The slightly decreas-
ing accuracy for the virus load data set with “>38"
training examples is surprising. Further analysis re-
veals that in this case there is an accumulation of test
examples with history profiles very different from the
training examples of the same combination.

For all methods that generalize over the tasks the ben-
efit compared to the separate model baseline is the
largest for the smallest group (“0-2” and “0-1” train-
ing examples respectively).

6. Conclusion

We devised a multi-task learning method that cen-
ters around resampling weights which match the dis-
tribution of the pool of examples of multiple tasks to
the target distribution for a given task at hand. The
method creates a weighted sample that reflects the de-
sired target distribution and exploits the entire corpus
of training data for all tasks. We showed how ap-
propriate weights can be obtained by discriminating
the labeled sample for a given task against the pooled
sample. After weighting the pooled sample, a classifier
for the given task can be trained. In our experiments
on HIV therapy screening we found that the distribu-
tion matching method improves on the prediction ac-
curacy over independently trained models by 10-14%.
According to a paired t-test, distribution matching is
significantly better than the reference methods for 17
out of 20 experiments.

A combination of drugs is the standard way of treat-
ing HIV patients. The accuracy to which the likely
outcome of a combination therapy can be anticipated
can therefore directly impact the quality of HIV treat-
ments.
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Abstract

Nonnegative matrix factorization (NMF) was
popularized as a tool for data mining by Lee
and Seung in 1999. NMF attempts to ap-
proximate a matrix with nonnegative entries
by a product of two low-rank matrices, also
with nonnegative entries. We propose an al-
gorithm called rank-one downdate (R1D) for
computing an NMF that is partly motivated
by the singular value decomposition. This al-
gorithm computes the dominant singular val-
ues and vectors of adaptively determined sub-
matrices of a matrix. On each iteration, R1D
extracts a rank-one submatrix from the origi-
nal matrix according to an objective function.
We establish a theoretical result that max-
imizing this objective function corresponds
to correctly classifying articles in a nearly
separable corpus. We also provide compu-
tational experiments showing the success of
this method in identifying features in realis-
tic datasets. The method is also much faster
than other NMF routines.

1. Nonnegative Matrix Factorization

Several problems in information retrieval can be posed
as low-rank matrix approximation. The seminal pa-
per by Deerwester et al. (1990) on latent semantic
indexing (LSI) showed that approximating a term-
document matrix describing a corpus of articles via
the SVD led to powerful query and classification tech-
niques. A drawback of LSI is that the low-rank fac-
tors in general will have both positive and negative
entries, and there is no obvious statistical interpreta-
tion of the negative entries. This led Lee and Seung
(1999) among others to propose nonnegative matriz
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factorization (NMF), that is, approximation of a ma-
trix A € R™*™ as a product of two factors WHT,
where W € R™** H € R"** both have nonnegative
entries, and k¥ < min(m,n). Lee and Seung showed
intriguing results with a corpus of images. In a re-
lated work, Hofmann (1999) showed the application
of NMF to text retrieval. Nonnegative matrix fac-
torization has its roots in work of Gregory and Pull-
man (1983), Paatero and Tapper (1994) and Cohen
and Rothblum (1993).

Since the problem is NP-hard (Vavasis, 2007), it is not
surprising that no algorithm is known to solve NMF
to optimality. Heuristic algorithms proposed for NMF
have generally been based on incrementally improving
the objective ||[A — WHT|| in some norm using local
moves. A particularly sophisticated example of local
search is due, e.g., to Kim and Park (2007). A draw-
back of local search is that it is sensitive to initial-
ization and it is also sometimes difficult to establish
convergence.

We propose an NMF method based on greedy rank-one
downdating that we call R1D. R1D is partly motived
by Jordan’s algorithm for computing the SVD, which
is described in Section 2. Unlike local search methods,
greedy methods do not require an initial guess. In
Section 3, we compare our algorithm to Jordan’s SVD
algorithm, which is the archetypal greedy downdat-
ing procedure. Previous work on greedy downdating
algorithms for NMF is the subject of Section 4. In Sec-
tion 5, we present the main theoretical result of this
paper, which states that in a certain model of text due
to Papadimitriou et al. (2000), optimizing our objec-
tive function means correctly identifying a topic in a
text corpus; and Section 6 discusses the complexity of
this problem. We then turn to computational exper-
iments: in Section 7, we present results for R1D on
image datasets, and in Section 8, we present results
on text.
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2. Algorithm and Objective Function

Rank-one downdate (R1D) is based on the simple ob-
servation that the leading singular vectors of a nonneg-
ative matrix are nonnegative. This is a consequence
of the Perron-Frobenius theorem (Golub & Van Loan,
1996). Based on this observation, it is trivial to com-
pute a rank-one NMF. This idea can be extended to
approximate a higher order NMF. Suppose we com-
pute the rank-one NMF and then subtract it from
the original matrix. The original matrix will not be
nonnegative any more but all negative entries can be
forced to be zero or positive and the procedure can be
repeated.

An improvement on this idea takes only a submatrix of
the original matrix and applies the Perron-Frobenius
theorem. The point is that taking the whole matrix
will in some sense average the features, whereas a sub-
matrix can pick out particular features. A second rea-
son to take a submatrix is that a correctly chosen sub-
matrix may be very close to having a rank of one, so
the step of forcing the residuals to be zero will not in-
troduce significant inaccuracy (since they will already
be close to zero).

The outer loop of the R1D algorithm may be described
as follows.

Algorithm 1 R1D
input Ac R™ "™ k>0
output W € R™** H ¢ R"**
1: for y=1to k do
2:  [M,N,u,v,o] = ApproxRankOneSubmatrix(A)

3 W(M,p) =u(M)
4:  H(N,u) =ov(N)
5. A(M,N)=0

6: end for

Here, M is a subset of {1,...,m}, N is a sub-
set of {I,...,n}, u € R™, v € R" and o €
R, and u,v are both unit vectors. The function
ApproxRankOneSubmatrix selects these five values so
that the submatrix of A indexed by rows M and N
is approximately rank one, and in particular, is ap-
proximately equal to u(M)ovT (N). We follow Mat-
lab subscripting conventions, so that A(M, N) denotes
this particular submatrix.

This outer loop for R1D may be called “greedy rank-
one downdating” since it greedily tries to fill the
columns of W and H from left to right by finding good
rank-one submatrices of A and subtracting them from
A. The classical greedy rank-one downdating algo-
rithm is Jordan’s algorithm for the SVD, described in
Section 3. Related work on greedy rank-one downdat-

ing for NMF is the topic of Section 4.

The subroutine ApproxRankOneSubmatrix, presented
later in this section, is a heuristic routine to maximize
the following objective function:

FOM, N, w,0,v) = | AQM, N)|[3 -~ A(M, N)uav?)%
1

Here, v is a penalty parameter. The Frobenius norm
of an m x n matrix B, denoted || B||r is defined to be
VB(1,1)2 + B(1,2)2 + - - - + B(m,n)2. The rationale
for (1) is as follows: the first term in (1) expresses the
objective that A(M, N) should be large, while the sec-
ond term penalizes departure of A(M, N) from being
a rank-one matrix.

Since the optimal u,o,v come from the SVD (once
M, N are fixed), the above objective function can be
rewritten just in terms of M and N as

f(MvN) = Zai(A(MvN)>2_'YZUi(A(MvN))Q
= o1(A(M,N))?
—(y=1)- (02(A(M,N))?
+ o+ 0y (A(M,N))?), (2)

where p = min(|M|,|N|). The penalty parameter
should be greater than 1 so that the presence of low-
rank contributions is penalized rather than rewarded.

We conjecture that maximizing (1) is NP-hard (see
Section 6), so we instead propose a heuristic routine
for optimizing it. The procedure alternates improving
M, N, u, 0 and v cyclically. First, observe that if
M, N are already known, then the optimal choice of
u, 0, v can be found with the SVD. For fixed (v, N),
the objective function (1) is separable by rows of the
matrix. In particular, the contribution of row i € M
is
JAG, NI = 714G, N) — Bv7 |,

where §; = u;o. Note that §; may be undefined if
i ¢ M. Nonetheless, given v, the optimal §; (i.e.,
the choice that minimizes || A(i, N) —u;v7|) is easy to
compute: it is A(i, N)v, the solution to a simple least-
squares minimization. Thus, we conclude that putting
column 7 into index set M is favorable for the overall
objective function provided that f; > 0, where

fi = 1AG, NP = y[|AG, N) = AG, N)vv ||,
The formula for f; can be simplified as follows:

fi = A(N)AGN)T —4(A@N)

—A(i, N)vwb)(A(i, N) — A(i, N)vvT)T
= —(y—=1)A®G, N)A@G, N)T + (A6, N)v)2
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If we rescale by v —1 (which does not affect the accep-
tance criterion), and we define new penalty parameters
7 :=+/(y—1), then we see that row i is accepted pro-
vided that

F(A(i, N)v)? — A(i, N)A(i, N)T > 0.

A similar analysis applies to the columns, and leads to
the conclusion that, given values for M and u, column
7 should be accepted provided that

(T A(M, 5))* = A(M, )T A(M, j) > 0.

The next issue is the choice of a starting guess for
M, N,u,o,v. The algorithm should be initialized with
a starting guess that has a positive score, or else the
rules for discarding rows and columns could conceiv-
ably discard all rows or columns. To put this more
strongly, in order to improve the score of a converged
solution, it seems sensible to select a starting guess
with a high score. For this reason, R1D uses a single
column of A as its starting guess, and in particular, the
column of A with the greatest norm. (A single row may
also be chosen.) It then chooses u to be the normaliza-
tion of this column. This column is exactly rank one,
so for the correct values of ¢ and v the first penalty
term of (1) is zero. We have derived the following al-
gorithm for the subroutine ApproxRankOneSubmatrix
occuring in statement (2) in R1D.

Algorithm 2 ApproxRankOneSubmatrix

input A € R™*™ | parameter 7 > 1
output M C {1,...,m}, N Cc{1,...,n},
ueR" veR", 0 R
Select jo € {1,...,n} to maximize ||A(:, jo)||
M=A{1,...,m}
N = {jo}
o = [[AG jo)l
u=A(:,jo)/o
repeat
Let v = A(M,:)Tu(M)
N = {j:300)? — |AM, j)|* > 0}
v(N) = ¥(N) /[ (N)]
Let w = A(:, N)v(N)
M = {i: yu(i)* — || A(i, N)||* > 0}
o = [lu(M)]
u(M)=u(M)/o
: until stagnation in M, N,u,o,v

— = = e e
el

The ‘Repeat’ loop is guaranteed to make progress be-
cause each iteration increases the value of the objective
function. On the other hand, there does not seem to
be any easy way to derive a useful prior upper bound
on its number of iterations. In practice, it proceeds

quite quickly, usually converging in 10-15 iterations.
But to guarantee fast termination, monotonicity can
be forced on M and N by requiring M to shrink and N
to grow. In other words, statement (8) can be replaced
by

N =NU{j:70(5)* - | AM, j)||* > 0},
and statement (11) by
M = M — {i - 7u(i)® — | AG, N)||* < 0}.

Our experiments indicate that this change does not
have a major impact on the performance of R1D.

Another possible modification to the algorithm is as
follows: we modify the objective function by adding a
second penalty term —p|M|-|N| to (1) where p > 0 is
a parameter. The purpose of this term is to penalize
very low-norm rows or columns from being inserted
into A(M, N) since they are probably noisy. For data
with larger norm, the first term of (1) should dominate
this penalty. Notice that this penalty term is also sep-
arable so it is easy to implement: the formula in (8) is
changed to 9(j)% — ||A(M, j)||* — p|M| > 0 while the
formula in (11) becomes i (i)? — | A(i, N)||* — p|N| >
0, where p = p/(y —1). A good value for p is to set it
so that in the initial starting point, the third penalty
term is a small fraction (say 7 = 1/20) of the other
terms. This leads to the following definition for p:

p=n(y-1)0/m,

which may be computed immediately after (4).

Greedy rank-one downdating appears to be much
faster than other NMF algorithms. Generating each
column of W and H requires approximately 20 matrix-
vector multiplications; these multiplications are always
at least as sparse as the original data. There is no it-
erative improvement phase. It can also be much faster
than the SVD, especially for sparse data.

3. Relationship to the SVD

The classical rank-one greedy downdating algorithm
is Jordan’s algorithm for computing the singular value
decomposition (SVD) (Stewart, 1993). Recall that the
SVD takes as input an m x n matrix A and returns
three factors U, %,V such that U € R™** and U has
orthonormal columns (ie., UTU = I), ¥ € RF*k
and is diagonal with nonnegative diagonal entries, and
V € R™** also with orthonormal columns, such that
UXVT is the optimal rank-k approximation to A in
either the 2-norm or Frobenius norm. (Recall that
the 2-norm of an m x n matrix B, denoted || B2, is
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Algorithm 3 JordanSVD

input A € R™*" and k < min(m,n)
output U,X,V as above.

1: for u=1to k do

2:  Select a random nonzero u € R™

3 o =|u

4 u=1u/o

5:  repeat {power method}
6: v=A"u

o v=v/|v|

8: a=Av

9:  o=|u

10: u=1u/o

11:  until stagnation in u,o,v
122 A=A—-uov’

13: U(;,p)=u

14: V(,p)=v

15 X(p,p) =0

16: end for

defined to be \/Amax(BT B), where Apax denotes the
maximum eigenvalue.)

Thus, we see that R1D is quite similar to the SVD. The
principal difference is that R1D tries to find a subma-
trix indexed by M x N at the same time that it tries
to identify the optimal u and v. Hence, the formulas
for u and v occurring in (9) and (13) of subroutine
ApproxRankOneSubmatrix, which were presented ear-
lier as solutions to a least-squares problem, may also
be regarded as steps in a power method. In particular,
this means that if M and N are fixed, then the inner
repeat loop of this subroutine will indeed converge to
the dominant singular triple of A(M, N).

As mentioned earlier, a shortcoming of the SVD is that
its factors contain both positive and negative numbers.
It has another subtler shortcoming when used for clus-
tering which is as follows: because the SVD always
operates on the entire matrix, it can return a singular
vector that averages the results from two nearly dis-
joint topics in a corpus (see Biggs et al. (2008) for an
example). R1D avoids this pitfall by seeking a subma-
trix that is approximately rank-one as it applies the
power method.

4. Related Work

As mentioned in the introduction, most algorithms
proposed in the literature are based on forming an
initial W and H and then improving them by local
search on an objective function. The objective func-
tion usually includes a term of the form |4 — WHT||
in some norm, and may include other terms.

A few previous works follow an approach similar to
ours, namely, greedy subtraction of rank-one matrices.
This includes the work of Bergmann et al. (2003), who
identify the rank-one matrix to subtract as the fixed
point of an iterative process. Asgarian and Greiner
(2006) find the dominant singular pair and then trun-
cate it. Gillis (2006) finds a rank-one understimator
and subtracts that. Boutsidis and Gallopoulos (2007)
consider the use of a greedy algorithm for initializing
other algorithm and make the following interesting ob-
servation: The nonnegative part of a rank-one matrix
has rank at most 2.

The main innovation herein is the idea that the search
for the rank-one submatrix should itself be an opti-
mization subproblem. This observation allows us to
compare one candidate submatrix to another. (Gillis
also phrases his subproblem as optimization, although
his optimization problem does not explicitly seek sub-
matrices like ours.) A second innovation is our anal-
ysis in Section 5 showing that if the subproblem were
solved optimally, then R1D would be able to accu-
rately find the topics in the model of e-separable cor-
pora (Papadimitriou et al., 2000).

5. Behavior of this objective function
on a nearly separable corpus

In this section, we establish the main theoretical result
of the paper, namely, that the objective function given
by (1) is able to correctly identify a topic in a nearly
separable corpus. We define our text model as fol-
lows. There is a universe of terms numbered 1,...,m.
There is also a set of topics numbered 1,...,t. Topic
k, for kK = 1,...,t, is a probability distribution over
the terms. Let P(i, k) denote the probability of term 4
occurring in topic k. Thus, P is a singly stochastic ma-
trix, i.e., it has nonnegative entries with column sums
exactly 1. We assume also that there is a probability
distribution over topics; say the probability of topic k
is 7, for k = 1,...,t. The text model is thus specified
by P and 7q,...,7. We use the Zipf distribution as
the model of document length. In particular, there is
a number L such that all documents have length less
than L, and the probability that a document of length
l occurs is

1/1
1+1/2+---+1/(L—-1)

We have checked that the Zipf model is a good fit for
several common datasets.

A document is generated from this text model as fol-
lows. First, topic k is chosen at random according
to the probability distribution {7,...,7:}. Then, a
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length [ is chosen at random from {1,...,L — 1} ac-
cording to the Zipf distribution. Finally, the docu-
ment itself is chosen at random by selecting [ terms in-
dependently according to the probability distribution
P(:, k). A corpus is a set of n documents chosen in-
dependently using this text model. Its term-document
matriz is the m x n matrix A such that A(3, j) is the
frequency of term 4 in document j.

We further assume that the text model is e-separable,
meaning that each topic k is associated with a set of
terms T C {1,...,m}, that Ty,...,T; are mutually
disjoint, and that P(i,k) < € for ¢ ¢ Ty, i.e., the prob-
ability that a document on topic k will use a term
outside of T}, is small. Let Py, = min{P(i,k) : i €
Te,k=1,...,t}. Without loss of generality, Ppi, > 0
since any row i € Ty such that P(i,k) = 0 may be
removed from T}, without affecting the validity of the
model. Parameter ¢ must satisfy an inequality men-
tioned below. This corpus model is quite similar to
that of Papadimitriou et al. (2000). One difference
is in the the document length model. Our model also
relaxes several assumptions of Papadimitriou et al.

Our main theorem is that the objective function given
by (1) correctly finds documents associated with a par-
ticular topic in a corpus.

Theorem 1. Let (P, (71,...,7)) specify a text model,
and let o« > 0 be chosen arbitrarily. Assume ¢ > 0
is chosen smaller than a function €(Puyin, m,t,a) (see
Biggs et al. (2008) for this function). Suppose that the
text-model is e-separable with respect to Ty, ..., Ty, the
subsets of terms defining the topics. Let A be the term-
document matriz of a corpus of n documents drawn
from this model when the document-length parameter
is L.

Choose v =4 in (1). Then with probability tending to
1 asn — oo and L — oo, the optimizing pair (M, N)
of (1) satisfies the following. Let D1,...,D; be the
partitioning of the columns of A according to topics.
There exists a topic k € {1,...,t} such that A(M,N)
and A(Ty, Dy) are nearly coincident in the following
sense.

Z A(Z’j)z <«

(4,§)E(M X N)A (T x Dy,)

> AG)

(i,))EM XN

Here, X A'Y denotes the set-theoretic symmetric dif-
ference (X —Y)U (Y — X). The proof of this theorem
is lengthy and appears in Biggs et al. (2008). It re-
lies on Chernoff-Hoeffding estimates and perturbation
results for singular vectors such as Theorem 8.6.5 of
Golub and Van Loan (1996).

6. On the complexity of maximizing
f(M,N)

In this section, we observe that the problem of globally
maximizing (2) is NP-hard at least in the case that -y
is treated as an input parameter. This observation
explains why R1D settles for a heuristic maximization
of (2) rather than exact maximization. First, observe
that the maximum biclique (MBC) problem is NP-
hard as proved by Peeters (2003). We show that the
MBC problem can be transformed to an instance of

(2).

Let us recall the definition of the MBC problem. The
input is a bipartite graph G. The problem is to find
an (m,n)-complete bipartite subgraph K (sometimes
called a biclique) of G such that mn is maximized, i.e.,
the number of edges of K is maximized.

Suppose we are given GG, an instance of the maximum
biclique problem. Let A be the left-right adjacency
matrix of G, that is, if G = (U, V, E) where U UV is
the bipartition of the node set, then A has |U| rows
and |V columns, and A(i,j) = 11if (i,j) € Efori e U
and j € V, else A(i, j) = 0.

Consider maximizing (2) for this choice of A. We re-
quire the following preliminary lemmas whose proofs
are omitted.

Lemma 2. Let A be a matrixz that has either of the
following as a submatriz:

Ul(é (1)>07’U2<(1) }) 3)

Then o2(A) > 0.618.

This lemma leads to the following lemma.

Lemma 3. Suppose all entries of A € R™*"™ are ei-
ther 0 or 1, and suppose and at least one entry is 1.
Suppose M, N are the optimal solution for maximizing
f(M,N) given by (2). Suppose also that the parameter
v is chosen to be 2.7mn + 1 or larger. Then the op-
timal choice of M, N must yield a matriz A(M,N) of
all 1’s, possibly augmented with some rows or columns
that are entirely zeros.

Now consider the main claim, namely, that optimize
(M, N) of the objective function for this A corresponds
to the max biclique. If A(M, N) includes a row or col-
umn entirely of zeros, then this row or column may be
dropped without affecting the value of the objective
function (2). Hence it follows from the lemma that
without loss of generality that the optimizer (M, N)
of (2) indexes a matrix of all 1’s. In that case,

o1(A(M,N)) = /|M|-|N| while o2(A(M,N)) =
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Figure 1. A binary image dataset is depicted in (a); white
indicates zeros. The result of R1D on this dataset is shown
in (b), and LSI in (c).

. = 0p(A(M, N)) = 0 (where p = min(|M],|N])),
and hence f(M,N) = |M]|-|N|. Thus, the value of the
objective function corresponds exactly to the number
of edges in the biclique. This completes the proof that
biclique is reducible in polynomial time to maximizing
(2).

We note that Gillis (2006) also uses the result of
Peeters for a similar purpose, namely, to show that

the subproblem arising in his NMF algorithm is also
NP-hard.

The NP-hardness result in this section requires that v
be an input parameter. We conjecture that (2) is NP-
hard even when + is fixed (say v = 4 as used herein).

7. Image dataset test cases

We first demonstrate the performance of R1D on a
simple binary image dataset, depicted in Figure 1 (a).
Each of the ten dataset images is composed of one or
two “basis” triangles. The results of R1D (with pa-
rameter ¥ = 4) and LSI on this dataset are shown in
Figure 1 (b) and (c), respectively, and the interpre-
tation is as follows. The leftmost column illustrates
the four leading columns of W, which are the learned
features. For each of these, the images on the right
are the dataset images with the largest entries in the
corresponding column of H; they should be closely as-
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Figure 2. Three algorithms applied to the Frey face dataset
(black indicates zeros): (a) NMF with divergence criterion,
(b) our R1D algorithm for NMF, and (c) LSI

sociated with the feature on the left.

R1D discovered the four triangles as a basis, and to
each it associated exactly the dataset images which
contain the appropriate triangle. Alternatively, the
LSI factorization is not as interpretable.

We have also compared results against NMFDIV from
nmfpack (Hoyer, 2000; Hoyer, 2004). NMFDIV re-
quires k, the number of basis vectors to compute, as
an input parameter which globally affects the factors
W and H. If k is correctly set to 4, NMFDIV is able
to compute the same correct result as R1D. Otherwise,
some or all of the basis vectors will appear incorrect,
including the first ones. R1D and LSI will each com-
pute the same leading columns regardless of k, and
on this dataset they will not compute more than 4
columns; all subsequent columns of W and H will be

69



Nonnegative Matrix Factorization via Rank-One Downdate

Table 1. The amount of sparsity in the NMF computed by
R1D (¥ = 2) on the Frey face dataset. It is presented as
the percentage of zero values in the first few columns of W
and H.

CoLUMN | % zEROS IN W | % zEROS IN H
1 0.00 0.00
2 0.82 0.69
3 0.69 0.68
4 0.82 0.88
5 0.94 0.73

zero.

Figure 2 conducts a similar experiment on the Frey
face dataset, which consists of 1965 registered face im-
ages of size 28x20. Again, the leading columns of
W present the “eigenfaces” or “features” discovered
in the dataset, and the corresponding column of H
selects dataset images that are classified as carrying
the feature most prominently. R1D seems to be the
most successful at finding features and classifying im-
ages; in each case, the column of W shows a particular
highlight that distinguishes some images in the dataset
from others. NMFDIV appears to be slightly inferior
to R1D, while LSI is noticeably worse.

In this experiment, the algorithms computed 30 basis
vectors of the NMF. NMFDIV was allowed 500 itera-
tions which took 727 seconds; in contrast, LSI required
20 seconds and R1D took 47 seconds.

Additionally, R1D is effective at finding a sparse fac-
torization. Table 1 demonstrates the sparsity in the
first few columns of W and H. The first column of W
and H is fully dense, because the data matrix appears
to be approximately rank-one; its first singular value is
dominant. Apart from this, the other columns of the
NMF are sparse, and the sparsity can be controlled
by the 4 parameter (here we have used 7 = 2). Al-
ternatively, both NMFDIV and LSI perform a dense
factorization with very few values near zero in any col-
umn.

8. Text dataset test cases

In Tables 2 and 3 we illustrate LSI versus R1D (with
parameter ¥ = 4) on the TDT Pilot Study (TDT
Study, 1997). The columns of each table are the lead-
ing columns of W, with the leading terms per column
displayed. The LSI results show that the topics are
not properly separated and terms from different top-
ics recur or are mixed. The columns in the R1D table
are clearly identifiable topics, and the terms in each

Table 2. Topics found by LSI on the TDT Pilot Study cor-
pus (tf-idf normalization).

ToriC 1 TorIiC 2 ToriCc 3 ToriC 4
SIMPSON ISRAEL ISRAEL BOSNIAN
PRESIDENT ISRAELI ISRAELI SERBS
CLINTON BOSNIAN PALESTINIAN SERB
POLICE PEACE GAZA SARAJEVO
HOUSE SERBS ARAFAT BOSNIA
ISRAEL BOSNIA PLO NATO
BOSNIAN SERB JERUSALEM SIMPSON
HAITI SARAJEVO PEACE BIHAC
UNITED PALESTINIAN | PALESTINIANS | AIR
GOVERNMENT | NATO SIMPSON TROOPS

Table 3. Topics found by R1D on the TDT Pilot Study cor-
pus (tf-idf normalization). Note that all words in a column
do in fact refer to the same news event.

ToriC 1 TorIiC 2 Toric 3 TorIC 4
SIMPSON MASTERS KOREA DENG
JUDGE PAIRINGS KOREAN XIAOPING
ITO AUGUSTA NORTH RONG

JURY AMATEUR KIM PARAMOUNT
DEFENSE TOURNAMENT | PYONGYANG | CHINA
TRIAL ROUND SEOUL HEALTH
ANGELES GOLF SUNG CHINESE
LOS NOTED NUCLEAR KONG
PROSECUTION | PLAYERS SOUTH HONG

CASE GEORGIA COMMUNIST | DAUGHTERS

columns are all correctly associated with the given top-
ics.

NMFDIV (and the other implementations of NMF in
nmfpack) were not run on this dataset because they
would exhaust all of the computer’s memory. As noted
earlier, R1D on text datasets is able to efficiently work
with sparse matrices throughout its operation. R1D
was able to compute 80 basis vectors of the TDT cor-
pus in 171 seconds, whereas LSI required 269 seconds.

9. Conclusions

We have proposed an algorithm called R1D for non-
negative matrix factorization. It is based on greedy
rank-one downdating according to an objective func-
tion, which is heuristically maximized. We have shown
that the objective function is well suited for identifying
topics in the e-separable text model. Finally, we have
shown that the algorithm performs well in practice.
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This work raises several interesting open questions.
First, the e-separable text model seems rather too sim-
ple to describe real text, so it would be interesting to
see if the results generalize to more realistic models.

A second arising question asks whether a re-
sult like Theorem 1 will hold for the R1D algo-
rithm. In other words, if the heuristic subroutine
ApproxRankOneSubmatrix is applied to an e-separable
corpus, does it successfully identify a topic? Here is an
example of a difficulty. Suppose n — oo much faster
than L. In this case, the document j with the highest
norm will be the one in which /; is very close to L and
in which one entry A(i,j) is very close to L while the
rest are mostly zeros. This is because the maximizer
of ||x||2 subject to the constraint that ||x||; = C oc-
curs when one entry of x is equal to C and the rest
are zero. It is likely that at least one instance of such
a document will occur regardless of the matrix P(-,-)
if n is sufficiently large. This document will then act
as the seed for expanding M and N, but it may not
be similar to any topic. This scenario can perhaps be
prevented by a more intelligent selection of a starting
vector for ApproxRankOneSubmatrix.
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Abstract

Typically agent evaluation is done through
Monte Carlo estimation. However, stochas-
tic agent decisions and stochastic outcomes can
make this approach inefficient, requiring many
samples for an accurate estimate. We present a
new technique that can be used to simultaneously
evaluate many strategies while playing a single
strategy in the context of an extensive game. This
technique is based on importance sampling, but
utilizes two new mechanisms for significantly re-
ducing variance in the estimates. We demon-
strate its effectiveness in the domain of poker,
where stochasticity makes traditional evaluation
problematic.

1. Introduction

Evaluating an agent’s performance is a component of
nearly all research on sequential decision making. Typ-
ically, the agent’s expected payoff is estimated through
Monte Carlo samples of the (often stochastic) agent act-
ing in an (often stochastic) environment. The degree of
stochasticity in the environment or agent behavior deter-
mines how many samples are needed for an accurate esti-
mate of performance. For results in synthetic domains with
artificial agents, one can simply continue drawing samples
until the estimate is accurate enough. For non-synthetic
environments, domains that involve human participants, or
when evaluation is part of an on-line algorithm, accurate
estimates with a small number of samples are critical. This
paper describes a new technique for tackling this problem
in the context of extensive games.

An extensive game is a formal model of a sequential in-
teraction between multiple, independent agents with im-

perfect information. It is a powerful yet compact frame-

Appearing in Proceedings of the 25" International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

work for describing many strategic interactions between
decision-makers, artificial and human!. Poker, for ex-
ample, is a domain modeled very naturally as an exten-
sive game. It involves independent and self-interested
agents making sequential decisions based on both public
and private information in a stochastic environment. Poker
also demonstrates the challenge of evaluating agent per-
formance. In one typical variant of poker, approximately
30,000 hands (or samples of playing the game) are some-
times needed to distinguish between professional and ama-
teur levels of play. Matches between computer and human
opponents typically involve far fewer hands, yet still need
to draw similar statistical conclusions.

In this work, we present a new technique for deriving
low variance estimators of agent performance in extensive
games. We employ importance sampling while exploit-
ing the fact that the strategy of the agent being evaluated
is typically known. However, we reduce the variance that
importance sampling normally incurs by selectively adding
synthetic data that is derived from but consistent with the
sample data. As a result we derive low-variance unbiased
estimators for agent performance given samples of the out-
come of the game. We further show that we can efficiently
evaluate one strategy while only observing samples from
another. Finally, we examine the important case where we
only get partial information of the game outcome (e.g., if
a player folds in poker, their private cards are not revealed
during the match and so the sequence of game states is not
fully known). All of our estimators are then evaluated em-
pirically in the domain of poker in both full and partial in-
formation scenarios.

This paper is organized as follows. In Section 2 we in-
troduce the extensive game model, formalize our problem,
and describe previous work on variance reduction in agent
evaluation. In Section 3 we present a general procedure
for deriving unbiased estimators and give four examples of

"In this work we use the words “agent”, “player”, and
“decision-maker” interchangeably and, unless explicitly stated,
aren’t concerned if they are humans or computers.
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these estimators. We then briefly introduce the domain of
poker in Section 4 and describe how these estimators can
be applied to this domain. In Section 5 we show empirical
results of our approach in poker. Finally, we conclude in
Section 6 with some directions for future work.

2. Background

We begin by describing extensive games and then we for-
malize the agent evaluation problem.

2.1. Extensive Games

Definition 1 (Osborne & Rubenstein, 1994, p. 200) a fi-
nite extensive game with imperfect information has the fol-
lowing components:

e A finite set N of players.

e A finite set H of sequences, the possible histories of
actions, such that the empty sequence is in H and ev-
ery prefix of a sequence in H is alsoin H. Z C H
are the terminal histories (those which are not a pre-
fix of any other sequences). A(h) = {a: (h,a) € H}
are the actions available after a non-terminal history
h e H,

e A player function P that assigns to each non-terminal
history (each member of H\Z) a member of N U{c},
where ¢ represents chance. P(h) is the player who
takes an action after the history h. If P(h) = ¢, then
chance determines the action taken after history h.

e A function f. that associates with every history h for
which P(h) = c a probability measure f.(-|h) on
A(h) (fe(a|h) is the probability that a occurs given
h), where each such probability measure is indepen-
dent of every other such measure.

e For each player i € N a partition 1; of {h € H :
P(h) = i} with the property that A(h) = A(R)
whenever h and h' are in the same member of the par-
tition. 1; is the information partition of player i; a set
I; € 1; is an information set of player i.

e For each player i € N a utility function u; from the
terminal states Z to the reals R. If N = {1,2} and
U1 = —uUo, it is a zero-sum extensive game.

A strategy of player ¢ o, in an extensive game is a func-
tion that assigns a distribution over A(I;) to each I; € I,.
A strategy profile o consists of a strategy for each player,
01,09, ..., with g_; referring to all the strategies in o ex-
cept o;.

Let 77 (h) be the probability of history h occurring if play-

ers choose actions according to o. We can decompose
77 = Ienugeyf (h) into each player’s contribution to

this probability. Hence, 77 (h) is the probability that if
player ¢ plays according to o then for all histories »’ that
are a proper prefix of h with P(h') = i, player i takes
the subsequent action in h. Let 77, (h) be the product of
all players’ contribution (including chance) except player
1. The overall value to player i of a strategy profile is
then the expected payoff of the resulting terminal node, i.e.,
ui(0) =3, c 5 ui(2)m7(2). For Y C Z, a subset of possi-
ble terminal histories, define 77(Y) = > 77 (), to be
the probability of reaching any outcome in the set Y given
o, with 77 (Y') and 77, (Y") defined similarly.

2.2. The Problem

Given some function on terminal histories V' : Z — & we
want to estimate F.|, [V/(z)]. In most cases V' is simply
u;, and the goal is to evaluate a particular player’s expected
payoff. We explore three different settings for this problem.
In all three settings, we assume that o; (our player’s strat-
egy) is known, while o;; (the other players’ strategies) are
not known.

e On-policy full-information. In the simplest case, we
get samples 21 ¢ € Z from the distribution 7.

o Off-policy full-information. In this case, we get sam-
ples z1..: € Z from the distribution 7% where & dif-
fers from o only in player i’s strategy: 77, = 7% . In
this case we want to evaluate one strategy for player ¢
from samples of playing a different one.

e Off-policy partial-information. In the hardest case,
we don’t get full samples of outcomes z;, but rather
just player ¢’s view of the outcomes. For example, in
poker, if a player folds, their cards are not revealed
to the other players and so certain chance actions are
not known. Formally, in this case we get samples
of K(z) € K, where K is a many-to-one mapping
and z; comes from the distribution 77 as above. K
intuitively must satisfy the following conditions: for
z,2' € Z,if K(z) = K(2') then,

- V(2)=V(),and

- Vo wf(z)=mn7(Z).

2.3. Monte Carlo Estimation

The typical approach to estimating E |, [V (2)] is through
simple Monte Carlo estimation. Given independent sam-
ples z1,..., 2z from the distribution 77, simply estimate
the expectation as the sample mean of outcome values.

t
> V(=) (1)
=1

~+ | =
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As the estimator has zero bias, the mean squared error of
the estimator is determined by its variance. If the variance
of V(z) given o is large, the error in the estimate can be
large and many samples are needed for accurate estimation.

Recently, we proposed a new technique for agent eval-
uation in extensive games (Zinkevich et al., 2006). We
showed that value functions over non-terminal histories
could be used to derive alternative unbiased estimators. If
the chosen value function was close to the true expected
value given the partial history and players’ strategies, then
the estimator would result in a reduction in variance. The
approach essentially derives a real-valued function V(z)
that is used in place of V' in the Monte Carlo estimator
from Equation 1. The expectation of V(z) matches the ex-
pectation of V(z) for any choice of o, and so the result
is an unbiased estimator, but potentially with lower vari-
ance and thus lower mean-squared error. The specific ap-
plication of this approach to poker, using an expert-defined
value function, was named the DIVAT estimator and was
shown to result in a dramatic reduction in variance. A sim-
pler choice of value function, the expected value assuming
the betting is “bet-call” for all remaining betting rounds,
can even make a notable reduction. We refer to this concep-
tually and computationally simpler estimator as (Bet-Call)
BC-DIVAT.

Both traditional Monte Carlo estimation and DIVAT are fo-
cused on the on-policy case, requiring outcomes sampled
from the joint strategy that is being evaluated. Further-
more, DIVAT is restricted to full-information, where the
exact outcome is known. Although limited in these re-
gards, they also don’t require any knowledge about any of
the players’ strategies.

3. General Approach

We now describe our new approach for deriving low-
variance, unbiased estimators for agent evaluation. In this
section we almost exclusively focus on the off-policy full-
information case. Within this setting we observe a sampled
outcome z from the distribution 77, and the goal is to esti-
mate .|, [V (2)]. The outcomes are observed based on the
strategy 6 while we want to evaluate the expectation over
o, where they differ only in player ¢’s strategy. This case
subsumes the on-policy case, and we touch on the more dif-
ficult partial-information case at the end of this section. In
order to handle this more challenging case, we require full
knowledge of player i’s strategies, both the strategy being
observed &; and the one being evaluated o;.

At the core of our technique is the idea that synthetic his-
tories derived from the sampled history can also be used
in the estimator. For example, consider the unlikely case
when o is known entirely. Given an observed outcome

z € Z (or even without an observed outcome) we can ex-
actly compute the desired expectation by examining every
outcome.

Vz(2)= Y V(') =E, V()] @

z'eZ

Although impractical since we don’t know o, Vz(z) is an
unbiased and zero variance estimator.

Instead of using every terminal history, we could restrict
ourselves to a smaller set of terminal histories. Let U (2’ €
Z) C Z be a mapping of terminal histories to a set of ter-
minal histories, where at least z’ € U(z’). We can con-
struct an unbiased estimator that considers the history z’
in the estimation whenever we observe a history from the
set U(z'). Another way to consider things is to say that
U~1(z) is the set of synthetic histories considered when
we observe z. Specifically, we define the estimator Vi (2)
for the observed outcome z as,

> V(z/)w;(U(fz’)) )

z’eU~1(z)

Vu(z) =

The estimator considers the value of every outcome 2z’
where the observed history z is in the set U(z’). Each
outcome though is weighted in a fashion akin to impor-
tance sampling. The weight term for 2’ is proportional to
the probability of that history given o, and inversely pro-
portional to the probability that 2z’ is one of the considered
synthetic histories when observing sampled outcomes from
. Note that V7 (z) is not an estimate of V'(z), but rather
has the same expectation.

At first glance, Viy may seem just as impractical as V; since
o is not known. However, with a careful choice of U we
can insure that the weight term depends only on the known
strategies o; and ;. Before presenting example choices of
U, we first prove that Vy; is unbiased.

Theorem 1 If 77 (2) is non-zero for all outcomes z € Z,
then,

E.s [Vu(2)] = Bz [V(2)],

i.e., Viy is an unbiased estimator.

Proof: First, let us consider the denominator in the weight
term of Vy;. Since 2/ € U(z') and 7¢ is always positive,
the denominator can only be zero if 7% ,;(2’) is zero. If this
were true, 77, (z") must also be zero, and as a consequence
so must the numerator. As a result the terminal history 2’
is never reached and so it is correct to simply exclude such
histories from the estimator’s summation.

Define 1(x) to be the indicator function that takes on the
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value 1 if x is true and O if false.

> V)L @

(&)

— ZV(Z’)WEZM. M(zcU>Z)) (6
= ZV(z’)&i),w&(U(z’)) (7)
w7 (U(z'))

= V(&) (2) = E.pp [V(2)] (8)

2!

The derivation follows from the linearity of expectation, the
definition of 77, and the definition of expectation. [

We now look at four specific choices of U for which the
weight term can be computed while only knowing player
1’s portion of the joint strategy o.

Example 1: Basic Importance Sampling. The simplest
choice of U for which Vi; can be computed is U(z) = {z}.
In other words, the estimator considers just the sampled
history. In this case the weight term is:

w7 (2") B w7 (2)
UG 7 ) ©)
_mg (2w, (2)
= R () 10
2w

The weight term only depends on o; and &; and so is a
known quantity. When &; = o; the weight term is 1 and
the result is simple Monte Carlo estimation. When &; is
different, the estimator is a straightforward application of
importance sampling.

Example 2: Game Ending Actions. A more interest-
ing example is to consider all histories that differ from the
sample history by only a single action by player ¢ and that
action must be the last action in the history. For exam-
ple, in poker, the history where the player being evalu-
ated chooses to fold at an earlier point in the betting se-
quence is considered in this estimator. Formally, define
S_i(#) € H to be the shortest prefix of z where the re-
maining actions in z are all made by player ¢ or chance. Let
U(z) = {# € Z:5_;(z)isaprefix of z’}. The weight

term becomes,

w7 (z") wo(2)
7o (U(2)) 70 (S_i(2) 12)
7o ()73 ()
e A

A (14)

™7 ()
FS () 15)

As this only depends on the strategies of player ¢, we can
compute this quantity and therefore the estimator.

Example 3: Private Information. We can also use all
histories in the update that differ only in player ¢’s pri-
vate information. In other words, any history that the other
players wouldn’t be able to distinguish from the sampled
history is considered. For example, in poker, any history
where player ¢ receiving different private cards is consid-
ered in the estimator since the opponents’ strategy cannot
depend directly on this strictly private information. For-
mally, let U(z) = {2/ € Z: Vo 77,(2') = 77,(2)}. The
weight term then becomes,

”;(ﬁzz)’” - Zz//e;z(j 7)T‘}(z’/) 16)
) zi(f?)f(z(ii(z) an
. Z€Z(EZ7T);(§)7)T“ (=) (18)
“EE
ey 0)

As this only depends on the strategies of player ¢, we can
again compute this quantity and therefore the estimator as
well.

Example 4: Combined. The past two examples
show that we can consider histories that differ in the
player’s private information or by the player mak-
ing an alternative game ending action. We can also
combine these two ideas and consider any history
that differs by both an alternative game ending action
and the player’s private information. Define Q(z) =
{h € H:|n|=1|S_i(z)] and Vor?(h) = 77,(S_i(2)) }.
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Let U(z) = {# € Z: aprefix of 2 is in Q(2)}.
o Tae o
) Zh;;(;()zﬂ):;(éz);?(h) (22)

B Zhemj);(:izgi_i?z)))ﬂg(h) (23)

_ W&Z(;T__;((j))i(gi)ez(i 7)75,( woo

- 7£(C§8)) 25)

Once again this quantity only depends on the strategies of
player ¢ and so we can compute this estimator as well.

We have presented four different estimators that try to ex-
tract additional information from a single observed game
outcome. We can actually combine any of these estima-
tors with other unbiased approaches for reducing variance.
This can be done by replacing the V' function in the above
estimators with any unbiased estimate of V. In particular,
these estimators can be combined with our previous DIVAT
approach by choosing V' to be the DIVAT (or BC-DIVAT)
estimator instead of ;.

3.1. Partial Information

The estimators above are provably unbiased for both the-
policy and off-policy full-information case. We now briefly
discuss the off-policy partial-information case. In this case
we don’t directly observe the actual terminal history z; but
only a many-to-one mapping K (z;) of the history. One
simple adaptation of our estimators to this case is to use the
history 2’ in the estimator whenever it is possible that the
unknown terminal history could be in U(z’), while keep-
ing the weight term unchanged. Although we lose the un-
biased guarantee with these estimators, it is possible that
the reduction in variance is more substantial than the error
caused by the bias. We investigate empirically the mag-
nitude of the bias and the resulting mean-squared error of
such estimators in the domain of poker in Section 5.

4. Application to Poker

To analyze the effectiveness of these estimators, we will
use the popular game of Texas Hold’em poker, as played
in the AAAI Computer Poker Competition (Zinkevich &
Littman, 2006). The game is two-player and zero-sum. Pri-
vate cards are dealt to the players, and over four rounds,
public cards are revealed. During each round, the players
place bets that the combination of their public and private
cards will be the strongest at the end of the game. The game
has just under 10'® game states, and has the properties of

imperfect information, stochastic outcomes, and observa-
tions of the game outcome during a match exhibit partial
information.

Each of the situations described in Section 2, on-policy and
off-policy as well as full-information and partial informa-
tion, have relevance in the domain of poker. In particular,
the on-policy full-information case is the situation where
one is trying to evaluate a strategy from full-information
descriptions of the hands, as might be available after a
match is complete. For example, this could be used to more
accurately determine the winner of a competition involving
a small number of hands (which is always the case when
humans are involved). In this situation it is critical, that the
estimator is unbiased, i.e., it is an accurate reflection of the
expected winnings and therefore does not incorrectly favor
any playing style.

The off-policy full-information case is useful for examin-
ing past games against an opponent to determine which of
many alternative strategies one might want to use against
them in the future. The introduction of bias (depending on
the strategy used when playing the past hands) is not prob-
lematic, as the goal in this case is an estimate with as little
error as possible. Hence the introduction of bias is accept-
able in exchange for significant decreases in variance.

Finally, the off-policy partial-information case corresponds
to evaluating alternative strategies during an actual match.
In this case, we want to evaluate a set of strategies, which
aren’t being played, to try and identify an effective choice
for the current opponent. The player could then choose a
strategy whose performance is estimated to be strong even
for hands it wasn’t playing.

The estimators from the previous section all have natural
applications to the game of poker:

e Basic Importance Sampling. This is a straightfor-
ward application of importance sampling. The value
of the observed outcome of the hand is weighted by
the ratio of the probability that the strategy being eval-
uated (o;) takes the same sequence of actions to the
probability that the playing strategy (&;) takes the se-
quence of actions.

e Game ending actions. By selecting the fold betting
action, a player surrenders the game in order to avoid
matching an opponent’s bet. Therefore, the game
ending actions estimator can consider all histories in
which the player could have folded during the ob-
served history.> We call this the Early Folds (EF) es-
timator. The estimator sums over all possible prefixes

*In the full-information setting we can also consider situations
where the player could have called on the final round of betting to
end the hand.
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of the betting sequence where the player could have
chosen to fold. In the summation it weights the value
of surrendering the pot at that point by the ratio of
the probability of the observed betting up to that point
and then folding given the player’s cards (and o;) to
the probability of the observed betting up to that point
given the player’s cards (and &;).

e Private information. In Texas Hold’em, a player’s
private information is simply the two private cards
they are dealt. Therefore, the private information esti-
mator can consider all histories with the same betting
sequence in which the player holds different private
cards. We call this the All Cards (AC) estimator. The
estimator sums over all possible two-card combina-
tions (excepting those involving exposed board or op-
ponent cards). In the summation it weights the value
of the observed betting with the imagined cards by the
ratio of the probability of the observed betting given
those cards (and o;) to the probability of the observed
betting (given ;) summed over all cards.

5. Results

Over the past few years we have created a number of strong
Texas Hold’em poker agents that have competed in the
past two AAAI Computer Poker Competitions. To evalu-
ate our new estimators, we consider games played between
three of these poker agents: S2298 (Zinkevich et al., 2007),
PsOpti4 (Billings et al., 2003), and CFRS (Zinkevich et al.,
2008). In addition, we also consider Orange, a competitor
in the First Man-Machine Poker Championship.

To evaluate these estimators, we examined records of
games played between each of three candidate strategies
(S2298, CFRS, Orange) against the opponent PsOpti4.
Each of these three records contains one million hands of
poker, and can be viewed as full information (both players’
private cards are always shown) or as partial information
(when the opponent folds, their private cards are not re-
vealed). We begin with the full-information experiments.

5.1. Full Information

We used the estimators described previously to find the
value of each of the three candidate strategies, using full-
information records of games played from just one of the
candidate strategies. The strategy that actually played the
hands in the record of games is called the on-policy strat-
egy and the others are the off-policy strategies. The results
of one these experiments is presented in Table 1. In this ex-
periment, we examined one million full-information hands
of S2298 playing against PsOpti4. S2298 (the on-policy
strategy) and CFR8 and Orange (the off-policy strategies)
are evaluated by our importance sampling estimators, as

Table 1. Full Information Case. Empirical bias, standard devi-
ation, and root mean-squared-error over a 1000 hand match for
various estimators. 1 million hands of poker between S2298 and
PsOpti4 were observed. A bias of 0* indicates a provably unbi-
ased estimator.

Bias | StdDev | RMSE
S2298

Basic 0* 5103 161

DIVAT 0* 1935 61

BC-DIVAT 0* 2891 91

Early Folds 0* 5126 162

All Cards 0* 4213 133

AC+BC-DIVAT 0* 2146 68

AC+EF+BC-DIVAT 0* 1778 56
CFR8

Basic | 200 + 122 | 62543 1988

DIVAT | 62+ 104 | 53033 1678

BC-DIVAT 84 +45 | 22303 710

Early Folds | 123 +£ 120 | 61481 1948

All Cards 12+ 16 8518 270

AC+BC-DIVAT 35+13 3254 109

AC+EF+BC-DIVAT 2+ 12 2514 80
Orange

Basic | 159 +40 | 20559 669

DIVAT 3425 11350 359

BC-DIVAT | 103 +£28 | 12862 420

Early Folds 82+35| 17923 572

All Cards 7+ 16 8591 272

AC+BC-DIVAT 8+13 3154 100

AC+EF+BC-DIVAT 6+12 2421 77

well as DIVAT, BC-DIVAT, and a few combination estima-
tors. We present the empirical bias and standard deviation
of the estimators in the first two columns. The third col-
umn, “RMSE”, is the root-mean-squared error of the esti-
mator if it were used as the method of evaluation for a 1000
hand match (a typical match length). All of the numbers
are reported in millibets per hand played. A millibet is one
thousandth of a small-bet, the fixed magnitude of bets used
in the first two rounds of betting. To provide some intu-
ition for these numbers, a player that always folds will lose
750 millibets per hand, and strong players aim to achieve
an expected win rate over 50 millibets per hand.

In the on-policy case, where we are evaluating S2298, all of
the estimators are provably unbiased, and so they only dif-
fer in variance. Note that the Basic estimator, in this case,
is just the Monte-Carlo estimator over the actual money
lost or won. The Early Folds estimator provides no vari-
ance reduction over the Monte-Carlo estimate, while the
All Cards estimator provides only a slight reduction. How-
ever, this is not nearly as dramatic as the reduction pro-
vided by the DIVAT estimator. The importance sampling
estimators, however, can be combined with the DIVAT es-
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timator as described in Section . The combination of BC-
DIVAT with All Cards (“AC+BC-DIVAT”) results in lower
variance than either of the estimators separately.®> The
addition of Early Folds (“AC+EF+BC-DIVAT”) produces
an even further reduction in variance, showing the best-
performance of all the estimators, even though Early Folds
on its own had little effect.

In the off-policy case, where we are evaluating CFRS or Or-
ange, we report the empirical bias (along with a 95% con-
fidence bound) in addition to the variance. As DIVAT and
BC-DIVAT were not designed for off-policy evaluation, we
report numbers by combining them with the Basic estima-
tor (i.e., using traditional importance sampling). Note that
bias is possible in this case because our on-policy strategy
(82298) does not satisfy the assumption in Theorem 1, as
there are some outcomes the strategy never plays. Basic
importance sampling in this setting not only shows statis-
tically significant bias, but also exhibits impractically large
variance. DIVAT and BC-DIVAT, which caused consid-
erable variance reduction on-policy, also should consider-
able variance reduction off-policy, but not enough to offset
the extra variance from basic importance sampling. The
All Cards estimator, on the other hand, shows dramatically
lower variance with very little bias (in fact, the empirical
bias is statistically insignificant). Combining the All Cards
estimator with BC-DIVAT and Early Folds further reduces
the variance, giving off-policy estimators that are almost as
accurate as our best on-policy estimators.

The trends noted above continue in the other experiments,
when CFRS8 and Orange are being observed. For space con-
siderations, we don’t present the individual tables, but in-
stead summarize these experiments in Table 2. The table
shows the minimum and maximum empirically observed
bias, standard deviation, and the root-mean-squared error
of the estimator for a 1000 hand match. The strategies be-
ing evaluated are separated into the on-policy case, when
the record involves data from that strategy, and the off-
policy case, when it doesn’t.

5.2. Partial Information

The same experiments were repeated for the case of partial
information. The results of the experiment involving S2298
playing against PsOpti4 and evaluating our three candidate
strategies under partial information is shown in Table 3.
For DIVAT and BC-DIVAT, which require full information
of the game outcome, we used a partial information vari-
ant where the full-information estimator was used when the

3The importance sampling estimators were combined with
BC-DIVAT instead of DIVAT because the original DIVAT esti-
mator is computationally burdensome, particularly when many
evaluations are needed for every observation as is the case with
the All Cards estimator.

Table 3. Partial-Information Case. Empirical bias, standard devi-
ation, and root mean-squared-error over a 1000 hand match for
various estimators. 1 million hands of poker between S2298 and
PsOpti4 with partial information were observed. A bias of 0* in-
dicates a provably unbiased estimator.

Bias | StdDev | RMSE
S2298
Basic 0* 5104 161
DIVAT 81+9 2762 119
BC-DIVAT 9549 2759 129
Early Folds 47+1 5065 167
All Cards 5+13 4218 133
AC+BC-DIVAT | 96+12 2650 127
CFR8
Basic | 202+80 | 40903 1309
DIVAT | 175+£47 | 23376 760
BC-DIVAT | 183447 | 23402 762
Early Folds | 181+78 | 39877 1274
All Cards | 13£19 7904 250
AC+BC-DIVAT | 101416 4014 162
Orange
Basic | 204+45 | 23314 765
DIVAT | 218+22 | 10029 385
BC-DIVAT | 244421 10045 401
Early Folds | 218+43 | 22379 741
All Cards 3+19 8092 256
AC+BC-DIVAT | 203+16 3880 237

game outcome was known (i.e., no player folded) and win-
nings was used when it was not. This variant can result in a
biased estimator, as can be seen in the table of results. The
All Cards estimator, although also without any guarantee of
being unbiased, actually fares much better in practice, not
displaying a statistically significant bias in either the off-
policy or on-policy experiments. However, even though
the DIVAT estimators are biased their low variance makes
them preferred in terms of RMSE in the on-policy setting.
In the off-policy setting, the variance caused by Basic im-
portance sampling (as used with DIVAT and BC-DIVAT)
makes the All Cards estimator the only practical choice.
As in the full-information case we can combine the All
Cards and BC-DIVAT for further variance reduction. The
resulting estimator has lower RMSE than either All Cards
or BC-DIVAT alone both in the on-policy and off-policy
cases. The summary of the results of the other experiments,
showing similar trends, are shown in Table 4.

6. Conclusion

We introduced a new method for estimating agent perfor-
mance in extensive games based on importance sampling.
The technique exploits the fact that the agent’s strategy
is typically known to derive several low variance estima-
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Table 2. Summary of the Full-Information Case. Summary of empirical bias, standard deviation, and root-mean-squared error over

a 1000 hand match for various estimators.

The minimum and maximum encountered values for all combinations of observed and

evaluated strategies is presented. A bias of 0* indicates a provably unbiased estimator.

Bias StdDev RMSE
Min - Max Min - Max Min - Max
On Policy
Basic 0o* - 0% 5102 - 5385 161 - 170
DIVAT 0o* - 0% 1935 - 2011 61 - 64
BC-DIVAT 0* - 0% 2891 - 2930 91 - 92
AC+GE+BC-DIVAT 0o* - 0% 1701 - 1778 54 - 56
Off Policy
Basic 49 - 200 | 20559 - 244469 | 669 - 7732
DIVAT 2 - 62 11350 — 138834 | 358 — 4390
BC-DIVAT 10 — 103 | 12862 - 173715 | 419 - 5493
AC+GE+BC-DIVAT 2 - 9 1816 — 2857 58 - 90

Table 4. Summary of the Partial-Information Case. Summary of empirical bias, standard deviation, and root-mean-squared error over a
1000 hand match for various estimators. The minimum and maximum encountered values for all combinations of observed and evaluated
strategies is presented. A bias of 0* indicates a provably unbiased estimator.

Bias StdDev RMSE
Min - Max Min - Max Min - Max
On Policy
Basic 0* -  OF 5104 - 5391 161 - 170
DIVAT 56 - 144 2762 - 2876 105 - 170
BC-DIVAT 78 - 199 2759 - 2859 118 - 219
AC+BC-DIVAT 78 - 206 2656 - 2766 115 - 224
Off Policy
Basic 17 - 433 | 23314 - 238874 | 753 - 7566
DIVAT | 103 - 282 | 10029 - 88791 384 - 2822
BC-DIVAT 35 — 243 | 10045 - 99287 400 - 3139
AC+BC-DIVAT 63 - 230 3055 - 6785 143 - 258

tors that can simultaneously evaluate many strategies while
playing a single strategy. We prove that these estimators
are unbiased in both the on-policy and off-policy case. We
empirically evaluate the techniques in the domain of poker,
showing significant improvements in terms of lower vari-
ance and lower bias. We show that the estimators can also
be used even in the challenging problem of estimation with
partial information observations.
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Abstract

Scientists frequently have multiple types of ex-
periments and data sets on which they can test
the validity of their parameterized models and lo-
cate plausible regions for the model parameters.
By examining multiple data sets, scientists can
obtain inferences which typically are much more
informative than the deductions derived from
each of the data sources independently. Sev-
eral standard data combination techniques result
in target functions which are a weighted sum of
the observed data sources. Thus, computing con-
straints on the plausible regions of the model
parameter space can be formulated as finding a
level set of a target function which is the sum
of observable functions. We propose an active
learning algorithm for this problem which selects
both a sample (from the parameter space) and an
observable function upon which to compute the
next sample. Empirical tests on synthetic func-
tions and on real data for an eight parameter cos-
mological model show that our algorithm signifi-
cantly reduces the number of samples required to
identify the desired level-set.

model parameters (from the parameter space) which cannot
be statistically rejected by the combination of the observed
data and theoretical models.

When given a single model and data set pair, computation
of the feasible regions of parameter space can be done by
performing a simple hypothesis test for all points in the
space; that is, we are interested in the regions of param-
eter space where the null hypothesis — that the data was
generated by the model — cannot be rejected at some spec-
ified confidence level. Extending this to the multiple model
and data setting, we are interested in determining regions of
parameter space where we cannot reject the hypothesis that
each of the data sets was generated by its respective model
at a given confidence level.

For example, when determining the spatial location of a
disease outbreak, a researcher might use information de-
rived from medical records (e.g. hospital admits), as well
as sales of over the counter and prescription medications
(Shmueli & Fienberg, 2006). Note that the presence (or
lack thereof) of a single indicator may be enough to ac-
cept or reject a single hypothesis, resulting in increased
data efficiency. Specifically, if there are many hospital ad-
mits from a single locality, the probability of disease is ex-
tremely high regardless of the over the counter and pre-
scription drug sales. Moreover, while we believe that the

underlying cause affects each of the signals we observe, we
do not necessarily believe that the signals themselves are
Scientists frequently have multiple types of experimentscorrelated. For instance, colds result in significant over the
and data sets on which they can test the validity of their pacounter sales with few hospital visits or prescription sales.
rameterized models and the plausible or optimal regions foHowever, anthrax attacks will affect all three data streams.
the model parameters. One task that can be considered i% .

that of computing the parameter setting (from a pre—definea_- ere are many other example:_; of the multlple model set-
Here, we focus on finding — a confidence re-

model parameter space) which maximizes the likelihood ofNG- I ; . .
all the observations given the models. However, this calgions for statistical analyses involving multiple related data

culation does not determine whether or not the derived p sets. Traditionally, the combination of statistical evidence

rameter setting is consistent with the data given the model 1as been achieved in the sciences in a somewhat ad-hoc

Instead, a more prudent approach is to compute the set ?Sh'on' For mstanc_e, a joint ar_laly5|s can be performed
y (loosely) intersecting the confidence regions of several

Appearing inProceedings of th_éf5_th International Conference studies. Additionally, results from one publication might
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008pe used to guide the selection of parameters in future ex-
by the author(s)/owner(s). periments, possibly in the form of a prior.

1. Introduction
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Let f be a target function we are interested in learning o
the domain® C R?. Suppose thaf is the linear combina-
tion of m observable functions; (i =1, ..., m). Without

A more rigorous and efficient approach is to consider multi-loss of generality, we can drop the coefficients from the
ple experimental sources of evaluation simultaneously andummation (as they can be included in this) and write
choose samples in light of their contribution to the com-f(6) = >"1", fi(#) for all & € ©. We are now interested
bined target function. This target function is the composi-in finding the level setS, of f at the threshold:
tion of the “observable” test functions: one for each data set .
and model pair. We assume that the observable functions . oy .
share the same parameter space, but are functionally inde- S= {9 €6 Zl 1:(6) = £(6) = t} '
pendent. As such, hierarchical models do not apply. More- -
over,'whereas multi—ta_sk learning problems.are based o, general, computing the value of eaghmay not incur
learning the commonallty between the constltu'ent models.fhe same cost. However, we begin by assuming that the
the task Of. locating confidence regions b_e_neflts from thecosts are similar, and hence try to minimize the total num-
discrepancies between the models to efficiently accept Qe of samples of observable functions required to accu-
reject a par_ameter vector. While in theory we could Chec‘?ately estimateS. Moreover, we assume thatcannot be
eac_h point in th_e parametgr space to detgrmlne Whgther %rirectly sampled, and that neithgrnor any of thef;’s is
notit should be included within our-a confidence region, - erible. That is, the only way to estimate a level-sef of
in practice each experiment is too expensive. is to sample points from thg’s and inferf. As we will see
As such, we develop active learning algorithms to learnin Section 4, this formulation accurately mimics combining
the confidence regions. Active learning using informedp-values using Fisher's method, as the method for finding
choices of future experiments has long been known to draghe individualp-values may be entirely unknown.
tically decrease a problem’s sample complexity (Angluin,\ye myst now determine how best to choose samples both
1988). _Many sampllng heurlstlcs_ have been developed t%mong and within the/;'s. Ideally, we want to sample the
learn e_ltherthe entire target function (e.g. MacKay (1992);0bservable functiory; at the pointd € © which best in-
Guestrin, C., et al. (2005)) or some feature of the targef, o ses our prediction accuracy (e.g. whether another point
func'uon_, such as its level sets (e.g. Bryan, B., etal. (_2005);S above or below the threshold) ovgr Since the param-
Ramakrishnan, N., etal. (2005)). While we cannot directlygyo snace is continuous and multi-dimensional, we cannot
observe the value of the target function, we can use the Oy, 1 test all possible points and observable functions.
servable functions to infer its value. By measuring all ob-
servable functions at a particular parameter setting, we calistead, we model each of the observable functions inde-
compute the value of the target function, reducing the probpendently given the current samples taken from that func-
lem to a standard active learning problem. However, sucfiion, as illustrated in Figure 1. For each experiment, we
an approach disregards any strong evidence provided byrandomly select a small subset of the parameter space (usu-
single statistical test, and hence may result in extraneouglly 1000 points drawn uniformly at random, although
sampling of the remaining statistical models. other distributions are possible based on domain knowl-
) , , , , edge) and choose the best point and observable function
Rther, we are |nt.erested in active learning algor.|thmspair upon which to experiment from among these candi-
which use information about each observable function tqy,ie5 " \We find the value of the observable function at the
learn some composite target function. In Section 2, We Progg|acted point and add it to the data set used to model that
pose a heuristic for actlvely_learmng level s_ets of COMPposit . tion. The process is then repeated.
functions of sums for continuous valued input spaces. In
Section 3, we show that this heuristic performs the level-There are several methods one could use to model each
set discovery task more efficiently than both random andf the f;’s, notably some form of parametric regression.
sequential sampling of the constituent functions using stat&lowever, we chose to approximate tf&s using Gaussian
of the art heuristics. In Section 4, we discuss how the taslerocess regression, as other forms of regression may over
of finding joint confidence regions can be formulated assmooth the data, ignoring subtle features of the function
a level set problem, where the target function is the sunthat may become pronounced with more data. While much
of several observable functions. Section 5 concludes byork has been done studying Gaussian processes, we only
demonstrating the computation of 95% confidence regionéouch on the basic concepts here; we refer interested read-
for eight cosmological parameters using our algorithm.  ers to Cressie (1991); Rasmussen and Williams (2006).
Gaussian processes are hon-parametric forms of regression.
2. Active Learning Algorithm Predictions for unobserved points are computed by using
a weighted combination of the function values for those
rlpoints which have already been observed, where a distance-
based kernel function is used to determine the relative
weights. These distance-based kernels generally weight
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select kriging "H choose sample &
candidates models observable functio
compute
=ﬁ result
add

Figure 1.0utline of our sampling algorithm. Given an initial set of points (typically empty), we randomly select a set of candidates and
score them using a set of Gaussian process models. The best scoring point and observable function pair is chosen, and we evaluate the
selected observable function at the given point. This data is added to the corresponding data set.

nearby points significantly more than distant points. Thussome fixed constarit. This reduces the computation time
assuming the underlying function is continuous, Gaussiato O(k3+klog(n;)) per prediction. Here, we lét= 1000.
processes will perfectly describe the function given an in-

finite set of unique data points. While, in many applica-2.1. Choosing Experiments

tions the assumption of continuity is violated, Gaussian

processes have been successfully used to model resporfgl¥en this active learning framework, we must now decide

surfaces in many domains with limited smoothness guarl@W 0 choose sample / observable function pairs. We con-

antees (Cressie, 1991; Santner et al., 2003). sider the following heuristics:

In this work we use Ord.'”afy Kriging (Cresslle, 1991.)’ which Random One of the candidate points and an observable
assumes a linear semivariance as a function of distance, as_ . L ) X
o . - . Unction pair is chosen uniformly at random. This method
it is both data and computationally efficient. While other . g o

. erves as a baseline for comparison of the other heuristics.
forms of Gaussian Processes could be used — most notab?y
adaptive kernel methods (e.g. Kersting, K. etal. (2007)) — . . .
we find that a learned model based upon a simple kriging/ariance The candidate point and observable function
approximator performs well in practice and ensures that w@air which has the highest predicted variance (out of all

do not spend more time computing the next sample than wie candidate / observable function pairs) is selected. Us-
do running the experiment. ing model variance to pick the next experiment is com-

mon for active learning methods whose goal is to map out
A > digk target function over a parameter space (MacKay, 1992;
that the value of a target point, will be Normally dis-  Gyestrin, C., et al., 2005). In particular, (Guestrin, C., et
tributed with a mean and variance () ando? (), respec- 51 2005) showed that greedily picking experiments based
tively) given by: upon model variance performs nearly as well as using a

Regardless of the kernel used, Gaussian processes pre

N F ST w12 mutual information heuristic when learning the target over
1) = fi+ Zi’ézi Fi @) the entire parameter space; this is significant, as the mutual
20 = L3S (2)  information heuristic can be shown to bie— 1/¢) optimal
’ ’ (Guestrin, C., etal., 2005). Since variance is closely related
where7; is the set of observed experimentsfof to distance for kriging models, this heuristic samples points
- which are far from their nearest neighbors. However, when
- 1 «— searching for level-sets, we are less interested in the func-
fi = || ; filay), tion away from the level-set boundary, and instead want to

_ B focus our sampling resources near the predicted boundary.
Filjl = fil8;) — fi, In particular, sampling based solely on variance results in

substantially worse performance than heuristics that con-

%; denotes the covariance matrix between the elements fy . ate on the function level-set (Bryan, B., et al., 2005).
7;, andX, ; is the covariance vector between elements of

7; andé. . . . .

Information Gain Information gain is a common my-
For a set of; observed points ([7= n;), prediction with  opic metric used in active learning. Computing the infor-
a Gaussian process requi@gn?) time, as au; x n; linear ~ mation gain over the whole state space for each observable
system of equations must be solved. However, for manyunction provides an optimal 1-step experiment choice. In
Gaussian processes — and ordinary kriging in particulasome discrete or linear problems this can be done, but it is
— the correlation between two points decreases as a funénatractable for continuous non-linear spaces. As such we
tion of distance. Thus, the full Gaussian process modetlo not consider a traditional information gain heuristic, but
is approximated well by a local Gaussian process in whichrely on efficient point estimates which act as proxies for
only thek nearest neighbors of the query point are used, foglobal information gain.
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Sequential-Straddle As noted in Section 1, the problem information gain of a candidate point and observable func-
can be simplified to a standard active learning problemntion pair is:
if one sequentially samples each of the observable func-

tions in order to directly comput¢. (Bryan, B., et al., variance-maxvarstraddle(6)

2005) showed that in a setting where experiments yield the m

(approximately) true values of the target function, a good = max {1.96&(5)} - Z fi(0) —t|. (4)
heuristic for level set identification is the straddle heuris- ! i=1

tic: straddle(d) = 1.9602(A) — | f(0) — t|. This heuristic
balances the need to explore uncertain parts of paramet
space, with the desire to refine the model's estimate aroun
those regions already known to be close to the level-set )
boundary; the constant 1.96 ensures that points with negd. EXperiments

ative scores are far from the desired level set with at Ieas\gve now assess the accuracy with which our active learnin
a 95% probability. This heuristic leverages the straddle y 9

: {nodel reproduces synthetic target functions for the sam-
pling heuristics just described. This is done by computing
the fraction of test points in which the predictive model

XYe choose the candidate point that maximizes this heuristic
%nd the correspondingy.

combined straddle score,

m m (the sum of the kriging models associated with each ob-
combined-straddle () = 1.9620?(9)— Z fi(6) —t|, servable function) agrees with the true target function about
i=1 i=1 on which side of the threshold the test points lie. This pro-

) cess was repeated 20 times to account for variations due to
and then sequentially sampling @il observable functions  the random nature of the candidate generation process. The
at this point. first three target functions considered were sums of two ob-

servable functions, while the fourth was a sum of four ob-
Variance-Straddle While (Bryan, B., et al., 2005) servable functions. The kriging parameters for each model
showed that thestraddle heuristic works well when di- were computed priori from the observable functions. The
rectly sampling the target function, we can hope to do betconsidered functions are:
ter by considering the output from each observable function
individually. For instance, if a sample point results in averyGaussian This problem consisted of determining the
large value for one of the observable functions, it may be95% acceptance region of two axis aligned perpendicular
unlikely that the results of the othgt’'s will be such that two dimensional Gaussian distributions centered at the ori-
the resulting value off is near the level-set. In particu- gin. Both Gaussians had diagonal covariance matrices with
lar, when dealing withy? models (see Section 4), we know on diagonal elements of 1 and 16. Since working in prob-
that f; > 0 for all .. Thus, if a singlef; is greater than the ability space results in many near-zero values, the problem
level-set boundary, the target function will also be greatemwas considered in log-space. As such, the target function
than the level-set boundary, and hence it may be more efaas a 2 dimensional symmetric quadratic function, and the
ficient to sample elsewhere. This heuristic simply choosefevel-set was a circle centered at the origin. The range of
the next sample from among the candidates based on thibe parameter space was (0> € [—3.4,3.4])
combined-straddle score, and then selects the observable
function with the largest variance at that point. Sin2D The second problem consists of finding where the

two 2D sinusoidal observable functions

Variance-MaxVar Straddle Finally, we consider a vari-
ant of thestraddle heuristic. This heuristic tries to mimic
the information gain of choosing a particular point and ob-  f2(01,62)
servabl_e function pair. Note that_ after ol_aservmg a pomt,Sum 0 zero wherés, 6 € [0, 2). These observable func-
the variance of the kriging model is effectively zero at that_. .

: . o tions were chosen because 1) the target threshold winds
point (since we have set c to be a very small positive Value)throu h the plot giving ample lenath to test the accuracy of
The originalstraddle heuristic balances the expected gain 9 plot giving amp 9 Y

. s . the approximating model, 2) the boundary is discontinuous
n Fhe model fit (£6)) with the expected distance of the with several small pieces, 3) there is an ambiguous region
point to the level-set boundary.

around(0.9, 1), where the true function is approximately
However, with the multiple model formulation, we do equal to the threshold, and the gradient is small and 4) there
not expect the model variance to decreasesBy)) =  are areas in the domain where the function is far from the
S a?(6), but rather byo;(d) where f; is the observ- threshold and hence we can see whether algorithms refrain
able function we pick. Thus, a more accurate proxy for thefrom oversampling in these regions.

f1(601,02) = sin(106,) + cos(462) — cos(360165)
sin(1062) 4 cos(461) — cos(36162)
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Table 1.Number of samples required to achieve a 99% accuracy on the Gaussian and SimpleSin2D tests, and a 90% accuracy on the
Sin2D and 4-Sin2D tests based on 20 trials. Vaeance-maxvarstraddle heuristic consistently performs better than competitors.

Gaussian  SimpleSin2D Sin2D 4-Sin2D

random > 1000 > 1000 > 1000 > 1000
variance 95.04+11.0 > 500 105.0#11.5 188.6432.2
variance-straddle 89.545.0 157.942.3 90.4149.0 72.542.0
sequential-straddle 76.243.5  150.346.5 87.0+7.3 98.1414.0
variance-maxvarstraddle 71.743.3  127.346.8 82.9410.2 54.9416.9
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Figure 2.Predicted level-set (solid), true level-set (dashed) and experiments (squares, circle, triangles and x’s) for the 4-Sin2D func-
tion after sampling 100 points using the Variance heuristic (left), dbguential-straddle heuristic (center), and theariance-
maxvarstraddle heuristic (right).

SimpleSin2D  This problem is a simplified version of the and variance-weighted heuristics choose samples (roughly)
previous problem, where the observable functions uniformly throughout the parameter space, while the
. straddle-based heuristics focus on the level-set of interest.
f1(61,02) = sin(461) + cos(462) — cos(6:162) Additionally, the advantage ofariance-maxvarstraddle
f2(61,02) = sin(46) + cos(46:1) — cos(6162) oversequential-straddle grows as the number of observ-

were chosen to reduce the problem’s semi-variances (agaﬁ'P_le funcho(;\s '_Pﬁ reases, its ﬂ:je relatn{[e (;ostthoftell bad _cho;ﬁe
61,605 € [0 : 2]). Since problems with large semi-variances 'S 'Ncreased. ese resulls demonstrate that learning the

result in large model variance estimates in the kriging mod_models independently allows for better overall prediction.

els, such problems require extensive sampling to correctlDne surprising result of our experimentation is that the
identify function level-sets. Performance on this functionsequential-straddle performs as well as thgariance-
highlights an algorithm’s ability to quickly rule out por- straddle heuristic on the test functions which are sums of
tions of the function. two observable functions. We believe that this result illus-
trates the fact that theariance-straddle heuristic is over
4-Sin2D This task consisted of finding where four 2D si- estimating the importance of the variance component of the
nusoids sum te-2. The sinusoids chosen for this problem candidate points to the information gain of a point, while
were similar to those of the SimpleSin2D problem: the fact that there are only two observable functions re-
duces the efficiency of theequential-straddle heuristic

11(01,02) = sin(40:) + cos(203) — cos(301) only by a factor of two. Thevariance-straddle heuristic
f2(61,02) = sin(202 —2) + cos(201) — cos(301) will be as likely to choose a candidate point where the pre-
f3(01,02) = sin(360162) 4 cos(2601) + 1 dicted observable functions are moderate but equal, as it is
£1(61,00) = cos(6162) — sin(6:05) to choose a point with a large predicted variance for one

. . . . _ of the observable functions, and zero variance for the other
The resulting target function contains regions with bothobservable functions. However, the second candidate has
high and low derivatives near the specified threshold.  much more information than the first, as selecting the sec-

Classification accuracy results for the four tests are give/Pd candidate will give us the (approximately) exact value

in Table 1. variance-maxvarstraddle outperforms all of the target function, while selecting the first will only re-
of the other heuristics on each of the target functionsduce the overall variance by a moderate amount. On the 4-

Unsurprisingly, the straddle-based heuristics beat the ran2N2D task the:ariance-straddle heuristic is able to make
dom and variance-weighted heuristics, as both the randoise of the individual observable functions, but still does not
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do as well as thgariance-maxvarstraddle heuristic. points between data setisand B. If data setsA and B are
To illustrate the differences in sampling patterns betweer'1nd.ependent‘ then all eIgmentstj;B are zero and we can
o write the above expression as:
these heuristics, we plot the samples chosen for the ob-
servable functions (with squares, circles, triangles and x’s, (
respectively) with the true (dashed) and predicted (solid) . Y el . )
function level-sets for the 4-Sin2D task in Figure 2. The + (T —1p) X5 (T = MB) ~ X{ate):
variance-maxvarstraddle heuristic is much better at pick- That is, the target function is merely the sum of the two

ing points than the other two heuristics. Note that theghservable functions: the variance weighted sum of squares
variance-maxvarstraddle heuristic is able to learn that for both data sets.

some regions of the space are poor by sampling just one i . .
of the observable functions; as such, its samples lie muchtnether approach to performing simultaneous joint anal-
closer to the target level-set. This reinforces our hypothesi¥SIS iS to combine the modelg-values. There are many

that modeling the observable functions separately results ifyS t0 combine test procedures, including using Bonfer-
additional learning opportunities. roni corrections, the inverse normal method, and inverse

logit methods (Hedges, 1985). A common method to com-
. .. bine p-values is Fisher's method (Fisher, 1932). Fisher
4. Joint Statistical Analyses noted that since a-value, p;, has a Uniform distribution,

Now let us ook at a concrete application of this sampling—2108(p:) Will have ax{, distribution. Again, using the
algorithm: joint statistical analyses. L&f; be a random fact that the sum of independeyit random variables has a
variable denoting a data source ande a generic observa- x° dlistribution, the test becomes: rejefd} if and only if
tion of X;. For each data sek;, letm; be a corresponding _, |- , . " 2
model of X; given some) € ©. We are interested in con- 21; log(pi) = €' whereC'is the critical value of &z
structing a confidence region for the true value of the padistribution for some particular level. Again, we see that
rameter, denotel, based on the observation thédt = »;  the target function is the sum of observable functions.
for each model / data set pair.

Ta 777LA)T221(£A 777114)

Thus, given the models:; and data sets;, we are in-
For a single data set, consider testing the hypothesis thagrested in locating those € ©, such that the the result-
6* = 0 at level o for some arbitrary € ©. The as- Ing mode_ISmi (= 1_, e ,m) are accepted by the chosen
sociated acceptance region for the te4f(¢), is the set hypothesis test. This, in turn, reduces to testing whether
of data values (model outputs) for which the test will notthe sum of a set of observable functions is below a spec-
reject the hypothesi§* = 6 for model m;. Since we ified threshold. Specifically, given a threshaldve want
are interested in tests with significance lemelve require  to find the set of points®’, where the target functiofi is
Py(X; € Ai(0)) > 1 — . We can then usel; to con-  equal or less than the thresholg! = {6 € ©|f(9) < t}.
struct al —a confidence regiorg 4, (z;), for * based on However, note that we need only discover the boundary,
the observed data;: C 4, (z;) = {6 € Oz; € A;(0)}. S =160 € ©]f(9) = t}, asS implicitly defines®’. There-

) ) o fore, using eitheg? tests or Fisher’'s method, we can apply
We consider two approaches to combine the individual CONghe algorithm described in Section 2 to locate the bound-

fidence tests above into joint confidence regions. Inthe first .o of thel — o confidence region.
we create a statistical model which simultaneously consid-

ers all data sets. For instance, when performing an analysis .
on two data sets using? tests, we will have ong? test 5. Cosmological Data Example

H 2
for data setd and a second for data sBt Since thex™ 14 jjjystrate our algorithm and its application to joint sta-

test assumes that each of the data points have dependenciggica| analyses, we show how it can be applied to an anal-
given by the covariance matrix, we can combine the togis of eight cosmological parameters that affect the for-

. e
tests into a singlg” test of the form mation and evolution of our universe using three data sets:

. L 4T 1 . the Comic Microwave Background (CMB) power spectrum

{ Ta—mna } [ YA Yap } { Ta—ma } as observed by Wilkinson Microwave Anisotropy Project

Tp — 1B YaB 2B Tp — 1B (WMAP) (Bennett, C. L., et al., 2003), the Davis, T. M., et
~ x%aer) al. (2007) supernovae (SN) survey and a large scale struc-

wherem;, z; and X; are the associated test model, ob-ture survey (LSS) from Tegmark, M., etal. (2006).

served data and observed covariance of datg gg@ten  While models for each of these data sets try to determine
some vector from the parameter spacendb are the de- what the Universe is formed of and how it has evolved, they
grees of freedom of the tests associated with data4ets measure significantly different aspects of the Universe. The
and B respectively, andC 4 g is the covariance of the data CMB data set records temperature fluctuations in the Uni-
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Figure 3.Comparison of the confidence regions derived for WMAP (a), supernova (b), and LSS (c) data sets with those derived using
all three data sets together (d). Regions of solid color indicate valug2yfoand$2, for which some combination of the remaining
parameters results in a model with probability greater tharmv. The WMAP and LSS models are 7 parameter models, while the
supernova is a 3 parameter model, and the combination model is an 8 parameter model.

verse just after the Big-Bang. The size and spatial proxcal solver, such as CMBFast to approximate the Boltzmann
imity of these temperature fluctuations depict the types an@gquation and yield the expected power spectrum.

rates of particle interactions in the early universe and hencLT.O alleviate the problem posed by the computational costs

characterize the formation of large scale structure (galax- L .
. o .of CMBFast, we initialize the Gaussian process model as-
ies, clusters, walls and voids) in the current observable uni-_ . . -
. sociated with the WMAP data using the one millipn

verse. Meanwhile, the supernovae data measures the ex- .
i i . . : values derived by Bryan, B., et al. (2005). Bryan, B., et al.
pansion of the universe as a function of time, in order to

. . éZOOS) uses confidence balls — a statistical procedure sim-
constrain the total mass and eventual fate of the Univers 5 ; . )
ifar to x* tests, generally with better inference properties

Finally, the large scale struc_ture_ SUVEy measures the de- to map out the level-set associated with the 95% con-
gree of galaxy cluster clumping in order to determine the,. . o
o . fidence region of the seven CMB parameters. Additional
relative importance of dark matter and Baryonic (normal) . .
. .models were selected using treriance-maxvarstraddle
matter. Combined, these data sets can be used to determipne ~~ "~ = ~. ) o
o . euristic with one small change: If the heuristic selects the
the age, composition and eventual fate of the Universe, as : : . .
: . observable function associated with the CMB data, we first
well as provide strong evidence for the presence of dark : ;
. "y compute thep-values associated with the supernova and
energy — a large-scale negative gravitational force.

large scale structure data sets to see if we can exclude the
In this analysis we look at an eight dimensional parameparameter vector without needing to run CMBFast. That
ter space comprised of the optical depth, (@dark energy is, we determine whether the sum of the jgsgalues from
mass fraction (), total mass fraction (§), baryon den- the supernovae and large scale structure data sets alone is
sity (wy,), dark matter density (g1,), neutrino fraction (f), larger than the threshold for the combined model. This
spectral index (y) and galaxy bias (b). The CMB model modification allows us to reduce the number of CMBFast
constrains the first seven parameters while the supernov@mputations by about a factor of five. Using this modified
model constrains g, wi, v andQ,. The LSS model variance-maxvarstraddle heuristic, we sampled roughly
constrains all of the parameters exceptifor 1.5 million additional parameter vectors, about 300,000 of
these points resulted in CMBFast runs. Note that 1.5 mil-
lion parameter vectors corresponds to a grid with roughly
dsix elements per side. Since the variance-based metrics
sample the entire parameter space, their prediction perfor-
mance is typically similar to this naive gird. Thus, using an
active learning metric that focuses on the boundary that we
are interested in (and ignores large parts of the parameter
space which can be proved to be infeasible) significantly
Computing expected observations given parameter vectoreduces the computational complexity of the algorithm.
is fast for the supernovae and large scale structure model

and hence we can quickly compute th&alues associated rived using only a single data set projected intofihgver-

with these two models using” tests. However, computing usQ, space. Confidence regions are derived by binning

the expected observations for the CMB data set is mucl'sh . . g
i . . . the samples selected by the algorithm and including those
more time consuming. Typically one employs a numeri-

bins in the confidence region which contain points where

Fisher's method was used to combinealues from each
of the three models. While for smalivalues the log of the
p-value goes to infinity, note that the algorithm is intereste
in determining where the sum of thevalues corresponds
to the 95% quantile of &%, distribution. Since this results
in t &~ 12.6, the algorithm has no incentive to select points
which are expected to have near zgraalues.

™ Figures 3(a)-3(c) we depict 95% confidence regions de-
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f < t,resulting in the blockiness in the diagrams. The fig- Using the CMB, supernovae and large scale structure data
ures illistrate that the shapes of the 95% confidence regionsets results in much tighter confidence regions than those
for each of the data sources are quite different, validatingbtained using only a single source of data, allowing for

our supposition that different observable functions can bestronger scientific inferences. Standard ad hoc technigues
used to efficiently reject parts of parameter space. for combining evidence, such as intersecting the data, or

In Figure 3(d), depicts the 95% confidence region found”SN9 weak priors do not result in such a significant reduc-
tion in the accepted parameter space.

using the joint analysis for all three data sets; one and two
dimensional projections onto the other parameters can be
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Abstract

One of the most common problems in ma-
chine learning and statistics consists of esti-
mating the mean response X3 from a vec-
tor of observations y assuming y = X5 + ¢
where X is known, [ is a vector of param-
eters of interest and € a vector of stochastic
errors. We are particularly interested here
in the case where the dimension K of 3 is
much higher than the dimension of y. We
propose some flexible Bayesian models which
can yield sparse estimates of 3. We show
that as K — oo these models are closely re-
lated to a class of Lévy processes. Simula-
tions demonstrate that our models outper-
form significantly a range of popular alterna-
tives.

1. Introduction

Consider the following linear regression model
y=XB+e (1)

where y € R’ is the observation, 8 = (31,...,0k) €
RE is the vector of unknown parameters, X is an
known L x K matrix. We will assume that e follows a
zero-mean normal distribution € ~ N (0, 0?1 L) where
11, is the identity matrix of dimension L.

We do not impose here any restriction on L and K
but we are particularly interested in the case where
K >> L. This scenario is very common in many ap-
plication domains. In such cases, we are interested in
obtaining a sparse estimate of ; that is an estimate
B = (B1,...,0xk) such that only a subset of the com-
ponents @c differ from zero. This might be for sake of
variable selection (Tibshirani, 1996; Figueiredo, 2003;
Griffin & Brown, 2007) or to decompose a signal over

Appearing in Proceedings of the 25" International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

an overcomplete basis (Lewicki & Sejnowski, 2000;
Chen et al., 2001).

Numerous models and algorithms have been proposed
in the machine learning and statistics literature to
address this problem including Bayesian stochastic
search methods based on the ‘spike and slab’ prior
(West, 2003), Lasso (Tibshirani, 1996), projection pur-
suit or the Relevance Vector Machine (RVM) (Tip-
ping, 2001). We follow here a Bayesian approach
where we set a prior distribution on_ and we will
primarily focus on the case where [ is the result-
ing Maximum a Posteriori (MAP) estimate or equiv-
alently the Penalized Maximum Likelihood (PML) es-
timate. Such MAP/PML approaches have been dis-
cussed many times in the literature and include the
Lasso (the corresponding prior being the Laplace dis-
tribution) (Tibshirani, 1996; Lewicki & Sejnowski,
2000; Girolami, 2001), the normal-Jeffreys (NJ) prior
(Figueiredo, 2003) or the normal-exponential gamma
prior (Griffin & Brown, 2007). Asymptotic theoreti-
cal properties of such PML estimates are discussed in
(Fan & Li, 2001).

We propose here a class of prior distributions based
on scale mixture of Gaussians for 5. For a finite K,
our prior models correspond to normal-gamma (NG)
and normal-inverse Gaussian (NIG) models. This class
of models includes as limiting cases both the popular
Laplace and normal-Jeffreys priors but is more flex-
ible. As K — oo, we show that the proposed pri-
ors are closely related to the variance gamma and
normal-inverse Gaussian processes which are Lévy pro-
cesses (Applebaum, 2004). In this respect, our mod-
els are somehow complementary to two recently pro-
posed Bayesian nonparametric models: the Indian buf-
fet process (Ghahramani et al., 2006) and the in-
finite gamma-Poisson process (Titsias, 2007). Un-
der given conditions, the normal-gamma prior yields
sparse MAP estimates 3. The log-posterior distribu-
tions associated to these prior distributions are not
convex but we propose an Expectation-Maximization
(EM) algorithm to find modes of the posteriors and
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a Markov Chain Monte Carlo (MCMC) algorithm to
sample from them. We demonstrate through simula-
tions that these Bayesian models outperform signifi-
cantly a range of established procedures on a variety
of applications.

The rest of the paper is organized as follows. In Sec-
tion 2, we propose the NG and NIG models for 5. We
establish some properties of these models for K finite
and in the asymptotic case where K — oo. We also
relate our model to the Indian buffet process (Ghahra-
mani et al., 2006) and the infinite gamma-Poisson pro-
cess (Titsias, 2007). In Section 3, we establish con-
ditions under which the MAP/PML estimate 3 can
enjoy sparsity properties. Section 4 presents an EM
algorithm to find modes of the posterior distributions
and a Gibbs sampling algorithm to sample from them.
We demonstrate the performance of our models and
algorithms in Section 5. Finally we discuss some ex-
tensions in Section 6.

2. Sparse Bayesian Nonparametric
Models

We will consider models where the components 3 are
independent and identically distributed

K
p(8) = [ »(6)
k=1
and p (0) is a scale mixture of Gaussians; that is
P = [NGs0oRp (oD a2

where N(x; p,02) denotes the Gaussian distribution
of argument z, mean u and variance o2. We propose
two conjugate distributions for cr,%; namely the gamma
and the inverse Gaussian distributions. The resulting
marginal distribution for 85 belongs in both cases to
the class of generalized hyperbolic distributions.

In the models presented here, the unknown scale pa-
rameters are random and integrated out so that the
marginal priors on the regression coefficients are not
Gaussian. This differs from the RVM (Tipping, 2001)
where these parameters are unknown and estimated
through maximum likelihood.

2.1. Normal-Gamma Model
2.1.1. DEFINITION

Consider the following gamma prior distribution
2
2 o v
Ok g(Kv 92 )
whose probability density function (pdf) G(o%; £, %)
is given by

(g) 2\ &1 o 2
F(%) (Uk:) exp(—?ok).

=

Following Eq. (2), the marginal pdf of g is given for
Br # 0 by

a/K+1/2

p(Br) = —= 1Bk %K s (7161])

- \/7?2(1/1(71/21"(%)
(3)

where KC,,(+) is the modified Bessel function of the sec-
ond kind. We have

o
K

. A lx—a) jra 5 1
lim p(Bg) =< 2v7 T(%) K 72
Br.—0 00 otherwise

and the tails of this distribution decrease in
18e|® " exp(—7 |Bk|), see Figure 1(a). The parame-
ters a and «y resp. control the shape and scale of the
distribution. When o — 0, there is a high discrepancy
between the values of 0,3, while when o — oo, most of
the values are equal.

p(@,)

0 05 10U 05 ) o5 1
Bk Bk

(a) Normal-gamma (b) Normal-inverse Gaus-

sian
Figure 1. Probability density functions of the NG and NIG

for different values of the parameters.

This class of priors includes many standard priors. In-
deed, Eq. (3) reduces to the Laplace prior when & =1
and we obtain the NJ prior when & — 0 and v — 0.

In Figure 2 some realizations of the process are given
for different values o = 1,5,100 and v%/2 = .

2.1.2. PROPERTIES

It follows from Eq. (3) that

_ [ 4 T(g+
E[‘ﬁkﬂ - 7{_,,}/2 1—‘(%)

and we obtain

K 2 K 2c
lim B[ |6l = —, E>_ 5] = =.
K=ee 0 v k=1 v

Hence the sum of the terms remains bounded whatever
being K.
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Using properties of the gamma distribution, it is possi-
ble to relate § to a Lévy process known as the variance
gamma process as K — o0. First consider a finite K.
Let 0(21) > a( ) L> U(QK) be the order statistics
of the sequence o%,0%,...,0% and let m,...,7Tx be
random variables verifying the following (finite) stick-
breaking construction

k—1
e =G [J (1= ) with ¢ ~ B(1 +

Jj=1

a-"2) (@)

where B is the Beta distribution. Finally if g ~
G(a, —) then we can check that the order statistics
( o k)) follow the same distribution as the order statis-

tics of (gmk). The characteristic function of § is given
by

1 1
(pﬂk (u) = Nz =
1— 1 + iu
(=) (1+%)
and therefore
o
B 4 wy — wy where wy ~ Q(E’ v) and wg ~ Q(K,*y)

It follows that (i can be written as the difference of
two variables following a gamma distribution.

As K — o0, the order statistics (O'(Qk)) are the conic

part of a gamma process with shape parameter o and
scale parameter 72/2; see (Tsilevich et al., 2000) for
oty D)

ol ek ) and
>k O'(Qk) are independent and respectively distributed

details. In particular 32 = (

according to PD(«a) and G(a,~?/2) where PD(a) is
the Poisson-Dirichlet distribution of scale parameter
a. It is well-known that this distribution can be re-
covered by the following (infinite) stick-breaking con-
struction (Tsilevich et al., 2000) as if we set

k—1
=G [[(1-¢) with ¢ ~ B(La)  (5)

j=1

for any k then the order statistics (W(k)) are dis-
tributed from the Poisson-Dirichlet distribution.

The coefficients (0)) are thus nothing but the weights
(jumps) of the so-called variance gamma process which
is a Brownian motion evaluated at times given by a
gamma process (Applebaum, 2004; Madan & Seneta,
1990).

2.2. Normal-Inverse Gaussian Model
2.2.1. DEFINITION

Consider the following inverse Gaussian prior distribu-
tion

o2 ~ zg(%,w (6)

whose pdf ZG(o?; %,7) is given by (Barndorff-Nielsen,
1997)
1. ao? 9 9
exp(—5 (73 +770%))
2 K203
(7)

Following Eq. (2), the marginal pdf of 8 is given

% exp(ig) (KQ + ﬁk) ’ Kl (7 K2 + ﬁk) (8)

and the tails of this distribution decrease in
|ﬁ;§|_3/2 exp(—7 |Bk|)- It is displayed in Figure 1(b).
The parameters o and  resp. control the shape and
scale of the distribution. When o — 0, there is a
high discrepancy between the values of ai, while when
a — 00, most of the values are equal. Some realiza-
tions of the model, for different values of « are repre-
sented in Figure 3.

3/2

= e )(od)

2.2.2. PROPERTIES

The moments are given

2

ElIe]] = —— exp( 20 )Ko(52), B[] =

K gl
Therefore, as K — oo, the mean of sum of the absolute
values is infinite while the sum of the square is %

We can also establish in this case that the coeflicients
(Bk) tend to weights (jumps) of a normal-inverse Gaus-
sian process (Barndorff-Nielsen, 1997).
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Figure 3. Realizations (top) (07)k=1,..x and (bottom)
(Bk)k=1,...,k from the NIG model for K = 100, N = 20,
a=1,10,100 and v = a.

2.3. Extension

Consider now the case where we have N vectors of
observations {yn}ﬁle where y, € RE. We would like to
model the fact that for a given k the random variables
{ 62}2[:1 are statistically dependent and exchangeable.
We consider the following hierarchical model

2
a @
U}% ~ Q(E’ ?) or ‘713 Nzg(gﬁ)
fork=1,..., K and
B ~N(0,07)
for n =1,..., N. Some realizations of the process for

different values @ = 1,5,100 are represented in Fig-
ure 4.

In this respect, this work is complementary to two re-
cently proposed Bayesian nonparametric models: the
Indian buffet process (Ghahramani et al., 2006) and
the infinite gamma-Poisson process (Titsias, 2007). In
these two contributions, prior distributions over infi-
nite matrices with integer-valued entries are defined.
These models are constructed as the limits of finite-
dimensional models based respectively on the beta-
binomial and gamma-Poisson models. They enjoy the
following property: while the number of non-zero en-
tries of an (infinite) row is potentially infinite, the ex-
pected number of these entries is finite. These models
are also closely related to the beta and gamma pro-
cesses which are Lévy processes (Applebaum, 2004;
Teh et al., 2007; Thibaux & Jordan, 2007). Our mod-

i
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Figure 4. Realizations (top) (07)k=1,..x and (bottom)
(BE)n=1,...,N,k=1,...,k from the normal-gamma model for
K = 100, N = 20, o = 1,10,100 and +*/2 = «. The
lighter the colour, the larger |85/ .

els could be interpreted as prior distributions over in-
finite matrices with real-valued entries. In our case,
the number of non-zero entries of an (infinite) row is
always infinite but we can have

K
> |ﬁ£|”] <o )
k=1

for p =1 or p = 2. Morever for some values of % and
v we can also ensure that for any = > 0

Klim Pr(3k: |65 > x) > 0; (10)

lim E
K—oo

that is there is still a non-vanishing probability of hav-
ing coefficients with large values as K — oo despite Eq.

(9)-
The joint distribution is given by p(BEY) =
T, p(BLN) where for the NG model

(BN

and for the NIG model

o N
) oxcu ? ’C%—% (yuk)

1I:N

p( ! —(N+1)/2 ’C% (

) o< (qr) Vi)

where
a2

N
up = anl BR)?, a = 7 + uf (11)

3. Sparsity Properties

Further on we will also use the following notation for
any random variable u

pen(u) = log(p(u))
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Table 1. Penalizations and their derivatives for different
prior distributions

pen(BE™) per (B1)
Lasso | 7|0k| ¥
(N =1)
NJ N log(ug) N/uy
NG (5 — &) loguy, Koy (yur)
—logKa _~ (yug) Koy (yur)
Ntl (N-‘r;)uk
2] q
NIG —210g O/ngv(ff)(fqu) wljc Koo (vaw)
T2 +qT ’C% (var)
where ‘=" denotes equal up to an additive constant

independent of uw. When computing the MAP/PML
estimate for IV data, we select

jun N e Al R RS
gt = arg_mmz o2 Zpen(ﬁk‘ )-
e k=1
(12)
We give in Table 1 the penalizations pen(3;?) and
their derivatives for different prior distributions as a
function of uy and gi defined in Eq. (11).

When a/K = 1, the NG prior is equal to the Laplace
prior so its penalization reduces to the ¢; penaliza-
tion used in Lasso and basis pursuit (Tibshirani, 1996;
Chen et al., 2001). When a/K — 0 and ¢ — 0 the
prior is the NJ prior and the penalization reduces to
log(]Bk|) which has been used in (Figueiredo, 2003).
We display in Figure 5 the contours of constant value
for various prior distributions when N =1 and K = 2.
For a/ K < 1/2, the MAP estimate (12) does not exist
as the pdf (3) is unbounded. For other values of the
parameters, a mode can dominate at zero whereas we
are interested in the data driven turning point/local
minimum (Griffin & Brown, 2007).

Consider now the case where the matrix X is orthog-
onal, 0 = 1 and N = 1. The turning point and/or
MAP/PML estimate is obtained by minimizing Eq.
(12) which is equivalent to minimize componentwise

1
5 (2% = Bi)? + pen(B) (13)
where 2 = XTy. The first derivative of (13) is

sign(Brk) (18k| + pen’(|6k])) — 2. As stated in (Fan &
Li, 2001, p. 1350), a sufficient condition for the esti-
mate to be a thresholding rule is that the minimum of
the function |8g| 4+ pen/(|Bk|) is strictly positive. Plots
of the function |Bx| + pen’(|8x|) are given in Figure 6
and the resulting thresholds corresponding to the ar-
gument minimizing (13) are presented in Figure 7. It
follows that the normal-gamma prior is a thresholding

4
e

(a) Laplace (b) Normal-Jeffreys

>
S

(d) Normal-inverse Gaus-
sian

(¢) Normal-gamma

Figure 5. Contour of constant value of pen(f51) + pen(f2)
for different prior distributions.

rule for /K < 1 and yields sparse estimates. The
normal-inverse Gaussian is not a thresholding rule as
the derivative of the penalization is 0 when (G, = 0
whatever being the values of the parameters. However,
from Figure 7(d), it is clear that it can yield “almost
sparse” estimates; that is most components are such

that ‘Ek’ ~ (.

o 05 1 1 2z 25 3 0 05 1 1s 2 25 3

(a) Normal-gamma (b) Normal-inverse Gaus-

sian

Figure 6. Plots of |Bx| + pen’(|Bk]).

4. Algorithms
4.1. EM

The log-posterior in Eq. (12) is not concave but we
can use the EM algorithm to find modes of it. The EM
algorithm relies on the introduction of the missing data
o1.x = (01,...,0K). Conditional upon these missing
data, the regression model is linear Gaussian and all
the EM quantities can be easily computed in closed
form; see for example (Figueiredo, 2003; Griffin &
Brown, 2007). We have at iteration ¢ + 1 of the EM
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(a) Laplace (b) Normal-Jeffreys

Normal-inverse

(c) Normal-gamma  (d)
Gaussian

Figure 7. Thresholds for the different prior distributions.

Bliyy = argmax Q(B" N 5(Y)
where Q(B'V; Bg;)fV ) is given by
/IOg(p(ﬁl:N‘ylzNaUl:K))-p(Ul:K‘B(li:)Nvyl:N)dUI:K-

After a few calculations, we obtain

-~ -1
Bl = (Vi + XTX) X"y,

with V() = diag(mi gy, ..., Mg,@y)  and
N -1 Iy -
My, = (Uk,(i)) pen' (U, ;) where Uy =
— 2
\/25:1 (ﬁi?,(i)) » pen’ (g i)) = 81)#(:0 B (see
Uk, (i

Table 1).

4.2. MCMC

We can also easily sample from the posterior distribu-
tion p(8YN |y1.n) by sampling from p(8YN, 03, i [y1.n)
using the Gibbs sampler. Indeed the full conditional
distributions p(8YY |o1.x, y1.x) and p(o?. & |BY Y, y1.3)
are available in closed-form. The distribution
p(BYN |01k, y1.n) is a multivariate normal whereas we
have p(o? |BN, y1.n) = H?le(aﬂﬁiw). For the
NG prior, we obtain

o N _ 9 1u
(oD% 4 oxp (-3 — o)

2 (“Tk)%_? IC%,% (yur)

which is a generalized inverse Gaussian distribution
from which we can sample exactly. For the NIG distri-
bution, we also obtain a generalized inverse Gaussian
distribution.

p(orlB™) =

5. Applications
5.1. Simulated Data

In the following, we provide numerical comparisons
between the Laplace (that is Lasso), the RVM, NJ,
NG and NIG models. We simulate 100 datasets from
(1) with L = 50 and ¢ = 1. The correlation be-
tween Xp; and Xy ; is p|i’j| with p = 0.5. We set
B=(31500200...)7 € RX where the remaining
components of the vector are set to zero. We consider
the cases where K = 20,60, 100,200. Parameters of
the Lasso, NG and NIG are estimated by 5-fold cross-
validation, as described in (Tibshirani, 1996). The
Lasso estimate is obtained with the Matlab implemen-
tation of the interior point method downloadable at
http://www.stanford.edu/ “boyd/111s/. For the other
priors, the estimate is obtained via 100 iterations of
the EM algorithm. Box plots of the mean square er-
ror (MSE) are reported in Figure 8. These plots show
that the performance of the estimators based on the
NG and NIG priors outperform those of classical mod-
els in that case. In Figure 9 are represented the box
plots of the number of estimated coefficients whose ab-
solute value is below 7', T = 1071 (the precision tuned
for the Lasso estimate) and T = 1073, for K = 200.
The true number of zeros in that case is 197. The NG
outperforms the other models in identifying the zeros
of the model. On the contrary, as the NIG estimate
is not a thresholding rule, the median number of co-
efficients whose absolute value is below 10719 for this
model is zero. However, most of the coefficients have
a very low absolute value, as the median of the coeffi-
cients with absolute value below 1073 is equal to the
true value 197 (see Figure 9(b)). Moreover, the esti-
mator obtained by thresholding the coefficients whose
absolute value is below 1073 to zero yields very minor
differences in terms of MSE.

5.2. Biscuit NIR Dataset

We consider the biscuits data which have been studied
in (Griffin & Brown, 2007; West, 2003). The matrix
X is composed of 300 (centered) NIR reflectance mea-
surements from 70 biscuit dough pieces. The obser-
vations y are the percentage of fat, sucrose, flour and
water associated to each piece. The objective here is
to predict the level of each of the ingredients from the
NIR reflectance measurements. The data are divided
into a training dataset (39 measurements) and a test
dataset (31 measurements). The fitted coefficients of
fat and flour, using 5-fold cross-validation, are repre-
sented in Figure 10. The estimated spikes are consis-
tent with the results obtained in (West, 2003; Griffin
& Brown, 2007). In particular, both models detect
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Figure 8. Box plots of the MSE associated to the simulated
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Figure 10. Coefficients estimated with a normal-gamma
(left) and normal-inverse Gaussian (right) prior for fat
(top) and flour (bottom) ingredients.

Table 2. MSE for biscuits NIR data

‘ Flour Fat
NJ 9.93 0.56
RVM | 6.48 0.56
NG 3.44 0.55
NIG | 1.94 0.49

Figure 9. Box plots of the number of estimated coefficients
whose absolute value is below a threshold 7. Dash line
represents the true value of zero coefficients (197).

a spike at 1726nm, which lies in a region known for
fat absorbance. The predicted observations versus the
true observations are given in Figure 11 for the train-
ing and test datasets. The test data are well fitted
by the estimated coefficients. MSE errors for the test
dataset are reported in Table 2. The proposed models
show better performances for flour and similar perfor-
mances for fat.

6. Discussion

We have presented some flexible priors for linear re-
gression based on the NG and NIG models. The
NG prior yields sparse local maxima of the poste-
rior distribution whereas the NIG prior yields “almost
sparse” estimates; that is most of the coefficients are
extremely close to zero. We have shown that asymp-
totically these models are closely related to the vari-
ance gamma process and the normal-inverse Gaus-
sian process. Contrary to the NJ model or the RVM,

these models require specifying two hyperparameters.
However, using a simple cross-validation procedure we
have demonstrated that these models can perform sig-
nificantly better that well-established procedures. In
particular, the experimental performance of the NIG
model are surprisingly good and deserve being further
studied. The NG prior has been discussed in (Griffin &
Brown, 2007). It was discarded because of its spike at
zero and the flatness of the penalty for large values but
no simulations were provided. They favour another
model which relies on a cylinder parabolic function'.
The NG prior has nonetheless interesting asymptotic
properties in terms of Lévy processes and we have
demonstrated its empirical performances. The NG,
NIG and Laplace priors can also be considered as par-
ticular cases of generalized hyperbolic distributions.
This class of distributions has been used in (Snoussi &
Idier, 2006) for blind source separation.

The extension to (probit) classification is straightfor-

!The authors provide a link to a program to compute
this function. Unfortunately, it is extremely slow. The re-
sulting algorithm is at least one order of magnitude slower
than our algorithms which rely on Bessel functions.
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Figure 11. Observations versus predicted observations es-
timated with a normal-gamma (left) and normal-inverse
Gaussian (right) prior for fat (top) and flour (bottom) in-
gredients.

ward by adding latent variables corresponding to the
regression function plus some normal noise. Compu-
tationally it only requires adding one line in the EM
algorithm and one simulation step in the Gibbs sam-
pler.
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Abstract

In this paper we perform an empirical
evaluation of supervised learning on high-
dimensional data. We evaluate perfor-
mance on three metrics: accuracy, AUC, and
squared loss and study the effect of increas-
ing dimensionality on the performance of the
learning algorithms. Our findings are con-
sistent with previous studies for problems of
relatively low dimension, but suggest that as
dimensionality increases the relative perfor-
mance of the learning algorithms changes.
To our surprise, the method that performs
consistently well across all dimensions is ran-
dom forests, followed by neural nets, boosted
trees, and SVMs.

1. Introduction

In the last decade, the dimensionality of many machine
learning problems has increased substantially. Much
of this results from increased interest in learning from
text and images. Some of the increase in dimension-
ality, however, results from the development of tech-
niques such as SVMs and L; regularization that are
practical and effective in high dimensions. These ad-
vances may make it unnecessary to restrict the feature
set and thus promote building and learning from data
sets that include as many features as possible. At the
same time, memory and computational power have in-
creased to support computing with large data sets.

Perhaps the best known empirical studies to exam-
ine the performance of different learning methods
are STATLOG (King et al., 1995) and (Caruana &
Niculescu-Mizil, 2006). STATLOG was a very thor-
ough study, but did not include test problems with

Appearing in Proceedings of the 25" International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

high dimensions and could not evaluate newer learn-
ing methods such as bagging, boosting, and kernel
methods. More recently, (Caruana & Niculescu-Mizil,
2006) includes a number of new learning algorithms
that emerged after the STATLOG project, but only ex-
amined performance on problems with low-to-medium
dimension. One must question if the results of either of
these studies apply to text data, biomedical data, link
analysis data etc. where many attributes are highly
correlated and there may be insufficient data to learn
complex interactions among attributes. This paper at-
tempts to address that question.

There are several limitations to the empirical study in
(Caruana & Niculescu-Mizil, 2006). First, they per-
formed all experiments using only 5000 training cases,
despite the fact that much more labeled data was avail-
able for many problems. For one of the problems
(COVTYPE) more than 500,000 labeled cases were
available. Intentionally training using far less data
than is naturally available on each problem makes the
results somewhat contrived. Second, although they
evaluated learning performance on eight performance
metrics, examination of their results shows that there
are strong correlations among the performance mea-
sures and examining this many metrics probably added
little to the empirical comparison and may have led
to a false impression of statistical confidence. Third,
and perhaps most important, all of the data sets ex-
amined had low to medium dimensionality. The aver-
age dimensionality of the 11 data sets in their study
was about 50 and the maximum dimensionality was
only 200. Many modern learning problems have orders
of magnitude higher dimensionality. Clearly learn-
ing methods can behave very differently when learning
from high-dimensional data than when learning from
low-dimensional data.

In the empirical study performed for this paper we
complement the prior work by: 1) using the natural
size training data that is available for each problem;
2) using just three important performance metrics: ac-
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curacy, area under the ROC curve (AUC), and squared
loss; and 3) performing experiments on data with high
to very high dimensionality (750-700K dimensions).

2. Methodology
2.1. Learning Algorithms

This section summarizes the algorithms and parame-
ter settings we used. The reader should bear in mind
that some learning algorithms are more efficient at
handling large training sets and high-dimensional data
than others. For an efficient algorithm we can afford
to explore the parameter space more exhaustively than
for an algorithm that does not scale well. But that’s
not unrealistic; a practitioner may prefer an efficient
algorithm that is regarded as weak but which can be
tuned well over an algorithm that might be better but
where careful tuning would be intractable. Below we
describe the implementations and parameter settings
we used. An algorithm marked with an asterisk (e.g.
ALG*) denotes our own custom implementation de-
signed to handle high-dimensional sparse data.

SVMs: We train linear SVMs using SVMPer/
(Joachims, 2006) with error rate as the loss function.
We vary the value of C' by factors of ten from 10~°
to 10°. For kernel SVMs we used LaSVM, an approxi-
mate SVM solver that uses stochastic gradient descent
(Bordes et al., 2005), since traditional kernel SVM im-
plementations simply cannot handle the amounts of
data in some of our experiments. To guarantee a rea-
sonable running time we train the SVM for 30 minutes
for each parameter setting and use the gradient based
strategy for the selection of examples. We use polyno-
mial kernels of degree 2 and 3 and RBF kernels with
width {0.001,0.005,0.01,0.05,0.1,0.5,1,2}. We vary
the value of C' by factors of ten from 10~7 to 10°.

ANN*: We train neural nets with gradient descent
backpropagation, early stopping and no momentum
(cf. section 5). We vary the number of hidden units
{8,16,32} and learning rate {10=%,1073,1072}.

Logistic Regression (LR): We use the BBR package
(Genkin et al., 2006) to train models with either L,
or Lo regularization. The regularization parameter is
varied by factors of ten from 10~7 to 10°.

Naive Bayes (NB*): Continuous attributes are
modeled as coming from a normal distribution. We use

smoothing and vary the number of unobserved values
{0,0.1,0.2,0.5,1,2,5,10,20,50,100}.

KNN*: We use distance weighted KNN. We use the
1000 nearest neighbors weighted by a Gaussian kernel
with 40 different kernel widths in the range [0.1, 820].

The distance between two points is a weighted eu-
clidean distance where the weight of each feature is
determined by its information gain.

Random Forests (RF*): We grow 500 trees and
the size of the feature set considered at each split is
s/2,8,2s,4s or 8s where s is the square root of the
number of attributes, as suggested in (Breiman, 2001).

Bagged Decision Trees(BAGDT*): We bag 100
ID3 trees. The same implementation is used for
boosted stumps (BSTST*) and boosted trees
(BSTDT*) but because full-size ID3 trees can’t eas-
ily be boosted, we stop splitting when a node contains
less than 50 examples. We do 29 and 2'° iterations of
boosting for trees and stumps respectively and use the
validation set to pick the number of iterations from
the set {2%]i = 0,1,...15}.

Perceptrons (PRC*): We train voted perceptrons
(Freund & Schapire, 1999) with 1,5,10,20 and 30 passes
through the data. We also average 100 perceptrons
each of which is obtained by a single pass through a
permutation of the data.

With SVM, ANN, LR, KNN and PRC and datasets
with continuous attributes we train both on raw and
standardized data. This preprocessing can be thought
of as one more parameter for these algorithms. To
preserve sparsity, which is crucial for the implementa-
tions we use, we treat the mean of each feature as zero,
compute the standard deviation, and divide by it.

2.2. Performance Metrics

To evaluate performance we use three metrics: accu-
racy (ACC), a threshold metric, squared error (RMS),
a probability metric, and area under the ROC curve
(AUC), an ordering metric. To standardize scores
across different problems and metrics, we divide per-
formances by the median performance observed on
each problem for that metric. For squared error we
also invert the scale so that larger numbers indicate
better performance as with accuracy and AUC.

2.3. Calibration

The output of some learning algorithms such as ANN,
logistic regression, bagged trees and random forests
can be interpreted as the conditional probability of the
class given the input. The common implementation of
other methods such as SVM and boosting, however,
are not designed to predict probabilities (Niculescu-
Mizil & Caruana, 2005).

To overcome this, we use two different methods to
map the predictions from each learning algorithm to
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calibrated probabilities. The first is Isotonic Regres-
sion (Zadrozny & Elkan, 2002), a method which fits
a non-parametric non-decreasing function to the pre-
dictions. The second calibration method is Platt’s
method (Platt, 1999) which fits a sigmoid to the pre-
dictions. (Niculescu-Mizil & Caruana, 2005) suggests
that Platt’s method outperforms isotonic regression
when there is less than about 1000 points available
to learn the calibration function, and that calibration
can hurt predictions from methods such as ANN and
logistic regression (Caruana & Niculescu-Mizil, 2006).
We will revisit those findings later in the discussion.
Finally, note that calibrating can affect metrics other
than probability metrics such as squared loss. It can
affect accuracy by changing the optimal threshold (for
calibrated predictions the optimum threshold will be
near 0.5) and Isotonic Regression can affect AUC by
creating ties on calibration plateaus where prior to cal-
ibration there was a definite ordering.

To summarize our methodology, we optimize for each
dataset and metric individually. For each algorithm
and parameter setting we calibrate the predictions us-
ing isotonic regression, Platt’s method, and the iden-
tity function (no calibration) and choose the parame-
ter settings and calibration method that optimizes the
performance metric on a validation set.

2.4. Data Sets

We compare the methods on 11 binary classification
problems whose dimensionality ranges from 761 to
685569. The datasets are summarized in Table 1.

TIS! is from the Kent Ridge Bio-medical Data Repos-
itory. The problem is to find Translation Initia-
tion Sites (TIS) at which translation from mRNA
to proteins initiates. CRYST? is a protein crys-
tallography diffraction pattern analysis dataset from
the X6A beamline at Brookhaven National Labora-
tory. STURN and CALAM are ornithology datasets.?
The task is to predict the appearance of two bird
species: sturnella neglecta and calamospiza melanoco-
rys. KDD98 is from the 1998 KDD-Cup. The task
is to predict if a person donates money. This is the
only dataset with missing values. We impute the
mean for continuous features and treat missing nom-
inal and boolean features as new values. DIGITS? is
the MNIST database of handwritten digits by Cortes
and LeCun. It was converted from a 10 class problem
to a hard binary problem by treating digits less than 5

! http://research.i2r.a-star.edu.sg/GEDatasets/Datasets.html
http://ajbcentral.com/CrySis/dataset.html

3Art Munson, Personal Communication

“http:/ /yann.lecun.com/exdb/mnist /

Table 1. Description of problems

Problem Attr Train  Valid Test  %Pos
Sturn 761 10K 2K 9K  33.65
Calam 761 10K 2K IK  34.32
Digits 780 48K 12K 10K 49.01
Tis 927 5.2K 1.3K 6.9K 25.13
Cryst 1344 2.2K 1.1K 2.2K  45.61
KDD98 3848 76.3K 19K 96.3K 5.02
R-S 20958 35K 7K 30.3K  30.82
Cite 105354 81.5K 184K 81.5K 0.17
Dse 195203 120K 43.2K 107K 5.46
Spam 405333 36K 9K 42.7TK 44.84
Imdb 685569 84K 18.4K 84K 0.44

as one class and the rest as the other class. IMDB and
CITE are link prediction datasets.> For IMDB each
attribute represents an actor, director, etc. For CITE
attributes are the authors of a paper in the CiteSeer
digital library. For IMDB the task is to predict if Mel
Blanc was involved in the film or television program
and for CITE the task is to predict if J. Lee was a coau-
thor of the paper. We created SPAM from the TREC
2005 Spam Public Corpora. Features take binary val-
ues showing if a word appears in the document or not.
Words that appear less than three times in the whole
corpus were removed. Real-Sim (R-S) is a compilation
of Usenet articles from four discussion groups: simu-
lated auto racing, simulated aviation, real autos and
real aviation.® The task is to distinguish real from sim-
ulated. DSE7 is newswire text with annotated opinion
expressions. The task is to find Subjective Expressions
i.e. if a particular word expresses an opinion.

To split data into training, validation and test sets, if
the data came with original splits for train and test
sets (i.e. DIGITS, KDD98) we preserved those splits
and created validation sets as 10% of the train set. If
the data originally was split into folds, we merged some
folds to create a training set, a validation set and a test
set. (We did this because running these experiments
is so costly that we could not afford to perform N-fold
cross validation as this would make the experiments
about N times more costly.) DSE came in 10 folds
plus a development fold twice as big as other folds.
We used the development fold as the validation set
and merged the first 5 folds for the train set and the
rest for the test set. CRYST came in 5 folds. One
fold became the validation set, 2 folds were merged for
training and the rest became the test set.

For the rest of the datasets we tried to balance be-

®http://komarix.org/ac/ds
Shttp://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
"Eric Breck, Personal Communication
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tween the following factors: (a) The test sets should
be large enough so that differences between learning al-
gorithms are apparent. (b) The test sets can be larger
when the learning task is easy, but more data should
be kept in the training set when the learning task is
hard. (c) Some datasets would inevitably have more
attributes than examples in the training set (IMDB,
CITE, SPAM); for the rest we tried to put enough ex-
amples in the training set so that methods with small
bias might learn something interesting. (d) The vali-
dation sets should be big enough so that parameter se-
lection and calibration works well. In general we split
the data so that we have around 50% in the training
set and 50% in the test set. Validation data is drawn
from the training set.

3. Results

Table 2 shows the performance of each learning
method on each of the eleven problems. In the ta-
ble, the problems are arranged left to right in order
of increasing dimensionality. The table is broken into
four sections. The top three sections report results for
Accuracy (ACC), Squared Error (RMS), and Area un-
der the ROC Curve (AUC). The bottom section is the
average of the performance across these three metrics.

For each metric and problem, the performances have
been standardized by dividing by the median perfor-
mance observed for that problem and metric. With-
out standardization it is difficult to perform an unbi-
ased comparison across different datasets and metrics.
A score of one indicates that the method had typical
performance on that problem and metric compared to
the other learning methods. Scores above one indi-
cate better than typical performance, while scores less
than one indicate worse than typical performance. The
scale for RMS has been reversed so that scores above
one represent better than typical, i.e., lower, RMS.®
The median performance for each problem and metric
is included in the table to allow calculating raw perfor-
mances from the standardized scores. The last column
in the table is the average score across the eleven test
problems. In each section of the table, learning algo-
rithms are sorted by these average scores. The last
column of the last section represents the average score
across all problems and metrics.

Examining the results in the bottom section shows

8This is different and simpler than the normalized scores
used in (Caruana & Niculescu-Mizil, 2006). We have exper-
imented with several ways of standardizing scores and the
results change little with different methods. The learning
methods that rank at the top (and the bottom) are least
affected by the exact standardization method.

that on average across all problems and metrics, ran-
dom forests have the highest overall performance. On
average, they perform about 1% (1.0102) better than
the typical model and about 0.6% (1.0102 vs. 1.0039)
better than the next best method, ANN. The best
methods overall are RF, ANN, boosted decision trees,
and SVMs. The worst performing methods are Naive
Bayes and perceptrons. On average, the top eight of
ten methods fall within about 2% of each other. While
it is not easy to achieve an additional 1% of perfor-
mance at the top end of the scale, it is interesting that
so many methods perform this similarly to each other
on these high-dimensional problems.

If we examine the results for each of the metrics in-
dividually, we notice that the largest differences in
performance among the different learning algorithms
occur for AUC and the smallest differences occur for
ACC. For accuracy, boosted decision trees are the best
performing models followed by random forests. How-
ever, a closer examination of the table shows that
boosted trees do better in accuracy mostly because of
their excellent performance on the datasets with rel-
atively low dimensionality. Comparing boosted trees
with random forests in the left part of the table we see
that random forests outperform boosted trees only on
the TIS dataset. The situation is reversed on the right
part of the table where boosted trees outperform ran-
dom forests only on the CITE dataset. As dimension-
ality increases, we expect boosted trees to fall behind
random forests.

In RMS, random forests are marginally better than
boosted trees. This is confirmed by a bootstrap anal-
ysis (cf. Section 4): random forests have 33% and 35%
chance of ranking 1st and 2nd respectively, while for
boosted trees the corresponding probabilities are 31%
and 21%. However, in AUC random forests are clear
winners followed by, somewhat surprisingly, KNN.

Interestingly, although ANN is the 2nd best method
overall in the bottom of the table, is does not per-
form 1st or 2nd for any of the individual metrics in
the top of the table. It is 2nd overall only because
ANNSs consistently yield very good, though perhaps
not exceptional, performance on all metrics.

A fact that is not apparent from the table is that cali-
bration with isotonic regression works better than cal-
ibrating with Platt’s method, or no calibration, on
most problems and thus was used for almost all of
the results reported in the table. Since our valida-
tion sets always are larger than 1000 examples, this
confirms the findings in (Niculescu-Mizil & Caruana,
2005) that isotonic regression is preferred with large
validation sets.
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Table 2. Standardized scores of each learning algorithm

[ DIM [ 761 761 780 927 1344 3448 20958 105354 195203 405333 685569 | — ]
ACC STURN CALAM DiciTs Tis CRYST Kpp98 R-S CITE Dse SPAM IMDB MEAN
MEDIAN 0.6901 0.7337 0.9681 0.9135 0.8820 0.9494 0.9599 0.9984 0.9585 0.9757 0.9980 —
BSTDT 0.9962 1.0353 1.0120 0.9993 1.0178 0.9998 0.9904 1.0000 0.9987 0.9992 1.0000 | 1.0044
RF 0.9943 1.0103 1.0076 1.0025 1.0162  1.0000 0.9995 0.9998 1.0013  1.0044 1.0000 | 1.0033
SVM 1.0044 1.0018 1.0024 1.0060 1.0028 0.9999 1.0156 1.0008 1.0004 1.0008 1.0003 | 1.0032
BAGDT 1.0001 1.0350 0.9976 1.0017 1.0111 1.0000 0.9827 1.0000 0.9996 0.9959 1.0000 | 1.0021
ANN 0.9999 0.9899 1.0051 1.0007 0.9869 1.0000 1.0109 1.0001 1.0018 1.0029 1.0003 0.9999
LR 1.0012 0.9896 0.8982  1.0108 1.0080  1.0000 1.0141 1.0001 1.0014 1.0026 0.9999 | 0.9932
BSTST 1.0077 1.0298 0.9017 0.9815 0.9930  1.0000 0.9925 0.9999 0.9948 0.9905 0.9989 | 0.9900
KNN 1.0139 0.9982 1.0122 0.9557 0.9972 0.9999 0.9224 1.0000 0.9987 0.9698 0.9996 | 0.9880
PRC 0.9972 0.9864 0.9010 0.9735 0.9930  1.0000 1.0119 0.9999 1.0007 1.0041 1.0001 | 0.9880
NB 0.9695 0.9347 0.8159 0.9230 0.9724  1.0000 1.0005 1.0000 0.9878 0.9509 0.9976 | 0.9593
RMS STURN CALAM Dicits T1s CRYST KpD98 R-S CITE Dse SPAM IMDB MEAN
MEDIAN 0.5472 0.5800 0.8449 0.7455 0.7051 0.7813 0.8257 0.9623 0.8154 0.8645 0.9597 —
RF 0.9980 1.0209 1.0186 1.0102 1.0277 1.0003 1.0011 0.9988 1.0072 1.0118 1.0006 1.0087
BSTDT 0.9993 1.0351 1.0363 0.9977  1.0323 0.9998 0.9781 1.0003 0.9983 1.0007 1.0003 | 1.0071
ANN 1.0042 0.9987 1.0088 1.0109 1.0014 1.0005 1.0315 1.0011 1.0068 1.0077  1.0022 | 1.0067
SVM 0.9979 0.9882 1.0076  1.0149 0.9972 0.9992 1.0409 1.0091 1.0067 0.9993 1.0004 | 1.0056
BAGDT 1.0007 1.0357 0.9924 1.0023 1.0218 0.9998 0.9587 1.0000 0.9994 0.9782 1.0012 | 0.9991
LR 1.0010 0.9963 0.8169 1.0232 0.9935  1.0007 1.0367 1.0009 1.0082 1.0073 0.9988 | 0.9894
PRC 0.9976 0.9841 0.8115 0.9537 0.9919 0.9998 1.0313 0.9979 1.0006 1.0071 0.9997 | 0.9796
BSTST 1.0078 1.0205 0.8202 0.9757 1.0021 1.0007 0.9861 1.0000 0.9900 0.9695 0.9952 | 0.9789
KNN 1.0119 1.0013  1.0365 0.9309 0.9986 1.0000 0.8468 0.9988 0.9983 0.9270 0.9941 | 0.9768
NB 0.9793 0.9509 0.7236 0.9031 0.9454 1.0000 0.9989 0.9981 0.9828 0.8984 0.9731 | 0.9412
AUC STURN CALAM Dicits T1s CRYST KpD98 R-S CITE DsE SPAM IMDB MEAN
MEDIAN 0.6700 0.7793 0.9945 0.9569 0.9490 0.5905 0.9913 0.7549 0.9008 0.9957 0.9654
RF 0.9892 1.0297 1.0017 1.0069 1.0134 1.0140 1.0009 1.0962 1.0304 1.0022 1.0209 | 1.0187
KNN 1.0397 0.9992 1.0024 0.9509 1.0007 1.0165 0.9905 1.1581 1.0027 0.9902 0.9648 | 1.0105
LR 1.0045 0.9903 0.9424 1.0136 1.0070 1.0492  1.0041 1.0272 1.0293 0.9999 1.0084 | 1.0069
ANN 1.0132 1.0008 1.0001 1.0042 0.9992 1.0461 1.0031 0.9779 1.0105 1.0001 1.0021 1.0052
BSTST 1.0199 1.0304 0.9468 0.9901 0.9993 1.0512 0.9991 0.9956 0.9973 0.9989 1.0036 | 1.0029
SVM 0.9870 0.9645 1.0002 1.0077 0.9909 0.9324 1.0032 1.1120 1.0100 1.0011 0.9979 | 1.0006
BSTDT 0.9991 1.0492  1.0033 0.9958  1.0137 0.9605 0.9962 0.9646 0.9881 1.0015 1.0041 | 0.9978
BAGDT 1.0009  1.0551 0.9999 1.0062 1.0116 0.9768 0.9890 0.9673 0.9691 0.9925 0.9809 | 0.9954
PRC 0.9973 0.9630 0.9372 0.9749 0.9937 0.9724 1.0036 0.9991 0.9777 1.0006 0.9477 | 0.9788
NB 0.9329 0.8936 0.8574 0.9407 0.9574 0.9860 0.9990 1.0009 0.9917 0.9798 0.8787 | 0.9471
AVG STURN CALAM Dicits Tis CRYST Kpp98 R-S CITE DsE SpPAM IMDB MEAN
RF 0.9938 1.0203 1.0093 1.0065 1.0191 1.0048 1.0005 1.0316 1.0130 1.0061 1.0072 | 1.0102
ANN 1.0058 0.9965 1.0047 1.0053 0.9958 1.0156 1.0152 0.9930 1.0064 1.0036 1.0015 | 1.0039
BSTDT 0.9982 1.0399 1.0172 0.9976  1.0212 0.9867 0.9882 0.9883 0.9950 1.0004 1.0014 | 1.0031
SVM 0.9965 0.9848 1.0034 1.0095 0.9970 0.9772  1.0199 1.0406 1.0057 1.0004 0.9995 | 1.0031
BAGDT 1.0006 1.0419 0.9966 1.0034 1.0148 0.9922 0.9768 0.9891 0.9894 0.9889 0.9940 | 0.9989
LR 1.0022 0.9921 0.8858  1.0159 1.0028 1.0166 1.0183 1.0094 1.0129 1.0033 1.0024 | 0.9965
KNN 1.0219 0.9996 1.0170 0.9458 0.9988 1.0055 0.9199  1.0523 0.9999 0.9623 0.9862 | 0.9917
BSTST 1.0118 1.0269 0.8896 0.9824 0.9982 1.0173 0.9926 0.9985 0.9941 0.9863 0.9992 | 0.9906
PRC 0.9974 0.9778 0.8832 0.9674 0.9929 0.9907 1.0156 0.9990 0.9930 1.0039 0.9825 | 0.9821
NB 0.9606 0.9264 0.7989 0.9223 0.9584 0.9953 0.9995 0.9997 0.9874 0.9430 0.9498 | 0.9492

3.1. Effect of Dimensionality

In this section we attempt to show the trends in per-
formance as a function of dimensionality. In Figure 1
the x-axis shows dimensionality on a log scale. The
y-axis is the cumulative score of each learning method
on problems of increasing dimensionality. The score is
the average across the three standardized performance
metrics where standardization is done by subtracting
the median performance on each problem.® Subtract-
ing median performance means that scores above (be-
low) zero indicate better (worse) than typical perfor-
mance. The score accumulation is done left-to-right

9Here we subtract the median instead of dividing by it
because we are accumulating relative performance. Stan-
dardization by subtracting the median yields similar rank-
ings as dividing by the median.

on problems of increasing dimensionality. A line that
tends to slope upwards (downwards) signifies a method
that performs better (worse) on average compared to
other methods as dimensionality increases. A horizon-
tal line suggests typical performance across problems
of different dimensionality. Naive Bayes is excluded
from the graph because it falls far below the other
methods. Caution must be used when interpreting
cumulative score plots. Due to the order in which
scores are aggregated, vertical displacement through
much of the graph is significantly affected by the per-
formance on problems of lower dimensionality. The
end of the graph on the right, however, accumulates
across all problems and thus does not favor problems
of any dimensionality, The slope roughly corresponds
to the average relative performance across dimensions.
From the plot it is clear that boosted trees do very
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cumulative score

-0.2 : : :

100 1000 10000
dimension

100000 1e+006

Figure 1. Cumulative standardized scores of each learning
algorithm as a function of the dimension.

well in modest dimensions, but lose ground to ran-
dom forests, neural nets, and SVMs as dimensionality
increases. Also, linear methods such as logistic regres-
sion begin to catch up as dimensionality increases.

Figure 2 shows the same results as Figure 1, but pre-
sented differently to avoid the complexity of accumu-
lation. Here each point in the graph is the average per-
formance of the 5 problems of lowest dimension (from
761 to 1344), the 5 problems of highest dimension (21K
to 685K) and 5 problems of intermediate dimension
(927 to 105K). Care must be used when interpreting
this graph because each point averages over only 5 data
sets. The results suggest that random forests overtake
boosted trees. They are among the top performing
methods for high-dimensional problems together with
logistic regression and SVMs. Again we see that neu-
ral nets are consistently yielding above average per-
formance even in very high dimension. Boosted trees,
bagged trees, and KNN do not appear to cope well
in very high dimensions. Boosted stumps, percep-
trons, and Naive Bayes perform worse than the typical
method regardless of dimension.

Figure 3 shows results similar to Figure 2 but only for
different classes of SVMs: linear-only (L), kernel-only
(K) and linear that can optimize accuracy or AUC
(L+P) (Joachims, 2006). We also plot combinations
of these (L+K and L+K+P) where the specific model
that is best on the validation set is selected. The re-
sults suggest that the best overall performance with
SVMs results from trying all possible SVMs (using the
validation set to pick the best). Linear SVMs that
can optimize accuracy or AUC outperform simple lin-
ear SVMs at modest dimensions, but have little effect
when dimensionality is very high. Similarly, simple lin-
ear SVMs though not competitive with kernel SVMs at
low dimensions, catch up as dimensionality increases.
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Figure 2. Moving average standardized scores of each

learning algorithm as a function of the dimension.
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Figure 3. Moving average standardized scores for different
SVM algorithms as a function of the dimension.

4. Bootstrap Analysis

We could not afford cross validation in these experi-
ments because it would be too expensive. For some
datasets and some methods, a single parameter set-
ting can take days or weeks to run. Instead we used
large test sets to make our estimates more reliable and
adequately large validation sets to make sure that the
parameters we select are good. However, without a
statistical analysis, we cannot be sure that the differ-
ences we observe are not merely statistical fluctuation.

To help insure that our results would not change if we
had selected datasets differently we did a bootstrap
analysis similar to the one in (Caruana & Niculescu-
Mizil, 2006). For a given metric we randomly select
a bootstrap sample (sampling with replacement) from
our 11 problems and then average the performance
of each method across the problems in the bootstrap
sample. Then we rank the methods. We repeat the
bootstrap sampling 20,000 times and get 20,000 po-
tentially different rankings of the learning methods.
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Table 3 shows the results of the bootstrap analysis.
Each entry in the table shows the percentage of time
that each learning method ranks 1st, 2nd, 3rd, etc. on
bootstrap samples of the datasets. Because of space
limits, we only show results for average performance
across the three metrics.

The bootstrap analysis suggests that random forests
probably are the top performing method overall, with
a 73% chance of ranking first, a 20% chance of ranking
second, and less than a 8% chance of ranking below
2nd place. The ranks of other good methods, however,
are less clear and there appears to be a three-way tie
for 2nd place for boosted trees, ANNs, and SVMs.

5. Computational Challenges

Running this kind of experiment in high dimensions
presents many computational challenges. In this sec-
tion we outline a few of them.

In most high dimensional data features are sparse
and the learning methods should take advantage of
sparse vectors. For ANN, for example, when inputs
are sparse, a lot of computation in the forward direc-
tion can be saved by using a matrix times sparse vector
procedure. More savings happen when the weights are
updated since the gradient of the error with respect
to a weight going out of a unit with zero value van-
ishes. This is why our ANN implementation does not
use momentum. If it did, all weights would have to be
updated each iteration.

Another caveat is that for tree learning algorithms,
indexing the data by feature instead of by example
can speed up queries about which examples exhibit a
particular feature. These queries are common during
learning and one should consider this indexing scheme.
Our random forest implementation indexes by feature.

Boosted decision trees on continuous data was the
slowest of all methods. For bagged trees running times
were better because we only grew 100 trees that can
be grown in parallel. The same holds for random
forests which have the added benefit that computation
scales with the square root of dimensionality. Train-
ing ANNs was sometimes slow, mainly because ap-
plying some of the techniques in (Le Cun et al., 1998)
would not preserve the sparsity of the data. For SVMs
and logistic regression, we didn’t have computational
problems thanks to recent advances in scaling them
(Genkin et al., 2006; Bordes et al., 2005; Joachims,
2006; Shalev-Shwartz et al., 2007). As a sanity check
we compared the performance of the approximate ker-
nel SVM solver with the exact SVM!9" on some of
our smallest problems and found no significant dif-

ference. Naive Bayes and perceptrons are among the
fastest methods. KNN was sufficiently fast that we
didn’t have to use specialized data structures for near-
est neighbor queries.

6. Related Work

Our work is most similar to (Caruana & Niculescu-
Mizil, 2006). We already pointed out shortcomings
in that study, but we also borrowed much from their
methodology and tried to improve on it. STATLOG
(King et al., 1995) was another comprehensive empir-
ical study that was discussed in Section 1. A study by
LeCun (LeCun et al., 1995) compares learning algo-
rithms not only based on traditional performance met-
rics but also with respect to computational cost. Our
study addresses this issue only qualitatively. Clearly,
computational issues have to be taken into considera-
tion in such large scale. A wide empirical comparison
of voting algorithms such as bagging and boosting is
conducted in (Bauer & Kohavi, 1999). The impor-
tance of evaluating performance on metrics such as
AUC is discussed thoroughly in (Provost & Fawcett,
1997). The effect of different calibration methods is
discussed in (Niculescu-Mizil & Caruana, 2005).

7. Discussion

Although there is substantial variability in perfor-
mance across problems and metrics in our experi-
ments, we can discern several interesting results. First,
the results confirm the experiments in (Caruana &
Niculescu-Mizil, 2006) where boosted decision trees
perform exceptionally well when dimensionality is low.
In this study boosted trees are the method of choice
for up to about 4000 dimensions. Above that, random
forests have the best overall performance. (Random
forests were the 2nd best performing method in the
previous study.) We suspect that the reason for this is
that boosting trees is prone to overfitting and this be-
comes a serious problem in high dimensions. Random
forests is better behaved in very high dimensions, it is
easy to parallelize, scales efficiently to high dimensions
and performs consistently well on all three metrics.

Non-linear methods do surprisingly well in high dimen-
sions if model complexity can be controlled, e.g. by
exploring the space of hypotheses from simple to com-
plex (ANN), by margins (SVMs), or by basing some
decisions on random projections (RF). Logistic regres-
sion and linear SVMs also gain in performance as di-
mensionality increases. Contrary to low dimensions, in
high dimensions we have no evidence that linear SVMs
can benefit from training procedures that directly op-
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Table 3. Bootstrap analysis of rankings by average performance across problems

AVG 1sT 2ND 3RD 4TH 5TH 6TH TTH 8TH 9TH  10TH
RF 0.727 0.207 0.054 0.011 0.001 0 0 0 0 0
ANN 0.0563 0.172 0.299 0.256 0.119 0.072 0.019 0.011 0 0
BSTDT | 0.059 0.228 0.18 0.222 0.18 0.075 0.044 0.012 0.001 0
SVM 0.043 0.195 0.213 0.193 0.156 0.088 0.08 0.031 0.001 0
LR 0.089 0.132 0.073 0.075 0.108 0.177 0.263 0.081 0 0
BAGDT | 0.002 0.012 0.109 0.123 0.251 0.284 0.123 0.078 0.016 0
KNN 0.023 0.045 0.051 0.057 0.085 0.172 0.122 0.177 0.258 0.01
BSTST 0.004 0.009 0.021 0.063 0.086 0.109 0.3 0.387 0.02 0
PRC 0 0 0 0 0.013 0.024 0.047 0.222 0.695 0
NB 0 0 0 0 0 0 0 0 0.01 0.99

timize specific metrics such as AUC.

The results suggest that calibration never hurts and
almost always helps on these problems. Even meth-
ods such as ANN and logistic regression benefit from
calibration in most cases. We suspect that the reasons
for this are the availability of more validation data for
calibration than in previous studies and that high di-
mensional problems are harder in some sense.
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Abstract

Recent developments in programmable,
highly parallel Graphics Processing Units
(GPUs) have enabled high performance
implementations of machine learning algo-
rithms. We describe a solver for Support
Vector Machine training running on a GPU,
using the Sequential Minimal Optimization
algorithm and an adaptive first and second
order working set selection heuristic, which
achieves speedups of 9-35x over LIBSVM
running on a traditional processor. We
also present a GPU-based system for SVM
classification which achieves speedups of
81-138x over LIBSVM (5-24x over our own
CPU based SVM classifier).

1. Introduction

Driven by the capabilities and limitations of modern
semiconductor manufacturing, the computing indus-
try is currently undergoing a massive shift towards
parallel computing (Asanovi¢ et al., 2006). This shift
brings dramatically enhanced performance to those al-
gorithms which can be adapted to parallel computers.

One set of such algorithms are those used to implement
Support Vector Machines (Cortes & Vapnik, 1995).
Thanks to their robust generalization performance,
SVMs have found use in diverse classification tasks,
such as image recognition, bioinformatics, and text
processing. Yet, training Support Vector Machines
and using them for classification remains very com-
putationally intensive. Much research has been done
to accelerate training time, such as Osuna’s decompo-
sition approach (Osuna et al., 1997), Platt’s Sequential

Appearing in Proceedings of the 25" International Confer-
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Minimal Optimization (SMO) algorithm (Platt, 1999),
Joachims’ SV MU' 9" (Joachims, 1999), which intro-
duced shrinking and kernel caching, , and the working
set selection heuristics used by LIBSVM (Fan et al.,
2005). Despite this research, SVM training time is
still significant for large training sets.

In this paper, we show how Support Vector Machine
training and classification can be adapted to a highly
parallel, yet widely available and affordable computing
platform: the graphics processor, or more specifically,
the Nvidia GeForce 8800 GTX, and detail the perfor-
mance gains achieved.

The organization of the paper is as follows. Section 2
describes the SVM training and classification problems
briefly. Section 3 gives an overview of the architec-
tural and programming features of the GPU. Section
4 presents the details of implementation of the paral-
lel SMO approach on the GPU. Section 5 explains the
implementation details of the SVM classification prob-
lem. We present our results in Section 6 and conclude
in Section 7.

2. Support Vector Machines

We consider the standard two-class soft-margin SVM
classification problem (C-SVM), which classifies a
given data point x € R™ by assigning a label y €

{~1,1}.

2.1. SVM Training

Given a labeled training set consisting of a set of data
points z;,¢ € {1,...,l} with their accompanying la-
bels y;,i € {1,...,1}, the SVM training problem can
be written as the following Quadratic Program, where
«; is a set of weights, one for each training point, which
are being optimized to determine the SVM classifier,
C is a parameter which trades classifier generality for
accuracy on the training set, and Q;; = y;y; (i, x5),
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where ®(x;,z;) is a kernel function.

1
max Fla)= Zai - %QTQa
= (1)

subjectto 0<a; <C,Viel...l

yTa=0

We consider the standard kernel functions shown in
table 1.

Table 1. Standard Kernel Functions

LINEAR <I>(a:¢, 33]') =T; " T;
POLYNOMIAL (s, x5;a,7,d) = (az; - x; +1)°
GAUSSIAN P(wi, x;;7) = exp { [z — z;][*}
SIGMOID ®(x;,x5;a,r) = tanh(ax; - x; + 1)

2.1.1. SMO ALGORITHM

The SVM Training problem can be solved by many
methods, each with different parallelism implications.
We have implemented the Sequential Minimal Opti-
mization algorithm (Platt, 1999), with a hybrid work-
ing set selection heuristic making use of the first order
heuristic proposed by (Keerthi et al., 2001) as well
as the second order heuristic proposed by (Fan et al.,
2005).

The SMO algorithm is a specialized optimization ap-
proach for the SVM quadratic program. It takes ad-
vantage of the sparse nature of the support vector
problem and the simple nature of the constraints in
the SVM QP to reduce each optimization step to its
minimum form: updating two «; weights. The bulk of
the computation is then to update the Karush-Kuhn-
Tucker optimality conditions for the remaining set of
weights and then find the next two weights to update
in the next iteration. This is repeated until conver-
gence. We state this algorithm briefly, for reference
purposes.

Algorithm 1 Sequential Minimal Optimization

Input: training data x;, labels y;, Vi € {1..1}
Initialize: a; = 0, f; = —y;, Vi € {1..1},
Initialize: bhigfu blowv ihigha ilow
Update «,,,,, and o,
repeat

Update f;, Vi € {1..1}

Compute: bhigha ihigha blowa Z-low

Update «;,,,,, and a;,,,
until by, < bhigh + 27

For the first iteration, we initialize bpign = —1, thigh =
min{i : y; = 1}, bjow = 1, and iy = min{i : y; = —1}.

During each iteration, once we have chosen ip;4, and
110w, We take the optimization step:

Xipow = irgyy + Yirgu (brigh — biow)/n (2)
a;high = Qipign T YitowYinign (aimw - a;low> (3)
where 7 = (I)(zimgh’xihigh) + (D(‘Tizow?Iisz) -

To ensure that this update is fea-
¢’ must be clipped to the valid

ihigh

2q)(mihigh,,$izow)'
sible, o~ and «
range 0 < o; < C.

The optimality conditions can be tracked through the
vector f; = Z;Zl a;y;®(x;, ;) — v, which is con-
structed iteratively as the algorithm progresses. After
each « update, f is updated for all points. This is one
of the major computational steps of the algorithm, and
is done as follows:

le = fi+ (O/ihigh - aihigh,)yihigh,q)(ximghv ‘rl)

+ (A, = Qg Wir P(Tiyy, > T4)

tlow

(4)

In order to evaluate the optimality conditions, we de-
fine index sets:
Tnigh ={i: 0 < a; <C}U{i:y; > 0,0 =0}
U{i:y; <0, =C}
Tow ={i:0<a; <C}U{i:y; >0,0; = C}
U{i:y; <0, =0}

(5)

(6)

Because of the approximate nature of the solution pro-
cess, these index sets are computed to within a toler-
ance €, e.g. {i:e<a; < (C—¢€)}.

We can then measure the optimality of our current
solution by checking the optimality gap, which is the
difference between bpigr, = min{f; : i € Ipign}, and
biow = max{f; : ¢ € I;oy}. When bjow < bpign + 27, we
terminate the algorithm.

2.1.2. WORKING SET SELECTION

During each iteration, we need to choose ip;gp and 7o),
which index the o weights which will be changed in the
following optimization step. The first order heuristic
from (Keerthi et al., 2001) chooses them as follows:

ihigh = argmin{f; : i € In;gn} (7)
ilow = argmax{f; : 1 € Ijow} (8)

The second order heuristic from (Fan et al., 2005)
chooses ipiqn and 44, to optimize the unconstrained
SVM functional. An optimal approach to this problem
would require examining (é) candidate pairs, which
would be computationally intractable. To simplify the
problem, ip;gn is instead chosen as in the first order
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heuristic, and then 4;,,, is chosen to maximally im-
prove the objective function while still guaranteeing
progress towards the constrained optimum from prob-
lem (1). More explicitly:

ihigh = argmin{f; : i € Inign} 9)
iow = argmax{AFj(a) : i € liow, fi,,,, < fi} (10)

After choosing in;gn, we compute for all ¢ € {1..1}

ﬂi = fih,igh, - fl 11)

(
U (p(xih,ig}ﬂxihigh) + ®(zi, i) — Qq)(mimgm ;)
(12)
(

AFi(a) = 37 /n; 13)

We then find the maximum AF; over all valid points
(i € Iow) for which we are guaranteed to progress
towards the constrained optimum (f;,,,, < fi).

2.1.3. ADAPTIVE HEURISTIC

The second order heuristic utilizes more information
from the SVM training problem, and so it generally re-
duces the number of iterations necessary during the so-
lution process. However, it is more costly to compute.
In our GPU implementation, the geometric mean of
iteration time over our benchmark set using the sec-
ond order heuristic increased by 1.9x compared to the
first order heuristic. On some benchmarks, the total
number of iterations decreased sufficiently to provide
a significant speedup overall, but on others, the sec-
ond order heuristic is counterproductive for our GPU
implementation.

To overcome this problem, we implemented an adap-
tive heuristic that chooses between the two selection
heuristics dynamically, with no input or tuning from
the user. The adaptive heuristic periodically samples
progress towards convergence as a function of wall-
clock time using both heuristics, then chooses the more
productive heuristic.

This sampling occurs every [/10 iterations, and dur-
ing each sample, the heuristic under test is executed
for two phases of 64 iterations each. The average op-
timality gap in each of these phases is computed, and
then the rate of progress is estimated by dividing the
change in the optimality gap over the two phases by
the time it has taken to execute them. The same sam-
pling process is then performed with the other heuris-
tic, and the best heuristic is then used until the next
sampling period.

2.2. SVM Classification

The SVM classification problem is as follows: for each
data point z which should be classified, compute

!
z :sgn{b—l—Zyiai(I)(xi,z)} (14)

where z € R™ is a point which needs to be classified,
and all other variables remain as previously defined.

From the classification problem definition, it follows
immediately that the decision surface is defined by ref-
erencing a subset of the training data, or more specif-
ically, those training data points for which the cor-
responding «; > 0. Such points are called support
vectors.

Generally, we classify not just one point, but a set
of points. We exploit this for better performance, as
explained in Section 5.

3. Graphics Processors

Graphics processors are currently transitioning from
their initial role as specialized accelerators for trian-
gle rasterization to general purpose engines for high
throughput floating-point computation. Because they
still service the large gaming industry, they are ubig-
uitous and relatively inexpensive.

GPU architectures are specialized for compute-
intensive, memory-intensive, highly parallel computa-
tion, and therefore are designed such that more re-
sources are devoted to data processing than caching or
control flow. State of the art GPUs provide up to an
order of magnitude more peak IEEE single-precision
floating-point than their CPU counterparts. Addition-
ally, GPUs have much more aggressive memory sub-
systems, typically endowed with more than 10x higher
memory bandwidth than a CPU. Peak performance is
usually impossible to achieve on general purpose ap-
plications, yet capturing even a fraction of peak per-
formance yields significant speedup.

GPU performance is dependent on finding high degrees
of parallelism: a typical computation running on the
GPU must express thousands of threads in order to
effectively use the hardware capabilities. As such, we
consider it an example of future “many-core” process-
ing (Asanovié et al., 2006). Algorithms for machine
learning applications will need to consider such par-
allelism in order to utilize many-core processors. Ap-
plications which do not express parallelism will not
continue improving their performance when run on
newer computing platforms at the rates we have en-
joyed in the past. Therefore, finding large scale par-
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allelism is important for compute performance in the
future. Programming for GPUs is then indicative of
the future many-core programming experience.

3.1. Nvidia GeForce 8300 GTX

In this project, we employ the NVIDIA GeForce 8800
GTX GPU, which is an instance of the G80 GPU ar-
chitecture, and is a standard GPU widely available
on the market. Pertinent facts about the GPU plat-
form can be found in table 2. We refer the reader to
the Nvidia CUDA reference manual for more details
(Nvidia, 2007).

Table 2. Nvidia GeForce 8800 GTX Characteristics

# OF STREAM PROCESSORS 128
PEAK GENERAL PURPOSE IEEE SP 346 GFLOPS
MULTIPROCESSOR LOCAL STORE SIZE 16 xB
CLOCK RATE 1.35 GHz
MEMORY CAPACITY 768 MB
MEMORY BANDWIDTH 86.4 GB/s
CPU+«—GPU BANDWIDTH 3.2 GBIT/S

3.2. CUDA

Nvidia provides a programming environment for its
GPUs called the Compute Unified Device Architecture
(CUDA). The user codes in annotated C++, acceler-
ating compute intensive portions of the application by
executing them on the GPU.

Grid

Block 0 Block n

’ Local Store ‘ ’ Local Store ‘

! i ! I

’ Thread 0 ‘ ’ Thread n ‘ ’ Thread 0 ‘ ’ Thread n ‘
! 4 4 !

’ Registers ‘ ’ Registers ‘ ’ Registers ‘ ’ Registers ‘

| Global Memory |

Figure 1. Logical organization of the GeForce 8300

Figure 1 illustrates how the GPU appears to the pro-
grammer. The programmer organizes the computa-
tion into grids, which are organized as a set of thread
blocks. The grids run sequentially on the GPU, mean-
ing that all computation in the grid must finish before
another grid is invoked. As mentioned, grids contain
thread blocks, which are batches of threads that exe-
cute together, sharing local memories and synchroniz-
ing at programmer specified barriers. A maximum of
512 threads can comprise a thread block, which puts a

limit on the scope of synchronization and communica-
tion in the computation. However, enormous numbers
of blocks can be launched in parallel in the grid, so
that the total number of threads that can be launched
in parallel is very high. In practice, we need a large
number of thread blocks to ensure that the compute
power of the GPU is efficiently utilized.

4. SVM Training Implementation

Since GPUs need a large number of threads to effi-
ciently exploit parallelism, we create one thread for
every data point in the training set. For the first
phase of the computation, each thread computes f/
from equation (4). We then apply a working set selec-
tion heuristic to select the next points which will be
optimized. The details are explained in the following
section.

4.1. Map Reduce

At least since the LISP programming language, pro-
grammers have been mapping independent computa-
tions onto partitioned data sets, using reduce oper-
ations to summarize the results. Recently, Google
proposed a Map Reduce variant for processing large
datasets on compute clusters (Dean & Ghemawat,
2004). This algorithmic pattern is very useful for ex-
tracting parallelism, since it is simple to understand,
and maps well to parallel hardware, given the inherent
parallelism in the map stage of the computation.

The Map Reduce pattern has been shown to be useful
for many machine learning applications (Chu et al.,
2007), and is a natural fit for our SVM training algo-
rithm. For the first order heuristic, the computation of
f! for all points is the map function, and the search for
biows bhigh, tiow and ipien is the reduction operation.
For the second order heuristic, there are two Map Re-
duce stages: one to compute f/, brignh and inign, and
another where the map stage computes AF; for all
points, while the reduce stage computes ;o and joq,-

Map +
Local
Reduce

Global
Reduce

Sermmmnnnmnnne
Sermmmmnnmnnne
Sernmnnnnnnnne

Figure 2. Structuring the Map Reduce

Because the CUDA programming model has strict lim-
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itations on synchronization and communication be-
tween thread blocks, we organize the reductions in two
phases, as shown in figure 2. The first phase does the
map computation, as well as a local reduce within a
thread block. The second phase finishes the global re-
duction. Each phase of this process is implemented as
a separate call to the GPU.

4.2. Implementation Details
4.2.1. CACHING

Since evaluating the kernel function ®(-) is the dom-
inant part of the computation, it is useful to cache
as much as possible from the matrix of kernel func-
tion evaluations K;; = ®(x;,x;) (Joachims, 1999). We
compute rows of this matrix on the fly, as needed by
the algorithm, and cache them in the available memory
on the GPU.

When updating the vector f, we need access to two
rows of K, since we have changed exactly two entries
in a. In our system, the CPU checks to see which of
these two rows, if any, are present in the cache. If a row
is not present, the CPU voids the least recently used
row of the cache, and assigns it to the new row which
is needed. For the rows which hit in the cache, the
GPU avoids doing the kernel evaluations. Otherwise,
the GPU writes out the appropriate row or rows after
computing the kernel values. When using the second
order heuristic, the computation of AF references the
row of K corresponding to 74, which guarantees that
the next update of f will have a cache hit for its access
to the same row.

4.2.2. DATA MOVEMENT

Programming the GPU requires manually copying
data from the host computer to the GPU and vice
versa, and it also requires manually copying data from
the GPU’s global memory to the fast local stores. As
mentioned previously, if the cache does not contain a
particular row of K corresponding to the point z;, that
row will need to be generated, which means that we
need to compute ®(x;,z;) Vi € 1..1. Since the vector
x; is shared between all computations, we load it into
the GPU’s local store. This is key to performance,
since accessing the local store is orders of magnitude
faster than accessing the global memory.

4.3. Related Work

There have been previous attempts to parallelize the
SVM training problem. The most similar to ours is
(Cao et al., 2006), which parallelizes the SMO algo-
rithm on a cluster of computers using MPI. Both our

approach and their approach use the concurrency in-
herent in the KKT condition updates as the major
source of parallelism. However, in terms of imple-
mentation, GPUs present a completely different model
than clusters, and hence the amount of parallelism ex-
ploited, such as the number of threads, granularity of
computation per thread, memory access patterns, and
data partitioning are very different. We also imple-
ment more sophisticated working set selection heuris-
tics.

Many other approaches for parallelizing SVM train-
ing have been presented. The cascade SVM (Graf
et al., 2005) is another proposed method for paralleliz-
ing SVM training on clusters. It uses a method of di-
vide and conquer to solve large SVM problems. (Zanni
et al., 2006) parallelize the underlying QP solver us-
ing Parallel Gradient Projection Technique. Work has
been done on using a parallel Interior Point Method for
solving the SVM training problem (Wu et al., 2006).
(Collobert et al., 2002) proposes a method where the
several smaller SVMs are trained in a parallel fashion
and their outputs weighted using a Artificial Neural
Network. (Ferreira et al., 2006) implement a gradi-
ent based solution for SVM training, which relies on
data parallelism in computing the gradient of the ob-
jective function for an unconstrained QP optimization
at its core. Some of these techniques, for example, the
training set decomposition approaches like the Cas-
cade SVM are orthogonal to the work we describe, and
could be applied to our solver. (Bottou et al., 2007)
give an extensive overview of parallel SVM implemen-
tations. We implemented the parallel SMO training
algorithm because of its relative simplicity, yet high
performance and robust convergence characteristics.

5. SVM Classification Implementation

We approached the SVM classification problem by
making use of Map Reduce computations as well as
vendor supplied Basic Linear Algebra Subroutines -
specifically, the Matrix Matrix Multiplication routine
(SGEMM), which calculates C' = aAB + gC, for
matrices A, B, and C and scalars o and (3. For
the Linear, Polynomial, and Sigmoid kernels, calcu-
lating the classification value involves finding the dot
product between all test points and the support vec-
tors, which is done through SGEMM. For the Gaus-
sian kernel, we use the simple identity ||z — y||* =
z-x+y-y—2x-y to recast the computation into a Matrix
Matrix multiplication, where the SGEMM computes
Dyj = —llzi =zl = 2v(2i - x5) — ¥(2i - zi + 25 - 75),
for a set of unknown points z and a set of support vec-
tors z. We then apply a map reduce computation to
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combine the computed D values to get the final result.

Continuing the Gaussian example, the map function
exponentiates D;; element wise, multiplies each col-
umn of the resulting matrix by the appropriate y;o;.
The reduce function sums the rows of the matrix and
adds b to obtain the final classification for each data
point as given by equation (14). Other kernels require
similar Map Reduce calculations to finish the classifi-
cation.

6. Results

The SMO implementation on the GPU is compared
with LIBSVM, as LIBSVM uses Sequential Minimal Op-
timization for SVM training. We used the Gaussian
kernel in all of our experiments, since it is widely em-
ployed.

6.1. Training

We tested the performance of our GPU implementa-
tion versus LIBSVM on the datasets detailed in tables
3 and 4.

Table 3. Datasets - References and training parameters

[ DATASET Irc1 ~ 1
ApuLT (ASUNCION & NEWMAN, 2007) 100 0.5
WEB (PLATT, 1999) 64 | 7.8125
MNIST (LECUN ET AL., 1998) 10 | 0.125
USPS (HuLL, 1994) 10 278
FOREST (ASUNCION & NEWMAN, 2007) 10 | 0.125
FACE (ROWLEY ET AL., 1998) 10 | 0.125

Table 4. Dataset Size

[ DATASET [[ # POINTS | # DIMENSIONS |

AbpuLT 32,561 123
WEB 49,749 300
MNIST 60,000 784
USPS 7,291 256
FOREST 561,012 54
FacE 6,977 381

The sizes of the datasets are given in table 4. Refer-
ences for the datasets used and the (C, v) values used
for SVM training are provided in table 3.

We ran LIBSVM on an Intel Core 2 Duo 2.66 GHz pro-
cessor, and gave LIBSVM a cache size of 650 MB, which
is larger than our GPU implementation was allowed.
CPU-GPU communication overhead was included in
the solver runtime, but file I/O time was excluded for
both our solver and LIBSVM. Table 5 shows results
from our solver. File I/O varies from 1.2 seconds for
USPS to about 12 seconds for Forest dataset. The
CPU - GPU data transfer overhead was also very low.

The time taken to transfer the training data to the
GPU and copy the results back was less than 0.6 sec-
onds, even for our largest dataset (Forest).

Since any two solvers give slightly different answers
on the same optimization problem, due to the inex-
act nature of the optimization process, we show the
number of support vectors returned by the two solvers
as well as how close the final values of b were for the
GPU solver and LIBSVM, which were both run with
the same tolerance value 7 = 0.001. As shown in the
table, the deviation in number of support vectors be-
tween the two solvers is less than 2%, and the deviation
in the offset b is always less than 0.1%. Our solver pro-
vides equivalent accuracy to the LIBSVM solver, which
will be shown again in the classification results section.

Table 5. SVM Training Convergence Comparison

DATASET NUMBER OF SVs DIFFERENCE
GPU LIBSVM IN b (%)
ADAPTIVE
ApuLT 18,674 19,058 -0.004
WEB 35,220 35,232 -0.01
MNIST 43,730 43,756 -0.04
USPS 684 684 0.07
FOREST 270,351 270,311 0.07
FACE 3,313 3,322 0.01

Table 6 contains performance results for the two
solvers. We see speedups in all cases from 9x to 35x.
For reference, we have shown results for the solvers
using both heuristics statically. Examining the data
shows that the adaptive heuristic performs robustly,
surpassing or coming close to the performance of the
best static heuristic on all benchmarks.

6.2. Classification

Results for our classifier are presented in table 8.
We achieve 81 — 138x speedup over LibSVM on the
datasets shown. As with the solver, file I/O times
were excluded from overall runtime. File I/O times
vary from 0.4 seconds for Adult dataset to about 6
seconds for MNIST dataset.

6.2.1. OPTIMIZATIONS TO CPU BASED CLASSIFIER

LIBSVM classifies data points serially. This effectively
precludes data locality optimizations and produces sig-
nificant slowdown. It also represents data in a sparse
format, which can cause overhead as well.

To optimize the CPU classifier, we performed the fol-
lowing:

1. We changed the data structure used for storing
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Table 6. SVM Training Results

DATASET GPU 1sT ORDER GPU 28D ORDER GPU ADAPTIVE LIBSVM SPEEDUP (X)
ITER. | TiME (S) || ITER. [ TIME (8) ITER. | TiME (S) || ITER. [ TIME (8) (ADAPTIVE)

ADULT 114,985 30.15 40,044 30.46 64,446 26.92 43,735 550.2 20.4

‘WEB 79,749 174.17 81,498 290.23 70,686 163.89 85,299 2422.46 14.8
MNIST 68,055 475.42 67,731 864.46 68,113 483.07 76,385 16965.79 || 35.1

USPS 6,949 0.596 3,730 0.546 4,734 0.576 4,614 5.092 8.8

FOREST 2,070,867 | 4571.17 236,601 | 1441.08 450,506 | 2023.24 275,516 | 66523.53 || 32.9

FACE 6,044 1.30 4,876 1.30 5,535 1.32 5,342 27.61 20.8

the support vectors and test vectors from a sparse
indexed set to a dense matrix.

2. To maximize performance, we used BLAS rou-
tines from the Intel Math Kernel Library to per-
form operations similar to those mentioned in Sec-
tion 5.

3. Wherever possible, loops were parallelized (2-way
for the dual-core machine) using OpenMP.

These optimizations improved the classification speed
on the CPU by a factor of 3.4 — 28.3x. The speedup
numbers for the different datasets are shown in table 8.
It should be noted that the GPU version is better than
the optimized CPU versions by a factor of 4.9 —23.9x%.

For some insight into these results, we note that the op-
timized CPU classifier performs best on problems with
a large number of input space dimensions, which helps
make the SVM classification process compute bound.
For problems with a small number of input space di-
mensions, the SVM classification process is memory
bound, meaning it is limited by memory bandwidth.
Since the GPU has much higher memory bandwidth,
as noted in section 3, it is even more attractive for such
problems.

We tested the combined SVM training and classifica-
tion process for accuracy by using the SVM classifier
produced by the GPU solver with the GPU classifi-
cation routine, and used the SVM classifier provided
by LIBSVM’s solver to perform classification with LIB-
SVM. Thus, the accuracy of the classification results
presented in table 7 reflect the overall accuracy of the
GPU solver and GPU classifier system. The results
are identical, which shows that our GPU based SVM
system is as accurate as traditional CPU based meth-
ods.

Table 7. Accuracy of GPU SVM classification vs. LIBSVM

GPU LIBSVM

DATASET | ACCURACY ACCURACY

ApuLt 6619/8000 6619/8000

WEB 3920/4000 3920/4000

MNIST 2400/2500 2400/2500

USPS 1948 /2007 1948 /2007

FACE 23665/24045 | 23665/24045

7. Conclusion

This work has demonstrated the utility of graphics
processors for SVM classification and training. Train-
ing time is reduced by 9 — 35x, and classification
time is reduced by 81 — 138x compared to LIBSVM,
or 5 — 24x over our own CPU based SVM classifier.
These kinds of performance improvements can change
the scope of SVM problems which are routinely solved,
increasing the applicability of SVMs to difficult clas-
sification problems. For example, training a classifier
for an input data set with almost 600000 data points
and 50 dimensions takes only 34 minutes on the GPU,
compared with over 18 hours on the CPU.

The GPU is a very low cost way to achieve such high
performance: the GeForce 8800 GTX fits into any
modern desktop machine, and currently costs $300.
Problems which used to require a compute cluster can
now be solved on one’s own desktop. New machine
learning algorithms that can take advantage of this
kind of performance, by expressing parallelism widely,
will provide compelling benefits on future many-core
platforms.
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Table 8. Performance of GPU SVM classifier compared to LIBSVM and Optimized CPU classifier

LiBSVM CPU OPTIMIZED CLASSIFIER GPU CLASSIFIER

DatAseT || TIME (S) || TIME (S) | SPEEDUP (X) COMPARED || TIME (S) | SPEEDUP (X) COMPARED | SPEEDUP (X) COMPARED
TO LIBSVM TO LIBSVM TO CPU OPTIMIZED CODE

ApuLT 61.307 7.476 8.2 0.575 106.6 13.0

WEB 106.835 15.733 6.8 1.063 100.5 14.8

MNIST 269.880 9.522 28.3 1.951 138.3 4.9

USPS 0.777 0.229 3.4 0.00958 81.1 23.9

FACE 88.835 5.191 17.1 0.705 126.0 7.4

ments and suggestions.
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Abstract

We present a data structure enabling efficient
nearest neighbor (NN) retrieval for bregman
divergences. The family of bregman diver-
gences includes many popular dissimilarity
measures including KL-divergence (relative
entropy), Mahalanobis distance, and Itakura-
Saito divergence. These divergences present
a challenge for efficient NN retrieval because
they are not, in general, metrics, for which
most NN data structures are designed. The
data structure introduced in this work shares
the same basic structure as the popular met-
ric ball tree, but employs convexity proper-
ties of bregman divergences in place of the tri-
angle inequality. Experiments demonstrate
speedups over brute-force search of up to sev-
eral orders of magnitude.

1. Introduction

Nearest neighbor (NN) search is a core primitive in
machine learning, vision, signal processing, and else-
where. Given a database X, a dissimilarity measure
d, and a query ¢, the goal is to find the £ € X mini-
mizing d(z, q). Brute-force search is often impractical
given the size and dimensionality of modern data sets,
so many data structures have been developed to accel-
erate NN retrieval.

Most retrieval data structures are for the £5 norm and,
more generally, metrics. Though many dissimilarity
measures are metrics, many are not. For example,
the natural notion of dissimilarity between probability
distributions is the KL-divergence (relative entropy),
which is not a metric. It has been used to compare
histograms in a wide variety of applications, includ-
ing text analysis, image classification, and content-
based image retrieval (Pereira et al., 1993; Puzicha
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convez differentiable function.

et al., 1999; Rasiwasia et al., 2007). Because the KL-
divergence does not satisfy the triangle inequality, very
little of the research on NN retrieval structures applies.

The KL-divergence belongs to a broad family of dis-
similarities called bregman divergences. Other exam-
ples include Mahalanobis distance, used e.g. in classi-
fication (Weinberger et al., 2006); the Itakura-Saito di-
vergence, used in sound processing (Gray et al., 1980);
and /3 distance. Bregman divergences present a chal-
lenge for fast NN retrieval since they need not be sym-
metric or satisfy the triangle inequality.

This paper introduces bregman ball trees (bbtrees), the
first NN retrieval data structure for general bregman
divergences. The data structure is a relative of the
popular metric ball tree (Omohundro, 1989; Uhlmann,
1991; Moore, 2000). Since this data structure is built
on the triangle inequality, the extension to bregman
divergences is non-trivial.

A bbtree defines a hierarchical space decomposition
based on bregman balls; retrieving a NN with the tree
requires computing bounds on the bregman divergence
from a query to these balls. We show that this diver-
gence can be computed exactly with a simple bisection
search that is very efficient. Since only bounds on the
divergence are needed, we can often stop the search
early using primal and dual function evaluations.

In the experiments, we show that the bbtree provides a
substantial speedup—often orders of magnitude—over
brute-force search.

2. Background

This section provides background on bregman diver-
gences and nearest neighbor search.

2.1. Bregman Divergences

First we briefly overview bregman divergences.

Definition 1 (Bregman, 1967). Let f be a strictly
L The bregman diver-

! Additional technical restrictions are typically put on
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Figure 1. The bregman divergence between = and y.

gence based on f is
de(z,y) = f(x) = fly) = (VIf(y),z —y).

One can interpret the bregman divergence as the dis-
tance between a function and its first-order taylor ex-
pansion. In particular, ds(z,y) is the difference be-
tween f(x) and the linear approximation of f(z) cen-
tered at y; see figure 1. Since f is convex, df(z,y) is
always nonnegative.

Some standard bregman divergences and their base
functions are listed in table 1.

A bregman divergence is typically used to assess sim-
ilarity between two objects, much like a metric. But
though metrics and bregman divergences are both used
for similarity assessment, they do not share the same
fundamental properties. Metrics satisfy three basic
properties: non-negativity: d(z,y) > 0; symmetry:
d(xz,y) = d(y, z); and, perhaps most importantly, the
triangle inequality: d(z,z) < d(z,y) + d(y, z). Breg-
man divergences are nonnegative, however they do not
satisfy the triangle inequality (in general) and can be
asymmetric.

Bregman divergences do satisfy a variety of geometric
properties, a couple of which we will need later. The
bregman divergence ds(x,y) is convex in z, but not
necessarily in y. Define the bregman ball of radius R
around p as

B(p, R) ={x : ds(x,pu) < R}.
Since df(x, 1) is convex in z, B(u, R) is a convex set.

Another interesting property concerns means. For a
set of points, the mean under a bregman divergence is
well defined and, interestingly, is independent of the
choice of divergence:

. 1
px = argmin, Z de(z,p) = X Z x.
reX zeX

This fact can be used to extend k-means to the family
of bregman divergences (Banerjee et al., 2005).

f. In particular, f is assumed to be Legendre.

Table 1. Some standard bregman divergences.

f(z) ds(z,y)
% szl slle =yl
KL S logx; >z log %
Mahalanobis %xTQx %(m - y)TQ(CU -v)

Itakura-Saito  —> loga; . (%7 —log % _ )

2.2. NN Search

Because of the tremendous practical and theoreti-
cal importance of nearest neighbor search in machine
learning, computational geometry, databases, and else-
where, many retrieval schemes have been developed to
reduce the computational cost of finding NNs.

KD-trees (Friedman et al., 1977) are one of the earli-
est and most popular data structures for NN retrieval.
The data structure and accompanying search algo-
rithm provide a blueprint for a huge body of future
work (including the present one). The tree defines a
hierarchical space partition where each node defines an
axis-aligned rectangle. The search algorithm is a sim-
ple branch and bound exploration of the tree. Though
KD-trees are useful in many applications, their per-
formance has been widely observed to degrade badly
with the dimensionality of the database.

Metric ball trees (Omohundro, 1989; Uhlmann, 1991;
Yianilos, 1993; Moore, 2000) extend the basic method-
ology behind KD-trees to metric spaces by using met-
ric balls in place of rectangles. The search algorithm
uses the triangle inequality to prune out nodes. They
seem to scale with dimensionality better than KD-trees
(Moore, 2000), though high-dimensional data remains
very challenging. Some high-dimensional datasets are
intrinsically low-dimensional; various retrieval schemes
have been developed that scale with a notion of intrin-
sic dimensionality (Beygelzimer et al., 2006).

In many applications, an exact NN is not required;
something nearby is good enough. This is especially
true in machine learning applications, where there is
typically a lot of noise and uncertainty. Thus many
researchers have switched to the problem of approzi-
mate NN search. This relaxation led to some signifi-
cant breakthroughs, perhaps the most important be-
ing locality sensitive hashing (Datar et al., 2004). Spill
trees (Liu et al., 2004) are another data structure for
approximate NN search and have exhibited very strong
performance empirically.
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The present paper appears to be the first to describe
a general method for efficiently finding bregman NNs;
however, some related problems have been examined.
(Nielsen et al., 2007) explores the geometric properties
of bregman voronoi diagrams. Voronoi diagrams are
of course closely related to NN search, but do not lead
to an efficient NN data structure beyond dimension 2.
(Guha et al., 2007) contains results on sketching breg-
man (and other) divergences. Sketching is related to
dimensionality reduction, which is the basis for many
NN schemes.

We are aware of only one NN speedup scheme for KL-
divergences (Spellman & Vemuri, 2005). The results
in this paper are quite limited: experiments were con-
ducted on only one dataset and the speedup is less
than 3x. Moreover, there appears to be a significant
technical flaw in the derivation of their data structure.
In particular, they cite the pythagorean theorem as an
equality for projection onto an arbitrary convex set,
whereas it is actually an inequality.

3. Bregman Ball Trees

This section describes the bregman ball tree data
structure. The data structure and search algorithms
follow the same basic program used in KD-trees and
metric trees; in place of rectangular cells or metric
balls, the fundamental geometric object is a bregman
ball.

A bbtree defines a hierarchical space partition based
on bregman balls. The data structure is a binary tree
where each node 7 is associated with a subset of the
database X; C X. Node i additionally defines a breg-
man ball B(u;, R;) with center u; and radius R; such
that X; C B(u;, R;). Interior (non-leaf) nodes of tree
have two child nodes [ and r. The database points
belonging to node ¢ are split between child [ and 7;
each point in X; appears in exactly one of X; or X,..2
Though X; and X, are disjoint, the balls B(uq, R;)
and B(p.., R,) may overlap. The root node of the tree
encapsulates the entire database. Each leaf covers a
small fraction of the database; the set of all leaves
cover the entirety.

3.1. Searching

This subsection describes how to retrieve a query’s
nearest neighbor with a bbtree. Throughout, X =
{z1,...,2,} is the database, ¢ is a query, and d¢(-,-)
is a (fixed) bregman divergence. The point we are

2The disjointedness of the two point sets is not essential.

searching for is the left NN

xq = argming xdy¢(z, q).
Finding the right NN (argmin,cxd¢(g,x)) is consid-
ered in section 5.

Branch and bound search locates x, in the bbtree.
First, the tree is descended; at each node, the search al-
gorithm chooses the child for which d¢ (1, ¢) is smallest
and ignores the sibling node (temporarily). Upon ar-
riving at a leaf node ¢, the algorithm calculates ds(z, q)
for all x € X;. The closest point is the candidate NN;
call it .. Now the algorithm must traverse back up
the tree and consider the previously ignored siblings.
An ignored sibling 7 must be explored if

df(xe,q) > min )d(x,q). (1)

z€B(u;,R;
The algorithm computes the right side of (1); we come
back that in a moment. If (1) holds, then node j and
all of its children can be ignored since the NN can-
not be found in that subtree. Otherwise, the subtree
rooted at 7 must be explored. This algorithm is easily
adjusted to return the k-nearest neighbors.

The algorithm hinges on the computation of (1)—the
bregman projection onto a bregman ball. In the (3 (or
arbitrary metric) case, the projection can be computed
analytically with the triangle inequality. Since general
bregman divergences do not satisfy this inequality, we
need a different way to compute—or at least bound—
the right side of (1). Computing this projection is the
main technical contribution of this paper, so we discuss
it separately in section 4.

3.2. Approximate Search

As we mentioned in section 2.2, many practical appli-
cations do not require an exact NN. This is especially
true in machine learning applications, where there is
typically a lot of noise and even the representation of
points used is heuristic (e.g. selecting an appropriate
kernel for an SVM often involves guesswork). This
flexibility is fortunate, since exact NN retrieval meth-
ods rarely work well on high-dimensional data.

Following (Liu et al., 2004), a simple way to speed up
the retrieval time of the bbtree is to simply stop af-
ter only a few leaves have been examined. This idea
originates from the empirical observation that metric
and KD-trees often locate a point very close to the NN
quickly, then spend most of the execution time back-
tracking. We show empirically that the quality of the
NN degrades gracefully as the number of leaves ex-
amined decreases. Even when the search procedure is
stopped very early, it returns a solution that is among
the nearest neighbors.
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3.3. Building

The performance of the search algorithm depends on
how many nodes can be pruned; the more, the better.
Intuitively, the balls of two siblings should be well-
separated and compact. If the balls are well-separated,
a query is likely to be much closer to one than the
other. If the balls are compact, then the distance from
a query to a ball will be a good approximation to the
distance from a query to the nearest point within the
ball. Thus at each level, we’d like to divide the points
into two well-separated sets, each of which is compact.
A natural way to do this is to use k-means, which has
already been extended to bregman divergences (Baner-
jee et al., 2005).

The build algorithm proceeds from top down. Start-
ing at the top, the algorithm runs k-means to partition
the points into two clusters. This process is repeated
recursively. The total build time is O(nlogn). Clus-
tering from the bottom-up might yield better results,
but the O(n?logn) build time is impractical for large
datasets.

4. Computing the Bound

Recall that the search procedure needs to determine if
the bound

dy(ze, q) > L. dy(z,q) (2)
holds, where z. is the current candidate NN. We first
show that the right side can be computed to accu-
racy € in only O(log %) steps with a simple bisection
search. Since we only actually need upper and lower
bounds on the quantity, we then present a procedure
that augments the bisection search with primal and
dual bounds so that it can stop early.

The right of (2) is a convex program:

min  d¢(z, q)

xr

subject to:  ds(x, ) < R. (P)
The search algorithm will need to solve (P) many times
in the course of locating ¢’s NN, so we need to be able
to compute a solution very quickly.

Before considering the general case, let us pause to
examine the £3 case. In this case, we can compute the
projection z, analytically:

2y = Op+ (1—6)g,

V2R

where 0 = .
lg—nll

What properties of this projection might extend to all
of bregman divergences?

1. First, z, lies on the line between ¢ and p; this
drastically reduces the search space from a D-
dimensional convex set to a one-dimensional line.

2. Second, x, lies on the boundary of B(u, R)—i.e
ds(zp,n) = R. Combined with property 1, this
fact completely determines z,: it is the point
where the line between p and ¢ intersects the shell
of B(u, R).

3. Finally, since the £2 ball is spherically symmetric,
we can compute this intersection analytically.

We prove that the first property is a special case of
a fact that holds for all bregman divergences. Addi-
tionally, the second property generalizes to bregman
divergences without change. The final property does
not go through, so we will not be able to find a solution
to (P) analytically.

Throughout, we use ¢ = Vf(q), ' = Vf(n), ete. to
simplify notation. z, denotes the optimal solution to

(P).

Claim 2. z;, lies on the line between q' and p'.

Proof. The lagrange dual function of (P) is
ir;fdf(:lgq) —‘y-)\(df(l‘,p,) _R)7 (3)

where A > 0. Differentiating (3) with respect to « and
setting it equal to 0, we get

Vf(xp) =V f(q) + AV f(xp) = AV () = 0.

We use the change of variable 8 = H% and rearrange
to arrive at

Vf(xp) =64+ (1-0)q,

where 6 € [0,1). O

Thus we see that property 1 of the ¢2 projection is a
special case of a relationship between the gradients;
it follows from claim 2 because Vf(z) = x for the ¢3
divergence.
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Since f is strictly convex, the gradient mapping is one-
to-one. Moreover, the inverse mapping is given by the
gradient of the convex conjugate, defined as

[y = sgp{@v, y) — f(z)}. (4)

Symbolically:

Thus to solve (P), we can look for the optimal 2’ along
0u' + (1—0)q’, and then apply V f* to recover z,,.> To
keep notation simple, we define
rp =0 + (1 —60)¢ and (5)
zg =V f*(zp). (6)

Now onto the second property.

Claim 3. dj(zp,, ) = R—i.e. the projection lies on
the boundary of B(u, R).

The claim follows from complementary slackness ap-
plied to (3). Claims 2 and 3 imply that finding the
projection of ¢ onto B(u, R) is equivalent to

find 6
subject to:  df(xe,n) =R
6 € (0,1]

o =V (O + (1 -0)7).
Fortunately, solving this program is simple.

Claim 4. ds(xg, ) is monotonic in 6.

This claim follows from the convexity of f*. Since
dy(zg, ) is monotonic, we can efficiently search for 6,
satisfying dy(zg,, 1) = R using bisection search on 6.
We summarize the result in the following theorem.
Theorem 5. Suppose ||V? f* ||y is bounded around ).
Then a point x satisfying

s (2, q) = df(2p,q)| < e+ O(e?)

can be found in O(log1/e) iterations. Each iteration
requires one divergence evaluation and one gradient
evaluation.

4.1. Stopping Early

Recall that the point of all this analysis is to evaluate
whether

d (&) > i d 9 ) 7
£(Te, q) Lomin 7, q) (7)

3All of the base functions in table 1 have closed form
conjugates.

where . is the current candidate NN. If (7) holds, the
node in question must be searched; otherwise it can
be pruned. We can evaluate the right side of (7) ex-
actly using the bisection method described previously,
but an exact solution is not needed. Suppose we have
bounds a and A satisfying

A > min

de(z,q) > a.
z€B(u,R) f(l' q) =4

If df(xc, q) < a, the node can be pruned; if d¢(z, q) >
A, the node must be explored. We now describe upper
and lower bounds that are computed at each step of
the bisection search; the search proceeds until one of
the two stopping conditions is met.

A lower bound is given by weak duality. The lagrange
dual function is

L(0) = dy(wa,) + %(df(xg,u) ~R). )

By weak duality, for any 6 € [0,1),

L£(0) < min ds(z,q). (9)

z€B(1,R)

For the upper bound, we use the primal. At any 6
satisfying dy(zg, ) < R, we have

dy(ze,q) > min ds(x,q). (10)

z€B(p,R)

Let us now put all of the pieces together. We wish to
evaluate whether (7) holds. The algorithm performs
bisection search on 6, attempting to locate the 6 satis-
fying ds(xg, 1t) = R. At step 4 the algorithm evaluates
f; on two functions. First, it checks the lower bound
bound given by the dual function £(6;) defined in (8).
If £(6;) > dy(zc,q), then the node can be pruned.
Otherwise, if g, € B(u, R), we can update the upper
bound. If ds(xg,,q) < df(xc,q), then the node must
be searched. Otherwise, neither bound holds, so the
bisection search continues. See Algorithm 1 for pseu-
docode.

5. Left and Right NN

Since a bregman divergence can be asymmetric, it de-
fines two NN problems:

e (INN) return argmin,c ydy(z,q) and

e (rNN) return argmin,c xdy(g, z).

The bbtree data structure finds the left NN . We show
that it can also be used to find the right NN.
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Algorithm 1 CanPrune
Input: 6,0, € (0,1, ¢, 2., 0 € RP, R€R.
Set § = 9=
Set xg = Vf*(0u' + (1 —6)¢")
if £(0) > df(xc,q) then
return YES
else if 9 € B(u, R) and dy(zg,q) < ds(x.,q) then
return No
else if ds(xg, ) > R then
return CanPrune(6,,0,q, z., 1)
else if df(xzg, ) < R then
return CanPrune(0,6,,q,z., 1)
end if

Recall that the convex conjugate of f is defined as
f*(y) = sup,{(z,y)— f(x)}. The supremum is realized
at a point x satisfying V f(z) = y; thus

) =y = f)
We use this identity to rewrite d;(-,-):

dy(x,y) = f(z) = fly) = ',z —y)
= fl)+ () — ', x)
= df* (yl,xl)-

This relationship provides a simple prescription for
adapting the bbtree to the rNN problem: build a bb-
tree for the divergence dy- and the database X' =
{Vf(@1),...,Vf(zn)}. On query ¢, ¢ = Vf(q) is
computed and the bbtree finds 2’ € X’ minimizing
ds-(2',q"). The point  whose gradient is z’ is then
the rNN to q.

6. Experiments

We examine the performance benefit of using bbtrees
for approximate and exact NN search. All experiments
were conducted with a simple C implementation that
is available from the author’s website.

The results are for the KL-divergence. We chose to
evaluate the bbtree for the KL-divergence because it
is used widely in machine learning, text mining, and
computer vision; moreover, very little is known about
efficient NN retrieval for it. In contrast, there has
been a tremendous amount of work for speeding up
the /2 and Mahalanobis divergences—they both may
be handled by standard metric trees and many other
methods. Other bregman divergences appear much
less often in applications. Still, examining the prac-
tical performance of bbtrees for these other bregman
divergences is an interesting direction for future work.

We ran experiments on several challenging datasets.

e rcv-D. We used latent dirichlet allocation (LDA)
(Blei et al., 2003) to generate topic histograms for
500k documents in the rcvl corpus (Lewis et al.,
2004). These histograms were generated by build-
ing a LDA model on a training set and then per-
forming inference on 500k documents to gener-
ate their posterior dirichlet parameters. Suitably
scaled, these parameters give a representation of
the documents in the topic simplex (Blei et al.,
2003). We generated data using this process for
D =8,16,...,256 topics.

e Corel histograms. This dataset contains 60k
color histograms generated from the Corel image
dataset. Each histogram is 64-dimensional.

e Semantic space. This dataset is a 371-
dimensional representation of 5000 images from
the Corel Stock photo collection. Each image is
represented as a distribution over 371 description
keywords (Rasiwasia et al., 2007).

e SIFT signatures. This dataset contains 1111-
dimensional representations of 10k images from
the PASCAL 2007 dataset (Everingham et al.,
2007). Each point is a histogram of quantized
SIFT features as suggested in (Nowak et al.,
2006).

Notice that most of these datasets are fairly high-
dimensional.

We are mostly interested in approximate NN retrieval,
since that is likely sufficient for machine learning appli-
cations. If the bbtree is stopped early, it is not guar-
anteed to return an exact NN, so we need a way to
evaluate the quality of the point it returns. One nat-
ural evaluation metric is this: How many points from
the database are closer to the query than the returned
point? Call this value NC for “number closer”. If NC
is small compared to the size of the database, say 10
versus 100k, then it will likely share many properties
with the true NN (e.g. class label).%

The results are shown in figure 2. These are strong
results; it is shown that the bbtree is often orders
of magnitude faster than brute-force search without
a substantial degradation of quality. More analysis

appears in the caption.

4A different evaluation criteria is the approximation ra-
tio € satisfying ds(z,q) < (1 4 €)ds(zq,q), where zq is ¢’s
true NN. We did not use this measure because it is dif-
ficult to interpret. For example, suppose we find ¢ = .3
approximate NNs from two different databases A and B.
It could easily be the case that all points in A are 1.3-
approximate NNs, whereas only the exact NN in database
B is 1.3-approximate.
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Figure 2. Log-log plots (base 10): y-axis is the exponent of the speedup over brute force search, z-axis is the
exponent of the number of database points closer to the query than the reported NN. The y-axis ranges from 10°
(no speedup) to 10°. The z-axis ranges from 1072 to 102. All results are averages over queries not in the database.

Consider the plot for rcv-128 (center). At z = 10°, the bbtree is returning one of the two nearest
neighbors (on average) out of 500k points at a 100x speedup over brute force search. At z = 10', the bbtree is
returning one of the eleven nearest neighbors (again, out of 500k points) and yields three orders of magnitude
speedup over brute force search.

The best results are achieved on the rcv-D datasets and the Corel histogram dataset. The improve-
ments are less pronounced for the SIFT signature and Semantic space data, which may be a result of both
the high dimensionality and small size of these two datasets. Even so, we are getting useful speedups on the
semantic space dataset (10-100x speedup with small error). For the SIFT signatures, we are getting a 10x
speedup while receiving NNs in the top 1%.
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Table 2. Exact search

dataset dimensionality | speedup
rcv-8 8 64.5
rcv-16 16 36.7
rcv-32 32 21.9
rcv-64 64 12.0
corel histograms 64 2.4
rcv-128 128 5.3
rcv-256 256 3.3
semantic space 371 1.0
SIFT signatures 1111 0.9

Finally, we consider exact NN retrieval. It is well
known that finding a (guaranteed) exact NN in mod-
erate to high-dimensional databases is very challeng-
ing. In particular, metric trees, KD-trees, and relatives
typically afford a reasonable speedup in moderate di-
mensions, but the speedup diminishes with increasing
dimensionality (Moore, 2000; Liu et al., 2004). When
used for exact search, the bbtree reflects this basic pat-
tern. Table 2 shows the results. The bbtree provides
a substantial speedup on the moderate-dimensional
databases (up through D = 256), but no speedup on
the two databases of highest dimensionality.

7. Conclusion

In this paper, we introduced bregman ball trees and
demonstrated their efficacy in NN search. The exper-
iments demonstrated that bbtrees can speed up ap-
proximate NN retrieval for the KL-divergence by or-
ders of magnitude over brute force search. There are
many possible directions for future research. On the
practical side, which ideas behind the many variants of
metric trees might be useful for bbtrees? On the the-
oretical side, what is a good notion of intrinsic dimen-
sionality for bregman divergences and can a practical
data structure be designed around it?
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Abstract

In high-dimensional classification problems it is
infeasible to include enough training samples to
cover the class regions densely. Irregularities in
the resulting sparse sample distributions cause
local classifiers such as Nearest Neighbors (NN)
and kernel methods to have irregular decision
boundaries. One solution is to “fill in the holes”
by building a convex model of the region spanned
by the training samples of each class and classi-
fying examples based on their distances to these
approximate models. Methods of this kind based
on affine and convex hulls and bounding hyper-
spheres have already been studied. Here we pro-
pose a method based on the bounding hyper-
disk of each class — the intersection of the affine
hull and the smallest bounding hypersphere of its
training samples. We argue that in many cases
hyperdisks are preferable to affine and convex
hulls and hyperspheres: they bound the classes
more tightly than affine hulls or hyperspheres
while avoiding much of the sample overfitting
and computational complexity that is inherent in
high-dimensional convex hulls. We show that the
hyperdisk method can be kernelized to provide
nonlinear classifiers based on non-Euclidean dis-
tance metrics. Experiments on several classifica-
tion problems show promising results.

1. Introduction

Nearest neighbours (NN) — assigning the query to the class
with the nearest training sample(s) under some suitable dis-
tance metric — is one of the simplest methods for multi-
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class classification. Asymptotically it makes at most twice
as many errors as the optimal Bayes rule classifier, but
this result assumes dense sampling which requires train-
ing sets that are exponentially large in the dimensionality
of the underlying feature space class distributions. In high-
dimensional problems such as text, gene or visual object
classification, tractable training sets are necessarily much
smaller than this, and the performance of NN can often be
poor. The