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Abstract

In this work we consider the task of relaxing
the i.i.d assumption in online pattern recogni-
tion (or classification), aiming to make exist-
ing learning algorithms applicable to a wider
range of tasks. Online pattern recognition is
predicting a sequence of labels based on ob-
jects given for each label and on examples
(pairs of objects and labels) learned so far.
Traditionally, this task is considered under
the assumption that examples are indepen-
dent and identically distributed. However, it
turns out that many results of pattern recog-
nition theory carry over under a much weaker
assumption. Namely, under the assumption
of conditional independence and identical dis-
tribution of objects only, while the only con-
dition on the distribution of labels is that
the rate of occurrence of each label should
be above some positive threshold.

We find a broad class of learning algorithms
for which estimations of the probability of a
classification error achieved under the classi-
cal i.i.d. assumption can be generalised to the
similar estimates for the case of conditionally
i.i.d. distributed examples.

1. Introduction

Online pattern recognition (or classification) is, infor-
mally, the following task. There is a finite number of
classes of some complex objects. A predictor is learn-
ing to label objects according to the class they belong
to (i.e. to classify), based only on some examples (la-
belled objects). One of the typical practical examples
is recognition of a hand-written text. In this case, an
object is a hand-written letter and a label is the letter
of an alphabet it denotes. Another example is recog-
nising some illness in a patient. An object here is the
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set of symptoms of a patient, and the classes are those
of normal and ill.

The formal model of the task used most widely is de-
scribed, for example, in Vapnik (1998), and can be
briefly introduced as follows (we will later refer to it as
“the i.i.d. model”). The objects x ∈ X are drawn inde-
pendently and identically distributed (i.i.d.) according
to some unknown (but fixed) probability distribution
P (x). The labels y ∈ Y are given for each object
according to some (also unknown but fixed) function
η(x)1. The space Y of labels is assumed to be finite
(often binary). The task is to construct the best pre-
dictor for the labels, based on the data observed, i.e.
actually to “learn” η(x).

Initially, the problem of pattern recognition had been
considered in so-called offline (or batch) setting: a
(finite) set of examples is divided into two finite sub-
sets, the training set and the testing set. A predictor
is constructed based on the first set and then is used
to classify the objects from the second; the less er-
rors it makes on the testing set the better. In another
setting, so-called online setting of pattern recognition
problem, a predictor starts by classifying the first ob-
ject with zero knowledge; then it is given the correct
label and (having “learned” this information) proceeds
with classifying the second object, the correct second
label is given, and so on. This setting is more nat-
ural than the offline one in the practical applications
dealing with constantly changing or slowly gained data
(see e.g. Bottou and LeCun (2003) for a study in which
cases online methods outperform offline methods).

There is a plenty of algorithms developed for solv-
ing the pattern recognition task (see Devroye, Györfi
and Lugosi (1996) for the most widely used methods).
However, the i.i.d assumption, which is central in the
model, is too tight for many applications.

It turns out that it is also too tight for a wide range
of methods developed under the assumptions of the

1Often (e.g. in Vapnik (1998)) a more general situation
is considered, the labels are drawn according to some prob-
ability distribution P (y|x), i.e. each object can have more
than one possible label.



model: they work nearly as well under weaker assump-
tions.

Consider the following situation. Suppose we are try-
ing to recognise a hand-written text. Obviously, letters
in the text are dependent (for example, we strongly ex-
pect to meet “u” after “q”). Does it mean that we can
not use pattern recognition methods developed within
the i.i.d. model for the text recognition task? No, we
can shuffle the letters of the text and then use those
methods. But will the results of recognition change
significantly if we do not shuffle the letters? It is intu-
itively clear that the answer is negative; it is intuitively
clear if we are having in mind nearly any popular pat-
tern recognition method. Moreover, in online tasks
we cannot shuffle examples, and so the question is not
idle.

It turns out that the only needed assumption on the
distribution of examples are the following two. First,
that the dependence between objects is only that be-
tween their labels ; in other words, the type of object-
label dependence does not change in time. In our ex-
ample, an image of a letter which in the beginning
of the text denotes, say, “a”, to the end of the text
will not be interpreted as, say, “e”. Second, each label
should not cease in occurrence, i.e. the rate of occur-
rence of each label should keep above some positive
threshold. In the above example, the rate of occur-
rence of each letter should be, say, between 1% and
99% of all letters, with some feasible probability (de-
pending on the size of the text).

These intuitive ideas lead us to the following model (to
which we refer as “the conditional model”). The la-
bels y ∈ Y are drawn according to some unknown (but
fixed) distribution P(y), where P is a distribution over
the set of all infinite sequences of labels. There can
be any type of dependence between labels; moreover,
we can assume that we are dealing with any (fixed)
combinatorial sequence of labels. However, in this
sequence the rate of occurrence of each label should
keep above some positive threshold. For each label
the corresponding object x ∈ X is generated according
to some (unknown but fixed) probability distribution
P (x|y). All the rest is as in the i.i.d. model.

The main difference from the i.i.d. model is in that
in the conditional model we made the distribution
of labels primal; having done that we can relax the
requirement of independence of objects to the condi-
tional independence, and replace the i.i.d. assumption
about the distribution of labels with the only assump-
tion that the rate of occurrence of each label does not
tend to zero.

The main criterion in estimating how well a predictor
works is the probabilities of its errors. In this work we
provide a tool for obtaining estimations of probabil-
ity of an error of a predictor in the conditional model
from an estimation of the probability of an error in
the i.i.d. model. The only assumption on a predictor
under which the new estimations are of the same order
is what we call tolerance to data: in any large dataset
there is no small subset which change significantly the
probability of an error. This property should also hold
with respect to permutations. This assumption on a
predictor should be valid in the i.i.d. model. Thus, the
results achieved in the i.i.d. model can be extended to
the conditional model; this concerns distribution–free
results as well as distribution–specific, results on the
performance on finite samples (which are of the main
concern in this work) as well as asymptotic results.

The general theorems about extending results con-
cerning performance of a predictor to the conditional
model are illustrated with the example of predictors
minimising empirical error. We use some results of
Vapnik-Chervonenkis theory to establish tolerance to
data of such predictors and show what results about
them the developed theory yields.

The idea of relaxing the i.i.d assumption in the i.i.d.
model is not new. Thus, in Morvai, Yakowitz and Al-
goet (1997) the authors study the task of predicting
a stationary and ergodic sequence objects, and also
consider the generalisation of this task to the task of
regression estimation (which itself is a more general
variant of pattern recognition). Under the assumption
that the joint distribution of objects and labels is sta-
tionary and ergodic, the authors manage to construct a
weakly consistent predictor. This is a reasonable result
in the framework and for the (more general) task at
hand, but it is not the kind of results which is usually
an achievable goal for pattern recognition methods,
namely results on the performance of a predictor over
a finite sample of data, and pointwise (almost surely)
consistent predictors. Another approach is considered
in Vovk (2002), where the authors construct a wide
class of predictors for the case of exchangeable exam-
ples (i.e. the distribution generating examples is ex-
changeable).In both approaches the authors consider
different types of assumptions on the joint distribution
of objects and labels. Then they construct a predictor,
as in Morvai, Yakowitz and Algoet (1997), or a class of
predictors, as in Vovk (2002), to work well under the
assumptions made. Our approach is different in that
we find the conditions on the distribution of labels and
(another condition) on conditional distribution of ob-
jects, under which a certain class of predictors which
are already known to work well in the i.i.d. model,



work as well.

2. Main Results

The traditional scenario for online pattern recognition
is as follows.

Consider a sequence of examples (x1, y1), (x2, y2), . . . ;
each example zi := (xi, yi) consists of an object xi ∈ X

and a label yi := η(xi) ∈ Y, where X is a measurable
space called an object space, Y := {0, 1} is called a label
space and η : X → Y is some deterministic function.
For simplicity we made the assumption that the space
Y is binary, but all results easily extend to the case
of any finite space Y. The notation Z := X × Y is
used for the measurable space of examples. Objects
are drawn according to some probability distribution
P on X∞ (and labels are defined by η).

The notation P is used for distributions on X∞ while
the symbol P is reserved for distributions on X. In
the latter case P∞ denotes the i.i.d. distribution on
X∞ generated by P .

The traditional assumption about the distribution P

generating objects is that P = P∞ for some distribu-
tion P on X, i.e. examples are i.i.d. This is what we
call in this paper the i.i.d. model.

Here we replace this assumption with the following two
conditions.

First, for any n ∈ N

P(xn ∈ A | U) = P(xn ∈ A | Un), (1)

where A is any measurable set (an event) in X, Un
is σ-algebra generated by yn and U is any σ-algebra
which contains Un.
In more intuitive notation, for any
i1, . . . , ik, j1, . . . , jk ∈ N

P(xn ∈ A | yn, xi1 , yj1 , . . . , xik , yjk )

= P(xn ∈ A | yn).

(This condition looks very much like Markov condi-
tion, with the help of which it can be understood more
easily. Markov condition requires that each object de-
pends on the past only through its immediate prede-
cessor. The condition 1 says that each object depends
on the past only through its label.)

Second, for any y ∈ Y, for any n1, n2 ∈ N and for any
event A in X

P(xn1 ∈ A | yn1 = y) = P(xn2 ∈ A | yn2 = y). (2)

(It is worth noting that (1) allows dependence in n,
otherwise the present condition is not needed.)

For each y ∈ Y and any n ∈ N we will denote the
distribution P(xn | yn = y) by Py (it does not depend
on n by (2)). As we want the function η(x) which
specifies the label for each object to be deterministic,
we put an extra requirement on the distributions Py,
y ∈ Y, namely that there exist such sets Xy ⊂ X,
y ∈ Y such that X0 ∩ X1 = ∅ and Py(Xy) = 1 for
each y ∈ Y.2

Under the conditions (1) and (2) we say that ob-
jects are conditionally independent and identically dis-
tributed (conditionally i.i.d).

Less formally, these conditions can be reformulated as
follows. Assume that we have some sequence (yn)n∈N

of labels and two probability distributions P0 and P1

on X. Each example xn ∈ X is drawn according to the
distribution Pyn

; examples are drawn independently of
each other.

A predictor is a measurable function
Γ(x1, y1, . . . , xn−1, yn−1, xn) taking values in Y.
Denote Γn := Γ(x1, y1, . . . , xn−1, yn−1, xn).

The probability of an error of a predictor Γ on each
step n is defined as

errn(Γ,P, z1, . . . , zn−1)

:= P
{

(x, y) ∈ Z
∣

∣ y 6= Γn(z1, . . . , zn−1)
}

(Here P in the list of arguments of errn is understood
as a distribution conditional on z1, . . . , zn−1.)

We will often use a shorthand notation

P(errn(Γ, z1, . . . , zn−1) > ε)

and an even shorter one P(errn(Γ) > ε)) in place of

P
{

z1, . . . , zn−1

∣

∣ errn(Γ,P, z1, . . . , zn−1) > ε
}

.

We call a predictor Γ (finitely) universally consistent
with the bounding function 5 : N × R → [0, 1] if for
any distribution P on Z

P∞(errn(Γ) > ε) ≤ 5(n, ε). (3)

We say that a predictor Γ is tolerant to data with
bounding function ∆ : N × R → [0, 1] if for any distri-
bution P on Z

P∞
(

max
j≤κn; π:{1,...,n}→{1,...,n}

| errn+1(Γ, z1, . . . , zn)−

errn−j+1(Γ, zπ(1), . . . , zπ(n−j))| > ε
)

≤ ∆(n, ε), (4)

2Without this requirement, the conditions (1) and (2)
would model a more general setting of the pattern recog-
nition problem, in which each object has more than one
possible label.



for any n ∈ N, any ε > 0 and κn :=
√
n logn (see the

end of the Section 5 for the discussion of the choice of
the constants κn). The probability in this definition
is taken over z1, . . . , zn.

Tolerance to data means, in effect, that in any typi-
cal large portion of data there is no small portion that
change drastically the probability of an error. This
property should also hold with respect to permuta-
tions.

Theorem 1. Suppose that a distribution P is such
that the objects are conditionally i.i.d, i.e. P sat-
isfies (1) and (2). Fix some δ ∈ (0, 1/2], denote
p(n) := 1

n#{i ≤ n : yi = 0} and Cn := P(δ ≤
|p(n)| ≤ 1 − δ) for each n ∈ N. For any predictor Γ if
Γ is finitely universally consistent with some bounding
function 5(n, ε) and universally tolerant to data with
some bounding function ∆(n, ε), then

P(errn(Γ) > ε) ≤ 2C−1
n

(

5(n, δε/3)

+2∆(n+ κn/2, δε/6)
)

+ (1 − C−1
n ).

for any ε > 0 and any n > e4δ
−2

.

The proof of this and the following theorem can be
found in Appendix A.

The theorem says that if we know with some confi-
dence Cn that the rate of occurrence of each label is
not less than some (small) δ, then having bounds on
the error rate of a predictor in the i.i.d. model we
can obtain bounds on its error rate in the conditional
model.

A predictor developed to work in the offline setting
should be, loosely speaking, tolerant to permutations
of the training sample. The theorem shows under
which conditions in the online model this property of
a predictor can be utilised.

Theorem 1 provides a tool for obtaining distribution–
free bounds on probability of an error in the condi-
tional model given the bounds in the i.i.d. model.
However, often for certain classes of distributions there
exist much better bounds on the probability of an error
than for the universal (distribution-free) case. Next we
show how distribution–specific results achieved in the
i.i.d. model can be extended to the conditional model.

Let P be some distribution on X∞ satisfying (1)
and (2). We say that a distribution P on X agrees
with P if the conditional distribution P (x|y) is equal
to Py and P (y) 6= 0 for each y ∈ Y. Clearly,
this defines the distribution P up to the parameter
p = P (y = 1) ∈ (0, 1). For a distribution P on X∞ we

denote the family of distributions which agree with P

by (Pp)p∈(0,1) where Pp(y = 1) = p for each p in (0, 1).

For a distribution P on X∞ which satisfies (1) and (2)
we call a predictor Γ (finitely) consistent for the distri-
bution P with the bounding function 5 : N×R → [0, 1]
if (3) holds for any distribution P on X which agrees
with P. Furthermore, we say that a predictor Γ is tol-
erant to data for a distribution P with bounding func-
tion ∆ : N×R → [0, 1] if (4) holds for any distribution
P on X which agrees with P.

Theorem 2. Suppose that a distribution P on X∞

satisfies (1) and (2). Fix some δ ∈ (0, 1/2], denote
p(n) := 1

n#{i ≤ n : yi = 0} and Cn := P(δ ≤ |p(n)| ≤
1 − δ) for any n ∈ N. For any predictor Γ if Γ is
finitely consistent for P with some bounding function
5(n, ε) and tolerant to data for P with some bounding
function ∆(n, ε), then

P(errn(Γ) > ε) ≤ 2C−1
n

(

5(n, δε/3)

+2∆(n+ κn/2, δε/6)
)

+ (1 − C−1
n ).

for any ε > 0, any n > e4δ
−2

.

Let us call a class of distributions P on X conditionally
closed if with any distribution P ∈ P the class P also
includes any distribution P ′ such that P (A|y = i) =
P ′(A|y = i) for any A ⊂ X and each i ∈ Y (i.e. P ′∞

agrees with P∞).

As important examples of conditionally closed classes
of distributions we mention the class of distributions
which have densities, which have smooth densities, dis-
tributions which generate examples separable by a hy-
perplane.

Theorem 2 means that if we have some bounds on the
error probabilities of a predictor Γ for some condition-
ally closed class of distributions P then we can obtain
bounds on the error probabilities of Γ for any distribu-
tion P on X such that any (some) distribution on X

which agrees with P is in P (having bounds on toler-
ance of Γ to data for the distributions from P). In fact,
Theorem 1 is an immediate consequence of Theorem 2.

3. Application to PAC Learning Theory

Here we show how the developed concepts relate to
the PAC (Probably Approximately Correct) theory
(see, e.g. Vidyasagar (1997); Kearns and Vazirani
(1994)); here we mainly follow Vidyasagar (1997) in
definitions).

For the purpose of this section we fix some condition-
ally closed class P of distributions on Z.



A predictor Γ is called PAC for the class of distribu-
tions P if

lim
n→∞

sup
P∈P

P∞(errn(Γ) > ε) = 0

for each ε > 0.

Denote by P the set of distributions on Z∞ which
satisfy (1) and (2), such that for each P ∈ P there
exist P ∈ P such that P agrees with P. We call a
predictor Γ PAC in conditional model for the class of
distributions P if

lim
n→∞

sup
P∈P

P(errn(Γ) > ε) = 0

for each ε > 0. For each δ ∈ (0, 1/2], denote p(n) :=
1
n#{i ≤ n : yi = 0} and Cn(δ) := sup

P∈P P(δ ≤
|p(n)| ≤ 1 − δ) for each n ∈ N.

Theorem 2 implies the following statement.

Corollary 1. Suppose that limn→∞ Cn(δ) → 1 for
some δ ∈ (0, 1/2]. Suppose further, that a predictor Γ
is tolerant data for each P ∈ P with some bounding
function ∆(n, ε), such that limn→∞ ∆(n, ε) = 0 for
each ε > 0. Then if Γ is PAC for P then it is PAC in
conditional model for P.

4. Structural Risk Minimisation and

Applications to Popular Predictors

In this section we use some results of Vapnik-
Chervonenkis theory to establish tolerance to data of
certain popular classes of predictors and show how the
asymptotic results (strong universal consistency) can
be obtained within the conditional model.

The concepts of Vapnik-Chervonenkis theory used here
were developed in Vapnik and Chervonenkis (1974a;
1974b; 1974c). See also Vapnik (1998) and Devroye,
Györfi and Lugosi (1996) for detailed overviews. Here
we mainly follow Devroye, Györfi and Lugosi (1996)
in notations.

Let X = R
d for some d ∈ N and let C be a class

functions of the form ϕ : X → Y = {0, 1}, called
decision functions. For a probability distribution P on
X we denote err(P, ϕ) := P (ϕ(xi) 6= yi). The symbol
S(C, n) denotes the n-th shatter coefficient of the class
C. For a sample of examples (z1, . . . , zn) and a decision
function ϕ ∈ C the empirical error functional errn(ϕ) is
defined as errn(ϕ) :=

∑n
i=1 Iϕ(xi)6=yi

, where, as usual,
zi = (xi, yi)).

Theorem 3. Let C be a class of decision functions and
let Γ be a predictor which for each n ∈ N minimises
errn over C on the observed examples (z1, . . . , zn).

Then Γ is universally tolerant to data with the bound-
ing function

∆(n, ε) = 16S(C, n)e−n(ε−4κn/n)2/128. (5)

Thus, if we have bounds on the VC dimension of some
class of classifiers, we can readily obtain bounds on the
performance of the empirical error minimising predic-
tors for the conditional model given those for the i.i.d.
model.

For example, for bounds on the VC dimension of
classes of neural networks see e.g. Baum and Haus-
sler (1989) (also in Devroye, Györfi and Lugosi (1996),
Theorem 30.6).

Next we show that the asymptotic performance of an
empirical risk minimising predictor in the conditional
model can also be estimated with the help of the the-
orems of the previous section.

Lemma 1. Let P be some distribution on X∞ satis-
fying (1) and (2). Assume that a sequence of classes
C(k) of decision rules of the form X → Y is such that
limk→∞ infϕ∈C(k) err(P, ϕ) = 0 for any distribution P
which agrees with P. Then

lim
k→∞

sup
p∈[0,1]

inf
ϕ∈C(k)

err(Pp, ϕ) = 0.

Corollary 2. Let Γ be a classifier that minimises the
empirical error over the class C(k), where C(k) is the
class of neural net classifiers with k nodes in the hidden
layer and the threshold sigmoid, and k → ∞ so that
k logn/n→ 0 as n→ ∞. Let P be any distribution on
X∞ satisfying (1) and (2) such that

∑∞
n=1(1−C−1

n ) <
∞. Then Γ is strongly consistent for P, i.e.

lim
n→∞

errn(Γ) = 0 P–a.s.

5. Discussion

In the section 2 we have introduced “conditionally
i.i.d.” model for pattern recognition which generalises
the commonly used i.i.d. model. A general tool is pre-
sented which makes it possible to extend the results
achieved in the i.i.d. model to the conditional one.

The first question which arises is how much more gen-
eral the conditional model is, and how useful is the
generalisation. In response to the first part, observe
that in the i.i.d. model, labels should be i.i.d, while in
the conditional model labels can be distributed arbi-
trary, with the only restriction that the rate of occur-
rence of each label does not tend zero. To compare,
in the i.i.d model the rate of occurrence of each la-
bel quickly tends to a certain limit. The assumption



that objects are i.i.d conditionally on labels seems to
capture the idea that this is only the object-label de-
pendence that a predictor is required to learn, which
itself does not put any restrictions on the dependence
between the examples.

Another question is in what cases the bounds on the
probability of an error provided by the (general) the-
orems 1 and 2 are of the same quality as those in the
conditional model. Which means, are the bounds on
tolerance to data of the same (or lower) order then
the bounds on the probability of an error in the i.i.d.
model? To show that this is often the case, we consider
empirical error minimising predictors in section 4.

In the theory of structural error minimisation the
probability of an error is split into two parts: estima-
tion error and approximation error (see, e.g. Devroye,
Györfi and Lugosi (1996)). The estimation error is
the difference between the probability of an error of
the considered predictor and that of the minimum of
probability of an error among all decision rules in the
class. The bounds on this probability of an error are
universal and, in general, good, subject to the VC di-
mension of the class of decision rules. The second part,
the approximation error is the minimum of probability
of an error among all decision rules in the class. This
variable is, in general, greater than the estimation er-
ror and can tend to zero arbitrarily slow. We show
that for predictors minimising empirical risk the con-
stants bounding the tolerance to data are of the same
order that the estimation error, i.e. small, subject to
the VC dimension of the class.

Still another question remains, can the same bounds
on the probability of an error in the conditional model
be achieved without assumptions on tolerance to data?
The following negative example shows that the bounds
on tolerance to data are necessary.

Proposition 1. There exists a distribution P on X∞

satisfying (1) and (2) such that P(|pn−1/2| > 3/n) =
0 for any n (i.e. Cn = 1 for any δ > 0 and n > 3)
and a predictor Γ such that P∞(errn > 0) ≤ 21−n for
any distribution P which agrees with P and P(errn =
1) = 1 for n > 1.

Proof. Let X = Y = {0, 1}. We define the distribu-
tions Py as Py(x = y) = 1, for each y ∈ Y. The distri-
bution P is defined as follows: Py = Py for each y ∈ Y

and P|Y∞ is the Markov distribution with transition

probability matrix

(

0 1
1 0

)

, i.e. it always generates

sequences of labels . . . 01010101 . . . .

We define the predictor Γ as follows

Γn :=

{

1 − xn if |#{i < n : yi = 0} − n/2| ≤ 1,
xn otherwise.

So, in the case when the distribution P is used to gen-
erate the examples, Γ is always seeing either n−1 zeros
and n ones, or n zeros and n ones which, consequently,
will lead it to always predict the wrong label. It re-
mains to note that this is almost improbable in the
case of an i.i.d. distribution.

One more point which needs clarification is the choice
of the constants κn. We fixed these constants for the
sake of simplicity of notations, however, they can be
made variable, as long as κn obeys the following con-
dition.

lim
n→∞

{n|pn − p| ≤ κn} = 0

almost surely for any p ∈ (0, 1) and any probability
distribution P on X such that P (y = 1) = p, where
pn := 1

n#{i ≤ n : yi = 0}. Increasing κn increases the
∆ function and decreases C−1

n
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Appendix A: proofs for Section 2

Theorem 1 is an immediate consequence of Theorem 2,
so we proceed with the proof of the latter.

Proof of Theorem 2. We define the conditional proba-
bilities of errors of Γ as follows

err0n(Γ) := P(yn 6= Γn |
yn = 0;x1, y1, . . . , xn−1, yn−1),

err1n(Γ) := P(yn 6= Γn |
yn = 1;x1, y1, . . . , xn−1, yn−1),

(with the same notational convention as used with the
definition of errn(Γ)).

In words, for each y ∈ Y = {0, 1} we define erryn as the
probability of all x ∈ X, such that Γ makes an error on
n’th trial, given that yn = y and given (random vari-
ables) x1, y1, . . . , xn−1, yn−1. We will also use more



explicit notations for erryn(Γ) specifying the distribu-
tion or the input sequence of labels, when the context
requires. Obviously, errn(Γ) ≤ maxy∈Y erryn(Γ).

For any y := (y1, y2, . . . ) ∈ Y∞, denote yn :=
(y1, . . . , yn) and pn(y) := #{i ≤ n : yi = 0}.
Fix some n > 1, some y ∈ Y and such y1 ∈ Y∞ that
nδ ≤ pn(y

1) ≤ n(1 − δ). We shell find bounds on
P

(

errn > ε | yn = y1
n

)

. The following fact will allow
us to pass from i.i.d. distributions to conditionally
i.i.d. Observe that

P
(

erryn(Γ) > ε | yn = y1
n

)

= P∞
p

(

errn(Γ) > ε | yn = y1
n

)

for any p ∈ [0, 1].

It is also clear that if errn(Γ) < ε then erryn(Γ) < ε/δ
for each y ∈ Y, if underlying probability distribution is
Pp, δ ≤ p ≤ 1−δ. Denote p = pn(y

1)/n. For any y2 ∈
Y∞ such that |pn(y2) − np| ≤ δκn/2 there exist such
permutations π1, π2 of the set {1, . . . , n} that y1

π1(i)
=

y2
π2(i)

for any i ≤ n − δκn. Hence (denoting n′ :=

n− δκn) we have,

P∞
p

(

erryn(x1, y
1
1 , . . . , xn, y

1
n) > ε

)

= P∞
p

(

erryn(x1, y
1
1 , . . . , xn, y

1
n)

− erryn′(xπ1(1), y
1
π1(1)

, . . . , xπ1(n′), y
1
π1(n′))

+ erryn′(xπ1(1), y
2
π2(1)

, . . . , xπ1(n′), y
2
π2(n′))

− erryn(x′1, y
2
1, . . . , x

′
n, y

2
n)

+ erryn(x′1, y
2
1, . . . , x

′
n, y

2
n) > ε

)

≤ P∞
p

(

∣

∣ erryn(x1, y
1
1 , . . . , xn, y

1
n)

− erryn′(xπ1(1), y
1
π1(1)

, . . . , xπ1(n′), y
1
π1(n′))

∣

∣ > ε/3
)

+P∞
p

(

∣

∣ erryn′(x
′
π2(1)

, y2
π2(1)

, . . . , x′π2(n′), y
2
π2(n′))

− erryn(x′1, y
2
1, . . . , x

′
n, y

2
n)

∣

∣ > ε/3
)

+P∞
p

(

erryn(x
′
1, y

2
1 , . . . , x

′
n, y

2
n) > ε/3

)

,

where x′π2(i) = xπ1(i) for i ≤ n′ and so the probability
in the first line is taken over the space Xn, in the
second line over Xn+δκn and everywhere rest over Xn.

To bound the first two terms, we observe that for any
yc ∈ Y∞ such that |pm(ycn) − pm| ≤ κn/4, where
m = n+ κn/2, there exist permutations ψ1, ψ2 of the
set {1, . . . , n+κn/2} such that ycψj(i)

= yji for j = 1, 2

and i ≤ n. Hence, for j = 1, 2 and any permutation π

of the set {1, . . . , n} we have

P∞
p

(

∣

∣ erryn(x1, y
j
1, . . . , xn, y

j
n)

− erryn′(xπ(1), y
j
π(1), . . . , xπ(n′), y

j
π(n′))

∣

∣ > ε/3
)

≤ P∞
p

(

∣

∣ errym(x1, y
c
1, . . . , xm, y

c
m)

− erryn(xψj(1), y
c
ψj(1)

, . . . , xψj(n), y
c
ψj(n)

∣

∣ > ε/6
)

+P∞
p

(

∣

∣ errym(x1, y
c
1, . . . , xm, y

c
m)

− erryn′(xπ(ψj(1)), y
c
π(ψj(1))

, . . . ,

xπj(ψj(n′), y
c
πj(ψj(n′)))

∣

∣ > ε/6
)

≤ 2P∞
p

(

max
i≤κn,π:{1,...,m}→{1,...,m}

∣

∣ errym(z1, . . . , zm)

− errym−i(zπ(1), . . . , zπ(m−i))
∣

∣ > ε/6
∣

∣

∣

|pm(y) − p(m)| ≤ κn/2
)

≤ 2

P∞
p (|pm(y) − pm| ≤ κn/2)

∆(m, δε/6)

≤ 4∆(m, δε/6)

if n > 8.

Thus,

P∞
p

(

erryn(x1, y
1
1 , . . . , xn, y

1
n) > ε

)

≤ P∞
p

(

erryn(x1, y
2
1 , . . . , xn, y

2
n) > ε/3

)

+4∆(m, δε/6),

and, hence y2 was chosen arbitrary among sequences
y ∈ Y∞ for which |pn(y) − np| ≤ δκn/2, we conclude

P∞
p

(

erryn(x1, y
1
1 , . . . , xn, y

1
n) > ε

)

≤ P∞
p

(

erryn > ε/3
∣

∣ |pn(y) − np| ≤ δκn/2
)

+4∆(m, δε/6) ≤
2P∞

p

(

erryn > ε/3
)

+ 4∆(m, δε/6)

≤ 25(n, δε/3) + 4∆(n+ κn/2, δε/6)

(here we used that n > e16δ
−2

). Finally, as y1 was
chosen arbitrary among sequences y ∈ Y∞ such that
nδ ≤ pn(y

1) ≤ n(1 − δ) we have

P(errn > ε) ≤ P(max
y∈Y

erryn > ε) ≤ 2C−1
n

(

5(n, δε/3)

+2∆(n+ κn/2, δε/6)
)

+ (1 − C−1
n ).

which concludes the proof.



Appendix B: proofs for Section 4

Proof of Theorem 3. Fix some probability distri-
bution P on X and some n ∈ N. Denote ϕ∗

n :=
arg minϕ∈C errn(ϕ) (so that Γn = ϕ∗

n). We also de-
note by ϕ× any such decision rule ϕ ∈ C that

errn(ϕ) = max
j≤κn; π:{1,...,n}→{1,...,n}

min
ϕ∈C

errn−j(ϕ, zπ(1), . . . , zπ(n−j))

We need to show that P n(| err(ϕ∗) − err(ϕ×)| > ε) ≤
∆(n, ε).

Clearly, |errn(ϕ×)− errn(ϕ
∗)| ≤ κn, as κn is the max-

imal number of errors which can be made on the dif-
ference of the two samples. Moreover,

Pn
(

| err(ϕ∗) − err(ϕ×)| > ε
)

≤ Pn
(

| err(ϕ∗) − 1

n
errn(ϕ∗)| > ε/2

)

+Pn
(

| 1
n

errn(ϕ
×) − err(ϕ×)| > ε/2− κn/n

)

Now the statement of the theorem follows from the
fact that

Pn(sup
ϕ∈C

| 1
n

errn(ϕ) − err(ϕ)| > ε)

≤ 8S(C, n)e−nε
2/32,

see Devroye, Györfi and Lugosi (1996), Theorem 12.6.

Proof of Corollary 2. Applying Theorem 2 and using
its notations we have

5(n, ε) ≤ Pp(errn− inf
ϕ∈C(k)

err(Pp, ϕ) > ε/2)

+Iinf
ϕ∈C(k) err(Pp,ϕ)>ε/2.

By Theorem 12.6, Devroye, Györfi and Lugosi (1996)
the first term is bounded by

16S(C(k), n)e−nε
2/128

and is summable if we use the bound

S(C(k), n) ≤ (nε)kd+2k+1, (6)

see Theorem 30.6, Devroye, Györfi and Lugosi (1996).
The second term is bounded by

Isupp∈[0,1] inf
ϕ∈C(k) err(Pp,ϕ)>ε/2

and so is summable by Corollary 30.1, Devroye, Györfi
and Lugosi (1996), which says that

lim
k→∞

inf
ϕ∈C(k)

err(P, ϕ) = 0

for any distribution P on X and from Lemma 1.

For the function ∆(n, ε) we have the bound provided
by Theorem 3, which is also summable if we use the
bound (6).
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