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Abstract

Replicability of machine learning experi-
ments measures how likely it is that the out-
come of one experiment is repeated when per-
formed with a different randomization of the
data. In this paper, we present an estima-
tor of replicability of an experiment that is
efficient. More precisely, the estimator is un-
biased and has lowest variance in the class of
estimators formed by a linear combination of
outcomes of experiments on a given data set.

We gathered empirical data for comparing
experiments consisting of different sampling
schemes and hypothesis tests. Both factors
are shown to have an impact on replicability
of experiments. The data suggests that sign
tests should not be used due to low replica-
bility. Ranked sum tests show better perfor-
mance, but the combination of a sorted runs
sampling scheme with a t-test gives the most
desirable performance judged on Type I and
II error and replicability.

1. Introduction

Machine learning research on classifiers relies to a large
extent on experimental observations. It is widely rec-
ognized that there are many pitfalls in performing ex-
periments [3, 6, 8]. But, so far, most research in this
area concentrates on undesirable high levels of Type
I error, the situation where the experiment indicates
that one classifier outperforms another, while in real-
ity it does not. An often overlooked issue with experi-
mental research is that the particular randomizations
used in the experiment can have a major impact on
the outcome of the experiment. This effect can be so
large that for some experimental designs only in 2 out
of 3 cases repetition of the experiment produces the
same outcome [2].
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In this paper, we try to get a better insight in this
issue of replicability and which factors in an exper-
iment influence replicability. In order to do so, we
need a practical definition of replicability and a way
to measure replicability of an experiment. Once this
is established we can actually perform experiments on
various set-ups. In the following section, we consider a
number of experimental designs. We continue in Sec-
tion 3 with ways to estimate replicability and perform
a theoretical analysis of their performance. Section 4
presents empirical results where we measure replica-
bility for the various experimental set-ups. We finish
with some concluding remarks.

2. Machine learning experiments

The problem we want to address is, given two learn-
ing algorithms A and B that generate classifiers and a
small data set D, how to make a decision which of the
two algorithms performs best based on classification
accuracy for the given data set. A general method to
make such a decision is to split D into a training set
Dt and a test set D\Dt. Then, train algorithm A and
B on Dt and register the classification accuracy on the
D\Dt. This way, we obtain two classification accura-
cies PA and PB and the difference x = PA − PB gives
an indication which algorithm performs better.

A formal way to make such a decision is to apply a hy-
pothesis test. However, such hypothesis test typically
requires more than a single outcome x. Unfortunately,
for small datasets D, we have to split D repeatedly in
training and test sets to obtain multiple outcomes PA,i
and PB,i with associated differences xi = PA,i − PB,i,
1 ≤ i ≤ n obtaining a sample of size n.

So, an experiment has two components. Firstly, a sam-
pling scheme for obtaining a sample x1, . . . , xn, and
secondly, a hypothesis test to make a decision based
on the sample. There are various ways to obtain sam-
ples and to perform hypothesis tests.

2.1. Sampling methods

We consider six different sampling schemes.



Figure 1. Example illustrating the data used for the various sampling schemes.
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Resampling: Resampling consist of splitting the data
n times in a randomly selected test set Dt,i contain-
ing a fraction of the data (typically 10% to 33%)
and a training set D\Dt,i. The algorithms A and B
learn on the training set and accuracies PA,i and PB,i,
1 ≤ i ≤ n are obtained by classifying instances on the
accompanying test set giving n accuracy differences
xi = PA,i − PB,i for the sample. Resampling used to
be an accepted way for applying the t-test on the sam-
ple x1, . . . , xn till it was discredited by Dietterich [3]
due to its extremely high Type I error. Nadeau and
Bengio [6] showed how this problem can be solved by
correcting the variance.

K-fold cross validation: Cross validation splits the
data D into k approximately equal parts D1, . . . , Dk,
and learns on the data D\Di, 1 ≤ i ≤ k with one part
left out. The part Di left out is used as test set, giving
n = k accuracy differences xi = PA,i−PB,i. Dietterich
[3] observed a slightly elevated Type I error for cross
validation with a t-test and its replicability is rather
low [2].

Use all data: To obtain more samples, we can repeat
k-fold cross validation r times with different random
splits into folds for each of the runs. This gives us r×k
accuracy differences. Let x̂i,j , 1 ≤ i ≤ r, 1 ≤ j ≤ k
denote the difference in accuracy of algorithms A and
B in the ith run on the jth fold. Here A and B are
trained on the k − 1 remaining folds in the ith run.
We obtain a sample of size n = r × k by using all
of the accuracy differences xi,j (formally by setting
xi = x̂i mod r,di/re).

Average over folds: In averaging over folds, the rec-
ommended method for Weka [9], we take the result
in a repeated cross validation experiment. We obtain
one sample value per run by taking the average differ-
ence over all results for a single run, xi =

∑k
j=1 x̂i,j/k

(where x̂i,j as for the use all data scheme).

Average over runs: Averaging over folds can be
interpreted as an improved way of doing resampling.
The natural extension is performing an improved way
of k-fold cross validation, and instead of averaging
over folds, average over runs. We obtain one sam-

ple value per fold defined as the average difference
xi =

∑r
a=1 x̂a,i/r. Both averaging over folds and over

runs show a very high Type I error when applying a
t-test [2].

Average over sorted runs: Averaging over runs
combines results from different runs rather arbitrar-
ily. One gets better estimates of a k-fold cross valida-
tion experiment by first sorting the results for the in-
dividual k-fold cross validation experiments and then
taking the average. This way, the estimate for the
minimum value is calculated from the minimum val-
ues in all folds, the one but lowest from the one but
lowest results in all folds, etc. Let x̂θ(i,j) be the
jth highest value of accuracy difference x̂i′j′ of run
i. Then, the sample consisting of k values is defined
by xi =

∑r
a=1 x̂θ(a,i)/r.

Figure 1 illustrates the difference between the data
used for the sampling schemes. The figure shows an
example of 3x3 fold cross validation outcomes in the
box at the left half (though in practice a 10x10 fold
cross validation is more appropriate). All the data
in the box in Figure 1 is used for the ”use all data”
scheme. For resampling, essentially only the first col-
umn is required when performing a 2/3-1/3 split of
training and test data. Cross validation uses only the
first run, that is, the first row of a 3x3 fold cross val-
idation outcome. Averaging over folds and runs is es-
sentially summing over columns and rows respectively.
For getting sorted means, first the results have to be
sorted over folds, giving the table at the right of Fig-
ure 1. Then the means are obtained by summing over
rows.

2.2. Hypothesis tests

In our experiment, we want to test the null hypothesis
H0 that A and B perform the same. More formally, we
want to test whether the sample x1, . . . , xn has zero
mean. There are different methods to test such hy-
pothesis, all of which are based on slightly different
assumptions. We consider the popular t-test, the sign
test and the rank sum test, also known as Wilcoxon’s
test. All these tests assume that the outcomes xi in
the sample are mutually independent, an assumption



that is obviously violated.

These hypothesis tests follow a similar procedure.
First, we calculate a statistic Z from the sample. Dif-
ferent tests have different methods of calculating Z
(see below). Then, we calculate the probability p(Z)
that the value Z or less is observed assuming H0 is
true. We choose a significance level α and accept H0

if p(Z) is higher than α/2 but less than 1 − α/2. If
p(Z) < α/2, the test indicates B outperforms A and
if p(Z) > 1−α/2, the test indicates A outperforms B.

Paired t-test: The assumption underlying the paired
t-test is that the outcomes xi are normally dis-
tributed. If this is true, then the mean can be esti-
mated using m̂ = 1

n

∑n
i=1 xi, the variance using σ̂2 =

1
n−1

∑n
i=1(xi − m̂)2. With n − 1 degrees of freedom

(df = n−1) we have a statistic Z = m̂√
σ̂2/
√
df+1

, which

is distributed according to Students t-distribution Pt
with df degrees of freedom. The probability that the
data x1, . . . , xn is observed assuming the null hypoth-
esis is true is obtained by finding Pt(T, df).

Sign test: The attractiveness of the sign test is that it
is simple and makes no assumptions about the under-
lying distribution of the sample. Instead, it only looks
at the signs of x1, . . . , xn and statistic Z is the num-
ber of pluses. When accuracies PA,i and PB,i are the
same, which occurs quite often when two algorithms
perform very similarly, xi = 0 and we count this as half
a plus. If the null hypothesis is true, the probability
of generating a plus or a minus is 0.5, in other words
H0 : p = 0.5. The probability of observing Z pluses in
n comparisons is P (Z) =

∑Z
i=0

(
n
i

)
pi(1− p)n−i, which

with p = 0.5 is P (Z) =
∑Z
i=0

(
n
i

)
1
2

n
.

Rank sum test: Like the sign test, the rank sum
test makes no assumption about the underlying dis-
tribution of outcomes xi. However, the rank sum test
does exploit the size of the values of xi, which contains
potentially valuable information. The rank sum test
sorts the outcomes xi on its absolute value, giving a
set of outcomes y1, . . . , yn, |yi| ≤ |yi+1| (1 ≤ i < n).
When accuracies are the same (i.e. outcomes for which
xi = 0) they are removed from the sample, leaving
n′ items. Now, we add the ranks of outcomes that

are positive, r =
∑n′

i=1,yi>0 i. This statistic has mean

m = n′(n′+1)
4 and variance σ2 = n′(n′+1)(n′+2)

24 and
is approximately normally distributed. So, we use
Z = r−m

σ , which is normally distributed with mean
0 and variance 1.

2.3. Quality of experiments

There are essentially three methods to judge the qual-
ity of an experiment:

• The Type I error is the probability that the conclu-
sion of an experiment is there is a difference between
algorithms, while in reality there is not. In theory, the
Type I error equals the significance level chosen for the
hypothesis test if none of the assumptions of the test
are violated. In practice, the independence assump-
tion is often violated resulting in an elevated Type I
error.
• The Type II error is the probability the conclusion of
an experiment is there is no difference between algo-
rithms, while in reality there is. The power is defined
as 1 minus the Type II error. The power is not directly
controllable like the Type I error is. However, there
is a trade-off between power and Type I error and a
higher power can be obtained at the cost of a higher
Type I error. The exact relation between the two de-
pends on the experimental design.
• Replicability of an experiment is a measure of how
well the outcome of an experiment can be reproduced.

The most desirable experiment has a low Type I error,
a high power an high replicability. In the following
section we will have a closer look at replicability.

3. Replicability

In [2], an ad hoc definition for replicability was pro-
posed as follows. When an experiment is repeated ten
times with different randomizations of a given data
set, the experiment is deemed replicable if its outcome
is the same for all ten experiments. If one or more
outcomes differ, it is not replicable. An impression
of the replicability of an experiment can be obtained
by averaging over a large number (say 1000) of data
sets. This definition is useful in highlighting that repli-
cability of experiments is indeed an issue in machine
learning. However, the disadvantage is that replica-
bility measured this way cannot be compared with re-
sults for doing the experiment another number than
ten times. Also, replicability defined this way would
not distinguish between having 1 out of 10 outcomes
being different and 5 out of 10 outcomes being differ-
ent. Further, increasing the number of experiments to
say 100 increases the likelihood that one of the experi-
ments differ and thus decreases replicability according
to the definition of [2]. A definition of replicability
that does not suffer from these issues is the following.

Definition: Replicability of an experiment is the prob-
ability two runs of the experiment on the same data
set, with the same pair of algorithms and the same



method of sampling the data produces the same out-
come.

This definition applies both in the situation where the
algorithms perform the same and when one outper-
forms another. Note the difference between Type I
error and replicability. When the algorithms perform
the same, the Type I error expresses the probability
over all data sets that a difference is found. Replica-
bility only expresses that error for one data set.

By defining replicability in terms of probabilities, one
can compare replicability of different experiments with
different experimental set-ups and number of runs.
Furthermore, an experiment that produces 9 same out-
comes out of 10 has a higher replicability this way than
when it only produces 5 same outcomes out of 10.

Note that replicability always lies between 50% and
100%. Normalized replicability is replicability linearly
scaled to the range 0% to 100%. So, if replicability is
r, normalized replicability is 2(r − 1

2 ).

3.1. A simple estimator

The only way to determine the replicability of an ex-
periment is to measure it empirically. So, we need an
estimator of replicability. A simple approach is to ob-
tain pairs of runs of an experiment on a data set D and
just interpret those as the outcome of Bernoulli trial
with probability r that the outcomes are the same.

The outcome e of an experiment on data set D is ’ac-
cept’ or ’reject’. When the outcome is ’accept’ the
null hypothesis that the two learning algorithms per-
form the same on D is accepted, otherwise they are
not.

Definition Let e = e1, . . . , en (n > 0 and n even) be
the outcomes of n experiments with different random-
izations on data set D. The estimator R̂1 of replica-
bility r is

R̂1(e) =

∑n/2
i=1 I(e2i = e2i−1)

n/2

where I is the indicator function, which is 1 if its ar-
gument is true, and 0 otherwise.

We write R̂1 if it is clear from the context what the
argument e of R̂1(e) is.

Lemma 3.1 R̂1 is an unbiased estimator of replicabil-

ity r with variance r−r2

n/2 .

Proof: The bias of R̂1 is E(R̂1) − r. Now, E(R̂1) =

E(
Pn/2
i=1 I(e2i=e2i−1)

n/2 ). Taking the constant 1
n/2 outside

the expectation gives E(R̂1) = 1
n/2E(

∑n/2
i=1 I(e2i =

e2i−1)). Distributing the sum results in E(R̂1) =
1
n/2

∑n/2
i=1 E(I(e2i = e2i−1)). Now, E(I(e2i =

e2i−1)) = P (I(e2i = e2i−1))I(e2i = e2i−1) + P (I(e2i =
e2i−1))I(e2i 6= e2i−1). Note that P (I(e2i = e2i−1)) =
r and P (I(e2i 6= e2i−1)) = 1 − r so we get E(I(e2i =
e2i−1)) = r · 1 + (1− r) · 0 = r. Substituting in E(R̂1)

above gives E(R̂1) = 1
n/2

∑n/2
i=1 r = n/2

n/2r = r. So, the

bias of R̂1 = E(R̂1)− r = r− r = 0, which shows that
R̂1 is an unbiased estimator of r.

The variance of R̂1 is var(R̂1) = E(R̂2
1) −

E(R̂1)2 =
∑n/2

i=0 P (i same pairs out of n/2)( i
n/2 )2 −

E(R̂1)2 where R̂1 = 1
n/2 . From the deriva-

tion above, we have E(R̂1)2 = r2. Further, ob-
serve that P (i same pairs out of n/2) follows the bi-
nomial distribution with probability r. So, we

have var(R̂1) =
∑n/2
i=0 r

i(1 − r)n/2−i
(
n/2
i

)
( i
n/2 )2 −

r2 = 1
(n/2)2

∑n/2
i=0 r

i(1 − r)n/2−i
(
n/2
i

)
i2 − r2. Us-

ing Lemma A.1 (see Appendix),
∑n/2

i=0 r
i(1 −

r)n/2−i
(
n/2
i

)
i2 = (n/2)2r2 − r2n/2 + rn/2 giving

var(R̂1) = 1
(n/2)2 ((n/2)2r2−r2n/2+rn/2)−r2 = r−r2

n/2 .

3.2. An advanced estimator

The simple estimator R̂1 uses experiment e1 only to
compare with e2. Since e3 is independent of e1, one
could compare e1 with e3 as well. Likewise, the pair
(e1, ek) for any k > 1 could be compared and used
in the estimate of replicability. In fact, we can use
all pairs of outcomes and estimate replicability as the
fraction of pairs with the same outcome. This defines
a new estimator R̂2.

Definition Let e = e1, . . . , en and n as before, then
we define estimator R̂2(e) of r as

R̂2(e) =
∑

1≤i<j≤n

I(ei = ej)

n · (n− 1)/2
(1)

According to the following lemma, we can actually cal-
culate R̂2 directly from counting the number of ac-
cepted tests out of the n experiments. So, R̂2 can be
calculated efficiently in linear time of the number of
experiments.

Lemma 3.2 Let e = e1, . . . , en and n as before and i
out of n tests be accepting the null hypothesis, then

R̂2(e) = R̂2(i, n) =
i · (i− 1) + (n− i) · (n− i− 1)

n · (n− 1)



Proof: The numerator of R̂2 in (1) is the number of
pairs with equal outcomes. If i (0 ≤ i ≤ n) tests accept
the null hypothesis and the remaining n−i do not, then(
i
2

)
pairs of rejecting pairs and

(
n−i

2

)
pairs of non re-

jecting pairs can be formed. This gives an estimate of
replicability as R̂2(i, n) = (

(
i
2

)
+
(
n−i

2

)
)/(n(n−1)/2) =

i(i−1)+(n−i)(n−i−1)
n(n−1) .

Now, we will examine the bias and variance of R̂2. It
turns out that R̂2 is an unbiased estimator of replica-
bility and its variance can be expressed in closed form.

Theorem 3.1 R̂2 is an unbiased estimator of replica-
bility r with variance 1

n·(n−1) ·(2(n−2)(n−3)F (p, 4)+

(4−2(n−3))(n−2)F (p, 3)+(n−2)(n−3)+2)F (p, 2)−r2

where F (p, x) = px + (1 − p)x and p = 1/2 +
1/2
√

2r − 1.

The proof that R̂2 is unbiased closely follows that of
Lemma 3.1. The proof establishing the variance of R̂2

is rather technical and is omitted here. A full proof is
available in the report version of this paper.

Unfortunately, the closed form expression for the vari-
ance of R̂2 is hard to interpret and compare with that
of R̂1. Figure 2 shows the variance of R̂1 and R̂2 for
various values of replicability r and number of experi-
ments n. It shows that the variance of R̂2 is equal to
that of R̂1 when r = 1. This is when there is full repli-
cability and in this case the variance is zero. However,
for other values of r, the variance of R̂2 is always be-
low that of R̂1, indicating that R̂2 is a more efficient
estimator of replicability than R̂1.

3.3. Is there a better estimator?

Is there an unbiased estimator of replicability with
lower variance than R̂2 based on experiments e =
e1, . . . , en on a single database? We will consider
the class of estimators based on linear functions of
I(ei = ej).

Definition: Let e = e1, . . . , en (n > 0 and n even)
be the outcomes of n experiments with different ran-
domizations on data set D. Then estimator R̂k of r
is

R̂k(e) =
∑

1≤i<j≤n
ki,jI(ei = ej) (2)

Note that R̂1 is in this class with ki,i+1 = 1
n/2 for odd

i and ki,j = 0 otherwise. Likewise, R̂2 is in this class
with ki,j = 1

n(n−1)/2 for all 1 ≤ i < j ≤ n. If we

demand that R̂k is unbiased, we put a restriction on
the coefficients ki,j expressed in the following lemma.

Figure 2. Variance of R̂1 (upper surface) and R̂2 (lower
surface) as function of replicability r ∈ (0.5 . . . 1.0) and
number of tests n ∈ (4 . . . 28)
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Lemma 3.3 R̂k is an unbiased estimator of replicabil-
ity r iff ∑

1≤i<j≤n
ki,j = 1 (3)

In the proof, we use the property that if r is the repli-
cability of an experiment for a given data set, then, by
definition, r is the probability two experiments pro-
duce the same outcome. Now, two experiments use
different independent randomizations. So, if p is the
probability that the outcome of a single experiment
is accept, then the replicability is the probability that
two outcomes are accept (p · p) plus the probability
that two outcomes are reject ((1 − p) · (1 − p)). So,
r = p · p+ (1 − p) · (1− p), which can be solved for p
giving p = 1

2 ± 1
2

√
2r − 1.

Proof: For R̂k to be an unbiased estimator of replica-
bility r, we must have E(R̂k) = r. Now, E(R̂k) by def-
inition of expectation is

∑
e P (e)R̂k(e). Using (2), this

equals
∑

e P (e)
∑

1≤i<j≤n ki,jI(ei = ej). Changing
the order of sums, we get

∑
1≤i<j≤n

∑
e P (e)ki,jI(ei =

ej). Note that
∑

e P (e) has equal outcomes for ei
and ej only with probability p2 (both accept) and
(1 − p)2 (both rejects). So,

∑
e P (e)ki,jI(ei = ej) =

(p2 + (1−p)2)ki,j = rki,j . Summing over i and j gives∑
1≤i<j≤n rki,j = r

∑
1≤i<j≤n ki,j = r where the last

equality follows from the condition that the estimator
is unbiased. Consequently,

∑
1≤i<j≤n ki,j = 1.

So, R̂1 and R̂2 being unbiased (Lemma 3.1 and The-
orem 3.1) can be proven observing R̂1 and R̂2 are in-
stances of R̂k and noting that the coefficients ki,j add
to 1.

Theorem 3.2 var(R̂
k
) ≥ var(R̂2) for any unbiased



Table 1. Type I error on Set 1, power on Set 2, 3 and 4 and replicability (in percentages) for various sampling methods
(95% confidence interval in brackets).

Source 1 Source 2 Source 3 Source 4 Minimum average
Test Sampling scheme Type I Power Power Power norm.replicability
Rank sum Resampling 14.8 (±0.4) 27.9 (±0.6) 48.0 (±0.3) 95.7 (±0.3) 34.0 (±0.5)
test k-fold cv 11.0 (±0.2) 23.2 (±0.2) 45.8 (±0.7) 97.5 (±0.2) 46.0 (±0.5)

Use all data 55.2 (±0.3) 71.5 (±0.2) 88.0 (±0.1) 100.0 (±0.0) 61.8 (±0.6)
Average over folds 59.8 (±0.5) 78.9 (±0.4) 90.2 (±0.2) 100.0 (±0.0) 56.4 (±0.7)
Average over runs 50.5 (±0.6) 68.3 (±0.1) 86.1 (±0.1) 100.0 (±0.0) 57.0 (±0.9)
Average sorted runs 4.1 (±0.1) 20.2 (±0.3) 46.8 (±0.5) 99.3 (±0.1) 80.6 (±0.2)

Sign test Average sorted runs 5.0 (±0.5) 21.2 (±0.4) 48.6 (±0.3) 99.1 (±0.1) 75.2 (±0.7)
T-test Average sorted runs 4.5 (±0.1) 21.1 (±0.2) 51.7 (±0.5) 99.6 (±0.1) 81.6 (±0.6)

estimator R̂k.

Proof: We determine the minimum of var(R̂k) and
show that R̂2 realizes the minimum. By definition,
var(R̂k) equals E(R̂2

k) − E(R̂k)2. Since R̂k is un-

biased, E(R̂k) = r so var(R̂k) = E(R̂2
k) − r2 =∑

e P (e)R̂2
k(e)− r2.

At the minimum, dvar(R̂k)/dki,j = 0 for all
1 ≤ i < j ≤ n. Taking derivatives w.r.t.
ka,b for any a, b such that (a, b) 6= (1, 2) gives

dvar(R̂k)/dka,b = d
∑

e P (e)R̂2
k(e) − r2/dka,b which

computes as
∑

e P (e)2R̂k(e)(dR̂k(e)/dka,b).

We can write R̂k =
∑

1≤i<j≤n,j>2 ki,jI(ei =
ej) + k1,2I(e1 = e2) and use (3) to
write k1,2 = 1 − ∑

1≤i<j≤n,j>2 ki,j , giv-

ing R̂k =
∑

1≤i<j≤n,j>2 ki,jI(ei = ej) +
(1 − ∑

1≤i<j≤n,j>2 ki,j)I(e1 = e2). So,

the term dR̂k(e)/dka,b can be written
as d

∑
1≤i<j≤n,j>2 ki,jI(ei = ej) + (1 −∑

1≤i<j≤n,j>2 ki,j)I(e1 = e2)/dka,b which equals

I(ea = eb) − I(e1 = e2). So dvar(R̂k)/dka,b is∑
e P (e)2R̂k(e)(I(ea = eb)− I(e1 = e2)).

We need to distinguish two cases, namely a ≤
2 and a > 2. If a > 2, dvar(R̂k)/dka,b is∑

e P (e)2
∑

1≤i<j≤n ki,jI(ei = ej)(I(ea = eb)−I(e1 =

e2)) reduces to 2ka,b(p(1−p)3 +p3(1−p))−2k1,2(p(1−
p)3 +p3(1−p)) where p = 1

2 + 1
2

√
2r − 1 as before. For

this to equal zero, we have p = 0 or p = 1 coinciding
with replicability of r = 1, or ka,b = k1,2. Likewise,

if a ≤ 2 dvar(R̂k)/dka,b reduces to 2ka,b(p(1 − p)2 +
p2(1 − p)) − 2k1,2(p(1 − p)2 + p2(1 − p)). And again,
we have r = 1 or ka,b = k1,2.

So, var(R̂k) reaches an optimum at ka,b = k1,2 for all
a, b, which means all coefficients are equal. And since
they sum to 1, we have ka,b = 1

n(n−1)/2 since there are

n(n− 1)/2 coefficients.

The optimum is a minimum, as Figure 2 shows.

In summary, Theorem 3.2 states that R̂2 is indeed an
efficient (i.e. unbiased with lowest variance) estimator
in the class of unbiased estimators R̂k.

4. Empirical results

First, we establish which sampling scheme results in
acceptable experiments based on Type I error and
power. Then, we look at factors that impact replica-
bility. To measure Type I error and power, algorithm
A (naive Bayes [5] as implemented in Weka 3.3 [9])
and algorithm B (C4.5 [7] as implemented in Weka
with default parameters) were compared on synthetic
data and UCI data sets. The synthetic data sets was
generated using four data sources based on four ran-
domly generated Bayesian networks ([2] for more de-
tails). The data sets contained 10 binary variables and
50% class probability. Each of the data sources were
used to generate 1000 data sets with 300 instances.
Data source 1 has mutually independent variables, so
there is no performance difference between naive Bayes
and C4.5, which allows us to measure the Type I error.
For sources 2, 3 and 4, C4.5 outperforms naive Bayes
with increasing margin (on average 2.77%, 5.83% and
11.27% respectively as measured on 10.000 instance
test sets), which allows us to measure the power of
tests. The sampling methods mentioned in Section
2.1 were performed 10 times with 10 folds and 10 runs
at 5% significance level.

Table 1 shows the results on the synthetic data with
numbers in brackets indicating a 95% confidence inter-
val. The first six rows are for the rank sum test. Note
that the use all data, average over folds and over runs
sampling schemes have a Type I error over 50%, while
a 5% Type I error is desired. The resampling scheme
has an elevated Type I error as has the 10 fold cross
validation scheme. Only the sorted runs scheme shows
an appropriate level of Type I error. This comes at the



Table 2. UCI data sets. Nr of draws of sorted 10 x 10 fold cv (α = 5%, 95% intervals for R̂2 within ±3%)
10+ 20+

Data set 123456789 01234567890 01234567 Mean norm. R̂2

Sign test 84.4
NB vs C45 ..9.....2 .4..3..27. ......5. 78.2
NB vs NN .....96.9 ....19.9.. ....6... 84.6
C45 vs NN ...1.4... .........5 ........ 90.4
Rank test 90.2
NB vs C45 ......... .4..3...9. ......7. 87.6
NB vs NN ......8.. .......9.. ....8... 93.2
C45 vs NN ...2.6... .........7 ........ 90.0
T test 90.8
NB vs C45 ......... .1..2...9. ......7. 91.0
NB vs NN ......9.. .......9.. ....7... 93.6
C45 vs NN ...2.6... .........6 .......9 88.0

cost of decreased power compared to most of the other
schemes.

Table 1 also shows the minimum of the average repli-
cability over Set 1 to 4. It shows that resampling and
10-fold cv has a level of replicability which is not ac-
ceptable (below 50%). The schemes based on repeated
cross validation do show acceptable replicability. In
particular, the sorted runs scheme has a replicability
of over 80%. Results for the sign test and t-test are
similar to the results for the rank sum test.

Table 1 also shows Type I error and power for sorted
runs with sign test and t test. Those figures are very
close to the ones for the rank sum test, taking in ac-
count that a slightly higher Type I error should lead
to slightly better power. The replicability for sorted
runs with the sign test is 75.2% and with the t-test is
81.6%. Compared to the 80.6% for the rank sum test,
the sign test performs considerably worse. This can be
explained by the lack of exploiting sizes of differences
in the sample by the sign test. The replicability of the
t-test is only slightly better.

Further experiments were performed using the sorted
runs sampling scheme while varying various parame-
ters of the experiment, namely
• significance level (1%, 2.5%, 5% and 10%),
• number of runs (10, 20, 30, 40, 50, 60, 70, 80, 90 and
100),
• class probability for binary data (0.1, 0.2, 0.3, 0.4
and 0.5),
• class cardinality (2, 3 and 4),
• different pairs of algorithms (out of Naive Bayes,
C4.5, nearest neighbor, tree augmented naive Bayes,
decision stump and support vector).

Though space limitations prevent us from presenting
the complete set of outcomes here, we can report that
the experiments resulted in a Type I error not exceed-

ing the significance level by more than 1% with the
sorted runs sampling scheme for all three tests con-
sidered. Decreasing the class probability increased
replicability. The explanation for this behavior can
be found in realizing that learners tend to predict the
majority class the more this class dominates the data.
Increasing the number of runs consistently increased
replicability. It appears that the sorted runs sampling
scheme results in a sample for which the independence
assumption is not heavily violated, so that no correc-
tion in variance [6] or degrees of freedom [2] is required.

Table 2 shows results for 27 data sets from the UCI
repository [1]1 using the sorted runs sampling scheme
with the three different types of tests. We compared
naive Bayes, C4.5 and nearest neighbor (NB, C4.5 and
NN respectively in Table 2). Each algorithm was run
ten times. The middle three columns show the num-
ber of times that the experiment decides that the null
hypothesis is acceptable (so algorithms perform equal
on a data set) as numbered in the footnote1. When
the null hypothesis is 0 or 10 times accepted only a dot
is shown, since both situations indicate perfect repli-
cability. The first observation is that replicability is
an issue for non-synthetic data sets, and thus affects
many machine learning researchers. Further, the sign
test performs much worse than the other two tests,
while the t-test shows marginally higher replicability
than the rank sum test. So, not only the sampling
method, but also the hypothesis test has an impact on
the replicability of the experiment.

11: anneal, 2: arrhythmia, 3: audiology, 4: autos, 5:
balance-scale, 6: breast-cancer, 7: credit-rating, 8: ecoli,
9: German credit, 10: glass, 11: heart-statlog, 12: hepati-
tis, 13: horse-colic, 14: Hungarian heart disease, 15: iono-
sphere, 16: iris, 17: labor, 18: lymphography, 19: pima-
diabetes, 20: primary-tumor, 21: sonar, 22: soybean, 23:
vehicle, 24: vote, 25: vowel, 26: Wisconsin breast cancer,
and 27: zoo.



5. Conclusions

We defined replicability of machine learning experi-
ments in terms of probability. This has the benefit
that it allows for comparison over different experimen-
tal designs, unlike a previous rather ad hoc definition
[2]. For example, replicability measured on n repeats
of an experiment can be compared with replicability
measure on 2n repeats. Furthermore, threshold effects
present in the ad hoc definition are not present in our
definition.

The main theoretical result of this paper is the presen-
tation of an estimator for replicability that was shown
to be unbiased and which has the lowest variance in
its class. Using this estimator, we gathered empirical
data to gain new insights in how experimental designs
influence replicability and found that the hypothesis
test, the sampling scheme, and the class probability
impact replicability. In our experiments, replicabil-
ity consistently increased with sampling methods that
draw more samples from the same data set. Replica-
bility appears to be an issue both with synthetic data
sets as well as with UCI data sets. This indicates that
machine learning researcher and data analysts should
be wary when interpreting experimental results.

The main practical outcome of the experiments is
that judged on replicability the sorted runs sampling
scheme with the widely used t-test showed superior
properties compared to the sign test and performed
marginally better than the rank sum test. The sorted
runs scheme is based on combining accuracy estimates
in a way that produces a representative sample of ac-
curacy differences of learning algorithms. Surprisingly,
the sorted runs sampling schemes is the only scheme
out of a set of popular schemes we considered that also
showed acceptable Type I errors and reasonable power
for a wide range of parameters using the three hypoth-
esis tests considered. Consequently, experiments based
on sorted runs sampling schemes do not require vari-
ance corrections [6] or calibration of degrees of freedom
[2]. In summary, based on replicability, Type I error,
power and theoretical considerations, we recommend
using the sorted runs sampling scheme with a t-test
for comparing classifiers on a small data set.

One would expect that replicability ceases to be an is-
sue with larger data sets. In the future, we would like
to perform larger scale experiments to get a better in-
sight in the relation between replicability, the number
of samples taken in an experiment and data set size.
This should also give a better insight in the relation
between replicability and Type I and II error.

In this paper, we considered machine learning experi-

ments in which we choose the best of two classifiers for
a given data set. In practice, more than two classifiers
are available. Also, machine learning researchers rou-
tinely compare algorithms over a large number of data
sets. This leads to new replicability issues and mul-
tiple comparison problems, issues that require further
research.
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A. Appendix

Lemma A.1 For 0 ≤ p ≤ 1, and n ≥ 2 a positive integer,Pn
i=0 p

i(1− p)n−i
`
n
i

´
= 1Pn

i=0 p
i(1− p)n−i

`
n
i

´
i = npPn

i=0 p
i(1− p)n−i

`
n
i

´
i2 = n2p2 − np2 + np

Proof: (sketch) The first equation is the binomial theorem
[4]. The second follows from the observation that the term
in sum is zero for i = 0, so the range of the sum can be
changed to 1 ≤ i ≤ n. Using

`
n
i

´
=
`
n−1
i−1

´
n
i

for i > 0 we can
absorb the i at the end of the sum, and taking p outside
the term in the summation, we can apply the binomial
theorem. The third equation follows from a similar line of
reasoning.
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