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Abstract ronment. In each case, classification tasks naturally arise
. . which clearly violate the assumption of independent and
Kernel conditional random fields (KCRFs) are identically distributed instances that is made in the migjor
introduced as a framework for discriminative of classification procedures in statistics and machinalear
modeling of graph-structured data. A repre- ing. It is therefore of central importance to extend recent
senter theorem for conditional graphical mod- advances in classification theory and practice to strudfure
els is given which shows how kernel condi- non-independent data classification problems.

tional random fields arise from risk minimization
procedures defined using Mercer kernels on la- Conditional random fields (Lafferty et al., 2001) have been
beled graphs. A procedure for greedily select- proposed as an approach to modeling the interactions be-
ing cliques in the dual representation is then pro- tween labels in such problems using the tools of graphical
posed, which allows sparse representations. By =~ models. A conditional random field (CRF) is a model that
incorporating kernels and |mp||C|t feature spaces aSSignS a jOint probablllty distribution over labels condi
into conditional graphica| models, the framework tional on the input, where the distribution respects the in-
enables semi-supervised learning algorithms for ~ dependence relations encoded in a graph. In general, the
structured data through the use of graph kernels.  1abels are not assumed to be independent, nor are the ob-
The framework and clique selection methods are servations conditionally independent given the labels, as
demonstrated in synthetic data experiments, and IS assumed in generative models such as hidden Markov
are also applied to the problem of protein sec- models. The CRF framework has already been used to ob-
ondary structure prediction. tain promising results in a number of domains where there
is interaction between labels, including tagging, parsing
and information extraction in natural language processing
(Collins, 2002; Sha & Pereira, 2003; Pinto et al., 2003) and
1. Introduction the modeling of spatial dependencies in image processing
(Kumar & Hebert, 2003). In related work, Taskar et al.
Many classification problems involve the annotation of datg2003) have studied random fields (also known as Markov
items having multiple components, with each componenhetworks) fit using loss functions that incorporate a gener-
requiring a classification label. Such problems are chalglized notion of margin, and have observed how the “kernel
lenging because the interaction between the componentgck” applies to this family of models.

can be rich and complex. In text, speech, and image pro- ) » ]
cessing, for example, it is often useful to label individual We present an extension of conditional random fields that

words, sounds, or image patches with categories to enabRErMits the use of implicit features spaces through Mercer

higher level processing; but these labels can depend on of€™Mels, using the framework of regularization theory.tsuc
another in a highly complex manner. For biological se-2" extension is motivated by the significant body of recent

quence annotation, it is desirable to annotate each amin@O'K that has shown kernel methods to be extremely e.ffec-
acid in a protein with a label, with the collection of labels tVe€ in @ wide variety of machine learning techniques; for
representing the global geometric structure of the motecul €<@MPple, they enable the integration of multiple sources of

Here the labels in principle depend on the physical charinformation in a principled manner. Our introduction of
acteristics of the molecule and its ambient chemical enviMercer kemels into conditional graphical models is also

motivated by the problem of semi-supervised learning. In
Appearing inProceedings of the2z°* International Conference Mmany domains, the collection of annotated training data is
on Machine LearningBanff, Canada, 2004. Copyright 2004 by difficult and costly, as it requires the efforts of expert hu-

the authors. man annotators, while the collection of unlabeled data may



be relatively easy and inexpensive. The emerging theme ilmage processing, the feature vector at a node might in-
recent research in semi-supervised learning is that kernelude a pixel intensity, as well as average pixel intensitie
methods, in particular those based on graphical representamoothed over neighboring regions using wavelets. In pro-
tions of unlabeled data, form a theoretically attractivd an tein secondary structure prediction, each node might eorre
empirically promising set of techniques for combining la- spond to an amino acid in the protein, and the feature vector
beled and unlabeled data (Belkin & Niyogi, 2002; Chapelleat a node may include an amino acid histogram of all pro-
et al., 2002; Smola & Kondor, 2003; Zhu et al., 2003). tein fragments in a database which closely match the given
Protein at that node. In the following section we present

In Section 2 we formalize the learning problem and presenPur notation and formal framework for such problems.

a version of the classical representer theorem of Kimeldor
and Wahba (1971). Unlike the classical result, for kernel .

conditional random fields the dual parameters depend oa'l' Cliques and labeled graphs

all potential assignments of labels to cliques in the graphi et & denote a collection of finite graphs. For examge,
not onIy the observed labels. This motivates the need fOfmght be the set of finite chains, appropriate for sequence
algorithms to derive sparse representations, since te fumodeling, or the rectangular 2-dimensional grids, appro-
representation has parameters for each labeled clique isviate for some image processing tasks. The set of ver-
the graphs appearing in the training data. In Section 3 Weices of a graply € ® is denoted by (g), and size of the
present a greedy algorithm for selecting a small number ofjraph is the number of vertices, denotgtl= |V (g)|. A
representative cliques. This “clique selection” algarith cliqueis a subset of the vertices which is fully connected,
paraIIeIS the “import vector selection” algorithms of kern with any pair of vertices joined by an edge; we denote
logistic regression (Zhu & Hastie, 2001), and the featurehe set of cliques in the graph (g). The number of
selection methods that have been previously proposed fafertices in a clique is denoted By|. Similarly, we de-
random fields and conditional random fields using explicithote byC(®) = {(g,¢)|g € &, ¢ € C(g)} the collection

features (McCallum, 2003). of cliques across varying graphs. In other words, a mem-

In Section 4 the ideas and methods are demonstrated dif" OfC(&) consists of a graph and a distinguished clique
two synthetic data sets, where the effects of the underly®f that graph.  We will work with kernels that compare
ing graph kernels, clique selection, and sequential modefompenents of different graphs. For example, we could
ing can be clearly seen. In Section 5 we report the result§onsider a/ke/rneK : C(@/ x C(®) — {0,1} given by

of experiments using kernel CRFs for protein secondar)f(((gvc)’ (g',¢)) = o(lel, [])-

structure prediction. This is the task of mapping primarywe next consider labelings of a graph. L¥tbe a fi-
sequences of amino acids onto a string of secondary strugite set of labels; infinite) is also possible in a re-

ture assignments, such as helix, sheet, or coil. Itis widelyyression framework, but we restrict to finide for sim-
believed that secondary structure can contribute valuablglicity. The set of)-labelings of a graphy is denoted

informationto discerning how prqt_einsfold inthre_e dimen-_y g) = {y|y c ylg\}, and the collection of ally-
sions. We compare kernel conditional random fields, estitapeled graphs iV(®) = {(g,z)|ge6, ye)}
mated using clique selection, against support vector masimilarly, let X be an input feature space; for example,
chine cla_s_sifiers, vv_it_h both_method_s using kernels derivedy — R”. The setX(g) = {w |x € )(Ig\} denotes the
from position-specific scoring matrices (PSI-BLAST pro- set of assignments of a feature vector to each vertex of

files) as input features. In addition, we give results for thethe graphg; X(®) = {(g,z)|g € B, £ c X(g)} is the
use of graph kernels derived from the PSI-BLAST profilescollection of all such annotated graphs.  Finally, let

?n a transductive, semi-supervised framewor.k for e_stimgt-yc(g) = {(07 y.)|cecC(g), y, € ylcl} be the set ofy-

ing the kernel CRFs. The paper concludes with a brief distabeled cliques in a graph. As above, we similarly define

cussion in Section 6. XVe(g) = {(z,c,y.) | € X(g), (¢,y.) € Ve(g)} and
Xyc(ﬁ) = {(ga Z,C, yc) | (wv Cy yc) € Xyc(g)}

2. Representation

. . . ) __ 2.2.Representer Theorem
Before proceeding with formalism, we give some intuition

for what our framework is intended to capture. Our goalThe prediction task for conditional graphical models is to
is to annotate structured data, where the structure is+epréearn a functiorh : X (&) — Y(&) whereh(g, z) € Y(g)
sented by a graph. Labels are to be assigned to the nodisa labeling ofg, with the goal of minimizing a suitably
in the graph in order to minimize some loss function, suchdefined loss function. The classifier = h., is chosen
as 0-1 error: the labels come from a small 3etfor ex-  based on alabeled samdlg”, =", y™)} ", with each
ample,) = {red,bl ue,green}. Each vertex in the (g, z® y®) being a labeled graph, the graph possibly
graph is associated with a feature vector € X. In  changing from example to example.



To limit the complexity of the hypothesis, we will as- |-||, and let? : R, — R, be strictly increasing. Then
sume that it is determined completely by a functipn the minimizerf* of
XY (8) — R. Let f(g, =) denote the collection of values
,T,c,Y,.)}, with ¢ € C(g) varying over the cliques i D (i
({){ilgandyC g}y\c\ varying (()E\l/)er all)/p(?ssible Iabelin(zgs of Rof = Z(b( v (e .2 ))) + 2 (F 1)
that clique. We assume that a loss funciidw, f (g, )) is
given. As an important example, and the loss function usedf it exists, has the form
in this paper, consider theegative log loss

oy, f(g,2)) = (1) Z o Y ey ) Kz y,)
i=1 ceC(g™) y eYlel
- Z fC(mvyc)+1og Z exp ( Z fc(wvy/c)>

ceC(g) y'eV(g) ceC(g)

The key property distinguishing this result from the stan-
dard representer theorem is that the “dual parameters”

where f.(z,y,) is shorthand forf (g, z, ¢, y,). The neg- al?) (y.) now depend omll assignments of labels.

ative logmarginalloss could also be considered for mini-

mizing the per-node error. The negative log loss functior?-3. Two special cases

corresponds to a conditional random field given by Let © be a Mercer kernel onZ = X x ) x

Y. Thus, the kernel is defined in terms of the ma-
p(yleg,x) =2 (g, 2, f) exp (Zﬁ:(%%)) (2) tix entries K(z,z') where z = (z,y1,y2). Using
c K we can define a kernel on edges M):(6) by
/ / / / / / _
We now discuss how the “representer theorem” of kernel%((g’ @, (v1,v2), (y1,22)). (g ’wF’ (Ult’hUQ)’ (v ’I yQ.)))d sk
machines (Kimeldorf & Wahba, 1971) applies to condi- _((_m”}’y?’m)’ (4, 51,43)).  For the regularized ris
tional graphical models. While this is a simple extension,Minimization problem
we’re not aware of an analogous formulation in the statis- n
tics or machine learning literature. f?}& Ry(z, f,\) = frél;-an Z¢(y(i)vf(‘”(i))) M fl
Let K be a Mercer kernel o~ ) (&); thus ' =

b wheref € Hy, the CRF representer theorem implies that
K((g z,cy.), (g2, ¢ y)) €R the solutionf* has the form
foreach(x, c,y.) € XVc(g) and(z’, ', yL) € XVe(g).

Intuitively, this assigns a measure of similarity between &l (on02) (T 91, 2)
labeled clique in one graph and a labeled clique in a (pos- ™ (i _ ;
sibly) different graph. We denote bk the associated re- SN Of(v)w/)(ya YV K (@0, y1,92), (27, 9,9))
producing kernel Hilbert space, and pyf ;- the associated =1y’ (v,v)

norm onL?(XYc(®)).

In the special case of kern&l(z, 2’) = K (z,2") 6(y1, )

Consider a regularized loss function of the form it follows that
Rof =30 (v, 1@, 2M)) + 2 (1 fx) Foroom (@91, 32) Z Y ol ) K, at)
=1

=1 Uev(g(%))

It is important to note that the loss depends on all pOSSIUnder the probabilistic model (2), this is simply kernel

ble assignmentg,. of labels to each clique, not just those |

. 0 ] ~ logistic regression. In the special case {z,z') =
observed in the labeled dagd”. Suppressing the depen Rz, 7)o 5 1o 1) we get that
dence on the graph in the notation, letk,(x,y,;, ) = ' Y14 Y1 41) 0192, 42 9

K((g,x,c,y,),-). Following the argument for the stan- (i) (0 (3)
dard representer theorem, it can easily be shown that thlos,02) (%291, 92) Za” (1) K@y, o1 ) + a1, 92)

minimizer of a regularized loss function of the above form

can be expressed in terms of the basis functif$ =  and we recover a simple type of semiparametric CRF.
K(, (6,29, ¢,y.)).

3. Clique Selection

Proposition (Representer theorem for CRFs). Let K be  The representer theorem shows that the minimizing func-
a Mercer kernel oiX Y (®) with associated RKHS norm tion f is supported by labeled cliques over the training



examples; however, this may result in an extremely large . i ith
number of parameters. We therefore pursue a strategy (W'“a ize with f

incrementally selecting cliques in order to greedily re8luc 1 For each candidate ¢ My, supported by a sin-

the regularized risk. The resulting procedure is paratiel t gle labeled clique, calculate the functional derivative
forward stepwise logistic regression, and to related meth- dR4(f, h).

ods for kernel logistic regression (Zhu & Hastie, 2001),
as well as to the greedy selection procedure presented in2. Select the candidafe = arg max,, |dR4(f, h)| hav-

= 0, and iterate:

(Della Pietra et al., 1997). ing the largest gradient direction. Sét— f + aph.
Our algorithm will maintain anactive set A = 3. Estimate parametets for each activef by minimiz-
{(6,c,y.)} C Ve(®) of labeled cliques, where the la- ing Ry (f).

belings are not restricted to those appearing in the trginin
data. Each such candidate cligue can be represented byF‘?‘gure 1.Greedy Clique Selection. Labeled cliqgues encode basis

i i D) = i) i .
paS'S .functlorh( ) = K((g ’:(Bl)( ), ¢,y,.),-) € HK_’ and functionsh which are greedily added to the model, using a form
is assigned a parametef, = a. ' (y.). We work with the  of functional gradient descent.

regularized risk

i NG A2 wherei is a specific instance; is a particular cligue of
Ry(f) = Z ¢ (y( L@, ))) T3 () g, andy, is a labeling of that clique. Alternatively, in
! a slightly less greedy manner, at each step in the selection
where¢ is the log-loss of equation (1). To evaluate a can-procedure a specific instance and clique may be selected,
didateh, one strategy is to compute thainsup,, R (f) — and functions foeachclique labeling may be added.

Ry(f + oh), and to choose the candidatehaving the In the experiments reported below for sequences, the
largest gain. This presents an apparent difficulty, sinee th . P L P q '
marginal probabilitie(y, = y|x) and expected counts

optimal parameter cannot be computed in closed form, r the state transitions are required; these are computed
and must be evaluated numerically. For sequence modefg. quired, . pu
using the forward-backward algorithm, with log domain

this involves forward-backward calculations for each Can_ar'thmet'c to avoid underflo A quasi-Newton method
didateh, the cost of which is prohibitive. ' : void u W. quast-New

(BFGS, cubic-polynomial line search) is used to estimate

As an alternative, we adopt the functional gradient descerthe parameters in step 3. Prediction is carried out using the
approach, which evaluates a small change to the curreribrward-backward algorithm to compute marginals rather

function. For a given candidatle, consider adding: to  than using the Viterbi algorithm.

the current model with small weight thusf — f + h.

ThenRy(f +¢ch) = Ry(f) +edRy(f, h) + O(¢*), where 3.1, Combining multiple kernels
the functional derivative o4 at f in the directionh is

computed as The above use of keme_ls enables semi-supervised learn-
B ing for structured prediction problems. One of the emerg-
dRy(f,h) = Ef[h]—Eh]+ X{f, h)g ing themes in semi-supervised learning is that graph ker-

_ o nels can provide a useful framework for combining labeled
whereE[h] = >, h(x",y?) is the empirical expecta- and unlabeled data. Here an undirected graph is defined
tion and E;[n] = 32,3, p(y|x®, f) h(z™,y) is the  over labeled and unlabeled data instances, and generally
model expectation conditioned ar, combined with the  the assumption is that labels vary smoothly over the graph.
empirical distribution or. The idea is that in directios  The graph is represented by the weight mattix and one
where the functional gradienf?,(f, 1) is large, the model  can construct a kernel from the graph Laplacian, substitut-
is mismatched with the labeled data; this direction ShOU|dng eigenvalues\ by r(\), wherer is a non-negative and
be added to the model to make a correction. This results igtypically) decreasing function. This regularizes higé-fr
the greedy clique selection algorithm summarized in Figquency components and encourages smooth functions on
ure 1. the graph; see (Smola & Kondor, 2003) for a description of

Following our earlier notation, this unifying view of graph kernels.

@ _ @ ) It is important to note that such a use of a graph kernel for
h(@™,y) = Z h(g, ", c,y.) semi-supervised learning introducesaxdditional graphi-
ceC(g™) cal structure, which should not be confused with the graph
representing the explicit dependencies between labels in a
CRF. For example, when modeling sequences, the natural
CRF graph structure is a chain. By incorporating unla-
h(-)=K((g?, 29, ¢y,),) beled data through the use of a graph kernel, an additional

is the sum over all cliques. The candidate functibmsight
include functions of the form



graph that will generally have many cycles is implicitly in- prevents the RBF model from effectively using the context.

troduced. However, the graph kernel and a more standar|(_1||v”vI with Gaussan mixtures. This more difficult

kernel may be naturally cc_)mbmed as alinear COmb'namondataset is generated from a 3-state HMM. Each state is a
see, for example, (Lanckriet et al., 2004).

mixture of 2 Gaussians with random mean and covariance.
_ ] The Gaussians strongly overlap; see Figure 3 (left). The
4. Synthetic Data Experiments transition probabilities favor remaining in the state, hwit

. a probability of 0.8, and to transition to each of the other
To demonstrate the properties and advantages of KCRF Wo states with equal probability 0.1; we generate 100 se-

we prepared two synthetic datasets: a “galaxy” dataset tQ uences of lenath 30. We use an RBE kernel with: 0.5
investigate the relation to semi-supervised and sequenti ) 9 ) -

learning, and an HMM with Gaussian mixture emissioni‘A graph kernel is slightly worse than the RBF kernel on

g . . this dataset, and is not shown.) We perform 20 trials for
probabilities to demonstrate the properties of cliquecsele . . . : .
tion and the advantages of incorporating kernels each training set size, and in each trial we perform clique

selection to select the top 20 vertices. The center and right
Galaxy. The “galaxy” dataset is a variant of two spirals; plots in Figure 3 show that the semiparametric KCRF again
see Figure 2 (left). Note the dense core of points from bottoutperforms kernel logistic regression with the same RBF
classes. The sequences are generated from a 2-state hiddemnel.
Markov model (HMM), where each state emits instanceﬁz. . . . - .
. . igure 4 shows clique selection, with a training size 20 se-
uniformly from one of the classes. There is a 90% chance . .
R : ; guences, averaged over 20 random trials. The regularized
of staying in the same state. The idea is that under a se: S o L .
fisk (left), which is training set likelihood plus regulaor,

guence model, an example from the core will have a betterI d | L h
than random chance to be labeled correctly based on t always decreases as we select more vertices into the KCRF.

o n the other hand, the test set likelihood (center) and ac-
context. This is not true under a non-sequence model, an

the dataset as a whole will thus have about a 20% BayecsuraCy (”ght). s.aturate and even worsen sllghtly, shoyvmg
- . Signs of overfitting. All curves change dramatically at first
error rate under the iid assumption. We sample 100 se;,

; ; .~ “demonstrating the effectiveness of the clique selectioen al
guences of length 20. Note the choice of semi-supervised _ . . -
rithm. In fact, fewer than 10 vertex cliques are sufficient
vs. standard kernels and sequence vs. non-sequence m d

els are orthogonal; the four combinations are all teste r this problem.
on. We construct a semi-supervised graph kernel by first ] o
creating an unweighted 10-nearest neighbor graph. W&. Protein Secondary Structure Prediction

then compute thigraieh Laplamm and form the kern.el For the protein secondary structure prediction task, wd use
K =10 (L +107°) . This corresponds to & function e RS126 dataset, on which many current methods have
r(A) = 1/(A +1077) on L's eigenvalues. The standard pqqp, developed and tested (Cuff & Barton, 1999). It is
ke_rnel is the radial basis function (RBF) kernel with band-, non-homologous dataset, since among the 126 protein
width o = ()..35._AII parameters here and below are tunedchains, no two proteins share more than 25% sequence
by cross validation. identity over a length of more than 80 residues (Cuff & Bar-

Figure 2 (center) shows the results of using kernel logision, 1999). The dataset can be downloaded frarhp:
tic regression with the semi-supervised kernel and with/ / barton. ebi . ac. uk/.

the RBF kernel; here the sequence structure is ignoreqye aqopt the DSSP definition of protein secondary struc-
For each training set size, which ranges from 20 to 40Q,;.e (Kahsch & Sander, 1983), which is based on hydrogen
points, 10 random trials were performed. The error inter,,qing patterns and geometric constraints. Following the

vals shown are one standard error. When the labeled S@iqcssjon in (Cuff & Barton, 1999), the 8 DSSP labels are
size is small, the graph kernel is much better than the RBE.,ced to a 3 state model as follows: H & G map to helix

kernel. However both kernels saturate at the 20% Bayea_l) E & B to sheets (E), and all other states to coil (C)
error rate. ' ’ '

) , The state-of-the-art performance for secondary structure
Next we apply both .kernels_ to the semiparametric KCRFpq iction is achieved by window-base methods, using the
model in section 2.3; see Figure 2 (right). Note thaxis  ,ition-specific scoring matrices (PSSM) as input fea-
is the number of training sequences-since each sequengeg e PSI-BLAST profiles, together with Support Vec-
has 20 instances, the range is the same as Figure 2 (centgg \jachines (SVMs) as the underlying learning algorithm
The kernel CRF is capable of getting unde_r the 20% Baye%\]ones, 1999 Kim & Park, 2003). Finally, the raw predic-
error floor of the non-sequence model, with both kernels;s are fed into a second layer SVM to filter out physi-

and sufficient labeled data. However, the graph kernel i1y unrealistic predictions, such as one sheet residue su
able to learn the structure much faster than the RBF ker;

. X _~'rounded by helix residues (Jones, 1999).
nel. Evidently, the high error rate for low label data sizes
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Figure 2.Left: The galaxy data. CentelKernel logistic regressiorcomparing two kernels: RBF and a graph kernel using thebeteal
data. Right:Kernel conditional random fieldsvhich take into account the sequential structure of tha.dat
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Figure 3.Left: The Gaussian mixture data (only a few data points acsvai Center: Kernel logistic regression with an RBF kernel
Right: Kernel CRF with the same kernel.

In our experiments, we apply a linear transformatioto  Per-residue accuracyTo evaluate prediction performance,
the PSSM matrix elements accordinglt@r) = 0 for « < we use the overall per-residue accuracy (also known as
—5,L(z) = 3+ for—5 <a < 5,andL(z) = 1forz >  Q3). We experiment with training set size of 5 and 10 se-
5. Thisis the same transform used by Kim and Park (2003)guences respectively. For each size we perform 10 trials
which achieved one of the best results in the recent CASRvhere the training sequences are randomly sampled, and
(Critical Assessment of Structure Predictions) compmtiti  the remaining proteins are used as the test set. For ker-
The window size is set to 13 by cross-validation. Thereforenel CRF we select 300 cliques, again from either vertex
the number of features per positionli$ x 21 (the number candidates alone or vertex and edge candidates. We com-
of amino acids plus gap). pare them with the SVM-light package (Joachims, 1998)
for SVM classifier. All methods use the same RBF kernel.

Clique selection. We use an_RBF kern_el with bandwidth See Table 1. KCRFs and SVMs have comparable perfor-
o = 0.1 chosen by cross-validation. Figure 5 (left) showsmance

the kernel CRF risk reduction as clique selection proceeds,

when only vertex clique candidates are allowed (note ther@ransition accuracy. Further information can be obtained
are always position independent edge parameters in they studying transition boundaries, for example, the tran-
KCRF models, to prevent the models from degrading intosition from “coil” to “sheet.” From the point of view of
kernel logistic regression), and when both vertex and edgstructural biology, these transition boundaries may ftevi
cligues are allowed. (The kernel between vertex cliques ismportant information about how proteins fold in three di-
K(z,2') = K(x,2')6(y1,v}), and between edge cliques mension. On the other hand, those are the positions where
itis K(z,2") = K(x,2')6(y1,v})d(y2,v5).) The total  most secondary structure prediction systems will fail. The
number of clique candidates is about 4800 (vertex only)ransition boundary is defined as a pair of adjacent postion
and 20000 (vertex and edge). The rapid reduction in riski, i + 1) whose true labels differ. It is classified correctly
indicates sparse training of kernel CRFs is successfub Alsonly if both labels are correct. This is a very hard problem,
when more flexibility is allowed by including edge cliques, as can be seen in Table 2 and KCRFs are able to achieve a
the risk reduction is much faster. The more flexible modelconsiderable improvement over SVM.

also has higher test set log likelihood (center) although th
does not improve the test set accuracy too much (right)
These observations are generally true for other trials too.

Semi-supervised learning/e start with an unweighted 10
nearest neighbor graph over positions in both training and
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400

test sequences, with the metric being Euclidean distance i6. Conclusion
the feature space. Then the eigensystem of the normalized

Laplacian is computed. The semi-supervised graph kern ernel conditional random fields have been introduced as
is obtained with the fuﬁction(A-) — _ 1 onthefirst @ framework for approaching graph-structured classifica-

A;+0.01 : . .
7 < 200 eigenvalues. The rest eigenvalues are set to zerd!on problems. A representer theorem was derived which

We use the graph kernel together with the RBF kernel iro'OWS how KCRFs can be motivated by regularization the-
KCRF. As a clique candidate is associated with a kernelO"Y- The resulting techniques combine the strengths of hid-
we now select two best candidates per iteration, one witt!€" Markov models, or more general Bayesian networks,
the graph kernel and the other with the RBF kernel. We stillk€"n€l machines, and standard discriminative linear elass
run for 300 iterations for all trials. We also report the re- €S including logistic regression and SVMs. The formal-
sults using Transductive SVMs (TSVMs) (Joachims, 1999)S™M Presented is quite general, and should apply naturally
with the RBF kernel. From the results in Table 3, we cant© & Wide range of problems.

see that the semi-supervised graph kernel is significantlpur experimental results on synthetic data, while care-
better than TSVMs on the 5-protein dataset while achievesully controlled to be simple, clearly indicate how sequenc
no improvement on the other one. To diagnose the causenodeling, graph kernels for semi-supervised learning, and
we look at the graph together with all the test labels. Weclique selection for sparse representations work together
find that the labels are not smooth w.r.t. the graph: on averwithin this framework. The success of these methods in
age only 54.5% of a node’s neighbors have the same labeéal problems will depend on the choice of suitable kernels

as that node. Detecting faulty graphs without using largehat capture the structure of the data.

amount of labels, and constructing better graphs remain fu- ) -
ture research. For protein secondary structure prediction, our resukés ar

only suggestive. Secondary structure prediction is a prob-
The approximate average running time of each trial, iniem that has been extensively studied for more than 20
cluding both training and testing, is 30 minutes for KCRFs,years; yet the task remains difficult, with prediction ageur
7 minutes for SVMs, and 16 hours for TSVMs. For KCRFs cies remaining low. The major bottleneck lies in beta-sheet
the majority of the time is spent on clique selection. prediction, where there are long range interactions batwee
regions of the protein chain that are not necessarily coensec
utive in the primary sequence. Our experimental results
indicate that KCRFs and semi-supervised kernels have the



5 protein set

10 protein set

Method Accuracy std | Accuracy std
KCRF (v) 0.6625  0.0224| 0.6933  0.0276
KCRF (v+e) | 0.6562 0.0202 0.6933  0.0272
SVM 0.6509 0.0307] 0.6875  0.0235

Table 1.Per-residue accuracy of different methods for secondar
structure prediction, with the RBF kernel. KCRF (v) usedeer

cliques only; KCRF (v+e) uses vertex and edge cliques.

5 protein set

10 protein set

Method Accuracy std | Accuracy std
KCRF (v) 0.1097 0.0271] 0.1462 0.0235
KCRF (v+e) | 0.1114  0.0250, 0.1522 0.0214
SVM 0.0667 0.0313 0.1066  0.0311

Table 2. Transition accuracy with different methods.

5 protein set

10 protein set

Method Accuracy std | Accuracy std
KCRF (v) 0.6722 0.0194| 0.6854  0.0190
KCRF (v+e) | 0.6674  0.0201] 0.6819 0.0194
Trans. SYVM| 0.6480  0.0276] 0.6813  0.0210

Table 3.Per-residue accuracy with semi-supervised methods.

potential to lead to progress on this problem, where the
state of the art has been based on heuristic “sliding win-

ment of multiple sequence methods for protein sec-
ondary structure predictiofRroteing 34, 508-519.

Della Pietra, S., Della Pietra, V., & Lafferty, J. (1997)- In
ducing features of random fieldlEEEE PAMI, 19, 380—
393.

Joachims, T. (1998). Text Categorization with Support Vec-
Y tor Machines: Learning with Many Relevant Features.
ECML

Joachims, T. (1999). Transductive inference for text ¢lass
fication using support vector machind€ML’99.

Jones, D. (1999). Protein secondary structure prediction
based on position-specific scoring matricé#/ol Biol.,
292, 195-202.

Kabsch, W., & Sander, C. (1983). Dictionary of protein
secondary structure: Pattern recognition of hydrogen-
bonded and geometrical featuresBiopolymers 22,
2577-2637.

Kim, H., & Park, H. (2003). Protein secondary struc-
ture prediction based on an improved support vector ma-
chines approactProtein Eng, 16, 553—-60.

Kimeldorf, G., & Wahba, G. (1971). Some results on
Tchebychean spline functionsl. Math. Anal. Applic.
33, 82-95.

Kumar, S., & Hebert, M. (2003). Discriminative fields
for modeling spatial dependencies in natural images.
NIPS'03

dow” methods. However, our results also suggest that the ) )
improvement due to semi-supervised learning is hindere#afferty, J., McCallum, A., & Pereira, F. (2001). Condi-

by the lack of a good similarity measure with which to con-

tional random fields: Probabilistic models for segment-

struct the graph. The construction of an effective graph is ing and labeling sequence dat&ML'01.
a challenge that may best be tackled by biologists and ma-anckriet, G., Cristianini, N., an Laurent El Ghaoui, P. B.,

chine learning researchers working together.
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