
Training Conditional Random Fields via Gradient Tree Boosting

Thomas G. Dietterich tgd@cs.orst.edu

Adam Ashenfelter ashenfad@engr.orst.edu

Yaroslav Bulatov bulatov@cs.orst.edu

School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331 USA

Abstract

Conditional Random Fields (CRFs; Lafferty,
McCallum, & Pereira, 2001) provide a flex-
ible and powerful model for learning to as-
sign labels to elements of sequences in such
applications as part-of-speech tagging, text-
to-speech mapping, protein and DNA se-
quence analysis, and information extraction
from web pages. However, existing learning
algorithms are slow, particularly in problems
with large numbers of potential input fea-
tures. This paper describes a new method for
training CRFs by applying Friedman’s (1999)
gradient tree boosting method. In tree boost-
ing, the CRF potential functions are repre-
sented as weighted sums of regression trees.
Regression trees are learned by stage-wise op-
timizations similar to Adaboost, but with the
objective of maximizing the conditional likeli-
hood P (Y |X) of the CRF model. By growing
regression trees, interactions among features
are introduced only as needed, so although
the parameter space is potentially immense,
the search algorithm does not explicitly con-
sider the large space. As a result, gradient
tree boosting scales linearly in the order of
the Markov model and in the order of the fea-
ture interactions, rather than exponentially
like previous algorithms based on iterative
scaling and gradient descent.

1. Introduction

Many applications of machine learning involve assign-
ing labels to sequences of objects. For example, in
part-of-speech tagging, the task is to assign a part
of speech (“noun”, “verb”, etc.) to each word in a

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the authors.

sentence (Ratnaparkhi, 1996). In protein secondary
structure prediction, the task is to assign a secondary
structure class to each amino acid residue in the pro-
tein sequence (Qian & Sejnowski, 1988).

We call this class of problems sequential supervised
learning (SSL), and it can be formalized as follows:

Given: A set of training examples of the form
(Xi, Yi), where each Xi = (xi,1, . . . ,xi,Ti) is a
sequence of Ti feature vectors and each Yi =
(yi,1, . . . , yi,Ti) is a corresponding sequence of
class labels, yi,t ∈ {1, . . . , K}.

Find: A classifier H that, given a new sequence X
of feature vectors, predicts the corresponding se-
quence of class labels Y = H(X) accurately.

Perhaps the most famous SSL problem is the NETtalk
task of pronouncing English words by assigning a
phoneme and stress to each letter of the word (Se-
jnowski & Rosenberg, 1987).

Early attempts to apply machine learning to SSL prob-
lems were based on sliding windows. To predict la-
bel yt, a sliding window method uses features drawn
from some “window” of the X sequence. For exam-
ple, a 5-element window wt(X) would use the features
xt−2,xt−1,xt,xt+1,xt+2. Sliding windows convert the
SSL problem into a standard supervised learning prob-
lem to which any ordinary machine learning algorithm
can be applied. However, in most SSL problems, there
are correlations among successive class labels yt. For
example, in part-of-speech tagging, adjectives tend to
be followed by nouns. In protein sequences, alpha he-
lixes and beta structures always involve multiple adja-
cent residues. These correlations can be exploited to
increase classification accuracy.

Recently, many new learning methods have been de-
veloped with the goal of capturing these y ↔ y corre-
lations. See Dietterich (2002) for a review. One of the
most interesting new methods is the conditional ran-
dom field (CRF) proposed by Lafferty et al. (2001).



The CRF is a probabilistic model of the conditional
probability that input sequence X will produce out-
put label sequence Y : P (Y |X). The CRF has the
form of a Markov random field (Geman, 1998):

P (Y |X) =
1

Z(X)
exp

[∑
t

Ψt(yt, X) + Ψt−1,t(yt−1, yt, X)

]
,

where Ψt(yt, X) and Ψt−1,t(yt−1, yt, X) are potential
functions that capture (respectively) the degree to
which yt is compatible with X and the degree to which
yt is compatible with a transition from yt−1 and with
X . These potential functions can be arbitrary real-
valued functions. The exponential function ensures
that P (Y |X) is positive, and the normalizing constant
Z(X) =

∑
Y ′ exp[

∑
t Ψt(y′

t, X) + Ψt−1,t(y′
t−1, y

′
t, X)]

ensures that P (Y |X) sums to 1. This representation
is completely general, subject to the assumption that
P (Y |X) > 0 for all X and Y (Besag, 1974; Hammers-
ley & Clifford, 1971). Normally, it is assumed that the
potential functions do not depend on t, and we will
adopt that assumption in this paper.

To apply a CRF to an SSL problem, we must choose
a representation for the Ψ functions. Lafferty et al.
studied Ψ functions that are weighted combinations of
binary features:

Ψ(yt, X) =
∑

a

βaga(yt, X) (1)

Ψ(yt−1, yt, X) =
∑

b

λbfb(yt−1, yt, X), (2)

where the βa’s and λb’s are trainable weights, and the
features ga and fb are boolean functions. For example,
in part-of-speech tagging g234(yt, X) might be 1 when
xt is the word “bank” and yt is the class “noun” (and 0
otherwise). As with sliding window methods, it is nat-
ural to define features that depend only on a sliding
window wt(X) of X values. This linear parameteriza-
tion can be seen as an extension of logistic regression
to the sequential case.

Once a parameterization is chosen, the CRF can be
trained to maximize the log likelihood of the training
data, possibly with a regularization penalty to prevent
overfitting. Let Θ = {β1, . . . , λ1, . . .} denote all of the
tunable parameters in the model. Then the objective
function is to maximize

J(Θ) = log
∏

i

P (Yi | Xi)

=
∑

i

log
1

Z(Xi)
exp

[∑
t

Ψt(yi,t, Xi)+

Ψt−1,t(yi,t−1, yi,t, Xi)

]

=
∑
i,t

Ψt(yi,t, Xi) + Ψt−1,t(yi,t−1, yi,t, Xi) − log Z(Xi)

=
∑
i,t

∑
a

βaga(yi,t, Xi) +
∑

b

λbfb(yi,t−1, yi,t, Xi)

− logZ(Xi)

Lafferty et al. introduced an iterative scaling algorithm
for maximizing J(Θ), but they reported that it was
exceedingly slow. Several groups have implemented
gradient ascent methods, but naive implementations
are also very slow, because the various β and λ pa-
rameters interact with each other: increasing one pa-
rameter may require compensating changes in others.
McCallum’s Mallet system (McCallum, 2003) employs
the BFGS algorithm, which is an approximate second-
order method that deals with these parameter interac-
tions.

A drawback of this linear parameterization is that it
assumes that each feature makes an independent con-
tribution to the potential functions. Of course it is pos-
sible to define more features to capture combinations
of the basic features, but this leads to a combinatorial
explosion in the number of features, and hence, in the
dimensionality of the optimization problem. For ex-
ample, in protein secondary structure prediction, Qian
and Sejnowski found that a 13-residue sliding window
gave best results for neural network methods. There
are 32 × 13 × 20 = 2340 basic fb features that can be
defined over this window. If we consider fourth-order
conjunctions of such features, we obtain more than
1012 features. This is obviously infeasible.

McCallum’s Mallet system starts with a single con-
stant feature and introduces new feature conjunctions
by taking conjunctions of the basic features with fea-
tures already in the model. Candidate conjunctions
are evaluated according to their incremental impact
on the objective function. He demonstrates signifi-
cant improvements in speed and classification accu-
racy compared to a CRF that only includes the basic
features.

In this paper, we introduce a different approach to
training the potential functions based on Freidman’s
(2001) gradient tree boosting algorithm. In this ap-
proach, the potential functions are represented by
sums of regression trees, which are grown stage-wise in
the manner of Adaboost (Freund & Schapire, 1996).
Each regression tree can be viewed as defining several
new feature combinations—one corresponding to each
path in the tree from the root to a leaf. The result-
ing potential functions still have the form of a linear



combination of features, but the features can be quite
complex. The advantage of the gradient boosting ap-
proach is that the algorithm is fast and straightfor-
ward to implement. In addition, there may be some
tendency to avoid overfitting because of the “ensemble
effect” of combining multiple regression trees.

2. Gradient Tree Boosting

Suppose we wish to solve a standard supervised learn-
ing problem, where the training examples have the
form (xi, yi), i = 1, . . . , N and yi ∈ {1, . . . , K}. We
wish to fit a model of the form

P (y | x) =
expΨ(y,x)∑

y′ Ψ(y′,x)
.

Gradient tree boosting is based on the idea of func-
tional gradient ascent. In ordinary gradient ascent, we
would parameterize Ψ in some way, for example, as a
linear function,

Ψ(y,x) =
∑

a

βaga(y,x).

Let Θ = {β1, . . .} represent all of the tunable param-
eters in this function. In gradient ascent, the fitted
parameter vector after iteration m, Θm, is a sum of
an initial parameter vector Θ0 and a series of gradient
ascent steps δm:

Θm = Θ0 + δ1 + · · · + δm,

where each δm is computed as a step in the direction
of the gradient of the log likelihood function:

δm = ηm
∂

∂Θm−1

∑
i

log P (yi | xi; Θm−1)

and ηm is a parameter that controls the step size.

Functional gradient ascent is a more general approach.
Instead of assuming a linear parameterization for Ψ, it
just assumes that Ψ will be represented by a weighted
sum of functions:

Ψm = Ψ0 + ∆1 + · · · + ∆m.

Each ∆m is computed as a functional gradient:

∆m = ηm Ex,y

[
∂

∂Ψm−1
log P (y | x; Ψm−1)

]
.

The functional gradient indicates how we would like
the function Ψm−1 to change in order to increase the
true log likelihood (i.e., on all possible points (x, y)).
Unfortunately, we do not know the joint distribution

P (x, y), so we cannot evaluate the expectation Ex,y.
We do have a set of training examples sampled from
this joint distribution, so we can compute the value
of the functional gradient at each of our training data
points:

∆m(yi,xi) =
∂

∂Ψm−1

∑
i

log P (yi | xi; Ψm−1).

We can then use these point-wise functional gradients
to define a set of functional gradient training exam-
ples, ((xi, yi), ∆m(yi,xi)) and then train a function
hm(y,x) so that it approximates ∆m(yi,xi). Specifi-
cally, we can fit a regression tree hm to minimize∑

i

[hm(yi,xi) − ∆m(yi,xi)]2.

We can then take a step in the direction of this fitted
function:

Ψm = Ψm−1 + ηhm.

Although the fitted function hm is not exactly the
same as the desired ∆m, it will point in the same
general direction (assuming there are enough training
examples). So ascent in the direction of hm will ap-
proximate true functional gradient ascent.

A key thing to note about this approach is that it
replaces the difficult problem of maximizing the log
likelihood of the data by the much simpler problem of
minimizing squared error on a set of training exam-
ples. Friedman suggests growing hm via a best-first
version of the CART algorithm (Breiman et al., 1984)
and stopping when the regression tree reaches a pre-
set number of leaves L. Overfitting is controlled by
tuning L (e.g., by internal cross-validation).

3. Gradient Tree Boosting for SSL

In principle, it is straightforward to apply functional
gradient ascent to SSL. All we need to do is to repre-
sent and train Ψ(yt, X) and Ψ(yt−1, yt, X) as weighted
sums of regression trees. For historical reasons, we
took a slightly different approach. Let

F yt(yt−1, X) = Ψ(yt, X) + Ψ(yt−1, yt, X)

be a function that computes the “desirability” of label
yt given values for label yt−1 and the input features
X . There are K such functions F k, one for each class
label k. Then the CRF has the form

P (Y |X) =
1

Z(X)
exp

∑
t

F yt(yt−1, X).

We now compute the functional gradient of
log P (Y |X) with respect to F yt(yt−1, X). To



Table 1. Derivation of the functional gradient

∂ log P (Y |X)

∂F v(u, wd(X))
=

∂

∂F v(u, wd(X))

∑
t

F yt(yt−1, wt(X)) − log Z(X)

= I(yd−1 = u, yd = v) − ∂ log Z(X)

∂F v(u, wd(X))
(3)

= I(yd−1 = u, yd = v) − 1

Z(X)

∂Z(X)

∂F v(u, wd(X))
(4)

= I(yd−1 = u, yd = v) − 1

Z(X)

∂

∂F v(u, wd(X))

∑
k

[∑
k′

[
expF k(k′, wd(X))

]
· α(k′, d − 1)

]
β(k, d) (5)

= I(yd−1 = u, yd = v) − 1

Z(X)
[expF v(u, wd(X))] α(u, d − 1)β(v, d) (6)

= I(yd−1 = u, yd = v) − P (yd−1 = u, yd = v | X) (7)

simplify the computation, we replace X by wt(X),
which is a window into the sequence X centered at
xt. We will further assume, without loss of generality,
that each window is unique, so there is only one
occurrence of wt(X) in each sequence X .

Proposition 1 The functional gradient of
log P (Y |X) with respect to F v(u, wd(X)) is

∂ log P (Y |X)
∂F v(u, wd(X))

=

I(yd−1 = u, yd = v) − P (yd−1 = u, yd = v | wd(X)),

where I(yd−1 = u, yd = v) is 1 if the transition u → v
is observed from position d − 1 to position d in the
sequence Y and 0 otherwise, and where P (yd−1 =
u, yd = v | wd(X)) is the predicted probability of this
transition according to the current potential functions.

To demonstrate this proposition, we must first intro-
duce the forward-backward algorithm for computing
Z(X). We will assume that yt takes the value ⊥ for
t < 1. Define the forward recursion by

α(k, 1) = exp F k(⊥, w1(X))

α(k, t) =
∑
k′

[
expF k(k′, wt(X))

] · α(k′, t − 1).

Define the backward recursion as

β(k, T ) = 1

β(k, t) =
∑
k′

[
expF k′

(k, wt+1(X))
]
· β(k′, t + 1)

The variables k and k′ iterate over the possible class
labels. The normalizer Z(X) can be computed at any
position t as

Z(X) =
∑

k

α(k, t)β(k, t).

If we unroll the α recursion one step, we can also write
this as

Z(X) =∑
k

[∑
k′

[
exp F k(k′, wt(X))

] · α(k′, t − 1)

]
β(k, t)

Table 1 shows the derivation of the functional gradient.
In line 3, exactly one of the F yt(yt−1, wt(X)) terms
will match F v(u, wd(X)), because wd(X) is unique.
This term will have a derivative of 1, so we represent
this by the indicator function I(yd−1 = u, yd = v).
In line 5, we expand Z(X) at position d using the
forward-backward algorithm. Again because wd(X) is
unique, only the product where k′ = u and k = v will
give a non-zero derivative, so this gives us line 6. The
right-hand expression in 6 is precisely the joint prob-
ability that yd−1 = u and yd = v given X . Q.E.D.

If wd(X) occurs more than once in X , each match
contributes separately to the functional gradient.

This functional gradient has a very satisfying inter-
pretation: It is our error on a probability scale. If the
transition u → v is observed in the training example,
then the predicted probability P (u, v | X) should be 1
in order to maximize the likelihood. If the transition
is not observed, then the predicted probability should
be 0. Functional gradient ascent simply involves fitting
regression trees to these residuals.

Table 2 shows pseudo code for our tree-boosting al-
gorithm. The potential function for each class k is
initialized to zero. Then M iterations of boosting are
executed. In each iteration, for each class k, a set
S(k) of functional gradient training examples is gen-
erated. Each example consists of a window wt(Xi) on
the input sequence, a possible class label k′ at time
t − 1, and the target ∆ value. A regression tree hav-



Table 2. Gradient Tree Boosting for SSL

TreeBoost(Data, L)
// Data = {(Xi, Yi) : i = 1, . . . , N}
for each class k, initialize F k

0 (·, ·) = 0
for m = 1, . . . , M do

for class k from 1 to K do
S(k) := GenerateExamples(k,Data,Potm−1)

// where Potm−1 = {F u
m−1 : u = 1, . . . K})

hm(k) := FitRegressionTree(S(k),L)
F k

m := F k
m−1 + hm(k)

end
end
return F k

M for all k
end TreeBoost

GenerateExamples(k,Data, Potm)
S := {}
for example i from 1 to N do

execute the forward-backward algorithm on (Xi, Yi)
to get α(k, t) and β(k, t) for all k and t

for t from 1 to Ti do
for k′ from 1 to K do

P (yi,t−1 = k′, yi,t = k | Xi) :=
α(k′, t − 1) exp[F k

m(k − 1, wt(Xi))]β(k, t)

Z(Xi)

∆(k, k′, i, t) := I(yi,t−1 = k′, yi,t = k)−
P (yi,t−1 = k′, yi,t = k | Xi)

insert ((wt(Xi), k
′), ∆(k, k′, i, t)) into S

end
end

end
return S
end GenerateExamples

ing at most L leaves is fit to these training examples
to produce the function hm(k). This function is then
added to the previous potential function to produce
the next function. In other words, we are setting the
step size ηm = 1. We experimented with performing
a line search at this point to optimize ηm, but this
is very expensive. So we rely on the “self-correcting”
property of tree boosting to correct any overshoot or
undershoot on the next iteration.

One way to improve upon this algorithm is to initialize
the potential functions more intelligently. The pseudo-
likelihood of (X, yt) is P (yt | yt−1, yt+1, X). This is the
probability of the correct label at position t given the
correct labels for yt−1 and yt+1. The pseudo-likelihood
can be computed without performing any forward-
backward iterations:

P (yt | yt−1, yt+1, X) =
exp [F yt(yt−1, wt(X)) + F yt+1(yt, wt+1(X))]∑
y′ exp [F y′(yt−1, wt(X)) + F yt+1(y′, wt+1(X))]

.

The pseudo-likelihood—because it assumes that the

correct labels are known for yt−1 and yt+1—works well
if our eventual error rate will be small. We found that
it significantly sped up our training trials. It is known
to be a consistent estimator of the likelihood (Besag,
1977). We perform three iterations of gradient tree
boosting using the pseudo-likelihood to compute the
boosting examples S(k). Then we switch to using the
full functional gradient.

The sets of generated examples S(k) can become very
large. For example, if we have 3 classes and 100 train-
ing sequences of length 200, then the number of train-
ing examples for each class k is 3×100×200 = 60, 000.
Although regression tree algorithms are very fast, they
still must consider all of the training examples! Fried-
man (2001) suggests two tricks for speeding up the
computation: sampling and influence trimming. In
sampling, a random sample of the training data is used
for training. In influence trimming, data points with
∆ values close to zero are ignored. We did not apply
either of these techniques in our experiments.

4. Making Predictions

Once a CRF model has been trained, there are (at
least) two possible ways to define a classifier Y =
H(X) for making predictions. First, we can predict
the entire sequence Y that has the highest probability:

H(X) = argmax
Y

P (Y |X).

This makes sense in applications, such as part-of-
speech tagging, where the goal is to make a coher-
ent sequential prediction. This can be computed by
the Viterbi algorithm (Rabiner, 1989), which has the
advantage that it does not need to compute the nor-
malizer Z(X).

The second way to make predictions is to individually
predict each yt according to

Ht(X) = argmax
v

P (yt = v|X)

and then concatenate these individual predictions to
obtain H(X). This makes sense in applications where
the goal is to maximize the number of individual yt’s
correctly predicted, even if the resulting predicted Y
sequence is incoherent. For example, a predicted se-
quence of parts of speech might not be grammatically
legal, and yet it might maximize the number of indi-
vidual words correctly classified. P (yt|X) can be com-
puted by executing the forward-backward algorithm
as

P (yt|X) =
α(yt, t)β(yt, t)

Z(X)
.



5. Experimental Studies

We implemented gradient tree boosting for CRFs
and compared it to McCallum’s Mallet system on
four benchmark data sets. We will call our algo-
rithm TreeCRF. We will use TreeCRF-V for the
TreeCRF with Viterbi predictions and TreeCRF-

FB for the TreeCRF with forward-backward predic-
tions. Mallet implements McCallum’s feature induc-
tion algorithm. Mallet makes its predictions using
the Viterbi algorithm, so we will denote it by Mallet-

V.

5.1. Data Sets

We tested these algorithms on four data sets: pro-
tein secondary structure prediction and three Usenet
FAQs: ai-general, ai-neural, and aix.

The protein secondary structure benchmark was pub-
lished by Qian & Sejnowski (1988). A protein consists
of a sequence of amino acid residues. Each residue is
represented by a single feature with 20 possible val-
ues (corresponding to the 20 standard amino acids).
There are three classes: alpha helix, beta sheet, and
coil (everything else). There is a training set of 111
sequences and a test set of 17 sequences.

Each of the FAQ data sets consists of Frequently Asked
Questions files for a Usenet newsgroup (McCallum
et al., 2000). The FAQs for each newsgroup are di-
vided in separate files: ai-general has 7 files, ai-neural
has 7 files, and aix has 5 files. Every line of an FAQ
is labeled as either part of the header, a question, an
answer, or part of the tail. Hence, each xt consists
of a line in the FAQ file, and the corresponding yt ∈
{header, question, answer, tail}. The measure of ac-
curacy is the number of individual lines correctly clas-
sified. McCallum provided us with the definitions of
20 features. We made a slight correction to one of the
features, so our results are not directly comparable to
his. For each newsgroup, performance was measured
by leave-1-out cross-validation: the CRF was trained
on all-but-one of the files and tested on the remaining
file. This was repeated with each file, and the results
averaged.

Both TreeCRF and Mallet have parameters that
must be set by the user. For both algorithms, the
user must set (a) the window size, (b) the order of
the Markov model, and (c) the number of iterations to
train. For TreeCRF, the only additional parameter
is L, the depth limit for the regression trees. For Mal-

let the parameters are (a) the regularization penalty
for squared weights (called the variance), (b) the num-
ber of iterations between feature inductions (kept con-

45

50

55

60

65

1 10 100

P
er

ce
nt

 R
es

id
ue

s 
C

or
re

ct

Iterations

TreeCRF-V

Mallet-V

Qian-Sejnowski

Figure 1. Protein secondary structure prediction

stant at 8), (c) the number of features to add per fea-
ture induction (kept constant at 500), (d) the true la-
bel probability threshold (kept constant at 0.95), (e)
the training proportions (kept constant at 0.2, 0.5, and
0.8), (f) the number of iterations to train. Except
for the variance, we kept all of Mallet’s parameters
fixed at the values recommended by Andrew McCal-
lum (personal communication). To set the remaining
parameters, we manually tried a handful of settings
and chose the setting that gave the best test set (or
cross-validation) performance. Ideally, these would be
set via internal cross-validation. However, because we
did not perform a very careful search of the parameter
settings, we believe that the parameters are not highly
tuned.

5.2. Results

Figure 1 shows the results on the protein task. In
all cases (except Qian-Sejnowski), a first-order CRF
was employed. The input features consisted of an 11-
residue sliding window. The TreeCRF-FB attains its
peak performance of 64.7% correct after 28 iterations.
The next best method is the neural network sliding
window of Qian and Sejnowski (1988), which attains
64.5%. Mallet-V reaches 62.9% after 145 iterations.
A McNemar’s test comparing the peak performance of
TreeCRF-FB and Mallet-V shows that the differ-
ence is statistically significant (p < 0.05).

One worrying aspect of Mallet is that the perfor-
mance curve exhibits a high degree of fluctuation. This
is presumably due to the effect of introducing new fea-
tures. But it also suggests that it will be difficult to
find the optimal stopping point for avoiding overfit-
ting. The peak performance of 62.9% is achieved in
only one iteration. The second-highest performance is



Table 3. Training iteration run time (seconds) for Lin-

earCRF and TreeCRF

Window size 1 3 5 7
LinearCRF 0.04 0.66 41.2 1505
TreeCRF 0.8 1.11 1.2 1.4

70

75

80

85

90

95

100

0 500 1000 1500 2000 2500 3000 3500

P
er

ce
nt

 L
in

es
 C

or
re

ct

CPU Seconds

TreeCRF-V

Mallet-V

Figure 2. FAQ ai-general. Percentage of lines correct as a
function of CPU time.

62.6%, and a more realistic estimate of its achievable
performance (i.e., by using cross-validation to deter-
mine the stopping point) would be around 61.5%.

It is difficult to compare the CPU time of the methods,
because TreeCRF is written in C++ while Mallet

is written in Java. Despite these differences the run-
ning times of the two programs are quite similar. The
time required for TreeCRF to reach its peak perfor-
mance is 1979.98 s; the time required for Mallet to
reach its peak performance is 3634.37 s.

With an 11-residue window, it is not feasible to run
LinearCRF on this problem. Table 3 compares the
CPU time per iteration for smaller window sizes. We
see that LinearCRF is faster for small window sizes,
but that it slows down exponentially as the window
size grows.

Figure 2 plots the percentage of lines correctly clas-
sified by the two algorithms on the ai-general FAQ.
Again we see that Mallet’s performance fluctuates
wildly. A McNemar’s test of the performance on the
final iterations of the two methods concludes that
TreeCRF is better (p < 0.001).

Figure 3 plots the results for the ai-neural FAQ. This
time, despite fluctuations, Mallet converges to a bet-
ter classifier than TreeCRF according to McNemar’s
test (p < 0.001).

70

75

80

85

90

95

100

0 500 1000 1500 2000 2500 3000 3500

P
er

ce
nt

 L
in

es
 C

or
re

ct

CPU Seconds

TreeCRF-V

Mallet-V

Figure 3. FAQ ai-neural. Percentage of lines correct as a
function of CPU time

70

75

80

85

90

95

100

0 1000 2000 3000 4000 5000 6000

P
er

ce
nt

 L
in

es
 C

or
re

ct

CPU Seconds

TreeCRF-V

Mallet-V

Figure 4. FAQ aix. Percentage of lines correct as a function
of CPU time

Finally, Figure 4 plots the results for the aix FAQ.
Although it is difficult to see from the graph, Mal-

let again converges to a slightly better classifier (p <
0.025). Note that on this data set, TreeCRF required
about twice as much time to reach peak performance.

6. Conclusions

This paper has introduced a novel method for train-
ing conditional random fields based on gradient tree
boosting. We can evaluate it along several dimensions.

Ease of implementation: TreeCRF is simpler to
implement than Mallet.

Ease of tuning: TreeCRF introduces only one tun-
able parameter, L, the maximum number of leaves
permitted in each regression tree. Mallet has many
more parameters to consider. Mallet’s performance



fluctuates wildly, while TreeCRF improves smoothly.

Scaling to large numbers of features: tree boost-
ing scales much better than the original linearly-
parameterized CRF method. It appears to match
Mallet, which also gives dramatic speedups when
there are many potential features.

Run time: In our experiments TreeCRF required
run time within a factor of two of Mallet. Both are
reasonable.

Accuracy: In our experiments, TreeCRF was more
accurate on two data sets and less accurate on two
data sets.

Scaling to large numbers of classes: In experi-
ments not shown, we attempted to apply TreeCRF

to the NETtalk text-to-speech problem, which has 140
classes. This is infeasible because the cost of perform-
ing the forward-backward algorithm (required by both
TreeCRF and Mallet to compute gradients) scales
as T 140n+1, where T is the length of the sequences and
n is the order of the Markov model. For NETtalk, T
is around 7, but previous research has suggested that
n should be at least 3. This means that the forward-
backward computation for each training sequence re-
quires 2.7 × 109 operations, which means that it is
very slow. An important challenge for SSL research is
to develop methods that can handle large numbers of
classes.

Gradient tree boosting may provide another advantage
over methods based on standard parametric gradient
ascent: the ability to handle missing values in the in-
puts. There are very good methods for handling miss-
ing values when growing regression trees including the
surrogate split method of CART (Breiman et al., 1984)
and the instance weighting method of C4.5 (Quinlan,
1993). In future work, we will evaluate whether these
methods work well for training and evaluating CRFs.

Acknowledgements

The authors gratefully acknowledge the support of
NSF grants IIS-0083292 and IIS-0307592.

References

Besag, J. (1974). Spatial interaction and the statisti-
cal analysis of lattice systems. Journal of the Royal
Statistical Society B, 36, 192–236.

Besag, J. (1977). Efficiency of pseudolikelihood esti-
mation for simple Gaussian fields. Biometrika, 64,
616–618.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone,

C. J. (1984). Classification and regression trees.
Wadsworth International Group.

Dietterich, T. G. (2002). Machine learning for sequen-
tial data: A review. Structural, Syntactic, and Sta-
tistical Pattern Recognition (pp. 15–30). New York:
Springer Verlag.

Freund, Y., & Schapire, R. E. (1996). Experiments
with a new boosting algorithm. ICML-96 (pp. 148–
156). Morgan Kaufmann.

Friedman, J. H. (2001). Greedy function approxima-
tion: A gradient boosting machine. Annals of Statis-
tics, 29.

Geman, D. (1998). Random fields and inverse prob-
lems in imaging. In A. Ancona, D. Geman and
N. Ikeda (Eds.), École d’Été de probabilités de saint-
flour xviii, Lecture Notes in Mathematics 1427, 117–
196. Berlin: Springer-Verlag.

Hammersley, J. M., & Clifford, P. (1971). Markov
fields on finite graphs and lattices (Technical Re-
port). Unpublished.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. ICML-2001
(pp. 282–289). San Francisco, CA: Morgan Kauf-
mann.

McCallum, A. (2003). Efficiently inducing features of
conditional random fields. UAI-2003 (pp. 403–410).
San Francisco, CA: Morgan Kaufmann.

McCallum, A., Freitag, D., & Pereira, F. (2000). Max-
imum entropy Markov models for information ex-
traction and segmentation. ICML-2000 (pp. 591–
598). Morgan Kaufmann, San Francisco, CA.

Qian, N., & Sejnowski, T. J. (1988). Predicting the
secondary structure of globular proteins using neural
network models. J. Mol. Bio., 202, 865–884.

Quinlan, J. R. (1993). C4.5: Programs for empirical
learning. San Francisco, CA: Morgan Kaufmann.

Rabiner, L. R. (1989). A tutorial on hidden Markov
models and selected applications in speech recogni-
tion. Proc. IEEE, 77, 257–286.

Ratnaparkhi, A. (1996). A maximum entropy model
for part-of-speech tagging. Proceedings of the confer-
ence on empirical methods in natural language pro-
cessing (pp. 133–142). Somerset, NJ: ACL.

Sejnowski, T. J., & Rosenberg, C. R. (1987). Parallel
networks that learn to pronouce English text. Com-
plex Systems, 1, 145–168.


