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Abstract

Most prevalent techniques in Support Vector
Machine (SVM) feature selection are based
on the intuition that the weights of features
that are close to zero are not required for op-
timal classification. In this paper we show
that indeed, in the sample limit, the irrele-
vant variables (in a theoretical and optimal
sense) will be given zero weight by a linear
SVM, both in the soft and the hard mar-
gin case. However, SVM-based methods have
certain theoretical disadvantages too. We
present examples where the linear SVM may
assign zero weights to strongly relevant vari-
ables (i.e., variables required for optimal esti-
mation of the distribution of the target vari-
able) and where weakly relevant features (i.e.,
features that are superfluous for optimal fea-
ture selection given other features) may get
non-zero weights. We contrast and theoret-
ically compare with Markov-Blanket based
feature selection algorithms that do not have
such disadvantages in a broad class of dis-
tributions and could also be used for causal
discovery.

1. Introduction

Feature selection (also called variable selection) is the
problem of selecting a subset of variables of minimal
size with maximum predictive, classification, or diag-
nostic power relative to a target variable of interest
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Y. Being able to identify this minimal size set is im-
portant for treating the curse of dimensionality, for
reducing the cost of observing the required variables
for prediction, and for gaining insight into the domain.
The problem is far from solved, and more pressing than
ever given the recent emergence of large datasets.

A recent breakthrough in feature selection research is
the development of Support Vector Machine (SVM)
based techniques, that are scalable to thousands of
variables and typically exhibit excellent performance
in reducing the number of variables while maintain-
ing or improving classification accuracy (Guyon et al.,
2002).

A binary SVM classifier is a function of the form
g(x) = sgn(w-¢(x) + b), where x is the input vec-
tor, ¢ a function that maps x from the original feature
space to a new feature space, w a weight vector in the
projected feature space, and b a real constant. In the
linear SVM case the function ¢(x) is the identity func-
tion. Training consists of identifying the weight vector
w that maximizes the margin between the convex sets
of each class, or a trade-off between the margin and
the misclassifications of training instances. In this pa-
per we only consider linear SVMs; the term “linear” is
dropped for simplicity in the rest of the paper.

Obviously, if a variable has a corresponding zero
weight it does not contribute to classification and thus,
is irrelevant to the output of the SVM classifier and
can be dropped from the model. For example, the Re-
cursive Feature Elimination algorithm (Guyon et al.,
2002), a prototypical, widely used, and successful fea-
ture selection algorithm, recursively identifies small
weights in magnitude and removes the corresponding
variables.



Although any variable with zero weight in a specific
SVM classifier is indeed irrelevant for that classifier,
what is currently unknown is (a) whether the vari-
able is truly irrelevant, i.e., with respect to any optimal
classifier. Conversely, it is also unknown (b) whether
all truly irrelevant variables will be assigned a zero
weight during SVM feature selection. Tn this paper,
we are exploring a characterization of conditions un-
der which such SVM feature selection algorithms will
output all and only relevant variables.

In a recent review of the field of feature selection,
Guyon et al. (Guyon & Ellisseeff, 2003) reads “The
approaches [in feature selection] are very diverse and
motivated by various theoretical arguments but a uni-
fying theoretical framework is lacking”. With this pa-
per, we hope to stimulate research in such a unifying
framework, by exploring the connections between no-
tions of relevancy, Markov-Blanket and SVM based
feature selection.

2. Preliminaries: Classification Using
SVMs

In this section we review the hard and soft margin lin-
ear SVM classifiers for finite training data. We define
the sample limit formulations of these SVM classifiers
and show that the large sample formulation defines
a unique weight vector w that is indeed the limit of
the respective finite sample SVM weight vectors w,,
where m is the number of training sample instances.

Given training data X,, := {x1,...,X,} C R to-
gether with labels Y, := {y1,...,4m} C {-1,1} a
linear SVM produces a decision function g : RY —
{—1,1} of the form

g(x) :=sgn(w-x + b) (1)
where the weight vector w = (w',...,w™) € R™ and

the offset b € R are chosen according to one of the
following constrained optimization problems.

F.1. Finite Sample Hard-margin SVM

Minimize:
N
Fi(w,b) = wew = 3 (w)? (2)
i=1
Constraints:
yp(wxg +b)>1for 1 <k <m. (3)

The training data (X,,,Y:) is linearly separable
if there is at least one admissible (w,b) satisfying

(3). Note that (2) and (3) form a strictly convex
optimization problem and so there is a unique solution
(Whm»bhm) (e.g., see (Vapnik, 1998)). The distance
(or “gap”) between the planes wp, ;X + bp.m = 1 and
WhomX + bpm = —1 is given by A, = 2/|wpm|.
Hence, minimizing the objective function (2) is
equivalent to maximizing the “gap” A,,. Of course,
the hard-margin SVM is non-trivial only for linearly
separable data.

F.2. Finite Sample Soft-margin (p-norm) SVM

Minimize:
m O - '
Ey(w,b A& }i) = wow + ] (4)
i=1
Constraints:
yr(Wxg +6)>1—-& and § >0, (1 <k<m)

5)

If p > 1, then it is known that the soft-margin op-
timization problem (4) and (5) has a unique mini-
mizer. When p = 1, there may be multiple minimiz-
ers (w,b,{& }iL,). However all of these minimizers
share a common weight vector w (see (Burges & Crisp,
2000)). We denote the soft-margin SVM weight vector
for the training data set (X, Yin) by We m.

For fixed w and b, the soft-margin SVM objective
function Fg(w, b, {&}7,) in (4) is clearly minimized
by & = [1 — yp(wxg — b)]+, & = 1,...,m, where
zy := max(z,0). Hence the soft-margin SVM may
also be recast as an unconstrained optimization
problem

F.3 Soft-margin SVM unconstrained form

Minimize:
« C - p
Fs (W, b) =WeW -+ E Z[l - yk(w'xk - b)]+ (6)
T k=1

2.1. Sample limit SVMs

We now suppose that (x5,yx)52, is an infinite se-
quence of independent samples of a random variable
Z = (X,Y) that takes values in B x {—1, +1} for some
bounded set B C R according to a (Borel) probabil-
ity measure p(x,y). To avoid trivialities we assume

0<PY=1)=[_pdp(x1) <1

We are interested in the limiting behavior of the
weight vectors w,, associated with the training data
(xg,yp)i,. If Ais an open set in B x {£1} with



P(A) > 0, then almost surely (i.e. with probability 1)
there will be some (xg,y;) € A. Hence, it is natural
to consider the following “sample limit” version of the
hard-margin SVM.

L.1. Sample limit hard-margin SVM

Minimize:

Fp(w,b) :=ww (7
Constraints:

Y(w-X +b) > 1 almost surely. (8)

The random variable (X,Y") is linearly separable if
there is some (w,b) such that (8) holds. If (X,Y) is
linearly separable, then (as in the finite-sample case)
there is a unique minimizer (wpy,by) of (7) satisfy-
ing (8). The “gap” A between the decision surfaces
w-x + b= =1 is then given by A :=2/|w|.

Next we consider the sample limit for the soft-margin
SVM. For fixed (w,b) the slack variable & is given by
& = [1 —yr(w-xp 4+ b)]4. Hence, (&)}, is a sequence
of independent samples of the random variable ¢ =
1 —Y(w-X+b)]+. Thus we have (1/m)> ", &8 —
E(¢) as m — oo almost surely where E(-) denotes the
expectation with respect to p(x,y). This suggests the
following “sample limit” soft-margin SVM constrained
optimization problem:

L.2. Sample limit soft-margin SVM

Minimize:
Fs(w,b,8) == ww+ CE(E) 9)
Constraints:

Y(iwX+b)>1—¢and >0 a. s, (10)

where £ = {(X,Y) is a random variable. In fact we
clearly must have £ = [1 =Y (w-X 4+ b)]+ almost surely
for any minimizer of (I..2) and so we can recast (L.2)
in the equivalent unconstrained form:

L.3. Sample limit soft-margin SVM (unconstr.)

Minimize:

Fiw,b) = ww + CE(IL— Y (wX +B2). (11)
Sample limit SVMs have been considered in (Stein-
wart, 2003). There it is shown that the finite sam-
ple SVM decision functions converge in probability to
a limiting set valued decision function. The follow-
ing lemma establishes that in both the hard and soft-
margin cases the finite sample weight vectors converge
almost surely to the respective hard or soft-margin
sample limit weight vector as the number of samples
m — 00.

Lemma 1. (a) Suppose (X,Y) is linearly separable.
Then the sample limit hard-margin SVM prob-
lem (L.1) has a unique minimizer (wp,Bn). Let
(Wh,m»bn.m) denote the unique minimizer for the
finite sample hard-margin SVM problem (F.1)
with m samples. Then

lim wpm = wp a.s.

M —> 00

(b) The sample limit soft-margin (unconstrained)
SVM problem (L.3) has a (global) minimizer
(ws,Bs). The weight vector wg is unique, i.e. if
Fiw,B) = Fif(ws,Bs) then w = ws. Further-
more,

lim wy = w, a.s.

For p> 1, we also have 8 = ;.

3. Treatment of Irrelevant Variables by
Linear SVMs

In this section, we show that irrelevant variables will
get zero weights in the sample limit, both in the hard
and the soft margin case. In addition, we provide
bounds on the size of the weights of the irrelevant vari-
ables in the finite sample case.

Tf.J C{l,...,N} and x € RV, we let x” denote the
vector whose ith component is x* if 1 € J and is 0
otherwise.

We define as irrelevant a set of variables I C
{1,...,N} if X! is independent of (XF)Y), i.e.,
p(XI, X V) = p(X!)-p(X#,Y), where R consists of
the rest of the variables, for any value of X!, X%, and
Y. Intuitively, this definition of irrelevancy means that
the set of irrelevant variables provides no information
for the target and additionally, no information for the
relevant variables. It is introduced here because it fa-
cilitates mathematical analysis while being highly in-
tuitive. In addition, this definition ties with the Ko-
havi and John definition or irrelevancy in many distri-
butions (see Section 4).

Theorem 1. Suppose T C{1,...,N} is an irrelevant
set of variables for (X,Y). Then:

(o) If (X,Y) is linearly separable and wy, denotes the
large-sample limit hard -margin SVM weight vec-
tor then wi =0 fori € 1.

(b) If w, denotes the large-sample limit soft-margin
SVM weight vector, then w® =0 fori € I.

While the above theorem guarantees that all irrele-
vant variables will get zero weights in the sample limit



for practical purposes, it would be useful to know
how large the weights of the irrelevant variables may
be with finite sample. The following lemma provides
bounds for |w — w,,| in terms of A — A,,,.

Lemma 2. Suppose (X,Y) is linearly separable. Let
wy, (respectively, wy, ., ) denote the hard-margin SVM
weight vector for (X,Y) (respectively, for the training
set (Xg,yr)7,) Then

VAL +A

Ay — A 12
A A (12)

lwhp — Whm| <2

Combining Lemma 2 and part (a) of Theorem 1 then
gives:
Corollary 1. Suppose (X,Y) is linearly separable and

that I C {1,...,N} is an irrelevant set of variables for
(X,Y). Then

Sk <4 (S22 ) (4 - )

icl
Z‘ . .
where wy, ., is the ith component of Wh.m-

While the quantity A is unknown, the above result
is a first step towards providing practical bounds.
Such bounds are important for algorithms as Recur-
sive Feature Elimination in determining the threshold
of weights below which any variable should be labeled
as irrelevant and be filtered out. For example, one
could fit a model of A,, as a function of sample size
and use it to estimate A; subsequently, order the vari-
ables by ascending weights and select to remove the
first k& for which the above bound is satisfied.

4. Treatment of Relevant Variables by
SVMs

In this section we define strongly and weakly rele-
vant, features and show that a linear SVM may assign
zero weight to strongly relevant variables, and non-
zero weights to weakly relevant variables. This implies
that under certain conditions (see section 5) the SVM
output is neither sound nor minimal.

A number of researchers have attempted to provide
“reasonable” definitions of relevancy. Kohavi and
John (Kohavi & John, 1997) review several such defi-
nitions and conclude with the following ones.

A feature X is strongly relevant to V if
p(Y =y|X'=2",5 = ") #p(Y = y|S" = &').

for some values y, z?,s% of Y, X, S?, for which p(X* =
28, 8% = s) > 0, where S* is the set of remaining
variables S* = V' \ {V, X*}.

A feature X7 is weakly relevant to Y if it is not strongly
relevant, and there exists a subset of features U* of S?,
and a set of values u’, 2%,y for U?, X*, and Y for which
p(X?* =z Ut =u¥) > 0 and

p(Y =y|Xi=2" Ul =u') # p(Y = y|U" = u').

A feature is relevant to Y if it is weakly or strongly
relevant to Y, otherwise a feature is KJ-irrelevant to
Y (KJ stands for Kohavi and John). In other words, a
feature X? is KJ-irrelevant if for any S C V \ {Y, X*},
and any values s,y,z% of S,Y, X for which p(§ =
5, Xt = ') > 0, X! is independent of ¥ conditioned
on S.

Intuitively, the KJ-irrelevant variables provide no in-
formation for the distribution of Y. The irrelevant
variables, as defined in this paper, provide no infor-
mation neither for ¥ nor for the relevant (weakly or
strongly) variables. Thus,

Lemma 3. If X! is a set of irrelevant features, then
YX7 e X1 X' is KJ-irrelevant.

The converse also holds in faithful distributions. The
latter is a broad class of distributions for which there
is a Bayesian Network that entails all probabilistic de-
pendencies and independencies observed in the distri-
bution (Meek, 1995).

Lemma 4. The set {X*|X* is KJ-irrelevant to Y} is
the set of irrelevant variables X' in any distribution
faithful to a Bayesian Network.

An SVMs may assign zero weights to both weakly and
strongly relevant variables. For example consider the
parity function where Y is the exclusive OR of X!
and X2. That is, p(Y = 1|X! = 1, X2 =0) = p(Y =
1X'=0,X2=1)=Tand p(¥Y = —1|X! = 1,X2 =
1) = p(Y = —1|X' = 0,X2 = 0) = 1 while P(X! =
1)=P(X!=0)=PX2=1)=P(X?=0) =1/4.
The distribution is non-linearly separable and the soft-
margin linear SVM returns a zero weight vector.

An example of assigning non-zero weights to weakly
relevant variables is given by the following distribu-
tion: p(Y = 1|X! = 0,X? = 0) = p(Y = 1]X!
1L,X2=1)=p(Y = —-1|X! = 1+¢X2=0)
p(X!=0,X2=0)=p(X' =1,X2=1) = p(X
1+¢,X% =0) = 1/3. The distribution is shown picto-
rially in Figure 1.

~
el

Variable X? is not a strongly relevant one, because
p(Y X1, X?) = p(Y|X1), for all values of the variables.
But. X? is weakly relevant, because it is not strongly
relevant and for S =0,V =1, X2 =1, p(Y = 1|X? =
L,S) # p(Y = 115).
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Figure 1. An example where the weakly relevant variable
X? receives a non-zero weight by the maximum margin
classifier (dashed diagonal lines). The gap corresponding
to the classifier that assigns a zero weight to X2 (dashed
vertical lines) can have an arbitrarily smaller gap.

5. Relevancy, Markov-Blankets, and
Optimal Feature Selection

Researchers are interested in the concept of relevancy
in the context of feature selection because they fol-
low the intuition that a relevant variable should be
included in the selected variables and all irrelevant
variables should not. Moreover, an implicit consensus
in the feature selection research so far has been that
relevancy can and should be defined independently of
both the classifier to be used and the evaluation met-
ric; in other words, the relevancy of a variable should
depend on the probability distribution of the data, not
whether SVMs or any other specific classifier inducer
will be used to build the final model. It would then
be a matter of designing efficient, algorithms that iden-
tify the relevant features to solve the feature selection
problem.

In (Tsamardinos & Aliferis, 2003) we showed that the
above intuition is false in the following sense:

Proposition 1: There is no definition of relevancy
independent of the learner used to build the classifi-
cation model and the performance metric used (e.g.,
accuracy) such that, for all distributions the relevant
features are the solution to the feature selection prob-
lem.

Thus, one needs to specify a (class of) learning algo-
rithm(s), a (set of) performance metric(s), and a class
of distributions on which, a definition of relevancy can
be given such that there is a correspondence between
the set of features that are relevant and the solution
to the feature selection problem. In (Tsamardinos &
Aliferis, 2003) we also showed that:

Proposition 2: When the learning algorithm can
learn any function (e.g., neural networks, k-nearest
neighbors, etc.) and the performance metric is cali-
brated accuracy with a preference for smaller models

then the solution to the feature selection problem is
the Markov Blanket.

The Markov Blanket is defined as the smallest subset
of variables MB(Y") such that all remaining variables
are independent of ¥ given MB(Y).An important con-
nection between relevancy and the Markov Blanket
was shown (Tsamardinos & Aliferis, 2003) to be the
following:

Proposition 3: The Markov Blanket of ¥ in faithful
distributions coincides with the set of strongly relevant
features as defined by Kohavi and John. Furthermore,
in such distributions the MB(Y') is unique and has a
graphical interpretation too: it is the set of parents,
children, and parents of children in any Bayesian Net-
work that is faithful to the joint distribution.

Finally, when the joint distribution of the data can be
faithfully represented by some Causal Bayesian Net-
work and all confounders of each pair of variables are
observed (Causal Sufficiency) then the following rela-
tionship exists between the Markov Blanket variables
and the local causal structure around the variable V:

Proposition 4: The Markov Blanket of Y is the set of
direct causes, direct effects, and direct causes of direct
effects of Y.

There are currently several algorithms available (Mar-
garitis & Thrun, 1999; Tsamardinos et al., 2003; Alif-
eris et al., 2003b) that can identify the Markov Blan-
ket in faithful distributions (i.e., the strongly relevant
features) and thus solve the feature selection problem,
under the conditions in Proposition 2 both theoreti-
cally and empirically. Additionally, the selected fea-
ture subset has a causal interpretation according to
Proposition 4.

6. Conclusions and Open Problems

We provided an initial characterization of the behavior
of weight-vector based linear SVM feature selection,
both for the hard and the soft margin formulation.
We show that for reasonable definitions of irrelevancy,
in the sample limit an SVM will remove the (theoreti-
cally) irrelevant features. This partly explains the em-
pirical success of these methods. However, the selected
features will not in the general case contain the small-
est feature subset, neither the correct one, nor is there
a specific causal interpretation of the selected features.
We emphasize the latter because in several domains
feature selection is performed precisely to gain an un-
derstanding of the causal underlying mechanisms of
the domain, e.g., biomarker selection in array gene ex-
pression data analysis.



Tn addition, we would like to point out that empirical
evaluation of SVM-based feature selection is still an
open area of research with no conclusive results as of
yet. For example, several SVM feature selection meth-
ods have been conducted in the array gene expression
domain (see special issue (Guyon & Ellisseeff, 2003)
and the references therein). However gene expres-
sion values in microarrays are highly interrelated so
that if a non-optimal feature selection algorithm rou-
tinely misses strongly relevant features but also does
not remove all weakly relevant, ones, (like SVM feature
selection) the algorithm’s performance may be only
mildly affected by these theoretical weaknesses. This
intuition is strengthened by the fact that it has been
shown that in gene expression data even random gene
subsets give good classification performance (Aliferis
et al., 2003a).

The statistics community has also extensively exam-
ined the problem of whether a variable X* should be
included in a model or not. There are several tests that
determine whether the weight of a variable is statisti-
cally significantly different than zero (e.g., see (Draper
& Smith, 1981) in the context of multivariate linear
regression model selection). We note that all SVM-
related results in the present work apply to the linear
(soft as well as hard-margin) classifier. However the
notions of relevancy employed are model-independent.
In other words, the definitions of relevancy only in-
volve properties of the joint distribution of the data
and not the inductive bias of some classifier. While
linear SVMs in the sample limit will identify the above
model-independent irrelevant variables, the same be-
haviour is not obtained unfortunately with weakly and
strongly relevant features by the linear SVM. It is not
clear at this time whether or how a sufficiently pow-
erful kernel function combined with appropriate iden-
tification of irrelevant features would circumvent this
limitation in the non-linear SVM case. We also did not
address how the present results relate to the selection
of features in the statistical literature of linear regres-
sion model selection. These connections could all be
interesting topics for future work.

Tn the present paper we consider “hard” feature se-
lection in which features are either accepted in the
classifier model or considered irrelevant and thrown
away. In addition our analysis of feature relevance
is query independent. Other authors (Peng et al.,
2003; Domeniconi & Gunopulos, 2001) have presented
7soft” feature selection schemes in which features are
weighted according to their SVM-based class discrim-
inatory contribution with respect to specific queries.
These feature weighting methods were shown to aug-
ment the performance of the KNN classifier in high-

dimensional spaces.
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A. Proofs
We omit the Proof of Lemma 1 due to
lack of space, which can be found in

http://discoverl.mc.vanderbilt.edu/ discover/ public/
supplements/ ICML2004/

Proof of Theorem 1 part (a). Suppose (w,b) sepa-
rates (X,Y), that is, suppose (8) holds. Let ¢ be
such that both P(w!-X! > ¢) and P(w!-X! < ¢) are
positive (for example, let ¢ = E(w!-X)). We shall
show that (wf b + ¢) also separates (X,Y). Since
w- W whi-wf 4+ wliwl > wl.wf with equality only
if wl = 0 it follows that (wh)I = 0 which proves part
(a) of Theorem 1. And so it remains to show that

(wF b+ c) separates (X, Y).
First, since (w,b) separates (X,Y) and since w-X =
wh. X 4+ wl. X! we have

YwEXE4b4+e)+YV(wlXI—¢)>1 (a s)

and so
YwWEXELbt+e)>1-V(wl.XT—¢) (a.s) (13)

Next, the independence of X' and (X,Y) shows in
the case Y = 1 that

P(Y(WEXE 4 b+ > N(Y =1))
=PY(WwWEXEtb+o)> )Ny =1)|w X <o)
>PY(wWEXB4+b+40)>1-v(w X —¢)

Ny =1) | w/ X! <¢)

=PY=1|w/X'<c)=PY =1)

where we have used the fact that (13) holds with prob-

ability 1 and that P(Y =1 | w!. X! <¢)=P(Y = 1)
by independence. Similarly, for Y = —1 we have
P(Y(WwHEXE 4+ b+c) > 1N (Y =-1))

>PYWEXE Lb4e)>1-YV(w X —¢)
NY =-1)|w!-X>¢)

Thus, P(Y(wBXE +b+¢)>1)

= P(Y(w'XE +b+o) >1)N(Y = 1))

+P(Y(wWEXE+b+e) > )N (Y =-1))

>PY =1)+PY=-1)=1

Since wi-X% = wf.X it immediately follows that
(wh b+ c) separates (X,Y) and the proof of part (a)
is complete. O

We shall need the following lemma, in the proof of part
(b) of Theorem 1.

Lemma 5. Suppose p > 1 and U, Y and V are
real valued random variables such that E(V) =0 and
V is independent of (U,Y). Then E([U +YV]}) >
E([UT).

Proof. Fix u,y € R. If u > 0 then

u+yV]iy >u+yV =[uly +yV

and so E(fu + yV]4) > [u]ly + yE(V) = [u]+ and if
u < 0 the above inequality holds trivially since F([u+
yV1]y) > 0 = [u]4. Since the function f(z) = 2P is
convex for p > 1, Jensen’s inequality implies

E(fu+yVIE) 2 E(lu+yV]H)? = [ulf.

SO E([U =+ YV]&) = EU’y(Ev([U + YV}ﬁ | U, Y))

Proof of Theorem 1 part (b). For w € R"™ and b
R let e(w,b) := E([1 - Y(w-X + b)]}) and let ¢ =
E(w!l.X1).

Then Lemma 5 with U := 1 — Y(wfX + b+ ¢) and
V = wl.X — ¢ implies

e(w,b) = E([1 - Y(wE-X +b+¢) - Y(w/ X -¢))
> B(l-Y (WX +b+0)]) =e(wh,b+c).

m



Hence for any w € R” there is some ¢ such that

e(w,b) > e(wf. b +c). (14)

Using (14) we have

Frwh b+ e) = whwh + Ce(wf b+ ¢)
< w-w + Ce(wh b) = F*(w, B)

with strict inequality unless w/ = 0. Hence we must
have w! = 0 and part (b) of Theorem 1 is proved. O

Proof of Lemma 2. The SVM hard-margin classifier
may also be determined geometrically from the train-

ing data as follows (e.g., see (Kowalczyk, 2000)). Re-
call that X\™ := {xplyr = +1,1 < k < m} and
X" = fxplyy = -1,1 < k < m}. Let C{™

and C(_m) denote the closed convex hull of XJ(rm) and

X respectively. Let xsrm) € CJ(rm) and x™ ¢
'™ be a pair of points such that |x5_m) - X(_m)| =
dist (Cim),C(_m)) where dist (4, B) denotes the min-
imum distance between sets A and B. Let u(™ :=
(xim) - x&m)). Then

= ulm (15)

and b, =1 — wmoxsrm) where A,, = [ul™].

Let Cy (respectively, C_) denote the closed convex
hull of the support of the conditional probabilities
p(xly = 1) (respectively, p(x|y = —1)). Then, as in
the finite sample case, w and £ may be calculated ge-
ometrically from any pair of closest points x, € C}
and x_ € C_. Let u =x4 —x_ and then

2
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(16)
where A = |u| = |x; — x_| is the minimum distance
between the sets C; and C_. Note that this distance
is also the distance between the hyperplanes w-x+ 4 =
+1and wx+ 5 =-1.

Clearly, we have Cg_m) C C4 and c™ c ¢ al-
most surely and so the finite sample (xg, yz )7 is al-
most surely linearly separable if the random variable
(X,Y) is linearly separable and, hence, A < A™ al-
most surely.

Ifzy € Cy and z_ € C_ then wz, + 5 > 1 and
wz_ + < —1and so

w2y —2z_)>2 forz, € Cy andz_ € C_. (17)

Let u and u™ be as above. Then (17) implies
w-ul™ > 2 which by (16) is equivalent to u-u(™ >
[u?. Using (15) and (16) we then have

2 2

1 1 2u-ulm
=4+ - —
[ul2 = Ju™2 a2 lutm™)?

o, 12
=\ P jutm]
_ g (0] + u] (m)
=+ (Rpra ) (1 )

which, since A = [u| and A,, = [ul™)], proves (12).
O

Proof of Lemma 3. Tn the proof we use the property
that if sets P and ) are independent, i.e., p(P,Q) =
p(P)p(@), then all subsets P’ C P, Q' C @) are also
independent: p(P', Q") = p(P")p(Q").
Let X* € X! S be any subset of V' \ {Y, X?}. Fur-
thermore, let S’ = SN X! and SF = SN X%, By the
definition of irrelevancy we have that p(X7,Y, X#) =
p(X1)-p(XEY). Since {X} U ST C X! and SE C
{Yiu XT then, for all values of X! and S for which
(X4 S5) > 0:

p(X7, ST, SH)

_ p(Y, SR)p(XZaSI) _ p(Y7 SR)

p(X?,87)-p(SH) p(SH)
_ p(¥,8%)p(8T) _ p(¥, 8", 87)
p(S7)p(ST) p(ST,5%)

Thus,¥X* € XI5 C vV \ {Y,X*} where p(X*,S) >0,
X' is independent of Y conditioned on any S, and by
definition X7 is KJ-irrelevant to Y. L

p<Y|XZ, S) = p<Y|XZ, SI>SR) =

=p(Y'5)

Proof of Lemma 4. Let X* be any KJ-irrelevant vari-
able to Y and X" any relevant one. Faithfulness im-
plies (by Theorems 5 and 6 (Tsamardinos & Aliferis,
2003)) that X* has no (undirected) path to Y and that
X7 does have a path to YV in any network faithfully
representing the distribution. Thus, X? has no path
to X7 (or it would also have a path to Y through X7).
Thus, any subset ST of the set of all X? is independent
of any subset S of the set of all X". We can now
prove the lemma by following the steps of the previ-
ous proof in reverse order by noting the independence
(ST, SF) = p(ST)-p(ST) and that X? is independent
of Y conditioned on any S by KlJ-irrelevance.

O



