A kernel view of the dimensionality reduction of manifolds
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Abstract

We interpret several well-known algorithms
for dimensionality reduction of manifolds
as kernel methods. Isomap, graph Lapla-
cian eigenmap, and locally linear embedding
(LLE) all utilize local neighborhood infor-
mation to construct a global embedding of
the manifold. We show how all three algo-
rithms can be described as kernel PCA on
specially constructed Gram matrices, and il-
lustrate the similarities and differences be-
tween the algorithms with representative ex-
amples.

1. Introduction

Recently, several different algorithms have been de-
veloped to perform dimensionality reduction of low-
dimensional nonlinear manifolds embedded in a high
dimensional space. Isomap (Tenenbaum et al., 2000)
was originally proposed as a generalization of multi-
dimensional scaling (MDS) (Cox & Cox, 1994). An
alternative method known as locally linear embed-
ding (LLE) (Roweis & Saul, 2000) was developed that
solved a consecutive pair of linear least square opti-
mizations. More recently, another method for dimen-
sionality reduction of manifolds has been described in
terms of the spectral decomposition of graph Lapla-
cians (Belkin & Niyogi, 2003). Although all three algo-
rithms, Isomap, graph Laplacian eigenmaps, and LLE
have quite different motivations and derivations, they
all can perform dimensionality reduction on nonlinear
manifolds as shown in Fig. 1.
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Figure 1. The two-dimensional embeddings resulting from
Isomap (B), Laplacian eigenmap (C), and LLE (D) from
1350 points sampled from the S-curve manifold (A). K =
10 nearest neighborhoods were used for computing the em-
beddings.

All three algorithms share a common characteristic in
that they first induce a local neighborhood structure
on the data, and then use this local structure to glob-
ally map the manifold to a lower dimensional space.
This local neighborhood relationship is typically de-
fined using nearest neighbors in Euclidean space and
can be described by a graph G(V, E), where the nodes
V represent different data points, and the edges E rep-
resent neighborhood relations among the points. How-
ever, the way these different algorithms use this neigh-
borhood structure to find a global embedding is quite
different. In this work, we interpret the different algo-
rithms as kernel methods. Specifically, we will relate
them to the kernel PCA (KPCA) algorithm (Scholkopf
et al., 1998).

Previous studies have pointed out relationships among
various manifold learning algorithms (Weiss, 1999;
Williams, 2001; Bengio et al., 2004). In this work,
we specifically relate Isomap, graph Laplacians, and



LLE within a kernel framework. Regarded in this con-
text, the three algorithms all share a similar strategy.
They construct an implicit mapping of the training
points to a feature space which preserves some aspect
of manifold structure in the data. This mapping is de-
scribed by a kernel matrix which represents the inner
products between the points in feature space. Diago-
nalization of this kernel matrix then gives rise to an
embedding that captures the low-dimensional struc-
ture of the manifold.

The resulting kernel matrices are distinctive in sev-
eral ways. Unlike typical kernels, these kernels do not
possess an explicit functional form, and thus can be
analytically characterized only in the limit of infinite
sampling (Bengio et al., 2004). We give a graph oper-
ator interpretation of the kernel that is different from
(Kondor & Lafferty, 2002), that yields a natural in-
terpretation of a proper metric on the graph. Also,
we show empirically that the kernel matrices defined
by these algorithms are consistent in the limit of large
data.

In the following we will first fix our notation and pro-
vide a short review of kernel PCA (Sec. 2). We then
in turn show how Isomap (Sec. 3), graph Laplacian
eigenmaps (Sec. 4) and LLE (Sec. 5) can be interpreted
in the context of KPCA. Empirical results on several
examples are provided to illustrate the properties of
the resulting kernel matrices. We conclude with a dis-
cussion of the similarities and differences between the
various methods.

2. Review of Kernel PCA

Suppose we are given a nonempty set X and a positive
definite kernel k. By the latter, we mean a real-valued
function on X x X’ with the property that there exists a
map ¢ : X — H into a dot product space H such that
for all z,2' € X, we have (®(z),®(z')) = k(z,2').!
In kernel methods, £ can be viewed as a nonlinear
similarity measure.

Given data z1,...,z,;, € X which we assume to be
in a vector space, kernel PCA computes the principal
components of the points ®(z1), ..., ®(x,,). Since H
may be infinite-dimensional, the PCA problem needs
to be transformed into a problem that can be solved
in terms of the kernel k. To this end, we consider the

!Note that this is sometimes called a positive semidef-
inite kernel. In the kernel literature, positive definite is
more common, with the term strictly positive definite be-
ing used for the case where the associated kernel matrix is
full rank. We use the same terminology for matrices.

covariance matrix in H,

m

> () ®(2:)", (1)

i=1

1
C:=—
m

where ®(z;)T denotes the linear form mapping v to
(®(x;),v). To diagonalize C even if H is infinite-
dimensional, we first observe that all solutions to

Cv=Av (2)

with A # 0 must lie in the span of ®-images of the
training data (as can be seen by substituting Eq. (1)
and dividing by A). Thus, we may expand the solution
v as

V= Zazq)(wz)a (3)

thereby reducing the problem to that of finding the «;.
The latter can be shown to take the form

mia = Ko, (4)

where @ = (ai,...,a,)! and K;; = k(z;, ;). Ab-
sorbing the m factor into the eigenvalue A, one can
moreover show that the p-th feature extractor takes
the form

\/1)\— Z ap,ik(zi, 7). (5)

This is derived by computing the dot product between

a test point ®(z) and the p-th eigenvector in feature

space; the \/1/\_ factor ensures that (v,,v,) = 1.
P

(v, ®(2)) =

Below we will make use of the following observation:
The p-th feature values extracted by KPCA on the
training example x,, is proportional to the expansion
coefficients ;. This can be seen as follows: Substi-
tuting z = z,, in (5), we get

L (Kay).

V2
1

\/E()‘pap)n = \/Eo‘p,n- (6)

(vp, (zn))

Finally, we should mention one modification. In
Eq. (1), we have implicitly assumed that the data in
the feature space have zero mean. In general, we can-
not assume this, and therefore we need to subtract the
mean (1/m) Y, ®(x;) from all points. This leads to a
slightly different eigenvalue problem, where we diago-

nalize
K' =T —-eel)K(I —eeT) (7)

(with e = m~1/2(1,...,1)7) rather than K.



3. Isomap

As in multidimensional scaling (MDS), Isomap first
constructs a matrix of pairwise distances between the
different data points (Tenenbaum et al., 2000). How-
ever, instead of directly using Euclidean distance in
the high-dimensional space, Isomap constructs a sym-
metric adjacency graph using criteria such as symmet-
ric nearest neighborhoods or e-ball neighborhoods. It
then weights each of the edges in this graph by the Eu-
clidean distance between neighboring points (a variant
called C-Isomap also normalizes these weights (de Silva
& Tenenbaum, 2002)). Dijkstra’s algorithm is next
used to compute the shortest path among edges in the
neighborhood graph to define the total distance be-
tween pairs of points. Finally, MDS is applied to this
shortest path distance matrix and the embedding is
given by the coefficients of the smallest eigenvectors
of this matrix. As pointed out in (Williams, 2001),
one can interpret metric multidimensional scaling as
kernel PCA (with the main difference being that ker-
nel PCA also provides an embedding for test points,
whereas MDS only embeds the training points). In
a similar fashion, one can take the distances used in
Isomap and consider the following “kernel”:

KIsomap = _%(I - eeT)S(I - eeT)a (8)

where S is the matrix of squared distance, and e =
m~'/2(1,...,1)7 is the uniform vector of unit length.
This will center Kisomap; but there is no theoreti-
cal guarantee that it will be positive definite. How-
ever, in the continuum limit for a smooth manifold,
the geodesic distance between points on the manifold
will be proportional to Euclidean distance in the low-
dimensional parameter space of the manifold (Grimes
& Donoho, 2002). It is known that k(z,z') = —||z —
#'||® is conditionally positive definite for 0 < 8 < 2.
In the continuum limit, (—S) will thus be condition-
ally positive definite and Kisomap Will be positive defi-
nite (see pp. 49 and 51 in (Scholkopf & Smola, 2002);
see also p. 440 for an example of kernel PCA using
k(z,z') = —||lz — 2'||?, i.e., with S;; = ||lz; — z;|?).

Now recall (6); since the final embedding found by
Isomap is given by the largest eigenvectors of (8) we see
that using the projections given by the largest eigen-
vectors of KPCA using Krsomap yields, up to scaling
by VAP, an identical solution. Shown in Fig. 2 are the
results of Isomap applied to the S-curve manifold. In
the figure are the resulting spectrum of Kigomap and
plots of the associated metric distances in S.
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Figure 2. The spectrum of Kisomap for the S-curve is
shown on a linear (A) and log-scale (B). A change in slope
is noticeable between the second and the third eigenvalues.
The pairwise distances of the embedding are compared to
the distances in the original input space on a global (C)
and local (D) scale. Embeddings are computed using the
two eigenvectors with the largest eigenvalues of the kernel
Kisomap. The distances in this two-dimensional subspace
are compared with distances in feature space under Kisomap
in (E) and (F). The embedding is superimposed with con-
tour plots of distance in feature space from a point (marked
with an x) on the boundary (G) and from a point in the
center (H). The contour plots with perfect dimensionality
reduction would look like ellipses, with the eccentricity of
the ellipses reflecting the difference in the two largest eigen-
values of Kisomap- Note that the linearity of (E) and (F)
indicates that we have found a good kernel.



4. Graph Laplacian

The graph Laplacian eigenmap algorithm (Belkin &
Niyogi, 2003) directly incorporates a graph structure
describing the local neighborhood relations between
data points. As in Isomap, these neighbor relations
can be defined in terms of symmetric nearest neigh-
bors or an e-ball distance criterion. The neighborhood
relations are summarized by the adjacency matrix W
where W;; > 0 if the ith and jth data points are neigh-
bors (i ~ j), otherwise W;; = 0. The symmetric,
non-zero weights in W can be chosen from {0, 1}, or
according to a Gaussian dropoff W; = e |zi—2s/*/20”
where o is an adjustable parameter. The generalized
graph Laplacian L is defined in terms of the adjacency
matrix W as:

d;, if i = j,
Lij = - Wij, lf 1~ j, (9)
0, otherwise,

where d; = >, ;Wi; is the degree of the ith ver-
tex. The normalized graph Laplacian £ is a symmetric
matrix related to L by the rescaling £ = D-:LD-3
where the diagonal matrix D;; = §;;d;. We assume
that the graph is connected, so that L will have a sin-
gle zero eigenvalue associated with uniform vector e.

The role of the graph Laplacian for dimensionality re-
duction was motivated (Belkin & Niyogi, 2003) by
showing that a plausible cost for a one-dimensional
embedding of the nodes of the graph ¢ : V — R is
given by:

YT Ly = % > (@ — ;)* Wi (10)

1%

This quadratic form also explicitly shows that L is
positive definite. Optimal embeddings are then given
by minimizing Eq. (10). The optimal solutions to this
minimization are given by the eigenvectors of L with
the smallest eigenvalues, excluding the uniform vec-
tor e. Using a different normalization constraint on
the optimization gives rise to optimal embeddings de-
scribed by the eigenvectors of the normalized graph
Laplacian £ instead.

The optimal solution of Eq. (10) can also be inter-
preted as finding the eigenvectors with the largest
eigenvalues of the pseudo-inverse L!. Thus, the graph
Laplacian eigenmap algorithm is equivalent to kernel
PCA using L' as a kernel matrix. Note that since
Le = L'e = 0, then Lt = (I — ee?)L1(I — ee”) so
that this kernel matrix is automatically centered. We
next give an interpretation of this kernel matrix in
terms of a metric described by the commute times on
the graph.
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Figure 3. The spectrum of K for the S-curve is shown
on a linear (A) and log-scale (B). The pairwise distances
of the two-dimensional embedding computed using K, are
compared to the distances in the original input space on
a global (C) and local (D) scale. The distances in this
two-dimensional subspace are compared with distances in
feature space under K in (E) and (F). The embedding
is superimposed with contour plots of distance in feature
space from a point (marked with an x) on the boundary
(G) and from a point in the center (H).



4.1. Diffusion kernel

It is known that the graph Laplacian is closely related
to a description of diffusion on the graph (Kondor &
Lafferty, 2002). As a continuous time dynamical sys-
tem, the evolution of a diffusing field on the graph is
given by the differential equation:

9O _ Ly (11)

The solution to this equation is related to the matrix
exponential of L, otherwise known as the Green’s func-
tion or heat kernel (Kondor & Lafferty, 2002):

Ky =exp(—Lt) = Y _ dppe (12)

where ¢, are the eigenvectors (forming a complete or-
thonormal system) and A, are the eigenvalues of L,
ie., L =73 ¢p¢, Ap- In terms of the heat kernel, the

generic solution to Eq. (11) is given by:

P(t) = Kp(0) = Y prp(0)e*ig,,  (13)

p

where 1(0) is the initial state of the field at time ¢ = 0.
It is clear that the eigenvectors ¢, of L with the small-
est eigenvalues correspond to the most slowly decay-
ing modes under diffusion. In particular, the uniform
vector ¢y = e with zero eigenvalue A\; = 0 is the sta-
tionary distribution since Kie = e.

We define §¢(t) as the deviation from the long-time
stationary distribution

dip(t) = (t) — ¢p(o0) = Kyp(0) —e. (14

We consider statistics of this field under random re-
alizations of the inital conditions ¥(0) such that the
mean (1(0)) = e. In this case, the heat kernel can
then be related to the covariance of the time evolved
field (Kondor & Lafferty, 2002):

Ei((0)9(0)") K — ee™.(16)

Assuming that the variance (;(0)1;(0)T) = d;; is in-
dependent of the components of 1(0), the covariance
matrix in Eq. (16) can be written as: (51 (¢)dyp(t)T) =
Ko — eeT. We then integrate this covariance matrix

over time to get the positive definite (kernel) matrix:

/0 (U Fw(H)T) dt (17)
- /0 ” li pppr et —eeT] dt  (18)
p=1
= 3 bpdt Ooe*%tdt (19)
>0 |,
e o] T
_ %Z ¢§¢P - %LT. (20)
p=2 P

As before, L' is the pseudo-inverse of the graph Lapla-
cian, also known as the discrete Green’s function
(Chung & Yau, 2000).

We now show that L' can indeed be considered a
proper “kernel” for the graph by relating it to a proper
metric distance. The matrix —L;; in Eq. (11) can be
regarded as the transition rates of a continuous-time
Markov chain (Aldous & Fill, 2002). In this interpre-
tation, the evolving field ;(¢) can be interpreted as
a probability distribution describing the likelihood of
occupying state i at time ¢, given initial probabilities
1(0). The statistics of this Markov chain is described
by the fundamental matrix, which is equivalent to the
pseudo-inverse of L:

Z = /00 [exp(—Lt) — ee™] dt = L. (21)
0

An element Z;; of the fundamental matrix is related to
the expected time spent in node j starting from node
i under the Markov process. From this fundamental
matrix, we can derive the commute time Cj;, the ex-
pected time for the Markov chain to start from node
i, reach node j, and then return to node i (Aldous &
Fill, 2002):

Cyi = m(Zii + ij — 7 — Zj') (22)
= m@l+Ll, -l —-Ll). (23

The commute times are nonnegative, C;; > 0, sym-
metric, C;; = Cj;, and satisfy the triangle inequal-
ity, Cij < Cip + Cg;. Thus, the commute times are a
proper induced metric on the graph under this Markov
process. From Eq. (22), we see that the commute times
are also directly related to an inner product relation-
ship given by a kernel matrix K7 = L!. The graph
Laplacian algorithm is therefore equivalent to perform-
ing kernel PCA on the kernel matrix Ky that is as-
sociated with the commute times of diffusion on the
underlying graph. As in our analysis of the Isomap al-
gorithm, the graph Laplacian algorithm can also be re-



garded as multidimensional scaling on the graph com-
mute times. The spectrum of K, and plots of the in-
duced commute time metric for the S-curve manifold
are shown in Fig. 3.

This analysis also provides insight into the difference
between Isomap and the graph Laplacian algorithm.
The former is based upon shortest paths on the graph
induced by the data points, whereas the latter uses
commute times of a Markov chain on the graph. In
other words, the graph Laplacian algorithm not only
considers the shortest path, but integrates over all
paths connecting points on the graph to derive its ker-
nel matrix.

5. LLE

The LLE algorithm (Roweis & Saul, 2000) first con-
structs a weight matrix W whose ith row contains the
linear coefficients that sum to unity and optimally re-
construct z; from its p nearest neighbors. Defining
M := (I -W7)(I—W), which has a maximum eigen-
value A4z, One can show that M’s smallest eigenvalue
is 0 and the corresponding eigenvector is the uniform
vector e. Since the other eigenvectors are orthogo-
nal to e, their coefficients sum to 0. In LLE, the
coordinate values of the m-dimensional eigenvectors

m —d,...,m — 1 give an embedding of the m data
points in R?. If we define
K := (Apazl — M), (24)

then by construction, K is a positive definite matrix,
its leading eigenvector is e, and the coordinates of the
eigenvectors 2, ...,d + 1 provide the LLE embedding.
This straightforward connection was pointed out in
(Scholkopf & Smola, 2002, Exercise 14.17); see also
(Bengio et al., 2004). However, the link between kernel
PCA and LLE goes further than that. Equivalently,
we can project out the uniform vector e, and then use
the eigenvectors 1, ..., d of the resulting matrix as

(I —ee”)K(I —ee™). (25)

Note that this is identical to the centered kernel matrix
Eq. (7) which is used in kernel PCA.

So we thus know that the coordinates of the leading
eigenvectors of kernel PCA performed on K yield the
LLE embedding. This, together with the consider-
ations summarized in (6), shows that the LLE em-
bedding is equivalent to the KPCA projections up to
a multiplication with v/AP. This corresponds to the
whitening step which is performed in LLE in order to
fix the scaling, but not normally in kernel PCA, where
the scaling is determined by the variance of the data.

Note that there need (and probably will) not be an
analytic form of a kernel k£ which gives rise to the LLE

kernel matrix K. Accordingly, there need not be a
feature map ® corresponding to it which is defined
on the whole input domain. Nevertheless, one can at
least give a feature map defined on the training points.
To this end, write K = SDS”, with an orthogonal
matrix S (with rows S;) and a diagonal matrix D with
nonnegative entries. Then the Gram matrix is given
by

k(mi,xj) = (SDST)” = (S,',DS]‘) = <\/BSZ,\/BS]> -
(26)

5.1. Graph operator interpretation

The symmetric, positive definite matrix M in LLE can
also be regarded as an operator acting on fields de-
fined over a graph. In that regard, it acts similar to
the square of the graph Laplacian (Belkin & Niyogi,
2003). However, LLE differs from other spectral graph
techniques in its construction of M by explicitly min-
imizing », M;; (z;,x;) where the dot product of the
data is in the original input space. If we define a con-
tinuous time dynamics for fields over the graph using
the operator M:

9 (t)

ot
we see that the choice of M is equivalent to minimizing
$T % when the field ¢ is initialized with the coordi-
nates of the original data points. In analogy with the
graph Laplacian embedding as the slowest decaying
eigenmodes of the diffusion operator, the LLE embed-

ding is given by the slowest decaying eigenmodes of
Eq. (27).

However, the interpretation of Eq. (27) is somewhat
different from diffusion on a graph in that off-diagonal
elements of M may be both positive and negative, and
thus cannot be described by simple dissipative diffu-
sion. One physical interpretation of Eq. (27) is to re-
late M to a quadratic energy coupling, and (¢) to
the positions of a set of colored particles. Depending
on the colors of the particles, they may either inter-
act with attractive or repulsive linear forces in a pair-
wise manner. The eigenmodes of M with the smallest
eigenvalues would then correspond to the lowest en-
ergy modes of this interacting system.

= —My(2), (27)

We can then construct an alternative kernel for LLE
that is analogous to the heat kernel for the graph
Laplacian by considering the Green’s function of M,
K; = exp(—Mt). Similar to the graph diffusion ker-
nels, this kernel is related to the covariance of the
time evolved fields under Eq. (27). Integrating this
covariance over time yields the pseudo-inverse kernel
K = M which is positive definite and centered. As
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Figure 4. The spectrum of K; for the S-curve is shown
on a linear (A) and log-scale (B). The pairwise distances
of the two-dimensional embedding computed using K, are
compared to the distances in the original input space on
a global (C) and local (D) scale. The distances in this
two-dimensional subspace are compared with distances in
feature space under Ky in (E) and (F). The embedding
is superimposed with contour plots of distance in feature
space from a point (marked with an x) on the boundary
(G) and from a point in the center (H).

noted before, performing kernel PCA on Kj is then
equivalent to LLE up to scaling factors. The proper-
ties of K} when LLE is applied to the S-curve data is
shown in Fig. 4.

6. Discussion

We have seen that all three algorithms, Isomap, graph
Laplacian eigenmaps, and LLE can be interpreted as
kernel PCA with different kernel matrices. The con-
struction of a kernel matrix is equivalent to mapping
the data to points p1, ..., p, in a Hilbert space so that
K;; = (pi,p;) is positive definite. For Isomap, the
kernel matrix is related to the Dijkstra shortest path
distance between the points; for graph Laplacians, the
kernel is related to commute times; and for LLE, the
kernel can be associated with a specially constructed
graph operator.

Note that the kernel matrices in all these algorithms
are defined only on the training data. Moreover, in
contrast to traditional kernels such as the Gaussian
kernel, the element Kj;; in the kernel matrix not only
depends on the inputs z; and z;, but also on all the
other training points. This can be seen in the experi-
mental results where the induced feature distance de-
fined by the kernels does not depend simply on dis-
tance in the input space. However, there does appears
to be more of a direct relationship at small distances
indicating some local structure in the construction of
the kernel. The contour maps of the induced feature
distance for the three algorithms are generally ellip-
soidal in shape, reflecting the difference in eigenvector
normalization between the algorithms and KPCA.

We also can empirically test to see how consistent the
elements of the defined kernel matrices are under dif-
ferent data samplings of the manifold. Fig. 5 shows the
representative behavior of several different kernel ma-
trix coeflicients as the number of data points changes.
After normalizing for an overall scale factor in the ker-
nel matrices that does not influence the resulting em-
beddings, we see that the kernel coefficients are rel-
atively stable to different samplings. This indicates
that the kernel matrices as defined are not inconsis-
tent under these empirical data distributions.

For all three algorithms, the existence of a kernel for-
mulation indicates that the algorithms may be viewed
as a warping of the input space into a feature space
where the manifold is flat. This warping is defined
using the local neighborhood structure in the data.
The embedding is then calculated by projecting these
vectors onto a low dimensional subspace. We are
currently working to better elucidate the geometrical
properties of these kernel matrices.
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