
Nonparametric Classification with Polynomial MPMC Cascades

Sander M. Bohte S.M.Bohte@cwi.nl

Department of Software Engineering, CWI, The Netherlands
Department of Computer Science, University of Colorado at Boulder, USA

Markus Breitenbach Markus.Breitenbach@colorado.edu

Department of Computer Science, University of Colorado at Boulder, USA

Gregory Z. Grudic Greg.Grudic@colorado.edu

Department of Computer Science, University of Colorado at Boulder, USA

Abstract

A new class of nonparametric algorithms
for high-dimensional binary classification is
proposed using cascades of low dimensional
polynomial structures. Construction of
polynomial cascades is based on Minimax
Probability Machine Classification (MPMC),
which results in direct estimates of classifi-
cation accuracy, and provides a simple stop-
ping criteria that does not require expen-
sive cross-validation measures. This Poly-
nomial MPMC Cascade (PMC) algorithm is
constructed in linear time with respect to
the input space dimensionality, and linear
time in the number of examples, making it
a potentially attractive alternative to algo-
rithms like support vector machines and stan-
dard MPMC. Experimental evidence is given
showing that, compared to state-of-the-art
classifiers, PMCs are competitive; inherently
fast to compute; not prone to overfitting; and
generally yield accurate estimates of the max-
imum error rate on unseen data.

1. Introduction

The first goal of this paper is to propose a compu-
tationally efficient class of nonparametric binary clas-
sification algorithms that generate nonlinear separat-
ing boundaries, with minimal tuning of learning pa-
rameters. We want to avoid the computational pit-

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the authors.

falls of using extensive cross validation for model se-
lection. For example, in Support Vector Machines
(SVMs) (Schölkopf & Smola, 2002), both the choice of
kernels and corresponding kernel parameters is based
on extensive cross validation experiments, making gen-
erating good SVM models computationally very diffi-
cult. Other algorithms, such as Minimax Probabil-
ity Machine Classification (MPMC) (Lanckriet et al.,
2002), Neural Networks, and even ensemble methods
such as Boosting (Freund, 1999), can suffer from the
same computational pitfalls.

The second goal of this paper is to have the pro-
posed class of algorithms give explicit estimates on the
probability of misclassification on future data, with-
out resorting to unrealistic distribution assumptions
or computationally expensive density estimation (An-
derson & Bahadur, 1962). The Minimax Probability
Machine for Classification (MPMC), due to Lanckriet
et al. (Lanckriet et al., 2002), is a recent algorithm
that has this characteristic. Given the means and co-
variance matrices of two classes, MPMC calculates a
hyperplane that separates the data by minimizing the
maximum probability of misclassification. As such, it
generates both a classification and a bound on the ex-
pected error for future data. In the same paper, the
MPMC is also extended to non-linear separating hy-
persurfaces using kernel methods. However, MPMC
then has similar complexity as SVM algorithms.

To address these two goals, we propose an efficient,
scalable, nonparametric approach to generating non-
linear classifiers based on the MPMC framework: the
class of Polynomial MPMC Cascades (PMCs). PMCs
are motivated by cascading algorithms like cascade-
correlation (Fahlman & Lebiere, 1990) and Tower
(Gallant, 1990) and others (Nadal, 1989), which se-
quentially add levels that improve performance. How-

ever these algorithms applied to real world problems
often suffer from overfitting and generally scale poorly
to larger problems due to the increasing number of
variables used in subsequent levels of the cascades.

In our cascading algorithm, for levels, instead of neural
networks, we use low dimensional polynomials, after
Grudic & Lawrence’s Polynomial Cascade algorithm
for regression (Grudic & Lawrence, 1997), which ef-
ficiently builds very high dimensional nonlinear re-
gression surfaces using cascades of such polynomi-
als. In this manner, we avoid the growth in learn-
ing complexity in cascade-correlation type algorithms
by always projecting the intermediate outputs onto a
two-dimensional state-space, and proceed from there.
Since the rate of convergence (as a function of the num-
ber of training examples) of a basis function learn-
ing algorithm depends on the size of the state-space
(i.e. the number of basis functions) (Friedman, 1995),
these low dimensional projections lead to stable cas-
cade models.

The proposed Polynomial MPMC Cascade algorithms
generate a nonlinear hypersurface from a cascade of
low-dimensional polynomial structures. The optimal
choice for each level of the cascade is determined using
MPMC to select the next most discriminating struc-
ture. From one level to the next, these additional dis-
criminating structures are added to the cascade using
MPMC, such that at each step we obtain the next
most discriminating polynomial cascade; we construct
PMC variants that use different ways of constructing
the initial polynomial structures. By using MPMC
to guide the addition of new cascade levels, we main-
tain a current performance and current maximum er-
ror bound during construction. We stop the addition
of new structures to the cascade when the error bound
no longer improves.

We show that the proposed PMC algorithms yield
competitive results on benchmark problems, while pro-
viding maximum error bounds. The PMCs are efficient
in that their complexity is 1) linear in the number of
input-dimensions, 2) linear in the number of training
examples, 3) linear in the number of levels of the cas-
cade. Additionally, the PMC algorithm is efficient in
that there are no parameters that need fine-tuning for
optimal performance. Unlike approaches like boosting
(Freund, 1999), the PMC generates a single model, a
polynomial, instead of an ensemble of several models
while still being fast and scalable to large datasets.

To summarize, we believe that the contribution of this
paper lies in effectiveness and speed of the proposed
class of PMC algorithms: while being solidly rooted
in the theory of MPMC, their linear time complexity

and nonparametric nature allow them to essentially
be a “plug & play” solution for classification prob-
lems, yielding results competitive with algorithms like
MPMC with Gaussian kernels and non-linear SVMs.

A Matlab PMC implementation can be downloaded
from http://www.cwi.nl/~sbohte/code/pmc.

2. Cascading MiniMax Classification

The nonparametric Polynomial Cascade Regression
Algorithm (Grudic & Lawrence, 1997) is based on the
premise that very high dimensional nonlinear regres-
sion can be done using a finite number of low dimen-
sional structural units, which are added one at a time
to the regression function. By keeping the structural
units low dimensional, the algorithm is able to pro-
duce stable, accurate, regression functions in very high
dimensional, large problem domains (i.e. with tens of
thousands of features and tens of thousands of training
examples (Grudic & Lawrence, 1997)). These regres-
sion models have good performance, both in terms of
regression accuracy and scaling: the algorithms scale
linearly with the dimensionality of the problem-space,
and linearly with the number of examples.

However, the Polynomial Cascade Regression Algo-
rithm is not suitable for classification as it optimizes an
error metric that typically doesn’t create an effective
classification model. Mainly, Polynomial Cascade Re-
gression minimizes least squared error, treating clas-
sification as regression by fitting a continuous regres-
sion surface to class labels (for example, -1 and +1
for binary classification). In contrast, algorithms that
build effective classifiers, such as boosting (Freund,
1999), Support Vector Machines (SVM’s) (Schölkopf
& Smola, 2002), and MPMC (Lanckriet et al., 2002),
fit to metrics that only attempt to separate classes. In
this section, we describe an adaptation of the Poly-
nomial Cascading algorithm to nonparametric binary
classification using the MPMC framework.

Problem Definition Let x and y denote the set
of training samples available in a binary classification
problem, with x ∪ y ∈ R

d×N , for in total N samples,
each of dimensionality d. The means and covariance
matrices are denoted respectively by (x̄, Σx) and (ȳ,
Σy). Let xi and yi denote the respective vectors in di-
mension i, {i = 1 . . . d}. The problem is to construct a
classifier that efficiently and accurately separates un-
seen data from the same respective classes.

MPMC The Minimax Probability Machine Classi-
fication algorithm was designed as a generative clas-
sification method that is essentially free of distribu-

tional assumptions, and yields an estimate of bound
of the accuracy of the model’s performance on the fu-
ture data. Compared to discriminative classification
methods like SVM’s, generative approaches tend to
be less sensitive to outliers. Additionally, MPMC’s
have been demonstrated to achieve comparative per-
formance with SVM’s.

The MPMC algorithm as developed in (Lanckriet
et al., 2002) determines a hyperplane H(a,b) =
{z|aT z = b}, where z, a ∈ R

m,b ∈ R (for some di-
mension m), which separates two classes of points, u

and v, with maximal probability with respect to all
distributions having these means and covariance ma-
trices:

max
α,a6=0,b

α s.t. inf
u∼(ū,Σu)

Pr{aT u > b} > α

inf
v∼(v̄,Σv)

Pr{aT v 6 b} > α, (1)

where 1−α is then the estimate of the maximum mis-
classification probability bound, and the MPMC algo-
rithm of (Lanckriet et al., 2002) minimizes this bound.

2.1. Polynomial MPMC Cascade

The general idea behind the Polynomial MPMC Cas-
cade algorithm is to start off with a low dimensional
structure for the first cascade level: this structure is
derived from a polynomial of just one input dimension
(attribute) of the data vectors, where the particular
input dimension is selected from all d input dimen-
sions by computing the class separation power (i.e. the
1 − α error rate in (1)) of the corresponding polyno-
mial with MPMC. Then, the next level is constructed
by combining the output of this structure with a new
input dimension, where again this input dimension is
selected by trying all d input dimensions, i.e.: take
dimension i = (1 . . . d), create a polynomial of both
the input from the previous level and the vector of in-
put dimension i, and determine the usefulness of this
polynomial structure for separating the classes with
MPMC. Then, the best separating polynomial struc-
ture is selected as an additional level to the cascade.
The classification output of this level is a weighted sum
of the output of the previous level and the new polyno-
mial: we use MPMC to determine this weighting, thus
at the same time obtaining a (decreasing) classifica-
tion error bound Si at every level as we construct the
cascade. We keep adding levels until this classification
error bound Si no longer improves. The procedure is
depicted in Figure 1.

In the remainder, we make the following notational
conventions: Let X ∈ RN×d be a N × d matrix. We
will use xi as a vector (x ∈ RN×1) by taking the ith

feature from each example out of the matrix. We de-
fine x2 to be the component wise square of x. We
define xy to be the component-wise multiplication of
the vector’s entries (i.e. the result is a vector – this
operation is not the dot-product).

Formally, the procedure works as follows:
First the set of training samples z = x ∪ y is linearly
scaled, that is, for each input dimension the maximal
and minimal value of zi ∈ R

N are determined (zi the
vector of values in the training samples for input di-
mension i), and each input feature vector zi is lin-
early scaled to the range [-1,1] with scaling vectors
ci,di ∈ R

d (slope, intercept).

To build the first cascade level, we define a second or-
der candidate polynomial Z i

1, for each input dimension
i = (1 . . . d), as:

Zi
1 = (zi, z

2
i), (2)

where zi = xi ∪yi; let Zi
1+ and Zi

1− denote the parts
of Zi

1 from the respective classes. For each candidate
input dimension i, we compute the means and covari-
ance matrices of Z i

1+ and Zi
1−: (Z̄i

1+, ΣZi
1
+) and

(Z̄i
1−, ΣZi

1
−). Plugging these values into MPMC, we

obtain hyperplane coefficients ai
1,b

i
1 and error bound

si. We select that input dimension that has the mini-
mal error bound: S1 = min(si), where S1 is the error
bound for the first level. With dimension i selected for
the first polynomial cascade level, the output vector of
this structure is then calculated as G1 = (ai

1)
TZi

1−bi
1.

Subsequent levels j are then constructed as follows: of
two inputs of the new level, one is the linearly scaled
output of the previous level: G′

j−1 = Aj−1Gj−1 −
Bj−1 (with scaling factors Aj−1 and Bj−1). Candi-
date polynomials are computed by combining an in-
put dimension i = (1 . . . d) with previous cascade level
output G′

j−1:

Zi
j = (zi, z

2
i , ziG

′
j−1,G

′
j−1,G

′2
j−1). (3)

As before, we then use MPMC to find the input di-
mension i associated with the polynomial Z i

j with the
minimal classification error bound. We compute the
output vector Gj of the new structure as:

Gj = aT
i Z

i
j − bi. (4)

Crucially, the (intermediate) classification perfor-
mance of the cascade is computed by combining the
output Gj with the classification output of the previ-
ous level, Mj−1. For the first level, M1 is set to the
(unscaled) output G1. The classification output of
subsequent levels is computed by combining the clas-
sification output of the previous level with the output

Z
0

j
G ()×1

G ()×2

S
3

Z
L

m G ()×L
SL

Z
1

k

Z
2

l G ()×3

S
2

S
1

y^

M1

M2

M3

Figure 1. Polynomial MiniMax Cascading Classifier construction: in each level the input is determined for which the
low dimensional polynomial is best separated by the MPMC procedure, yielding the output Gi for level i. This output,
together with the output of the previous level is put through another MPMC (circle), which optimally ’adds’ two levels
together (and yields the classification output Mi and the error-bound Si that is used as a stopping criteria).

of the current level using MPMC, define:

gj = (Mj−1,Gj) (5)

gj+ = (Mj−1+,Gj+)

gj− = (Mj−1−,Gj−),

then we compute the MPMC hyperplane coefficients
of (ḡj+, Σgj+) and (ḡj−, Σgj−): βj ∈ R

2,γj ∈ R, and
error bound Sj , where Sj is the classification error
bound for level j. The current classification output
Mj is thus computed as Mj = βT

j gj − γj . Classifi-
cation on the training set thus never degrades when
adding levels. The construction of new levels stops
when the classification error bound Sj no longer de-
creases (Sj−1−Sj < ε). The pseudo-code for the PMC
model generation is given in Algorithm 1.

Improving error bound While constructing the
Polynomial Minimax Cascade (PMC), the error-bound
on the classification, Si, monotonically decreases be-
cause as another level j is added, the MPMC attempts
to find the best classification given previous classifica-
tion output Mj−1, and the new structure’s output Gj .
At worst this classification will be as good as that ob-
tained in Mj−1 (which is our stopping criteria), and
if there is any additional discriminatory information
contained in Gj , the error-bound will be better, i.e.
decrease. The error-bound SL, with L the final level,
is our estimate for the maximum error bound on the

test set.

Summarily, let x = (x1, · · · ,xn) be the set of features
available for generating the cascade. Let Zi be polyno-
mials as defined in section (2.1). Let Mi be the MPMC
classification output for level i.

New data xt is evaluated by first scaling by c0, d0, and
then clipping the range to [−1, 1]. The classification
function mapping a sample xt to a class label ŷ ∈
{−1, 1} as generated by the PMC algorithm is then:

ŷ(xt) = F (xt) = sgn(ML(xt)), (6)

where

ML(xt) = β1
LGL(xt) + β2

LML−1(xt) + γL, (7)

where β1
L,β2

L and γL are the classification output com-
bination coefficients for level L, with M1(xt) = G1(xt),
and

GL(xt) = aT
LZ

i
L(xt)L + bL, (8)

where aT
L and bL are the combination coefficients ob-

tained from MPMC on the polynomial Z i
L.

Note that the PMC algorithm is similar to Boosting
(Freund, 1999) by using weak classifiers at each level
and summing their classification up in a weighted sum.
Each level, however, uses the weighted output of the
previous level as a feature, instead of re-weighting ex-
amples.

Algorithm 1 Learn a cascade

1: Linearly scale inputs to be within [−1, 1].
Set cascade-level index j = 1.

2: Let xi denote the i-th feature column of

learning-set x.

3: For each possible feature i, construct

inputs from learning-set x as follows:

Zi = (xi,x
2
i). Let Zi+ and Zi− denote

the parts of Z i from the respective

classes. Apply MPMC to (Z i+,Zi−) to

obtain (ai
1, b

i
1, α

i
1). Feature i with lowest

bound αi
1 is used in the first level.

The error bound S1 is set to αi
1. Save

coefficients ai
1, b

i
1 for the first level.

For subsequent levels j these selected

coefficients are denoted aj , bj.

4: Compute the output of the MPMC decision

function:

G1 = (ai
1)

TZi
1 − bi

1.

Classification output M1 is set to G1.

5: Compute G′
1 by linearly scaling the

outputs from G1 to [−1, 1]. Save scaling

parameters A1, B1 (slope, intercept).

6: repeat

7: j = j + 1

8: For each possible feature i, construct

inputs from example-set X as follows:

Zi
j = (xi,x

2
i ,xiG

′
1,G

′
1,G

2′

1). Let Zi
j+

and Zi
j− denote the parts of Z i

j from

the respective classes. Apply MPMC on

Zi
j+,Zi

j− to obtain (ai
j , b

i
j , α

i
j). Feature

i with lowest bound αi
j is selected for

this level. Save coefficients ai
j , b

i
j for

selected i.
9: Compute the output for level j:

Gj = (ai
j)

TZi
j − bi

j.

10: Compute G′
j by linearly scaling the

outputs from Gj to [−1, 1]. Save

scaling parameters Aj, Bj.

11: Compute (intermediate) classification

by via MPMC on Gj and Mj−1. Save

weighting coefficients βj , γj and the

bound αj. The error bound Sj for this

level is set to αj.

12: until |Sj−1 − Sj | < ε

Complexity It is easy to sea that the complex-
ity of the algorithm is linear in the number of sam-
ples N , the number of dimensions of the input d,
and the number of levels L: c3 × N × d × L, where
c3 is a constant related to computing the MPMC,
with c being the order of the polynomial (for our
Zi

j = (zi, z
2

i, ziGj−1,Gj−1,G
2
j−1), the value for c is

5) (Lanckriet et al., 2002).

Execution times Though an apples-to-oranges
comparison, creating and evaluation one classification
model for the Diabetes problem (see ‘Results’) using
our PMC algorithm in Matlab took 20s, whereas the
same problem solved using libSVM (Chang & Lin,
2003) (C-code) took 1m30s (including cross-validation
to find optimal parameter settings, both runs on a P4
2.6Ghz).

Projecting onto data-space Intuitively, the use
of only the input-dimensions as potential building
blocks for the low-dimensional structures of the cas-
cade seems limiting. We propose a variation of PMC
where instead of the actual input-dimensions, we use
as “input dimensions” projections of the training-data

onto single training samples: zi = ziT z/N , where
i = (1 . . .N), zi is the thus constructed “input dimen-
sion”, zi is training example i, and z is the set of all
training examples. As in the PMC explained above,
polynomials of every ith input, xi,yi, i = (1 . . . N)
are evaluated, and the one polynomial most effectively
separating the classes is added to the cascade using
MPMC (as above).

This projection procedure increases the number of
available building blocks for the cascade, albeit at the
cost of speed as the number of examples is typically
much larger than the number of input dimensions. Al-
though the datasets explored here are small enough
for this not to be a problem, for very large datasets
it might be useful to take a random sample from the
data, instead of trying all N data vectors.

Nonparametric The one parametric choice we
make in the PMC is the complexity of the polynomial:
here, we chose a simple quadratic polynomial. More
complex polynomials can be chosen, but may increase
the risk of overfitting the training samples.

3. Results

We studied the performance of the PMC algorithm for
a number of benchmark problems, mostly the bench-
marks used in (Lanckriet et al., 2002): Wisconsin
breast cancer dataset, Pima diabetes, Ionosphere and

Table 1. Performance of PCM, for the PMC Dim, PMC Data and PMC Mixed variants. Experimental results approach
kernel-based MPMC on all datasets except (and only except) Sonar. Reported are test-set accuracy (TSA) and on the
next line the lower error bound α (all percentages). Note that for PMC Dim, the Twonorm accuracy increases to 94.2/94.6
% with larger training sets (600 resp 900). In Votes, missing attributes were replaced by 0.

Dataset PMC Dim PMC Data PMC Mix Lin MPMC Gauss MPMC

Twonorm 92.2 ± 0.1 96.8 ± 0.1 96.5 ± 0.1 95.8 ± 0.4 95.7 ± 0.5
(α) (96.2 ± 0.2) (96.2 ± 0.2) (97.6 ± 0.2) (84.4 ± 0.1) (91.3 ± 0.1)
Cancer 95.8 ± 0.2 97.1 ± 0.2 96.7 ± 0.2 97.0 ± 0.4 96.8 ± 0.3
(α) (95.8 ± 0.1) (95.6 ± 0.1) (96.2 ± 0.1) (84.4 ± 0.1) (89.1 ± 0.1)
Ionosphere 91.4 ± 0.4 89.6 ± 0.5 90.9 ± 0.5 83.4 ± 0.9 91.5 ± 0.7
(α) (91.3 ± 0.2) (85.4 ± 0.3) (92.5 ± 0.2) (65.5 ± 0.3) (89.3 ± 0.2)
Diabetes 76.2 ± 0.5 74.4 ± 0.5 75.9 ± 0.5 76.3 ± 0.6 76.2 ± 0.6
(α) (38.2 ± 0.1) (33.8 ± 0.1) (38.2 ± 0.1) (32.2 ± 0.2) (32.5 ± 0.2)
Sonar 81.7 ± 0.7 84.8 ± 0.9 81.2 ± 0.8 74.9 ± 1.4 87.5 ± 0.9
(α) (95.7 ± 0.2) (93.5 ± 0.3) (96.1 ± 0.2) (67.0 ± 0.4) (99.9 ± 0.1)
Voting 94.8 ± 0.3 94.8 ± 0.3 95.1 ± 0.3 - -
(α) (93.0 ± 0.2) (94.8 ± 0.2) (97.5 ± 0.1) - -

Sonar data (as obtained from the UCI repository). Ad-
ditionally, we tested on the House-voting dataset. As
in (Lanckriet et al., 2002), each dataset was randomly
partitioned into 90% training and 10% test sets. The
data for the Twonorm problem was generated as spec-
ified by Breiman (Breiman, 1998). The results we re-
port in Table 1 are the averages over 100 random par-
titions.

We show the results for three different PMC vari-
ants: PMC using the input dimensions only (PMC

Dim), PMC using projections of individual data-
vectors (PMC Data), and PMC using both input
dimensions and data-projections as cascade building
blocks (PMC Mixed). In Table 1, the results are com-
pared to linear and kernel-based MPMC of (Lanckriet
et al., 2002). We note all PMC variants significantly
outperform the linear MPMC, and approach the per-
formance of kernel-based MPMC on all datasets except
Sonar and Ionosphere. Additionally, we note that in
general the maximum error-bound holds well for the
PMC Dim and PMC Data variants (with the main
exception being the Sonar data; this seems particular
for the dataset as we note the same issue in (Lanckriet
et al., 2002)). For the PMC Mixed variant, almost
all bounds are somewhat too optimistic, see the dis-
cussion for possible solutions. The very low maximum
error bound on the Pima dataset suggests that the
MPMC framework cannot give tight bounds for this
small dataset (we note the same issue in (Lanckriet
et al., 2002)).

The benchmark results for the PMC algorithm are also
competitive with state-of-the-art SVM methods: as
shown in Table 2, the PMC variants clearly outper-
form the linear SVM, except for Sonar, and are close to

the performance of Gaussian-kernel based SVM’s and
boosting(-based) methods like Adaboost and Random
Forests (latter taken from (Breiman, 2001)). Given
the general competitive performance of MPMC as
demonstrated in (Lanckriet et al., 2002), this con-
firms the notion that our nonparametric MPMC-based
approach combines the effectiveness of MPMC with
the speed of nonparametric Polynomial Cascade algo-
rithms.

Learning and overfitting: In the class of PMC al-
gorithms, we have one free parameter: the order of
the polynomial structure. By using the minimal –
quadratic polynomial in the cascade, we attempt to
minimize the possibility of overfitting the training-
samples. We studied this issue by tracking the perfor-
mance of the algorithm variants during the construc-
tion of the cascades (for all 100 runs): at every level,
we noted the current error-bound and we computed
the accuracy on the training and the test set. The
results for three benchmarks for all algorithm variants
are shown in figure 2. Shown are the averages over 100
runs, where the values for those cascades that are com-
pleted (met stopping criteria) are taken as constant for
computing performance for levels larger than the size
of these cascades.

The graphs clearly show that the performance of the
cascades on the test samples is practically constant af-
ter initial learning (also observed in the other bench-
marks, not shown). Although some benchmarks show
slightly better performance early on, this seems to be
within the variance of the final results.

Table 2. Performance of PMC variants compared to Linear SVM (SVML), Gaussian kernel SVM (SVMG), Adaboost and
Random Forests results (standard deviations omitted per high similarity)

Dataset PMC Dim PMC Data PMC Mix SVML SVMG Adaboost Random Forests

Townorm 92.2 96.8 96.5 95.1 96.1 95.1 96.1
Breast Cancer 95.8 97.1 96.7 96.4 96.5 96.8 97.1
Ionosphere 91.4 89.6 90.9 87.1 94.1 93.6 92.9
Pima diabetes 76.2 74.4 75.9 77.9 77.9 73.4 75.8
Sonar 81.7 84.8 81.2 76.1 86.6 84.4 84.1

0 20 40 60 80 100 120 140 160
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 10 20 30 40 50 60 70
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 10 20 30 40 50 60 70 80 90
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

0.25

e
rr

o
r

%

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

0.25

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

level

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

SONAR

Wisconsin Breast Cancer

Ionosphere

e
rr

o
r

%
e
rr

o
r

%

level level

PMC Dim PMC Data PMC Mix

Error bound

LSE

TSE

Figure 2. Performance of PMC variants on the data during the construction of the cascades. Shown are the data for
Ionosphere, Wisconsin Breast Cancer and Sonar. In each graph is plotted the averages of Learning Set Error (LSE), Test
Set Error (TSE) and error-bound, as a function of the number of levels in the cascade during construction.

4. Conclusion

The Polynomial MPMC Cascade (PMC) class of clas-
sifiers introduced in this paper demonstrates good per-
formance in the key areas that determine the usability
of a classifier: accuracy, speed, scalability to high di-
mensional problems, and a minimum of “tinkering” of
the learning parameters. As we have shown, the pro-
posed class of algorithms is nonparametric and highly
accurate on the presented benchmarks, and computa-
tionally it is linear in complexity in the dimension of
the problem, in the number of training examples, and
in the size of the cascade.

We see several areas where the proposed class of al-
gorithms could be extended: although all versions of
the PMC framework studied here demonstrated good
error rates on test data, the bounds for the version
that used both input dimensions and data-projections
as cascade building blocks (PMC Mixed, see Results
section), tended to be overoptimistic for some error
bound predictions. Since the MPMC framework re-
quires estimates of mean and covariance matrix, inac-
curacies in these estimates lead to inaccuracies in error
bounds. One solution to this problem we are currently
investigating is to attempt to determine when these es-
timates are poor, and to compensate for this using a
method similar to the Robust MPMC framework de-
fined in (Lanckriet et al., 2002). Another approach
to this problem is to use robust covariance estimates
such as in (Pena & Prieto, 2001).

We find fast asymptotic convergence of the test set ac-
curacy as the cascade is constructed in all the datasets
tested (i.e. fig 2). This suggests that the number of
levels in the cascades could be reduced, creating more
compact (sparse) models. We are investigating the
use of other robust error bounds to attempt to iden-
tify when further addition of cascade structure will not
lead to significant improvement in test set accuracy.

While we succeeded in avoiding the computational
costs of extensive cross-validation for model selection,
kernel methods, like the data-projection method men-
tioned, incur a time penalty in that then most of the
algorithm’s runtime is due to the expensive compu-
tations of kernel matrices, resulting in a large mem-
ory footprint. Since we are extending the PMC with
other kernels, like non-linear Gaussian kernels, this
does become a concern. We are experimenting with
randomized versions of the PMC algorithm that seem
to provide near-identical results using a smaller mem-
ory footprint as well as a speedup for these projection-
type extensions. Additionally, we are working on find-
ing a statistically valid way to limit the search for the
next feature to a small subset of suitable prospects.

In conclusion, we find that the proposed class of Poly-
nomial MPCM Cascade Classifier algorithms offer a
“Plug & Play” solution for supervised classification
problems, and warrant further study. A Matlab imple-
mentation of the PMC algorithm can be downloaded
from http://www.cwi.nl/~sbohte/code/pmc.

Acknowledgement. We thank Gert Lanckriet for
making publicly available his MPMC implementation.
Work of SMB supported by the Netherlands Organization
for Scientific Research (NWO), TALENT grant S-62 588.

References

Anderson, T. W., & Bahadur, R. R. (1962). Classification
into two multivariate normal distributions with different
covariance matrices. Annals of Mathematical Statistics,
33, 420–431.

Breiman, L. (1998). Arcing classifiers. Annals of Statistics,
26, 801–849.

Breiman, L. (2001). Random forests. Machine Learning,
45, 5–32.

Chang, C.-C., & Lin, C.-J. (2003). libSVM. v2.5 http://
www.csie.ntu.edu.tw/~cjlin/libsvm/.

Fahlman, S., & Lebiere, C. (1990). The cascade-correlation
learning architecture. Advances in Neural Information
Processing Systems (pp. 524–532). Denver 1989: Morgan
Kaufmann, San Mateo.

Freund, Y. (1999). An adaptive version of the boost by
majority algorithm. COLT: Proceedings of the Workshop
on Computational Learning Theory, Morgan Kaufmann
Publishers.

Friedman, J. (1995). An overview of computational learn-
ing and function approximation. From Statistics to Neu-
ral Networks, Proc. NATO/ASI Workshop. Springer-
Verlag.

Gallant, S. (1990). Perceptron-based learning algorithms.
IEEE Trans. on Neural Networks, 1, 179–191.

Grudic, G., & Lawrence, P. (1997). Is nonparametric learn-
ing practical in very high dimensional spaces? Proc.
15th Intern. Joint Conf. on AI (IJCAI-97) (pp. 804–
809). San Francisco: Morgan Kaufmann Publishers.

Lanckriet, G., Ghaoui, L. E., Bhattacharyya, C., & Jordan,
M. (2002). A robust minimax approach to classification.
Journal of Machine Learning Research, 3, 555–582.

Nadal, J.-P. (1989). Study of a growth algorithm for a feed-
forward network. International J. of Neural Systems, 1,
55–59.

Pena, D., & Prieto, F. (2001). Multivariate outlier detec-
tion and robust covariance matrix estimation. Techno-
metrics, 43, 286–310.

Schölkopf, B., & Smola, A. (2002). Learning with kernels.
Cambridge, MA: MIT Press.

