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Abstract

Spectral clustering uses eigenvectors of the
Laplacian of the similarity matrix. They are
most conveniently applied to 2-way cluster-
ing problems. When applying to multi-way
clustering, either the 2-way spectral cluster-
ing is recursively applied or an embedding to
spectral space is done and some other meth-
ods are used to cluster the points. Here we
propose and study a K-way cluster assign-
ment method. The method transforms the
problem to find valleys and peaks of a 1-D
quantity called cluster crossing, which mea-
sures the symmetric cluster overlap across a
cut point along a linear ordering of the data
points. The method can either determine K
clusters in one shot or recursively split a cur-
rent cluster into several smaller ones. We
show that a linear ordering based on a dis-
tance sensitive objective has a continuous so-
lution which is the eigenvector of the Lapla-
cian, showing the close relationship between
clustering and ordering. The method relies
on the connectivity matrix constructed as the
truncated spectral expansion of the similarity
matrix, useful for revealing cluster structure.
The method is applied to newsgroups to illus-
trate introduced concepts; experiments show
it outperforms the recursive 2-way clustering
and the standard K-means clustering.

1. Introduction

In recent years spectral clustering emerges as solid ap-
proach for data clustering. Spectral clustering includes
a class of clustering methods (Bach & Jordan, 2003;
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Chan et al., 1994; Ding et al., 2002; Hagen & Kahng,
1992; Meila & Xu, 2003; Ng et al., 2001; Shi & Ma-
lik, 2000; Yu & Shi, 2003) that use eigenvectors of the
Laplacian of the symmetric matrix W = (w;;) con-
taining the pairwise similarity between data objects
i,7. Spectral clustering has well-motivated clustering
objective functions and many interesting and useful
properties can be proved.

Spectral clustering is most conveniently applied to
2-way clustering problem using a single eigenvector.
When applying to multi-way (K-way) clustering, there
are two main approaches: (1) the 2-way spectral clus-
tering is recursively applied or (2) an embedding to
spectral space using several eigenvectors is first done
and some other methods, such as K-means (Ng et al.,
2001; Zha et al., 2002; Bach & Jordan, 2003), are used
to cluster the points. These cluster assignment meth-
ods are indirect (except perhaps a recent study (Yu &
Shi, 2003)).

2. Linearized cluster assignment

Here we propose and study a direct K-way cluster as-
signment method. The method transforms the prob-
lem to one of finding valleys and peaks of a 1-D quan-
tity called cluster crossing, which measures the clus-
ter overlap across a cut point along linear ordering of
data objects. In other words, the method linearizes
the clustering assignment problem.

The linearized assignment algorithm depends crucially
on an algorithm for ordering objects based on a pair-
wise similarity metric. The ordering is such that ad-
jacent objects are similar while objects far away along
the ordering are dis-similar. We show that for such an
ordering objective function the inverse index permu-
tation has a continuous (relaxed) solution which is the
eigenvector of the Laplacian of the similarity matrix.
This spectral ordering approach has been previously
considered for reduction of the envelope of a sparse



symmetric matrix. (Barnard et al., 1993). Our con-
tributions are (1) providing a clear ordering objective
function and a new derivation, and (2) introducing a
modification that significantly improves the ordering.
This is discussed in §3.

The actual linearization is performed via the cluster
crossing, the sum of similarities symmetrically across
a cut point along the linear ordering. Computation-
ally, this is the sum along anti-diagonal direction on
W within a pre-specified bandwidth. Details are dis-
cussed in §4.

If the clusters in a dataset are well-separated, i.e., the
similarity matrix W is nearly disconnected, the clus-
tering crossing along the spectral ordering can easily
detect the clusters. For datasets where clusters mod-
erately or strongly overlap, cluster crossing directly
computed from the similarity matrix W provides weak
signals for revealing cluster structure. The connectiv-
ity matrix (Ding et al., 2002) provides sharper cluster
structure and is adoped in the linearized assignment
algorithm. This is briefly discussed in §5.

In summary, the linearized assignment algorithm de-
pends on three techniques: (i) an ordering of the data
objects, (ii) cluster crossing, (iii) the connectivity ma-
trix. These are discussed in the following sections.

3. Distance sensitive ordering

Given n objects and the similarities between them
W = (w;j;), the objective of ordering is to insure that
(i) adjacent objects are similar (ii) the larger the dis-
tance between the objects, the less similar the two ob-
jects are.

The ordering is defined by the index permuta-

tion 7w(1,2,---,n) = (m,---,m,). For a vector
x = (x1, -+,x,)7, the permuted vector is 7(x) =
(Twyy 52, )T. The permuted similarity matrix is

(TWaT)ij = Wa,x,. Let Jo(m) = Z;:lz Wr, 7,y TEDP-
resent the pairwise similarities between objects with
fixed distance ¢ on the permuted order. We define the
global ordering objective as
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Here larger distance similarities are minimized more
heavily than smaller distances, to ensure that the
larger the distance between a pair of objects, the less
similar these two objects.
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Let us compute the optimal 7. First, let j =i+ £ or

¢ =i —j|, J(m) can be rewritten as
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Replacing m; by ¢ in the summation and noting that

index ¢ is permuted to 7; 1 where 7! is the inverse
permutation, we obtain
1 -1 —1)2
J(m) = 52(71 Ty ) wi;
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For simplicity, we define the shifted and rescaled in-
verse index permutation
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where q is further scaled by ¢; — (n®/12 —n/3)~1/2¢;
which does not change the permutation. Note that

Z(Qi*qg‘)zwij = Z(QE+Q?*QQin)wij =2q"(D-W)q
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q; =

which satisfies

where D is a diagonal matrix with each diagonal el-
ement being the sum of the corresponding row (d; =
> wij). Therefore, we need to minimize q”(D —W)q
for ¢; taking those discrete values of Eq.(2), subject to
the constraints in Eq.(3). Using a Lagrangian multi-
plier for the second constraint in Eq.(3), minimization
of J(m) becomes

T
min j17 jl = q(Di;VV)q (4)
a q'q

Finding the optimal solution for the discrete values of
q is a combinatorial optimization problem, and is likely
to have no polynomial-time optimal algorithms. How-
ever a continuous solution for q can be computed. We
relax the restriction that ¢; must take discrete values
of Eq.(2) in [-1,1], and let ¢; take continuous values
in [~1,1]. With this, J; can be minimized by solving
an eigenvalue problem. It is well-known that q is an
eigenvector of the equation

(D—-W)q = (q. (5)

Clearly qp = 1 = (1,---,1)T is an eigenvector with
(o = 0. All other eigenvector are orthogonal to qg, i.e.,



the first constraint in Eq.(3) is also satisfied. Therefore
q: is the desired continuous solution of the distance
sensitive ordering.

We note that earlier work on sparse matrix envelope
reduction (Barnard et al., 1993) based on different mo-
tivation, reaches the same eigenvector solution. Our
contribution here is to introduce the distance sensi-
tive objective function J(7), and provide the detailed
derivation using shifted inverse permutation vector
71 to show that the solution is q;.

Now we make a crucial modification on the above solu-
tion which (a) improves the quality of the solution, and
(b) makes a direct connection to the scaled PCA and
connectivity matrix in §5. The modification is made
on the constraints in Eq.(3); we weight each point i
with the degree d;, the column sum of the similarity
matrix W. In graph theory (Chung, 1997), d; is called
the volume of node i. The new constraints are

Zqidi =0, Zq%di =1 (6)

(more discussion later). With these constraints, the
minimization problem of J(m) becomes

- H q'(D-W)q
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Relaxing ¢; to continuous values in (—1,1). the solu-
tion for q satisfies the eigenvalue equation

(D —W)a=(¢Daq. (8)

Let q = D™'/2z. Substituting it into Eq.(8), we obtain
DYV2WD 25 =Xz, A=1- (. (9)

This is a standard eigenvalue equation. Thus the
eigenvectors z; and qj have the orthogonality relation

1 it k=14
lezéquzDQEzéld:{ 0 if k#g (10)
The trivial eigenvector is qyp = e with (y = 0. Thus
the constraints in Eq.(6) are automatically satisfied.

Since (D — W) is semipositive definite, we have

G =0, M=1-¢ <1 (11)

In distance-sensitive ordering, we seek qi with the
smallest (i, or the largest A\r. The desired solution for
the permutation 7; ' is qi (i) (the i*" element of qi),
subject to the rescaling and a constant shift condition
according to Eq.(2). Note that

(i) <qi(j) = w7t < 71']71. (12)

Thus 7~! can be uniquely recovered from q;. A simple
implementation to recover the permutations is to sort
the elements of q; in increasing order. This sorting
induces the desired index permutation .
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Figure 1. The connectivity matrix of 5-newsgroup (see §5)
is displayed using the J; ordering of Eq.(4) (top), and using
the Jo ordering of Eq.(7) (middle). The original cosine
similarity of the 5 newsgroups is shown in bottom.

In Figure 1, we show a matrix where J; ordering is
compared to J ordering. Clearly, J, ordering provides
a better distance-sensitive ordering. The values of the
initial ordering objective J () are

J(m)/(J) = 0.846, using .J;
J(m)/(J) =0.584,  using J, (13)
J(m) using random ordering

/
J{(J) = 0.949,
where (J) = (32, wij/n®) 32,5 (i — §)? is the expected



mean value for J(m). Another way to measure the ef-
fects of ordering is to use the bandwidth and envelope
of a symmetric sparse matrix C. The bandwidth b(7)
at row ¢ is the largest distance between the diagonal
element and any nonzero element in row ¢. The band-
width of the entire matrix is the largest of b(:) and the
envelope is the sum of b(i). For the J; ordering of C,
bandwidth = 495, envelope = 156,240. For the Jo
ordering of C', bandwidth = 320, envelope = 48, 650.
Clearly, J, ordering is better.

Jo ordering uses the weighted constraints of Eq.(6)
while J; uses the unweighted constraints of Eq.(3).
To understand why the weighting leads to better or-
dering, first observe that objects with large d; will get
smaller |g;| to balance out the equation. Now we re-
write Eq.(2) as 7; ' = ¢; — (n+1)/2 ignoring the over-
all scaling factor. Since n=! = {1,---,n}, (n+1)/2
is in the middle. Smaller |g;| indicates 7; ! is near the
middle, thus objects with large d; are more likely to
be permuted towards the middle using the weighted
constraints of Eq.(6). This is favorable, since objects
with large d; are more likely to have more edges; and
moving these objects towards middle decreases the dis-
tances among these similar objects, therefore improves
J(r).

Connection to spectral clustering

Note that eigenvector of Eq.(5) is used in the Ratio
cut spectral clustering (Hagen & Kahng, 1992) and
eigenvector of Eq.(8) is used in the normalized cut (Shi
& Malik, 2000) and min-max cut (Ding et al., 2001)
spectral clustering.

In deriving 2-way spectral clustering, only the signs of
the cluster indicator vector are useful and all objects
in a cluster have the same magnitude. This indica-
tor vector is then relaxed into the eigenvector. In our
derivation of spectral ordering, both the sign and mag-
nitude of the scaled and shifted permutation vector are
useful, see Eq.(2). Since an eigenvector has both sign
and magnitude, the relaxation of the permutation vec-
tor is therefore better quality approximation than the
relaxation of cluster indicator.

From this analysis, we believe the better reason for
the success of spectral clustering is due to the order-
ing, instead of relaxing the discrete cluster indicators.
In fact, this ordering perspective is used in actual im-
plementation of spectral clustering (Hagen & Kahng,
1992; Shi & Malik, 2000): one first sort q; to provide a
linear ordering, then along this ordering, search for the
cut that optimizes the cluster objective function. Thus
our ordering analysis provides a deeper understanding
of spectral clustering.

Our results indicates that jz ordering is better than jl
ordering. This is due to the weighting of d;, the node
degree, in Eq.(6). Similar motivation is used in nor-
malized cut. Let s12 be the cut between two subgraphs
C1,Cs. All three graph clustering objective function
can be written as J = s12/a1 + s12/as. For Ratio cut,
ap = ZiEC’k 1. For normalized cut, a;, = ZieCk d;.
This weighting of the subgraph volume improves upon
the simple weighting of the subgraph size in ratio cut.
For min-max cut, ar = Y, w;j, the sum of edge
weights inside Cj.

1,j€CK

That J, ordering is better than J; ordering implies
that normalized cut and min-max cut in general pro-
vides a better clustering than ratio cut. This fact is ob-
served in experiments (Shi & Malik, 2000; Ding et al.,
2001).

It is sometimes happens that there is a symmetry
among several nodes in the graph, i.e., G(W)GT = W,
where G is a permutation specifying an element in
the invariant symmetry group. In this case, an eigen-
vector of W, D — W, D~Y2W D~1/2 will have several
nodes with the same value. If this happens, neither
the ordering nor clustering problems can be uniquely
determined. This is not necessarily a weakness of the
spectral methods, although it become obvious from
the perspective of the eigenvector. In practice, this
happens rarely for weighted graphs.

4. Cluster crossing and assignment

We start with cluster overlap. Given two clusters
Ck, Cy, the cluster overlap can be defined as the sum
of pairwise associations between two clusters,

sw= Y, wi. (14)

i€C,j€C)

In spectral clustering, s;; are minimized.

Cluster overlap involves all |Cy| * |C}| pairwise similar-
ities. We define cluster crossing as the sum of a small
fraction of the pairwise similarities. This is aided by
linear ordering data points. Given a linear order o of
all objects, at each site ¢ of the order, we can sum over
w;; within a window size 2m + 1 across the site 4,

m

P(l) = Z Wo(i—j),0(i+7)
j=1

This corresponds to sum along the anti-diagonal di-
rections in the similarity matrix W with a bandwidth
m. There are 2n — 1 anti-diagonals in a matrix, among
them p(i) are n full-step anti-diagonals. We also utilize



the other n — 1 half-step anti-diagonals, i.e.,
m
p(i £1/2) = Wo(i—j) o(i+sL1)-
j=1

The final crossing is the weighted average

Pi) = pli+1/2)/4+ p(i) /2 + pli — 1/2)/4.

(When 1 is close to the two ends, i.e., n —i < m or
i < m, the sum should be properly weighted to reflect
the fact that the number of similarities in the sum is
less than the normal case.)

Clearly, cluster crossing p(i) should have a minimum
at the cluster boundary between Cy,C;. As i moves
away from the boundary, p(¢) increases. This form
the basis of the linearized cluster assignment. This
approach works for K > 2 as well as for K = 2; In
essence, it reformulate a problem of K-way cluster-
ing with pairwise similarities into a K-way clustering
problem in 1-dimension.
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Figure 2. Crossing curves for dataset A. Top: computed
based on the similarity matrix W shown in Fig.1(bottom).
Middle: computed based on the connectivity matrix C' us-
ing J» ordering shown in Fig.1(middle). Bottom: com-
puted based on C' using Ji ordering shown in Fig.1(top).

To illustrates the basic ideas in this approach. we com-
pute the crossing of the matrix C' shown in Figure
1(bottom). The crossing curves are shown in Figure
2. For matrix C' using J, ordering, the crossing (mid-
dle panel in Figure 2) exhibit clearly the five-cluster
structure.

In cluster crossing curve, the valleys are more impor-
tant than the peaks. This is because between two
consecutive valleys, there could be several overlapping

clusters so that the peaks are not as pronounced as the
valleys. Using the valleys, we can clearly separate sets
of clusters (composite cluster).

This suggest a divide-and-conquer approach, i.e., re-
cursively apply the algorithm on each set of clusters,
until the total number of cluster reach the pre-specified
K, or some other criteria are met (like the top-down
divisive clustering approach). For example in Figure 1
(middle), the 2nd and 3rd clusters overlap slightly, and
the corresponding valley point in the crossing curve
(middle panel in Figure 2) is not as low as others
(although unambiguously clear). We might consider
these two cluster as one composite cluster. Thus we
cut the crossing into 4 clusters at present round and
cut the composite cluster in next round.

5. Scaled principal components
and connectivity matrix

Given a symmetric similarity matrix W, one can ob-
tain a spectral decomposition to get the principal com-
ponent analysis (PCA), a widely used technique in
multivariate statistics. In scaled PCA proposed in
(Ding et al., 2002), one performs the following spectral
decomposition

W = D1/2(D_1/2WD_1/2>D1/2

K
= D1/2(Z ij\kzz)l)l/2
k=1
here the spectral decomposition is performed on the
scaled matrix W = D~'/2W D~1/2, Clearly, the eigen-
vectors zy, are governed by Eq.(9). The magnitudes of
all eigenvalues are less than 1, as in Eq.(11). The con-
nectivity matrix C' is obtained by truncating the PCA
expansion at K terms and setting the eigenvalues to
unity, A\ = 1, as

K K
C=D"Y nz[D'*=D> aqqiD  (15)
k=1 k=1

where q; = D~ '/2z, is called scaled principal com-
ponents due to its similarity to the usual PCA. q is
governed by Eq.(8), and is closely related to spectral
clustering. It is shown via a perturbation analysis
that C has a so-called self-aggregation property that
connectivities (matrix elements in C') between differ-
ent clusters are suppressed while connectivities within
clusters are enhanced. Thus C' is useful for revealing
cluster structure.

Connectivity matrix approach involves a noise reduc-
tion procedure. The probability that two objects i, j



belong to the same cluster is p;; = C’ij/CilimC;]p. To
reduce noise one set

CZ‘]‘ =0 if Pij < 57 (].6)

where [ = 0.8. For a range of problems, 5 = 0.5 ~ 0.9
leads to very similar results.

As an illustration, the original similarity matrix (based
on 5 newsgroups in §6) is shown in Figure 1(bottom)
using Jo ordering, where cluster structure is not ap-
parent. Connectivity matrix (shown in Figure 1) con-
structed based on this similarity matrix has clear clus-
ter structure.

6. Complete assignment algorithm

Prespecify K as the numnber of clusters, and set band-
width m = n/K (or the expected largest cluster size).
The complete algorithm is as follows: (1) Compute
connective matrix C; (2) Compute the Jo ordering of
C'; (3) Compute the crossing of C based on J, ordering.
(4) Locate valley points in the crossing curve. Assign
each region sandwiched between two valley points or
ends to one composite cluster. (5) If the total number
of current composite cluster is less than K, recursively
apply the algorithm to the largest to further split it.

Note that this recursive clustering algorithm differs
from the usual recursive 2-way clustering in that, a
current composite cluster is partitioned into several
clusters depending on the crossing curve, not restricted
to 2 clusters. It is possible that all K clusters are iden-
tified using one crossing curve as in §4. Thus the total
number of recursion is less than or equal to K-1, which
is required by the usual recursive 2-way clustering. In
step (5), the choice of next cluster to split is based on
the largest (size) cluster. This simple choice is more
oriented towards cluster balance. More refined choices
for cluster split is discussed in (Ding & He, 2002).

The main advantage of this approach is that clusters
are formed consistently. In 2-way recursive clustering,
each current cluster is formed via a certain clustering
objective function which is correctly motivated for only
true clusters, not for composite clusters. For example
in normalized cut, the cluster objective function for
K-way clustering can not be recursively constructed
from the 2-way clustering objective. Therefore the 2-
way recursive procedure is only a heuristic for K-way
clustering. In our linearized assignment, cluster are
assign based on the criteria that the connectivity be-
tween clusters are small, which is valid for both true
clusters and composite clusters.

7. Experiments

The linearized cluster assignment method is applied
to Internet newsgroup articles. A 20-newsgroup
dataset is from www.cs.cmu.edu/afs/cs/project/theo-
11/www /naive-bayes.html. Word-document matrix is
first constructed. 1000 words are selected according
to the mutual information between words and docu-
ments in unsupervised manner. Standard tf.idf term
weighting is used. Each document is normalized to 1.

We focus on two sets of 5-newsgroup combinations.
The choice of K = 5 is to have some variety in the
recursive steps (we avoid K = 4,8). These two news-
group combinations are listed below:

A B
NG2: comp.graphics NG2: comp.graphics
NG9: rec.motorcycles NG3: comp.os.ms-windows
NG10: rec.sport.baseball NG8: rec.autos

NG15: sci.space NG13: sci.electronics
NG18: talk.politics.mideast NG19: talk.politics.misc

Datasets with well separated clusters are easy to han-
dle; we are interested in clustering medium and large
overlapping clusters. To measure cluster separation,
we compute si; and define the symmetrically scaled
cluster overlap as the cluster separation index between
clusters Cy, C) as pp; = skl/\/m. The over-all sep-
aration is defined as

2
f=——— [k
K(k—1) kJ;Z]#l

Clearly 0 < i <1 and pgr = 1. For a complete graph
e = 1 and p = 1. Cluster overlap sg; and separation
index puy; can be conveniently stored in a matrix S,
where S(upper-right triangle including diagonals) =
s and S(lower-left triangle)= py;. For datasets A, B,
their overlap-separations are

[ 662 207 184 285 2057
0.316 650 247 254 265
S(A)=1]0.264 0.357 732 256 281
0.422 0.379 0.361 691 310
10.258 0.336 0.336 0.381 957
[ 576 367 218 245 1987
0.578 702 256 287 234
S(B)= [0.347 0.371 682 273 286
0.470 0.499 0.482 472 229
10.261 0.280 0.347 0.334 996 |

Their average separation are p(A4) = 0.695, u(B) =
0.755. These information are useful. For example,
for dataset B, NG18 (mideast) is a coherent clus-
ter because ss5 = 996 is relatively large, whereas
NG13(electronics) is less coherent because s44 = 472 is
relatively small. The overlap between NG2 (graphics)



and NG3(windows OS) is relatively large: p12 = 0.578
while the overlap between NG8 (auto) and NG13 (elec-
tronics) is also large: pgq = 0.483. Overall, dataset A
is moderately overlapping and dataset B is strongly
overlapping.

The above is based on a random sample of documents
from the newsgroups. Each cluster has 100 documents.
To accumulate sufficient statistics, for each newsgroup
combination, we generate 5 samples and average their
performance.

Dataset A

The cosine similarity matrix W among documents
shown in Figure 1(bottom). The cluster structure is
not clear from the similarity matrix W. The connec-
tivity matrix C is displayed in Figure 1(top) which
exhibits the cluster structure.

Clustering crossings based on W and C' are shown in
Figure 2. The crossing for C' based on J ordering
(middle panel) shows clear cluster structure, whereas
crossing for C' based on .J; ordering (bottom pannel)
shows less clear cluster structure. Crossing for W (top
pannel) show even less cluster structure.

Based on the crossing of C' using Jy ordering, local
minima in the valleys are identified using a simple
smoothing procedure, where the new smoothed value
on each point is the average of old values on 5 near-
est points. This smoothing procedure overcomes the
local abrupt changes and automatically compute the
more stable or consensus valley points, although the
difference with un-smoothed one is often small. Data
points between two valleys or ends are assigned to one
cluster. Thus all points are assigned into 5 clusters in
one shot.

Each of newsgroup article’s cluster label is known (al-
though not necessarily perfect). Using this, the con-
fusion matrix T = (tx;) for the clustering results are
computed, where t;; = number of points belonging to
cluster k£ but clustered to cluster [. Based on the lin-
earized cluster assignment results, T is computed as

9% 6 0 5 10
0 93 0 0 1
T=|11 1 92 7 3
2 0 8 84 2

0O 0 0 3 83

For this results, the clustering accuracy, @ =

Zk ter/N = 90.5%.

The clustering experiment is repeated for 5 different
random samples. The accuracy for this linearized or-
dering approach is listed in Table 1. For the same

Table 1. Clustering accuracy as of different methods on the
5-newsgroup datasets. LA: linearized assignment; R2W:
recursive 2-way clustering; using MinMaxCut with cluster
choice for split based on largest size cluster; K-means.

Method LA R2W  K-means
Data A 89.0% 82.8%  75.1%
DataB 75.7% 67.2% 56.4%

dataset, the cluster accuracy using recursive 2-way
spectral clustering and standard K-means are also
listed in Table 1. One see that the linearized assign-
ment outperform slightly over the recursive 2-way clus-
tering and significantly over the K-means .

Dataset B

The cosine-similarity matrix W is shown in Figure 3
(top panel, using Jo ordering). The connectivity ma-
trix C' of this dataset is shown in Figure 4. The over-
lap between NG2 (computer graphics) and NG3 (Win-
dows OS) is large; the overlap between NG8 (autos)
and NGI13 (electronics) is large as well. These are
expected from the cluster separation indexes S(B),
and also can be confirmed by inspecting the cosine-
similarity W shown in Figure 3 (bottom panel), using
Jo ordering based on C.

The crossing based on C is shown in Figure 5 (top
panel). The lower panels show the crossing curves after
four successive applications of smoothing. Based on
this crossing, we can identify three composite clusters
by two clear and low-lying valley points. The two large
composite clusters are further clustered using the same
linearized algorithm.

Repeating the experiments on 5 random samples from
dataset B, the clustering accuracy is listed in Table 1.
The linearized assignment outperforms the recursive
2-way spectral clustering and the standard K-means .

8. Summary

In summary, we propose and study a direct K-way
cluster assignment method that linearize the cluster-
ing problem into 1-D clustering crossing curve. The
method depends on an effective linear ordering pro-
vided by the spectral ordering. We prove a clear
derivation of the distance sensitive ordering and show
the shifted and scaled index permutation vector is re-
laxed into eigenvectors of the Laplacian of the similar-
ity matrix. Our results provides a deeper insights to
spectral clustering as well.

This work is supported by U.S. Department of Energy,



Figure 3. The cosine similarity matrix W of dataset B,
displayed using (a) the J> ordering based on W, (b) the J>
ordering based on the connectivity matrix C' in Fig.(4).

Office of Science, Office of Laboratory Policy and In-
frastructure, through an LBNL LDRD, under contract
DE-AC03-76SF00098.
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