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Abstract

We consider the bias and variance of value
function estimation that are caused by us-
ing an empirical model instead of the true
model. We analyze these bias and variance
for Markov processes from a classical (fre-
quentist) statistical point of view, and in a
Bayesian setting. Using a second order ap-
proximation, we provide explicit expressions
for the bias and variance in terms of the tran-
sition counts and the reward statistics. We
present supporting experiments with artifi-
cial Markov chains and with a large trans-
actional database provided by a mail-order
catalog firm.

1. Introduction

A common method when analyzing data obtained from
a Markov Process (MP) is to estimate the transition
probabilities and the reward function based on an em-
pirical sample. The cost-to-go (or the profit-to-go in
a maximization problem) is then estimated by plug-
ging the empirical model instead of the true transition
probability and the reward function. A fundamental
question regarding such an estimate concerns its bias
and variance. Knowledge of the bias and variance is
essential for evaluating the quality of the cost-to-go es-
timate, as well as for determining the amount of data
required in order to achieve a certain confidence level.
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Surprisingly, little attention was given to date to the
bias and variance of the cost-to-go estimate which is
the topic of this paper.

From a statistical point of view, an informative estima-
tor should be accompanied by confidence bounds. The
bias and the variance of an estimator naturally lead
to such confidence bounds (e.g., using a Chebychev
bound). A useful bias and variance estimate should
be expressed as a function of the available statistics
(counts of state transitions and statistics of the re-
ward). We will show that when assuming that the
empirical model is reasonable (i.e., not “too far” from
the real model) such bias and variance estimates can
be developed based on a second order approximation.

A common framework for decision making under un-
certainty used in decision theory and machine learn-
ing is the Markov Decision Process (MDP) framework
(e.g., Puterman, 1994). In this framework there are
several possible actions in every state and a decision
maker is required to choose the best action. In the con-
text of estimating the value of an MDP from data, it is
common to estimate the conditional transition proba-
bilities (conditioned on the current state and the deci-
sion maker’s action) and the conditional reward func-
tion. Once the empirical model is estimated the best
policy is computed by optimizing over the policy space.
The value of each state in the MDP is the cumulative
expected reward obtained from that state on, if the de-
cision maker follows the optimal policy. The results in
this paper are developed for Markov Processes (MPs),
but are valid for Markov Decision Processes (MDPs)
as long as the policy is fixed.

The paper is organized as follows. We start with de-



scribing the model in rigor and defining the problem
of interest in Sec. 2. In Sec. 3 we illustrate the magni-
tude of the variance in both an artificial MP and in real
data obtained from a mail-order catalog firm. We sug-
gest two different approaches for estimation of the bias
and variance in MPs. The first approach is a “classi-
cal” statistical (frequentist) approach, and the second
approach is Bayesian. We provide the essential details
in Sec. 4. We demonstrate the variance estimates for
both types of data in Sec. 5. Some concluding remarks
are given in Sec. 6.

2. The Model

In this section we specify the problem of interest. We
start with defining the problem setup. We then point
to two types of variances, one that is related to uncer-
tainty in the parameters, and another which is inherent
to the stochastic nature of the problem.

2.1. Problem Setup

We consider both MPs and MDPs. Let us define the
latter, as the former is a special case. An MDP is
a 4-tuple (S, A, P, R), where S is a set of the states,
A is a set of actions, P a

ij is the transition probability
from state i to state j when performing action a ∈ A
in state i, and Ria is the reward received when per-
forming action a in state i. We assume that S and A
are finite sets and that Ria is a random variable. We
further let |S| = m. At time t, the current state is
st, the decision maker chooses some action at. As a
result of this action the next state st+1 is determined
and the decision maker obtains a reward rt which is
distributed according to Rstat . We will restrict our
attention to discounted reward. The discount factor
will be denoted by α, where it is assumed that α < 1.

A strategy for an MDP assigns, at each time t, for
each state i a probability for performing action a ∈ A,
given a history which includes the states, actions and
rewards observed until time t−1 and the state in time
t. A strategy is stationary if it only depends on the
current state. It is well known that there exists an
optimal stationary strategy for discounted reward. An
MP can be considered as a special case of an MDP,
where a stationary strategy is fixed by the decision
maker. We will denote such a strategy by π. The
expectation operator under strategy π starting from
state i will be denoted by IEπ

i .

We will consider a nominal (empirical) model of the
MDP. This model is typically the result of interacting
with the environment. We denote the nominal transi-
tion probability by P̂ , and the nominal reward function

by R̂. Typically, the sampling procedure provides ad-
ditional statistics, such as the variance of the reward
and the counts of the transitions. We now distinguish
between two types of variances.

2.2. Two Types of Variance

There are two different types of variance which are of
interest in learning and planning. Let π be a specific
stationary strategy such that π(a|i) is the conditional
probability of choosing action a in state i.

1. Internal variance - consider the random variable
Z =

∑∞
τ=0 ατrτ . Due to random transitions and

rewards, the random variable Z has some vari-
ance (i.e., varπ

i (Z) = IEπ
i [Z2] − (IEπ

i [Z])2), even
if the parameters of the model were completely
specified. An expression for the variance of Z for
discounted reward was given by Sobel (1982). See
also Filar et al. (1989) for the average cost case.
The internal variance and its reduction was stud-
ied in the context of accelerating policy gradients
by, e.g., Greensmith et al. (2002).

2. Parametric variance - Suppose that there is some
true model, PT and RT , and that we have an es-
timated model (i.e., P and R) such that there is
some probabilistic law that determines the distri-
bution of P and R. The random variable consid-
ered here is:

Y π = (I − αPπ)−1Rπ, (1)

where the m × m matrix Pπ
ij =

∑
a P a

ijπ(a|i)
and the vector Rπ

i =
∑

a Riaπ(a|i). Eq. (1)
prescribes the cost-to-go (per state) of the es-
timated model. The random variable Y π is
defined with respect to a probability measure
over models. The covariance matrix of Y π

is defined as cov(Y π) = IEPT ,RT
[Y πY π>] −

IEPT ,RT [Y π]IEPT ,RT [Y π]>, where IEPT ,RT denotes
the expectation when the distribution of P and R
is determined by PT and RT .

Each type of variance is related to a different type
of uncertainty and can be associated with a different
experiment. The internal variance is the variance of
the cumulative discounted cost-to-go in an experiment
where the decision maker starts many times from a
certain state i and follows a policy π, and the model
is assumed to be perfectly known. The parametric
variance is the variance of the empirical cost-to-go es-
timate when one obtains nominal models many times.
In this paper we only consider the parametric variance.



3. An illustration

We will consider artificial MPs that are randomly gen-
erated. Those MPs have m = 10 states, and a ran-
domly generated transition probability according to
the following rule: we sample m random numbers
from a uniform distribution on [0, 1]. We take the two
largest numbers and normalize them to sum to 1/2,
we take the rest m − 2 numbers and normalize them
to sum to 1/2 as well. As a result we have a transition
probability that sums to one and has two states that
contain 50% of the mass. The reward Ria is a Nor-
mal random variable whose mean and variance were
sampled from N(0, 1) and U [0, 1/4], respectively. To
demonstrate the effect of variance we run the follow-
ing experiment. We constructed a random MP using
the procedure just described. We sampled this MP n
times. We calculated the cost-to-go of each empirical
model, and weighted the different states according to
the steady-state distribution (of the true model), so
that we considered c>Y π where c is the steady state
vector. The reason for weighing the cost-to-go is that
the vector Y π is m dimensional and we want to con-
sider just a one dimensional summary. We set the dis-
count factor to α = 0.9. Fig. 1 presents the empirical
standard deviation of the weighted value function for
ten randomly generated MPs as a function of number
of times each state was sampled. In order to calculate
the standard deviation we sampled each MP n = 50
times. The weighted cost-to-go was in the range [−3, 3]
for all MPs. It is clear from Fig. 1 that the variance in
the cost-to-go estimate is significant. As expected, this
variance decreases as the number of samples per state
increases. In Fig. 2 we focus on a single MP that was
generated in the same way. The weighted cost-to-go of
the true model was c>Y π = 1.78, and each state i was
sampled Ni = 200 times, we repeated the experiment
n = 1000 times. The histogram of c>Ŷ (where Ŷ is
the empirical estimate of Y ) shows that the deviation
in the cost-to-go is significant.

We were fortunate to have access to a large transac-
tional database of a mail-order catalog firm. Every
time a new catalog is produced, the mail-order catalog
firm has to make a decision—to mail or not to mail to
each customer. The cost of producing and mailing the
catalogs is not negligible, and the firm looks for a strat-
egy that maximizes its expected revenue. The firm
logs all the purchasing and mailing history for every
customer, and can therefore make informed decisions.
The database we used includes about 1.72 million cus-
tomers and more than 160 million transactions. Fol-
lowing Gönül and Shi (1998), the decision problem (for
every customer) can be modelled as an MDP, where
the state is a summary of the customer’s history, and
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Figure 1. Artificial data: Empirical standard deviation of
the weighted cost-to-go as a function of sample size. Each
cross represents one empirical standard deviation that was
computed based on n = 50 runs of a single artificially gen-
erated MP.

the action at each time epoch is either to mail or not to
mail. The construction of the state space is an interest-
ing problem which we will not consider here. We have
used the so-called RFM (Recency, Frequency, Mone-
tary value) scales which is common in the mail-order
catalog industry (e.g., Bult & Wansbeek, 1995; Bitran
& Mondschein, 1996). In the RFM parametrization,
the history of each customer is summarized by three
scales: the recency of the last purchase, the frequency
of purchases, and the average monetary value. We
constructed an MDP model from the data by quan-
tizing each of the RFM scales to 4 discrete levels, so
that the state space has m = 43 = 64 states. Since
there are many customers, the internal variance is av-
eraged out, so the firm only cares about the parametric
variance. Estimation of the parametric variance of the
current policy is extremely important for the firm, so
it can have confidence in projected revenues. In addi-
tion, the firm is interested in estimating the variance
of new mailing policies, which might promise higher
profit at the expense of larger variance.

In Tab. 1 we present the empirical standard deviation
of the profit-to-go for the real data, weighted uniformly
over the states, for the policy used by the firm. The
empirical standard deviation was calculated by divid-
ing the data to roughly equal segments (since the his-
tory of every customer is integral, we did not split a
customer between segments). The empirical profit-to-
go of the whole data is $5.88. It can be seen that the
standard deviation is rather significant, and accounts
for as much as 5% of the profit-to-go for as many as
1.5 million transactions.
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Figure 2. Artificial data: A histogram of the cost-to-go for
a single MP, as predicted from empirical samples. Each
state i was sampled Ni = 200 times. The MP was sampled
n = 1000 times. The true c>Y = 1.78.

Number of transactions STD of value Relative
per segment (millions) error

0.66 0.3548 6.4%
1.48 0.2821 5.1%
2.62 0.2455 4.4%
4.09 0.2293 4.1%
5.91 0.2126 3.8%
16.26 0.1629 2.9%

Table 1. Mail catalog data: The empirical standard devi-
ation of the profit-to-go as a function of the segment size.
The relative error is 1 empirical standard deviation divided
by the value as calculated using all the data.

4. Two Approaches

Suppose that we have access to the counts that gen-
erate P̂ and to the statistics of R̂ (i.e., its empirical
variance and mean). Given those statistics we consider
two approaches for estimating the parametric bias and
variance of the cost-to-go. In this section we assume
that a fixed stationary policy π is used so we therefore
drop the superscript π.

1. The “classical” (or frequentist) approach. Ac-
cording to the classical approach we assume that
(P, R) are given, and treat (P̂ , R̂) as random vari-
ables. For a given pair of P and R we calculate
the bias and variance of the cost-to-go estimator
(in terms of the unknown P and R). Since we only
have access to the empirical estimates of P and R
we substitute those estimates instead, and obtain
estimates of the bias and variance of the cost-to-
go. We further assume that the total number of
transitions out of each state is provided as well

(rather than being a random variable depending
on P and R). This approach is motivated by the
assumption that there is a fair amount of data
and that the empirical estimates of P and R are
pretty close to the true P and R.

2. The Bayesian approach. Since (P̂ , R̂) are given,
we can treat the true (P, R) as random variables
in a Bayesian framework. Using Bayes law we
have that: P(P |P̂ ) = P(P̂ |P )P(P )/C, where C
is a normalizing constant. We need to come up
with “reasonable” priors for P and R so that the
posterior calculation would be feasible. In Section
4.2 we assume that P has a Dirichlet prior and R
has a normal prior, and that P and R are not
correlated between states.

4.1. The classical approach

In the classical approach we assume the existence of
true P and R that generate data (a collection of sam-
ple trajectories). Using these data we generate the
nominal model, i.e., P̂ and R̂. Both, P̂ and R̂, are
random variables that depend on the true P and R.
We will provide expressions for the bias and variance
of the cost-to-go estimate if P and R were known, and
later suggest to replace P with P̂ and R with R̂ in
those estimates.

We assume that the number of transitions out of each
state, Ni, is given. The number of transitions from
state i to all states j, Nij ’s, thus follows a multinomial
distribution. We use the estimate P̂ij = Nij

Ni
, and we

have that IE[P̂ ] = P . We use zero mean random vari-
ables ∆P and ∆R to represent the difference between
the true model and nominal model, i.e., P̂ = P + ∆P
and R̂ = R + ∆R. Note that the random variables
∆P and ∆R may be correlated. We therefore write
the expectation of Ŷ := (I − αP̂ )−1R̂ as:

IE
[
Ŷ

]
= IE

[
(I − α(P + ∆P ))−1(R + ∆R)

]

= IE

[ ∞∑

i=0

αi(P + ∆P )i(R + ∆R)

]
. (2)

We use notation X
4
= (I − αP )−1 and let fk(∆P )

4
=

X (∆PX)k = (X∆P )k
X. The following technical

lemma will be useful:

Lemma 4.1
∑∞

i=0 αi(P + ∆P )i =
∑∞

k=0 αkfk(∆P ) .

Proof.
∞∑

k=0

αkfk(∆P ) =
∞∑

k=0

αk (X∆P )k
X



= (I − αX∆P )−1X = (X−1 −X−1αX∆P )−1

= (I − αP − α∆P )−1 =
∞∑

i=0

αi(P + ∆P )i,

where we repeatedly used the definition of X and the
fact that X is invertible. 2

Substituting Lemma 4.1 in Eq. (2), and separating the
first term in the sum (k = 0) from the rest of the terms,
we obtain:

IE[Ŷ ] = (I − αP )−1R +

( ∞∑

k=1

αkIE[fk(∆P )]

)
R +

∞∑

k=0

αkIE[fk(∆P )∆R]. (3)

There are three terms in Eq. (3). The first term is the
cost-to-go of the true model. The second term reflects
the uncertainty in P and the third term represents the
correlation in errors between the estimates of R and
P . The immediate implication of Eq. (2) is that using
the nominal model induces bias.

The estimation of IE[fk(∆P )] involves kth order mo-
ments of multinomial distributions. This can be
conducted however is rather tedious. We will con-
sider a second order approximation and assume that
IE[fk(∆P )] ≈ 0 for k > 2. As a justification, no-
tice that as long as ‖∆P‖ < (1 − α)/α (where
‖ · ‖ is any matrix norm) we have that q :=
α ‖∆P‖∥∥(I − αP )−1

∥∥ < 1 thus αk ‖IE[fk(∆P )]‖ ≤
αk ‖∆P‖k ∥∥(I − αP )−1

∥∥k+1
< qk/(1 − α) decays ex-

ponentially with increase of k.

In many cases, the correlation between ∆P and ∆R
can be modelled as the result having a true model
whose rewards come from an m×m matrix Rm while R
is just the aggregated values from Rm in the following
way

R̂i =
∑

j

(
Rm

ij Pij + Rm
ij ∆Pij + ∆Rm

ij Pij + ∆Rm
ij ∆Pij

)
.

(4)
Here ∆Rm

ij ’s and ∆P are independent. Un-
der this modelling assumption, we have ∆Ri =∑

j

(
Rm

ij ∆Pij + ∆Rm
ij Pij + ∆Rm

ij ∆Pij

)
, or in matrix

notations:

∆R = (Rm ◦∆P + ∆Rm ◦ P + ∆Rm ◦∆P )e, (5)

where ◦ is the Hadamard multiplication, e is an m× 1
vector of ones, and ∆Rm is the m×m difference matrix
between the true Rm and the empirical estimate R̂m.

Let Q be the m×m matrix satisfying:

Qij =
Pij

Ni

(
Xji −

∑

k

PikXki

)
. (6)

When ∆P is “small” one can use a second order ap-
proximation and estimate the bias and variance of the
cost-to-go. The following proposition prescribes the
bias. The proof of the proposition is technical and
lengthy. This proof and other proofs are deferred to
the full version of this paper.

Proposition 4.1 Assume that ∆P and ∆R are cor-
related according to Eq. (5). Then the expectation of
Ŷ satisfies:

IE[Ŷ ] ≈ Y + α2XQXR + αX(Q ◦Rm)e ,

where X := (I −αP )−1, Y = (I −αP )−1R is the true
cost-to-go, and Q is computed according to Eq. (6).

Since we can calculate IE[Ŷ ], it suffices to calculate
IE[Ŷ Ŷ >] in order to obtain the covariance matrix. The
following proposition provides this estimation.

Proposition 4.2 Using the same notations and un-
der the same assumptions of Prop. 4.1, the second mo-
ment of Ŷ is approximately

IE[Ŷ Ŷ >] ≈ Y Y > + X
{

α2(Q(1) + QY R> + RY >Q>) +

α
[
((Rm ◦Q)eR> + Q(2)) + ((Rm ◦Q)eR> + Q(2))>

]

+Q(3) + Q(4)
}

X>,

where Q(1), Q(2), Q(3) and Q(4) are all diagonal ma-
trices such that

Q
(1)
ii =

1
Ni

(∑

k

Y 2
k Pik −

∑

k

∑

l

YkYlPikPil

)

Q
(2)
ii =

1
Ni

(∑

k

YkRm
ikPik −

∑

k

Yk

∑

l

Rm
il PikPil

)

Q
(3)
ii =

1
Ni

(∑

k

(Rm
ik)2Pik −

∑

k

∑

l

Rm
ikRm

il PikPil

)

Q
(4)
ii =

∑

k

1
Nik

P 2
ik var(Rm

ik) .

Note that as the Ni’s increase to ∞ all the terms in-
volving Q decrease to 0, so that both the bias and the
variance decrease to 0. The true model (P and R) is
used in the above estimates. According to the classical
approach we plug in P̂ and R̂ in place of P and R (and



the empirical variance of Rik instead of var(Rik) for
Q(4)). Simple algebra shows that the variance and bias
are roughly of the same order of magnitude. Since both
are typically a number much smaller than 1, this im-
plies that the standard deviation (which is the square
root of the variance) will be typically much larger than
the bias. The conclusion is that de-biasing the cost-
to-go estimate is not useful since the noise caused by
the variance is typically more significant.

4.2. The Bayesian Approach

In this section we describe a Bayesian approach. As
before, we assume that the data is the number of tran-
sitions out of each state Ni, the number of transitions
from state i to all states j, Nij ’s. We also observe the
sample of the rewards obtained when moving between
the states. We assume that for every pair of states i, j
the reward moving from state i to state j, Rij is a ran-
dom variable with a Normal prior. We further assume
that the probability P is a random variable with a
Dirichlet prior (as in Strens, 2000). See Dearden et al.
(1998) for a somewhat different Bayesian formulation
in the context of Q-learning. An additional assump-
tion is that the priors of P and R is not correlated
between states.

We first recall the following properties of a Dirich-
let distribution with parameters α1, . . . , αm (here we
define α0 :=

∑
k αk). We refer the reader to Gel-

man et al. (1995) for further details. For a vector
p = (p1, p2, . . . , pm) the probability of p is P(p) =
(1/Z(α))

∏m
i=1 pαi−1

i , where Z(α) is a normalizing con-
stant. Some useful properties of the Dirichlet distri-
bution are:

1. Mean of the kth component: αk/α0.

2. Variance of the kth component: var(Pk) =
αk(α0 − αk)/(α2

0(α0 + 1)).

3. Covariance between the kth and `th components:
cov(Pk, P`) = −(αkα`)/(α2

0(α0 + 1)).

Assume that Pi·, the prior transition probability distri-
bution out of state i is Dirichlet with initial parameters
αi

1, . . . , α
i
m. After observing sample trajectories, sum-

marized by Nij transitions out of state i to state j and
Ni =

∑
j Nij , the posterior distribution of Pi· is again

Dirichlet with parameters αi
1 + Ni1, . . . , α

i
m + Nim.

It then follows that the posterior distribution for Pi

has mean IEpost[Pij ] = (αi
j + Nij)/(αi

0 + Ni), where
αi

0 :=
∑

j αi
j and IEpost is expectation w.r.t. the pos-

terior. This motivates us to define the nominal model,
which is also an unbiased estimator for the posterior
of P , to be P̂ij = (αi

j + Nij)/(αi
0 + Ni).

The difference between the nominal and the true model
is then a zero mean random matrix ∆P := P−P̂ . The
following lemma is a result of the useful facts regarding
the properties of the Dirichlet distribution.

Lemma 4.2 Under the assumption of a Dirichlet
prior we have that:
i. IEpost

[
P

]
= P̂ .

ii. IEpost [∆Pik∆Pij ] = − (αi
k+Nik)(αi

j+Nij)

(αi
0+Ni)2(αi

0+Ni+1)
.

iii. IEpost

[
(∆Pij)2

]
= (αi

j+Nij)(α
i
0+Ni−αi

j−Nij)

(αi
0+Ni)2(αi

0+Ni+1)
.

We note that if αi
j = 0 (for j = 0, . . . , m) then we get

the same estimates as in the classical approach (up
to the +1 in the denominator of the variance and the
covariance).

Similarly, we define the prior distribution for Rm. No-
tice that Rm could be drawn from any family of dis-
tributions that has a close form Bayesian updates. As
a special case, here we assume the prior distribution
for Rm is Normal with parameters µij , ρij and denote
the sample variance by sij .

If for each component Rm
ij we observe a series of Nij

observations x̂ij
1 , . . . , x̂ij

Nij
, the posterior distribution

for Rm
ij is also Normal with expectation: µpost

ij =(
µij/ρ2

ij +
∑Nij

k=1 x̂ij
k /s2

ij

)
/

(
(1/ρ2

ij) + (Nij/s2
ij)

)
, and

variance: ρpost
ij = 1/

(
(1/ρ2

ij) + (Nij/s2
ij)

)
, e.g., Gel-

man et al., 1995. So we define the nominal model
R̂m to be the m × m matrix whose ij-th entry is
R̂m

ij = µpost
ij , and accordingly:

R̂ = (R̂m ◦ P̂ )e , Rm = R̂m + ∆Rm ,

∆R = (Rm ◦∆P + ∆Rm ◦ P + ∆Rm ◦∆P )e .

Using a second order approximation and following sim-
ilar derivation as in Section 4.1, we have the following
results.

Proposition 4.3 Assume that random matrices
∆Rm and ∆P are independent, the expectation (w.r.t.
the posterior) of Y := (I − αP )−1R satisfies:

IEpost[Y ] ≈ Ŷ + α2X̂Q̂Ŷ + αX̂(Q̂ ◦ R̂)e ,

where X̂ := (I − αP̂ )−1, Ŷ = X̂R̂ and Q̂ is computed
according to

Q̂ij =
∑

k:k 6=j

X̂ki cov (Pik, Pij) + X̂ji var (Pij) , (7)

where cov (Pik, Pij) and var (Pij) are computed accord-
ing to Lemma 4.2.



Proposition 4.4 Using the same notations and un-
der the same assumptions of Prop. 4.3, the second mo-
ment of Y := (I − αP )−1R is approximately

IEpost[Y Y >] ≈ Ŷ Ŷ > + X̂
{

α2(Q̂(1) + Q̂Ŷ R̂> + R̂Ŷ >Q̂>)

+α
[
(R̂m ◦ Q̂)eR̂> + Q̂(2)) + ((R̂m ◦ Q̂)eR> + Q̂(2))>

]

+Q̂(3) + Q̂(4)
}

X̂>,

where X̂ := (I − αP̂ )−1, Ŷ := X̂R̂, and Q̂(1), Q̂(2),
Q̂(3) and Q̂(4) are all diagonal matrices such that

Q̂
(1)
ii =

∑
k,`:k 6=` ŶkŶ` cov(Pik, Pi`) +

∑
k Ŷ 2

k var(Pik),

Q̂
(2)
ii =

∑
k,`:k 6=` ŶkR̂m

i` cov(Pik, Pil)+∑
k ŶkR̂m

ik var(Pik),
Q̂

(3)
ii =

∑
k,`:k 6=` R̂m

ikR̂m
i` cov(Pik, Pil)+∑

k R̂m2

ik var(Pik),

Q̂
(4)
ii =

∑
k P̂ 2

ik var(Rm
ik) =

∑
k P̂ 2

ik

(
1

ρ2
ik

+ Nik

s2
ik

)−1

,

and Q̂ is calculated according to Eq. (7).

5. Experiments

To validate the variance estimation, and to show that
we can compute confidence bounds with reasonable
accuracy, we performed the following experiment. We
generated random MPs as in Sec. 3. For each such ran-
dom MP we sampled the process 1000 times. We then
compared the difference between the empirical cost-
to-go and the true cost-to-go (weighted by the steady-
state frequency of the true model) and divided the
difference by the estimated standard deviation (based
on the empirical sample and the classical approach).
In Fig. 3 we show the percentage of experiments that
were within 1 standard deviation (marked by ‘+’) and
within 2 standard deviations (marked by ‘x’) from the
true weighted cost-to-go, as a function of the number
of samples per state. Under a Gaussian distribution
assumption these percentages would ideally equal 68%
and 95%, respectively. It can be seen that the variance
estimation is rather accurate.

We performed a similar experiment using the mail-
order catalog data. We divided the data to 1000
groups. We then randomly chose different segments,
and based on the empirical model for each segment
estimated the variance of a certain fixed policy (the
policy used by the firm). We then compared the differ-
ence between the empirical profit-to-go of the segment
and the profit-to-go of the model that uses all of the
data (weighted equally across all the 64 states) and
normalized by one standard deviation using the vari-
ance estimate (based on the classical approach). In
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Figure 3. Simulated data: The percentage of value esti-
mates that were within 1 (marked by ’+’) and 2 (marked by
’x’) estimated standard deviations of the true value func-
tion. Each point in the plot was calculated by sampling a
single MP 1000 times.

Fig. 4 we show the percentage of customer segments
that were within 1 standard deviation (marked by ‘+’)
and within 2 standard deviations (marked by ‘x’) from
the profit-to-go as calculated based on all the data,
as a function of the number of transactions per seg-
ment. In Fig. 5 we present a histogram of the normal-
ized difference between the estimated profit-to-go and
the profit-to-go based on all of the data, across dif-
ferent partitions of the data. The difference appears
to be Gaussian with high confidence (as validated by
a Kolmogorov-Smirnof test). The experiments pre-
sented validate the accuracy of the variance estimate.
We note that the variance estimate appears less tight
for the mail-catalog data than for the simulated MPs.
We attribute this lack of tightness to the fact the data
was not sampled from a “real” Markov process.

6. Concluding Remarks

In this paper we provided explicit expressions for the
bias and variance of the cost-to-go in MPs using both
classical and Bayesian approaches. We assumed that
we have access to a rather accurate estimate of the
model, which allowed us to use a second order approx-
imation. It is not clear how to go about estimating
the variance when a second order approximation is not
valid. A natural question is how to assess the validity
of the second order approximation given data that are
suspected to be generated from a Markov process.

In this paper we did not address the maximization
problem encountered in MDPs, where an additional
maximization over the space of policies is performed.
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Figure 4. Mail catalog data: The percentage of value esti-
mates that were within 1 and 2 standard deviations from
the profit-to-go calculated based on the whole data set.

This maximization may introduce an additional bias
to the value function estimation, since actions that
are not sampled enough may appear better than they
really are. Estimating this bias and accounting for
it as part of the optimization process are important
research questions.

The statistical setup of this paper assumes that the
sample trajectories are provided. A learning setup,
where an agent can actively sample trajectories, is a
natural extension. In such a setup, a learning agent
may guide the exploration to minimize the parametric
variance. We note that in model-based reinforcement
learning (e.g., Kearns & Singh, 2002) one typically as-
sumes that the current estimation of the model is ac-
curate enough to allow accurate policy evaluations. By
estimating the parametric variance we may, perhaps,
allow the agent to focus on sampling critical areas of
the state space where the variance can be reduced sig-
nificantly.
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