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Abstract
 

We consider the problem of eliminating redun-
dant Boolean features for a given data set, where
a feature is redundant if it separates the classes
less well than another feature or set of features.
Lavra  et al. proposed the algorithm REDUCE

that works by pairwise comparison of features,
i.e., it eliminates a feature if it is redundant with
respect to another feature. Their algorithm oper-
ates in an ILP setting and is restricted to two-
class problems. In this paper we improve their
method and extend it to multiple classes. Central
to our approach is the notion of a neighbourhood
of examples: a set of examples of the same class
where the number of different features between
examples is relatively small. Redundant features
are eliminated by applying a revised version of
the REDUCE method to each pair of neighbour-
hoods of different class. We analyse the per-

formance of our method on a range of data sets.

1.  Introduction

Classification is one of the fundamental tasks in machine
learning. In the usual classification setting, input or train-
ing data consists of multiple examples, each having mul-
tiple attributes or features Xi. Each example is tagged with
a class label cj. The goal is to learn the target concept as-
sociated with each class by finding regularities in exam-
ples of a class that characterize the class in question and
discriminate it from the other classes. This problem has
been extensively studied in machine learning. However,
the growing importance of knowledge discovery and data
mining in practical real world applications, where data
consists of a large amount of records that may be stored in
different tables of a relational database, requires increas-
ingly sophisticated solutions for classification problems
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such as multi-relational data mining or propositionalisa-
tion. In particular, propositionalisation (Dzeroski &
Lavra , 2001; Krogel et al., 2003) is the process of trans-
forming a multi-table representation of data into the form
of a single table. The result can be used as input for at-

tribute-value learning algorithms.

Propositionalisation tends to produce large numbers of
features, many of which are highly correlated or even
logically redundant. A simple example of a redundant
feature is one which is never (or always) satisfied: e.g., ‘a
molecule having an atom which has a bond with itself’.
While some forms of redundancy can be recognised at
feature generation time, others can only come to light by
examining the data. Pagallo & Haussler (1990) investigate
the problem of discovering a subset of Boolean features to
describe two-class Boolean concepts. using three different
algorithms. FRINGE induces decision trees in which Boo-
lean features are adaptively constructed at each node
whereas GREEDY3 and GROVE use greedy accuracy-based
heuristics to build decision lists. These methods select
Boolean features as part of learning rather than according
to any definition of logical redundancy. In contrast,
(Lavra  et al., 1999) proposed a method to remove Boo-
lean features that are logically redundant with respect to a
two-class data set. They defined a feature f to be redun-
dant

1
 with respect to another feature g  if g is true for at

least the same positive examples as f and false for at least
the same negative examples as f. The REDUCE algorithm

operates by pairwise comparison of the features.

In this paper we improve and extend the REDUCE algo-
rithm in two ways. First, we increase the number of re-
dundant features detected, without losing the ability to
find a complete and consistent theory with the reduced
feature set. Secondly, we extend the method to multi-class
problems. Central to our approach, which we call REFER

(REdundant FEature Reduction) is the notion of a neigh-
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bourhood of examples: a set of examples of the same
class where the number of different features between ex-
amples is relatively small. Redundant features are elimi-
nated by applying a revised version of the RE D U C E

method to each pair of neighbourhoods of different class.

The paper is organized as follows. In the next section we
discuss the background to our work and some related
work. The method is presented in Section 3. Experimental
results are reported in Section 4 and conclusions are

drawn in Section 5.

2.  Motivation and Background

It is useful to distinguish between feature selection and
feature reduction. Feature selection is concerned with
identifying a small subset of relevant features that are
sufficient for learning the target concept. We define fea-
ture reduction as eliminating logically redundant features.
In a certain sense, the two approaches are orthogonal:
feature selection aims at increasing correlation with the
class (relevance), feature reduction aims at reducing cor-
relation among features (redundancy). This different fo-
cus may lead to different results: for instance, if we have
several copies of a highly relevant feature, feature selec-
tion will select all of them, while feature reduction will

eliminate all but one.

2.1  Feature Selection

The problem of feature selection has been widely ex-
plored in machine learning. Reasons include that irrele-
vant features may deteriorate the predictive performance
of a learning algorithm (Langley, 1996; Rendell & Seshu,
1990), as well as reduce the comprehensibility of the
learned model (Dash & Liu, 1997; Blum & Langley,
1997). Feature selection approaches may be categorised
into wrapper, filter and embedded approaches (Kohavi et
al., 1994; Blum & Langley, 1997), according to whether
the method takes into account the characteristics of the

data, the target concept or the learning algorithm.

In the wrapper approaches, the goal is to find a subset of
features that maximizes accuracy. The wrapper approach
implies that the selection algorithm searches for a good
subset of features using the induction algorithm itself as a
part of the evaluation function, the same algorithm that
will be used to learn the final target concept. In the filter
approaches, the goal is to filter the irrelevant and/or re-
dundant features on the basis of the characteristics of the
training data without involving any learning algorithm.
Finally, in the embedded approaches the feature selection
process is done inside the learning algorithm. For exam-
ple, partitioning and divide-and-conquer methods implic-
itly select features for inclusion in a branch or rule in

preference to other features that appear less relevant.

Embedded approaches are intrinsic to some learning algo-
rithms and so only those algorithms designed with this

characteristic can be used. However, embedded ap-
proaches such as Adaboost (Freund & Schapire, 1997)
can often be quicker than wrapper or filter approaches
since they perform feature selection and induction at the
same time. Filtering approaches ensure a fairly good
computational complexity, but the wrapper approaches
with their higher complexity tend to produce higher re-
sulting accuracy. Filtering approaches are very flexible,
since any target learning algorithm can be used, while the

wrapper approach is strictly dependent on the learner.

Among the filter approaches, it is also possible to distin-
guish between approaches based on probabilistic distance
measures, probabilistic dependence measures, interclass
distance measures or information theoretic measures such
as the entropy. For instance, RELIEF (Kira & Rendell,
1992) and its extension to multi-class problems RELIEFF
(Kononenko, 1994) estimate the relevance of each feature
according to the difference between the selected example
and the nearest examples of the same and different
classes. However, RELIEF does not help with removing
redundant features. As long as features are deemed rele-
vant to the class concept, they will be selected even
though many of them are highly correlated with each

other (Kira & Rendell, 1992).

FOCUS (Almuallim & Dietterich, 1991) is a straightfor-
ward filtering algorithm for noise-free, multi-class Boo-
lean data. It exhaustively examines all subsets in order of
size to find the minimal subset necessary for concept
learning. FOCUS has a time complexity of O(n

p
) for p

relevant features among n total features and is therefore

impractical for high-dimensional data sets.

SCRAP (Raman, 2003) implements a sequential search
filter approach that is able to detect relevant features in
multi-class problems. SCRAP divides the entire set of
training examples into neighbourhoods that are groups of
similar examples tagged with the same class label and
identifies the features that are required to discriminate
between adjacent neighbourhoods containing examples
belonging to a different class. However, similarly to
RELIEF, SCRAP does not consider dependencies among
features. Furthermore, this method cannot guarantee that
selected features are sufficient to discriminate among all
classes (i.e., the completeness and consistency of the
learned theory) since it analyses only the centres of pairs

of adjacent neighbourhoods.

2.2  Feature Reduction

Feature reduction and elimination of redundant features
have been studied to a much lesser extent. A definition of
redundancy follows from reducts in rough sets theory
(Modrzejewski, 1993), in which Boolean features are re-
dundant if their removal does not change the set of exam-
ple-pairs having the same value for each feature. In this
paper our main inspiration comes from (Lavra  et al.,
1999), who situate their work in the setting of inductive



logic programming (ILP). The primary aim of their
REDUCE algorithm is to detect which features (or literals,
in the ILP setting) are redundant for learning and exclude
them in order to reduce the hypothesis space. They prove
that their method achieves this without compromising the
existence of a complete and consistent theory for the tar-
get concept, which is assumed to be Boolean. One of their
conclusions is that “the method is more effective when

there are many literals and a small number of examples”.

The method we propose in this paper addresses exactly
this issue. By using neighbourhoods similar to those of
SCRAP, and calling a variant of REDUCE on pairs of
neighbourhoods of different class, we achieve further
feature reduction (with a factor of more than two on dif-
ferent propositionalised versions of the mutagenesis ILP
benchmark). Furthermore, the use of pairwise comparison
leads to a very natural upgrade to multi-class problems. In
the next section we present our improved multi-class fea-
ture reduction method REFER.

3.  The Method

The multi-class concept learning problem can be defined
as follows. Given (1) a set of training examples E = {e1,
e2, …, en}, each of which is tagged with a class label in C
= {c1, c2, …, cr}; (2) a background theory BK; and (3) a
hypothesis language LH  that defines the space of hy-
potheses SH: find a theory T = {H1, ..., H r} comprising
hypotheses in SH describing a concept for each class in C,
that is complete and consistent with respect to each class.
This means that for each i, 1  i  r, BK  H i |= e

+
 for

each example e
+
 of class i (completeness property) and

BK  Hi |  e
–
 for any example e

–
 not of class i (consis-

tency property).

In this paper we consider training examples ei  E that are
described by m Boolean features fi  F where a feature is
a mapping from examples to Booleans. REFER (see Figure
1) is a two-stage process based on the iterative partition-
ing of the example set into neighbourhoods (REFER-N)
followed by the reduction of features among these parti-

tioned examples (REFER-R). We now describe these two

stages in turn.

3.1  REFER-N: Neighbourhood Construction

REFER-N produces a set of disjoint neighbourhoods E1, ...,
Ew (w  n), forming a set partition of the training set E,
such that each neighbourhood Ei contains a subset of ex-
amples belonging to one class ci  C  only. Each neigh-
bourhood is uniquely identified by two examples. The
first example is where the neighbourhood construction
started and the second one is the termination point. Let es

 E be a random starting example for the construction of
a neighbourhood. REFER-N finds a corresponding termi-
nation point, the closest example in et  E tagged with a
different class label, referred to here as the point of class
change. The neighbourhood E(es, et) contains the set of

training examples 
ksss , ..., e, ee
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 such that:
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where the distance between two examples is computed as
the Hamming distance, that is, the number of features
whose values differ between the two examples. The
neighbourhood construction proceeds in E \ E(es, et) by
considering the last point of class change as the current
starting point and the process is repeated until the entire
set of training examples is partitioned in neighbourhoods.
This process is illustrated in Figure 2 on a two-

dimensional continuous instance space.

3.2  REFER-R: Coverage-Based Feature Reduction

Let El and Em be a pair of neighbourhoods in E of differ-
ent classes (cl  cm). The goal is to detect which features f

 F describing examples in El  Em are redundant for
discriminating between the classes cl and cm. The defini-
tion of redundancy we use, following (Lavra  et al.,

1999), is based on coverage among features.

Formally, a feature f  F covers a feature g  F with re-
spect to El  Em if T(g)  T(f) and F(g)  F(f), where T(f)
(T(g)) is the set of all examples ei  El such that f (g) has
the value true for ei and F(f) (F(g)) is the set of all exam-

Algorithm. REFER feature elimination

REFER (E, F)  RF

Input:

E // a set of training examples

F // a set of features

Output:

RF // the set of reduced features

Begin

RF  ;

  REFER-N(E);

 Ei  

     Ej   such that ci  cj

RF  RF  REFER-R(Ei,Ej,,L,RF);

return RF.

End.

Figure 1. Top-level pseudocode for the REFER algorithm.
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Figure 2. An example of the decomposition into neighbour-

hoods of the training set E starting from the example e1.



ple ej  Em such that f (g) has the value false for ej. The
intuition is that a feature f is better than another feature g
for distinguishing cl from cm if f is true for at least the
same cl examples as g, and false for at least the same cm

examples as g. The implicit assumption is that class cl is

the positive class we are trying to describe.

This suggests the notion of useless features, those for
which T(f) =  or F(g) = . Such features can be imme-
diately removed from the set of features F regardless of
the properties of other features. Furthermore, a feature g

 F is defined to be redundant if there exists another
feature f  F  (f  g) such that f covers g . Therefore,
redundant features can be eliminated in a preprocessing
step without compromising the existence of a complete
and consistent theory according to the theorem found in

(Lavra  et al., 1999), the basis of the algorithm REDUCE.

REFER applies REFER-R (see Figure 3), a revised version
of the algorithm REDUCE, to find a set of non-redundant
features RFl,m between the neighbourhoods El and Em. In
particular, REFER-R takes into account the set of features
R that have been already identified as non-redundant in
previous neighbourhood-pair comparisons. This allows us
to find a smaller set of non-redundant features by prefer-
ring features among those that have been already selected,
instead of introducing new ones. REFER-R first identifies
the non-redundant features between El and Em, consider-
ing only the features in F  not yet selected as non-
redundant in previous neighbourhood-pair comparisons.

Afterwards, it prunes the resulting set considering R.

3.3  Finding Non-Redundant Features

A neighbourhood decomposition E1, ..., Ew of the example
set E can be represented by a graph of neighbourhoods G

= (N, A), where N is the set of nodes ni representing each
neighbourhood Ei and A  is the set of arcs connecting
nodes in N. Each node ni  N is connected only to every
other node nj  N that corresponds to a neighbourhood of
a different class (see Figure 4a). Consequently, for each
arc between a pair of nodes (ni, nj) in N tagged with a dif-
ferent class label, REFER detects the set of all non-
redundant features discriminating between examples in ni

and nj, and vice-versa, according to the REFER-R algo-
rithm. We tag the arc with this set.

Where the features represent only positive literals, such as
in some propositionalised data, the implicit assumption is
that any negation is eventually introduced in learning.
Then, there is an effective comparison between f and g as
well as not-f and not-g. If negated features are supplied

explicitly, all possible combinations are evaluated.

Example. Consider a pair of neighbourhoods, E1 = {e1,
e2, e3} and E2 = {e4, e5, e6, e7} as follows:

E f1 f2 f3 f4 f5 f6 f7 C Neighbourhood

e1 1 1 0 0 1 0 1 c1

e2 0 0 1 1 1 0 1 c1

e3 0 1 1 0 1 0 0 c1

E1

e4 0 0 0 1 0 1 0 c2

e5 1 0 1 1 0 0 0 c2

e6 1 1 1 1 1 1 0 c2

e7 0 0 1 1 0 1 1 c2

E2

By comparing E1 against E2, REFER-R discovers that only
features f5 and f7 are non-redundant. In the opposite direc-
tion, when REFER-R compares E2 against E1, it identifies
the features f1, f 4 and f6 as non-redundant. Therefore
REFER-R discovers that features f2 and f3 are redundant in

discriminating between E1 and E2.

In contrast, SCRAP builds a graph of neighbourhoods
where each node is connected only to an adjacent node
associated with a different class (see Figure 4b). Because
of this, SCRAP does not guarantee that selected features
are sufficient to discriminate among all classes. On the
other hand, we can prove that given G = (N, A), the graph
of neighbourhoods produced by REFER-N from a training
set E and F’, the union of all non-redundant features de-
tected by applying the REFER-R algorithm to each pair of
nodes in N  with different class labels, we can learn a

complete and consistent theory using only features in F’.

Theorem: Given LH, an hypothesis language rich enough
to allow for a theory T, that is complete and consistent for

Algorithm. REFER-R feature elimination

REFER-R(El, Em, F, R)  RFl,m

Input:

El // a set of examples of class cl
Em, // a set of examples of class cm
F // a set of features

R // a set of features already detected

// as non-redundant

Output:

RFl,m, the set of non redundant features

Begin

RFl,m  F \ R;

 li  RFl,m  {

if fi has value false for each example ei El

then eliminate fi from RFl,m;

if fi has value true for each example ei Em

then eliminate fi from RFl,m;

if fi is covered by any fj  RFl,m   

then eliminate fi from RFl,m;

}

 fi  RFl,m  

if fi is covered by any fj  R   

then eliminate fi from RFl,m

return RFl,m

End.

Figure 3. REFER-R feature elimination algorithm.

Figure 4. An example of graph of neighbourhoods built by

(a) REFER and (b) SCRAP.
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each class, to be learned from a training set E , a set of
features F and E1, …, Ew a neighbourhood decomposition
of E. A complete and consistent theory T can be found
using only features from the set F’  F if and only if for
each possible pair of examples (ei, ej)  (El, Em) with cl 
cm, there exists at least one feature f’  F’ such that ei 
T(f’) and ej  F(f’).

Proof. Necessity: Suppose that a pair of examples (ei, ej)
 (El, Em) with cl  cm exists such that there is no feature

f’  F for which ei  T(f’) and ej  F(f’). This implies that
no rule involving features in F’ could discriminate be-
tween ei and ej and a description which is complete and
consistent with respect to the class ci cannot be found.

Sufficiency: Let G = (N, A) be the graph corresponding to
the neighbourhood decomposition of E. Consider an arbi-
trary example e  E. We can build a description of e from
all those features Fe appearing on all arcs of G connecting
its containing node, since we have associated with these
arcs the set of all features discriminating e against every
other example of a different class, and vice-versa. This
description is exactly the conjunction of all those features
that are true for e with the negation of each of those fea-
tures that are false for e. This description is then true for e
and no other example. Now consider all those examples in
the neighbourhood (and therefore of e’s class). We build a
description for those examples by constructing a disjunc-
tion of the descriptions for each example. This description
is true for each of these examples and no other example of
a different class. Similarly, we can build a description of
each class as a whole by taking a disjunction of such de-
scriptions for each neighbourhood. We now have a com-

plete and consistent hypothesis for each class.

3.4  Computational Complexity

In this section we analyse the time complexity of the
REFER algorithm. We consider the average case to be such
that the example set E is decomposed into w equal disjoint
subsets E1  …  Ew, assuming E is distributed appropri-
ately with respect to class. First we consider the average-
case computational complexity of REFER-N for n training
examples and m features. Consider the construction of the
first neighbourhood E1

 
with a random starting point es.

This requires the calculation of the Hamming distance
(complexity O(m) per example) between es and each other
example in E . This has a time complexity O(m (n–1)).
REFER-N determines the changing class point ec, and,
without further calculation, extracts the first neighbour-
hood E1. The example set for the next iteration is there-
fore E \ E1, of size n – (n /w). REFER-N iterates with the
new example set. Therefore, the entire REFER-N process

requires an average time complexity O(nmw).

REFER-R is an extension of the algorithm REDUCE, but
comparing each neighbourhood pair tagged with different
class labels. For each comparison, REFER-R has a average
time complexity of O(m

2
n/w). Therefore, REFER has an

average combined time complexity of O(nmw + m
2
hn/w)

with h  w
2 

– w.

4.  Experimental Results

REFER was implemented in Java and empirically evalu-
ated in three different experimental settings.

4.1  Mutagenesis ILP dataset

This dataset concerns the problem of identifying

mutagenic compounds (Muggleton et al., 1989) and has

been extensively used as an ILP benchmark. We consid-

ered, following related experiments in the literature, the

regression-friendly dataset of 188 molecules. The dataset

consists of three relations, describing molecules, atoms

and bonds, and the goal is to identify the mutagenic mole-

cules. We preprocessed and propositionalised the dataset

using SINUS (Krogel et al., 2003). We obtained four dif-

ferent datasets varying the background knowledge (Srini-

vasan et al., 1999) and SINUS parameters. The settings of

the experiments are reported in Table 1.

The results obtained by ten-fold cross-validation are re-
ported in Table 2. We furthermore compared REFER with
REDUCE in order to show the advantages in the use of the
neighbourhoods. Figure 5 presents a graphical compari-
son between the systems in terms of the number of fea-
tures that are considered non-redundant with respect to
the original set of features. In addition, Table 3 reports the
average predictive accuracy on the test set (not used by
REFER or REDUCE) obtained running different learning
systems, specifically, C4.5 (Quinlan, 1993), Naïve Bayes,
k-nearest neighbours, the RIPPER rule learner (Cohen,
1995) and a support vector machine (Keerthi et al. 2001).
Results show that in general REFER selects half the num-
ber of features selected by REDUCE without accuracy de-
creasing. Not all the accuracy results are directly compa-
rable with results reported in the literature. However, M2
is equivalent to the BK2 setting (see Table 4). Despite the
significant reduction in the number of features, the accu-
racy remains competitive with the performance of estab-
lished multi-relational data mining algorithms for this

domain.

Setting M1 M2 M3 M4

Instances produced 1692 1692 1692 1692

Features produced 1016 2114 3986 13118

SINUS parameters (L, V, T) 3, 3, 20 3, 3, 20 3, 3, 20 4, 4, 20

inda and ind1 yes yes yes yes

bonds yes yes yes yes

atom element and type yes yes yes yes

atom charge no yes yes yes

lumo and logp no yes yes yes

2D molecular structures yes no yes yes

Table 1. The background knowledge and SINUS settings used

to generate four propositionalised versions of Mutagenesis.



Table 2. Average numbers of features, neighbourhoods and run-
ning time performed by REFER for the Mutagenesis datasets.

# features

# features after

reduction

# neigh-

bourhoods

running time

(s)

M1     1016         25.9        16        1.10

M2     2114         32.1        17        9.33

M3     3986         40.9        26      40.30

M4   13118         44.4        27.1    608.17

Table 3. Accuracy for the Mutagenesis datasets reduced with
REFER and REDUCE, respectively.

Dataset/System JRIP NB KNN C4.5 SVM

REFER 85.58 87.22 82.98 84.53 86.14
M1

REDUCE 86.14 83.53 81.46 84.01 85.64

REFER 87.28 87.25 87.77 89.91 89.88
M2

REDUCE 85.70 84.06 87.25 89.91 88.33

REFER 85.08 84.06 84.53 84.56 86.66
M3

REDUCE 85.08 86.69 84.53 84.56 84.03

REFER 80.98 82.19 82.09 83.30 86.19
M4

REDUCE 82.98 84.15 80.13 83.30 86.90

Table 4. Accuracy results on Mutagenesis by other learners
(BK2 setting, ten-fold cross-validation), from (Ceci et al., 2003).

System PROGOL FOIL TILDE MRDTL 1BC MR-SBC

Accuracy 86 83 85 88 87.2 89.9

4.2  UCI Datasets

In the second experimental setting, 13 UCI datasets have
been considered. In particular, we selected the following
datasets containing only discrete attributes: Audiology,
Bridge, Car, Flare-1066 (class C), Flare-1066 (class M),
Flare-323 (class C), Flare-323 (class M), Mushroom,
Nursery, Post-operative and Tic-tac-toe. In addition, we
considered PimaF and YeastF, with continuous attributes
discretised using equal width bins. Each dataset was
transformed into a binary representation and evaluated by
means of a ten-fold cross-validation. All experiments
were performed using the same folds. We chose three
feature selection methods for comparison with REFER,
namely RELIEFF, the variant of RELIEF for multi-class
problems, CFS and LVF. CFS uses a correlation-based

heuristic to evaluate features. This heuristic takes into
account the utility of individual features for predicting the
class along with the level of intercorrelation among them
(Hall, 2000). LVF makes probabilistic choices to guide
the search for the best subset of filtered features (Liu &
Setiono, 1996). For RELIEFF, the parameter K is set to 5

(neighbours) and M is set to 30 (instances).

Figure 6 shows the number of selected features against
the original number of features (before feature selection).
It demonstrates that in general REFER is a conservative
approach but is more selective than RELIEFF. On the other
hand, REFER is considerably faster than any other feature

selection method used in our comparison (see Table 5).

Table 5. Average running times of LVF, CFS, RELIEFF and
REFER over ten folds. The results were recorded on an Intel
Pentium IV 1.4 GHz PC running Windows XP.

Time (s)
Dataset # in-

stances
# fea-
tures LVF CFS RELIEFF REFER

Audiology 398 184 3.37 0.80 3.84 0.72

Bridge 108 83 0.89 0.38 0.67 0.22

Car 1728 21 1.94 0.44 15.92 0.50

Flare1066/C 1066 40 2.62 0.48 11.51 0.61

Flare1066/M 1066 42 0.82 0.51 11.63 0.20

Flare323/C 323 37 0.72 0.38 1.19 0.12

Flare323/M 323 36 0.80 0.39 1.25 0.21

Mushroom 8124 116 29.48 5.30 1838.36 1.66

Nursery 12960 27 34.24 1.64 1038.31 20.38

Post-operative 90 23 0.33 0.30 0.32 0.08

Tic-tac-toe 950 27 1.03 0.37 5.49 0.20

Pima 768 120 12.2 1 14.1 2.6537

Yeast 1484 120 55 19.1 57.1 26.7132

In addition, we applied the same five learners used in the
Mutagenesis experiment. We compared the percentage of
correct classifications averaged over the ten folds in the
cross-validation for each algorithm-dataset combination
before and after feature selection or reduction. In Table 6
we report the accuracy results. We notice that the accu-
racy obtained with REFER’s reduced feature sets is com-
petitive with the feature selection approaches. Secondly,
the accuracy of the algorithms on the feature sets pro-
duced by REFER is consistently close to that of the origi-
nal feature set. These experiments have been conducted
using the Weka environment (Witten & Frank, 2000).

Figure 6. The average number of reduced features with re-

spect to the original number of features on UCI datasets.
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Finally, Figure 7 shows the number of both reduced fea-
tures and neighbourhoods constructed by REFER using
varying starting points. We may observe that the number
of reduced features as well as the number of neighbour-
hoods is not greatly affected by a different starting point.

4.3  Reuters-21578

To evaluate the performance of REFER on large-scale
datasets, we executed it on the Reuters-21578 dataset
(Lewis, 1997) consisting of a set of 21,578 articles pub-
lished by Reuters. This is a well-known benchmark
dataset in the field of Information Retrieval and Docu-
ment Categorisation. We evaluated it using the Mod-Apte
split (Yang and Liu, 1999), where the dataset is cleaned
and split into a training set (7769 articles) and a test set
(3019 articles). The resulting data contains articles each
belonging to one or more of 90 classes. In our representa-
tion, each feature represents a word in the article and each

article has been represented in the form of a Boolean
vector, recording for each word whether it occurs in the
document. In order to adapt it to the single-label problem,
we removed the articles with multiple classifications, as
in (Schapire & Singer, 2000). We thus obtained a training
set of 6577 articles and a test set of 2583 articles. After
preprocessing, the total number of features was 16,582.
Although the dataset could be represented in a sparse ma-
trix representation, we did not use this representation in
order to prove the applicability of our method even to

large-scale datasets where the dataset is not sparse.

For this domain, the Boolean vector representation leads
to a dataset of high dimensionality, giving a file size of
hundreds of megabytes. One of the advantages of REFER

is that it is possible to split a dataset into several smaller
ones consisting of subsets of the features of the original
set, run REFER on the subsets (possibly in parallel on dif-
ferent machines), combine them, and run REFER on the
combination, without compromising the discovery of a
complete and consistent theory, described in Section 3. In
this way, we identified more than 90% of 16,582 features

as redundant, resulting in a set of 1450 reduced features.

5.  Conclusions and Future Work

In this paper we presented REFER, an efficient method for
eliminating redundant Boolean features for multi-class
classification tasks. The method is logically sound, in that
it guarantees the existence of a complete and consistent
theory using only the reduced feature set if it exists with
the complete feature set. It also is efficient, requiring on
average less time than the three feature selection methods
we compared it with. We have demonstrated that the use
of neighbourhoods increases the number of identified
redundant features with more than a factor of two, in
comparison with REFER’s predecessor REDUCE. We have
also shown that it is feasible to execute the method on a
large and high-dimensional dataset, and that the method is
amenable to parallel execution. REFER’s computational
efficiency derives from its heuristic nature and sets it
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Figure 7. The number of features and neighbourhoods per-

formed by REFER varying the starting point for 5 trials.

JRIP NB C4.5 SVM

 LVF  CFS RELIEF REFER  none  LVF  CFS RELIEF REFER  none  LVF  CFS RELIEF REFER  none  LVF  CFS RELIEF REFER  none

Audiology 72.0 66.6 74.9 72.2 74.9 72.1 69.2 71.8 74.9 71.8 75.1 70.6 77.9 74.3 74.4 75.2 69.2 81.6 79.7 81.6

Bridge 58.7 58.0 58.8 59.8 62.5 62.7 55.9 63.5 68.2 63.4 57.6 70.5 64.2 65.1 63.2 61.8 61.8 66.0 68.1 66.0

Car 94.9 70.6 93.6 93.5 94.1 82.4 77.8 85.8 86.9 86.9 96.8 77.8 92.5 94.0 94.0 93.1 77.8 93.3 93.6 93.6

Flare1066 C 83.0 82.7 83.0 82.8 82.7 77.7 80.8 72.7 74.8 74.2 80.9 81.5 80.4 80.6 80.6 82.7 82.9 82.7 82.7 82.7

Flare1066 M 96.6 96.6 96.4 96.5 96.4 96.3 95.2 88.3 88.6 88.2 96.5 96.4 96.0 96.1 96.1 96.5 96.4 96.4 96.4 96.4

Flare323 C 87.5 88.0 88.1 88.1 88.1 87.0 86.2 82.0 81.4 81.4 87.2 87.7 85.9 85.9 85.9 88.4 88.4 87.7 87.7 87.7

Flare323 M 89.1 89.7 89.1 89.1 89.1 85.8 86.9 83.7 83.7 83.7 86.3 88.5 87.2 87.2 87.2 90.0 89.4 89.1 89.1 89.1

Mushroom 100.0 93.0 100.0 100.0 100.0 93.6 93.0 94.3 94.3 94.3 100.0 93.0 100.0 100.0 100.0 99.9 92.6 100.0 100.0 100.0

Nursery 97.3 36.3 91.1 98.7 98.7 86.2 66.2 89.4 92.2 92.9 99.5 66.2 91.1 98.1 98.3 93.2 66.2 93.1 93.1 93.1

Post-Op 71.1 68.9 71.1 71.1 71.1 66.7 66.7 58.9 57.8 58.9 62.2 66.7 65.6 62.2 62.2 68.9 68.9 67.8 67.8 67.8

Tic-tac-toe 95.4 69.9 85.3 98.1 97.7 68.8 69.9 71.4 68.4 68.4 91.6 69.9 83.5 98.7 98.7 75.7 69.9 98.3 98.3 98.3

Pima 69.8 72.6 73.5 72.6 71.1 71.2 74.7 74.0 74.7 74.9 63.9 72.0 65.1 67.9 67.2 72.6 73.5 72.1 74.1 74.6

Yeast 50.9 56.1 50.4 49.9 50.6 54.7 50.0 54.7 56.0 55.7 44.3 48.0 43.6 45.8 45.8 56.1 50.4 54.6 57.6 57.8

Table 6. Average accuracy comparison on UCI datasets for four different learners and four different feature selection/reduction

methods (none means the full feature set was available to the learner). Highest accuracy results per learner are indicated in bold.



apart from exhaustive methods such as FOCUS, which do

not scale up well to large sets of features.

Feature reduction, i.e., eliminating redundant features,
and feature selection, i.e., identifying relevant features,
are in some sense complementary approaches. In future
work, we plan to study the interaction between these two
approaches to obtain even smaller feature sets. We also
plan to incorporate noise-handling mechanisms by al-

lowing non-pure neighbourhoods.
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