Unifying Collaborative and Content-Based Filtering

Justin Basilico

BASILICO@CS.BROWN.EDU

Department of Computer Science, Brown University, Providence, RI 02912 USA

Thomas Hofmann

THQCS.BROWN.EDU

Department of Computer Science, Brown University, Providence, RI 02912 USA
Max Planck Institute for Biological Cybernetics, Tiibingen, Germany

Abstract

Collaborative and content-based filtering are
two paradigms that have been applied in the
context of recommender systems and user
preference prediction. This paper proposes
a novel, unified approach that systematically
integrates all available training information
such as past user-item ratings as well as at-
tributes of items or users to learn a prediction
function. The key ingredient of our method
is the design of a suitable kernel or similarity
function between user-item pairs that allows
simultaneous generalization across the user
and item dimensions. We propose an on-line
algorithm (JRank) that generalizes percep-
tron learning. Experimental results on the
EachMovie data set show significant improve-
ments over standard approaches.

1. Introduction

Predicting ratings and preferences for users interact-
ing with a computer system is a key challenge in ap-
plication areas such as electronic commerce, informa-
tion filtering, and user interface design. The stan-
dard learning paradigm employed in this context is
widely known as collaborative or social filtering (Gold-
berg et al., 1992; Resnick et al., 1994; Shardanand
& Maes, 1995). Collaborative filtering exploits corre-
lations between ratings across a population of users,
in its most popular incarnation by first finding users
most similar to some active user and by then forming
a weighted vote over these neighbors to predict unob-
served ratings. Content-based filtering is an alterna-
tive paradigm that has been used mainly in the con-

Appearing in Proceedings of the 21°" International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the authors.

text of recommending items such as books, web pages,
news, etc. for which informative content descriptors
exist. Standard machine learning methods like naive
Bayes classification (Lang, 1995; Pazzani et al., 1996;
Mooney & Roy, 2000) have been used in this context.

In this paper, we pursue the philosophy that collabo-
rative and content-based filtering are complementary
views that should be unified in a common learning
architecture. In fact, it should also be possible to
take into account other information such as demo-
graphic user data. To that extent, we propose a tech-
nique that shares many desirable features with kernel-
based methods (Schoélkopf & Smola, 2001) and percep-
tron learning, more precisely the PRank algorithm of
(Crammer & Singer, 2002). Formally, we follow a mod-
eling approach first suggested in (Basu et al., 1998)
which is to learn a mapping from user-item pairs to
a set of ratings. A similar approach was suggested in
(Billsus & Pazzani, 1998) and utilized in many recently
proposed machine learning algorithms.

The most common way of casting the present predic-
tion problem as a standard classification problem — or
more generally as an ordinal regression problem — is to
treat every user u as an independent, separate classi-
fication problem. Hence, every item z for which u has
provided a rating r(u,x) is considered as a training
instance with the rating as its target value. In order
to represent items x as feature vectors, one may uti-
lize item attributes or encode known ratings provided
by other users u’ # u as features (Billsus & Pazzani,
1998). Predictions for a specific user are then made by
applying the learned classification rule to items with
unknown ratings.

Yet, one can also take the opposite view and treat ev-
ery item as a separate classification problem for which
a user constitutes an instance. In the latter case, a user
needs to be represented by some feature vector, for ex-
ample, by encoding his/her ratings on other items or

by utilizing demographic attributes. Interchanging the
role of items and users is an alternative approach that
is known as item-based collaborative filtering (Sarwar
et al., 2001).

We suggest to avoid this polarity of using a feature rep-
resentation either over items or over users, by allowing
features to be extracted jointly from user-item pairs
(u,z). The crucial ingredient is a joint feature map
U, (u,z) — P(u,z) € RP. Some features may only
depend on the item or only on the user, but they may
also combine aspects of both. For example, features
may indicate that a pair (u, z) deals with a particular
(type of) user and a particular class of items (say, of
a particular genre or category). One may also think
of the inner product (¥ (u, z), U(u',2")) as a similarity
measure that governs how generalization occurs over
user-item pairs. Special cases on how to compute such
similarities are, for example, to require that u = v’
and to use some similarity measure between items x
and z’, or to require that x = 2’ and to use some sim-
ilarity measure between users u and w’, which yields
the two extreme cases discussed above. However, as
we will show, one can do better by defining joint fea-
ture maps that keep some middle ground and allow for
simultaneous generalization along both dimensions.

2. Joint Feature Maps and Kernels
2.1. Hypothesis Classes for Ordinal Regression

To state our modeling approach more formally, we de-
note by U a set of users and by X a set of items. A
joint feature map is a mapping ¥ : U x X — R which
extracts features ¢, 1 < r < D from user-item pairs.
We will define a family of functions F' that are linear in
the chosen feature map via F(u,z;w) = (¥ (u, x), w),
where w € RP is a weight vector. In order to predict a
rating for a pair (u, x), we use a set of adaptive thresh-
olds € to quantize F into bins. If there are k response
levels (say a rating scale from 0 to (k — 1) stars), then
there will be thresholds §; € ® with 1 < j < k — 1.
For convenience we also define 8 = +o00. The predic-
tion function simply picks the number of the bin the
computed F-value falls into, formally:

flu,z;w,0)=min{je{l,... k}: F(u,z;w)<0;}. (1)

As we will show in the next section, the estimation of
w and 6 in the proposed algorithm only depends on
inner products (¥(u,z), ¥(u,z’)) for user-item pairs
with observed rating. This means that instead of spec-
ifying W explicitly, we can also define kernels functions
K over U x X which define a joint feature map implic-
itly, i.e. K((u,), (v, 2")) = (U(u,x), (v, 2')). Tt will

turn out that this is a more convenient way of design-
ing appropriate representations over user-item pairs.

2.2. Joint Feature Maps via Tensor Products

In this paper, we restrict ourselves to joint feature
maps that are generically constructed from feature
maps for items and users via the tensor product. By
this we mean a relatively simple operation of first
defining A : Y — RY and ® : X — R and then
combining every dimension of A multiplicatively with
every dimension of ® to define ¥(u, z) = A(u)®@®P(x) €
RP where D = G - H. Notice that in the simplest case
of binary features, the multiplicative combination cor-
responds to a logical conjunction. Explicitly comput-
ing feature maps ¥ constructed in this manner may be
prohibitively expensive. However, the following simple
lemma shows that inner products of this sort can be
computed very efficiently.

Lemma 1. If U(u,z) = A(u) ® ®(x) then the inner
product of U vectors can be expressed as the inner prod-
uct between A and ® vectors, respectively, as follows:

<\If(u, CE), \Il(u'7 .’L'/)> = (A(u), A(’LL/)><(I)(.T)7 (I)(l‘/)> :

This implies that we may design kernel functions Ky
for users and K x for items independently and combine
them multiplicatively to define a joint kernel.

2.3. Designing Kernels

We propose to build kernels for users and items by ad-
ditively combining elementary kernel functions, which
are then combined multiplicatively to yield the joint
kernel function.

2.3.1. IDENTITY KERNEL

The simplest kernel function is the diagonal kernel,
which is defined via the Kronecker delta K'¥(z,2') =
8. Interpreting K¢ as an inner product, this corre-
sponds to a feature map that encodes the identity of
each object z by a separate Boolean feature. We will
denote the diagonal kernel induced by the user and
item identity by Kj§ and K¢, respectively.

2.3.2. ATTRIBUTE KERNEL

The second type of kernel function is built from an ex-
plicit attribute representation for items or users. For
users these attributes may correspond to demographic
information such as gender, age, nationality, location,
or income. For items such as documents this may
encode a standard tf-idf vector space representation,
whereas for movies it may include attributes such as
genre or attributes extracted from cast, crew, or a syn-

opsis of the plot. We will refer to the attribute-based
kernels by K and K¥.

2.3.3. CORRELATION KERNEL

Collaborative filtering has demonstrated that predic-
tions and recommendations can be learned based on
correlations computed from a given matrix of rat-
ings. The most popular correlation measure is the
Pearson correlation coefficient, which corresponds to
an inner product between normalized rating vectors.
For instance, if applied to correlate users, one can
define the so-called z-scores, by computing the user-

specific mean p(u) and variances o(u) and setting
() —p(u)

o(u) -
are observed one needs to specify how to deal with
missing values. We consider two ad hoc strategies for
doing this: mean imputation and pairwise deletion.
In the first case, unobserved values are identified with
the mean value, i.e. their z-score is zero. One can then
simply define a kernel via

z(u,z) = However, since not all ratings

Ky (u,u') = % Zz(u, z)-z(u,). (2)

In the second case, one computes the correlation be-
tween two users only from the subset of items that have
been rated by both. If we use X (u,u’) C X to denote
those intersections, then one can define a correlation
matrix via

Clu,u’) = 2(u,) - 2(u’,), (3)

1
[X (u, w')] 2

zeX (u,u’)

and C(u,u’) = 0 for X(u,u’) = . The main differ-
ence between (2) and (3) is the normalization. Notice
that (3) deviates somewhat from the standard use of
Pearson correlation in that mean and variance are es-
timated over the set of all ratings of user u and not
just over subsets X (u,u') (Resnick et al., 1994).

While conceptually less preferable, (2) has the advan-
tage to lead to positive semi-definite correlation matri-
ces and hence can be directly used as a kernel. How-
ever, as shown in the following paragraph, the symme-
try of C in (3) is sufficient to use it as the generator
for a kernel. Finally, note that a similar kernel K§
can be defined over items by interchanging the role of
users and item in the above derivation.

2.3.4. QUADRATIC CORRELATION KERNELS

There are two disadvantages of the above correlation
kernel. First of all, it is not possible to use the stan-
dard pairwise deletion, because this may result in an
improper (i.e. not positive semi-definite) correlation

matrix C'. Second, correlations between users that
have very few items in common are often unreliable
and corresponding entries of C may be noisy. One
way to remedy these two problems is to define a kernel
matrix by taking the square of the correlation matrix,
K = C?. Notice that K9 is positive semi-definite,
since C' is symmetric. Intuitively, K" measures user
similarity in terms of how similar two users are cor-
related with other users. Again, a similar kernel K§
can be derived for items.

2.3.5. COMBINING KERNELS

The above kernels can be combined by first additively
combining kernel functions into a single kernel,

Ko=K“ + K 4 K 4 K, (4)

where x € {U, X}. Different kernels may also be scaled
by appropriate scaling factors. Then the joint kernel
is obtained as the tensor product K = Ky ® Kx,

K((u,x), (v, 2") = Ky(u,v')Kx(x,2"). (5)

Finally, we would like to stress that the joint kernel
is perfectly symmetric in users and items. However,
by making specific (asymmetric) choices with respect
to the kernels Ky and Kx one can derive data rep-
resentations used in previous work. In particular, the
choice of Ky = K} orthogonalizes representations for
different users, which implies that predictions for u
and v’ # u are governed by different weights in the
weight vector w. In this case, the weight vector can be
thought of as a stacked version of these user-specific
weights w = (wy,)ueu-

Lemma 2. Define K = K} @ Kx with Kx(z,2') =
(O(x), ®(x")) then there is a partition w = (Wy)ueu
such that F(u,z;w) = (wy, ®(x)).

Obviously, there will be no generalization across users
in this case. A similar observation holds for Kx = K }?.

3. Perceptron Algorithm
3.1. Design Goals

While most previous machine learning approaches de-
couple the learning problems associated with each
user, our approach leads to a joint problem which cou-
ples learning across different users. In order to avoid
an undue increase in complexity compared to other
methods, we have investigated the use of a perceptron-
like training algorithm, which has advantages due to
its on-line nature (e.g. early stopping, fast re-training,
small memory footprint).

Moreover we have identified two additional design
goals. We would like to work with multi-level response

Algorithm 1 JRank: joint kernel perceptron ranking.

1: input: number of iterations, training set of ratings
2: a(u,z) = 0 for all training pairs (u,z,)
3: fors=1,....,k—1do 0, =0; 0, = 0
4: for a fixed number of iterations do
5. for all training ratings (u,x,r) do
6: 7= f(u,z;,0) from (1)
T if 7 > r then
8: alu,z) = a(u,z) + (r — 7)
9: for s=r,..., 7 —1dof, —60,+1
10: else if 7 < r then
11: a(u,z) = a(u,x) + (r — 7)
12: fors=7,...,r—1dofs—0s;—1
13: end if
14: end for
15: end for

16: output: parameters o and 6

variables on an ordinal scale, since this is appropriate
for most applications. This means that we consider
the total order among ratings, but avoid interpreting
the rating as an absolute numeric value. The resulting
problem is well-known as ordinal regression. Secondly,
since we want to use implicit data representations via
kernel functions, it is mandatory to work in a dual
representation which only makes use of inner products
between (joint) feature vectors. Putting all three as-
pects (on-line, ordinal, kernel) together, we propose to
generalize the perceptron ranking algorithm of (Cram-
mer & Singer, 2002) as described in the sequel.

3.2. Joint Perceptron Ranking (JRank)

The generalization of perceptron learning to ordinal re-
gression has been called perceptron ranking or PRank
(Crammer & Singer, 2002). Here we use basically
the same algorithm, with the key difference that the
prediction problems for different users are coupled
through the use of joint kernel functions. Moreover,
in our model the thresholds that define the binning
of the F-values are shared by all users. Similarly to
the dual-form perceptron learning algorithm for binary
classification, we introduce parameters «(u, z) for ev-
ery training observation (u,z). The resulting algo-
rithm is described in Algorithm 1. Updates occur if
the predicted rating of an example (u,z) is incorrect
(line 7 or 10). In w space, the updates are performed
in direction of ¥(u,z) with a step size given by the
(difference) between true and predicted rating. Notice
that f is defined in terms of F', which is computed as

Flu,z;0) = Z a2 VK ((u,z), (u',2")). (6)

(w2

Convergence proofs under suitable separability condi-
tions and a mistake bound analysis can be found in
(Crammer & Singer, 2002). Also, it is straightfor-
ward to verify that JRank reduces to binary percep-
tron learning when k£ = 2. In our experiments, we
have actually used a more aggressive margin-sensitive
update rule, which also updates if no sufficient margin
is obtained, i.e. for (u,x,r) if (w, ¥(u,x)) —O,—1 <7
or 6, — (w, ¥(u,z)) < v for some fixed constant v > 0.

4. Related Work

Clearly, we are not the first ones to point out poten-
tial benefits of combining collaborative and content-
based filtering techniques. The most popular family
of methods are hybrid in nature. In the Fab system
(Balabanovic & Shoham, 1997), content analysis is em-
ployed to generate user profiles from Web page ratings.
The concept of filterbots was introduced in (Sarwar
et al., 1998) to refer to fictive users (bots) who gen-
erate ratings based on content. This approach was
further extended in (Good et al., 1999) by including
various user-specific filterbots (Claypool et al., 1999)
propose a modular approach where independent pre-
dictions are computed by separate content filtering or
collaborative filtering modules. (Melville et al., 2002)
uses content-based predictors (naive Bayes) to impute
missing values and create pseudo-user profiles.

A second family of approaches treat user rating pre-
diction as a machine learning problem, where the pre-
diction function is learned from labeled examples. In
(Basu et al., 1998) this philosophy was implemented by
constructing set-valued features that contain either a
set of users who like a specific movie or a set of movies
which are liked by a particular user. In addition, con-
tent features and hybrid features are defined and used
as the input representation for a rule induction sys-
tem. Similarly, the approaches of (Billsus & Pazzani,
1998) and (Crammer & Singer, 2002) described above
can directly incorporate item features, if available.

5. Experiments
5.1. Data Sets and Experimental Setup

To evaluate the approach outlined above we use the
EachMovie! data set that consists of 72,916 users and
2,811,983 recorded ratings on 1,628 different movies.
We have scaled each rating to be on a zero to five
star scale. The Internet Movie Database? was used
to collect item attributes relating to genre, cast, crew,

Lcourtesy of Digital Equipment Corporation

Zhttp://www.imdb.com

User features Mean average error | Mean zero-one error | Expected rank utility
K| K K K" | PRank JRank PRank JRank PRank JRank
) 1.122 0.959 0.651 0.648 0.721 0.750
o 1.322 1.110 0.682 0.684 0.698 0.722
) 1.115 0.989 0.650 0.654 0.719 0.745
o 1.121 0.991 0.651 0.654 0.721 0.745
) o 1.353 1.010 0.688 0.659 0.696 0.745
o) 1.222 0.958 0.667 0.646 0.707 0.752
)) 1.227 0.956 0.668 0.646 0.708 0.753
o) 1.356 1.017 0.689 0.661 0.693 0.742
o o 1.353 1.019 0.688 0.662 0.696 0.740
o) 1.221 0.978 0.666 0.651 0.707 0.748
) o) 1.380 0.993 0.691 0.655 0.692 0.746
) o) 1.381 0.994 0.691 0.656 0.692 0.746
o) o 1.284 0.961 0.676 0.647 0.702 0.751
o) o 1.380 1.001 0.691 0.657 0.692 0.744
) o)) 1.402 0.991 0.695 0.655 0.688 0.747

Table 1. Different combinations of user features tested with item correlations. Results are averaged over 100 trials with

100 training users, 2000 input users, and 800 training items.

g |y
>)

=
N
Mean zero-one error
o
3

Mean average error

-

N

5 10 15 20 0 5 10 15 20
Number of iterations Number of iterations

o
=)
o
2
Y

o
@

e
3
a

/_’—_—d—\ Pearson

PRank (All features)
—— JRank (All features)

Mean expected rank utility
o
3

o
o
o

o
=Y

5 10 15 20
Number of iterations

Figure 1. Convergence of JRank and PRank using all fea-
tures for both users and items. Plots show averages over
100 trials with 1000 input users, 100 training users, and
800 training/input items.

country, language, and keywords of a movie. The plot
synopsis was utilized to generate a tf-idf representa-
tion. We also used the (often incomplete) demographic
information about users in EachMovie about gender,
age, and residence (zip-code, first two digits used). All
multivariate attributes were encoded using a standard
orthogonal (binary) feature representation.

The randomized generation of training and test data
has been conducted as follows. First, we have elimi-
nated users with incomplete attributes and with fewer
than 10 ratings, leaving a total of 22,488 out of the
initial 72,916 users. Items without ratings or with no
valid attributes have also been removed; 1,613 out of
the 1,628 items were retained. Second, we have ran-

domly subsampled rows and columns of the rating ma-
trix to produce a submatrix of user-item pairs. Third,
we randomly divide the selected items into training
and test items. In order to compute correlation ma-
trices, we also make use of the users and items that
are not part of the selected submatrix. Hence, these
ratings only enter on the input side and do not con-
tribute as training instances. The reported results are
averaged over multiple trials of this procedure.

We have evaluated the JRank algorithm using vari-
ous combinations of kernels. To show the competitive-
ness of our approach, we also compare JRank with a
standard collaborative filtering algorithm based on the
Pearson correlation coefficient (Resnick et al., 1994)
and with single user PRank. Unless otherwise speci-
fied, JRank and PRank are trained in random order
for a maximum of 5 iterations with v set to 1.

5.2. Evaluation Metrics

We have utilized three evaluation metrics which quan-
tify the accuracy of predicted ratings R = (1, ..., 7y)
with respect to true ratings R = (ry,...7p).

e Mean average error - The mean average error is
Jjust the average deviation of the predicted rating
from the actual rating E(R, R) = |R — R||1/n.

o Mean zero-one test error - The zero-one error
gives an error of 1 to every incorrect prediction

E(R,R) = |{i : ri # 7:}|/n.

o FExpected rank utility - In many applications, such
as generating recommendations, correctly ranking
items may be more important than predicting rat-
ings for individual items. In particular, one would

Item features Mean average error | Mean zero-one error | Expected rank utility
KY K¥ K K3'| PRank JRank PRank JRank PRank JRank
) 1.139 1.269 0.696 0.739 0.559 0.559
o 1.120 1.040 0.666 0.695 0.671 0.685
) 1.119 0.998 0.649 0.657 0.721 0.743
o 0.961 0.985 0.630 0.653 0.731 0.732
) o 1.121 1.042 0.666 0.696 0.671 0.685
o) 1.114 0.997 0.649 0.657 0.722 0.744
)) 0.938 0.947 0.642 0.654 0.722 0.728
o o 1.139 0.930 0.650 0.648 0.721 0.756
o o 1.100 1.013 0.659 0.687 0.685 0.701
o) 1.086 0.958 0.638 0.643 0.734 0.758
) o) 1.139 0.931 0.650 0.648 0.720 0.756
) o) 1.100 1.016 0.659 0.689 0.685 0.700
o) o 1.084 0.952 0.639 0.643 0.733 0.758
o) o 1.128 0.918 0.645 0.644 0.725 0.761
) o)) 1.130 0.921 0.646 0.646 0.723 0.762

Table 2. Different combinations of item features with user ratings. Results are averaged over 100 trials with 100 training

users, 2000 input users, and 800 training items.

Mean average error
PR e
Noow

Mean zero-one error
o o o
o ° 3 3
® N N B

-
o o
> o
R &

EKE\B\E" 0.62

0 500 1000 1500 2000 0 500 1000 1500 2000
Number of input users Number of input users

W —

o
©

o
3
*

o o o
N
N

—6- Pearson

— User identity, Item correlations
—— User attributes, Item correlations
—& All features

N
N

o o
® N

Mean expected rank utility

o o
o
>

o
3
R

o

500 1000 1500 2000
Number of input users

Figure 2. Prediction accuracy for different values of in-
put users and for various combinations of features, aver-
aged over 100 trials with 100 training users and 800 train-
ing/input items.

like to put more emphasis on the quality of the top
ranked items. Thus, we have utilized the metric
proposed in (Breese et al., 1998), which measures
the expected utility of a proposed ranking by scor-
ing items in a recommendation list from top to
bottom using an exponential discounting factor.

5.3. Results and Discussion

In the evaluation of JRank we have focused on the
following aspects: (i) Prediction accuracy for different
combinations of features on the user and item side.
(ii) Convergence behavior and speed. (iii) Prediction
accuracy as a function of the size of the training data
and the amount of data used to compute the kernel

matrices.

5.3.1. FEATURES

Since one of the main advantages of our approach is
that it allows for user features to be utilized when
learning the prediction function, we sought to inves-
tigate the relative performance of different sets of user
features. Each of the 15 possible combinations of user
kernels were evaluated using only correlation features
on the item side. The results in Table 1 indicate that
user identity features are helpful, which is not surpris-
ing, since they enable user-specific learning and the
set of training and test users is the same. In addition,
learning on the user-item pairs with just the user iden-
tity features does better in all evaluation metrics than
PRank. The coupled learning of JRank almost always
has better performance than PRank. The user corre-
lation and quadratic correlation features are also very
useful when enough collaborative information is pro-
vided, though when combined together they provide
only a minor additional benefit. The least predictive
features are the user attributes, which had to be ex-
pected because of the low quality of that data. The
best results are obtained by combining user identity
with the correlation and/or quadratic correlation.

We have repeated the investigation for different com-
binations of item features. As the results in Table 2
show, using the item identity feature does not help,
which is an artifact of our splitting scheme since test
items are not part of the training set. The correlation
and quadratic correlation features are again the most
useful ones. The item attributes seem to have more
predictive value than the user attributes and including
them is beneficial. The best combination of features

Mean average error
= I =
N S w

Mean zero—one error
°
2
N

-

0.66

0.64

o 50 100 150 200 0 50 100 150 200
Number of train users Number of train users

o
3
@

o
N
=)

—6- Pearson

—+ User identity, Item correlations
—— User attributes, Item correlations
—7— All but attributes

—&- All features

o
3
N

=)
N
N

o
3

Mean expected rank utility

o
@
@

0 50 100 150 200
Number of train users

Figure 3. Performance for different number of training
users. The number of trials was chosen so that: number of
training users X number of trials = 10, 000.

for items is correlation and quadratic correlation fea-
tures, though adding the identity and attributes might
also be useful when not as much collaborative informa-
tion is given as input.

5.3.2. CONVERGENCE

We have investigated how the performance of the algo-
rithm is affected by the number of performed training
iterations. The results are summarized in Figure 1.
After three iterations JRank has better performance
than Pearson according to all three evaluation metrics
and it always does better than PRank. The perfor-
mance for JRank improves according to all three met-
rics up to five iterations. Training for more iterations
causes the mean zero-one error to worsen again while
the mean average error and expected rank utility con-
tinue to improve slightly.

5.3.3. VARYING INPUT CONDITIONS

We have varied the number of users or items used in
training and the number of users used to compute the
kernel matrices. Figure 2 shows that the availability
of a larger user base yields improvements for all three
performance measures. Using attributes can reduce
the performance loss on a small user base.

Next we have varied the number of training users while
fixing the number of input users at 1000. This allows
us to study how the accuracy changes when different
numbers of users are coupled together during train-
ing. The results shown in Figure 3 show an advan-
tage for using more training users under most con-
ditions. While the improvements are larger initially,
after grouping together about 50 to 100 training users

0.76

0.74

0.72

o
o ©
® N

Mean average error
al
o
@
>

Mean zero-one error

0.64

. 0.62
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of train and input items Number of train and input items

—6- Pearson
— User identity, Item correlations

e
3

—— User attributes, Item correlations
—7— All but attributes
—&— All features

o
kY
@

Mean expected rank utility

0 200 400 600 800 1000
Number of train and input items

Figure 4. Varying the number of training and input items.

the improvements start to flatten out. In a similar
manner, we can keep the number of training users fixed
at 100 and vary the number of items used for both
training and input (which are equal), as shown in Fig-
ure 4. Clearly, using more items, and thus ratings, in
training improves the prediction accuracy.

Overall, providing more collaborative information and
more training users or items improves the performance
of JRank according to all three metrics. Table 3 shows
the result of running Pearson and 10 iterations of
JRank for 100 trials with 100 training users, 5000 in-
put users, and 1000 training/input users. The results
indicate that JRank with all features (or all features
except the (weak) attributes) consistently outperforms
the Pearson correlation method. JRank has a longer
running time than training a separate function for each
user, however it is an on-line algorithm that can be in-
crementally updated and methods such as caching can
significantly reduce the running time.

6. Conclusion

We have presented a novel learning architecture for the
problem of predicting user ratings based on the idea
of defining kernel functions over user-item pairs. The
proposed JRank algorithm yields substantial improve-
ment over state-of-the art methods and can systemat-
ically integrate any information available. Moreover,
we have seen that the coupling of learning problems
in JRank with a a shared set of thresholds and using
hybrid information is advantageous compared to learn-
ing a separate PRank function for each user. The joint
learning setting seems to help with degenerate situa-
tions when few training ratings are given for a single
user, e.g. when no rating for a particular response level
are available. While the user and item attributes are

Mean average error

Mean zero-one error

Ky Ki Ky K" Ky KY K K¢
o o o o o
o o o o o o
o o o o o o o o
Pearson

0.880 0.621 0.791
0.877 0.621 0.793
0.882 0.624 0.792
0.936 0.673 0.736

Table 3. Results for 100 training users, 5000 input users, and 1000 training/input items.

not very helpful when a large database of ratings is
given, they may prove to be more useful in cold-start
situations, for example, when new users or items enter
the system for which little or no rating information is
available.

Acknowledgments

This work was sponsored by an NSF-ITR grant, award
number I11S-0312401.

References

Balabanovic, M., & Shoham, Y. (1997). Fab: Content-
based, collaborative recommendation. Communica-
tions of the ACM, 40, 66-72.

Basu, C., Hirsh, H., & Cohen, W. W. (1998). Rec-
ommendation as classification: Using social and
content-based information in recommendation. Pro-
ceedings of the 15th National Conference on Artifi-
cial Intelligence (pp. 714-720).

Billsus, D., & Pazzani, M. J. (1998). Learning collab-
orative information filters. Proceedings of the 15th
International Conference on Machine Learning (pp.

46-54).

Breese, J. S., Heckerman, D., & Kardie, C. (1998).
Empiricial analysis of predictive algorithms for col-
laborative filtering. Proceedings of the 14th Confer-

ence on Uncertainty in Artificial Intelligence (pp.
43-52).

Claypool, M., Gokhale, A., Miranda, T., Murnikov, P.,
Netes, D., & Sartin, M. (1999). Combining content-
based and collaborative filters in an online news-
paper. Proceedings of ACM SIGIR Workshop on
Recommender Systems.

Crammer, K., & Singer, Y. (2002). Pranking with
ranking. Advances in Neural Information Processing
Systems 14 (pp. 641-647).

Goldberg, D., Nichols, D., Oki, B., & Terry, D. (1992).
Using collabrorative filtering to weave an informa-
tion tapestry. Communications of the ACM, 35, 61—
70.

Good, N., Schafer, J. B., Konstan, J. A., Borchers,
A., Sarwar, B. M., Herlocker, J. L., & Riedl, J.

(1999). Combining collaborative filtering with per-
sonal agents for better recommendations. Proceed-
ings of the 16th National Conference on Artificial
Intelligence (pp. 439-446).

Lang, K. (1995). NewsWeeder: Learning to filter net-
news. Proceedings of the 12th International Confer-
ence on Machine Learning (pp. 331-339).

Melville, P., Mooney, R. J., & Nagarajan, R. (2002).
Content-boosted collaborative filtering for improved
recommendations. Proceedings of the 18th National
Conference on Artificial Intelligence (pp. 187-192).

Mooney, R. J., & Roy, L. (2000). Content-based book
recommending using learning for text categoriza-
tion. Proceedings of the 5th ACM Conference on
Digital Libraries (pp. 195-204).

Pazzani, M., Muramatsu, J., & Billsus, D. (1996).
Syskill & Webert: Identifying interesting web sites.
Proceedings of the 13th National Conference on Ar-
tificial Intelligence (pp. 54-61).

Resnick, P., Tacovou, N., Suchak, M., Bergstrom, P., &
Riedl, J. (1994). GroupLens: An open architecture
for collaborative filtering of netnews. Proceedings of
the ACM Conference on Computer Supported Coop-
erative Work (pp. 175-186).

Sarwar, B. M., Karypis, G., Konstan, J. A., & Reidl,
J. (2001). Item-based collaborative filtering recom-
mendation algorithms. Proceedings of the 10th In-
ternational World Wide Web Conference (pp. 285—
295).

Sarwar, B. M., Konstan, J. A., Borchers, A., Her-
locker, J. L., Miller, B. N., & Riedl, J. (1998). Using
filtering agents to improve prediction quality in the
GroupLens research collaborative filtering system.
Proceedings of the ACM Conference on Computer
Supported Cooperative Work (pp. 345-354).

Scholkopf, B., & Smola, A. J. (2001). Learning with
kernels. Cambridge, MA: MIT Press.

Shardanand, U., & Maes, P. (1995). Social infor-
mation filtering: Algorithms for automating ‘word
of mouth’. Human Factors in Computing Systems

ACM CHI (pp. 210-217).

Expected rank utility

