
Sequential Skewing: An Improved Skewing Algorithm

Soumya Ray sray@cs.wisc.edu

Department of Computer Sciences and Department of Biostatistics and Medical Informatics, University of Wis-
consin, Madison, WI 53706

David Page page@biostat.wisc.edu

Department of Biostatistics and Medical Informatics and Department of Computer Sciences, University of Wis-
consin, Madison, WI 53706

Abstract

This paper extends previous work on the
Skewing algorithm, a promising approach
that allows greedy decision tree induction
algorithms to handle problematic functions
such as parity functions with a lower run-time
penalty than Lookahead. A deficiency of the
previously proposed algorithm is its inability
to scale up to high dimensional problems. In
this paper, we describe a modified algorithm
that scales better with increasing numbers
of variables. We present experiments with
randomly generated Boolean functions that
evaluate the algorithm’s response to increas-
ing dimensions. We also evaluate the algo-
rithm on a challenging real world biomedical
problem, that of SH3 domain binding. Our
results indicate that our algorithm almost al-
ways outperforms an information gain-based
decision tree learner.

1. Introduction

In machine learning, greedy algorithms are often em-
ployed to learn concepts. These algorithms make a se-
quence of choices, such as choosing a feature to split on
when building a Decision Tree, or choosing an edge to
add to a Bayesian Network. Greedy algorithms com-
mit to choices that are locally optimal according to
functions such as Information Gain (Quinlan, 1997), in
the case of decision trees, or the Bayesian Information
Criterion, in the case of Bayesian Networks. Greedy
learning strategies have several advantages. They are
computationally efficient, simple to implement and of-

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the authors.

ten work well in practice.

While greedy learning strategies have many advan-
tages, they are known to suffer from myopia. This
refers to the fact that these algorithms are easily mis-
led when the locally optimal choice may not be globally
optimal. For example, consider a dataset described by
a hundred Boolean features, where the target is a par-
ity function over two of those features. A greedy deci-
sion tree learner such as ID3 using Information Gain
will be very unlikely to choose the correct pair of fea-
tures, because every feature at the first choice point is
equally likely to be locally optimal, even though only
two of them are globally optimal choices.

The myopia of greedy learning strategies such as top-
down decision tree learners has traditionally been al-
leviated with the use of Lookahead (Norton, 1989). k-
step Lookahead performs an exhaustive search over the
next k choices that can be made by the learning algo-
rithm, and makes the best choice over this sequence.
This approach has the disadvantage that the size of the
search space is exponential in k, and the search has to
be repeated at each choice point. Therefore, k-step
Lookahead is computationally expensive and only fea-
sible for very small values of k. However, if the value
of a choice is apparent only after more than k steps,
it is possible that the choice will not be considered by
the learning algorithm. Therefore, we would actually
like k to be large.

Our previous work introduced an approach called
Skewing (Page & Ray, 2003), which attempts to al-
leviate the myopia of greedy tree learners by changing
the split selection function. We investigated “hard”
Boolean functions. In such target functions, no vari-
able has gain even given a complete data set (one copy
of each possible example), or given an arbitrarily large
sample drawn according to the test distribution. The
Skewing approach relies on the following observation.



Hard functions are only hard for some distributions. If
we are able to obtain data drawn according to a differ-
ent distribution, or skew the data we have, hard func-
tions can become easier to learn. Thus, given a large
enough dataset, if the “skewed” distribution differs sig-
nificantly from the original, it is possible to isolate the
relevant features from the irrelevant ones, even when
the target function is hard. Unlike Lookahead, the
Skewing algorithm introduced in that previous work
incurs only a constant runtime penalty over a standard
tree learner, such as ID3 using Information Gain. This
approach was applied to learn decision trees and signif-
icant benefits were observed in accuracy compared to
ID3 using Gain when learning hard Boolean functions.
The approach was able to learn hard functions of sev-
eral variables given a modest amount of data. And
on easier functions, skewing did not harm ID3 perfor-
mance; consequently, on randomly generated function,
skewing resulted in a modest but consistent improve-
ment in performance.

The Skewing approach outlined above, however, has
the flaw that its accuracy does not scale well with the
number of features, when the training set size is held
constant. In experiments on data sets from the UCI
repository (Blake & Merz, 1998), Skewing provided
only very small gains over the ID3 algorithm using In-
formation Gain (Quinlan, 1983). We hypothesize that
the difficulty with large numbers of features might be
one reason why the Skewing approach was unable to
discover hard targets in the UCI data sets, if in fact
there were such hard targets. In the present work, we
give an improved Skewing algorithm that scales much
better with the number of features, when the train-
ing set size is held constant. We empirically evaluate
this algorithm, comparing it the previously proposed
Skewing algorithm and to ID3 with Information Gain,
on both randomly generated Boolean functions and
a real-world data set. Our results indicate that our
algorithm (i) has accuracy that scales well with the
number of features, (ii) incurs a runtime penalty that
is linear in the number of variables, and hence runs
in time quadratic in the number of attributes (but is
still much less computationally expensive than Looka-
head), and (iii) is able to effectively learn hard func-
tions over several variables with a modest amount of
training data.

In the following sections, we first review previous work
on the Skewing Algorithm. Next, we describe the new
Sequential Skewing algorithm. Then we present an em-
pirical evaluation of the algorithms over synthetic and
real-world data, and discuss the results.

Algorithm 1 Skewing Algorithm

Input: A matrix D of m data points over n Boolean
variables, gain fraction G, number of trials k,
skew 1

2
< s < 1

Output: A variable xi to split on, or −1 if no variable
with sufficient gain could be found

1: N ⇐ Entropy of class variable in D

2: v ⇐ Variable with max gain in D

3: g ⇐ Gain of v in D

4: if g < G × N then

5: v ⇐ −1
6: for i = 1 to n do

7: F (i) ⇐ 0
{begin skewing loop}

8: for t = 1 to k do

9: for i = 1 to n do

10: V (i) ⇐ Randomly chosen favored value for xi

11: for e = 1 to m do

12: W (e) = 1
13: for i = 1 to n do

14: if t > 1 then

15: if D(e, i) = V (i) then

16: W (e) ⇐ W (e) × s

17: else

18: W (e) ⇐ W (e) × (1 − s)
19: N ⇐ Entropy of class variable in D under W

20: for i = 1 to n do

21: E ⇐ Gain of xi under distribution W

22: if E ≥ G × N then

23: F (i) ⇐ F (i) + 1
{end skewing loop}

24: j ⇐ arg max F (i)
25: if F (j) > 0 then

26: return xj

27: else

28: return v

2. Skewing Algorithm

The motivation for the Skewing procedure (Page &
Ray, 2003) lies in the following observation. Consider
a dataset over a hundred features, x1, . . . , x100, where
the target function is two variable exclusive-or, say
x99 ⊕x100. This task is clearly very difficult for a top-
down greedy decision tree learner. Now, suppose the
data are distributed differently from uniform. For ex-
ample, we might suppose all variables are independent
as in the uniform distribution, but every variable has
probability only 1

4
of taking the value 0. In this case,

with a large enough sample we expect that the class
distribution among examples with x99 = 0 will differ
significantly from the class distribution among exam-
ples with x99 = 1. On the other hand, every variable



other than x99 or x100 is likely to have nearly zero
gain. Hence unless a highly unlikely sample is drawn,
a greedy tree learning algorithm will choose to split on
either x99 or x100, at which point the remainder of the
learning task is trivial.

The desired effect of the skewing procedure is that the
skewed data set should exhibit significantly different
frequencies from the original data set. To achieve this,
the frequency distributions for variables are changed
by attaching various weights to the existing examples
in a way discussed below. Our previous work ob-
served that, in contrast to skewing, other methods of
reweighting (such as boosting) or resampling (such as
bagging) did not make hard functions easier to learn
(Page & Ray, 2003).

The Skewing procedure initializes the weight of ev-
ery example to 1. For each variable xi, 1 ≤ i ≤ n,
a “favored setting” vi, either 0 or 1, is randomly, uni-
formly (independently for each variable) selected. The
weight of each example in which xi takes the value vi

is changed by multiplying it by a constant. At the
end of this process, it is likely that each variable has a
significantly different weighted frequency distribution
than previously, as desired. But this is not guaran-
teed, because an unfortunate choice of settings could
lead to the new frequency distribution being identical
to the old one. In addition to this potential difficulty,
a second difficulty is that this process can magnify
idiosyncrasies in the original data by assigning some
data point with an extremely high weight.

The difficulties in the preceding paragraph occur with
some data sets combined with some choices of favored
settings. Therefore, instead of using skewing to create
only a second distribution, k additional distributions,
for small k, are created. The k different distributions
come about from randomly (without replacement) se-
lecting k different combinations of favored settings for
the n variables according to a uniform distribution.

Each of the n variables is scored for each of the k + 1
weightings of the data (the original data set plus k

reweighted versions of this data set). A gain threshold

is set, and the variable that exceeds the gain threshold
for the greatest number of weightings is selected as the
split variable. The selected variable is highly likely to
be correct in the sense that it is actually a part of
the target function. Yet, in contrast to lookahead, the
run-time has been increased only by a small constant.

Pseudocode for this algorithm is shown in Algorithm 1.
It is applicable to binary-valued variables only, with
nominal or continuous variables converted to multiple
binary ones. The algorithm takes a parameter 1

2
<

s < 1. The weight of an example is multiplied by s

if xi takes preferred value vi in the example, and is
multiplied by 1 − s otherwise. Hence, if s is 2

3
, the

weight of every example in which xi takes value vi is
effectively doubled relative to examples in which xi

does not take value vi.

In our previous work, Algorithm 1 was empirically
evaluated using Boolean targets of 2 to 6 variables,
where the examples were described by 30 variables
(the remaining variables were irrelevant to the target).
This algorithm was at least as accurate as ID3 over
a large, randomly sampled set of Boolean functions,
and showed significantly improved accuracy when the
sample was drawn from the set of “hard”, parity-like
Boolean functions. Nevertheless, on UCI data sets
skewing provided only insignificant improvements in
accuracy over ID3. While the experiments with UCI
datasets demonstrated that Skewing does not hurt
ID3’s performance, other than a small constant cost in
run-time, they raise the question of why Skewing does
not help significantly on these data sets. Of course, in
these data sets one does not know if the target con-
cept is “hard” or not. But in continued work with
Algorithm 1, we have observed empirically that the
algorithm suffers from the shortcoming that it does
not scale well with increasing numbers of irrelevant
variables. Since some of the UCI data sets have large
numbers of features but only a few hundred examples,
we hypothesize that this might be one reason why sig-
nificant improvements in accuracy over ID3 were not
observed in the previous work, even if hard functions
were present. The remainder of the paper attempts to
address this issue.

3. Sequential Skewing

In this section, we describe the modifications we make
to Algorithm 1 in order to improve its scaling proper-
ties. As before, we wish the skewed data set to exhibit
significantly different frequency distributions from the
original. In Algorithm 1, we achieved this by selecting
a preferred value for every variable and multiplying
the assigned weights. This procedure works well when
the example sizes are small. However, when exam-
ples are represented by a hundred or more variables,
it leads to two problems. First, on any given itera-
tion, it is possible for some data point to get a weight
value that is much larger than the others by chance.
This can lead to overfitting. Second, underflow prob-
lems arise when the example sizes are large. We can
avoid these problems if, instead of skewing all the vari-
ables simultaneously, we skew one variable at a time.
We call this approach “Sequential Skewing”. In this



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Gain

F
ra

ct
io

n 
of

 V
ar

ia
bl

es

Figure 1. Histogram of gain of relevant variables for a sam-
ple of 4-variable hard Boolean targets, when a relevant vari-
able is skewed. Examples are represented by 6 variables,
two being irrelevant.

approach, we perform multiple iterations of skewing.
In each iteration, we choose a single variable, xi, and
choose a preferred value for it. Each example is now
reweighted according to the value taken by xi in the
example. We then calculate the gain of each variable
under the new frequency distribution. The variable to
split on is the variable that shows maximum gain over
all the different skewed distributions.

In Figure 1, we provide empirical justification for
the claim that Sequential Skewing works as expected.
Here, we look at complete data sets over 6-variable
examples labeled according to several random, 4-
variable, parity-like Boolean targets (the other two
variables are irrelevant). For such data sets, no vari-
able has gain a priori. In the figure, we show a his-
togram of the fraction of relevant variables that have
a given gain when a variable relevant to the target is
skewed. We observe that, after the sequential skewing
process, there are variables that have nonzero gain,
and one among these variables would be chosen by
the sequential skewing algorithm as the split variable.
Note that given a complete data set, no variable that
is irrelevant to the target will have gain when either a
relevant or an irrelevant variable is skewed.

When the function we are trying to learn is already
“easy” according to the original data distribution, and
we do not have a complete data set (class assignments
for every possible variable combination), the Sequen-
tial Skewing approach can sometimes choose the wrong
variable. This happens when skewing a single variable
causes a variable that does not appear in the target
to show high gain by chance. We resolve this issue
by inserting a gain threshold. If any variable clears
this threshold in the unweighted data set, we pick that

Algorithm 2 Sequential Skewing Algorithm

Input: A matrix D of m data points over n Boolean
variables, gain threshold f , skew 1

2
< s < 1

Output: A variable xi to split on, or −1 if no variable
with sufficient gain could be found

1: N ⇐ Entropy of class variable in D

2: v ⇐ Variable with min entropy split in D

3: e ⇐ Entropy of v in D

4: if e < f × N then

5: return v

6: if e = N then

7: v ⇐ −1
8: for i = 1 to n do

9: G(i) ⇐ 0
10: maxgain ⇐ 0

{begin skewing loop}
11: for t = 1 to n do

12: V ⇐ Randomly chosen favored value for xt

13: for e = 1 to m do

14: if D(e, t) = V then

15: W (e) ⇐ s

16: else

17: W (e) ⇐ (1 − s)
18: N ⇐ Entropy of class variable in D under W

19: for i = 1 to n do

20: E ⇐ Gain of xi under distribution W

21: if E
N

> maxgain then

22: maxgain ⇐ E
N

23: maxgainvar ⇐ xi

24: if E
N

> G(i) then

25: G(i) ⇐ E
N

{end skewing loop}
26: if maxgain = 0 then

27: return v

28: return maxgainvar

variable without entering the skewing procedure.

Unlike Algorithm 1, the number of iterations needed
by Sequential Skewing depends on the number of vari-
ables. Thus, the time taken by this algorithm to find
a split variable is O(mn2), where m is the number of
examples and n is the number of variables. This is less
efficient than Algorithm 1 and Information Gain, both
of which are O(mn), but much more efficient than k-

step Lookahead, which is O(mn2
k
−1).

4. Experiments

In this section, we present experiments comparing the
performance of ID3 using the Information Gain split
selection function, the Skewing Algorithm described in
Algorithm 1, and the Sequential Skewing Algorithm.



We present experiments using synthetic data, followed
by results on a challenging biomedical classification
task, that of SH3 domain binding. For these experi-
ments, the parameters input to the Sequential Skew-
ing Algorithm were s = 3

4
and f = 0.85. The pa-

rameters input to Algorithm 1 were s = 3

4
, G = 0.05

and k = 30. These parameters were chosen before
the experiments were performed and were held con-
stant across all experiments. Improved results could
perhaps be obtained by tuning these parameters.

Sequential skewing will perform n skews, where n is
the number of variables in the examples. Because ordi-
nary skewing always performs k skews (with k = 30 in
our experiments), it is possible that sequential skewing
will outperform ordinary skewing when n > 30 merely
because it is permitted more skews. To control for this
difference in the following experiments, when n > 30,
we also run a variant of ordinary skewing that per-
forms n skews rather than k = 30 skews. We call this
variant “Skewing with n trials”.

4.1. Synthetic Data Experiments

In the first set of experiments with synthetic data, ex-
amples are generated according to a uniform distri-
bution over 30, 100 and 200 binary variables. Target
functions are drawn by randomly generating DNF for-
mulae over subsets of 6 of these variables. The num-
ber of terms in each target is drawn randomly, uni-
formly from between 1 and 25, and each term is drawn
by choosing for each variable whether it will appear
negated, unnegated, or not at all (all with equal prob-
abilities). All targets are ensured to be satisfiable. Ex-
amples that satisfy the target are labeled positive, and
all other examples are labeled negative. Figures 2 to 4
show learning curves for different example sizes. Each
point on each curve is the average over 100 runs, each
with a different target and with a different sample of
the specified sample size. The second set of experi-
ments is identical to the first, except that the target
functions were drawn from the set of functions that
can be described entirely by variable co-references, or
equalities among variables, together with the standard
logical connectives and, or, and not. For such func-
tions, even given a complete data set, no variable has
gain. Figures 5 to 7 show learning curves for differ-
ent example sizes for this experiment. In each figure,
“Gain” represents the results for ID3 with Informa-
tion Gain, “Seq. Skewing” represents Algorithm 2,
“Skewing” represents Algorithm 1, and “Skewing(n)”
represents Skewing with n trials.

We find that the figures fit our expectations. We ob-
serve that on random Boolean functions, Sequential

50

60

70

80

90

100

200 400 600 800 1000

A
cc

ur
ac

y 
(%

)

Sample Size

Seq. Skewing
Skewing

Gain

Figure 2. Random Targets, 30-variable examples

50

60

70

80

90

100

200 400 600 800 1000

A
cc

ur
ac

y 
(%

)

Sample Size

Seq. Skewing
Skewing(n)

Skewing
Gain

Figure 3. Random Targets, 100-variable examples

50

60

70

80

90

100

200 400 600 800 1000

A
cc

ur
ac

y 
(%

)

Sample Size

Seq. Skewing
Skewing(n)

Skewing
Gain

Figure 4. Random Targets, 200-variable examples



50

60

70

80

90

100

200 400 600 800 1000

A
cc

ur
ac

y 
(%

)

Sample Size

Seq. Skewing
Skewing

Gain

Figure 5. Hard Targets, 30-variable examples

50

60

70

80

90

100

200 400 600 800 1000

A
cc

ur
ac

y 
(%

)

Sample Size

Seq. Skewing
Skewing(n)

Skewing
Gain

Figure 6. Hard Targets, 100-variable examples

50

60

70

80

90

100

200 400 600 800 1000

A
cc

ur
ac

y 
(%

)

Sample Size

Seq. Skewing
Skewing

Skewing(n)
Gain

Figure 7. Hard Targets, 200-variable examples

Skewing is at least as accurate as ID3 using Informa-
tion Gain, over a range of example sizes. We further
observe that the accuracy of Algorithm 1 on a sample
of random Boolean functions drops sharply once ex-
amples with many features are considered. This may
be because of two reasons: first, the gain threshold
parameter, f , of Algorithm 2 was not used in Algo-
rithm 1, which may render this algorithm more sus-
ceptible to overfitting. Secondly, as was observed in
initial Skewing work, there is a “crossover point” in
terms of training set size below which Algorithm 1
performs worse than ID3 with Gain. This crossover
point can be seen in Figure 2, at a sample size of 400
examples. We believe that the sample size at which
the crossover occurs increases not only as a function
of the target size, but also the example size. These is-
sues contribute to the poor accuracy of Algorithm 1 as
the example size increases. While permitting n trials
does raise the performance of Algorithm 1, neverthe-
less Skewing with n trials does not perform as well as
Sequential Skewing.

When the sample is drawn from problematic functions,
we find that the Sequential Skewing algorithm outper-
forms ID3 by a large margin. We further observe that
while the Skewing algorithm described in Algorithm 1
shows good accuracy when the examples are described
by 30 variables, its improvement disappears quickly
as the size of the examples increases. Even allowing
the algorithm n iterations of Skewing does not sig-
nificantly improve its accuracy in these experiments.
However, the Sequential Skewing approach continues
to show high accuracy in this situation. Sequential
Skewing achieves the highest accuracy overall in each
experiment, and retains high accuracy as the example
size increases and the training set size is held constant.

4.2. SH3 Domain Binding Experiments

Here, we present results from a biomedical classi-
fication task, that of SH3 binding. A major part
of working out the “circuitry” of an organism—
the metabolic, signaling and regulatory pathways—
is identifying which proteins interact with one an-
other. Such protein-protein interactions, much like
drug-receptor bindings, are based primarily on smaller
electrostatic interactions (opposite charges attracting)
and hydrophobic interactions (two fatty, or “water-
fearing,” groups of atoms interacting to keep each
other from their environment).

Many of the important protein-protein interactions oc-
cur when a short segment of one protein, 6-10 amino
acid residues long , here called the “ligand,” interacts
with a “domain” on the other protein. A domain is



Experiment Information Gain Skewing Sequential Skewing
Acc Wted Acc Size Acc Wted Acc Size Acc Wted Acc Size

Replicated/Pruned 65.15 47.16 46.75 67.84 49.62 46.14 74.47 58.84 34.88
Replicated/Unpruned 80.6 48.8 89.71 83.5 51.9 95.2 82.3 51.6 80.14

Unreplicated/Unpruned 80.2 51.3 104 83.2 50.58 116 82.26 51.43 93.25

Figure 8. Experiment Results on the SH3 binding problem. For each splitting criterion, we show the average over 8 folds
of percentage Accuracy(Acc) and Weighted Accuracy (Wted Acc), and tree size in nodes. The accuracy figures in bold
show a statistically significant improvement over Information Gain at p = 0.06 according to a two-tailed paired t-test.

a longer segment (30-60 residues long), variations of
which appear in a variety of proteins. Therefore, one
way to predict protein-protein interactions is to pre-
dict what possible ligands will bind to which specific
instantiations, or variations, of a given domain. Here,
we investigate the binding properties of SH3 domains,
which are implicated in cancer. Ligand-domain bind-
ing is a process where we may expect hard functions
to arise naturally. For instance, binding may occur if
some atoms on the domain have charges of the oppo-
site sign to those of some atoms on the ligand, and will
not occur if the charges are of the same sign.

We investigate SH3 domains from 8 proteins using
data generated by an experiment performed by Sparks
et al (1996). From their work, we obtain, for each SH3
domain, a complete list of ligands that bind to that
domain. We then generate a sample of non-binding
ligands from peptides (short sequences of amino acid
residues) of length 8. These peptides are based on
the same position-dependent frequency distribution as
the positives, and therefore can be considered to be
“near misses”. Next, we align the domains and lo-
cate the positions in the domains which are believed
to be important for binding, following Brannetti et al
(2000). We construct each data point by juxtaposing
these domain positions from each protein with a pro-
posed ligand, and label it according to whether the
ligand binds to the domain. Thus, each data point is
a sequence of 33 amino acids of which the first 25 rep-
resent amino acids in the domain, and the last 8 rep-
resent amino acids in the ligand. Each amino acid is
then translated into a 7-digit binary code, where each
digit represents a feature of that amino acid, such as
charge or hydrophobicity. The final data set consists
of 897 data points, 97 positive, each data point being
described by 231 binary-valued features. This is thus a
fairly high-dimensional data set. The added difficulty
is that the classes are substantially imbalanced.

In our experiments, we perform 8-fold cross validation
as follows. For each fold, all the examples correspond-
ing to one protein constitute the test set. The exam-
ples corresponding to the other 7 proteins form the

training set.1 Thus, on average, each training set has
785 examples, 85 of which are positive.

We compare ID3 with Information Gain as the split-
ting criterion against Skewing and Sequential Skew-
ing in our experiments. We report the average ac-
curacy, weighted accuracy and the tree size for the
three methods for each experiment. Weighted accu-
racy is defined as the average of the true positive and
true negative rates (this is equivalent to a misclassifi-
cation cost that is inversely proportional to the ratio of
classes). Since the domain is imbalanced, it is easy to
achieve high accuracy by always predicting “negative”.
Thus, weighted accuracy may be the most informative
measure of performance on this data set.

We perform three experiments on this domain. In our
first experiment, we replicate the positive examples
so that there are equal numbers of positives and neg-
atives in the training set. Further, we hold aside a
prune set of 150 examples that is used to greedily post-
prune the trees generated by all algorithms. However,
holding aside a prune set exacerbates the data spar-
sity problem.Therefore, in our second experiment, we
replicate the positives, but do not hold out a prune
set, or prune the trees produced. Finally, we inves-
tigate the effect of learning the trees without either
replicating the positives or pruning. We present the
results of these experiments in Figure 8.

In our experiments, Sequential Skewing consistently
outperforms Information Gain. Because of the small
size of the data set and the fact that we could only
carry out 8-fold cross validation (this was dictated by
the number of proteins for which we had data), we ob-
tained statistical significance only for some of our re-
sults, according to a two-tailed paired t-test. The sig-
nificant values are shown in bold in Figure 8. We note
that weighted accuracy is the most important mea-
sure on this data set, and Sequential Skewing achieves

1Much as with protein secondary structure predic-
tion, performing ordinary cross-validation gives overly op-
timistic results. To estimate performance on a new protein,
one should instead perform “leave-one-protein-out” cross-
validation as done here.



the best weighted accuracy overall. Further, we ob-
serve that not only does Sequential Skewing have bet-
ter accuracy and weighted accuracy in general, it also
constructs smaller trees on average. We believe there-
fore that these trees may generalize better to other do-
mains, and provide more insight about the SH3 bind-
ing problem. Overall, Sequential Skewing with repli-
cated positives and pruned trees provides the highest
weighted accuracy on this task.

We also ran C5.0 (www.rulequest.com) on this data,
with a differential cost file that stipulated a false neg-
ative misclassification penalty of 10 units. This algo-
rithm achieved a average weighted accuracy of 46.52%,
with an average tree size of 76.5 nodes. Comparing
this to the Replicated/Pruned experiment, we observe
that C5.0 is outperformed by Sequential skewing. The
accuracy difference is significant at p = 0.02 according
to a two-tailed paired t-test.

5. Conclusion

Functions that are difficult for greedy decision tree
learners, including parity-like functions, appear in the
real world. For example, in biomedical domains, cases
exist where expression of a gene or survival of an organ-
ism may be an exclusive-or function of the expression
of other genes or groups of genes; a particular exam-
ple was described in our earlier work (Page & Ray,
2003). Ligand-receptor binding, whether for protein-
protein interactions as discussed in the present paper
or for drug-target interactions, is frequently controlled
by hard functions of two or more variables. Skewing
is a promising approach that efficiently addresses such
hard functions. Previous work on skewing introduced
an algorithm that did not scale sufficiently well to hun-
dreds of features, with only hundreds of examples, to
be broadly applicable to real-world problems. This
paper has taken a major step forward in making skew-
ing a practical approach to learning hard functions in
real-world domains. Sequential skewing significantly
improves the ability of skewing to handle large num-
bers (hundreds) of features with reasonable numbers
(again, hundreds) of examples, as demonstrated in the
present paper with both real and synthetic data. Se-
quential skewing increases the time complexity by a
factor of n, the number of features, over ordinary skew-
ing, but the resulting time complexity remains lower
than that of even two-step lookahead.

Much room remains for research into skewing. We are
looking at ways to improve the scaling behavior further
to handle thousands of features with only hundreds of
data points. This is desirable, for example, for working
with gene expression data. Another interesting direc-

tion is to use Skewing as a feature selection algorithm.
Since the full data set is used to select features, and
Skewing can capture relevant features that are infor-
mative in conjunction with other features, it should
outperform Gain-based selection methods. However,
the disadvantage is that variables are evaluated in a
context which may be different from their context in
the target function, so their utility may not be appar-
ent. We are currently evaluating this approach. Be-
sides this, we are also investigating approaches that in-
corporate Skewing directly into greedy learners other
than decision tree learners. Other important future
directions are extending this approach to handle real-
valued features, and multi-class or real-valued predic-
tion problems. Besides the algorithmic issues, much
work remains to be done in exploring the biomedical
application domains in which we expect functions that
are hard for greedy learners to arise.

Acknowledgements

The first author was supported by NIH Grant 1R01
LM07050-01 and by grants from the University of Wis-
consin Graduate School. The second author was sup-
ported by NSF grant 9987841 and by grants from the
University of Wisconsin Graduate School and Medi-
cal School. The authors thank Brian Kay and Beverly
Seavey for discussions on the task of SH3 binding.

References

Blake, C., & Merz, C. (1998). UCI repository of machine
learning databases.

Brannetti, B., Via, A., Cestra, G., Cesareni, G., & Helmer-
Citterich, M. (2000). SH3-SPOT: an algorithm to pre-
dict preferred ligands to different members of the SH3
gene family. Journal of Molecular Biology, 298, 313–28.

Norton, S. (1989). Generating better decision trees. IJCAI-
89 (pp. 800–805). Los Altos, CA: Kaufmann.

Page, D., & Ray, S. (2003). Skewing: An efficient alterna-
tive to lookahead for decision tree induction. Proceedings
of the 18th International Joint Conference on Artificial
Intelligence. Morgan Kaufmann, San Francisco, CA.

Quinlan, J. (1983). Learning efficient classification pro-
cedures and their application to chess end games. In
R. Michalski, J. Carbonell and T. Mitchell (Eds.), Ma-
chine learning i, chapter 15, 463–482. Morgan Kaufmann
Publishers.

Quinlan, J. (1997). C4.5: Programs for machine learning.
Kaufmann.

Sparks, A., Rider, J., Hoffman, N., Fowlkes, D., Quillam,
L., & Kay, B. (1996). Distinct ligand preferences of
Src homology 3 domains from Src, Yes, Abl, Cortactin,
p53bp2, PLCγ, Crk, and Grb2. Proceedings of the Na-
tional Academy of Sciences, 93, 1540–4.


