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Abstract

In this paper we extend previous results pro-
viding a theoretical analysis of a new Monte
Carlo ensemble classifier. The framework al-
lows us to characterize the conditions un-
der which the ensemble approach can be ex-
pected to outperform the single hypothesis
classifier. Moreover, we provide a closed form
expression for the distribution of the true en-
semble accuracy, as well as of its mean and
variance. We then exploit this result in order
to analyze the expected error behavior in a
particularly interesting case.

1. Introduction

Ensemble learning has been brought to the attention
of the Machine Learning (ML) community by Schapire
(1990), who proved that the notions of strong learn-
ability and weak learnability (Kearns & Valiant, 1988)
are equivalent. Since then, ensemble learning has been
actively investigated (Freund & Schapire, 1996b; Fre-
und & Schapire, 1996a; Breiman, 1996; Jiang, 2001;
Kuncheva & Whitaker, 2003).

From the empirical point of view, ensemble learn-
ing shows an amazing effectiveness and robustness to
overfitting. In the attempt to explain this appealing
behavior, many theoretical and empirical works have
tried to relate ensemble learning to results from other
fields (Freund & Schapire, 1996a; Collins et al., 2000;
Rätsch et al., 2000; Schapire, 1999).

On the other hand, Monte Carlo theory is well estab-
lished and its results have been applied in several fields,
notably Physics and Engineering. According to Bras-
sard and Bratley (1988), a Monte Carlo algorithm is
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a probabilistic algorithm that, applied to an instance
of a class of problems, always provides an answer, but
this answer may occasionally be incorrect. In Section
2 more details will be provided.

Following previous work (Esposito & Saitta, 2003), we
propose to use a Monte Carlo algorithm to design a
new ensemble learner. The aim of this proposal is not
to obtain a “superior” algorithm, but to exploit it to
enlighten some basic phenomena underlying ensemble
classification. The approach suggests a way to look at
inductive learning from an entirely new perspective. In
fact, it turns out that, in order to understand ensemble
classification, the error rate of the hypotheses belong-
ing to the hypothesis space are not so important as
one may expect, but rather their collective behavior on
each single example is what matters. Moreover, Monte
Carlo theory acts as a unifying framework, where pa-
rameters introduced independently in ensemble learn-
ing can be easily embedded, and their role explained
in a principled way. For instance, the concept of “mar-
gin” has a precise counterpart in this theory, as well
as the notion of “order correctness” (Breiman, 1996).
Also a decomposition of the error into a bias and a
variance part naturally arises. Finally, a closed-form,
exact probability distribution of the “true” ensemble
accuracy can be computed, as well as its mean and
variance.

Even though the paper is biased toward theoretical un-
derstanding, results on two Irvine datasets are briefly
described, in order to show the agreement between the-
oretical predictions and experimental findings.

2. Monte Carlo Algorithms

For the sake of self-consistency we report here the basic
concepts about Monte Carlo algorithms provided by
Brassard and Bratley (1988).

Let S be a class of problems, Y a finite set of an-
swers for the problems in S, and ω : S → 2Y be a



function that maps each problem into the set of its
correct answers. A stochastic algorithm MC mapping
S into Y is said to be a Monte Carlo algorithm if it
always terminates returning an answer y, which may
occasionally be incorrect. A Monte Carlo algorithm is
consistent if it never outputs two distinct correct an-
swers for the same problem s; it is said to be p-correct
if the probability that it gives a correct answer to a
problem instance s is at least p, independently of the
specific problem instance s considered. The advantage
of the algorithm is defined as γ = p− 0.5.

Let MC be a consistent, p-correct Monte Carlo algo-
rithm; let the advantage γ of the algorithm be strictly
positive, and let us iterate T times the algorithm over
a fixed problem instance s. The number t of times that
the algorithm is correct on s is easily recognized to fol-
low a binomial distribution with parameters p and T ,
i.e., the probability that exactly t successes (correct
answers) occur is given by:

Pr {t} ≥
(

T

t

)
pt(1− p)T−t

where equality holds for those instances for which the
probability of success is exactly p. Let us take the ma-
jority answer as the answer of the iterative procedure.
Then, this answer will be correct when MC is correct
more than half the times:

π = Pr
{

t >
T

2

}
=

T∑
t=bT

2 c+1

(
T

t

)
pt(1− p)T−t (1)

The above relation can be used to prove the main the-
orem in Monte Carlo theory, which states that: “The
advantage of a p-correct Monte Carlo algorithm MC
can be amplified as much as desired by increasing the
number of iterations, provided that (a) MC is consis-
tent, (b) p > 1

2 , and (c) different runs of MC on s are
independent”.

3. Monte Carlo Ensemble Learning

In this section we present a new ensemble learning
algorithm based on Monte Carlo theory. As already
mentioned, the interest of the algorithm is not in its
alleged superiority over existing ones (even though it
shows some nice properties) but in its ability to shed
a light on some basic phenomena underlying ensemble
classification.

3.1. Complete Information

As we are not interested, for the moment, in the de-
tails of a specific weak learner, let us abstract away the

Table 1. Theoretical setting

ϕ1 ϕj ϕR

q1 qj qR

x1 d1 p1 (x1) pj (x1) pR (x1) p(x1)

. . .

xk dk p1 (xk) pj (xk) pR (xk) p(xk)

. . .

xN dN p1 (xN ) pj (xN ) pR (xN ) p(xN )

r1 rj rR r

learning process, and consider as given by an oracle
a set Φ of hypotheses and the associated probability
distribution q. In a real learning setting, Φ can be
thought of as the set of all learnable hypotheses, de-
rived beforehand starting from all the allowed learning
sets. Then, learning can be simulated by extracting
with replacement from Φ hypotheses according to q.
In the following we will also consider as given the whole
set X of examples, together with its probability distri-
bution d. This is clearly an ideal case in which com-
plete information is provided to the “learner”. All the
computed entities (accuracy, margin, . . . ) are hence
the “true” ones. Let us represent the available infor-
mation by means of the matrix M reported in Table 1.
In M, each row corresponds to an example xk in X ,
and each column to a (extensional) hypothesis ϕj in
Φ.

Given a hypothesis ϕj and an example xk, the classi-
fication ϕj(xk) ∈ Y = {+1,−1}, assigned by ϕj to xk

may be either correct or incorrect. Let pj (xk) ∈ {1, 0}
be the probability that hypothesis ϕj correctly classi-
fies example xk, i.e., that ϕj(xk) = ω(xk), being ω
the target concept1. Let p(xk) be the average of such
probabilities for xk:

p(xk) =
R∑

j=1

qjpj (xk) (2)

Moreover, let us take the average of the pj (xk)’s over
the columns; we obtain, for each ϕj , its “true” accu-
racy, rj :

rj =
N∑

k=1

dkpj (xk) (3)

The rj values and the p(xk) values are not totally in-
dependent, as the following relation holds:

r =
N∑

k=1

R∑
j=1

dkqjpj (xk) =
N∑

k=1

dkp(xk) =
R∑

j=1

qjrj (4)

1The assumption pj (xk) ∈ {0, 1} implies that the Bayes
error is zero.



In order to build up an ensemble learner with a Monte
Carlo algorithm, we note that the set S of problems
coincides with X ; in fact, each example xk ∈ X is a
problem to solve. Moreover, Y = {+1,−1} is the set
of answers.

Let MC (xk|Φ,q) be a Monte Carlo algorithm that ex-
tracts a hypothesis ϕj from Φ accordingly to q, and
returns ϕj(xk) = y (xk) ∈ Y. As p(xk) is the probabil-
ity of extracting a hypothesis ϕj that correctly classify
xk, MC is p(xk)-correct on xk. Let γk = p(xk)− 1

2 be
the advantage of MC on xk. If we make T calls to
MC and take the majority answer, we can amplify its
advantage as mentioned earlier.

Let us now analyze the three required conditions. The
consistency condition is verified, as long as the Bayes
error is zero, because, in this case, xk has only one cor-
rect label and hence MC cannot be but consistent. We
will assume this condition to be true in the rest of the
paper. The second condition (p > 0.5) can be checked
for by computing p(xk). The last condition (hypothe-
sis independence) is true as long as we draw indepen-
dently the hypotheses from Φ with replacement.

Given Φ and X , we can classify the examples in two
ways: selection (single hypothesis classification) or
combination (ensemble classification). By considering
the selection strategy, let us define:

τ∞ = max
1≤j≤R

rj

Notice that τ∞ = 1 when the set Φ contains the true
concept ω. Then, the best selection strategy consists
in choosing a hypothesis ϕj∗(·) that has rj∗ = τ∞.

The ensemble classification strategy consists in tak-
ing a strict majority voting of all the ϕj ’s on xk. As
p(xk) > 1

2 iff the number of 1’s in the row is greater
than the number of 0’s, the examples correctly clas-
sified in the limit are all and only those that have
p(xk) > 1

2 . Let XA = {xk|p(xk) > 1
2} be the subset of

X containing the amplifiable examples, i.e., those that
have a probability of being correctly classified greater
than 1

2 , and let |XA| = S. The asymptotic accuracy of
the ensemble classifier will be:

ρ∞ = ‖XA‖ =
S∑

k=1

dk (5)

Let us notice that (5) gives a pessimistic value of ρ∞,
because all the xk’s with p(xk) = 1

2 are considered mis-
classified. Actually, they could be classified according
to the strategy of assigning to them the majority class,
reducing thus the number of those which are actually
misclassified.

It is clear that the case of availability of complete in-
formation is never realized in practice. However, its
analysis helps understanding more realistic learning
setting, and identifies the important parameters to be
estimated.

When all the hypotheses are at hand, the function
H∞(x) produced by the ensemble classifier, is the fol-
lowing one:

H∞(x) =
R∑

j=1

qjϕj(x)

The class assigned to x will be y (x) = sign (H∞(x)).
We can prove the following theorems:

Theorem 1 For each x, the product H∞(x) · ω(x) is
greater, equal or less than 0 iff p(x) is greater, equal
or less than 1

2 , respectively.

Theorem 2 The asymptotic accuracy ρ∞ is always
included in the interval : 2r − 1 ≤ ρ∞ < 2r.

In the literature it is often said that bagging (or, in
general, ensemble learning) works only when the com-
bined hypotheses have singularly an accuracy greater
than 1

2 . Actually, this is not exactly the case. In
fact, even with single hypotheses with accuracy less
then 1

2 it is possible to obtain higher accuracies by
Monte Carlo amplification. However, in order to reach
ρ∞ = 1, the value of r must be at least 1

2 . Even in this
case, some of the combined hypotheses are allowed to
have an accuracy less than 1

2 , without hindering am-
plification, provided that r does not go below 1

2 .

The learning problem is completely determined when
the p(xk)’s and the rj ’s are given. As a consequence,
also r is known. Extreme (and interesting) cases occur
when either r ≈ 1 or r ≈ 1

2 . In order to investigate the
relations between single hypothesis classification and
ensemble classification, we can analyze the relations
between ρ∞ and τ∞, which are graphically illustrated
in Figure 1.

According to (4), if r ≈ 1, most p(xk)’s and most rj ’s
must be close to 1. Then, τ∞ and ρ∞ are close to 1 as
well. This situation corresponds to point A in Figure
1. In this case, all hypotheses are extremely good, the
Monte Carlo ensemble learner cannot do better than
single hypothesis classification.

More in general, the distributions of the p(xk)’s and
the rj ’s can assume, among others, any of the forms
reported in Figure 2. Hence, there are, in principle,
16 extreme cases. Let us analyze some of the combi-
nations.

When both the p(xk)’s and the rj ’s follow distribu-
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Figure 1. Relationships between the values of ρ∞ and τ∞
and the suitability of using ensemble classification rather
than single hypothesis classification.

(a) (b)

(c) (d)

Figure 2. Extreme probability distributions of a stochas-
tic variable Z with mean close to 1/2. The values of the
abscissas correspond to the ordinal indices of the values,
whereas the ordinates are the actual values of Z, decreas-
ing with increasing i (from left to right). The notation α+

(α−) means that the considered value is a little more (less)
than α.

tion (2(a)), the best single hypothesis has accuracy
τ∞ ≈ 1

2 . On the other hand, by definition, XA = X
and, hence, the ensemble classifier has accuracy ρ∞ =
1. This is the ideal case for ensemble learning: with
hypotheses only a little better than random guess a
perfect ensemble classifier is obtained. This situation
corresponds to point B in Figure 1.

When both the p(xk)’s and the rj ’s follow distribu-
tion (2(b)), we recognize a bad case for ensemble learn-
ing: with base hypotheses with accuracy close to ran-
dom guess, the ensemble classifier is always wrong.
This situation corresponds to point C in Figure 1.

When both the p(xk)’s and the rj ’s follow distribu-
tion (2(c)), we have an useless case for ensemble learn-
ing: it cannot achieve an accuracy greater than that of
the best single hypothesis. This situation corresponds
to point D in Figure 1.

By combining in various ways the distribution of the
p(xk)’s with the distribution of the rj ’s, also points F,
G and H in Figure 1 can be reached. Actually, any
point inside the polygon GFABG is reachable. For
example, point F is reached when the distribution of
the rj ’s is of the type (2(d)), i.e., it includes the correct
concept, with accuracy 1. If the distribution of the
p(xk)’s is of type (2(b)), again XA = ∅, and, hence,
the ensemble classifier has accuracy ρ∞ = 0. Point
F represents the worst possible condition for ensemble
learning.

As it must be ρ∞ < 2r ≤ 2τ∞, the straight line GB
corresponds to a boundary that cannot be crossed. On
this line, ρ∞ = 2τ∞, and ensemble classification is con-
venient. Segment DB is good for ensemble classifica-
tion, as ρ∞ > τ∞ on this segment. On the contrary,
segment DC is a bad one, because ρ∞ < τ∞. Other
bad segments are DE, EF, and AF, whereas a good
one is BA. Finally, the diagonal GA is simply useless
as ρ∞ = τ∞ on it.

Another important consequence can be drawn from
the analysis. Even though the distributions of the
p(xk)’s and rj ’s are related by condition (4), this con-
dition is very weak. Usually Machine Learning takes
into consideration the distribution of the rj ’s. How-
ever, the analysis clearly show that the knowledge of
the rj ’s does not tell anything definite about the like-
lihood of success of the ensemble classifier: the impor-
tant distribution is the one of the p(xk)’s, and the same
distribution of the rj ’s can correspond to very differ-
ent distributions of the p(xk)’s. Hence, even if we fix
beforehand the rj , the Monte Carlo process may turn
out to be useful, useless or harmful.

Standard machine learning techniques consider T



columns in the matrix M, and then combine the clas-
sifications of the examples given by the single ϕj ’s
(1 ≤ j ≤ T ). This approach has the drawback
that classifications of different examples are not in-
dependent, (they are performed by the same set of
T hypotheses) and Monte Carlo theory predicts that
amplification may be problematic. On the contrary,
the same theory tells how amplification should be ob-
tained: for each occurrence of each example xk, T
hypotheses must be extracted from Φ (or learned)
and combined through the majority voting mechanism.
Then, the set of T hypotheses used for one example
occurrence is in general different from the set used for
another one. It is clear that we need, to perform this
type of classification on a set of M examples, to ex-
tract (learn) a number MT of hypotheses, which is the
number required by the leave-one-out method.

Notice that, in classical approaches to Machine Learn-
ing (even with ensemble methods), an example is al-
ways classified in the same way (when Bayes error is
equal to zero). With Monte Carlo ensemble classifica-
tion, each occurrence of the same example is indepen-
dent of the others, and the learning/classification cycle
is repeated as if the example never appeared before.
Counterintuitive as it might be, the independence in
the occurrences of the same example generates a much
smaller variance of the accuracy than with rigidly cou-
pled classifications. This results can be proved theo-
retically and has been experimentally verified.

Let us now recall that, for binary classification, the
margin µ(xk) of an example xk is defined as the dif-
ference between the score of the correct class and the
score of the incorrect one (Schapire et al., 1998).

Theorem 3 (Esposito and Saitta (2003)) For any xk

it holds: µ(xk) = 2p(xk)−1, where µ(xk) is the “true”
margin of xk.

Theorem 3 allows a clear explanation of the role of the
margin. Increasing the margin of xk means to increase
the Monte Carlo probability of a correct classification
of xk.

Moreover, Breiman has introduced the concept of
”order-correct” classifier, and then uses this concept
to prove that ”If a predictor is order-correct for most
inputs, then aggregation can transform it into a nearly
optimal predictor” (Breiman, 1996, p.131).

In the settings assumed here, the following theorem
holds.

Theorem 4 A weak learner WL is order-correct on
example xk, iff p(xk) > 0.5.

Hence, the p(xk) values appear to play the most funda-
mental role. As it is evident by now, it is the most im-
portant parameter defined by Monte Carlo theory and,
at the same time, it can be related naturally to two
among the most fruitful concepts in ensemble learn-
ing.

3.2. Partial Information

As mentioned before, the case of complete information
is a theoretical one. In this section we take a step
toward a more realistic setting, by assuming that not
all the information is available from the onset.

More precisely, we want to use only T hypotheses ex-
tracted from Φ accordingly to distribution q instead of
the whole Φ. Then, building up an ensemble classifier
consists in using the following algorithm:

AmpMC (xk|Φ, T )

Extract ϕj1 , ϕj2 . . . , ϕjT
from Φ according

to q

return the majority answer of
ϕj1(xk) . . . ϕjT

(xk) on xk.

AmpMC returns a hypothesis which performs, for each
occurrence of xk, a sequence of Bernoulli trials, each
with probability of success p(xk), where “success” is
a correct classification of xk by any ϕj . AmpMC cor-
rectly classifies xk if more than half of the T extracted
hypotheses are correct on it. In the following we will
use HT (xk) to denote the classifier learned by AmpMC
on xk.

Definition 1 Let πT (xk) be the probability that
HT (xk) correctly classifies xk.

As the number of successes produced by AmpMC is
a stochastic variable governed by a Binomial distribu-
tion, the probability πT (xk) of observing more than
T/2 successes can be computed using formula (1). The
relation allows us to prove the following theorem:

Theorem 5 When the number of trials T goes to in-
finity, the probability πT (xk) tends to 1 if p(xk) > 1

2 ,
tends to 0 if p(xk) < 1

2 , and tends to 1
2 if p(xk) = 1

2 .

The preceding theorem allows us to assert that, for
each xk ∈ XA, limT→∞ πT (xk) = 1. For each element
xk of XA its πT (xk) value increases with T and tends
to 1, whereas, for each element xk not belonging to XA

the corresponding πT (xk) value decreases and tends
to 0 (or to 1

2 when p(xk) = 1
2 ). Moreover, the greater

p(xk) > 1
2 , the faster the increase of πT (xk), whereas



the lower p(xk) < 1
2 , the faster the decrease of πT (xk).

Hence, all examples in XA will be correctly classified
in the long run, i.e.:

∀xk ∈ XA : lim
T→∞

Pr{HT (xk) = ω(xk)} = 1 (6)

Let ρT be the true accuracy over X when an ensemble
classifier HT (·) is used. We would like to compute the
probability distribution of ρT . In order to do so, let
us notice that, as previously explained, a Monte Carlo
algorithm AmpMC may label in different ways a single
example if it is presented to it more than once. Let us
consider a set X ′ of examples to be classified and let
X ′ contain each example xk ∈ X a number of times
nk = N′ · dk, with nk integer and

∑N
k=1 nk = N′.

Let us consider the indicator function Ik ≡
IHT (xk)=ω(xk); the accuracy ρT of HT (·) can be writ-
ten as:

ρT =
1
N′

N′∑
j=1

Ij (7)

Ij is a stochastic variable that takes value 1 with
probability πT (xk), and value 0 with probability [1−
πT (xk)]. From (7) we can compute directly the ex-
pected value of ρT :

E [ρT ] =
N′∑

j=1

πT (xj)
N′

=
N∑

k=1

nk

N′
πT (xk)

=
N∑

k=1

dkπT (xk) (8)

Analogously, it can be shown that:

VAR [ρT ] =
1
N′

N∑
k=1

dkπT (xk) (1− πT (xk)) (9)

Let us notice that, for T = 1, E [ρ1] = r.

From Theorem 5, we obtain:

limT→∞ E [ρT ] = ρ∞ limT→∞VAR [ρT ] = 0

The variable ρT is an asymptotically correct, consis-
tent, and efficient estimator of ρ∞.

If we consider, instead, the natural setting in which
each xk (however repeated) is always classified in the
same way, we obtain the following results for the ac-
curacy ρ∗T =

∑N
k=1 dkIk:

E [ρ∗T ] =
N∑

k=1

dkπT (xk) = E [ρT ]

VAR [ρ∗T ] =
N∑

k=1

d2
kπT (xk) (1− πT (xk)) ≥ VAR [ρT ]
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Figure 3. Mean accuracy and variance plot for Bagging
(dotted lines) and the Monte Carlo Ensemble Learner
(solid lines) on the Ionosphere dataset. The experiment
used a weak learner which acquires highly correlated hy-
potheses (namely it induces a sphere centered on a positive
example).

The above equations take into account the dependen-
cies introduced by duplicate examples. We notice,
nevertheless, that the issue is more general. In real
situations, the primary source of dependencies among
the classifications of examples is the weak learner it-
self. The analysis, in this case, is more difficult and
is probably uninteresting for the present discussion.
However, for the sake of illustration, we report in Fig-
ure 3 the plot of the mean and the variance of the ac-
curacies of the two algorithms in a situation in which
the phenomenon is evident. The weak learner used in
the experiment produces highly dependent hypotheses
(in particular most hypotheses agree on the classifi-
cation of negative examples). The experiment is also
interesting because it shows a situation, based on real
data, in which ensemble learning is harmful. In par-
ticular, rj > 0.5 for all j, while the ensemble classifier
error tends to a value close to 0.4.

The probability distribution of ρT is reported in Fig-
ure 4, where θT (ξ) = Pr{ρT = ξ}, and Xv is a subset
of X ′ of cardinality v.This probability function can be
approximated by N (E [ρT ] ,VAR [ρT ]). Empirical ev-
idence shows (and the central limit theorem predicts)
that for (N & 100) the normal approximation is prac-
tically indistinguishable from θT (ξ).

An interesting consequence of formula (8) is that we
can theoretically evaluate E [ρT ] versus T . A partic-
ularly interesting case is when the expected accuracy
starts below ρ∞, reaches a point above it and then ap-
proaches the limit accuracy from above (see Figure 5).
This phenomenon does not appear to have been no-
ticed before, even though some theoretical motivations
have been suggested for Adaboost (Jiang, 2001).

Knowing ρ∞, we know that the ensemble classifier will
approach ρ∞ for increasing T , starting from r. If
ρ∞ < r, actually ensemble classification harms accu-



θT (ξ) =
min{N′ξ,(1−ρ∞)N′}∑

v=max{0,N′ξ−N′ρ∞}

 ∑
X ′

N′ξ−N′ρ∞+v
⊆X ′A

 ∏
xk∈X ′N′ξ−N′ρ∞+v

[1− πT (xk)]
∏

xk∈X ′A−X ′N′ξ−N′ρ∞+v

πT (xk)

 +

∑
X ′v⊆X ′−X ′A

 ∏
xk∈X ′v

πT (xk)
∏

xk∈X ′−X ′A−X ′v

[1− πT (xk)]


(10)

Figure 4. Definition of θT (ξ) = Pr{ρT = ξ} = Pr{ρT = mT
N′ }, where mT is the number of correct classifications in N′.

 0.57

 0.58

 0.59

 0.6

 0.61

 0.62

 0.63

 0.64

 0.65

 0.66

 0  10  20  30  40  50  60  70  80  90  100

Figure 5. E [ρT ] versus T , when 60% of the examples have
p(x) = 0.7 and the remaining 40% have p(x) = 0.4.

racy, and single hypothesis selection is certainly bet-
ter. More precisely, let ΦB = {ϕj |rj ≥ ρ∞} and
χ∞ = ‖ΦB‖. The value of χ∞ is the probability that
a single hypothesis with accuracy not less than ρ∞ is
extracted; then we can compute the probability that
within T hypotheses at least one of them is better than
Monte Carlo ensemble classifier:

ηT (ρ∞) = Pr{τT ≥ ρ∞} = 1− b(0, T, χ∞)

We can use the following rough rule to compare selec-
tion versus combination:

If ρ∞ < r, then selection

else if χ∞ = 0 then combination

else choose the strategy that requires the
lowest T value to arrive with high proba-
bility close to or higher than ρ∞.

Of course in practice we do not know ρ∞, χ∞ and
r. However, these are the parameters that have to be
estimated. To this aim, a theory of hypothesis testing
and of point estimation is needed. A discussion can be
found in (Esposito, 2003). Here, we provide, instead,
empirical results on two datasets taken from the Irvine

(a) (b)

(c) (d)

Figure 6. Comparison between Monte Carlo ensemble clas-
sification and single hypothesis extraction. The pictures on
the left report the p(xk) distribution associated to a CART-
like algorithm for the datasets Ionosphere (top most) and
Pima (bottom most). The abscissas report the examples
indexes, the ordinates report p(xk) values. The horizontal
lines show p = 0.5. The pictures on the right reports the
corresponding behavior of the expected error of a Monte
Carlo ensemble learner (dashed line) versus the error of a
single hypothesis extraction algorithm (full line) as T in-
creases.

repository. The results are reported in Figure 6. The
experiments confirm that whether it is convenient to
perform single extraction versus combination depends
on the p(xk) distribution.

4. Discussion

A preliminary analysis of neural network ensembles,
along similar lines as those adopted here, can be found
in Hansen and Salamon (1990). The authors attempt a
theoretical analysis of ensemble classification via ma-
jority voting. Even though some of the formulas re-



ported in their work seem similar, syntactically, to
some appearing in this paper, there is a deep semantic
difference. In fact, their analysis appears to be limited
to a very specific case among the ones presented here,
i.e., the case in which a set of networks produce inde-
pendent errors in such a way that the probability of
being misclassified by majority voting is the same for
each example. According to the analysis reported here,
this case may even be impossible to realize. Moreover,
the Hansen and Salamon suggest that ensemble clas-
sification is always beneficial, which is clearly not the
case.

In this paper we adopt the model suggested by Monte
Carlo algorithms theory (Brassard & Bratley, 1988) to
define a new ensemble classifier. The exploitation of
such a model allowed us to compute interesting quan-
tities about a Monte Carlo Ensemble Learner. The
distinguishing feature of the Monte Carlo ensemble
learner is that it extracts hypotheses at random any
time it needs to classify a new example. This makes it
a very “atypical” classification tool, but it greatly sim-
plifies its analysis without hindering the opportunity
of transferring the results to typical ensemble learners.
For instance, Bagging (Breiman, 1996) is an approx-
imation of such a process (Saitta & Esposito, 2004;
Esposito, 2003).
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