
Efficient Hierarchical MCMC for Policy Search

Malcolm Strens mjstrens@QinetiQ.com

Room G020, A9 Building, QinetiQ, Ively Road, Farnborough, Hampshire, GU14 0LX, UK.

Abstract

Many inference and optimization tasks in ma-
chine learning can be solved by sampling ap-
proaches such as Markov Chain Monte Carlo
(MCMC) and simulated annealing. These
methods can be slow if a single target den-
sity query requires many runs of a simula-
tion (or a complete sweep of a training data
set). We introduce a hierarchy of MCMC
samplers that allow most steps to be taken
in the solution space using only a small sam-
ple of simulation runs (or training examples).
This is shown to accelerate learning in a pol-
icy search optimization task.

1. Introduction

Many tasks in machine learning can be converted into
a sampling problem with a target density π(w) of the
form:

π(w) =
1
Z

exp(f(w))

Typically w is a real-valued vector, for example the
weights of a neural network or parameters in a model.
The exponent f(w) takes on various meanings depend-
ing on the task; it is variously termed the error func-
tion, fitness function, objective function, expected re-
turn, energy or log likelihood depending on the setting.
Nevertheless, it is often formed from a sum over a set
of instances (weighted by some constant K):

f(w) = K

N∑

i=1

fi(w) (1)

This is the special additive structure exploited by our
algorithm. For convenience we will also define p(w) ≡
exp(f(w)) for the unnormalized target density.

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by QinetiQ Ltd.

Policy search is the process of optimizing a control pol-
icy using repeated simulation runs (“trials”). Let the
policy be defined by a set of parameters w; for example
the gains in a conventional control law, or the weights
of a neural network controller. The outcome of each
trial depends on both the state in which the simulation
is started, and stochasticity in the simulator itself. A
single scalar performance measure called the return is
assumed to be obtained at the end of each trial. For
any given policy, many trials may be required to ob-
tain an accurate estimate of the expected return (the
objective for optimization).

A scenario is a particular choice for the initial state
and the random number sequence1 to be used by the
simulation (Ng & Jordan, 2000). Given the choice of
w and a scenario (indexed by i), a simulation trial is
deterministic (repeatable) and yields a return fi(w).
A deterministic objective function for policy search
can be formed by averaging the empirical returns for
a given policy over a large set of scenarios of size N .
Hence f(w) may take the form of equation (1) with
K = 1/N .

Using this estimate for policy evaluation, we can query
p(w) ≡ exp(f(w)) at arbitrary policies w, and a sam-
pling method such as Markov Chain Monte Carlo
(MCMC) can be applied to explore this density. To
achieve optimization rather than sampling, the shape
of the target density can be gradually “sharpened”
during MCMC sampling. This simulated annealing
process (Kirkpatrick et al., 1983), subject to strict con-
ditions, causes the sampling chain to become trapped
at w∗, a global maximum of p(w). The sharpening is
achieved by setting K = 1/(NT) where the temper-
ature T can be gradually reduced to zero during the
sampling process.

Unfortunately, the number of scenarios N represents a
very difficult trade-off between accurate policy eval-
uation and the number of MCMC steps that can
be achieved in a given amount of computation time.

1A random number sequence can be specified as a single
“seed” for a pseudo-random number generator.

We will propose a new algorithm that examines only
O(log N) scenarios to achieve a similar policy improve-
ment as would be achieved using the full N scenarios
in conventional MCMC. It does this by making use of
sequences of steps using inaccurate policy evaluations
(few scenarios) to obtain proposed moves (changes to
w) that are then accepted or rejected using more ac-
curate policy evaluations (more scenarios).

2. Markov Chain Monte Carlo

Markov Chain Monte Carlo is a sequential form of im-
portance sampling. It provides a simple and practical
way to generate samples from a probability density
π(w) that is not available in analytical form, but can
be queried for any policy-state2 w (up to some un-
known normalizing constant). The technique works
by noting that we can construct a Markov chain that
has π(w) as its invariant distribution, and simulating
this chain to obtain a sequence of samples. Consecu-
tive samples from the chain are highly correlated, but
their distribution converges to π(w).

2.1. Metropolis Hastings Rule

Suppose the current policy-state is wt at time step
t, and that the unnormalized target density p(·) can
be queried. A proposal w′ is generated according to
some proposal density P (w′|wt), and p(w′) is evalu-
ated. The Metropolis Hastings rule (MHR) (Hastings,
1970) can then be applied to stochastically accept or
reject the proposal as the new policy-state of the chain:

wt+1 = w′ {u < p(w′)P (wt|w′)
p(wt)P (w′|wt)

}
wt otherwise

where u is drawn uniformly in the range [0, 1].

2.2. MCMC Algorithm

Notation is now introduced to work with subsets of the
complete set of N scenarios. The objective function for
subset j (of size n) is defined as:

fn,j(w) ≡
nj∑

i=nj−(n−1)

fi(w)
nT

where j ≤ N/n. For a simple MCMC implementation
we are concerned only with the special case fN,1(w)
which is identical to f(w); the more general form will
be needed later for defining a hierarchy.

2Although w is just called a state in MCMC terminol-
ogy, we will refer to it as a policy-state to recognize that it
will be used for policy search.

Input: win Current policy-state
Input: n Number of scenarios forming the sum
Input: j Counter
Output: wout Proposed new policy-state

1 w′ ← win + N(0, σ2)
2 δf ← fn,j(w′)− fn,j(win)
3 if accept(δf) then
4 wout ← w′

else
5 wout ← win

end

Algorithm 1: wout ← mcmc step(win, n, j)

A single MCMC step is defined by algorithm 1. Line
1 perturbs the input policy-state (win) by Gaussian
noise (s.d. σ) to obtain a proposal w′. This specific
choice of the proposal density is symmetrical, and so
the inequality used in the MHR reduces to the simple
Metropolis rule (Metropolis et al., 1953):

u <
p(w′)
p(w)

Substituting the quantity of interest, we have:

u <
exp(fn,j(w′))
exp(fn,j(w))

Writing δf ≡ fn,j(w′) − fn,j(w), we implement the
Metropolis rule by defining the stochastic function
accept(δf) to draw a new value of u uniformly from
the range [0, 1], then test the condition u < exp(δf)
(returning true or false accordingly).

mcmc step can be called repeatedly with n = N and
j = 1 to obtain an unbiased chain of samples from the
target density: wout from one call is used as win for
the next. Note that fn,j(·) is assumed to be available
from a procedure call. Each step in this chain requires
N trials. Our hierarchical algorithm will achieve O(N)
such primitive (σ-sized) steps using only O(N log N)
trials. (The complexity analysis assumes some non-
zero lower bound on achieved acceptance rates.)

2.3. Conditions for Unbiased Sampling

The proposal density and acceptance rule together
determine the transition function PT (w′|w) of the
Markov chain. The acceptance rule ensures that π
is a fixed point of the transition function:

π(w′) =
∫

w

π(w)PT (w′|w)dw

However this property is not sufficient to ensure that
samples from the chain will converge to accurately ap-
proximate π. We also require that every policy-state
be reachable in a finite number of steps from every
other policy-state (ergodicity) and there to be no con-
straint on the time phase at which a policy-state can
be reached (aperiodicity). Many proposal densities, in-
cluding additive Gaussian noise, are adequate to meet
these conditions. Asymmetric proposal densities can
also be used if the full MHR is applied. Bounded do-
mains can be accounted for by rejecting proposals that
break the hard constraints.

2.4. Hierarchical formulation of MHR

The Metropolis Hastings rule can be implemented by
calling accept(δf−θ) where the additional “Hastings
correction” term θ ≡ log P (w′|w) − log P (w|w′) ac-
counts for asymmetry in the proposal density. In our
hierarchical formulation, a lower level sampling chain
will be the source of this proposal density. There may
have been a series of steps in obtaining w′ from w,
and so θ becomes a sum of (logged probability ratio)
terms over the lower level steps. The detailed balance
property of each lower-level application of the MHR
ensures that these terms (denoted δθ in algorithm 2)
are already known. At the lowest level, the simple
Metropolis rule can be applied. Therefore unbiased
(and aperiodic) sampling at all levels can be proved
by depth-first induction on the hierarchy. Proving er-
godicity requires additional (weak) assumptions on the
nature of the target density at each level.

2.5. Parallel Tempering

Evolutionary MCMC methods run multiple chains in
parallel, and allow them to interact to obtain better
samples (Liang & Wong, 2001). Parallel tempering
(Liu, 2001) is a special case in which the chains are
operated at several different temperatures; the lowest
temperature chain corresponds to the target density
of interest while the high temperature chains aid ex-
ploration. Our hierarchical sampler will also exploit
this benefit by allowing temperature to differ between
levels.

3. Overview of the New Algorithm

We introduce an algorithm called hierarchical impor-
tance with nested training samples (HINTS) that ex-
ploits the additive form of the objective function. It
is applicable whenever the individual terms fi(w) are
faster to compute than the complete average f(w) and
will be most useful for a large number N of terms, for
example N > 16.

 1:144

 1:12 13:24 133:144

121 2 2413 14 133 134 144

Figure 1. HINTS sampling architecture (1 : 12 : 12).

3.1. Defining the Hierarchy

A tree or hierarchy defines how the complete set of
scenarios (size N) is broken down into smaller subsets.
Levels in the hierarchy are indexed by l with l = 0 for
leaves and l = L for the root. Let m0 be the size of
the smallest subsets (at the leaves). Let the branching
factors be ml (l > 1). The number of scenarios nl

considered at level l is therefore:

nl =
l∏

l′=0

ml′

The branching factors must be chosen so that nL = N ;
i.e. the complete set is considered at the root node.
For example, figure 1 shows a HINTS tree with L = 2,
m0 = 1 and m1 = m2 = 12. Therefore N = n2 = 144.
Nodes in the figure are labelled with their associated
scenario subsets.

Associated with each node in the hierarchy is the cor-
responding approximation for the objective function.
For node j at level l this is given by fnl,j(w) using the
MCMC notation, or f l

j(w) for compactness. Thus the
complete objective function f(w) ≡ fN,1(w) ≡ fL

1 (w)
is associated with the root node, whereas averages of
only m0 terms are found at each leaf node. Also each
non-leaf node is the average of its own children3:

f l
j(w) =

1
ml

ml∑

k=1

f l
child(l,j,k)

(w)

where child(l, j, k) ≡ ml(j − 1) + k is the index of the
kth child.

3.2. Illustration of HINTS Operation

HINTS uses the observation that average returns for
subsets of scenarios can provide useful information
about the full objective f(w) (which depends on all
N scenarios). In particular, a sequence of moves is
taken at some level in the hierarchy to propose a move
at a higher level. This allows many small steps to be
combined before a costly policy evaluation with N sce-
narios takes place at the root. Before formalizing this
process we give an illustrative example.

3This is true only when there is no temperature differ-
ence between level l and level (l − 1).

a

c

f

g

b

d

e

Figure 2. Comparison between MCMC and HINTS: (a-c) probability densities for 1, 8 and 128 scenarios showing decreasing
bias and variance; (d) MCMC (N = 128) progress after 2048 trials; (e) HINTS progress after 1024 trials; (f) HINTS level
4 policy-states; (f) HINTS root node policy-states (2048 trials).

Consider a simple task that involves aiming (of a bow
and arrow, for example) to hit a target. Suppose this
aiming “policy” is specified as a 2-element vector w
defining a vertical and horizontal displacement from
some origin. Let the true optimal policy be w∗, but as-
sume that the intended aim is corrupted by noise (e.g.
wind turbulence). Specifying a set of scenarios means
obtaining a sample set {νi} of size N from the noise
distribution. The miss distance for policy w in sce-
nario i is therefore εi ≡ ||w+νi−w∗||. In this illustra-
tion one simulation “trial” corresponds to a single miss
distance calculation, but in genuine applications each
trial involves a costly simulation run. The optimiza-
tion objective is to minimize the squared miss distance,
which can be achieved by defining fi(w) = (−ε2i).

We assume that N = 128 scenarios would be adequate
to obtain a good approximation for expected return. A
sampling hierarchy is defined with m0 = 1 and ml = 2
for 1 ≤ l ≤ 7. Therefore we have a binary tree with
N = n7 = 128 leaf nodes. The hierarchy is operated
at very low temperature to obtain optimization rather
than sampling (Tl = (8− l)/50).

Figure 2a marks the optimal policy w∗ with a small cir-

cle. Gray-levels are used to show the probability den-
sity exp(f1,1(w)) corresponding to the first leaf node
in the hierarchy. This density is obtained using only a
single scenario and therefore exhibits a large bias (its
mode is displaced significantly from the target cen-
ter). Therefore a sample drawn from this density does
not usually provide a good estimate for w∗. Figures 2b
and 2c show the probability densities exp(f8,1(w)) and
exp(f128,1(w)) corresponding to N = 8 and N = 128
scenarios respectively. These are used at levels l = 3
and l = 7 (root node) respectively. By increasing N ,
the bias and variance are both reduced. Any sample
at N = 128 is a good estimate for w∗.

Figure 2d shows a MCMC sampling chain for the den-
sity shown in 2c. The initial policy-state w is shown
by a cross and is at a displacement of (-4,-5) from w∗.
Solid and empty markers indicate MCMC proposals
that are accepted and rejected, respectively. Each pro-
posal is a displacement of 0.25 units in a random direc-
tion, and is accepted or rejected using policy evalua-
tions with all 128 scenarios. Note that the policy-state
of the chain makes regular but slow progress towards
w∗. The progress shown required 2048 trials. Eventu-
ally, the chain would reach the small high-density area

around w∗ and optimization would have been achieved.

Figure 2e shows the sampling progress of the HINTS
algorithm using a total budget of only 1024 trials. In
this period the root node changes its value only once.
The size of the circular markers is indicative of the
level in the hierarchy (and hence the number of sce-
narios used for each policy evaluation). Most moves
are made with small numbers of scenarios; the full set
of scenarios is only considered at the start and finish
locations. Although there is an occasional low-level
move in the wrong direction, these are always rejected
at some level in the hierarchy.

Inspecting the policy-states visited at level 4 in the
hierarchy (figure 2f), note that most proposals are in
an appropriate direction because they have been gen-
erated from sequences of accepted moves at the lower
levels. (Only one such proposal is rejected.) Figure 2g
shows the progress made at the root node in the hier-
archy after two such periods (2048 trials). For output
purposes, the policy-state at the root of the tree is the
only one of interest; the lower levels are merely pro-
viding proposals. Much more progress has been made
towards the optimization objective compared with the
simple MCMC chain4, using the same number of trials.

4. Definition of the New Algorithm

Our aim is to generate a sequence of samples from
the unnormalized target density p(w) ≡ exp(fL

1 (w)),
associated with the root node. The HINTS algorithm
has a simple recursive description. To make a move at
node j of level l, a sequence of ml lower-level moves
are first combined to form a proposal. The proposal is
then accepted or rejected using the MHR with target
density exp(f l

j(w)). Therefore execution proceeds in a
depth-first left-to-right ordering.

For example, in figure 1 the execution order is indi-
cated by arrows. 12 steps are taken at leaf nodes (using
one scenario each) to form a proposal. This proposal
is accepted/rejected by policy evaluation using 12 sce-
narios in the middle layer of the tree. This process is
repeated 12 times to form a proposal for the root node
of the tree, where it is then accepted/rejected using all
144 scenarios. In this process, the policy-state at the
root could have moved by the equivalent of up to 144
primitive steps.

Algorithm 2 implements the main recursive pro-
cedure (wout, δθout) ← hints move(win, l, j) and
can be seen as a direct substitute for wout ←

4The simple MCMC chain is exactly equivalent to
HINTS in which the hierarchy is reduced to a single
root/leaf node of size 128.

Input: win Current policy-state
Input: l Level in tree (0 = leaf)
Input: j Counter
Output: wout Proposed new policy-state
Output: δθout Hastings correction

1 if (l = 0) then
2 wout ← mcmc step(win,m0, j)
3 δθout ← 0

else
4 w′ ← win

5 θ ← 0
6 for k = 1 : ml do
7 (w′, δθ) ← hints move(w′, l − 1, child(l, j, k))
8 θ ← θ + δθ

end
9 δf ← (f l

j(w
′)− f l

j(win))
10 if accept(δf − θ) then
11 wout ← w′

12 δθout ← δf

else
13 wout ← win

14 δθout ← 0
end

end

Algorithm 2: (wout, δθout) ← hints move(win, l, j)

mcmc step(win, nl, j). It returns a new policy-state
wout which may be the same as or different to the in-
put policy-state win, according to whether lower level
proposals have been accepted.

If a leaf node is encountered (line 1), a simple MCMC
step is taken using m0 scenarios for policy evaluation.
Otherwise, a proposal is obtained using a sequence of
ml moves at a lower level in the hierarchy. This is
achieved by a sequence of recursive calls (line 7) that
each update w′. If m0 = 1, these recursive calls will
terminate at exactly n leaf nodes, and so the proposal
will be made up of n primitive σ-sized moves com-
bined. Line 10 accepts or reject the proposal according
to the MHR. The “Hastings correction” θ accumulated
(in line 8) from lower-level transitions is applied to ac-
count for asymmetry in the proposal. See section 2.4
for a discussion of this quantity.

4.1. Efficient Implementation

An efficient implementation re-uses evaluations of
fi(w) when the same values of i and w occur more
than once. For example f l

j(win) on line 9 will nor-
mally be known from the output of the preceding call
when operating at the top level (l = L). Secondly, the

lower level evaluation f l−1
(·) (w) made in the recursive

call can provide part of the sum required for f l
(·)(w).

Finally, whenever there is a rejection, there is an op-
portunity to re-use a previous evaluation. These effi-
ciency savings can be achieved by passing lists of evalu-
ation results into and out of the hints move procedure,
or passing evaluations of fn,j(w) through a caching
mechanism. The O(n log n) computational complex-
ity is unchanged, but the constant of proportionality
is improved.

5. Experimental Evaluation

Here, we evaluate HINTS with a “ship landing” policy
search problem that is simple to describe and difficult
to solve. The problem is described in terms of the
altitude (and descent rate) of an air vehicle that is re-
quired to land on a ship’s deck. The height of the deck
changes with time depending on sea turbulence, and
is modelled as a damped harmonic oscillator. The ve-
hicle has only one action: selecting between 2 different
levels of vertical thrust.

5.1. Dynamics

The vehicle’s physical state is (y, ẏ). At each time step
the controller must select a thrust acceleration a ∈
{−0.5, 0.5}. The vehicle’s state is updated after each
time step δt by applying the midpoint method to its
dynamics, defined by ÿ = a, subject to the limit ẏ < 1
(maximum climb rate). The deck’s state is obtained
by applying the midpoint method to its second order
dynamics:

z̈ = −αz − βż + ν

where the turbulence acceleration ν is drawn indepen-
dently at each time step from a zero-mean Normal dis-
tribution with standard deviation 0.25/

√
δt. The con-

stant α determines the resonant frequency and was
chosen to be π2/25. The constant β determines the
amount of damping and was chosen to be 1/10.

5.2. Performance Measure and Returns

When the vehicle hits the deck (y ≤ z), the difference
|ẏ − ż| between their velocities determines success or
failure. If the difference is less than 1, then the trial
is deemed a success; otherwise it is a failure. The trial
is also a failure if the maximum duration (400 s) is
exceeded without the vehicle hitting the deck.

The initial physical state is always (y, ẏ) = (100,−1)
and (z, ż) = (0, 0), and so the only source of random-
ness in trial returns is the turbulence. Therefore each
scenario i will be fully defined by a single random num-
ber seed, yielding a deterministic return fi(w) for con-

0 100 200 300 400
−5

0

5

10

15

20

25

30

he
ig

ht

time

vehicle
deck

Figure 3. Height of vehicle and deck in a successful trial.

0 100 200 300 400
−8

−6

−4

−2

0

2

time

ra
te

vehicle
deck

Figure 4. Velocity of vehicle and deck in a successful trial.

troller parameters w.

Success rate will be the measure of performance, but
this does not provide a useful objective function for
learning because it does not indicate the degree of fail-
ure and hence the direction of policy improvement.
Therefore the return used in learning is given at trial
end time (t) by:

fi(w) =
1− t/400
1 + |ẏ − ż|

unless t > 400 in which case fi(w) = 0. This assigns
large returns for closely matching the velocity of the
vehicle to the velocity of the deck, and for completing
the trial as soon as possible. Return is always in the
range [0, 1].

8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1
su

cc
es

s
ra

te

log
2
 (number of trials)

SA64
SA16
SA4

Figure 5. Comparison between simulated annealing solu-
tions.

5.3. Controller Parameterization

The optimization problem is expressed as a search
through a parameterized family of controllers. The
controller is a nonlinear mapping from the state to the
control action. A scaled state vector x is formed from
(z, y/10, ż, ẏ). The first layer of our controller ap-
plies a linear transformation to obtain the hidden unit
activation vector x′:

x′ = Ax + b

where A is a 2-by-4 matrix of weights and b is a 2-
element bias vector. The action is then determined
according to the test:

tanh(x′1) > c tanh(x′2)

Together (A, b, c) parameterize this nonlinear function.
These can be concatenated into a weight vector w of
size 11.

5.4. Example

Figure 3 shows the heights of vehicle and deck during
a successful trial (using the optimized controller). Fig-
ure 4 shows the rate of height change (ẏ and ż) over
the same trial. Note that the vehicle initially acceler-
ates to increase its descent rate, then decelerates to a
low rate of descent. A period follows when the con-
troller roughly matches the vehicle’s velocity to that
of the deck. This ensures that the terminal constraint
|ẏ − ż| < 1 is met even though the deck is rising very
rapidly at the end of the trial.

5.5. Simulated Annealing Baseline

A simple approach to this task is simulated anneal-
ing (SA) with a fixed N . For small values of N we
expect fast learning but convergence to a sub-optimal

8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
te

log
2
 (number of trials)

H256
H4096
SA16

Figure 6. Comparison between HINTS and simulated an-
nealing.

policy, because the policy is “overfitted” to the partic-
ular N scenarios that are chosen. Conversely, for large
N , learning will be slow but there will be less bias in
the final result. Figure 5 shows the success rate for
SA with N ∈ {4, 16, 64}, evaluated using a test-set
of 1000 unseen scenarios, and averaged over 80 runs.
The temperature was reduced linearly from 0.05 to 0.
(This initial temperature was obtained by trial-and-
error.) The N = 4 case converges to a sub-optimal
solution, whereas N = 16 appears to be adequate.
Therefore SA with 16 scenarios will form a baseline
against which to compare HINTS.

5.6. HINTS Performance

HINTS is applied to this optimization task by setting
the temperature of the root node to 0, but operating
lower levels of the hierarchy at non-zero temperature
to enable exploration. The temperature of level l was
chosen to be (L − l)/(10L). Unlike simulated anneal-
ing, there is no change in these temperatures during
learning. Essentially, the root node is acting as an
optimizer whereas the lower levels of the tree are in-
creasingly random to enable exploration.

Figure 6 shows the result of applying HINTS with bi-
nary trees having either N = 256 or N = 4096 leaves
(m0 = 1; ml = 2 (l > 0); nl = 2l). There is no limit on
the size of N that could be used (subject to the total
experiment duration). Error bars show standard devi-
ations, not standard errors. HINTS with N = 256 is
significantly better than simulated annealing from 210

trials onward. Furthermore, this has been achieved
with a much higher value of N , and so the final result
will have less bias.

For N = 4096, the root node first changes its state af-
ter approximately 214 (16384) trials, but immediately
jumps to a good solution. The root node then changes

its value at similar intervals until the budget of 218

trials is exhausted. There is no apparent improvement
over N = 256, suggesting that no more than 256 sce-
narios are required to eliminate most bias.

6. Conclusions

HINTS is an algorithm for sampling from a target
function where the log probability is a sum or ex-
pectation. This additive structure is very common:
HINTS is applicable to many noisy optimization and
inference tasks in signal processing, data fusion and
machine learning. The use of HINTS for Bayesian in-
ference will be addressed in a separate paper. This
paper has focussed on policy search, where the high
computational costs of simulation trials mean that a
sophisticated approach is required.

The method was shown to be several times faster than
simulated annealing (and has less terminal bias) in a
policy search task. Much greater benefits would come
in applications that have larger variation in returns
between scenarios and hence require larger values of
N . HINTS also has the advantage of being a statisti-
cally stationary process that can provide output at any
time; there is no need for a cooling schedule. Although
the chosen task was fully observable, policy search is
also effective in partially observable domains. It is
also feasible to use the hierarchical sampling within
population-based approaches such as particle filtering
for regression (Vermaak et al., 2004) and evolutionary
MCMC.

Many simulation models have parameters that control
the trade-off between accuracy and computation time.
This could be exploited by a “variable fidelity” opti-
mizer that uses higher accuracy simulation at the root
of the tree than at the leaves. This would allow larger
numbers of scenarios to be used at leaf nodes.

HINTS as described, does not make use of gradi-
ent information that may be available. For exam-
ple, the controller used in our evaluation was differ-
entiable with respect to its weights. This property
is exploited by policy gradient ascent methods (Sut-
ton et al., 2000). The Hamiltonian MCMC algorithm
(Neal, 1993) uses gradient information to determine
proposal directions. HINTS could also exploit gradient
information (calculated for individual training exam-
ples) to obtain its primitive proposals. The resulting
algorithm might have the efficiency of policy gradient
methods, while offering global optimization.

Acknowledgments

This research was funded by the UK Ministry of
Defence Corporate Research Programme in Energy,
Guidance & Control. I acknowledge numerous helpful
comments from Graham Watson, Drew Bagnell, Nick
Everett, Simon Maskell and the reviewers.

References

Andrieu, C., de Freitas, N., Doucet, A., & Jordan,
M. (2003). An introduction to mcmc for machine
learning.

Hastings, W. K. (1970). Monte carlo sampling meth-
ods using markov chains and their applications.
Biometrika, 97–109.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983).
Optimization by simulated annealing. Science, 220,
4598, 671–680.

Liang, F., & Wong, W. H. (2001). Real-parameter evo-
lutionary Monte Carlo with applications to Bayesian
mixture models. Journal of the American Statistical
Association, 96, 653.

Liu, J. S. (2001). Monte carlo strategies in scientific
computing. Springer Verlag.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N.,
Teller, A. H., & Teller, E. (1953). Equation of state
calculations by fast computing machines. Journal of
Chemical Physics, 21, 1087–1092.

Neal, R. M. (1993). Probabilistic inference using
Markov chain Monte Carlo methods (Technical Re-
port CRG-TR-93-1). University of Toronto.

Ng, A. Y., & Jordan, M. (2000). PEGASUS:A policy
search method for large MDPs and POMDPs. Pro-
ceedings of the 16th Conference on Uncertainty in
Artificial Intelligence (UAI-00) (pp. 406–415). San
Francisco, CA: Morgan Kaufmann Publishers.

Sutton, R., McAllester, D., Singh, S., & Mansour, Y.
(2000). Policy gradient methods for reinforcement
learning with function approximation. Advances in
Neural Information processing Systems 12 (Proceed-
ings of the 1999 Conference) (pp. 1057–1063). MIT
Press.

Vermaak, J., Godsill, S. J., & Doucet, A. (2004). Se-
quential bayesian kernel regression. Advances in
Neural Information Processing Systems 16 (Proceed-
ings of the 2003 Conference). MIT Press.

