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Abstract

This paperintroducesRankOpt,a linear binary
classifier which optimisesthe area under the
ROC curve (the AUC). Unlike standardbinary
classifiers RankOptadoptsthe AUC statisticas
its objective function, and optimisesit directly
usinggradientdescentTheproblemswith using
the AUC statisticasanobjectivefunctionarethat
it is non-differentiable andof compleity O(n?)
in the numberof dataobserations. RankOpt
usesa differentiableapproximationto the AUC
whichis accurateandcomputationallyefficient,
beingof compleity O(n). This enableghe gra-
dientdescento beperformedn reasonabléme.
Theperformancef RankOptis comparedvith a
numberof otherlinear binary classifiers,over a
numberof different classificationproblems. In
almostall casest is foundthatthe performance
of RankOptis significantlybetterthanthe other
classifierdested.

1. Intr oduction

In mary binary classificatiortasks,the aim of the classifi-
cationis to sortthe obsenationsinto a list sothatthe mi-
nority classobsenationsare concentratedowardsthe top
of thelist. Thatway, if, dueto limited resourcesonly a
small subsetof all obsenationsare actedupon, the sort-
ing will enablea high percentagef the obsenations of
interest(the minority classobsenations)to be includedin
this subset.In otherwords,for a givencut-off, or decision
thresholdjt is desirableto have asmary aspossibleof the
minority classobsenationsabove the threshold(high true
positive rate) togetherwith asfew aspossibleof the ma-
jority classobsenations(low falsepositive rate). Graph-
ing the true positive rate againstthe falsepositive rate as
the decisionthresholdis variedyields the Recever Oper
ating Characteristicor ROC curve. The areaunderthe
ROC curwe, or the AUC, is a decisionthresholdindepen-
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dent measureof classifiergoodnessand has often been
usedassuch(Bradley, 1997;Weiss& Provost,2001).

Most binary classifiers,however, have as their objectve
function someother measuresuchas meansquareerror,
or one-sidedinear or squarepenalty Whenthe real ob-
jective is to optimisethe sortingorder, suchclassifiersare
actuallysolvingthewrong problem.Hencethey arelikely
to performsub-optimallywhentheperformanceneasuras
the AUC. This hasheenfoundto bethecaseempiricallyon
awide variety of dataset¢Perlichetal., 2003). Similarly,
if the classifiers objectie functionis closelyrelatedto the
AUC thenit yields modelswith better AUC (Yan et al.,
2003;Cortes& Mohri, 2004).

In this paperwe introduceRankOptanalgorithmthatop-
timisesthe AUC directly. RankOptsearchesor thelinear
modelthatis optimalfor the AUC, usinggradientdescent
to optimisethe modelcoeficients. It is comparedwith a
numberof other linear binary classifiers,namely: linear
regression(usedas a classifier),an SVM with one-sided
linear penalty (SVM-L1) (Cristianini & Shave-Taylor,
2000),an SVM with one-sidedsquarepenalty(SVM-L2)
(Joachims1998; Platt, 1998; Vapnik, 1998),andthe cen-
troid classifiefRocchio,1971).

Section2 describesRankOpts objective function. Sec-
tion 3 discussedetailsof RankOptsalgorithm,andseveral
issuesof relevanceto gradientdescentjncluding the pos-
sible existenceof local minima, andselectionof a starting
point. Sectiord describesheexperimentabrocedureand
thedatasetthatRankOptwastestedon. It alsoincludesthe
results.Relatedvorkis discussedh Sections, followedby
conclusionandfuturework in Section6.

2. Objective Function

Considera rectanguladatasebf iid obsenations,dravn
from a population. The datasetontainsP minority class

and Q majority classobserations, ¥, j=1...P, and
%, k=1...Q. It hasm predictorvariables,so X =
{x", i=1...m}, wherex is the j'" instanceof random

variableX;". Likewise,%/" is the j" instanceof vectorr.v.

X+, Equivalentdefinitionshold for the majority class. A
single booleanvaluedtarget variable definesthe classof



ary obsenation. Consideran obsenation pair, consist-
ing of oneobsenation chosenat randomfrom eachclass
{XT, X }. The AUC of a modelon a given datasetcan
be expressedsthe probability that for sucha randomob-
senation pair, the scoreof the minority classobsenration
is greaterthanthatof the majority classobsenation(Bam-
ber, 1975). If the modelis linear, with the coeficients of
thepredictorvariablegyivenby vectorf3, thenignoringties,

AUC(B) = Pr(B.X* > B.X").

Thisis simply the Mann-Whitng statistic(Mann& Whit-
ney, 1947)scaledby Pl (Yanetal., 2003). If we take the
hea/|S|defunct|ondef|nedas

0, x<0,
g(x) =< 0.5, x=0,
1, x>0
— 1 P Q @
then AUC(B __QZZ a(B.(xF

is anunbiasedestimatorof the AUC.

2.1.The Rank Statistic

Since the heaviside function is undifferentiable,it is re-
placedby the sigmoid function s(x) = 1/(1+e7*) (Yan
etal., 2003),in orderto apply gradientdescent.We refer
to the resultingapproximatiorto the AUC asthe sigmoid
rank statistic,or simply the “rank statistic”, R(E), defined
as

R(B) = o= ;s@s.(x“r — %)) (1)
B

Notethatlim y_,,, S(X) = g(x), sothatfor Iarge||_[3|| thesig-
moid rank statisticis a goodapproximatiorto the AUC. It
is everywherdlifferentiable andits first few derivativesare
all tightly bounded|t is straightforvardto verify that

ds d’s

ax 19 dx2
Thevalueof the AUC statistic,which is thetrue objective
function, dependson the direction of _[3 only and not on
its magnitude. The rank statistic, on the other hand,de-
pendson boththe magnitudeandthe directionof ﬁ How-
ever, atlarge||[§|| therankstatisticis agoodapproximation
to the AUC, hencefor ||_[3|| large enough,the rank statis-
tic is alsonearlyindependenbf ||[§||. Hencewe may ap-
proximatea classifierwhich optimisesthe AUC by opti-
mising R(ﬁ), constrainedo the hyperspher¢|ﬁ|| =B, in
_B-spacewith B fixed andfairly large. Formally we areaf-

terf&opT = argmaxR(f&), s.t. ||ﬁ|| = B, wherethevalueof
B is determinedhsdescribedn Section3.

=5(1-5)(1—2s)

2.2.Computational Efficiency

Notethatthecomputationatompleity of therankstatistic
R(ﬁ) is O(n?) in thenumberof obsenations.A calculation
of this compleity mustbe carriedout at every stepof the
gradientdescenalgorithm,whichis prohibitive.

This calculationcanbe simplified asfollows. Obsenethat
theamgumentgo the sigmoidfunctionin R(ﬁ) have ahigh
degreeof interdependenceSpecifically for any two mi-
nority classobsenationsX;. andx;, andmajority classob-
ser\taltlonsx’;1 and>‘(’;2 thefollowmg relationshipholds.

=)+ (% = %) = (% ~Ro) + (% = %)
For the four obsenation pairs formed by combinations
of 5(* X’; and %, namely {%X o Kb {x+ o Rob
{x, X’lzl} and {X, %} the agumentto the sigmoid
function for ary one of theseis fully determinedby the
otherthree.This meanghatusingall PQ obsenationpairs

to calculatethe R(_B) is wasteful. Thefollowing alternatve
is thereforeproposed.

Randomiseheorderof theobsenations.Thenbalancehe
databy regycling the P minority classobsenationsuntil

both classeshave Q obsenations. Thenin the rank statis-
tic, only considerobsenation pairs which consistof the
(k mod P)-th minority classobsenationpairedwith thek-

th majority classobsenation,k = 1...Q. This givesthe
following linearrankstatistic,whichis O(n) in thenumber
of majority classobsenations,

18 .
= 6 kzls(ﬁ‘(xrmodP - Xt:)) (2)

Unlike R(ﬁ), inR (ﬁ) no argumentto the sigmoidfunction

canbefully determinedoy ary others. NotethatR, (ﬁ) is
not uniquelydefined,asit dependsn the orderingof the
obsenations.Nonetheles$or arny randomordering thear
gumentsn theremaindeof this sectionhold.

Clearly, for ary fixed B, E[R (ﬁ)] = E[R(ﬁ)], but how do
thevariancexompare Ve would lik e to know how much
greaterthe varianceof R (B) is thanthatof R(p). Specif-
ically, we are interestedin the value of M

2RE) which
we refer to asthe “efficiengy loss”, Le. ConS|derf|rstIy
var(R(B)).




This sumof (PQ)? covariancetermsconsistf:

i) PQtermswherej; = j» andk; = kp, for which the co-
variancetermsimply reducedo var(s([3.(>‘qF %)) =V
i) PQ(Q— 1) termswherej1 = j2 andk; # ko, for which
thecovariances cov(s(B. (% — %)), s(B.(R] — %)) =

i) PQ(P—1) termswherejl # j2 andk; = ko. Theseha/e
covariancecov(s(B.(X}, — %)), s(B-(Xf, = %)) =

For all othertermSJl # j2 and k1 # ko. Dueto theiid

natureof the data,thesehave zerocovariance.This gives
thefollowing expressiorfor thetotal covariance.

var(R(B)) =

PQ(V +V1(Q— 1) +V2(P— 1)) X (PQ)Z

Assumingthat P,Q > 1, andthat both V,Q andV,P are
>V, this canbesimplifiedto

Vl/P+V2/Q

The validity of this lastassumptiorhasbeenverified em-
pirically on severaldatasetsisedin experimentation.

var(R(@)) ~

Now repeathis procesdor var(R, (B)).

JarR®) —var(

o4 ;1 ; COV(S(

Th_ge calculation of this varianceis similar to that of

Z (B( kmodP X;I:))) =
1modP Xt:) X1:—2modP_5<1:2)))

N

R(B). Thistime we considetthe 3 covariancecomponents:

i) ki = ko, i) (ky modP) = (kx modP) but k; # ko,
and iii) (ky modP) # (ko modP). Thisyields
var(R (B)) = é(v + (% - 1)v1). 3)

Let us now considerthe ratio of thesevariancesl.. For
heavily imbalanceddata (Q > P), so long as we don't
haveV, > V1, bothvarianceseduceto ~ V; /P, andhence
Le & 1. Sinceit hasbeenfound empirically for several
datasetsisedin our experimentatiorthatVy =~ V», this last

assumptiorappeargjuite safe. So R(_B) hasno advantage
overR (B)) for heavily imbalancedlata.

Considertherefore balanceddata. For P = Q, cancelling
commontermsleavesthevarianceratioto be (Vi +V2) /V.

For smaII||-B||, thesigmoidis linear, so

vi _ cous(BRf —BR),s(BXf —
v var(s(_B.F{J*r -B-X))

var(ﬁ.XT )+ var(B.x,

!
~
SN—r

var Bxk

var(BS{*)+var Bxk) sole=1.

By symmetry v =
This leavesonly the caseof balancediata,with large ||f3||.

For this case we determinghe efficiency lossempirically.

On severaldatasetsisedfor experimentationle wasmea-
suredfor a value of ﬁ nearthe gradientdescentolution.
In eachcaseit wasfoundto lie in therange[1.5,2]. This
meanghatif weareusingR (B) insteadof R(E), onewould

needroughly1.5to 2 timesasmuchdatato getanestima-
tor of the samevariance WhenoneconsiderghatR, ([3) is

P timesmoreefficientto calculatewe have anoverallgain
in computationakfficiengy of atleastP/2. SinceP is typ-

ically atleastin thehundredsusingR, (ﬁ) insteadof R(ﬁ)

affordsanenormousfficiengy gain.

3. The RankOpt Algorithm

Thevariouscomponent®sf the RankOptalgorithmaredis-
cussedn detailin the following subsectionsPseudocode
is alsoshavn in Table1l.

3.1.Gradient Descent

To simplify notation, we define nev random variables,

=X"—X", Vi=1...m, thedifferencebetweerthemi-
nority andmajority classr.v.'s. Thenusingthedefinitionof
the gradientof the sigmoidfrom Section2, andthe defini-
tion of R (ﬁ) in Eq. 2, we have

R (B)
9B

Sincethe gradientdescentlgorithmis constrainedo the
hyperspherey; 3?2 = B, first calculatethe unconstrained
gradientusingEq. 4, andthencalculateits componenin
the direction of the hyperspheresurface(i.e. perpendic-
ular to f&) Thentake a small stepin this direction, and
rescaleto move backto thesurfacez, B? = B. Iterateun-
til a minimum s reached.(SinceR, (B) is symmetric,i.e.
R;(ﬁ) =1- R(—ﬁ), it is immaterialwhetherwe talk in
terms of minimisationor maximisation.) The stepsize,
or learningrate, is increasedslightly at eachiteration so
long asthe new valueof R, (f&) is smallerthanits current
value. Otherwise the learningrate is decreasedntil the
new valueof R (f&) thatwill resultfrom takingthe stepwill
be smallerthanits currentvalue,andonly thenis the step
actuallytaken. Thuswe guarantedhatthe valueof R, (E)
ontrainingdatawill decreasateveryiteration.

Q - —
- % Y S(BZ)(1-s(BA))zk, Vi=1..m (4)
k=1

3.2.Selectionof Hypersphere Radius Value

If the hypersphereadius,/B, is too small, thenthe argu-
mentsto the sigmoidfunctionwill generallybe small,and
therank statisticwill be a poorestimatorof thetrue AUC.



Alternatively, if B istoolarge,therankstatisticapproaches
a sumof stepfunctions,andthe rank surfacestartsto con-
tain mary smallregionsthatarenearlyflat, connectedy
extremelysteepinclines,muchlik e steppe®namountain-
side. This tradeof hasbeenobseredby Yanetal. (2003).
Suchasurfaceis hardto dogradientdescenbver. To avoid
the problemof choosinga valuefor B, we usethe datato
calculatea seriesof increasing valuesasfollows.

The rank statisticis a sum of sigmoidswith differentar
guments,wherethe argumentsdependon the data. De-
fine “saturation”of the sigmoidfunctionasbeingwhenthe
magnitudeof its argumentis > 5. Theseare the almost
flat extremaof the sigmoidfunction. (Thatis the sigmoid
returnsa valuein the range[0,~ 0.006] or [~ 0.994,1].)
Then definethe probability of sigmoid saturationas be-
ing the probability that for a randomly chosenobsena-
tion pair, {xj*, X}, the sigmoid function saturatesj.e.

Pr(|f33.(>‘<’j+ —X.)| >5). Thencalculateasequencef values
of B, suchthateachvalueof B correspond$o a probability
of saturation(on the training data)from the increasingse-
ries p. Typically p=(0.1,0.3,0.5,0.7,0.75,0.8,...), and
weendwith aprobabilityof saturatiors 0.99. At thispoint
R (ﬁ) is very closeto thetrue AUC.

Having generatedhe sequencef B-values,startwith the
smallestone, and perform gradientdescentas described
above until the minimumR, (_B) is reached.Thenmove to
the next smallestvalue of B, which will changethe rank
surface,andhencethe positionof the minimum. Continue
gradientdescentstartingwith ﬁ suchthatits directionis
the sameasthat of the [3 wherethe previous gradientde-
scentstopped. Repeatthis processteratively, increasing
B at eachiteration,until the sequenc®f B's hasheenex-
hausted. This way, by the time the problemof “steppes”
begins to arise,almostall of the gradientdescenhasal-
readybeendone.

3.3.Local Minima

In performinggradientdescentpnemustcontendwith the
possibility of local minima on the error surface. In this
sectionit will be demonstratedhat for a wide variety of
dataset$ocalminimaareunlikely to play asignificantrole.
By the standardiefinition of expectation

oy 2]

wheref(Z) is thejoint p.d.f. of theZ's

E[AUC(R) ~ EloB2)) = [oB2 1@
Corvertcartesiario sphericaco-ordinate®™ — S,

B— (r,0);

(61,62,..

Z— (p,d)

wheref = .Bm-1) andd = (a11,00,...0m_1) are

(m—1)-dimensionabnglevectors.Theintegralbecomes

E[AUC(r, 6 //Jm p,d
m-2

where  Jn(p,d) =p™? |_!(Sir101|)m_1_I
|=

g(rpcog(® - @) fs(p, &) dpdd

is the Jacobiarfor the changeof co-ordinatesR™ — S™,
and fs(p,d) is the p.d.f. of (r,é), expressedn the m-
dimensionakphericalco-ordinatesystem. Sinceonly the
signof theargumentto g() matters,

EUC(E) = [ 9(cos8 1)) | In(p,) s(p. @)dpd

Thendenoting  h(d /Jm p,d)fs(p,d)dp

E[AUC(8)] canbe expressedsa convolutionin m— 1 di-
mensionsasfollows.
E[AUC(®) /g cogB— 8))h(d)dd
h(@) is the mamginal p.d.f. of the (m— 1)-dimensional
solid angled. Sinceg(coy)) is a rectanglefunction,and
convolution with a rectangle€functionhasa smoothingef-
fect which will tendto eliminate local extrema, we can
assertthatif h(d@) is unimodal,then E[AUC(8)] mustbe
unimodal. Further even if h(d) is multi-modal, the lo-
cal extremamay well be eliminatedby corvolution with

g(cog)).

This, however, holdsfor the expectedrank error, which is

whatthe surfaceAUC(8) approacheastheamountof data
approachemfinity. In reality the amountof availabledata
is finite, so somelocal minima may arisedue to noise-

i.e. AUC(B) fluctuatesaroundits expectedvalue. Given
sufficient data,thesefluctuationswill be small,andhence
shouldbe closeto the location of the expectedminimum,
wherethe gradientof E[AUC(8)] is small. This hasbeen
verifiedempiricallyby graphingthe error surfacefor ava-

riety of threedimensionaproblems- astheamountof data
increasesthelocalminimamove closerto oneanotherand
becoméewer, until thereis only one.

3.4. Starting Point

Sincelocal minima do not play a significantrole, the se-
lectionof a startingpoint for gradientdescenshouldhave
minimalimpacton thefinal solution. It mayhowever have
animpactoncomputationagfficiengy. Hencet isdesirable
to find a startingpoint thatis likely to be closeto thefinal
solution. Intuitively, if a predictorhasa large differencein
classspecificmeansit shouldbe animportantpredictorin
the model. Also if the classspecificvariancedor a given
predictorarelow, it shouldalsobeanimportantpredictorin



Table 1: Pseudocoddor RankOpt algorithm with PSF

for i = 1to # of PSF sub-folds { (Section 3.7)
initialise saturation probability , Pr(sat) (Section 3.2)
while (Pr(sat) < threshold) {
calculate sphere radius, \/E(Section 3.2)
set starting point (Section 3.4)
perform gradient descent over the hyper-surface
defined by R|,i_1(f5), constrained to the sphere of radius
VB (Section 3.1)
} increase Pr(sat)

select éfor sub-fold i and save as ﬁi (Section 3.6)

}

calculate the final (3 value by averaging [ over all i

themodel.DefiningAp = E[X"] — E[X"] to bethediffer-
encein classspecificmeansor the “class separation’for
predictori, andV; = var(X*) + var(X~) to be the “class
specificvariance”.we selectasa startingpoint

Ay .
i=—, Vi=1...
BI \/I ) l m
In practice we linearly scaleevery predictorvariablex; by
Ay /Vi, sothatin the scaledspaceour starting point be-

comessimpIyB =(1,1,...,1).

3.5.Plateaus

-

PlottingtheR, (B) surfacefor awide varietyof threedimen-
sionaldatasetshovedthatindeedocalminimaonly occur
wherethey areexplainableby thefinite natureof the data.
Howevertheunderlyingminimumis oftenvery broad with

a low gradient“plateau” aroundit. It is difficult to do

gradientdescentacrosstheseplateaussinceevena small
amountof noisecreatedocal minima. Handlingtheseis a
subjectof its own, beyondthe scopeof this paper For now

we settlefor developinga heuristichasedinearrescaling,
to partly eliminateplateaus.This is appliedin additionto

thescalingof Section 3.4.

3.6.Model SelectionRule

Recallthat in Eg. 2 an O(n) rank statisticwas defined.
Note that one could easily offset either the minority or
majority classdatarelative to the otherby a obsenations,
a=1...P-1,yieldingtheequialentstatistic

I R
RI,a(B) = 6 ZS(B'(X?_k+a) modP _X’;))

-

R .a(B) hasthe samemeanandvariancefor all valuesof a.

-

For ary a# Ot is clearlysomavhatcorrelatedvith R (B),
but it nonethelesyields a corvenientvalidationsetwhich
is atleastpartly independentf thetrainingset,andcomes

at no extra cost(in the sensethat it comeswholly from
within thetrainingdata).To seeexactly to whatextentthis
validationstatisticis independentyve wouldlik e to find the

valueof corr (R, (B), R,a(f&)), a# 0. We notethat

1,2 -
=52 (3 varRa®) +

wherea; # az. Thecovarianceermhasthe samevaluefor
all a1, az, sosimplify the above expressiorasfollows.
P-1

var(R(B)) = Svar(R (§)) + 5 cov(R (B), R a(B))

dividing by l%var(R, (ﬁ)) andthenrearrangingyives

cor(R @) Ra®) = 57 (L~ 1)

Giventhe rangeof valuesof Le found empiricallyin Sec-
tion2.2,we cansafelyassume!hatL—F:3 > 1sowehave

corr(R(B),R.a(B)) ~ 1/Le

Thisgivesvaluesof corr (R (B),R a(B)) in therangel3, 2].

Recall(Section3.2) thattraining involvesa seriesof gra-

dient descentruns with increasingvaluesof B, eachone
corvergingto its own local minimum. Which oneof these
minima do we selectas being closestto optimal? A first

guessmightbethattheﬁ correspondingp thelargestvalue
of B shouldbe selectedput this tendsto causeovertrain-
ing. Sowe selectthe B which minimisesR, 4(B), for some
arbitrarily choservalueof a. It wasfoundempiricallythat
despitethe correlationbetweerthe trainingandvalidation
statistics,sucha selectionrule usually resultsin a model
thatis very closeto optimalonthetestset.

3.7.Sub-Folds

The existence of a semi-independentrank statistic,
Rl,a(ﬁ), a # 0, can be usedto adwantagein a way that
goesbeyonddevelopmentof a modelselectiorrule. It can
be usedto supplya secondalbeit correlatedtraining set,
which canbeusedto augmenthetrainingitself.

Onecanexecutetwo totally separatgradientdescentrain-
ing runs,onein which the error surfaceis definedby the

-

statistic R (B), and the other in which it is defined by



-

R.a(B), a# 0. Theseyield two separatestimatesf the

optimal E which are at leastpartially independent.Intu-
itively, averagingthesetwo estimatess likely to yield a
bettertestresult,becausarny errorcomponentshatarein
oppositedirectionswill cancel.

We refer to this techniqueas pseudosub-folding (PSF).
PSFcanbeextendedpf coursefo morethantwo sub-folds.

4. Experimental Description and Results

Two setsof experimentswere performed. The first tests
the performancef RankOptwith varioussettingsof PSE

namely:no PSF;PSFwith two sub-folds(PSF2);andPSF
with threesub-fold(PSF3).Thesecondsetof experiments
compareshebestof thesewith the otherlinearclassifiers.

Forthe SVM classifierandthecentroidclassifierthescal-
ing of the datacansignificantlyimpactthe classifiers per

formance. Further the SVM classifiers’performancecan
be significantlyaffectedby thepenaltyparameteof theer

rorterm. TheSVM’sandthecentroidclassifieiwerethere-
fore run with boththe samescalingasRankOpt,andwith

no scalingat all. Further the SVM’s wererun with three
differentvaluesof penaltyparameter- 10, 10°, and10®. In

eachcasethe bestresultonly is quoted.

4.1.Datasets

Experimentsvereperformedn eightdatasetsrom differ-
entdomainsandof differentlevelsof difficulty. Theminor
ity classwastypically betweernl0%and40%of thedata.

Forest Cover Type (forest) Datawasdownloadedfrom

theUCI KDD repository It classifies30 x 30metrecellsof

forestinto oneof sevencovertypesbasednthecell’'sdom-
inanttreetype. Thetwo mostpopulousclassegSpruce-Fir
and LodgepolePine) were extracted,and the binary clas-
sification task consistedof distinguishingbetweenthese
classes. A total of 10 predictorswere used,thesebeing
the 10 continuougredictorssuppliedfor the data.

HousingMortgage (housing) Datawasdownloadedrom
theU.S. CensusBureau5% PublicUseMicrodataSample
(PUMS) containingindividual recordsof the characteris-
tics of a5% sampleof housingunitsfor thestateof Florida.
Amongstall housingunits which had a mortgage the bi-
naryclassificatiortaskwasto distinguishbetweerthosefor
whichthemortgagehadbeerpaidoff andthosefor whichit
hadnt. The12continuousor ordinalpredictorvariablesn-
cludedthetotal householdncome,theroomandbedroom
counts rate costs(electricity, waterandgas),the property
taxrate,insuranceateandpropertyvalue.

Telecommunications Churn (churn10 and churn31):
Dataonmobilephonecustomer®f alargetelecommunica-
tionscarrierwasusedto learnto distinguishbetweerthose

thatchurnedo a competitorin thefollowing threemonths
andthosethatdidn’t. After rebalancing, theminority class
was~ 40%of thedata.A setof 31 continuousandordinal
variableswasusedfor prediction,includingbill andprod-
uctinformation. Further a subsebf 10 of thesepredictors
was selectednoneof which were particularly predictve,
resultingin adifficult to learntask. This madeup a second
telecommunicationbkinary classificatiortask.

Marital Status (married): As for the housingmortgage
datasetdatawas downloadedfrom the U.S. CensusBu-
reauPUMS. From this datase® 1% sampleof individual
recordsfrom the stateof Californiawasextracted.The bi-
nary classificatiortaskwasto distinguishbetweerindivid-
ualswho have beenmarried(whethercurrentlymarriedor
not), with individualswho have never beenmarried. The
predictoraverell continuousrariablesjncludingonesre-
lating to age educatiorevel, income,andworking hours.

Intrusion Detection (intrusion): This datasetonsistsof

a randomsampleof the intrusion detectiondatausedfor

the 1999 KDD Cup competition. The classificationtask
wasto distinguishbetweemormaluseandintrusion. The
10 predictorsusedwere a subsedf all continuouspredic-
torsavailablewith thedata,ascertaincontinuouspredictors
wereomittedto make the problemmorechallenging.

Handwritten Digit Recognition (digit): Datawasdown-
loadedfrom the MNIST handwrittendigit databaseEach
obsenationin this datasetonsistsof a bitmapof 28 x 28
grayscalevalues,representinga handwrittendigit. Each
obsenationwascorvertedto lowerresolution(7 x 7 pixels)
to reducethe dimensionalityof the problem. The classifi-
cationtaskwasto distinguishbetweerthe digit ‘0’ andall
otherdigits. To make the problemmorechallengingonly
thetop 3 rows of pixels(21 pixels)wereused.Further pix-
els nearthe cornerswhich containalmostno information
werediscardedTheresultwasa 17 dimensionatlataset.

Weather SeasorPrediction (weather). Thereis a grid of

weathebuoysin theequatoriategion of the Pacific Ocean.
Thesetake meteorologicameasurementsncluding wind

speedanddirection,air andseatemperatureandhumidity
at regular intenals. The resultingdatais available at the
websiteof the Tropical AtmosphereéOcearproject. Hourly

measurementer all buoysovertheperiodfrom May 1999
to April 2000 were downloaded. The classificationtask
wasto distinguishmeteorologicateadingsnadeduringthe
northernhemispher&utumnmonths(October November
andDecemberjrom thosemadein othermonths.

1Theproportionof minority classobserationsfor this dataset
is very small. Hencethe datawasrebalancedoasto includesuf-
ficient minority classobsenationswithout usinga prohibitively
largeamountof majority classdata. The RankOptalgorithmdoes
not requirethis rebalancingbut doesrequiresuficient obsera-
tionsof eachclassfor training.



4.2.Experimental Procedure

To lendstatisticalsignificanceo our results,it is desirable
to apply eachclassificationmethodto a large numberof
independentrainingsets,andaveragethe AUCs of there-
sulting modelson the testsets. This necessitatethat the
training setsfor multiple runsof eachalgorithmbe mutu-
ally exclusive of oneanother Henceeachdatasetvassplit
into n mutually exclusive folds, andin eachrun of each
classifier training was performedusingonefold, andthe
resultingmodelwastestedon the remainingn — 1. With
the exceptionof the digit datasetwhich contains60,000
obsenations, each of the datasetscontainsa minimum
of 180,0000bsenations. So from eachof thesedatasets
180,0000bsenationswererandomlyselected Thesewere
split randomlyinto 60 mutually exclusive folds (n = 60),
with 30000bsenationseach.60 runsof eachclassification
algorithm(RankOptlinearregressionSVM-L1, SVM-L2,
andcentroid) werethenperformedgachusinga different
oneof the 60 folds for training (andhencevalidation),and
the other59 for testing,asdescribedabove. This yielded
60 test resultsfor eachclassifierfor eachdataset. This
experimentalprocedurewvasthenrepeatedising different
amountsof training data— 30 folds of 6,0000bsenations,
15x 12,0009 x 20,000,and6 x 30,000.Theexperimental
procedurdor thedigit datasetvasidenticalexceptthatthe
numberof folds wasdividedby 3 in eachcase.

4.3.Effect of PSF

Figure 1 shaws the resultsof the first setof experiments,
namely measuringhe effect of PSFon RankOpts perfor
mance.We measurehe meanof the AUC onthetestsets
(y-axis),ateachtrainingdataquantity(x-axis),for all eight
datasetdor all threePSFsettings Verticalbarsshov aone
standarcerror confidencenterval. The standarderror did
not vary muchwith training setsize,henceit is shavn for
onetrainingsetsizeonly. It appearshatPSFhasabenefi-
cial effectfor all datasetsxceptfor churn10,ntrusion,and
perhapsveatherwhereit hasno significantimpact. How-
ever thedifferencebetweerPSF2andPSF3is minimal for
all eightdatasetsThereforefor thepurpose®f comparing
with otherclassifiersye selectRankOptwith PSF2.

4.4.Comparisonwith Other Linear Classifiers

Figure 2 shovs how RankOptwith PSF2compareswith
the otherclassifiers. The meaningof the axesis asin Fig-
ure 1. The SVM-L1 algorithmis computationallyinten-
sive, andresultscould not be generatedn reasonabléime
for any morethan6000trainingobsenations,soonly these
areshowvn. Error barsare not shovn asthey are mostly
insignificantrelative to the differencein classifierperfor
mance. For six of the eight datasetsRankOptis a clear
winner. For the forestdata,linear regressionis compara-
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Figurel. Rank statisticusing RankOptoptimisation,with three
differentlevelsof PSE

ble to RankOpt,even outperformingit whenthe amount
of training datais limited, and SVM-L1 performsonly

mauginally worsethanRankOpt.For the digit data,SVM-

L2 performsonly mamginally worsethan RankOpt. The
simple centroidclassifieris usually by far the worst, and
oftendoesnt even make it ontothe chart. Note thatthere
is noclear‘runnerup” to RankOptamongsthe otherclas-
sifiers,with eachbeingfarworsethanRankOpfat leastoc-

casionally-linearregressiorfailsto make it onto thechart
for thehousingdatasetandthe SVM'sfail to makeit onto

thechartfor theweatherdataset.

It is notevorthy thatthe SVM and centroidclassifiersare
highly sensitve to how the original dataarescaled. SVM’'s

alsohave thedrawbackthatthey requirea penaltyparame-
ter to be set,andresultscanbe quite sensitve to this. For

the churndatasetvith 31 dimensionsthelinearregression
packageoccasionallyreporteda warning that the matrix

wasiill-conditioned, and henceresultsmay be unreliable.
It is expectedthatthis problemwould arisewith increasing
frequeng asthe numberof predictorsincreases.

In termsof computationaéfficiengy, it is worth notingthat
unlike someother linear classifiers,RankOptis linearin
both the numberof training obsenationsandin the num-
ber of predictors.Sinceneitherthe RankOptcodenor the
SVM codeusedto this point hasbeenoptimised,it would
bedifficult to draw ary conclusionsrom adirectcompari-
sonof executiontimesof thevariousclassifiers.

5. Comparisonwith RelatedWork

We note that other algorithms have been developedin
whichtheobjectvefunctioncloselyapproximatethe AUC
(Yanetal.,2003;Cortes& Mohri, 2004). Thesddiffer from
oursin several importantways. In particular they yield
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Figure2. RankOptwith PSFmeasurecgainsotherclassifiers

non-linearmodels,whereasRankOpts modelsarestrictly
linear ThereforedirectcomparisorbetweerRankOptand
theseothertechniquesvould be appropriateonly afterex-
tendingRankOptto non-linearspace (Section6).

In Yanetal. (2003),thesigmoidapproximatiorof theAUC
is consideredput rejectedin favour of a polynomial ap-
proximation. The claim is madethat the sigmoid approx-
imation with a small 3 is not accurateenough,and with
alarge 3 onecreatedoo mary steepgradients.Although
theseobsenationsaretrue,we have shovn thatby usinga
seriesof increasing values thistradeoff canbe avoided.

Cortes& Mohri (2004) use boosteddecisionstumpsto
optimise the AUC. This methodis quite different from
RankOpts gradientdescenbver the rank statisticsurface.
Comparisorbetweertheir methodanda non-linearexten-
sionof RankOptwould be of interest.

6. Conclusionand Futur e Work

We have introducedRankOpt, a linear binary classifier
which optimisesAUC. RankOptwascomparedo a num-

berof otherlinearbinaryclassifiersandin almostall cases
wasfoundto significantlyoutperformthem.

This work hasfocussedon predictiontasksin which the
predictorsareall eithercontinuousor ordinal. It is planned
thatthis will be extendedto includebinaryvaluedpredic-
tors,enablingthedevelopmenbf anon-linearclassifiervia
binarisationof continuousandordinalpredictors.

Scalingof the datahasbeenfound to significantly affect
RankOpts performance.This is anissuethat we planto
exploremorethoroughlyin thefuture.
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