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Abstract

This paperintroducesRankOpt,a linear binary
classifier which optimises the area under the
ROC curve (the AUC). Unlike standardbinary
classifiers,RankOptadoptstheAUC statisticas
its objective function, and optimisesit directly
usinggradientdescent.Theproblemswith using
theAUC statisticasanobjectivefunctionarethat
it is non-differentiable,andof complexity O

�
n2 �

in the numberof data observations. RankOpt
usesa differentiableapproximationto the AUC
which is accurate,andcomputationallyefficient,
beingof complexity O

�
n� . This enablesthegra-

dientdescentto beperformedin reasonabletime.
Theperformanceof RankOptis comparedwith a
numberof other linear binary classifiers,over a
numberof differentclassificationproblems. In
almostall casesit is foundthat theperformance
of RankOptis significantlybetterthantheother
classifierstested.

1. Intr oduction
In many binaryclassificationtasks,theaim of theclassifi-
cationis to sort theobservationsinto a list so that themi-
nority classobservationsareconcentratedtowardsthe top
of the list. That way, if, dueto limited resources,only a
small subsetof all observationsareactedupon, the sort-
ing will enablea high percentageof the observationsof
interest(theminority classobservations)to beincludedin
this subset.In otherwords,for a givencut-off, or decision
threshold,it is desirableto haveasmany aspossibleof the
minority classobservationsabove the threshold(high true
positive rate) togetherwith as few aspossibleof the ma-
jority classobservations(low falsepositive rate). Graph-
ing the true positive rateagainstthe falsepositive rateas
the decisionthresholdis variedyields the Receiver Oper-
ating Characteristic,or ROC curve. The areaunder the
ROC curve, or the AUC, is a decisionthresholdindepen-
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dent measureof classifiergoodness,and hasoften been
usedassuch(Bradley, 1997;Weiss& Provost,2001).

Most binary classifiers,however, have as their objective
function someothermeasure,suchasmeansquareerror,
or one-sidedlinear or squarepenalty. Whenthe real ob-
jective is to optimisethesortingorder, suchclassifiersare
actuallysolvingthewrongproblem.Hencethey arelikely
to performsub-optimallywhentheperformancemeasureis
theAUC.Thishasbeenfoundto bethecaseempiricallyon
a wide varietyof datasets(Perlichet al., 2003). Similarly,
if theclassifier’sobjective functionis closelyrelatedto the
AUC then it yields modelswith betterAUC (Yan et al.,
2003;Cortes& Mohri, 2004).

In this paper, we introduceRankOpt,analgorithmthatop-
timisestheAUC directly. RankOptsearchesfor the linear
modelthat is optimal for theAUC, usinggradientdescent
to optimisethe modelcoefficients. It is comparedwith a
numberof other linear binary classifiers,namely: linear
regression(usedas a classifier),an SVM with one-sided
linear penalty (SVM-L1) (Cristianini & Shawe-Taylor,
2000),an SVM with one-sidedsquarepenalty(SVM-L2)
(Joachims,1998;Platt,1998;Vapnik,1998),andthecen-
troid classifier(Rocchio,1971).

Section2 describesRankOpt’s objective function. Sec-
tion 3 discussesdetailsof RankOpt’salgorithm,andseveral
issuesof relevanceto gradientdescent,including thepos-
sibleexistenceof local minima,andselectionof a starting
point. Section4 describestheexperimentalprocedure,and
thedatasetsthatRankOptwastestedon. It alsoincludesthe
results.Relatedwork is discussedin Section5, followedby
conclusionsandfuturework in Section6.

2. ObjectiveFunction

Considera rectangulardatasetof iid observations,drawn
from a population. The datasetcontainsP minority class
and Q majority classobservations, �x� j � j � 1 ����� P, and�x�k � k � 1 ���	� Q. It has m predictor variables,so �x� j �

x�i j � i � 1 ����� m� , wherex�i j is the j th instanceof random

variableX �i . Likewise, �x� j is the j th instanceof vectorr.v.�X � . Equivalentdefinitionshold for the majority class. A
single booleanvaluedtarget variabledefinesthe classof



any observation. Consideran observation pair, consist-
ing of oneobservationchosenat randomfrom eachclass
 �x� j � �x�k � . The AUC of a modelon a given datasetcan
beexpressedastheprobabilitythat for sucha randomob-
servation pair, the scoreof the minority classobservation
is greaterthanthatof themajorityclassobservation(Bam-
ber, 1975). If the modelis linear, with the coefficientsof
thepredictorvariablesgivenby vector �β, thenignoringties,

AUC
� �β � � Pr

� �β � �X �
� �β � �X � � �
This is simply theMann-Whitney statistic(Mann& Whit-
ney, 1947)scaledby 1

PQ (Yanet al., 2003). If we take the
heavisidefunctiondefinedas

g
�
x� �

��� �� 0 � x � 0 �
0 � 5 � x � 0 �
1 � x � 0

then �AUC
� �β � � 1

PQ

P

∑
j � 1

Q

∑
k� 1

g
� �β � � �x� j � �x�k ���

is anunbiasedestimatorof theAUC.

2.1.The Rank Statistic

Since the heaviside function is undifferentiable,it is re-
placedby the sigmoid function s

�
x� � 1� �

1 � e� x � (Yan
et al., 2003),in orderto applygradientdescent.We refer
to the resultingapproximationto theAUC asthesigmoid
rankstatistic,or simply the “rank statistic”,R

� �β � , defined
as

R
� �β � � 1

PQ

P� Q
∑
j � k s

� �β � � �x� j � �x�k �	� � (1)

Notethatlim � x � � ∞ s
�
x� � g

�
x� , sothatfor large � �β � thesig-

moid rankstatisticis a goodapproximationto theAUC. It
is everywheredifferentiable,andits first few derivativesare
all tightly bounded.It is straightforwardto verify that

ds
dx

� s
�
1 � s� � d2s

dx2 � s
�
1 � s� � 1 � 2s�

Thevalueof theAUC statistic,which is thetrueobjective
function, dependson the direction of �β only and not on
its magnitude. The rank statistic,on the other hand,de-
pendson boththemagnitudeandthedirectionof �β. How-
ever, at large � �β � therankstatisticis agoodapproximation
to the AUC, hencefor � �β � large enough,the rank statis-
tic is alsonearly independentof � �β � . Hencewe may ap-
proximatea classifierwhich optimisesthe AUC by opti-
mising R

� �β � , constrainedto the hypersphere� �β ��� B, in�β-space,with B fixedandfairly large. Formallywe areaf-
ter �βOPT � argmaxR

� �β � � s.t. � �β ��� B, wherethevalueof
B is determinedasdescribedin Section3.

2.2.Computational Efficiency

Notethatthecomputationalcomplexity of therankstatistic
R
� �β � is O

�
n2 � in thenumberof observations.A calculation

of this complexity mustbecarriedout at every stepof the
gradientdescentalgorithm,which is prohibitive.

Thiscalculationcanbesimplifiedasfollows. Observethat
theargumentsto thesigmoidfunctionin R

� �β � have a high
degreeof interdependence.Specifically, for any two mi-
nority classobservations�x� j1 and �x� j2, andmajorityclassob-
servations�x�k1

and �x�k2
, thefollowing relationshipholds.� �x� j1 � �x�k1

� � � �x� j2 � �x�k2
� � � �x� j1 � �x�k2

� � � �x� j2 � �x�k1
� �

For the four observation pairs formed by combinations
of �x� j1, �x� j2, �x�k1

, and �x�k2
, namely


 �x� j1 � �x�k1
� , 
 �x� j1 � �x�k2

� ,
 �x� j2 � �x�k1
� , and


 �x� j2 � �x�k2
� , the argumentto the sigmoid

function for any one of theseis fully determinedby the
otherthree.Thismeansthatusingall PQobservationpairs
to calculatetheR

� �β � is wasteful.Thefollowing alternative
is thereforeproposed.

Randomisetheorderof theobservations.Thenbalancethe
databy recycling the P minority classobservationsuntil
bothclasseshave Q observations.Thenin therankstatis-
tic, only considerobservation pairs which consistof the�
k modP� -th minority classobservationpairedwith thek-

th majority classobservation, k � 1 ���	� Q. This gives the
following linearrankstatistic,which is O

�
n� in thenumber

of majorityclassobservations,

Rl
� �β � � 1

Q

Q

∑
k� 1

s
� �β � � �x�kmodP � �x�k ��� � (2)

UnlikeR
� �β � , in Rl

� �β � noargumentto thesigmoidfunction
canbe fully determinedby any others.Note that Rl

� �β � is
not uniquelydefined,asit dependson the orderingof the
observations.Nonethelessfor any randomordering,thear-
gumentsin theremainderof thissectionhold.

Clearly, for any fixed �β, E � Rl
� �β � � � E � R� �β �!� , but how do

thevariancescompare?We would like to know how much
greaterthevarianceof Rl

� �β � is thanthatof R
� �β � . Specif-

ically, we are interestedin the value of var " Rl "$#β %&%
var " R" #β %&% , which

we refer to as the “efficiency loss”, Le. Considerfirstly
var

�
R
� �β ��� .

var
�
R
� �β �	� � var ' 1

PQ

P� Q
∑
j � k s ( �β � � �x� j � �x�k �	)+*

� 1�
PQ� 2 P� Q

∑
j1 � k1

P� Q
∑
j2 � k2

cov
�
s
� �β � � �x� j1 � �x�k1

�	� � s� �β � � �x� j2 � �x�k2
���	� �



Thissumof
�
PQ� 2 covariancetermsconsistsof:

i) PQ termswhere j1 � j2 andk1 � k2, for which theco-
variancetermsimply reducesto var

�
s
� �β � � �x� j � �x�k �	��� � V.

ii) PQ
�
Q � 1� termswhere j1 � j2 andk1 ,� k2, for which

thecovarianceis cov
�
s
� �β � � �x� j � �x�k1

�	� � s� �β � � �x� j � �x�k2
��� � V1.

iii) PQ
�
P � 1� termswhere j1 ,� j2 andk1 � k2. Thesehave

covariancecov
�
s
� �β � � �x� j1 � �x�k ��� � s� �β � � �x� j2 � �x�k ��� � V2.

For all other terms j1 ,� j2 and k1 ,� k2. Due to the iid
natureof the data,thesehave zerocovariance.This gives
thefollowing expressionfor thetotalcovariance.

var
�
R
� �β ��� � PQ ( V � V1

�
Q � 1� � V2

�
P � 1� ).- 1�

PQ� 2

Assumingthat P� Q / 1, and that both V1Q andV2P are/ V, thiscanbesimplifiedto

var
�
R
� �β �	�10 V1 � P � V2 � Q �

The validity of this last assumptionhasbeenverifiedem-
pirically onseveraldatasetsusedin experimentation.

Now repeatthisprocessfor var
�
Rl

� �β �	� .
var

�
Rl

� �β ��� � var ' 1
Q

Q

∑
k

s ( �β � � �x�kmodP � �x�k �	)+* �
1

Q2

Q

∑
k1

Q

∑
k2

cov ( s� �β � � �x�k1 modP � �x�k1
��� � s� �β � � �x�k2 modP � �x�k2

�	� )
The calculation of this variance is similar to that of
R
� �β � . This timeweconsiderthe3 covariancecomponents:

i) k1 � k2, ii)
�
k1 modP� � �

k2 modP� but k1 ,� k2,
and iii)

�
k1 modP� ,� �

k2 modP� . Thisyields

var
�
Rl

� �β ��� � 1
Q

' V �2' Q
P � 1* V1

* � (3)

Let us now considerthe ratio of thesevariances,Le. For
heavily imbalanceddata (Q / P), so long as we don’t
haveV2 / V1, bothvariancesreduceto 0 V1 � P, andhence
Le

0 1. Sinceit hasbeenfound empirically for several
datasetsusedin our experimentationthatV1

0 V2, this last
assumptionappearsquitesafe. So R

� �β � hasno advantage
overRl

� �β �	� for heavily imbalanceddata.

Consider, therefore,balanceddata. For P � Q, cancelling
commontermsleavesthevarianceratio to be

�
V1 � V2

� � V.
For small � �β � , thesigmoidis linear, so

V1

V
� cov

�
s
� �β �$�x� j � �β �$�x�k1

� � s� �β �$�x� j � �β �$�x�k2
���

var
�
s
� �β �$�x� j � �β �$�x�k ���

� var
� �β �$�x� j �

var
� �β �$�x� j � � var

� �β �3�x�k �

By symmetry, V2
V � var "$#β 4 #x5k %

var " #β 4 #x6 j % � var " #β 4 #x5k % soLe � 1.

This leavesonly thecaseof balanceddata,with large � �β � .
For this case,wedeterminetheefficiency lossempirically.
On severaldatasetsusedfor experimentation,Le wasmea-
suredfor a valueof �β nearthe gradientdescentsolution.
In eachcaseit wasfound to lie in the range � 1 � 5 � 2� . This
meansthatif weareusingRl

� �β � insteadof R
� �β � , onewould

needroughly1.5 to 2 timesasmuchdatato getanestima-
tor of thesamevariance.WhenoneconsidersthatRl

� �β � is
P timesmoreefficient to calculate,wehaveanoverallgain
in computationalefficiency of at leastP� 2. SinceP is typ-
ically at leastin thehundreds,usingRl

� �β � insteadof R
� �β �

affordsanenormousefficiency gain.

3. The RankOpt Algorithm

Thevariouscomponentsof theRankOptalgorithmaredis-
cussedin detail in the following subsections.Pseudocode
is alsoshown in Table1.

3.1.Gradient Descent

To simplify notation, we define new randomvariables,
Zi � X �i � X �i �87 i � 1 ���	� m, thedifferencebetweenthemi-
nority andmajorityclassr.v.’s. Thenusingthedefinitionof
thegradientof thesigmoidfrom Section2, andthedefini-
tion of Rl

� �β � in Eq. 2, wehave

∂Rl
� �β �

∂βi
� 1

Q

Q

∑
k� 1

s
� �β � �zk

� � 1 � s
� �β � �zk

�	� zik �97 i � 1 �	��� m (4)

Sincethe gradientdescentalgorithmis constrainedto the
hypersphere∑i β2

i � B, first calculatethe unconstrained
gradientusingEq. 4, andthencalculateits componentin
the direction of the hyperspheresurface(i.e. perpendic-
ular to �β). Then take a small stepin this direction, and
rescaleto move backto thesurface∑i β2

i � B. Iterateun-
til a minimum is reached.(SinceRl

� �β � is symmetric,i.e.
Rl

� �β � � 1 � Rl
� � �β � , it is immaterialwhetherwe talk in

termsof minimisationor maximisation.) The stepsize,
or learningrate, is increasedslightly at eachiterationso
long asthe new valueof Rl

� �β � is smallerthanits current
value. Otherwise,the learningrate is decreaseduntil the
new valueof Rl

� �β � thatwill resultfrom takingthestepwill
besmallerthanits currentvalue,andonly thenis thestep
actuallytaken. Thuswe guaranteethat thevalueof Rl

� �β �
on trainingdatawill decreaseatevery iteration.

3.2.Selectionof HypersphereRadiusValue

If thehypersphereradius, : B, is too small, thentheargu-
mentsto thesigmoidfunctionwill generallybesmall,and
therankstatisticwill bea poorestimatorof thetrueAUC.



Alternatively, if B is too large,therankstatisticapproaches
a sumof stepfunctions,andtheranksurfacestartsto con-
tain many small regionsthat arenearlyflat, connectedby
extremelysteepinclines,muchlikesteppesonamountain-
side.This tradeoff hasbeenobservedby Yanet al. (2003).
Suchasurfaceis hardto dogradientdescentover. To avoid
theproblemof choosinga valuefor B, we usethe datato
calculateaseriesof increasingB valuesasfollows.

The rank statisticis a sumof sigmoidswith differentar-
guments,wherethe argumentsdependon the data. De-
fine“saturation”of thesigmoidfunctionasbeingwhenthe
magnitudeof its argumentis � 5. Theseare the almost
flat extremaof thesigmoidfunction. (That is thesigmoid
returnsa value in the range � 0 �!; 0 � 006� or � ; 0 � 994� 1� .)
Then definethe probability of sigmoid saturationas be-
ing the probability that for a randomlychosenobserva-
tion pair,


 �x� j � �x�k � , the sigmoid function saturates,i.e.

Pr
�=< �β � � �x� j � �x�k � < � 5� � Thencalculateasequenceof values

of B, suchthateachvalueof B correspondsto aprobability
of saturation(on the trainingdata)from the increasingse-
ries p. Typically p � �

0 � 1 � 0 � 3 � 0 � 5 � 0 � 7 � 0 � 75� 0 � 8 � ���	� � , and
weendwith aprobabilityof saturation0 0 � 99.At thispoint
Rl

� �β � is verycloseto thetrueAUC.

Having generatedthe sequenceof B-values,startwith the
smallestone, and perform gradientdescentas described
above until theminimumRl

� �β � is reached.Thenmove to
the next smallestvalueof B, which will changethe rank
surface,andhencethepositionof theminimum. Continue
gradientdescent,startingwith �β suchthat its direction is
the sameasthat of the �β wherethe previousgradientde-
scentstopped. Repeatthis processiteratively, increasing
B at eachiteration,until the sequenceof B’s hasbeenex-
hausted.This way, by the time the problemof “steppes”
begins to arise,almostall of the gradientdescenthasal-
readybeendone.

3.3.Local Minima

In performinggradientdescent,onemustcontendwith the
possibility of local minima on the error surface. In this
sectionit will be demonstratedthat for a wide variety of
datasetslocalminimaareunlikely to playasignificantrole.
By thestandarddefinitionof expectation

E � AUC
� �β �!� � E � g �

∑
i

βiZi
� � � E � g � �β � �Z �!� �?> g

� �β � �z� f
� �z� d�z

where f
� �z� is thejoint p.d.f. of theZi ’s.

Convertcartesianto sphericalco-ordinates@ m A Sm,�β A �
r � �θ � ; �z A �

ρ � �α �
where�θ � �

θ1 � θ2 � �	��� θm� 1
� and �α � �

α1 � α2 � ���	� αm� 1
� are

�
m � 1� -dimensionalanglevectors.Theintegralbecomes

E � AUC
�
r � �θ �!� �B> #α >

ρ
Jm

�
ρ � �α � g �

rρcos
� �θ � �α ��� fs

�
ρ � �α � dρd �α

where Jm
�
ρ � �α � � ρm� 1

m� 2

∏
l � 1

�
sinαl

� m� 1 � l

is the Jacobianfor the changeof co-ordinates@ m A Sm,
and fs

�
ρ � �α � is the p.d.f. of

�
r � �θ � , expressedin the m-

dimensionalsphericalco-ordinatesystem.Sinceonly the
signof theargumentto g

� � matters,

E � AUC
� �θ �!� �?> #α g

�
cos

� �θ � �α �	� >
ρ

Jm
�
ρ � �α � fs

�
ρ � �α � dρd �α

Thendenoting h
� �α � � >

ρ
Jm

�
ρ � �α � fs

�
ρ � �α � dρ

E � AUC
� �θ �!� canbeexpressedasa convolution in m � 1 di-

mensions,asfollows.

E � AUC
� �θ �!� �?> #α g

�
cos

� �θ � �α �	� h � �α � d �α
h
� �α � is the marginal p.d.f. of the

�
m � 1� -dimensional

solid angle �α. Sinceg
�
cos

� ��� is a rectanglefunction,and
convolution with a rectanglefunctionhasa smoothingef-
fect which will tend to eliminate local extrema,we can
assertthat if h

� �α � is unimodal,then E � AUC
� �θ �!� must be

unimodal. Further, even if h
� �α � is multi-modal, the lo-

cal extremamay well be eliminatedby convolution with
g
�
cos

� ��� .
This, however, holdsfor theexpectedrankerror, which is
whatthesurfaceAUC

� �θ � approachesastheamountof data
approachesinfinity. In reality theamountof availabledata
is finite, so somelocal minima may arisedue to noise-
i.e. AUC

� �θ � fluctuatesaroundits expectedvalue. Given
sufficient data,thesefluctuationswill besmall,andhence
shouldbe closeto the locationof the expectedminimum,
wherethe gradientof E � AUC

� �θ �!� is small. This hasbeen
verifiedempiricallyby graphingtheerrorsurfacefor a va-
riety of threedimensionalproblems– astheamountof data
increases,thelocalminimamovecloserto oneanotherand
becomefewer, until thereis only one.

3.4.Starting Point

Sincelocal minima do not play a significantrole, the se-
lectionof a startingpoint for gradientdescentshouldhave
minimal impacton thefinal solution.It mayhoweverhave
animpactoncomputationalefficiency. Henceit isdesirable
to find a startingpoint that is likely to becloseto thefinal
solution.Intuitively, if a predictorhasa largedifferencein
classspecificmeans,it shouldbeanimportantpredictorin
themodel. Also if theclassspecificvariancesfor a given
predictorarelow, it shouldalsobeanimportantpredictorin



Table1: Pseudocodefor RankOpt algorithm with PSF

for i = 1 to # of PSF sub-f olds



(Section 3.7)
initialise saturation probability , Pr(sat) (Section 3.2)
while (Pr(sat) � threshold)



calculate sphere radius, : B (Section 3.2)
set star ting point (Section 3.4)
perf orm gradient descent over the hyper -surface

defined by Rl � i � 1
� �β � , constrained to the sphere of radius: B (Section 3.1)

increase Pr(sat)�
select �β for sub-f old i and save as �βi (Section 3.6)�

calculate the final �β value by averaging �βi over all i

themodel.Defining∆µi � E � X �i � � E � X �i � to bethediffer-
encein classspecificmeans,or the “classseparation”for
predictori, andVi � var

�
X �i � � var

�
X �i � to be the “class

specificvariance”.weselectasa startingpoint

βi � ∆µi

Vi
�C7 i � 1 �	��� m

In practice,we linearlyscaleeverypredictorvariablexi by
∆µi � Vi, so that in the scaledspaceour startingpoint be-
comessimply �β � �

1 � 1 � ���	� � 1� .
3.5.Plateaus

PlottingtheRl
� �β � surfacefor awidevarietyof threedimen-

sionaldatasetsshowedthatindeedlocalminimaonly occur
wherethey areexplainableby thefinite natureof thedata.
Howevertheunderlyingminimumis oftenverybroad,with
a low gradient“plateau” aroundit. It is difficult to do
gradientdescentacrosstheseplateaus,sinceevena small
amountof noisecreateslocal minima. Handlingtheseis a
subjectof its own, beyondthescopeof thispaper. For now
we settlefor developinga heuristicbasedlinear rescaling,
to partly eliminateplateaus.This is appliedin additionto
thescalingof Section 3.4.

3.6.Model SelectionRule

Recall that in Eq. 2 an O
�
n� rank statisticwas defined.

Note that one could easily offset either the minority or
majority classdatarelative to theotherby a observations,
a � 1 �	��� P � 1, yielding theequivalentstatistic

Rl � a � �β � � 1
Q ∑

k

s ( �β � � �x� " k� a% modP � �x�k � )
Rl � a � �β � hasthesamemeanandvariancefor all valuesof a.

For any a ,� 0 it is clearlysomewhatcorrelatedwith Rl
� �β � ,

but it nonethelessyieldsa convenientvalidationsetwhich
is at leastpartly independentof thetrainingset,andcomes

at no extra cost (in the sensethat it comeswholly from
within thetrainingdata).To seeexactly to whatextentthis
validationstatisticis independent,wewouldliketo find the
valueof corr

�
Rl

� �β � � Rl � a � �β �	� � a ,� 0. We notethat

R
� �β � � 1

P

P

∑
a� 1

Rl � a � �β �
D var

�
R
� �β �	� � 1

P2var ' P

∑
a� 1

Rl � a � �β � *
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∑
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var
�
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∑
a1 � 1

P

∑
a2 � 1

cov
�
Rl � a1

� �β � � Rl � a2

� �β ��� * �
wherea1 ,� a2. Thecovariancetermhasthesamevaluefor
all a1 � a2, sosimplify theaboveexpressionasfollows.

var
�
R
� �β ��� � 1

P
var

�
Rl

� �β ��� � P � 1
P

cov
�
Rl

� �β � � Rl � a � �β �	�
dividing by 1

Pvar
�
Rl

� �β �	� andthenrearranginggives

corr
�
Rl

� �β � � Rl � a � �β �	� � 1
P � 1

' P
Le

� 1*
Given the rangeof valuesof Le foundempirically in Sec-
tion 2.2,wecansafelyassumethat P

Le
/ 1 sowehave

corr
�
Rl

� �β � � Rl � a � �β �	�10 1� Le

Thisgivesvaluesof corr
�
Rl

� �β � � Rl � a � �β �	� in therange� 12 � 2
3
� .

Recall(Section3.2) that training involvesa seriesof gra-
dient descentruns with increasingvaluesof B, eachone
convergingto its own local minimum. Which oneof these
minima do we selectasbeingclosestto optimal? A first
guessmightbethatthe �β correspondingto thelargestvalue
of B shouldbe selected,but this tendsto causeovertrain-
ing. Sowe selectthe �β which minimisesRl � a � �β � , for some
arbitrarily chosenvalueof a. It wasfoundempiricallythat
despitethecorrelationbetweenthetrainingandvalidation
statistics,sucha selectionrule usually resultsin a model
thatis verycloseto optimalon thetestset.

3.7.Sub-Folds

The existence of a semi-independentrank statistic,
Rl � a � �β � � a ,� 0, can be usedto advantagein a way that
goesbeyonddevelopmentof a modelselectionrule. It can
beusedto supplya second,albeit correlated,trainingset,
whichcanbeusedto augmentthetrainingitself.

Onecanexecutetwo totally separategradientdescenttrain-
ing runs,onein which the error surfaceis definedby the
statistic Rl

� �β � , and the other in which it is definedby



Rl � a � �β � � a ,� 0. Theseyield two separateestimatesof the

optimal �β, which areat leastpartially independent.Intu-
itively, averagingthesetwo estimatesis likely to yield a
bettertestresult,becauseany errorcomponentsthatarein
oppositedirectionswill cancel.

We refer to this techniqueas pseudosub-folding(PSF).
PSFcanbeextended,of course,tomorethantwosub-folds.

4. Experimental Description and Results

Two setsof experimentswereperformed. The first tests
theperformanceof RankOptwith varioussettingsof PSF,
namely:no PSF;PSFwith two sub-folds(PSF2);andPSF
with threesub-folds(PSF3).Thesecondsetof experiments
comparesthebestof thesewith theotherlinearclassifiers.

For theSVM classifiersandthecentroidclassifier, thescal-
ing of thedatacansignificantlyimpacttheclassifier’s per-
formance.Further, the SVM classifiers’performancecan
besignificantlyaffectedby thepenaltyparameterof theer-
ror term.TheSVM’sandthecentroidclassifierwerethere-
fore run with both thesamescalingasRankOpt,andwith
no scalingat all. Further, the SVM’s wererun with three
differentvaluesof penaltyparameter– 10,103, and105. In
eachcasethebestresultonly is quoted.

4.1.Datasets

Experimentswereperformedoneightdatasets,from differ-
entdomainsandof differentlevelsof difficulty. Theminor-
ity classwastypically between10%and40%of thedata.

Forest Cover Type (forest): Datawasdownloadedfrom
theUCI KDD repository. It classifies30 - 30metrecellsof
forestintooneof sevencovertypesbasedonthecell’sdom-
inanttreetype.Thetwo mostpopulousclasses(Spruce-Fir
andLodgepolePine)wereextracted,andthe binary clas-
sification task consistedof distinguishingbetweenthese
classes.A total of 10 predictorswere used,thesebeing
the10continuouspredictorssuppliedfor thedata.

HousingMortgage(housing): Datawasdownloadedfrom
theU.S.CensusBureau5% PublicUseMicrodataSample
(PUMS) containingindividual recordsof the characteris-
ticsof a5%sampleof housingunitsfor thestateof Florida.
Amongstall housingunits which hada mortgage,the bi-
naryclassificationtaskwastodistinguishbetweenthosefor
whichthemortgagehadbeenpaidoff andthosefor whichit
hadn’t. The12continuousor ordinalpredictorvariablesin-
cludedthetotal householdincome,theroomandbedroom
counts,ratecosts(electricity, waterandgas),theproperty
tax rate,insurancerateandpropertyvalue.

Telecommunications Churn (churn10 and churn31):
Dataonmobilephonecustomersof alargetelecommunica-
tionscarrierwasusedto learnto distinguishbetweenthose

thatchurnedto a competitorin thefollowing threemonths
andthosethatdidn’t. After rebalancing,1 theminority class
was ; 40%of thedata.A setof 31continuousandordinal
variableswasusedfor prediction,includingbill andprod-
uct information.Further, a subsetof 10 of thesepredictors
wasselected,noneof which wereparticularlypredictive,
resultingin a difficult to learntask.Thismadeupasecond
telecommunicationsbinaryclassificationtask.

Marital Status (married) : As for the housingmortgage
dataset,datawas downloadedfrom the U.S. CensusBu-
reauPUMS.From this dataseta 1% sampleof individual
recordsfrom thestateof Californiawasextracted.Thebi-
naryclassificationtaskwasto distinguishbetweenindivid-
ualswho have beenmarried(whethercurrentlymarriedor
not), with individualswho have never beenmarried. The
predictorswere11continuousvariables,includingonesre-
lating to age,educationlevel, income,andworkinghours.

Intrusion Detection (intrusion) : This datasetconsistsof
a randomsampleof the intrusiondetectiondatausedfor
the 1999 KDD Cup competition. The classificationtask
wasto distinguishbetweennormaluseandintrusion. The
10 predictorsusedwerea subsetof all continuouspredic-
torsavailablewith thedata,ascertaincontinuouspredictors
wereomittedto make theproblemmorechallenging.

Handwritten Digit Recognition(digit) : Datawasdown-
loadedfrom theMNIST handwrittendigit database.Each
observationin this datasetconsistsof a bitmapof 28 - 28
grayscalevalues,representinga handwrittendigit. Each
observationwasconvertedto lowerresolution(7 - 7pixels)
to reducethedimensionalityof theproblem. Theclassifi-
cationtaskwasto distinguishbetweenthedigit ‘0’ andall
otherdigits. To make theproblemmorechallenging,only
thetop3 rowsof pixels(21pixels)wereused.Further, pix-
els nearthe cornerswhich containalmostno information
werediscarded.Theresultwasa17dimensionaldataset.

WeatherSeasonPrediction (weather): Thereis a grid of
weatherbuoysin theequatorialregionof thePacificOcean.
Thesetake meteorologicalmeasurements,including wind
speedanddirection,air andseatemperature,andhumidity
at regular intervals. The resultingdatais availableat the
websiteof theTropicalAtmosphereOceanproject.Hourly
measurementsfor all buoysovertheperiodfrom May 1999
to April 2000 were downloaded. The classificationtask
wastodistinguishmeteorologicalreadingsmadeduringthe
northernhemisphereAutumnmonths(October, November
andDecember)from thosemadein othermonths.

1Theproportionof minority classobservationsfor thisdataset
is verysmall.Hencethedatawasrebalancedsoasto includesuf-
ficient minority classobservationswithout usinga prohibitively
largeamountof majorityclassdata.TheRankOptalgorithmdoes
not requirethis rebalancing,but doesrequiresufficient observa-
tionsof eachclassfor training.



4.2.Experimental Procedure

To lendstatisticalsignificanceto our results,it is desirable
to apply eachclassificationmethodto a large numberof
independenttrainingsets,andaveragetheAUCsof there-
sulting modelson the testsets. This necessitatesthat the
trainingsetsfor multiple runsof eachalgorithmbemutu-
ally exclusiveof oneanother. Henceeachdatasetwassplit
into n mutually exclusive folds, and in eachrun of each
classifier, training wasperformedusingonefold, andthe
resultingmodelwastestedon the remainingn � 1. With
the exceptionof the digit dataset,which contains60,000
observations, each of the datasetscontainsa minimum
of 180,000observations. So from eachof thesedatasets
180,000observationswererandomlyselected.Thesewere
split randomlyinto 60 mutually exclusive folds (n � 60),
with 3000observationseach.60runsof eachclassification
algorithm(RankOpt,linearregression,SVM-L1, SVM-L2,
andcentroid) werethenperformed,eachusinga different
oneof the60 folds for training(andhencevalidation),and
the other59 for testing,asdescribedabove. This yielded
60 test resultsfor eachclassifierfor eachdataset. This
experimentalprocedurewasthenrepeatedusingdifferent
amountsof trainingdata– 30 folds of 6,000observations,
15 - 12,000,9 - 20,000,and6 - 30,000.Theexperimental
procedurefor thedigit datasetwasidenticalexceptthatthe
numberof foldswasdividedby 3 in eachcase.

4.3.Effect of PSF

Figure1 shows the resultsof the first setof experiments,
namely, measuringtheeffect of PSFon RankOpt’s perfor-
mance.We measurethemeanof theAUC on the testsets
(y-axis),ateachtrainingdataquantity(x-axis),for all eight
datasets,for all threePSFsettings.Verticalbarsshow aone
standarderror confidenceinterval. Thestandarderrordid
not vary muchwith trainingsetsize,henceit is shown for
onetrainingsetsizeonly. It appearsthatPSFhasa benefi-
cial effectfor all datasetsexceptfor churn10,intrusion,and
perhapsweather, whereit hasno significantimpact.How-
ever thedifferencebetweenPSF2andPSF3is minimal for
all eightdatasets.Therefore,for thepurposesof comparing
with otherclassifiers,weselectRankOptwith PSF2.

4.4.Comparisonwith Other Linear Classifiers

Figure 2 shows how RankOptwith PSF2compareswith
theotherclassifiers.Themeaningof theaxesis asin Fig-
ure 1. The SVM-L1 algorithm is computationallyinten-
sive,andresultscouldnot begeneratedin reasonabletime
for any morethan6000trainingobservations,soonly these
are shown. Error barsarenot shown as they are mostly
insignificantrelative to the differencein classifierperfor-
mance. For six of the eight datasets,RankOptis a clear
winner. For the forestdata,linear regressionis compara-
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Figure1. Rank statisticusing RankOptoptimisation,with three
differentlevelsof PSF.

ble to RankOpt,even outperformingit when the amount
of training data is limited, and SVM-L1 performsonly
marginally worsethanRankOpt.For thedigit data,SVM-
L2 performsonly marginally worsethan RankOpt. The
simplecentroidclassifieris usuallyby far the worst, and
oftendoesn’t evenmake it onto thechart. Note that there
is noclear“runnerup” to RankOptamongsttheotherclas-
sifiers,with eachbeingfarworsethanRankOptat leastoc-
casionally– linearregressionfailsto makeit onto thechart
for thehousingdataset,andtheSVM’s fail to makeit onto
thechartfor theweatherdataset.

It is noteworthy that the SVM andcentroidclassifiersare
highly sensitive to how theoriginaldataarescaled.SVM’s
alsohave thedrawbackthatthey requireapenaltyparame-
ter to beset,andresultscanbequitesensitive to this. For
thechurndatasetwith 31dimensions,thelinearregression
packageoccasionallyreporteda warning that the matrix
was ill-conditioned,andhenceresultsmay be unreliable.
It is expectedthatthisproblemwouldarisewith increasing
frequency asthenumberof predictorsincreases.

In termsof computationalefficiency, it is worthnotingthat
unlike someother linear classifiers,RankOptis linear in
both the numberof training observationsandin the num-
berof predictors.SinceneithertheRankOptcodenor the
SVM codeusedto this point hasbeenoptimised,it would
bedifficult to draw any conclusionsfrom adirectcompari-
sonof executiontimesof thevariousclassifiers.

5. Comparisonwith RelatedWork

We note that other algorithms have been developed in
whichtheobjectivefunctioncloselyapproximatestheAUC
(Yanetal.,2003;Cortes& Mohri, 2004).Thesediffer from
ours in several importantways. In particular, they yield
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Figure2. RankOptwith PSFmeasuredagainstotherclassifiers

non-linearmodels,whereasRankOpt’s modelsarestrictly
linear. Therefore,directcomparisonbetweenRankOptand
theseothertechniqueswould beappropriateonly afterex-
tendingRankOptto non-linearspace.(Section6).

In Yanetal. (2003),thesigmoidapproximationof theAUC
is considered,but rejectedin favour of a polynomialap-
proximation. Theclaim is madethat thesigmoidapprox-
imation with a small β is not accurateenough,and with
a large β onecreatestoo many steepgradients.Although
theseobservationsaretrue,we have shown thatby usinga
seriesof increasingβ values,this tradeoff canbeavoided.

Cortes& Mohri (2004) use boosteddecisionstumpsto
optimise the AUC. This method is quite different from
RankOpt’s gradientdescentover therankstatisticsurface.
Comparisonbetweentheir methodanda non-linearexten-
sionof RankOptwouldbeof interest.

6. Conclusionand Future Work

We have introducedRankOpt, a linear binary classifier
which optimisesAUC. RankOptwascomparedto a num-
berof otherlinearbinaryclassifiers,andin almostall cases
wasfoundto significantlyoutperformthem.

This work hasfocussedon predictiontasksin which the
predictorsareall eithercontinuousor ordinal. It is planned
that this will beextendedto includebinaryvaluedpredic-
tors,enablingthedevelopmentof anon-linearclassifiervia
binarisationof continuousandordinalpredictors.

Scalingof the datahasbeenfound to significantlyaffect
RankOpt’s performance.This is an issuethat we plan to
exploremorethoroughlyin thefuture.
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