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Abstract

The assumptions behind linear classifiers for cat-
egorical data are examined and reformulated in
the context of the multinomial manifold, the sim-
plex of multinomial models furnished with the
Riemannian structure induced by the Fisher in-
formation. This leads to a new view of hyper-
plane classifiers which, together with a general-
ized margin concept, shows how to adapt existing
margin-based hyperplane models to multinomial
geometry. Experiments show the new classifica-
tion framework to be effective for text classifica-
tion, where the categorical structure of the data is
modeled naturally within the multinomial family.

1. Introduction

Linear classifiers are a mainstay of machine learning algo-
rithms, forming the basis for techniques such as the per-
ceptron, logistic regression, boosting, and support vector
machines. A linear classifier, parameterized by a vector
w ∈ R

n, classifies examples according to the decision rule
ŷ(x) = sign(

∑

i wiφi(x)) = sign(〈w, x〉) ∈ {−1, +1},
following the common practice of identifyingx with the
feature vectorφ(x). The differences between different lin-
ear classifiers lie in the criteria and algorithms used for se-
lecting the parameter vectorw based on a training set.

Geometrically, the decision surface of a linear classi-
fier is formed by a hyperplane or linear subspace inn-
dimensional Euclidean space,{x ∈ R

n : 〈x, w〉 = 0}
where〈·, ·〉 denotes the Euclidean inner product. (In both
the algebraic and geometric formulations, a bias term is
sometimes added; we prefer to absorb the bias into the no-
tation given by the inner product, by settingxn = 1 for all
x.) The linearity assumption made by such classifiers can
be justified on purely computational grounds; linear clas-
sifiers are generally easy to train, and the linear form is
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simple to analyze and compute.

Modern learning theory emphasizes the tension between
fitting the training data well and the more desirable goal
of achieving good generalization. A common practice is
to choose a model that fits the data closely, but from a re-
stricted class of models. The model class needs to be suf-
ficiently rich to allow the choice of a good hypothesis, yet
not so expressive that the selected model is likely to overfit
the data. Hyperplane classifiers are attractive for balanc-
ing these two goals. Indeed, linear hyperplanes are a rather
restricted set of models, but they enjoy many unique prop-
erties. For example, given two pointsx, y ∈ R

n, the set
of points equidistant fromx and y is a hyperplane; this
lies behind the intuition that a hyperplane is the correct ge-
ometric shape for separating sets of points. Similarly, a
hyperplane is the best decision boundary to separate two
Gaussian distributions of equal covariance. Another distin-
guishing property is that a hyperplane inR

n is isometric to
R

n−1, and can therefore be thought of as a reduced dimen-
sion version of the original feature space. Finally, a linear
hyperplane is the union of straight lines, which are distance
minimizing curves, or geodesics, in Euclidean geometry.

However, a fundamental assumption is implicitly associ-
ated with linear classifiers, since they are based crucially
on the use of the Euclidean geometry ofR

n. If the data or
features at hand lack a Euclidean structure, the arguments
above for linear classifiers break down; arguably, there is
lack of Euclidean geometry for the feature vectors in most
applications. This paper studies analogues of linear hyper-
planes as a means of obtaining simple, yet effective classi-
fiers when the data can be represented in terms of a natural
geometric structure that is only locally Euclidean. This is
the case for categorical data that is represented in terms of
multinomial models, for which the associated geometry is
spherical.

Because of the complexity of the notion of linearity in
general Riemannian spaces, we focus our attention on the
multinomial manifold, which permits a relatively simple
analysis. The multinomial manifold and its hyperplanes are
the topics of Sections 2-4. The construction and training of
margin based models is discussed in Section 5, with an em-



phasis on spherical logistic regression. A brief examination
of linear hyperplanes in general Riemannian manifolds ap-
pears in Section 6 followed by experimental results for text
classification given in Section 7. Concluding remarks are
made in Section 8.

2. The Multinomial Manifold

The multinomial manifold is the parameter space of the
multinomial distribution

P
n =

{

x ∈ R
n+1 : ∀j xj ≥ 0,

n+1
∑

i=1

xi = 1

}

(1)

equipped with the Fisher information metricg

gx(u, v) =

n+1
∑

i=1

uivi

xi

x ∈ P
n u, v ∈ TxP

n

whereu, v are vectors tangent toPn atx, represented in the
standard basis ofRn+1. Note that unlike conventional no-
tation in statistics we denote the multinomial parameters by
x. The reason for doing so is that we identify multinomial
parameters with text documents, as described in further de-
tail in Section 7.

It is a well known fact that the multinomial manifold is
isometric to the positiven-sphere

S
n
+ =

{

x ∈ R
n+1 : ∀j xj ≥ 0,

n+1
∑

i=1

x2
i = 1

}

with the metric inherited from the embedding Euclidean
space (Kass, 1989). The isometryπ : P

n → S
n
+, π(x) =√

x1, . . . ,
√

xn+1), allows us to perform our calculations
on the positive sphere and apply them toP

n throughπ−1.
Of particular interest is the fact that the geodesic distance
betweenx, y ∈ P

n may be now computed as the Euclidean
length of the great circle connectingπ(x) andπ(y), specif-
ically,

d(x, y) = arccos

(

n+1
∑

i=1

√
xiyi

)

.

Using the above isometry we focus our attention, in the
next few sections, on hyperplanes and margins on then-
sphereSn and the positiven-sphereSn

+. The results devel-
oped there will apply directly to the multinomial manifold
when followed byπ−1.

It is worth mentioning that the singular boundary ofP
n

andS
n
+ prevents them from being differentiable manifolds

or even differentiable manifolds with boundary. However,
this is a technical issue that can be overcome by taking the
interior of P

n andS
n
+. Instead of points on the boundary,

we can now take points arbitrarily close to it, in both the
Euclidean and the geodesic metric.

We do not explore here the many interesting and motivat-
ing properties of the Fisher information metric. For details
on this topic see Kass and Voss (1997) and Amari and Na-
gaoka (2000). Spivak (1975) contains a comprehensive in-
troduction to Riemannian geometry.

3. Hyperplanes and Margins onS
n

This section generalizes the notion of linear hyperplanes
and margins to then-sphereSn = {x ∈ R

n+1 :
∑

i x2
i =

1}. A similar treatment on the positiven-sphereSn
+ is more

complicated, and is postponed to the next section. In the re-
mainder of the paper we denote points onP

n, Sn or S
n
+ as

vectors inR
n+1 using the standard basis of the embedding

space. The notation〈·, ·〉 and‖·‖ will be used for the Eu-
clidean inner product and norm.

A hyperplane onSn is defined asHu = S
n ∩ Eu where

Eu is ann-dimensional linear subspace ofR
n+1 associated

with the normal vectoru. We occasionally need to refer to
the unit normal vector and denote it byû. Hu is ann − 1
dimensional submanifold ofSn which is isometric toSn−1

(Bridson & Haefliger, 1999). Using the common notion of
the distance of a point from a setd(x, S) = infy∈S d(x, y)
we make the following definitions.

Definition 1. LetX be a metric space. Adecision bound-
ary is a subset ofX that separatesX into two connected
components. Themargin of x with respect to a decision
boundaryH is d(x, H) = infy∈H d(x, y).

Note that this definition reduces to the common definition
of margin for Euclidean geometry and affine hyperplanes.

In contrast to Gous (1998), our submanifolds are intersec-
tions of the sphere with linear subspaces, not affine sets.
One motivation for the above definition of hyperplane as
the correct generalization of a Euclidean hyperplane is that
Hu is the set of points equidistant fromx, y ∈ S

n in the
spherical metric. Further motivation is given in Section 6.

Before we can obtain a closed form expression for margins
onS

n we need the following definitions.

Definition 2. Given a pointx ∈ R
n+1, we define itsreflec-

tion with respect toEu as

ru(x) = x − 2〈x, û〉û.

Note that if x ∈ S
n then ru(x) ∈ S

n as well, since
‖ru(x)‖2

= ‖x‖2 − 4〈x, û〉2 + 4〈x, û〉2 = 1.

Definition 3. The projectionof x ∈ S
n \ {û} on Hu is

defined to be

pu(x) =
x − 〈x, û〉û
√

1 − 〈x, û〉2
.



Note thatpu(x) ∈ Hu, since‖pu(x)‖ = 1 and 〈x −
〈x, û〉û, û〉 = 〈x, û〉 − 〈x, û〉 ‖û‖2

= 0. The term projec-
tion is justified by the following proposition.

Proposition 1. Letx ∈ S
n \ (Hu ∪ {û}). Then

(a) d(x, q) = d(ru(x), q) ∀q ∈ Hu

(b) d(x, pu(x)) = arccos
(

√

1 − 〈x, û〉2
)

(c) d(x, Hu) = d(x, pu(x)).

Proof. Sinceq ∈ Hu,

cos d(ru(x), q) = 〈x − 2〈x, û〉û, q〉
= 〈x, q〉 − 2〈x, û〉〈û, q〉
= 〈x, q〉 = cos d(x, q)

and(a) follows. Assertion(b) follows from

cos d(x, pu(x)) =

〈

x,
x − 〈x, û〉û
√

1 − 〈x, û〉2

〉

=
1 − 〈x, û〉2
√

1 − 〈x, û〉2
.

Finally, to prove(c) note that by the identitycos 2θ =
2 cos2 θ − 1,

cos(2d(x, pu(x))) = 2 cos2(d(x, pu(x))) − 1

= 1 − 2〈x, û〉2 = cos(d(x, ru(x)))

and henced(x, pu(x)) = 1
2d(x, ru(x)). The distance

d(x, q), q ∈ Hu cannot be any smaller thand(x, pu(x))
since this would result in a path fromx to ru(x) of length
shorter than the geodesicd(x, ru(x)).

Parts(b) and (c) of Proposition 1 provide a closed form
expression for theSn margin analogous to the Euclidean
unsigned margin|〈x, û〉|. Similarly, theS

n analogue of the
Euclidean signed marginy〈û, x〉 is

y
〈x, û〉
|〈x, û〉| arccos

(

√

1 − 〈x, û〉2
)

.

A plot of the signed margin as a function of〈x, û〉 and a
geometric interpretation of the spherical margin appear in
Figure 2.

4. Hyperplanes and Margins onS
n

+

A hyperplane on the positiven-sphereS
n
+ is defined as

Hu+ = Eu ∩ S
n
+, assuming it is non-empty. This defi-

nition leads to a margin conceptd(x, Hu+) different from
theS

n margind(x, Hu)

d(x, Hu+) = inf
y∈Eu∩Sn

+

d(x, y)

≥ inf
y∈Eu∩Sn

d(x, y) = d(x, Hu).

x

r

q

pu(x)

Figure 1.The spherical law of cosines impliesd(r, x) ≤ d(q, x).

The infimum above is attained by the continuity ofd
and compactness ofEu ∩ S

n
+ justifying the notationq =

arg miny∈Eu∩Sn

+
d(x, y) as a point realizing the margin

distanced(x, Hu+).

The following theorem will be useful in computing
d(x, Hu+). For a proof see Bridson and Haefliger (1999)
page 17.

Theorem 1. (The Spherical Law of Cosines)
Consider a spherical triangle with geodesic edges of
lengthsa, b, c, whereγ is the vertex angle opposite to edge
c. Then

cos c = cos a cos b + sin a sin b cos γ.

We have the following corollaries of Proposition 1.

Proposition 2. If x ∈ S
n
+ andpu(x) ∈ S

n
+ then

pu(x) = arg min
y∈Sn

+∩Eu

d(x, y)

d(x, Hu) = d(x, Hu+)

Proof. This follows immediately from the fact that
pu(x) = arg miny∈Sn∩Eu

d(x, y) and fromS
n
+ ∩ Eu ⊂

S
n ∩ Eu.

Proposition 3. For x ∈ S
n
+ andpu(x) 6∈ S

n
+ we have

q = arg min
y∈Sn

+∩Eu

d(x, y) ∈ ∂S
n
+

where∂S
n
+ is the boundary ofSn

+.

Proof. Assume thatq 6∈ ∂S
n
+ and connectq andpu(x) by

a minimal geodesicα. Sincepu(x) 6∈ S
n
+, the geodesicα

intersects the boundary∂S
n
+ at a pointr. Sinceq, pu(x) ∈

Hu andHu is geodesically convex,α ⊂ Hu. Now, since
pu(x) = argminy∈α d(y, x), the geodesic fromx to pu(x)
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Figure 2.The signed margin sign(〈x, ŷ〉)d(x,Hu) as a function of〈x, û〉, which lies in the interval[−π

2
, π

2
] (left) and a geometric

interpretation of the spherical margin (right).

andα intersect orthogonally (this is an elementary result in
Riemannian geometry, e.g. Lee (1997) p. 113). Using the
spherical law of cosines, applied to the spherical triangles
(q, x, pu(x)) and (r, x, pu(x)) (see Figure 1), we deduce
that

cos d(x, q) = cos d(q, pu(x)) cos d(x, pu(x))

≤ cos d(r, pu(x)) cos d(x, pu(x))

= cos d(x, r)

Hencer is closer tox thanq. This contradicts the definition
of q; thusq can not lie in the interior ofSn

+.

Before we proceed to computed(x, Hu+) for pu(x) 6∈ S
n
+

we define the following concepts.

Definition 4. Theboundaryof S
n andS

n
+ with respect to

A ⊂ {1, . . . , n + 1} is

∂AS
n = S

n ∩ {x ∈ R
n+1 : ∀i ∈ A, xi = 0} ∼= S

n−|A|

∂AS
n
+ = S

n
+ ∩ {x ∈ R

n+1 : ∀i ∈ A, xi = 0} ∼= S
n−|A|
+

Note that ifA ⊂ A′ then∂A′S
n
+ ⊂ ∂AS

n
+. We use the nota-

tion 〈·, ·〉A and‖·‖A to refer to the Euclidean inner product
and norm, where the summation is restricted to indicesnot
in A.

Definition 5. Givenx ∈ S
n we definex|A ∈ ∂AS

n as

(x|A)i =

{

0 i ∈ A

xi/ ‖x‖A i 6∈ A .

We abuse the notation by identifyingx|A also with the cor-
responding point onSn−|A| under the isometry∂AS

n ∼=

S
n−|A| mentioned in Definition 4. Note that ifx ∈ S

n
+

thenx|A ∈ ∂AS
n
+. The following proposition computes

the S
n
+ margind(x, Hu+) given the boundary set ofq =

arg miny∈Sn

+∩Eu
d(y, x).

Proposition 4. Let û ∈ R
n+1 be a unit vector,x ∈ S

n
+

andq = argminy∈Sn

+∩Eu
d(y, x) ∈ ∂AS

n
+ whereA is the

(possibly empty) setA = {1 ≤ i ≤ n + 1 : qi = 0}. Then

d(x, Hu+) = arccos
(

‖x‖A

√

1 − 〈x|A, û|A〉2
)

Proof. If pu(x) ∈ S
n
+ then the proposition follows from

earlier propositions and the fact that whenA = ∅, ‖x‖A =
‖x‖ = 1 andv|A = v. We thus restrict our attention to the
case ofA 6= ∅.

For all I ⊂ {1, . . . , n + 1} we have

arg min
y∈∂ISn

+∩Eu

d(x, y) = arg max
y∈∂I Sn

+∩Eu

〈x, y〉

= arg max
y∈∂I Sn

+∩Eu

〈x, y〉I

= arg max
y∈S

n−|I|
+ ∩Eu|I

‖x‖I 〈x|I , y〉

= arg min
y∈S

n−|I|
+ ∩Eu|I

d(x|I , y) .

It follows that

q|A = argmin
y∈S

n−|A|
+ ∩Eu|A

d(x|A, y). (2)

By Proposition 3 applied toSn−|A| we have that sinceq|A
lies in the interior ofSn−|A| then so does

pu|A(x|A) =
x|A − 〈x|A, û|A〉û|A
√

1 − 〈x|A, û|A〉2
, x|A, û|A ∈ S

n−|A|
+ .



Using Proposition 1 applied toSn−|A| we can compute
d(x, Hu+) as

d(x, pu|A(x|A)) = arccos

〈

x,
x|A − 〈x|A, û|A〉û|A
√

1 − 〈x|A, û|A〉2

〉

= arccos
‖x‖A − 〈x|A, û|A〉〈x, û|A〉

√

1 − 〈x|A, û|A〉2

= arccos
(

‖x‖A

√

1 − 〈x|A, û|A〉2
)

.

In practice the boundary setA of q is not known. In our
experiments we setA = {i : (pu(x))i ≤ 0}; in numerical
simulations in low dimensions, the true boundary never lies
outside of this set.

5. Logistic Regression on the Multinomial
Manifold

The logistic regression modelp(y |x) = 1
Z

exp(y〈x, w〉),
with y ∈ {−1, 1}, assumes Euclidean geometry. It can be
reexpressed as

p(y |x ; u) ∝ exp (y ‖u‖ 〈x, û〉)
= exp (y sign(〈x, û〉) θd(x, Hu))

whered is the Euclidean distance ofx from the hyperplane
that corresponds to the normal vectorû, and whereθ = ‖u‖
is a parameter.

The generalization to spherical geometry involves simply
changing the margin to reflect the appropriate geometry:

p(y|x ; û, θ) ∝
exp

(

y sign(〈x, û〉) θ arccos
(

‖x‖A

√

1 − 〈x|A, û|A〉2
))

.

Denotingsx = y sign(〈x, û〉), the log-likelihood of the ex-
ample(x, y) is

`(û, θ ; (x, y))

= − log

(

1 + e
−2sxθ arccos

(

‖x‖
A

√
1−〈x|A,û|A〉2

)

)

.

We compute the derivatives of the log-likelihood in several
steps, using the chain rule and the notationz = 〈x|A, û|A〉.
We have

∂ arccos
(

‖x‖A

√
1 − z2

)

∂z
=

z ‖x‖A
√

1 − ‖x‖2
A (1 − z2)

√
1 − z2

and hence
∂`(û, θ ; (x, y))

∂z
= (3)

2sxθz ‖x‖A /(1 + e2sxθ arccos(‖x‖
A

√
1−z2))

√

1 − ‖x‖2
A (1 − z2)

√
1 − z2

.

The log-likelihood derivative with respect tôui is equation
(3) times

∂〈x|A, û|A〉
∂ûi

=

{

0 i ∈ A
(x|A)i

‖û‖
A

− ûi
〈x|A,û|A〉

‖u‖2
A

i 6∈ A .

The log-likelihood derivative with respect toθ is

∂`(û, θ ; (x, y))

∂θ
=

2sx arccos(‖x‖A

√
1 − z2)

1 + e2sxθ arccos(‖x‖
A

√
1−z2)

.

Optimizing the log-likelihood with respect tôu requires
care. Following the gradient̂u(t+1) = û(t) + α∇`(û(t))
results in a non-normalized vector. Performing the above
gradient descent step followed by normalization has the ef-
fect of moving along the sphere in a curve whose tangent
vector atû(t) is the projection of the gradient onto the tan-
gent spaceTû(t)S

n. This is the technique used in the exper-
iments described in Section 7.

Note that the spherical logistic regression model hasn + 1
parameters in contrast to then+2 parameters of Euclidean
logistic regression. This is in accordance with the intu-
ition that a hyperplane separating ann-dimensional man-
ifold should haven parameters. The extra parameter in the
Euclidean logistic regression is an artifact of the embed-
ding of then-dimensional multinomial space, on which the
data lies, into an(n + 1)-dimensional Euclidean space.

The derivations and formulations above assume spherical
data. If the data lies on the multinomial manifold, the isom-
etry π mentioned in Section 2 has to precede these calcu-
lations. The net effect is thatxi is replaced by

√
xi in the

model equation, and in the log-likelihood and its deriva-
tives.

Synthetic data experiments contrasting Euclidean logistic
regression and spherical logistic regression onS

n
+, as de-

scribed in this section, are shown in Figure 3. The leftmost
column shows an example where both models give a simi-
lar solution. In general, however, as is the case in the other
two columns, the two models yield significantly different
decision boundaries.

6. Hyperplanes in Riemannian Manifolds

The definition of hyperplanes in general Riemannian mani-
folds has two essential components. In addition to discrim-
inating between two classes, hyperplanes should be regular
in some sense with respect to the geometry. In Euclidean
geometry, the two properties of discrimination and regular-
ity coincide, as every affine subspace of dimensionn − 1
separatesRn into two regions. In general, however, these
two properties do not necessarily coincide, and have to be
considered separately.



Figure 3.Experiments contrasting Euclidean logistic regression (top row) with multinomial logistic regression (bottom row) for several
toy data sets inP2.

The separation property implies that ifN is a hyperplane of
M thenM \ N has two connected components. Note that
this property is topological and independent of the metric.
The linearity property is generalized through the notion of
autoparallelism explained below. The following definitions
and propositions are taken from Spivak (1975), Volume 3.
We assume that∇ is the connection inherited from the met-
ric g.

Definition 6. Let M be a Riemannian manifold with con-
nection∇. A submanifoldN ⊂ M is auto-parallelif par-
allel translation inM along a curveC ⊂ N takes vectors
tangent toN to vectors tangent toN .

Proposition 5. A submanifoldN ⊂ M is auto-parallel if
and only if

X, Y ∈ TpN ⇒ ∇XY ∈ TpN.

Definition 7. A submanifoldN of M is totally geodesic at
p ∈ N if every geodesicγ in M with γ(0) = p, γ′(0) ∈
TpN remains inN on some interval(−ε, ε). The submani-
fold N is said to be totally geodesic if it is totally geodesic
at every point.

As a consequence, we have thatN is totally geodesic if and
only if every geodesic inN is also a geodesic inM .

Proposition 6. LetN be a submanifold of(M,∇). Then

1. If N is auto-parallel inM thenN is totally geodesic.

2. If M is totally geodesic and∇ is symmetric thenM is
autoparallel.

Since the metric connection is symmetric, the last proposi-
tion gives a complete equivalence between auto-parallelism
and totally geodesic submanifolds.

We can now define linear hyperplanes on Riemannian man-
ifolds.

Definition 8. A linear decision boundaryN in M is an
autoparallel submanifold ofM such thatM \ N has two
connected components.

Several observations are in order. First note that ifM is
an n-dimensional manifold, the separability condition re-
quiresN to be an(n − 1)-dimensional submanifold. It
is easy to see that every affine subspace ofR

n is totally
geodesic and hence autoparallel. Conversely, since the met-
ric connection is symmetric, every auto-parallel submani-
fold of Euclidean space that separates it is an affine sub-
space. As a result, we have that our generalization does
indeed reduce to affine subspaces under Euclidean geom-
etry. Similarly, the above definition reduces to spherical
hyperplanesHu∩S

n andHu∩S
n
+. Another example is the

hyperbolic half planeH2 where the linear decision bound-
aries are half-circles whose centers lie on thex axis.

Hyperplanes onSn have the following additional nice prop-
erties. They are the set of equidistant points fromx, y ∈ S

n

(for somex, y), they are isometric toSn−1 and they are pa-
rameterized byn parameters. These properties are partic-
ular to the sphere and do not hold in general (Bridson &
Haefliger, 1999).
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Figure 4. Test error accuracy of spherical logistic regression (solid), and linear logistic regression using tf representation with L1

normalization (dashed) andL2 normalization (dotted). The first four figures show Web-KB binary “one vs. all” tasks. The next 8
figures show the Reuters-21578 binary classification tasks.Error bars represent one standard deviation over 20-fold cross validation for
spherical logistic regression. The error bars of the other classifiers are of similar sizes and are omitted for clarity.



7. Experiments

A natural embedding of text documents in the multinomial
simplex is theL1 normalized term frequency or tf repre-
sentation (Joachims, 2000)

θ̂(x) =

(

x1
∑

i xi

, . . . ,
xn+1
∑

i xi

)

.

Using this embedding we compared the performance of
spherical logistic regression with Euclidean logistic regres-
sion. Since Euclidean logistic regression often performs
better withL2 normalized tf representation, we included
these results as well.

The embedding may be motivated by the following argu-
ment. Assuming that the text documents are generated by
multinomial distributionsθ 7→ x, the embeddinĝθ is theo-
retically justified as the maximum likelihood estimator. It
makes more sense to view tf feature vectors as points in
the simplex and not in the much larger Euclidean space.
The choice of the Fisher information metric is motivated
by the axiomatic characterization ofČencov (1982) and by
the vast experimental evidence of its usefulness in statis-
tics.

Experiments were conducted on both the Web-KB and the
Reuters-21578 datasets. In the Web-KB dataset, the clas-
sification task that was tested was each of the classes fac-
ulty, course, project and student vs. the rest. In the Reuters
dataset, the task was each of the 8 most popular classes
vs. the rest. The test error rates as a function of randomly
sampled training sets of different sizes are shown in Fig-
ure 4. In both cases, the positive and negative example sets
are equally distributed, and the results were averaged over
a 20-fold cross validation with the error bars indicating one
standard deviation. As mentioned in Section 4, we assume
that the boundary set ofq = arg miny∈Sn

+∩Eu
d(y, x) is

equal toA = {i : (pu(x))i ≤ 0}.

The experiments show that the new linearity and margin
concepts lead to more powerful classifiers than their Eu-
clidean counterparts, which are commonly used in the lit-
erature regardless of the geometry of the data.

8. Summary

We have presented a generalization of hyperplane margin
classifiers to the multinomial manifold. In related work,
Gous (1998) treats regression rather than classification, and
works with affine spherical subfamilies; see also (Hall &
Hofmann, 2000). Under affine subfamilies, many of the ge-
ometrical properties developed here for margin-based hy-
perplane models under multinomial geometry do not apply.

The point of view of treating text documents as points on
the simplex and using the Fisher information for construct-

ing new classification schemes is presented in (Lafferty &
Lebanon, 2003). For categorical data, such as text, that nat-
urally lie on the multinomial manifold, the new concepts
of spherical hyperplanes and spherical margins presented
here are better motivated than their Euclidean counterparts.
Experimental results on the Web-KB and Reuters-21578
datasets show that the resulting geometrical approach of
spherical logistic regression leads to improved performance
over standard logistic regression, which assumes Euclidean
geometry.
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