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Abstract

The assumptions behind linear classifiers for cat-
egorical data are examined and reformulated in
the context of the multinomial manifold, the sim-
plex of multinomial models furnished with the
Riemannian structure induced by the Fisher in-
formation. This leads to a new view of hyper-
plane classifiers which, together with a general-
ized margin concept, shows how to adapt existing
margin-based hyperplane models to multinomial
geometry. Experiments show the new classifica-
tion framework to be effective for text classifica-
tion, where the categorical structure of the data is
modeled naturally within the multinomial family.

simple to analyze and compute.

Modern learning theory emphasizes the tension between
fitting the training data well and the more desirable goal
of achieving good generalization. A common practice is
to choose a model that fits the data closely, but from a re-
stricted class of models. The model class needs to be suf-
ficiently rich to allow the choice of a good hypothesis, yet
not so expressive that the selected model is likely to overfit
the data. Hyperplane classifiers are attractive for balanc-
ing these two goals. Indeed, linear hyperplanes are a rather
restricted set of models, but they enjoy many unique prop-
erties. For example, given two pointsy € R™, the set

of points equidistant fromx andy is a hyperplane; this
lies behind the intuition that a hyperplane is the correet ge

ometric shape for separating sets of points. Similarly, a
hyperplane is the best decision boundary to separate two
Gaussian distributions of equal covariance. Anotherrmisti
guishing property is that a hyperplandRfi is isometric to
Linear classifiers are a mainstay of machine learning algor™—!, and can therefore be thought of as a reduced dimen-
rithms, forming the basis for techniques such as the persion version of the original feature space. Finally, a linea
ceptron, logistic regression, boosting, and support vectohyperplane is the union of straight lines, which are distanc
machines. A linear classifier, parameterized by a vectominimizing curves, or geodesics, in Euclidean geometry.

w € R™, classifies examples according to the decision rule L .
j(x) = sign(X, widi(x)) = sign((w, z)) € {—1,+1}, Howevgr, gfundamenFaI ass_umptlon is implicitly associ-
following the common practice of identifying with the ated with linear classifiers, since they are based crucially

feature vectors(x). The differences between different lin- 0N the use of the Euclidean geometryfof. If the data or
ear classifiers lie in the criteria and algorithms used fer sef€atures at hand lack a Euclidean structure, the arguments

lecting the parameter vectarbased on a training set. above for Iir_1ear classifiers break down; arguably, .there is
lack of Euclidean geometry for the feature vectors in most
Geometrically, the decision surface of a linear classi-applications. This paper studies analogues of linear kyper
fier is formed by a hyperplane or linear subspacexin  planes as a means of obtaining simple, yet effective classi-
dimensional Euclidean spacéy € R" : (z,w) = 0} fiers when the data can be represented in terms of a natural
where(-, -) denotes the Euclidean inner product. (In bothgeometric structure that is only locally Euclidean. This is
the algebraic and geometric formulations, a bias term ishe case for categorical data that is represented in terms of
sometimes added; we prefer to absorb the bias into the ngnultinomial models, for which the associated geometry is
tation given by the inner product, by settimg = 1 for all spherical.
x.) The linearity assumption made by such classifiers can

be justified on purely computational grounds; linear clas-Because of the complexity of the notion of linearity in
sifiers are generally easy to train, and the linear form igd€neral Riemannian spaces, we focus our attention on the
multinomial manifold, which permits a relatively simple

Appearing inProceedings of thez** International Conference analysis. The multinomial manifold and its hyperplanes are
on Machine LearningBanff, Canada, 2004. Copyright by the the topics of Sections 2-4. The construction and training of
authors. margin based models is discussed in Section 5, with an em-

1. Introduction



phasis on spherical logistic regression. A brief examarati we can now take points arbitrarily close to it, in both the
of linear hyperplanes in general Riemannian manifolds apEuclidean and the geodesic metric.

pears in Section 6 followed by experimental results for texI‘W . . .
e : . . ! e do not explore here the many interesting and motivat-
classification given in Section 7. Concluding remarks are

made in Section 8 ing properties of the Fisher information metric. For detail
' on this topic see Kass and Voss (1997) and Amari and Na-
gaoka (2000). Spivak (1975) contains a comprehensive in-

2. The Multinomial Manifold troduction to Riemannian geometry.
The multinomial manifold is the parameter space of the )
multinomial distribution 3. Hyperplanes and Margins onS"
n+1 This section generalizes the notion of linear hyperplanes
P"={zeR": Vj x; >0, le =1 (1)  and margins to the-sphereS™ = {z € R"*! : Y. 27 =
i=1 1}. A similar treatment on the positivesphereS”; is more

complicated, and is postponed to the next section. In the re-

equipped with the Fisher information mettjc mainder of the paper we denote pointsigh S™ or S7} as

ntl vectors inR™*! using the standard basis of the embedding
ge(w, ) => ——  zEP" wuve TP space. The notatiofi, -) and||-|| will be used for the Eu-
im1 i clidean inner product and norm.

whereu, v are vectors tangent @ atz, represented in the A hyperplane or§” is defined as?,, = S" N &, where
standard basis &"*+!. Note that unlike conventional no- E. is ann-dimensional linear subspacel®f ! associated
tation in statistics we denote the multinomial parametgrs b with the normal vector.. We occasionally need to refer to
x. The reason for doing so is that we identify multinomial the unit normal vector and denote it By H, is ann — 1
parameters with text documents, as described in further délimensional submanifold & which is isometric t&™ !

tail in Section 7. (Bridson & Haefliger, 1999). Using the common notion of
the distance of a point from a sétz, S) = inf,cs d(z, y)

we make the following definitions.

Definition 1. Let X be a metric space. Aecision bound-
{ n+1 } aryis a subset ofX that separates into two connected

It is a well known fact that the multinomial manifold is
isometric to the positive-sphere

St =4z € RV z; >0, Z i =1 components. Theargin of x with respect to a decision

i=1 boundaryH is d(z, H) = infyc g d(z,y).

with the metric inherited from the embedding EuclideanNote that this definition reduces to the common definition

space (Kass, 1989). The isometry. P" — S%, m(z) =  of margin for Euclidean geometry and affine hyperplanes.
V1, .. .,1/Tnt1), allows us to perform our calculations ) .
on the positive sphere and apply thenfto throughr . In contrast to Gous (1998), our submanifolds are intersec-

Of particular interest is the fact that the geodesic distanc10nS Of the sphere with linear subspaces, not affine sets.
betweenr,y € P* may be now computed as the Euclidean ©One motivation for the above definition of hyperplane as
length of the great circle connectingz) andx (y), specif- the correct generalization of a Euclidean hyperplane is tha

ically H, is the set of points equidistant fromy € S™ in the
' spherical metric. Further motivation is given in Section 6.
n+1
Before we can obtain a closed form expression for margins
d(z,y) = arccos Ty | . . .
) (2 lyi) onS™ we need the following definitions.

] _ o Definition 2. Given a point: € R"*!, we define itseflec-
Using the above isometry we focus our attention, in thetipn with respect taz, as

next few sections, on hyperplanes and margins ommthe

sphereS™ and the positiver-sphereS™ . The results devel- ru(®) =« — 2(z, @)t
oped there will apply directly to the multinomial manifold ) )
when followed byr 1. Note that ifz € S™ thenr,(z) € S™ as well, since

Iru(@)1* = llz]* - 4(w, @) + 4(z, @) = 1.
Definition 3. The projectionof z € S™ \ {4} on H, is
defined to be

It is worth mentioning that the singular boundary &5f
andS’ prevents them from being differentiable manifolds
or even differentiable manifolds with boundary. However,
this is a technical issue that can be overcome by taking the = (x,u)u
interior of P* andS’ . Instead of points on the boundary, Pu(®) = m



Note thatp,(z) € H,, since|p,(z)| = 1 and{(z —
(z,4)6,4) = (x,a) — (z,a)]a]> = 0. The term projec-
tion is justified by the following proposition.

Proposition 1. Letz € S™ \ (H, U {a}). Then
(a) d(z,q) =d(ru(z),q) Vg€ H,
(b) d(z,pu(z)) = arccos ( 1—{(z, 11>2)
(¢) d(z,Hy,) = d(x,p.(z)).

Proof. Sinceq € H,,,

and(a) follows. Assertion(b) follows from

Finally, to prove(c) note that by the identityos26 =
2cos? 0 — 1,

cos(2d(z, pu(2))) = 2 cos®(d(x, pu(x))) — 1
=1—2(x,0)? = cos(d(z, 7, (x)))

and henced(z,py(z)) = 3d(z,r.(x)). The distance
d(z,q),q € H, cannot be any smaller thai{x, p,(x))
since this would result in a path fromto r,,(z) of length
shorter than the geodesi¢z, r,, (z)). O

Parts(b) and(c) of Proposition 1 provide a closed form
expression for th&™ margin analogous to the Euclidean
unsigned margif(x, @)|. Similarly, theS™ analogue of the

Euclidean signed margig(i, x) is

(w, 1)
i, a)]

A plot of the signed margin as a function 6f,

arccos ( 1 —(z, ﬁ>2) .

4y and a

.

Figure 1.The spherical law of cosines implidér, z) < d(q, x).

The infimum above is attained by the continuity &f
and compactness df, N S?} justifying the notationy =
aurgmimyeEmSi d(z,y) as a point realizing the margin
distanced(x, H,).

The following theorem will be useful in computing

d(xz,H,+). For a proof see Bridson and Haefliger (1999)
page 17.

Theorem 1. (The Spherical Law of Cosine}

Consider a spherical triangle with geodesic edges of
lengthsa, b, ¢, wherey is the vertex angle opposite to edge
c. Then

cos ¢ = cosa cosb + sinasinbcos .

We have the following corollaries of Proposition 1.
Proposition 2. If z € S"; andp,(z) € S} then
pu(z) = argmin d(z,y)
yeESTNE,
d(x, Hy,) = d(x, Hyy)

Proof. This follows immediately from the fact that
pu(r) = argmin,cgnqp, d(z,y) and fromS?} N E, C

geometric interpretation of the spherical margin appear irs» 0 g,,. 0

Figure 2.

4. Hyperplanes and Margins onS’}

A hyperplane on the positive-sphereS’; is defined as

Proposition 3. For z € S andp,(z) ¢ S’} we have

q = argmin d(x,y) € OST}
yeESTNE,

H,y = E, NSY, assuming it is non-empty. This defi- wheredS?” is the boundary o8 .

nition leads to a margin concegfz, H,, ) different from
theS™ margind(z, H,,)

inf

d(x, H =
(CC, u+) yGEuﬁSi

d(z,y)

> inf d(x,y) =d(z, Hy).

yEE,NS™

Proof. Assume that; ¢ 0S"; and conneci andp,,(x) by
a minimal geodesiev. Sincep, (z) ¢ S, the geodesiex
intersects the boundat}s’; at a pointr. Sinceq, p,(z) €
H, andH, is geodesically convexy ¢ H,. Now, since
pu(r) = argmin,, d(y, z), the geodesic from to p,, ()
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Figure 2.The signed margin sidi, §))d(z, H.) as a function of(z, @), which lies in the interva[—%, %] (left) and a geometric
interpretation of the spherical margin (right).

anda intersect orthogonally (this is an elementary result inS” 4! mentioned in Definition 4. Note that if € St
Riemannian geometry, e.g. Lee (1997) p. 113). Using thehenz|4 € 94S". The following proposition computes
spherical law of cosines, applied to the spherical triamglethe S’} margind(x, H,,1) given the boundary set af =
(¢, z,pu(z)) and (r, z, p.(z)) (see Figure 1), we deduce arg min, cgn d(y,x).

that Proposition 4. Leta € R™*! be a unit vectory € S%

andq = argmingegn d(y,x) € 04S"} whereA is the

cosd(z, q) = cosd(q, pu()) cos d(z, pu())
(possibly empty)set = {1 <i<n+1: ¢ =0}.Then

< cosd(r, py(x)) cosd(x, py(x))

= cosd(z, ) d(x, Hyy ) = arccos (HxHA 1— <:c|A,11|A>2)

Hencer is closer tar thang. This contradicts the definition

of ¢; thusq can not lie in the interior o8 . o Proof. If p,(z) € S then the proposition follows from

earlier propositions and the fact that whén= 0, ||| , =
|z|| = 1 andv|4 = v. We thus restrict our attention to the
case ofd # .

Foralll c {1,...,n+ 1} we have

Before we proceed to compuigx, H, ) for p, (z) & STt
we define the following concepts.

Definition 4. The boundaryof S™ andS’ with respect to
Ac{l,...,n+1}is argmin d(z,y) = argmax (z,y)
yealgiﬁEu yGBISiﬁEu
OaS" =S"N{z e R :Viec A, z; =0} = S 4l
argmax (z,y)s
OaS? =St N{z R Vi€ A,z =0} =T A YEOISNEy

argmax ||z, (z[r, y)
yESif‘”ﬂEuu

Note thatifA C A’ thenda/S" C 04S". We use the nota-

tion (-, -) 4 and||-|| , to refer to the Euclidean inner product = argmin d(z|,y).
and norm, where the summation is restricted to indicss vest By,
in A. It follows that
Definition 5. Givenz € S™ we defines|4 € 94S™ as )
gla= argmin  d(z|a,y). )
0 icA vesy B a
TIA)i = . .. . .
(xla)s i/ ||lzl|, i€ A. By Proposition 3 applied t8" 14l we have that since|

lies in the interior o5~ 4! then so does
z|a — (z|a,Ua)i]a
1 —(x|a,a[a)?

We abuse the notation by identifying, also with the cor-
responding point 01§~ 4! under the isometrg,S™ =

~ —|A
pu\A($|A): , CL‘|A,U|A ESi | I.



Using Proposition 1 applied t68"~ 14l we can compute The log-likelihood derivative with respect g is equation

d(z, Huy) (3) times
rpaateia) = arccos<z’ I|A1_ <a<j|}|hu|flx>1>LLA> 9{zla,ala) _ {(() 1) (w]asla) e
T\l A i - TIA)i _ 5 {TlAU[A .
A N 8Uz ”ﬁHA Uj ||7J«Hi ) ¢ A .
= arccos [2ll.a = (x]a, ala) (e, ala)
1—(z|a,0|a)? The log-likelihood derivative with respect tois

= arccos (H:vl\A 1- <x|A,a|A>2) : 90,05 (x,y))  2s, arccos(|z]| , VI — 22)
O 00 o 1+ o250 arccos(||z|| , vVI—22)

In practice the boundary set of ¢ is not known. In our  Optimizing the log-likelihood with respect to requires
experiments we sel = {i : (pu(z)); < 0};in numerical  care. Following the gradient*)) = () + av/(a®)
simulations in low dimensions, the true boundary never liesesults in a non-normalized vector. Performing the above

outside of this set. gradient descent step followed by normalization has the ef-
fect of moving along the sphere in a curve whose tangent
5. Logistic Regression on the Multinomial vector ati(*) is the projection of the gradient onto the tan-
Manifold gent spacé,S™. This is the technique used in the exper-

iments described in Section 7.
The logistic regression modely | z) = % exp(y(z, w)),
with y € {—1, 1}, assumes Euclidean geometry. It can be
reexpressed as

Note that the spherical logistic regression modelhas1
parameters in contrast to thet 2 parameters of Euclidean
logistic regression. This is in accordance with the intu-
pylriu) o< exp(ylul (x,a)) ition that a hyperplane separating ardimensional man-

= exp (ysign((z,a)) 0d(z, H,)) ifold should haven parameters. The extra parameter in the
Euclidean logistic regression is an artifact of the embed-
ding of then-dimensional multinomial space, on which the
data lies, into arin + 1)-dimensional Euclidean space.

whered is the Euclidean distance offrom the hyperplane
that corresponds to the normal vecigand wherd = ||u||

is a parameter.
o . : , The derivations and formulations above assume spherical
The generalization to spherical geometry involves simplyy,, £ the data lies on the multinomial manifold, the isom-

changing the margin to reflect the appropriate geometry: etry = mentioned in Section 2 has to precede these calcu-

p(ylx;a,0) lations. The net effect is that; is replaced by /xz; in the

. . — model equation, and in the log-likelihood and its deriva-
exp (ySIgr‘(<x,u>)  arccos (H:CHA 1-— <x|A,u|A)2)) " tives. d ¢

Denotings, = ysign((z, @)), the log-likelihood of the ex-  gynthetic data experiments contrasting Euclidean lagisti

ample(z,y) is regression and spherical logistic regressiorSgn as de-
0(a,0; (z,y)) scribed in this section, are shown in Figure 3. The leftmost
_ column shows an example where both models give a simi-
= —log (1 + e‘zsfearcc"S(HI”A 1_<I|“’“|“>2)> . lar solution. In general, however, as is the case in the other

two columns, the two models yield significantly different

We compute the derivatives of the log-likelihood in severalOIeCISIOn boundaries.

steps, using the chain rule and the notatica (x|4,4|4).

We have 6. Hyperplanes in Riemannian Manifolds
darccos (||z] 4 V1 - 2?) _ z ||zl 4 The definition of hyperplanes in general Riemannian mani-
0z \/1 _ Hx||i (1 - 22)vI—22 fold_s has two essential components. In addition to discrim-
inating between two classes, hyperplanes should be regular
and hence in some sense with respect to the geometry. In Euclidean
ol(u,0;(z,y)) 3 geometry, the two properties of discrimination and regular
Oz - ) ity coincide, as every affine subspace of dimension 1
2500z |, /(1 + ezsxearccos(uzuA\/fzz)) separate®R"™ into two regions. In general, however, these

) two properties do not necessarily coincide, and have to be
\/1 - ||:c||i1 (1—=22)V1—22 considered separately.
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Figure 3.Experiments contrasting Euclidean logistic regressiop fow) with multinomial logistic regression (bottom roveyfseveral
toy data sets ifP2.

The separation property implies thaiNfis a hyperplane of ~ Since the metric connection is symmetric, the last proposi-
M thenM \ N has two connected components. Note thattion gives a complete equivalence between auto-paratielis
this property is topological and independent of the metric.and totally geodesic submanifolds.

The linearity property is generalized through the notion of L . .
. . . .. We can now define linear hyperplanes on Riemannian man-
autoparallelism explained below. The following definition

and propositions are taken from Spivak (1975), Volume 3.|folds.

We assume tha¥ is the connection inherited from the met- Definition 8. A linear decision boundaryV in M is an
ric g. autoparallel submanifold o/ such thatM \ N has two

Definition 6. Let M be a Riemannian manifold with con- connected components.

nectionV. A submanifoldV C M is auto-paralleif par-
allel translation in M along a curveC' C N takes vectors
tangent toV to vectors tangent tov.

Several observations are in order. First note that/ifis

an n-dimensional manifold, the separability condition re-
quires N to be an(n — 1)-dimensional submanifold. It
Proposition 5. A submanifoldV C M is auto-parallel if  is easy to see that every affine subspac®bfis totally

and only if geodesic and hence autoparallel. Conversely, since the met
ric connection is symmetric, every auto-parallel submani-
fold of Euclidean space that separates it is an affine sub-
space. As a result, we have that our generalization does
indeed reduce to affine subspaces under Euclidean geom-
etry. Similarly, the above definition reduces to spherical
hyperplanedi, NS™ andH, NS’ . Another example is the
hyperbolic half plané&l? where the linear decision bound-
aries are half-circles whose centers lie on:theis.

X,Y € T,N = VxY €T,N.

Definition 7. A submanifoldV of M is totally geodesic at
p € N if every geodesig in M with v(0) = p,~'(0) €
T, N remains inN on some interval—e, €). The submani-
fold IV is said to be totally geodesic if it is totally geodesic
at every point.

As a consequence, we have thats totally geodesic if and

. L - Hyperplanes o8™ have the following additional nice prop-
only if every geodesic iV is also a geodesic iff.

erties. They are the set of equidistant points fram € S™
Proposition 6. Let N be a submanifold ofM, V). Then (for somexz, y), they are isometric t68”~! and they are pa-
rameterized by, parameters. These properties are partic-
1. If N is auto-parallel ind thenN is totally geodesic. ular to the sphere and do not hold in general (Bridson &

: . : . ) Haefliger, 1999).
2. If M is totally geodesic an¥ is symmetric thed/ is

autoparallel.
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Figure 4 Test error accuracy of spherical logistic regressioni@sobnd linear logistic regression using tf representatioth L,
normalization (dashed) anf, normalization (dotted). The first four figures show Web-KBdyy “one vs. all” tasks. The next 8
figures show the Reuters-21578 binary classification tdsksr bars represent one standard deviation over 20-falssovalidation for
spherical logistic regression. The error bars of the otlessifiers are of similar sizes and are omitted for clarity.



7. Experiments ing new classification schemes is presented in (Lafferty &

Lebanon, 2003). For categorical data, such as text, that nat

urally lie on the multinomial manifold, the new concepts

of spherical hyperplanes and spherical margins presented

here are better motivated than their Euclidean countespart

A T Experimental results on the Web-KB and Reuters-21578
1 Tn+41 . .

0(x) = <Z oSS ) . datasets show that the resulting geometrical approach of
i i spherical logistic regression leads to improved perforrean

Using this embedding we Compared the performance ofpver standard |OgiStiC regreSSion,WhiCh assumes Euclidea
spherical logistic regression with Euclidean logisticresy ~ 9eometry.

sion. Since Euclidean logistic regression often performs

better with L, normalized tf representation, we included Acknowledgements

these results as well.
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ometrical properties developed here for margin-based hySPivak, M. (1975)A comprehensive introduction to differ-

perplane models under multinomial geometry do not apply. €ntial geometryvol. 1-5. Publish or Perish.

The point of view of treating text documents as points on
the simplex and using the Fisher information for construct-



