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Abstract

Nested dichotomies are a standard statisti-
cal technique for tackling certain polytomous
classification problems with logistic regres-
sion. They can be represented as binary trees
that recursively split a multi-class classifica-
tion task into a system of dichotomies and
provide a statistically sound way of applying
two-class learning algorithms to multi-class
problems (assuming these algorithms gener-
ate class probability estimates). However,
there are usually many candidate trees for a
given problem and in the standard approach
the choice of a particular tree is based on do-
main knowledge that may not be available in
practice. An alternative is to treat every sys-
tem of nested dichotomies as equally likely
and to form an ensemble classifier based on
this assumption. We show that this approach
produces more accurate classifications than
applying C4.5 and logistic regression directly
to multi-class problems. Our results also
show that ensembles of nested dichotomies
produce more accurate classifiers than pair-
wise classification if both techniques are used
with C4.5, and comparable results for logis-
tic regression. Compared to error-correcting
output codes, they are preferable if logistic
regression is used, and comparable in the case
of C4.5. An additional benefit is that they
generate class probability estimates. Conse-
quently they appear to be a good general-
purpose method for applying binary classi-
fiers to multi-class problems.

Appearing in Proceedings of the 21°t International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the authors.

1. Introduction

A system of nested dichotomies (Fox, 1997) is a binary
tree that recursively splits a set of classes from a multi-
class classification problem into smaller and smaller
subsets. In statistics, nested dichotomies are a stan-
dard technique for tackling polytomous (i.e. multi-
class) classification problems with logistic regression
by fitting binary logistic models to the individual di-
chotomous (i.e. two-class) classification problems at
the tree’s internal nodes, and a hierarchical decompo-
sition of classes has also been considered by authors
in neighboring areas (Goodman, 2001; Bengio, 2002).
However, nested dichotomies are only recommended
if a “particular choice of dichotomies is substantively
compelling” (Fox, 1997) based on domain knowledge.
There are usually many possible tree structures that
can be generated for a given set of classes, and in
many practical applications—namely, where the class
is truly a nominal quantity and does not exhibit any
structure—there is no a priori reason to prefer one
particular tree structure over another one. However,
in that case it makes sense to assume that every hier-
archy of nested dichotomies is equally likely and to use
an ensemble of these hierarchies for prediction. This
is the approach we propose and evaluate in this paper.

Using C4.5 and logistic regression as base learners
we show that ensembles of nested dichotomies pro-
duce more accurate classifications than applying these
learners directly to multi-class problems. We also show
that they compare favorably to three other popular
techniques for converting a multi-class classification
task into a set of binary classification problems: the
simple “one-vs-rest” method, error-correcting output
codes (Dietterich & Bakiri, 1995), and pairwise clas-
sification (Fiirnkranz, 2002). More specifically, we
show that ensembles of nested dichotomies produce
more accurate classifiers than the one-vs-rest method
for both C4.5 and logistic regression; that they are
more accurate than pairwise classification in the case
of C4.5, and comparable in the case of logistic regres-



sion; and that, compared to error-correcting output
codes, nested dichotomies have a distinct edge if lo-
gistic regression is used, and are on par if C4.5 is em-
ployed. In addition, they have the nice property that
they do not require any form of post-processing to re-
turn class probability estimates. They do have the
drawback that they require the base learner to produce
class probability estimates but this is not a severe lim-
itation given that most practical learning algorithms
are able to do so or can be made to do so.

This paper is structured as follows. In Section 2 we
describe more precisely how nested dichotomies work.
In Section 3 we present the idea of using ensembles
of nested dichotomies. In Section 4 this approach is
evaluated and compared to other techniques for tack-
ling multi-class problems. Related work is discussed
in Section 5. Section 6 summarizes the main findings
of this paper.

2. Nested Dichotomies

Nested dichotomies can be represented as binary trees
that, at each node, divide the set of classes A associ-
ated with the node into two subsets B and C' that are
mutually exclusively and taken together contain all the
classes in A. The nested dichotomies’ root node con-
tains all the classes of the corresponding multi-class
classification problem. Each leaf node contains a sin-
gle class (i.e. for an n-class problem, there are n leaf
nodes and n — 1 internal nodes). To build a classifier
based on such a tree structure we do the following:
at every internal node we store the instances pertain-
ing to the classes associated with that node, and no
other instances; then we group the classes pertaining
to each node into two subsets, so that each subset holds
the classes associated with exactly one of the node’s
two successor nodes; and finally we build binary classi-
fiers for the resulting two-class problems. This process
creates a tree structure with binary classifiers at the
internal nodes.

We assume that the binary classifiers produce class
probability estimates. For example, they could be
logistic regression models. The question is how to
combine the estimates from the individual two-class
problems to obtain class probability estimates for the
original multi-class problem. It turns out that the in-
dividual dichotomies are statistically independent be-
cause they are nested (Fox, 1997), enabling us to form
multi-class probability estimates simply by multiply-
ing together the probability estimates obtained from
the two-class models. More specifically, let C;; and
Ci2 be the two subsets of classes generated by a split
of the set of classes C; at internal node i of the tree

(i-e. the subsets associated with the successor nodes),
and let p(c € Cilz,c € C;) and p(c € Cylz,c € C;)
be the conditional probability distribution estimated
by the two-class model at node ¢ for a given instance
z. Then the estimated class probability distribution
for the original multi-class problem is given by:

p(c = C|z) :H

I(c € Ca)p(c € Cia|z,c € C;) +

I{c € Ci2)p(c € Cizlz,c € Cy)),

where I(.) is the indicator function, and the product
is over all the internal nodes of the tree.

Note that not all nodes have to actually be exam-
ined to compute this probability for a particular class
value. Evaluating the path to the leaf associated with
that class is sufficient. Let p(c € Cilz,c € C;) and

p(c € Ciz|z, c € C;) be the labels of the edges connect-

ing node ¢ to the nodes associated with C; and Cjy
respectively. Then computing p(c|z) amounts to find-
ing the single path from the root to a leaf for which
¢ is in the set of classes associated with each node
along the path, multiplying together the probability
estimates encountered along the way.

Consider Figure 1, which shows two of the 15 possible
nested dichotomies for a four-class classification prob-
lem. Using the tree in Figure la the probability of
class 4 for an instance z is given by

p(c € {3,4}|z) x
p(c € {4}z, c € {3,4}).

ple=4lz) =

Based on the tree in Figure 1b we have

p(c € {2,3,4}|z) x
p(c € {3,4}|z,c € {2,3,4}) x
p(c € {4}|z,c € {3,4}).

ple=4z) =

Both trees represent equally valid class probability
estimators—Ilike all other trees that can be generated
for this problem. However, the estimates obtained
from different trees will usually differ because they in-
volve different two-class learning problems. If there
is no a priori reason to prefer a particular nested
dichotomy—e.g., because some classes are known to be
related in some fashion—there is no reason to trust one
of the estimates more than the others. Consequently it
makes sense to treat all possible trees as equally likely
and form overall class probability estimates by averag-
ing the estimates obtained from different trees. This is
the approach we investigate in the rest of this paper.
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Figure 1. Two different systems of nested dichotomies for a classification problem with four classes.

3. Ensembles of Nested Dichotomies

The number of possible trees for an n-class problem
grows extremely quickly. It is given by the following
recurrence relation:

T(n)=02n-3)xT(n-1),

where T'(1) = 1, because there are 2(n—1)—1=2n-3
distinct possibilities to add a new class into a tree for
n — 1 classes—one for each node.

Expanding the recurrence relation results in T'(n) =
(2n—3) X (2n —5) x ... x 3 x 1, and, using the double
factorial, this can be written as T'(n) = (2n — 3)!!. For
two classes we have T'(2) = 1, for three T'(3) = 3, for
four T'(4) = 15, and for five T'(5) = 105.

The growth in the number of trees makes it impossible
to generate them exhaustively in a brute-force manner
even for problems with a moderate number of classes.
This is the case even if we cache models for the indi-
vidual two-class problems that are encountered when
building each tree.! There are (37— (21 —1))/2 pos-
sible two-class problems for an n-class dataset. The
term 3" arises because a class can be either in the first
subset, the second one, or absent; the term (2"t —1)
because we need to subtract all problems where either
one of the two subsets is empty; and the factor 1/2
from the fact that the two resulting subsets can be
swapped without any effect on the classifier. Hence
there are 6 possible two-class problems for a problem
with 3 classes, 25 for a problem with 4 classes, 90 for
a problem with 5 classes, etc.

Given these growth rates we chose to evaluate the per-
formance of ensembles of randomly generated trees.
(Of course, only the structure of each tree was gener-
ated randomly. We applied a standard learning scheme

!Note that different trees may exhibit some two-class
problems that are identical.

at each internal node of the randomly sampled trees.)
More specifically, we took a random sample from the
space of all distinct trees for a given n-class problem
(for simplicity, based on sampling with replacement),
and formed class probability estimates for a given in-
stance z by averaging the estimates obtained from the
individual ensemble members. Because of the uniform
sampling process these averages form an unbiased es-
timate of the estimates that would have been obtained
by building the complete ensemble of all possible dis-
tinct trees for a given n-class problem.

4. Empirical Comparison

We performed experiments with 21 multi-class
datasets from the UCI repository (Blake & Merz,
1998), summarized in Table 1. Two learning schemes
were employed: C4.5 and logistic regression.? We used
these two because (a) they produce class probability
estimates, (b) they inhabit opposite ends of the bias-
variance spectrum, and (c) they can deal with multiple
classes directly without having to convert a multi-class
problem into a set of two-class problems (in the case
of logistic regression, by optimizing the multinomial
likelihood directly). The latter condition is important
for testing whether any of the multi-class “wrapper”
methods that we included in our experimental com-
parison can actually improve upon the performance of
the learning schemes applied directly to the multi-class
problems.

To compare the performance of the different learning
schemes for each dataset, we estimated classification
accuracy based on 50 runs of the stratified hold-out
method, in each run using 66% of the data for train-
ing and the rest for testing. We tested for significant

2As implemented in Weka version 3.4.1 (Witten &
Frank, 2000).



Dataset Num. % Miss. Num. Nom. Num.

insts atts atts class.
anneal 898 0.0 6 32 6
arrhythmia 452 0.3 206 73 16
audiology 226 2.0 0 69 24
autos 205 1.1 15 10 7
bal.-scale 625 0.0 4 0 3
ecoli 336 0.0 7 0 8
glass 214 0.0 9 0 7
hypothyroid 3772 6.0 23 6 4
iris 150 0.0 4 0 3
letter 20000 0.0 16 0 26
lymph 148 0.0 3 15 4
optdigits 5620 0.0 64 0 10
pendigits 10992 0.0 16 0 10
prim.-tumor 339 3.9 0 17 22
segment 2310 0.0 19 0 7
soybean 683 9.8 0 35 19
splice 3190 0.0 0 61 3
vehicle 846 0.0 18 0 4
vowel 990 0.0 10 3 11
waveform 5000 0.0 40 0 3
Z00 101 0.0 1 15 7

Table 1. Datasets used for the experiments

differences in accuracy by using the corrected resam-
pled t-test at the 5% significance level. This test has
been shown to have Type I error at the significance
level and low Type II error if used in conjunction with
the hold-out method (Nadeau & Bengio, 2003).

In the first set of experiments, we compared ensembles
of nested dichotomies (ENDs) with several other stan-
dard multi-class methods. In the second set we varied
the number of ensemble members to see whether this
has any impact on the performance of ENDs.

4.1. Comparison to other approaches for
multi-class learning

In the first set of experiments we used ENDs consisting
of 20 ensemble members (i.e. each classifier consisted
of 20 trees of nested dichotomies) to compare to other
multi-class schemes. As the experimental results in
the next section will show, 20 ensemble members are
often sufficient to get close to optimum performance.
We used both C4.5 and logistic regression to build the
ENDs. The same experiments were repeated for both
standard C4.5 and polytomous logistic regression ap-
plied directly to the multi-class problems. In addi-
tion, the following other multi-class-to-binary conver-
sion methods were compared with ENDs: one-vs-rest,
pairwise classification, random error-correcting output
codes, and exhaustive error-correcting output codes.

One-vs-rest creates n dichotomies for an n-class prob-
lem, in each case learning one of the n classes against

all the other classes (i.e. there is one classifier for each
class). At classification time, the class that gets max-
imum probability from its corresponding classifier is
predicted. Pairwise classification learns a classifier for
each pair of classes, ignoring the instances pertaining
to the other classes (i.e. there are n x (n —1)/2 classi-
fiers). A prediction is obtained by voting, where each
classifier casts a vote for either one of the two classes it
was built from. The class with the maximum number
of votes is predicted.

In error-correcting output codes (ECOCs), each class
is assigned a binary code vector of length k, which
make up the row vectors of a code matrix. These
row vectors determine the set of k£ dichotomies to be
learned, corresponding to the column vectors of the
code matrix. At prediction time, a vector of classifica-
tions is obtained by collecting the predictions from the
individual k classifiers learned from the dichotomies.
The original approach to ECOCs predicts the class
whose corresponding row vector has minimum Ham-
ming distance to the vector of 0/1 predictions obtained
from the k classifiers (Dietterich & Bakiri, 1995). How-
ever, accuracy can be improved by using loss-based de-
coding (Allwein et al., 2000). In our case this means
using the predicted class probabilities rather than the
0/1 predictions. For C4.5 we used the absolute error
of the probability estimates as the loss function and
for logistic regression the negative log-likelihood. We
verified that this indeed produced more accurate clas-
sifiers than the Hamming distance.?

Random error-correcting output codes (RECOCs) are
based on the fact that random code vectors have good
error-correcting properties. We used random code vec-
tors of length k = 2 x n, where n is the number of
classes. Code vectors consisting only of Os or only of 1s
were discarded. This results in a code matrix with row
vectors of length 2 x n and column vectors of length n.
Code matrices with column vectors exhibiting only Os
or only 1s were also discarded. In contrast to random
codes, exhaustive error correcting codes (EECOCs)
are generated deterministically. They are maximum-
length code vectors of length 2"~! — 1, where the re-
sulting dichotomies (i.e. column vectors) correspond
to every possible n-bit configuration, excluding com-
plements and vectors exhibiting only Os or only 1s. We
applied EECOCs to benchmark problems with up to
11 classes.

Table 2 shows the results obtained for C4.5 and Ta-
ble 3 those obtained for logistic regression (LR). They

3Note that we also evaluated loss-based decoding for
pairwise classification (Allwein et al., 2000) but did not
observe a significant improvement over voting.



Dataset (#classes) END C4.5 1-vs-rest 1-vs-1 RECOCs EECOCs
anneal (6) 98.15+0.75 | 98.45+0.72  98.32+0.69  97.77+0.87  98.08+0.56  98.35+0.70
arrhythmia (16) 72.984+2.41 | 65.37+£3.09¢ 62.60+3.54e¢ 66.23+3.06e 71.2442.55
audiology (24) 78.23+3.70 | 77.91+£3.19  65.66+6.48¢ 77.03+4.11  80.49+3.68
autos (7) 73.77£3.73 | 73.20+£5.56  71.15+5.10  65.62+6.20  69.18+6.34  75.09+5.06
balance-scale (3) 80.00+2.22 | 78.47+2.34  78.62+2.43  79.38+2.18  78.82+2.76  78.62+2.43
ecoli (8) 84.48+2.84 | 81.36+3.09  80.67+3.41  82.62+3.33  82.80+3.08  85.22+2.26
glass (7) 70.67+£4.59 | 67.29£5.51  65.32+4.68  68.77+4.72  67.10£5.08  70.95£5.06
hypothyroid (4) 99.4940.20 | 99.49+£0.13  99.45+0.21  99.414+0.19  99.43+0.23  99.48+0.20
iris (3) 93.96+3.12 | 94.12+3.19  93.924+3.18  94.12+3.19  94.00£3.20  93.92+3.18
letter (26) 94.56+0.28 | 86.34+0.52¢ 84.991+0.43e¢ 90.101+0.36e¢ 94.62+0.29
lymphography (4) 77.67+£5.05 | 76.30+4.98  76.75+5.43  77.54+5.59  75.71+4.10  76.94+5.51
optdigits (10) 97.244+0.36 | 89.45+0.67e¢ 89.284+0.72¢ 94.011+0.55e¢ 95.82+0.56e 98.13+0.270
pendigits (10) 98.66+0.19 | 95.90+0.31e 94.77+0.39¢ 96.41+0.34e 98.32+0.30  99.12+0.140
primary-tumor (22) | 44.844+2.65 | 38.98+2.59¢ 38.54+3.69¢ 42.36+2.96  45.58+3.81
segment (7) 97.254+0.61 | 95.86+0.81e  94.9340.77e¢ 95.904+0.75¢ 96.35+0.88  97.44+0.70
soybean (19) 93.75+1.29 | 88.75+2.14e¢ 89.41+1.79¢ 92.26+1.53  93.43+1.45
splice (3) 94.30+0.87 | 93.34+0.89  94.16+0.80  94.27+0.69  92.46+2.33  94.1640.80
vehicle (4) 73.48%£1.97 | 71.27£2.15  70.30+2.56  70.27+2.30  70.03£3.34  72.86£2.22
vowel (11) 87.561+2.63 | 75.82+2.59e 72.53+3.19e  75.60+3.05¢ 86.08+2.50  93.17+1.980
waveform (3) 78.61+1.76 | 75.00+£0.98e 72.49+1.18e 75.80+1.02¢ 72.86+1.04e 72.49+1.18e
zoo (7) 93.314+3.47 | 93.14+2.94  92.274+2.66  91.63+3.47  90.04+4.38  92.02+3.92
e, o statistically significant improvement or degradation
Table 2. Comparison of different multi-class methods for C4.5.
Dataset (#classes) END LR 1-vs-rest 1-vs-1 RECOCs EECOCs
anneal (6) 99.33+0.59 | 98.93+£0.78  99.12+0.69  99.10+0.68  98.97+0.76  99.174+0.65
arrhythmia (16) 58.48+3.18 | 52.76+4.06e 48.91+3.60e 60.84+3.11  48.80+3.84e
audiology (24) 81.52+3.89 | 75.44+4.36  74.69+4.47e 74.91+4.36e 71.58+4.69e
autos (7) 70.444+5.98 | 64.74+5.46  61.59+5.51  70.83+6.15  61.82+5.17  64.51+5.54
balance-scale (3) 87.23+1.15 | 88.78+1.19  87.11+1.27  89.25+1.260 87.74+1.58  87.11+1.27
ecoli (8) 85.73+2.52 | 84.57+2.59  85.28+2.44  84.28+2.72  84.74+3.23  85.77+2.54
glass (7) 64.194£5.45 | 63.06+£5.09  63.06+5.54  62.29+5.59  60.92+4.35  62.59+4.56
hypothyroid (4) 96.82+0.53 | 96.66+0.42  95.284+0.43e¢ 97.40+0.40  95.02+0.78  95.40+0.39e
iris (3) 95.73£2.79 | 95.25+£3.32  95.49+2.78  95.80+2.96  91.61+8.23  95.37+2.96
letter (26) 76.12+0.72 | 77.21+£0.340  72.17+0.41e 84.144+0.340 47.83+2.39e
lymphography (4) 77.95+5.57 | 77.124£6.16  76.97+5.41  78.504+6.21  76.42+5.82  76.54+5.71
optdigits (10) 97.00£0.37 | 93.17+£0.58¢ 94.28+0.56e 96.96+0.33  92.58+0.97¢ 95.12+0.44e
pendigits (10) 95.4240.58 | 95.47+0.34  93.53+0.40e  97.57+0.280 84.94+2.28¢  89.631+0.54e
primary-tumor (22) | 44.05+3.13 | 35.56+3.79e  39.10+3.72¢ 38.25+3.86e 45.28+3.10
segment (7) 94.404+0.73 | 95.2840.59  92.054+0.67e¢ 95.674+0.640 89.724+2.55¢ 92.53+0.68e
soybean (19) 93.05+1.45 | 89.99+3.04  89.96+2.80e 90.62+1.45e 92.29+1.42
splice (3) 92.48+1.17 | 89.01£1.23e  90.82+1.00e  89.204+0.97e¢ 91.04+1.51  91.65£1.00
vehicle (4) 80.03+1.84 | 79.27+£1.97  78.62+2.11  79.15+1.81  76.20+4.05  79.12+1.94
vowel (11) 80.124+3.08 | 78.09+£2.99  65.231+2.62¢ 88.42+1.860 40.38+4.87e 51.8312.56e
waveform (3) 86.39+0.73 | 86.47+£0.71  86.57+0.71  86.16+0.70  84.19£2.73  86.57+0.71
zoo (7) 95.25+3.26 | 90.23+£6.85  92.194+5.40  94.73+£3.21  91.93+4.81  93.344+5.05

e, o statistically significant improvement or degradation

Table 3. Comparison of different multi-class methods for logistic regression.



show that ENDs produce more accurate classifications
than applying C4.5 and logistic regression directly to
multi-class problems. In the case of C4.5 the win/loss
ratio is 18/2, in the case of logistic regression 16/5.
ENDs compare even more favorably with one-vs-rest,
confirming previous findings that this method is often
not competitive. More importantly, the experiments
show that ENDs are more accurate than pairwise clas-
sification (1-vs-1) with C4.5 as base classifier (win/loss
ratio: 20/1), and comparable in the case of logistic re-
gression (win/loss ratio: 11/10).

ENDs outperform RECOCs for both base learners: the
win/loss ratio is 17/4 for C4.5 and 19/2 for logistic re-
gression. However, in the case of C4.5 only two of the
differences are statistically significant, and for exhaus-
tive codes (EECOCs) the win/loss ratio becomes 8/8
(with 3 significant wins for EECOCs and only one sig-
nificant win for ENDs). In contrast, both RECOCs
and EECOCs appear to be incompatible with logis-
tic regression. Even for EECOCs the win/loss ratio is
14/2 in favor of ENDs (and ENDs produce five signifi-
cant wins and no significant loss). We conjecture that
this is due to logistic regression’s inability to represent
non-linear decision boundaries—an ability which may
be required to adequately represent the dichotomies
occurring in ECOCs. Sometimes logistic regression ap-
plied with ECOCs performs very poorly (see, e.g., the
performance on vowel and pendigits). This appears to
be consistent with previous findings (Dekel & Singer,
2002).

The results show that ENDs are a viable alternative to
both pairwise classification and error-correcting out-
put codes, two of the most widely-used methods for
multi-class classification, and their accuracy appears
to be less dependent on the base learner.

4.2. Effect of changing the size of the ensemble

In a second set of experiments we investigated how the
performance of ENDs depends on the size of the en-
semble. The results are shown in Tables 4 and 5. The
first observation is that using more members never
hurts performance. Also, and perhaps not surpris-
ingly, more classes require more ensemble members.
However, 20 members appear to be sufficient in most
cases to obtain close-to-optimum performance. More-
over, the results show that the required ensemble size
is largely independent of the learning scheme.

Note that the running time for learning one END en-
semble member is bounded from above by the time
it takes to build a classifier based on the one-vs-rest
method. The worst-case running time occurs when
the tree of nested dichotomies degenerates to a list.

C1L |2 | C3
11 1] 1] X
21 1] 01X
31 0] X |1
41 0| X]| 0

Table 6. Code vectors for the tree in Figure 1a.

Hence the training time for an END with & members
is bounded from above by the time it would take to
run the one-vs-rest method k times.

5. Related Work

There is an extensive body of work on using (variants
of) error-correcting output codes and pairwise classifi-
cation for multi-class classification. For this paper we
used error-correcting codes that can be represented as
bit vectors. Allwein et al. (2000) introduced extended
codes with “don’t care” values (in addition to Os and
1s), but they did not observe an improvement in per-
formance over binary codes. Interestingly, the learn-
ing problems occurring in nested dichotomies can be
represented using these extended codes. For example,
Table 6 shows the code vectors corresponding to the
tree from Figure la (where “X” stands for a “don’t
care”). However, the “decoding process” used in en-
sembles of nested dichotomies is different and yields
class probability estimates in a natural way.

Other approaches on improving ECOCs are based on
adapting the code vectors during or after the learn-
ing process. Crammer and Singer (2001) present a
quadratic programming algorithm for post-processing
the code vectors and show some theoretical properties
of this algorithm. Dekel and Singer (2002) describe an
iterative algorithm called “Bunching” that adapts the
code vectors during the learning process, and show
that it improves performance for the case of logistic
regression. Along similar lines, Ritsch et al. (2002)
propose an algorithm for adaptive ECOCs and present
some preliminary results.

There is also some work on generating probability
estimates based on ECOCs and pairwise classifica-
tion. Kong and Dietterich (1997) introduce a post-
processing step for ECOCs that recovers probability
estimates. However, this step only finds an approxi-
mate solution because the underlying problem is over-
constrained. Similarly, Hastie and Tibshirani (1998)
proposed a method called “pairwise coupling” as a
post-processing step for pairwise classification. Again,
the problem is over-constrained but an approximate
solution can be given, and this work has recently been



Dataset (#classes) | 20 members | 1 member 5 members 10 members 40 members
anneal (6) 98.15+0.75 | 97.86+£0.73  98.11+0.73  98.18+0.68  98.07+0.71
arrhythmia (16) 72.98+2.41 | 63.85+3.12¢ 70.844+2.79 72.06£2.65 73.11£2.23
audiology (24) 78.23+3.70 | 71.36+£5.97  75.91+4.41 77.61+£4.38  78.454+3.75
autos (7) 73.77+3.73 | 65.20+5.53e  71.5945.45 73.13+4.34 73.97+4.34
balance-scale (3) 80.00+2.22 | 79.50+2.30 80.16+2.01 80.21+2.04 80.16+2.11
ecoli (8) 84.484+2.84 | 81.10+3.13  83.33+2.74  83.99+3.05  84.60+2.78
glass (7) 70.67+4.59 | 65.31+4.40 69.27+5.14  70.23+£4.06  70.94+5.06
hypothyroid (4) 99.49+0.20 | 99.44+0.18  99.47+0.19  99.484+0.20  99.51+0.20
iris (3) 93.96+3.12 | 94.12+3.19  94.16+£3.21  94.08+3.16  93.96+3.12
letter (26) 94.561+0.28 | 83.93+£0.55e 91.80+0.34e¢ 93.611+0.26e¢ 95.0240.240
lymphography (4) 77.67£5.05 | 77.26+£5.49  77.82+5.10  77.78+4.78  77.624+4.82
optdigits (10) 97.24+0.36 | 88.89+1.10e 95.58+0.51e 96.724+0.41e 97.47+0.31
pendigits (10) 98.66+0.19 | 95.11+0.60e 97.98+0.32¢ 98.434+0.23 98.7540.22
primary-tumor (22) | 44.84+2.65 | 38.47+2.5le 44.12+3.22 44.43+2.98  45.284+2.54
segment (7) 97.25+0.61 | 94.98+0.86e 96.78+0.61  97.15+0.62  97.36+0.62
soybean (19) 93.75+1.29 | 89.58+2.34¢ 93.06+£1.48  93.54+1.33  93.68+1.29
splice (3) 94.30+0.87 | 92.88+1.73  93.68+1.38  93.96+1.17  94.48+0.63
vehicle (4) 73.48+1.97 | 69.92+2.41e 72.424+1.85  73.04+2.15 73.46+£2.17
vowel (11) 87.56+2.63 | 69.95+3.41e 82.45+3.04e 85.49+2.85  88.64+2.57
waveform (3) 78.61£1.76 | 75.36£0.99e¢ 77.1842.09  77.52+1.70  79.19£1.20
200 (7) 93.31+3.47 | 89.40+4.41 92.16+£3.56  92.21+3.55  93.31+£3.50

e, o statistically significant improvement or degradation

Table 4. Comparison of different numbers of ensemble members for C4.5.

Dataset (#classes) | 20 members 1 member 5 members 10 members 40 members
anneal (6) 99.33+0.59 | 98.70+0.92 99.21+0.69  99.34+0.58  99.33+0.59
arrhythmia (16) 58.48+3.18 | 46.22+4.80 ¢ 54.444+3.99  56.71+3.22  59.10+3.14
audiology (24) 81.52+3.89 | 68.90+5.37 ¢ 78.84+4.03  80.53+3.81  82.31+4.23
autos (7) 70.444+5.98 | 62.38+5.70 68.71+£5.29  70.01+5.22  71.424+6.29
balance-scale (3) 87.23+1.15 | 88.69+1.74 87.60+1.48  87.35+1.38  87.35+1.25
ecoli (8) 85.73+2.52 | 82.16£2.81 85.224+2.49  85.43+2.48  85.82+2.29
glass (7) 64.19+£5.45 | 59.49+£5.02 62.81+4.97 63.97+£5.43  64.43+5.60
hypothyroid (4) 96.82+0.53 | 95.94+1.72 96.38+1.12  96.71+0.62  96.83+0.57
iris (3) 95.73+£2.79 | 88.16£11.15 94.94+4.38  95.69+£2.88  95.73£2.79
letter (26) 76.12+0.72 | 52.28+3.96 o 71.36+1.32e¢ 74.531+0.84e 76.93+0.450
lymphography (4) 77.95+5.57 | 76.72+6.03 77434593  77.36+£5.70  77.99+5.46
optdigits (10) 97.00+0.37 | 90.01+2.31 ¢ 95.824+0.64e¢ 96.65+0.51  97.18+0.38
pendigits (10) 95.424+0.58 | 87.20+4.30 o 94.36+0.90  95.08+0.70  95.61+0.44
primary-tumor (22) | 44.05+3.13 | 37.21+3.31 o 41.74+3.08  43.01+3.47  44.35+2.83
segment (7) 94.404+0.73 | 89.53+3.96 93.36+1.11  94.11+0.87  94.58+0.62
soybean (19) 93.05+1.45 | 88.39+2.05 ¢ 92.36+1.66  92.74+1.68  93.00%1.60
splice (3) 92.48+1.17 | 89.48+1.27 e 91.394+1.68  91.91+1.42  92.69+0.93
vehicle (4) 80.03+£1.84 | 75.94+2.70 e 79.32+1.97 79.84+1.93  80.21+1.72
vowel (11) 80.12+3.08 | 51.76+8.72 ¢ 72.854+4.96e 77.24+3.76  81.78+2.12
waveform (3) 86.39+£0.73 | 83.19+£1.17 ¢ 85.92+0.88  86.21+0.75  86.424+0.68
zoo (7) 95.25+3.26 | 91.04+5.93 94.1943.30  95.12+3.04  95.494+2.98

e, o statistically significant improvement or degradation

Table 5. Comparison of different numbers of ensemble members for logistic regression.



extended by Wu et al. (2003).

Platt et al. (2000) show that the n x (n — 1)/2 clas-
sifiers in pairwise classification can be arranged into a
directed acyclic graph (DAG), where each node repre-
sents a model discriminating between two classes: if
we discriminate between two classes A and B at an in-
ner node, then we just conclude that it is not class A if
the model decides for B and vice versa. In the leaves,
after excluding all classes except two, a final decision
is taken. Compared to voting, this process improves
classification time and does not appear to negatively
affect accuracy.

Finally, in a very recent paper, Rifkin and Klautau
(2004) find that the one-vs-rest method works as well
as pairwise classification and error-correcting output
codes if “the underlying binary classifiers are well-
tuned regularized classifiers such as support vector ma-
chines”.

6. Conclusions

In this paper we introduced a new, general-purpose
method for reducing multi-class problems to a set
of binary classification tasks, based on ensembles of
nested dichotomies (ENDs). The method requires bi-
nary classifiers that are able to provide class proba-
bility estimates and in turn returns class probability
estimates for the original multi-class problem. Our
experimental results show that ENDs are a promising
alternative to both pairwise classification and error-
correcting output codes; in particular, and in contrast
to both these other methods, they appear to signifi-
cantly improve classification accuracy independent of
which base learner is used. As future work, we plan to
investigate deterministic methods for generating ENDs
and the use of ENDs for ordinal classification prob-
lems.
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