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Abstract  

We propose a multiclass (MC) classification 
approach to text categorization (TC). To fully 
take advantage of both positive and negative 
training examples, a maximal figure-of-merit 
(MFoM) learning algorithm is introduced to train 
high performance MC classifiers. In contrast to 
conventional binary classification, the proposed 
MC scheme assigns a uniform score function to 
each category for each given test sample, and 
thus the classical Bayes decision rules can now 
be applied. Since all the MC MFoM classifiers 
are simultaneously trained, we expect them to be 
more robust and work better than the binary 
MFoM classifiers, which are trained separately 
and are known to give the best TC performance.  
Experimental results on the Reuters-21578 TC 
task indicate that the MC MFoM classifiers 
achieve a micro-averaging F1 value of 0.377, 
which is significantly better than 0.138, obtained 
with the binary MFoM classifiers, for the 
categories with less than 4 training samples.  
Furthermore, for all 90 categories, most with 
large training sizes, the MC MFoM classifiers 
give a micro-averaging F1 value of 0.888, better 
than 0.884, obtained with the binary MFoM 
classifiers.  

1.  Introduction 

Text categorization (TC) is a process of classifying a text 
document into some pre-defined categories. It is an 
important research problem in information retrieval (IR), 
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information extraction and filtering, web text mining, and 
natural language processing. In the past two decades TC 
has received much attention (Sebastiani, 2002). It is 
usually formulated as the binary classification (BC) that a 
binary classifier is designed for each category of interest, 
and multiclass, multi-label decisions are made based on 
how well the input text document matches with the set of 
multiple binary classifiers (Sebastiani, 2002). Although 
the BC approach has achieved high performance in TC, 
only two-class classification is considered. On the other 
hand, we have also seen the multiclass (MC) 
classification approach being used in many pattern 
recognition problems, such as automatic speech 
recognition, speaker identification, face recognition and 
optical character recognition. Here by MC classification, 
we mean a uniform score function is defined to compute a 
goodness-of-fit score between the input document and a 
category-specific classifier. Multi-label classification can 
be accomplished by selecting a group of top scoring 
categories.  If a source distribution can be attached to 
each category, then the Bayes decision theory serves as 
the theoretical foundation for the multiclass classification. 
A lot of literatures on this topic are available (e.g. Lee & 
Huo, 2000). 

Numerous training algorithms have been studied in BC, 
e.g. Naïve Bayesian method (Lewis & Ringuette, 1994; 
Yang & Liu, 1999), k-nearest neighbors (kNN) (Yang & 
Liu, 1999), support vector machines (SVM) (Joachims, 
2002), decision tree (Breiman, et al.1984), etc. To handle 
multiclass classification, error-correcting output coding 
(ECOC) (Dietterich & Bakiri, 1995), boosting (Schapire 
& Singer, 2000), and multiclass SVM (Weston & 
Watkins, 1999; Vapik 1998; Zhang, et al., 2003) have 
been proposed. But only a handful of techniques are 
available for direct multiclass classification. Although 
some BC algorithms can be extended to learning 
multiclass, multi-label classifiers (e.g. Naïve Bayesian, 
kNN, decision tree), they do not work as well as the 



 

binary classifiers commonly adopted in IR and TC 
communities.  

To improve the performance on TC, both positive and 
negative examples need to be considered during training. 
This principle is implicitly used to learn the binary 
classifiers. However, discrimination among the categories 
is not fully utilized because these category-specific binary 
classifiers are usually trained independently. To mitigate 
this deficiency, a maximal figure-of-merit (MFoM) 
approach was introduced to learn the binary classifiers 
(Gao, et al, 2003). It was demonstrated that high 
performance TC systems can be designed using the 
MFoM-trained classifiers.  

In this paper, we further generalize the MFoM learning to 
multiclass, multi-label classification. To learn these MC 
classifiers, any objective function of performance metrics, 
such as precision and recall, can be formulated and 
optimized. The proposed MFoM learning algorithm takes 
full advantage of both positive and negative examples. 
Since all MC MFoM classifiers are trained 
simultaneously, we expect them to be more robust than 
the corresponding binary MFoM classifiers, especially for 
the categories with a very small number of positive 
training examples. Our experimental results on the 
Reuters-21578 TC task indeed indicate that the MC 
MFoM classifiers achieve a micro-averaging F1 value of 
0.377, which is significantly better than 0.138, obtained 
with the binary MFoM classifiers, for those categories 
with less than 4 training samples.  Furthermore, for all 90 
categories, mostly with large training sizes, the MC 
MFoM classifiers give a macro-averaging F1 value of 
0.888, which is better than 0.884, obtained with the binary 
MFoM classifiers. 

The rest of the paper is organized as follows. In Section 2, 
some related studies are first briefly described. The theory 
of MC MFoM learning is then presented in Section 3. 
Next in Section 4, we cast the MFoM learning into a 
baseline classifier with a linear discriminant function used 
in designing the binary MFoM classifiers (Gao, et al. 
2003). In Section 5 we report on the experimental results 
with the Reuters-21578 TC task. Finally we conclude our 
findings in Section 6. 

2.  Related Studies 

The goal of our MC MFoM learning approach is to design 
a discriminative multi-label multiclass classifier so that 
we can sufficiently maximize the pair-wise discrimination 
power among all competing classes (Remember most of 
them are ignored in learning binary classifier) and can 
explicitly optimize our preferred figure-of-merit. In the 
following we review some related studies. 

A popular TC learning approach is based on a divide-and-
conquer strategy, i.e. decomposing the multi-class 
classification problem into multiple binary classifiers and 
then combing the binary decisions if necessary. Two such 

examples are ECOC (Dietterich & Bakiri, 1995) and 
BoosTexter (Schapire & Singer, 2000). To train a binary 
classifier, the first step is to choose a suitable set of 
samples to estimate a particular binary classifier. In 
ECOC, the instance selection depends on a coding matrix, 
generally designed based on some expert knowledge (e.g. 
the entry value is 1 if an instance is positive. Otherwise, it 
is 0). While in the BoosTexter, the selection is based on 
the iteratively estimated joint distribution of the training 
samples and the category. The decision with multiple 
binary classifiers can be a majority voting (Dietterich & 
Bakiri, 1995), or a linear combination of the scores from 
all the weaker hypotheses (Schapire & Singer, 2000).  

The above divide-and-conquer methodology has been 
quite successful because it explicitly captures the ability 
to discriminate between positive and negative examples. 
However each binary classifier is learned independently 
and we have no knowledge about how to compare two 
such binary classifiers. If all the pair-wise comparisons 
are taken into account in training, we should be able to 
further improve the discriminative power and robustness 
of the classifiers. Recent work on multiclass SVM 
(Weston & Watkins, 1999) showed that the learned 
classifier has less number of support vectors than the 
binary SVM, although there was no improvement in the 
performance. This implies a more compact representation 
of the decision surfaces for MC classifiers than the binary 
ones.  

Classifier (binary or multiclass) learning can be done by 
optimizing an objective function which measures some 
predefined merits, such as an empirical classification error 
(Katagiri, et al., 1998; Schapire & Singer, 2000), a 
regularized empirical classification error (Weston & 
Watkins, 1999; Joachims, 2002; Zhang, et al., 2003), an 
empirical ranking loss (Schapire & Singer, 2000), etc. 
Most of the measures are not the desired metric for 
evaluating the system. In TC, the classification error 
cannot effectively measure the classifier, and the false 
positive and false negative rates or their combination (e.g. 
F1) are more popular. To make the objective function 
effectively measure the classifiers, Yan, et al. (2003) 
applied the Wilcoxon-Mann-Whitney statistic, a measure 
of the overall pair-wise ranking error in the training set, as 
an objective function. Their experimental results showed 
that the area under the ROC curve is maximized, 
however, the trained classifiers are not guaranteed to be 
optimal at a particular operating point. In contrast to this 
study, Gao, et al. (2003) proposed a MFoM learning 
approach to optimize any preferred merit for any given 
classifiers. By a smooth embedding of the decision 
function, the overall nonlinear objective function is 
continuously differentiable, and can therefore be 
iteratively optimized with a generalized probabilistic 
descend algorithm (Katagiri, et al, 1998). 

3.  Multiclass MFoM Learning  



 

In (Gao, et al., 2003), a binary MFoM learning approach 
is proposed to train the binary classifiers by optimizing 
any overall objective function of any metric of interest. It 
simulates the discrete performance measures (e.g. recall, 
precision, F1) with a continuous function of the classifier 
parameters. Since the objective function is continuous and 
differentiable, it can be optimized to obtain the MFoM-
trained binary classifiers. In the following we extend it to 
learn multiclass classifiers. 

3.1   Single-Label Decision Rule 

Given N categories, { }NjCC j ≤≤= 1 , , and a multi-labeled 

training set, ( ){ }CYRXYXT D ⊂∈= ,, , where 
jC  is the j-th 

category, with X being a sample in a D-dimension space, 
Y representing a set of labels for X and a subset of C. N 
classifiers with the corresponding parameter set, Λ , are 
estimated from T. In the most general case, all the 
classifiers could share part or all of the parameters. In the 
current implementation, we assume that each classifier is 
defined as its own parameter set,

jΛ , for the j-th category, 

jC , then { }Njj ≤≤Λ=Λ 1, .  For most pattern recognition 

problems, such as speaker identification, fingerprint 
recognition, and optical character recognition, there is 
only one category label in Y associated with X. It is 
simply a decision to classify a given instance X into one 
of N categories. A popular choice of the decision rule is to 
decide on the category with the maximum score as the 
recognized class, i.e. 

( ) ( )ˆ arg max ; ,1j jj
C X g X j N= Λ ≤ ≤   ,        (1) 

where ( )Ĉ X  is the assigned category, and ( )jj Xg Λ;  a class 

discriminant function (or score function) to compute the 
class scores. In such multiclass, single-label classification 
cases, it can be shown that a correct classification 
decision is made for a sample, X, coming from the class 

jC , if ( )ˆ
jC X C= , i.e. i∀  

( ) ( ) jijijj CXXgXg ∈Λ>Λ ≠    ;;            (2) 

which is equivalent to the decision rule in Eq. (1).  

3.2  Multi-Label Decision Rule  

Next we address the multi-label decision issue with the 
multiclass classification. First, a list of N-best categories 
is decided with the decision rule in Eq. (1). Then based on 
a confidence measure, we perform a test to verify if each 
candidate should be accepted or rejected. In the multi-
label case, a test sample may come from a subset of the N 
categories. Correct classification is achieved only when 
all true labels are detected. If the true category is not in 
the list of the top ranked categories, we have a wrong 
decision. This makes evaluation a tricky problem. 

In speech recognition (Katagiri, et al., 1998) and call 
routing (Kuo & Lee, 2003), the scores from the most 

competing categories against a specific category is 
combined to measure the distance between the target and 
its decision surface. Here the same idea is applied to 
define a competitive model, called class anti-discriminant 
function,  

( ) ( )( )
1

1
; log exp ;

j

j i i
i Cj

g X g X
C

η
η

−

− −
−

∈

 
 Λ = Λ
  

∑   (3) 

where −
jC , often called a cohort set, is a subset containing 

the most competitive categories against 
jC , | |jC−  is the 

cardinality of the cohort set, −Λ is the parameter set for all 
the competitive categories, and η  is a positive constant. 
The term in the RHS of Eq. (3) represents a geometric 
average of all the competing scores. Intuitively, it is noted 
that when η  approaches∞, the RHS of Eq. (3) converges 
to the highest score among the competing categories. 
With Eq. (3), the decision rule to verify each category can 
be formulated as: 

( ) ( )




≤≤
∈

>Λ−Λ∈ −−

Nj
OtherwiseC

XgXgC

j

jjjj 1
                             ,, X    Reject    

 0;; if   X   Accept     (4). 

It is similar to the decision rule in the binary 
classification. Here the difference between ( )jj Xg Λ;  and 

( )−− Λ;Xg j
 tries to measure the confidence of the decision 

in Eq. (4), and can be compared and ranked among all 
categories. This property provides a more efficient 
decision rule for the multiclass classification. For 
example, we only have to verify the top N-best category 
candidates according to their confidence rankings. 
Intuitively we expect the ranking of all correct categories 
to be higher than that of all other categories. In the 
training stage we attempt to maximize the separation 
between the correct and competing categories, by 
adjusting all the classifier parameters to move upward the 
rankings of the correct categories, and move downward 
the incorrect ones.  

3.3  Overall Objective Function 

Various objective functions have been proposed, e.g. the 
likelihood function in ML training (Katagiri, et al., 1998), 
least square distance (Yang & Liu, 1999), empirical error 
count (Katagiri, et al., 1998; Kuo & Lee, 2003), empirical 
ranking loss (Schapire & Singer, 2000), etc. In TC, it is 
important to explicitly define an overall objective 
function integrating all preferred performance metrics 
with any classifier.  

The basic quantity for the performance measure is the 
classification error. Any other metrics, such as true 
positive (TP), false positive (FP), false negative (FN), 
precision, recall, and F1, can be expressed as a function of 
error counts. We next define a continuous and 
differentiable function of the classifier parameters to 
simulate these error counts.  



 

According to the decision rule in Eq. (4), we define a one-
dimension class misclassification function, ( )Λ;Xd j

, 

such that Eq. (4) is equivalent to ( ) 0; <ΛXd j
 when a 

correct decision is made, i.e. zero error increment. 
Otherwise, ( ) 0; ≥ΛXd j

. This can be accomplished with 

( ) ( ) ( )−Λ+Λ−=Λ
j

XgXgXd jjjj ;;;   .          (5) 

The absolute value of ( )Λ;Xd j
quantifies the separation 

between the correct and competing categories. So it can 
be treated as a confidence measure. If it is much less than 
zero, we are more confident on accepting the j-th 
category. On the other hand, if ( )Λ;Xd j

 is much larger 

than zero, we are more sure to reject the j-th category.  

While the sign of the class misclassification value can 
indicate whether an instance is correctly detected or not, 
its relation to the error is still discrete. To simulate the 
error count with a continuous function, a class loss 
function, ( )Λ;Xl j

, for category 
jC , is defined. It should 

be close to 0 for correct detections, and 1 for incorrect 
ones. Clearly this loss is a function of the feature vector, 
X, and the classifier parameters, Λ . As for the choice of 
an appropriate loss function, any smooth 0-1 function of a 
one-dimension variable approximating a step function at 
the origin will do the job. A sigmoid function is often 
adopted (e.g. Gao, et al., 2003) as 

( ) ( )( )βα +Λ−+
=Λ ;1

1
; Xdj je

Xl    ,             (6) 

whereα  is a positive constant that controls the size of the 
learning window and the learning rate, and β  is a 
constant measuring the offset of ( )Λ;Xd j

 from 0. Its 

value can simulate the error count made by the j-th 
classifier for a given test sample X. 

Denote the precision, recall, and F1 measures for a class 
jC by

jjj FRP  and ,, , respectively. We have 

jj

j
j FPTP
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P

+
=    ,                                       (7) 
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It is clear that these metrics are discrete quantities for 
counting errors and could not be optimized directly 
because they are not differentiable functions of the 
parameters. To evaluate the classification performance for 
each category, precision, recall, and F1 measure in Eqs.(7-
9) are used. To evaluate the average performance over 
many categories, the macro-averaging F1 and micro-
averaging F1 are used and defined as follows: 

 
1 1 1 1 1

2[ ] / [ ]
N N N NM

i i i ii i i i
F R P N R P

= = = =
= +∑ ∑ ∑ ∑ ,     (10) 

1 1 1 1 1
2 /[ 2 ]

N N N N
i i i ii i i i

F TP FP FN TPµ
= = = =

= + +∑ ∑ ∑ ∑  ,    (11) 

i.e. the micro-averaging metric computes an overall 
global measure by giving different weights to each 
category’s local performance measures based on their 
numbers of positive documents. Macro-averaging method 
treats every category equally, and calculates the global 
measures as the means of the local measures of all 
categories.  

Now we can simulate these error counts in the training set 
T for each category 

jC  as follows:  

( ) ( )∑ ∈
∈⋅Λ≈

TX jjj CXXlFN 1;   ,            (12) 

                   ( )( ) ( )∑ ∈
∉⋅Λ−≈

TX jjj CXXlFP 1;1  ,         (13) 

( )( ) ( )∑ ∈
∈⋅Λ−≈

TX jjj CXXlTP 1;1 ,          (14) 

where 1(A) is the indicator function of any logical 
expression, A. The above quantities are continuous and 
differentiable functions of the classifier parameters. Let 

( )Λ;TL  be an overall objective function, which depends 
on the above three quantities. We can solve for the 
classifier parameters by maximizing or minimizing the 
objective function in its general form, i.e. 

( ) ( )NjFPFNTPfTL jjj ≤≤=Λ 1,,;              (15) 

3.4  GPD Algorithm to Learn Classifier Parameters 

In most cases, the objective function defined in Eq. (15) is 
highly nonlinear. A generalized probabilistic descent 
(GPD) algorithm was proposed to find its solution in an 
iterative manner (Katagiri, et al., 1998). It was shown that 
the solution obtained with the GPD algorithm converges 
to an optimal solution with a probability 1. Here we also 
use GPD algorithm. Denote ( )Λ∇ ;TL  as the gradient 
of ( ; )L T Λ . Then the solution is obtained as, 

( )
t

TLttt Λ=Λ+ Λ∇+Λ=Λ |;1 κ  ,               (16) 

with 
tΛ being the parameters at the t-th iteration, and tκ  

being an update step size or learning rate. To speed up the 
convergence, a QuickProp algorithm is also applied to 
dynamically adjust the learning rate (Fahlman, 1998). 

4.  Multiclass Multi-Label Classifiers for TC 

In this following, we apply the multiclass MFoM learning 
approach to TC. The system setup is similar to that for the 
binary classification (Gao, et al., 2003). 

4.1  LSI-based Feature Extraction 

In IR, a multidimensional feature set is often extracted to 
represent a document. Each component of the feature set 
corresponds to the contribution of a term occurred in the 
document. In a typical application the lexicon usually has 
more than ten thousands entries. Many techniques, such 



 

as feature selection (Sebastiani, 2002), have been 
proposed to reduce the dimension. Latent semantic 
indexing (LSI) (e.g. Bellegarda, 2000) is a way to achieve 
both feature selection and reduction. In this study, 
singular value decomposition (SVD) based LSI is used to 
decompose the well-known term-document matrix H into 
a multiplication of three matrices:  

TUSVH =    ,                         (17) 
U : RM×   left singular matrix with rows Miui ≤≤1, , 

S : RR×  diagonal matrix of singular values ;0...21 >≥≥≥ Rsss  

V : RP×  right singular matrix with rows Pjv j ≤≤1, . 

Both the left and right singular matrices are column-
orthonormal. If we retain only the top Q singular values in 
matrix S and zero out the other (R-Q) components, the 
LSI feature dimension could be effectively reduced to Q 
which is often much smaller than R. By doing so, the 
three matrices are much smaller in size than those in Eq. 
(17) and it greatly reduces the computation requirements. 

4.2  Baseline Multiclass Classifier 

A document is represented by a multidimensional feature 
in the LSI space. The parameters of the classifier for each 
category are estimated from its training set. Here a linear 
classifier is used. The mean of the training vectors in each 
category is estimated as its initial parameters, i.e.  

( ) 01
.; j

D

m jmmjj wwxXg +=Λ ∑ =
 ,           (18) 

where D is the feature dimension, ( )jDjjj www ,,, 10 L=Λ  is 

the model parameter vector of the j-th category. 

4.3  Learning Linear Classifiers with MFoM 

In TC micro- or macro-averaging F1, precision, and recall 
are often used to evaluate the system performance. Here 
we simulate the overall objective function with the micro-
averaging F1 defined in Eq.(11) for the training set. 
Similarly, other performance metrics can also be used. So 
the objective is to minimize ( ) uFTL 1; −=Λ with the GPD 
algorithm summarized as follows: 

• Initialize the parameters of the classifier. 
• Iteratively update the classifier 
1. Calculate the gradient,  

   ( ) ( )FPwFNwATL
t

∆⋅+∆⋅⋅=Λ∇ Λ=Λ 21;        (a) 
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2.  Update the parameters of the classifier 
        ( ) ( ) ( ) ( )twtjiji ji

TLtwtw |;1 Λ∇+=+ κ                 (h) 

• Stop the iterations when a predefined maximum 
number of iterations is reached. 

A closer look at the above algorithm reveals that: 

1. The training instances, which are closer to the 
decision surface (i.e. ( )Λ;Xd j

 is close to 0 or 

( )Λ;Xl j
 close to 0.5), play much more important 

roles in learning (See Eqs.(e-g)). Generally the noisy 
or abnormal instance, which is a factor of over-
fitting, is far away from their decision surfaces. So 
this property of MFoM could reduce their influence. 

2. From Eqs.(a-d), it is clear that the adjustment 
quantity of the parameters fuses information from the 
training instances itself but also those from the 
instances of all other categories. It can partially 
explain the robustness of the multiclass MFoM. Even 
if a category has only a small number of training 
instances, it can still robustly learn its decision 
surface from the information provided by the false 
positive instances assigned to it. (See Eqs.(a-f)). 

3. The sign of the summarized descent for the false 
positive is different from that for the false negative. It 
can also avoid over-fitting to some extent.  

These properties explain that multiclass MFoM learning 
is more robust than the binary MFoM, especially for the 
categories with small training sets. In contrast, most of the 
existing learning algorithms are not capable of learning 
with a small number of training instances, although they 
work well for large training sets. 

5.  Experimental Results and Analysis 

We evaluate our proposed multiclass MFoM learning 
algorithm on the TC task and report our experimental 
results with the Reuters-215781 (ModApte version). Many 
evaluation studies have been documented (Joachims, 
2002; Lewis & Ringuette, 1994; Yang & Liu, 1999). Here 
we follow the experimental set in (Gao, et al., 2003). 
After initial processing, we obtain a collection with 90 
categories consisting of 7,770 training and 3,019 testing 
documents. The LSI feature is extracted using SVD2. In 
this paper the LSI feature vectors, with the full rank of 
1,613, are used. In the following experiments of MFoM 
learning, α  is fixed at 60, β is 0.1, and η is 7.0. The top-
15 category candidates are verified. Top-20 category 
candidates, except for the top-15 candidates, are used to 
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describe the competitive model. The maximum iteration 
number in GPD is 100. All parameters are empirically set. 

5.1  Properties of MC MFoM Learning  

In this section we will study some properties of the MC 
MFoM learning. Figure 1 illustrates the convergence 
property of the GPD algorithm. Note that the empirical 
micro-averaging F1 in the training set is shown, instead of 
the value of the overall objective function. The only 
difference is the sign of the value. It illustrates that the 
empirical micro-averaging F1 in the training set is 
increasing in the iterative learning. After 50 iterations, a 
stable stage is reached. At the same time, the real micro-
averaging F1 for the training set reaches 0.978 from its 
beginning value of 0.520, obtained with the initial 
classifier parameters. 

 

 
Figure 1 Convergence of GPD (x-axis: number of GPD 
iterations, y-axis: empirical micro-averaging F1) 

In Figure 2a we plot four training data distributions of the 
class misclassification function for the positive (i.e. the 
training instances labeled as category ‘acq’) and the 
negative (i.e. the training instances not belonging to ‘acq’) 
samples, respectively. Two distributions for the beginning 
of MFoM learning, and Two for the distributions after 
100 iterations, are shown. Clearly MFoM learning 
reduces the overlap between the two competing curves, an 
indication that both false positive and false negative errors 
are reduced. At the same time, the curves become ‘flat’ 
after MFoM training, showing that the MFoM classifiers 
are more robust and less sensitive to data variation. 

A similar set of curves for category “oat” is shown in 
Figure 2b. Here there are only 8 positive training samples, 
and therefore only the curves for the negative examples 
are depicted. It is interesting to note that even with so few 
positive training examples, we can clearly see the 
distribution curves for the negative samples move towards 
the right, indicating that a better separation in the training 
set is achieved after MFoM learning. We will also show 
later that the F1 value for testing data also increased from 
0.167 for binary MFoM to 0.500 for MC MFoM, 
corresponding to a significant improvement for this 
difficult case. 

5.2  Effect of Small Training Sample Sizes 

From the results shown in Figures 2(a-b), we can see that 
MC MFoM learning improves the distribution separation 
for the categories with both large and small training sets.  

The improvement should be more dramatic for categories 
with only few training examples to learn the 
corresponding classifiers. Table 1 lists a performance 
comparison between binary MFoM (Gao, et al., 2003) 
and MC MFoM learning on 5 categories in which only 
less than 10 training instances are available. It is 
interesting to note that even with only one training 
instance, the MC MFoM classifier for the “sun-meal” 
category achieve a F1 value of 0.667, much better than 
that obtained with the corresponding binary MFoM 
classifier. This microscopic performance analysis on TC 
is important because we are interested in designing robust 
classifiers in many new situations in which collecting a 
large training set could be expensive and difficult to 
accomplish.  

 

                       (a)                        (b) 

Figure 2 d-value distributions before and after MC MFoM 
learning for category ‘acq’ (a) and category ‘oat’ (b), only with 
negative samples shown (x-axis: d-value, y-axis: frequency)  

Table 1 F1 comparison for some rare categories 

Category # of  Training 
instances 

Binary 
MFoM 

MC 
MFoM 

Income 9 0.429 0.600 
Oat 8 0.167 0.500 
Platinum 5 0.286 0.833 
Potato 3 0.333 0.750 
Sun-meal 1 0.000 0.667 

5.3  Comparison with Binary MFoM Learning  

The binary classifiers are inherently more discriminative 
than MC classifiers because both positive and negative 
learning examples are used in designing the binary 
classifiers. Even with a simple baseline tree structure 
(Gao, et al., 2003), the MFoM-trained binary classifiers 
performed very well in comparison with the top SVM 
classifiers (Joachims, 2002). With multiclass, multi-label 
classification, the MC MFoM learning described in 
Section 4.3 takes into account both the positive and 
negative training instances. We expect the MC MFoM-
trained classifiers to perform at least as well as the binary 
MFoM-trained classifiers. A comparison of the top 10 
categories among the linear SVM, binary and MC MFoM 
classifiers is listed in Table 2. Micro- and macro-
averaging F1 values for all 90 categories are also shown.  

The results for binary MFoM in Table 2 are taken from 
(Gao, et al., 2003), and those of linear SVM (J-SVM) are  



 

taken from (Joachims, 2002, with C=1.0, which achieves 
the best micro-averaging F1 on all 90 categories). Here the 
binary and MC MFoM classifiers used the full rank LSI 
feature and SVM employed all 9,600 features without any 
feature reduction. The full rank LSI-based linear SVM 
(LSI-SVM) is trained using the SVM-light3 package with 
the default configuration and its results are shown 
together. 

Table 2 The F1 comparisons among linear SVM, binary MFoM, 
and MC MFoM classifiers for the top 10 and all categories 

Category J- 
SVM 

LSI-
SVM 

Binary 
MFoM 

MC 
MFoM 

Earn 0.982 0.982 0.979 0.984 
Acq 0.956 0.953 0.968 0.969 
Money-fx 0.785 0.830 0.826 0.834 
Grain 0.931 0.885 0.906 0.930 
Crude 0.894 0.899 0.897 0.887 
Trade 0.792 0.802 0.807 0.810 
Interest 0.748 0.771 0.792 0.790 
Ship 0.865 0.850 0.878 0.893 
Wheat 0.868 0.797 0.870 0.844 
Corn 0.878 0.800 0.891 0.889 
Micro-avg (ALL 90) 0.875 0.866 0.884 0.888 
Macro-avg (ALL 90) NA 0.433 0.556 0.630 

Table 3 Performance comparison on training sample sizes 

Micro-averaging Macro- averaging Category split 
(threshold of 
training sizes) Binary MC Binary MC 

All 90 (1) 0.884 0.888 0.556 0.630 
Top 10 (150) 0.933 0.937 0.883 0.884 
Other 80 0.720 0.738 0.512 0.598 
Top 16 (100) 0.925 0.928 0.869 0.865 
Other 74 0.679 0.712 0.483 0.579 
Top 39 (30) 0.902 0.907 0.800 0.819 
Other 51 0.537 0.588 0.361 0.486 
Top 60 (10) 0.891 0.896 0.734 0.762 
Other 30 0.310 0.451 0.198 0.357 
Top 73 (4) 0.887 0.892 0.664 0.711 
Other 17 0.138 0.377 0.094 0.269 

Although the micro-averaging F1 values are comparable 
for binary and MC MFoM learning, a closer look reveals 
that MC MFoM classifiers give a better macro-averaging 
F1 value than that obtained with the binary MFoM 
classifiers. Next we study the performance difference on 
both types of categories with large and small numbers of 
training instances, respectively. These results are 
summarized in Table 3, starting with all 90 categories, 

                                                           
3 http://svmlight.joachims.org/ 

splitting the categories into two collections according to 
the training sample sizes. For example, with a threshold 
of 4, we ended up with a split of 73 categories having 
more than or equal to 4 training samples and 17 categories 
with less than 4 training samples. 

It is striking to observe the performance differences as a 
function of the training sample sizes. For small sizes, a 
significant improvement from binary to MC MFoM 
classifiers is clearly seen, even for micro-averaging F1. 
For example, the value was improved from 0.138 to 0.377 
for the categories with less than 4 training samples. Such 
a difference was not shown in Table 2 when comparing 
the top 10 categories. The above performance difference 
is even more pronounced when comparing the macro-
averaging F1 values. For instance, we see the values 
increase from 0.094 to 0.269 for the same collection of 
categories with small training sets. It suggests that a 
detailed sensitivity analysis as a function of the category 
performance is needed. We will discuss this next. 

Table 4 Change rates for micro-averaging F1 

 Binary MFoM MC MFoM 
Micro-rate (*10-4) 1.5382 1.5132 

Table 5 Macro-averaging change rates (small TP) 

Binary MFoM MC MFoM Category 
TP 
# 

FP 
# 

Macro 
(*10-4) 

TP 
# 

FP 
# 

Macro 
(*10-4) 

Income 3 0 10.516 3 0 8.722 
Oat 1 0 12.269 2 0 10.175 
Platinum 2 0 10.516 5 0 8.722 
Potato 1 0 24.537 3 2 24.376 
Sun-meal 0 0 73.611 1 1 73.630 

Table 6 Macro-averaging change rates (large TP) 

Binary MFoM MC MFoM Category 
TP 
# 

FP 
# 

Macro 
(*10-4) 

TP 
# 

FP 
# 

Macro 
(*10-4) 

Acq 689 15 0.104 687 12 0.086 
Grain 130 8 0.511 132 2 0.418 
Crude 179 31 0.428 177 33 0.361 

5.4  Performance Sensitivity Analysis  

We adopt a perturbation analysis by computing the 
performance change rate with respect to the category-
specific TP (true positive) values for both micro- and 
macro-averaging F1, they are computed as follows: 
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where N is the total number of categories being averaged. 
It shows that the change rate in Eq.(19) is a constant 
across all categories for the micro-averaging F1 as shown 
in Table 4.  

On the other hand, the change rate in Eq.(20) for the 
macro-averaging F1 is more complex. A few examples of 
the change rates are shown in Tables 5 and 6 for cases 
with small and large true positives, respectively. It is clear 
that the change rates of the macro-averaging F1 for the 
small TP categories are larger than that of the micro-
averaging F1. While for large TP cases, the change rates 
are smaller for both binary and MC MFoM classifiers. 
The change rates with respect to other category-specific 
metrics can also be evaluated in similar ways. 

6.  Conclusion 

In this paper, a multiclass, multi-label classification 
approach to TC is proposed.  To take full advantage of 
both positive and negative training instances, a multiclass 
maximal figure-of-merit (MC MFoM) learning algorithm 
is introduced to train high performance MC classifiers. In 
contrast to the popular binary classification approach 
commonly adopted in the TC communities, the proposed 
MC scheme assigns a uniform score function to each 
category of interest for each given test sample, and thus 
the classical Bayes decision rules can now be applied. 
Since all the MC MFoM classifiers are trained 
simultaneously, we expect them to be more robust and 
work better than the corresponding binary MFoM 
classifiers, which are trained separately for each category 
and are known to give the best TC performance. 

Experimental results on the Reuters-21578 TC task 
indicate that the MC MFoM classifiers achieve good 
improvements over the binary MFoM classifiers for both 
micro- and macro-averaging F1 comparisons, especially 
for these categories with a limited number of training 
samples. For example in the cases with only less than 4 
training instances, the MC MFoM classifiers give a 
macro-averaging F1 of 0.269, which is significantly better 
than 0.094, obtained with the binary MFoM classifiers. 
Meanwhile, the increase in the micro-averaging F1 goes 
from 0.138 to 0.377. Furthermore, for all 90 categories, 
mostly with large training sizes, the MC MFoM 
classifiers give a micro-averaging F1 of 0.888, better than 
0.884, obtained with the binary MFoM classifiers. It 
clearly shows that the proposed multiclass MFoM 
learning method achieves high performances and in the 
meantime is robust to training data variation. Extension 
from linear to other more sophisticate classifier structures 
should also give similar increased performance and 
enhanced robustness. 
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