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Abstract

We propose a multiclass (MC) classification
approach to text categorization (TC). To fully
take advantage of both positive and negative
training examples, a maxima figure-of-merit
(MFoM) learning algorithm is introduced to train
high performance MC classifiers. In contrast to
conventional binary classification, the proposed
MC scheme assigns a uniform score function to
each category for each given test sample, and
thus the classical Bayes decision rules can now
be applied. Since al the MC MFoM classifiers
are simultaneoudly trained, we expect them to be
more robust and work better than the binary
MFoM classifiers, which are trained separately
and are known to give the best TC performance.
Experimental results on the Reuters-21578 TC
task indicate that the MC MFoM classifiers
achieve a micro-averaging F; value of 0.377,
which is significantly better than 0.138, obtained
with the binary MFoM classifiers, for the
categories with less than 4 training samples.
Furthermore, for all 90 categories, most with
large training sizes, the MC MFoM classifiers
give a micro-averaging F; value of 0.888, better
than 0.884, obtained with the binary MFoM
classifiers.

1. Introduction

Text categorization (TC) is a process of classifying a text
document into some pre-defined categories. It is an
important research problem in information retrieval (IR),
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information extraction and filtering, web text mining, and
natural language processing. In the past two decades TC
has received much attention (Sebastiani, 2002). It is
usually formulated as the binary classification (BC) that a
binary classifier is designed for each category of interest,
and multiclass, multi-label decisions are made based on
how well the input text document matches with the set of
multiple binary classifiers (Sebastiani, 2002). Although
the BC approach has achieved high performance in TC,
only two-class classification is considered. On the other
hand, we have adso seen the multiclass (MC)
classification approach being used in many pattern
recognition problems, such as automatic speech
recognition, speaker identification, face recognition and
optical character recognition. Here by MC classification,
we mean a uniform score function is defined to compute a
goodness-of-fit score between the input document and a
category-specific classifier. Multi-label classification can
be accomplished by selecting a group of top scoring
categories. If a source distribution can be attached to
each category, then the Bayes decision theory serves as
the theoretical foundation for the multiclass classification.
A lot of literatures on this topic are available (e.g. Lee &
Huo, 2000).

Numerous training algorithms have been studied in BC,
e.g. Naive Bayesian method (Lewis & Ringuette, 1994,
Yang & Liu, 1999), k-nearest neighbors (kNN) (Yang &
Liu, 1999), support vector machines (SVM) (Joachims,
2002), decision tree (Breiman, et al.1984), etc. To handle
multiclass classification, error-correcting output coding
(ECOC) (Dietterich & Bakiri, 1995), boosting (Schapire
& Singer, 2000), and multiclass SVM (Weston &
Watkins, 1999; Vapik 1998; Zhang, et al., 2003) have
been proposed. But only a handful of techniques are
available for direct multiclass classification. Although
some BC agorithms can be extended to learning
multiclass, multi-label classifiers (e.g. Naive Bayesian,
kNN, decision tree), they do not work as well as the



binary classifiers commonly adopted in IR and TC
communities.

To improve the performance on TC, both positive and
negative examples need to be considered during training.
This principle is implicitly used to learn the binary
classifiers. However, discrimination among the categories
is not fully utilized because these category-specific binary
classifiers are usually trained independently. To mitigate
this deficiency, a maximal figure-of-merit (MFoM)
approach was introduced to learn the binary classifiers
(Gao, et al, 2003). It was demonstrated that high
performance TC systems can be designed using the
MFoM-trained classifiers.

In this paper, we further generalize the MFoM learning to
multiclass, multi-label classification. To learn these MC
classifiers, any objective function of performance metrics,
such as precision and recal, can be formulated and
optimized. The proposed MFoM learning algorithm takes
full advantage of both positive and negative examples.
Since adl MC MFoM classifiers are trained
simultaneously, we expect them to be more robust than
the corresponding binary MFoM classifiers, especially for
the categories with a very small number of positive
training examples. Our experimental results on the
Reuters-21578 TC task indeed indicate that the MC
MFoM classifiers achieve a micro-averaging F; value of
0.377, which is significantly better than 0.138, obtained
with the binary MFoM classifiers, for those categories
with less than 4 training samples. Furthermore, for all 90
categories, mostly with large training sizes, the MC
MFoM classifiers give a macro-averaging F; value of
0.888, which is better than 0.884, obtained with the binary
MFoM classifiers.

The rest of the paper is organized as follows. In Section 2,
some related studies are first briefly described. The theory
of MC MFoM learning is then presented in Section 3.
Next in Section 4, we cast the MFOM learning into a
baseline classifier with a linear discriminant function used
in designing the binary MFoM classifiers (Gao, et al.
2003). In Section 5 we report on the experimental results
with the Reuters-21578 TC task. Finally we conclude our
findingsin Section 6.

2. Related Studies

The goal of our MC MFoM learning approach is to design
a discriminative multi-label multiclass classifier so that
we can sufficiently maximize the pair-wise discrimination
power among al competing classes (Remember most of
them are ignored in learning binary classifier) and can
explicitly optimize our preferred figure-of-merit. In the
following we review some related studies.

A popular TC learning approach is based on a divide-and-
conquer strategy, i.e. decomposing the multi-class
classification problem into multiple binary classifiers and
then combing the binary decisions if necessary. Two such

examples are ECOC (Dietterich & Bakiri, 1995) and
BoosTexter (Schapire & Singer, 2000). To train a binary
classifier, the first step is to choose a suitable set of
samples to estimate a particular binary classifier. In
ECOC, the instance selection depends on a coding matrix,
generally designed based on some expert knowledge (e.g.
the entry value is 1 if an instance is positive. Otherwise, it
is 0). While in the BoosTexter, the selection is based on
the iteratively estimated joint distribution of the training
samples and the category. The decision with multiple
binary classifiers can be a magjority voting (Dietterich &
Bakiri, 1995), or a linear combination of the scores from
all the weaker hypotheses (Schapire & Singer, 2000).

The above divide-and-conquer methodology has been
quite successful because it explicitly captures the ability
to discriminate between positive and negative examples.
However each binary classifier is learned independently
and we have no knowledge about how to compare two
such binary classifiers. If al the pair-wise comparisons
are taken into account in training, we should be able to
further improve the discriminative power and robustness
of the classifiers. Recent work on multiclass SVM
(Weston & Watkins, 1999) showed that the learned
classifier has less number of support vectors than the
binary SVM, athough there was no improvement in the
performance. This implies a more compact representation
of the decision surfaces for MC classifiers than the binary
ones.

Classifier (binary or multiclass) learning can be done by
optimizing an objective function which measures some
predefined merits, such as an empirical classification error
(Katagiri, et al., 1998; Schapire & Singer, 2000), a
regularized empirical classification error (Weston &
Watkins, 1999; Joachims, 2002; Zhang, et al., 2003), an
empirical ranking loss (Schapire & Singer, 2000), etc.
Most of the measures are not the desired metric for
evaluating the system. In TC, the classification error
cannot effectively measure the classifier, and the false
positive and false negative rates or their combination (e.g.
F1) are more popular. To make the objective function
effectively measure the classifiers, Yan, et al. (2003)
applied the Wilcoxon-Mann-Whitney statistic, a measure
of the overall pair-wise ranking error in the training set, as
an objective function. Their experimenta results showed
that the area under the ROC curve is maximized,
however, the trained classifiers are not guaranteed to be
optimal at a particular operating point. In contrast to this
study, Gao, et al. (2003) proposed a MFoM learning
approach to optimize any preferred merit for any given
classifiers. By a smooth embedding of the decision
function, the overall nonlinear objective function is
continuously differentiable, and can therefore be
iteratively optimized with a generalized probabilistic
descend algorithm (Katagiri, et al, 1998).

3. MulticlassMFoM L earning



In (Gao, et al., 2003), a binary MFoM learning approach
is proposed to train the binary classifiers by optimizing
any overall objective function of any metric of interest. It
simulates the discrete performance measures (e.g. recall,
precision, F;) with a continuous function of the classifier
parameters. Since the objective function is continuous and
differentiable, it can be optimized to obtain the MFoM-
trained binary classifiers. In the following we extend it to
learn multiclass classifiers.

3.1 Single-Label Decision Rule
Given N categories, ¢ :{C,-,1£ j £N}s and a multi-labeled
training set, T:{(X,Y)XT RR.YI c}, where o is the j-th

category, with X being a sample in a D-dimension space,
Y representing a set of labels for X and a subset of C. N
classifiers with the corresponding parameter set, L, are
estimated from T. In the most general case, al the
classifiers could share part or al of the parameters. In the
current implementation, we assume that each classifier is
defined as its own parameter set, | I for the j-th category,

c,. then | :{LJ.,1£ i EN}- For most pattern recognition

problems, such as speaker identification, fingerprint
recognition, and optical character recognition, there is
only one category label in Y associated with X. It is
simply a decision to classify a given instance X into one
of N categories. A popular choice of the decision ruleisto
decide on the category with the maximum score as the
recognized class, i.e.

C(X)=agmaxg,(X;L ) 1EjEN » (D)
]
whereé(x) is the assigned category, andg (X;Lj) aclass

discriminant function (or score function) to compute the
class scores. In such multiclass, single-label classification
cases, it can be shown that a correct classification
decision is made for a sample, X, coming from the class

c,if é(x):cj e
g,(Xx;L,)>a.,(X;L,) XTC, 2
which is equivalent to the decision rulein Eq. (1).

3.2 Multi-Label Decision Rule

Next we address the multi-label decision issue with the
multiclass classification. First, a list of N-best categories
is decided with the decision rule in Eq. (1). Then based on
a confidence measure, we perform a test to verify if each
candidate should be accepted or rejected. In the multi-
label case, atest sample may come from a subset of the N
categories. Correct classification is achieved only when
all true labels are detected. If the true category is not in
the list of the top ranked categories, we have a wrong
decision. This makes evaluation atricky problem.

In speech recognition (Katagiri, et al., 1998) and call
routing (Kuo & Lee, 2003), the scores from the most

competing categories against a specific category is
combined to measure the distance between the target and
its decision surface. Here the same idea is applied to
define a competitive model, called class anti-discriminant

function,
_ . é 1 h u%
9; (X;L ):Iogg—_é_ exp(gi(X;Li)) a 3)
8C; [ic H

Wherecjt , often called a cohort set, is a subset containing
the most competitive categories against C IC | is the
cardinality of the cohort set, L- isthe parameter set for al
the competitive categories, and h is a positive constant.

The term in the RHS of Eq. (3) represents a geometric
average of al the competing scores. Intuitively, it is noted
that when h approaches¥ , the RHS of Eq. (3) converges

to the highest score among the competing categories.
With Eg. (3), the decision rule to verify each category can
be formulated as:

iAccept X1 C; if gj(X;Lj)- g; (X;L’)>0
}Reject X1 C,,Otherwise
It is similar to the decision rule in the binary
classification. Here the difference between gj(X;L j) and

1£j£N D

g; (X;L") tries to measure the confidence of the decision

in Eg. (4), and can be compared and ranked among all
categories. This property provides a more efficient
decision rule for the multiclass classification. For
example, we only have to verify the top N-best category
candidates according to their confidence rankings.
Intuitively we expect the ranking of al correct categories
to be higher than that of all other categories. In the
training stage we attempt to maximize the separation
between the correct and competing categories, by
adjusting all the classifier parameters to move upward the
rankings of the correct categories, and move downward
the incorrect ones.

3.3 Overall Objective Function

Various objective functions have been proposed, e.g. the
likelihood function in ML training (Katagiri, et al., 1998),
least square distance (Yang & Liu, 1999), empirical error
count (Katagiri, et al., 1998; Kuo & Lee, 2003), empirical
ranking loss (Schapire & Singer, 2000), etc. In TC, it is
important to explicitly define an overall objective
function integrating all preferred performance metrics
with any classifier.

The basic quantity for the performance measure is the
classification error. Any other metrics, such as true
positive (TP), false positive (FP), false negative (FN),
precision, recall, and F;, can be expressed as a function of
error counts. We next define a continuous and
differentiable function of the classifier parameters to
simulate these error counts.



According to the decision rule in Eq. (4), we define a one-
dimension class misclassification function, dj(X;L),

such that Eq. (4) is equivalent to dj(X;L)<O when a

correct decision is made, i.e. zero error increment.
Otherwise, dj(X;L)3 0. This can be accomplished with

d(x;L)=-g,(x;L )+ i) - B
The absolute value of d (x;L)quantifieﬁ the separation

between the correct and competing categories. So it can
be treated as a confidence measure. If it is much less than
zero, we are more confident on accepting the j-th
category. On the other hand, if dj(X;L) is much larger

than zero, we are more sure to regject the j-th category.

While the sign of the class misclassification value can
indicate whether an instance is correctly detected or not,
its relation to the error is till discrete. To simulate the
error count with a continuous function, a class loss
function,|j(x;|_), for category C, is defined. It should

be close to O for correct detections, and 1 for incorrect
ones. Clearly this loss is a function of the feature vector,
X, and the classifier parameters, L . As for the choice of
an appropriate loss function, any smooth 0-1 function of a
one-dimension variable approximating a step function at
the origin will do the job. A sigmoid function is often
adopted (e.g. Gao, et al., 2003) as

R 1

L (XiL)= oy ©)
wherea is apositive constant that controls the size of the
learning window and the learning rate, and b is a

constant measuring the offset of dj(x L) from 0. Its

value can simulate the error count made by the j-th
classifier for agiven test sample X.

Denote the precision, recall, and F; measures for a class
C, byp R and Fi» respectively. We have

IR

TP,
Pj = (7)
TP, +FP,
R = TPJ ’ (8)
i
TP, + FN |
2PR, _ 2TP, . 9)

" R, +P, FP,+FN, +2TP,

It is clear that these metrics are discrete quantities for
counting errors and could not be optimized directly
because they are not differentiable functions of the
parameters. To evauate the classification performance for
each category, precision, recall, and F; measure in Eqs.(7-
9) are used. To evaluate the average performance over
many categories, the macro-averaging F; and micro-
averaging F, are used and defined asfollows:

M _~r2 N QN o N 2 N

F'=2a _,Ra_Pl/Nla_R+a Rl (10

m_nQ N Q N QN QN

R"=2a _TRMa_FR+a M +2a _TR]. (11)
i.e. the micro-averaging metric computes an overall
global measure by giving different weights to each
category’s local performance measures based on their
numbers of positive documents. Macro-averaging method
treats every category equally, and calculates the global
measures as the means of the local measures of all
categories.

Now we can simulate these error counts in the training set
T for each category C, asfollows:

FN, » &, 1 (L)Xt ;) . (12)
FP»&, - 1,(GL)xic). (13
P »8,. L 1,0GLkxTc) Q9

where 1(A) is the indicator function of any logica
expression, A. The above quantities are continuous and
differentiable functions of the classifier parameters. Let
L(T;L) be an overall objective function, which depends
on the above three quantities. We can solve for the
classifier parameters by maximizing or minimizing the
objective function in its general form, i.e.

L(T;L) = f(TR,FN,,FPILE | £N) (15)

3.4 GPD Algorithm to Learn Classifier Parameters

In most cases, the objective function defined in Eq. (15) is
highly nonlinear. A generalized probabilistic descent
(GPD) algorithm was proposed to find its solution in an
iterative manner (Katagiri, et al., 1998). It was shown that
the solution obtained with the GPD algorithm converges
to an optimal solution with a probability 1. Here we also
use GPD algorithm. Denote NL(T;L) as the gradient
of L(T;L) . Then the solution is obtained as,

Loy =L, +kNL(TSL) |2y, (16)
with L being the parameters at the t-th iteration, and k,
being an update step size or learning rate. To speed up the

convergence, a QuickProp algorithm is also applied to
dynamically adjust the learning rate (Fahlman, 1998).

4. Multiclass Multi-Label Classifiersfor TC

In this following, we apply the multiclass MFoM learning
approach to TC. The system setup is similar to that for the
binary classification (Gao, et al., 2003).

4.1 LSl-based Feature Extraction

In IR, a multidimensional feature set is often extracted to
represent a document. Each component of the feature set
corresponds to the contribution of a term occurred in the
document. In a typical application the lexicon usualy has
more than ten thousands entries. Many techniques, such



as feature selection (Sebastiani, 2002), have been
proposed to reduce the dimension. Latent semantic
indexing (LSI) (e.g. Bellegarda, 2000) is away to achieve
both feature selection and reduction. In this study,
singular value decomposition (SVD) based LSl is used to
decompose the well-known term-document matrix H into
amultiplication of three matrices:

H=uUsv'™ , 17)
U : M"R left singular matrix withrows y 1£i £M ,

SR R diagonal matrix of singular values 53s3..35,>Q
V P’ R right singular matrix with rows V,1£ | EP-

Both the left and right singular matrices are column-
orthonormal. If we retain only the top Q singular valuesin
matrix S and zero out the other (R-Q) components, the
LSl feature dimension could be effectively reduced to Q
which is often much smaller than R. By doing so, the
three matrices are much smaller in size than those in Eq.
(17) and it greatly reduces the computation regquirements.

4.2 Baseline Multiclass Classifier

A document is represented by a multidimensional feature
in the LSI space. The parameters of the classifier for each
category are estimated from its training set. Here a linear
classifier is used. The mean of the training vectorsin each
category is estimated asitsinitial parameters, i.e.
gj(X;Lj):;_5°12:1xm.wjm+WjO : (18)
where D is the feature dimension, |, :(WjO’lel“'leD) is

the model parameter vector of the j-th category.

4.3 Learning Linear Classifierswith MFoM

In TC micro- or macro-averaging F;, precision, and recall
are often used to evaluate the system performance. Here
we simulate the overall objective function with the micro-
averaging F, defined in Eq.(11) for the training set.
Similarly, other performance metrics can also be used. So
the objective is to minimize L(T;L)=- F,"with the GPD
algorithm summarized as follows:

Initialize the parameters of the classifier.

Iteratively update the classifier
1. Calculate the gradient,

NL(T;L) o, = A{w OFN +w, OFP)  (3)

where A=2/(2TP + FP + FN) (b)
w,=(TP+FP+FN)/(2TP+FP+FN)  (c)

_ 9o o T”k(X;W) 1
DFN—akaxTTWXI'(Xl Ck) ©
DFP=-a.a 4+ ﬂWji(t) X C) X

1, 0cw) OB ST @

Tw, (t) ¥Ik('))<1_ |k(’))"w H

2. Update the parameters of the classifier
Wji(t+1):Wji(t)+ktNL(T;L)|wﬂ(t) (h)

Stop the iterations when a predefined maximum
number of iterationsis reached.
A closer look at the above algorithm reveal s that:

1. The training instances, which are closer to the
decision surface (i.e. d (X;L) is close to O or

|,~(X;L) close to 0.5), play much more important

roles in learning (See Egs.(e-g)). Generally the noisy
or abnorma instance, which is a factor of over-
fitting, is far away from their decision surfaces. So
this property of MFoM could reduce their influence.

2. From Egs.(ad), it is clear that the adjustment
quantity of the parameters fuses information from the
training instances itself but also those from the
instances of all other categories. It can partialy
explain the robustness of the multiclass MFoM. Even
if a category has only a small number of training
instances, it can ill robustly learn its decision
surface from the information provided by the false
positive instances assigned to it. (See Egs.(af)).

3. The sign of the summarized descent for the false
positive is different from that for the false negative. It
can also avoid over-fitting to some extent.

These properties explain that multiclass MFoM learning
is more robust than the binary MFoM, especially for the
categories with small training sets. In contrast, most of the
existing learning algorithms are not capable of learning
with a small number of training instances, although they
work well for large training sets.

5. Experimental Resultsand Analysis

We evauate our proposed multiclass MFoM learning
algorithm on the TC task and report our experimental
results with the Reuters-21578" (ModA pte version). Many
evaluation studies have been documented (Joachims,
2002; Lewis & Ringuette, 1994; Yang & Liu, 1999). Here
we follow the experimental set in (Gao, et al., 2003).
After initial processing, we obtain a collection with 90
categories consisting of 7,770 training and 3,019 testing
documents. The LSI feature is extracted using SVD?. In
this paper the LS| feature vectors, with the full rank of
1,613, are used. In the following experiments of MFoM
learning, a isfixed a 60, bis0.1, and his 7.0. The top-

15 category candidates are verified. Top-20 category
candidates, except for the top-15 candidates, are used to

L http://www.research.att.com/~lewis/reuters21578.html
2 hitp://www.netlib.org/svdpack/



describe the competitive model. The maximum iteration
number in GPD is 100. All parameters are empirically set.

5.1 Propertiesof MC MFoM Learning

In this section we will study some properties of the MC
MFoM learning. Figure 1 illustrates the convergence
property of the GPD algorithm. Note that the empirical
micro-averaging F; in the training set is shown, instead of
the value of the overal objective function. The only
difference is the sign of the value. It illustrates that the
empirica micro-averaging F; in the training set is
increasing in the iterative learning. After 50 iterations, a
stable stage is reached. At the same time, the real micro-
averaging F; for the training set reaches 0.978 from its
beginning value of 0.520, obtained with the initial
classifier parameters.

micro-averas
o o
(=] ~l

o
n

04! - -
1 20 40 a0 &n 100

Figure 1 Convergence of GPD (x-axis: number of GPD
iterations, y-axis. empirical micro-averaging Fy)

In Figure 2a we plot four training data distributions of the
class misclassification function for the positive (i.e. the
training instances labeled as category ‘acq’) and the
negative (i.e. the training instances not belonging to ‘acq’)
samples, respectively. Two distributions for the beginning
of MFoM learning, and Two for the distributions after
100 iterations, are shown. Clearly MFoM learning
reduces the overlap between the two competing curves, an
indication that both false positive and false negative errors
are reduced. At the same time, the curves become ‘flat’
after MFoM training, showing that the MFoM classifiers
are more robust and less sensitive to data variation.

A similar set of curves for category “oat” is shown in
Figure 2b. Here there are only 8 positive training samples,
and therefore only the curves for the negative examples
are depicted. It is interesting to note that even with so few
positive training examples, we can clearly see the
distribution curves for the negative samples move towards
the right, indicating that a better separation in the training
set is achieved after MFoM learning. We will also show
later that the F; value for testing data also increased from
0.167 for binary MFoM to 0.500 for MC MFoM,
corresponding to a significant improvement for this
difficult case.

5.2 Effect of Small Training Sample Sizes

From the results shown in Figures 2(a-b), we can see that
MC MFoM learning improves the distribution separation
for the categories with both large and small training sets.

The improvement should be more dramatic for categories
with only few training examples to learn the
corresponding classifiers. Table 1 lists a performance
comparison between binary MFoM (Gao, et al., 2003)
and MC MFoM learning on 5 categories in which only
less than 10 training instances are available. It is
interesting to note that even with only one training
instance, the MC MFoM classifier for the “sun-meal”
category achieve a F; value of 0.667, much better than
that obtained with the corresponding binary MFoM
classifier. This microscopic performance analysis on TC
is important because we are interested in designing robust
classifiers in many new situations in which collecting a
large training set could be expensive and difficult to
accomplish.

1200 3500

Topic ‘acq’ Topic ‘oat’

3000

beginning of MFoM |
800 | after 100 iterations negative g

2000
1500 |

400 iti
positive 1000

500

beginning of MFoM |} after 100 iterations

T T 01
@ (b)

Figure 2 d-value distributions before and after MC MFoM

learning for category ‘acq’ (a) and category ‘oat’ (b), only with

negative samples shown (x-axis: d-value, y-axis: frequency)

Table 1 F; comparison for some rare categories

#of Training Binary MC
Category instances MFoM MFoM
Income 9 0.429 0.600
Oat 8 0.167 0.500
Platinum 5 0.286 0.833
Potato 3 0.333 0.750
Sun-meal 1 0.000 0.667

5.3 Comparison with Binary MFoM L earning

The binary classifiers are inherently more discriminative
than MC classifiers because both positive and negative
learning examples are used in designing the binary
classifiers. Even with a simple baseline tree structure
(Gao, et al., 2003), the MFoM-trained binary classifiers
performed very well in comparison with the top SVM
classifiers (Joachims, 2002). With multiclass, multi-label
classification, the MC MFoM learning described in
Section 4.3 takes into account both the positive and
negative training instances. We expect the MC MFoM-
trained classifiers to perform at least as well as the binary
MFoM-trained classifiers. A comparison of the top 10
categories among the linear SVM, binary and MC MFoM
classifiers is listed in Table 2. Micro- and macro-
averaging F, values for all 90 categories are also shown.

The results for binary MFoM in Table 2 are taken from
(Gao, et al., 2003), and those of linear SVM (J-SVM) are



taken from (Joachims, 2002, with C=1.0, which achieves
the best micro-averaging F, on all 90 categories). Here the
binary and MC MFoM classifiers used the full rank LS|
feature and SVM employed all 9,600 features without any
feature reduction. The full rank LSI-based linear SVYM
(LSI-SVM) is trained using the SVM-light® package with
the default configuration and its results are shown
together.

Table 2 The F; comparisons among linear SVM, binary MFoM,
and MC MFoM classifiers for the top 10 and all categories

splitting the categories into two collections according to
the training sample sizes. For example, with a threshold
of 4, we ended up with a split of 73 categories having
more than or equal to 4 training samples and 17 categories
with less than 4 training samples.

It is striking to observe the performance differences as a
function of the training sample sizes. For small sizes, a
significant improvement from binary to MC MFoM
classifiers is clearly seen, even for micro-averaging F;.
For example, the value was improved from 0.138 to 0.377
for the categories with less than 4 training samples. Such
a difference was not shown in Table 2 when comparing

J LSl- Binary MC ; .
Categor the top 10 categories. The above performance difference
o SVM__SVM_MFoM MFoM is eve% moreegronounced when F():ompari ng the macro-
Earn 0.982 0982 0979 0984 averaging F; values. For instance, we see the values
Acq 0956 0953 0.968 0.969 increase from 0.094 to 0.269 for the same collection of
Money-fx 0.785 0.830 0.826 0.834 categories with small training sets. It suggests that a
Gran 0931 0.885 0906 0.930 detailed sensitivity analysis as a function of the category
Crude 0.894 0899 0.897 0.887 performance is needed. We will discuss this next.
Trade 0.792 0.802 0.807 0.810 ) )
Interest 0748 0771 0792 0.790 Table 4 Change rates for micro-averaging Fy
Ship 0.865 0.850 0.878 0.893 Binary MFoM MC MFoM
Wheat 0.868 0.797 0.870 0.844 Micro-rate (* 107 15382 1515
Corn 0.878 0.800 0.891 0.889
Micro-avg (ALL 90) 0.875 0.866 0.884 0.888 Table 5 Macro-averaging change rates (small TP)
Macro-avg (ALL 90) NA 0433 0.556 0.630 Category Binary MFoM MC MFEoM
Table 3 Performance comparison on training sample sizes TP FP  Macro TP FP Macro
# #  (*10%) # # (*10%
Category split  Micro-averaging  Macro- averaging Income 3 0 10516 3 0 8722
(threshold of . . Oat 1 0 12269 2 0 10.175
trainingsizes DNy ~ MC  Binay  MC Patinum 2 0 10516 5 0 8722
All 90 (1) 0.884 0.888 0.556 0.630 Potato 1 0 24537 3 2 24376
Top10(150) 0933 0937 0883  0.884 Sun-meal 0 0 73611 1 1 73630
Other 80 0.720 0.738 0.512 0.598 Table 6 Macro-averaging change rates (large TP)
Top 16 (100) 0925 0.928 0.869 0.865
Other 74 0.679 0.712 0.483 0.579 Category Binary MFoM MC MFoM
Top 39 (30) 0.902  0.907 0.800 0.819 TP FP Macro TP FP Macro
Other 51 0.537 0.588 0.361 0.486 # # (*10%) # # (*10™)
Top 60 (10) 0.891 0.896 0.734 0.762 Acq 680 15 0.104 687 12 0.086
Other 30 0.310 0.451 0.198 0.357 Grain 130 8 0511 132 2 0418
Top 73 (4) 0.887 0.892 0.664 0.711 Crude 179 31 0428 177 33 0.361
Other 17 0.138 0.377 0.094 0.269

Although the micro-averaging F; values are comparable
for binary and MC MFoM learning, a closer ook reveals
that MC MFoM classifiers give a better macro-averaging
F; value than that obtained with the binary MFoM
classifiers. Next we study the performance difference on
both types of categories with large and small numbers of
training instances, respectively. These results are
summarized in Table 3, starting with all 90 categories,

% http://svmlight.joachims.org/

5.4 Performance Sensitivity Analysis

We adopt a perturbation analysis by computing the
performance change rate with respect to the category-
specific TP (true positive) values for both micro- and
macro-averaging Fy, they are computed as follows:
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where N is the total number of categories being averaged.
It shows that the change rate in EQ.(19) is a constant
across all categories for the micro-averaging F; as shown
in Table 4.

On the other hand, the change rate in Eq.(20) for the
macro-averaging F; is more complex. A few examples of
the change rates are shown in Tables 5 and 6 for cases
with small and large true positives, respectively. It is clear
that the change rates of the macro-averaging F; for the
small TP categories are larger than that of the micro-
averaging F;. While for large TP cases, the change rates
are smaller for both binary and MC MFoM classifiers.
The change rates with respect to other category-specific
metrics can also be evaluated in similar ways.

6. Conclusion

In this paper, a multiclass, multi-label classification
approach to TC is proposed. To take full advantage of
both positive and negative training instances, a multiclass
maximal figure-of-merit (MC MFoM) learning algorithm
is introduced to train high performance MC classifiers. In
contrast to the popular binary classification approach
commonly adopted in the TC communities, the proposed
MC scheme assigns a uniform score function to each
category of interest for each given test sample, and thus
the classical Bayes decision rules can now be applied.
Since dl the MC MFoM classifiers are trained
simultaneously, we expect them to be more robust and
work better than the corresponding binary MFoM
classifiers, which are trained separately for each category
and are known to give the best TC performance.

Experimental results on the Reuters-21578 TC task
indicate that the MC MFoM classifiers achieve good
improvements over the binary MFoM classifiers for both
micro- and macro-averaging F; comparisons, especially
for these categories with a limited number of training
samples. For example in the cases with only less than 4
training instances, the MC MFoM classifiers give a
macro-averaging F; of 0.269, which is significantly better
than 0.094, obtained with the binary MFoM classifiers.
Meanwhile, the increase in the micro-averaging F; goes
from 0.138 to 0.377. Furthermore, for al 90 categories,
mostly with large training sizes, the MC MFoM
classifiers give a micro-averaging F; of 0.888, better than
0.884, obtained with the binary MFoM classifiers. It
clearly shows that the proposed multiclass MFoM
learning method achieves high performances and in the
meantime is robust to training data variation. Extension
from linear to other more sophisticate classifier structures
should also give similar increased performance and
enhanced robustness.
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