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Abstract

Feature selection is the task of choosing a
small set out of a given set of features that
capture the relevant properties of the data.
In the context of supervised classification
problems the relevance is determined by the
given labels on the training data. A good
choice of features is a key for building com-
pact and accurate classifiers. In this paper
we introduce a margin based feature selection
criterion and apply it to measure the qual-
ity of sets of features. Using margins we de-
vise novel selection algorithms for multi-class
classification problems and provide theoreti-
cal generalization bound. We also study the
well known Relief algorithm and show that it
resembles a gradient ascent over our margin
criterion. We apply our new algorithm to var-
ious datasets and show that our new Simba
algorithm, which directly optimizes the mar-
gin, outperforms Relief.

1. Introduction

In many supervised learning tasks the input data is
represented by a very large number of features, but
only few of them are relevant for predicting the label.
Even state-of-art classification algorithms (e.g. SVM
(Cortes & Vapnik, 1995)) cannot overcome the pres-
ence of large number of weakly relevant and redundant
features. This is usually attributed to “the curse of
dimensionality” (Bellman, 1961), or to the fact that
irrelevant features decrease the signal-to-noise ratio.
In addition, many algorithms become computationally
intractable when the dimension is high. On the other
hand once a good small set of features has been chosen
even the most basic classifiers (e.g. 1-Nearest Neigh-
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bor (Fix & Hodges, 1951)) can achieve high perfor-
mance levels. Therefore feature selection, i.e. the task
of choosing a small subset of features which is sufficient
to predict the target labels well, is crucial for efficient
learning.

Feature selection is closely related to the more gen-
eral problems of dimensionality reduction and efficient
data representation. Many dimensionality reduction
methods, like Principal Component Analysis (Jollif-
fee, 1986) or Locally Linear Embedding (Roweis &
Saul, 2000), are in fact unsupervised feature extrac-
tion algorithms, where the obtained lower dimensions
are not necessarily subsets of the original coordinates.
Other methods, more related to supervised feature
extraction, are the Information Bottleneck (Tishby
et al., 1999) and Sufficient Dimensionality Reduction
(Globerson & Tishby, 2003). However, on many cases,
feature selection algorithms provide a much simpler
approach as they do not require the evaluation of new
complex functions of the irrelevant features.

Roughly speaking, supervised feature selection meth-
ods are applied in one of two conceptual frameworks:
the filter model and the wrapper model (Kohavi &
John, 1997). In the wrapper model the selection
method tries to directly optimize the performance of
a specific predictor (algorithm). This may be done by
estimating the predictor generalization performance
(e.g. by cross validation) for the selected feature set
in each step. The main drawback of this method is its
computational deficiency.

In the filter model the selection is done as a prepro-
cessing, without trying to optimize the performance of
any specific predictor directly. This is usually achieved
through an (ad-hoc) evaluation function using a search
method in order to select a set that maximizes this
function. Performing an exhaustive search is usually
intractable due to the large number of initial features.
Different methods apply a variety of search heuristics,
such as hill climbing and genetic algorithms. One com-
monly used evaluation function is the mutual informa-



tion between the feature set and the labels (Quinlan,
1990). See (Guyon & Elisseeff, 2003) for a comprehen-
sive discussion of feature selection methodologies.

In this paper we introduce the idea of measuring the
quality of a set of features by the margin it induces. A
margin (Cortes & Vapnik, 1995; Schapire et al., 1998)
is a geometric measure for evaluating the confidence
of a classifier with respect to its decision. Margins
already play a crucial role in current machine learning
research. The novelty of this paper is the use of large
margin principle for feature selection1.

Throughout this paper we will use the 1-NN as the
“study-case” predictor, but most of the results are rel-
evant to other distance based classifiers (e.g. LVQ (Ko-
honen, 1995), SVM-RBF (Cortes & Vapnik, 1995)) as
well. The margin for these kind of classifiers was pre-
viously defined in (Crammer et al., 2002). The use of
margins allows us to devise new feature selection al-
gorithms as well as prove a PAC style generalization
bound. The bound is on the generalization accuracy of
1-NN on a selected set of features, and guarantees good
performance for any feature selection scheme which se-
lects small set of features while keeping the margin
large. On the algorithmic side, we use a margin based
criteria to measure the quality of sets of features. We
present two new feature selection algorithms, a Greedy
Feature Flip (G-flip) and an Iterative Search Margin
Based Algorithm which we call Simba, based on this
criteria. The merits of these algorithms is demon-
strated on a synthetic data and a face classification
task.

The paper is organized as follows: Section 2 discusses
margins in machine learning and presents our new
margin based criterion for feature selection. In sec-
tion 3 we present two new feature selection algorithms
G-flip and Simba and compare them to the Relief al-
gorithm. A theoretical generalization analysis is pre-
sented in section 4. Empirical evidence on the per-
formance of these algorithms is provided in section 5,
followed by concluding discussion in section 6.

2. Margins

Margins play a crucial role in modern machine learn-
ing research. They measure the classifier confidence
when making its decision. Margins are used both for
theoretic generalization bounds and as guidelines for
algorithm design.

1(Weston et al., 2000) devised a wrapper feature selec-
tion algorithm for SVM, and thus used margin for feature
selection indirectly

2.1. Two types of Margins

As described in (Crammer et al., 2002) there are two
natural ways of defining the margin of an instance with
respect to a classification rule. The more common
type, sample-margin, measures the distance between
the instance and the decision boundary induced by the
classifier. Support Vector Machines (Cortes & Vapnik,
1995), for example, finds the separating hyper-plane
with the largest sample-margin. Bartlett (1998), also
discusses the distance between instances and the deci-
sion boundary. He uses the sample-margin to derive
generalization bounds.

An alternative definition, the hypothesis-margin, re-
quires the existence of a distance measure on the hy-
pothesis class. The margin of an hypothesis with re-
spect to an instance is the distance between the hy-
pothesis and the closest hypothesis that assigns al-
ternative label to the given instance. For example
AdaBoost (Freund & Schapire, 1997) uses this type
of margin with the L1-norm as the distance measure
among hypotheses.

Throughout this paper we will be interested in margins
for 1-NN. For this special case, (Crammer et al., 2002)
proved the following two results:

1. The hypothesis-margin lower bounds the sample-
margin.

2. It is easy to compute the hypothesis-margin of an
instance x with respect to a set of points P by the
following formula:

θP (x) =
1

2

(

‖x− nearmiss(x)‖ −

‖x− nearhit(x)‖
)

where nearhit(x) and nearmiss(x) denote the
nearest point to x in P with the same and differ-
ent label, respectively. Note that a chosen set of
features affects the margin through the distance
measure.

Therefore in the case of Nearest Neighbor large
hypothesis-margin ensures large sample-margin, and
hypothesis-margin is easy to compute.

2.2. Margin Based Evaluation Function

A good generalization can be guaranteed if many sam-
ple points have large margin (see section 4). We in-
troduce an evaluation function which assigns a score
to sets of features according to the margin they in-
duce. First we formulate the margin as a function of
the selected set of features.



Definition 1 Let P be a set of points and x be an
instance. Let w be a weight vector over the feature set,
then the margin of x is

θwP =
1

2
(‖x− nearmiss(x)‖w − ‖x− nearhit(w)‖w)

(1)
where ‖z‖w =

√

∑

i w
2
i z

2
i .

Definition 1 extends beyond feature selection and al-
lows weight over the features. When selecting a set of
features F we can use the same definition by identi-
fying F with its indicating vector. Therefore, we use
the notation θFP (x) for θ

IF

P (x) where IF is one for any
feature in F and zero otherwise.

Since θλw(x) = |λ|θw(x) for any scalar λ, it is natural
to introduce some normalization factor. The natural
normalization is to require maxw2

i = 1, since it guar-
anties that ‖z‖w ≤ ‖z‖ where the right hand side is
the Euclidean norm of z.

Now we turn to define the evaluation function. The
building blocks of this function are the margins of all
the sample points. The margin of each instance x
is calculated with respect to the sample excluding x
(“leave-one-out margin”).

Definition 2 Given a training set S and a weight vec-
tor w, the evaluation function is:

e(w) =
∑

x∈S

θwS\x(x) (2)

It is natural to look at the evaluation function only for
weight vectors w such that maxw2

i = 1. However, for-
mally, the evaluation function is well defined for any w
and fulfills e(λw) = |λ|e(w), a fact which we make use
of in the Simba algorithm. We also use the notation
e(F ), where F is a set of features to denote e(IF ).

3. Algorithms

In this section we present two algorithms which at-
tempts to maximize the margin based evaluation func-
tion. Both algorithms can cope with multi-class prob-
lems2.

3.1. Greedy Feature Flip Algorithm (G-flip)

G-flip (algorithm 1) is a greedy search algorithm for
maximizing e(F ), where F is a set of features. The al-
gorithm repeatedly iterates over the feature set and
updates the set of chosen features. In each itera-
tion it decides to remove or add the current feature

2A Matlab code of these algorithms is available at:
www.cs.huji.ac.il/labs/learning/code/feature selection

Algorithm 1 Greedy Feature Flip (G-flip)

1. Initialize the set of chosen features to the empty
set: F = φ

2. for t = 1, 2, . . .

(a) pick a random permutation s of {1 . . . N}

(b) for i = 1 to N ,

i. evaluate e1 = e (F ∪ {s(i)})
and e2 = e (F \ {s(i)})

ii. if e1 > e2, F = F ∪ {s(i)}
else-if e2 > e1, F = F \ {s(i)}

(c) if no change made in step (b) then break

to the selected set by evaluating the margin term (2)
with and without this feature. This algorithm is simi-
lar to the zero-temperature Monte-Carlo (Metropolis)
method. It converges to a local maximum of the eval-
uation function, as each step increases its value and
the number of possible feature sets is finite. The com-
putational complexity of one pass over all features of
G-flip is Θ

(

N2m2
)

where N is the number of features
and m is the number of instances. Empirically G-flip
converges in a few iterations. In all our experiments
it converged after less than 20 epochs, in most of the
cases in less than 10 epochs. A nice property of this
algorithm is that it is parameter free. There is no need
to tune the number of features or any type of thresh-
old.

3.2. Iterative Search Margin Based Algorithm
(Simba)

The G-flip algorithm presented in section 3.1 tries to
find the feature set that maximizes the margin di-
rectly. Here we take another approach. We first find
the weight vector w that maximizes e(w) as defined in
(2) and then use a threshold in order to get a feature
set. Of course, it is also possible to use the weights di-
rectly by using the induced distance measure instead.
Since e(w) is smooth almost everywhere, we use gra-
dient ascent in order to maximize it. The gradient of
e(w) when evaluated on a sample S is:

(5e(w))i =
∂e(w)

∂wi
=
∑

x∈S

∂θ(x)

∂wi
(3)

=
1

2

∑

x∈S

( (xi − nearmiss(x)i)
2

‖x− nearmiss(x)‖w

−
(xi − nearhit(x)i)

2

‖x− nearhit(x)‖w

)

wi



Algorithm 2 Simba

1. initialize w = (1, 1, . . . , 1)

2. for t = 1 . . . T

(a) pick randomly an instance x from S

(b) calculate nearmiss(x) and nearhit(x) with
respect to S \ {x} and the weight vector w.

(c) for i = 1, . . . , N calculate

4i =
1

2

( (xi − nearmiss(x)i)
2

‖x− nearmiss(x)‖w

−
(xi − nearhit(x)i)

2

‖x− nearhit(x)‖w

)

wi

(d) w = w +4

3. w ← w2/
∥

∥w2
∥

∥

∞
where (w2)i := (wi)

2.

In Simba (algorithm 2) we use a stochastic gradient as-
cent over e(w) while ignoring the constraint ‖w2‖∞ =
1, the projection on the constraint is done only at the
end (step 3). This is sound since e(λw) = |λ|e(w). In
each iteration we evaluate only one term in the sum
in (3) and add it to the weight vector w. Note that
the term ∆ evaluated in step 2(c) is invariant to scalar
scaling of w (i.e. ∆(w) = ∆(λw) for any λ > 0).
Therefore, since ‖w‖ increases, the relative effect of
the correction term ∆ decreases and the algorithm typ-
ically convergence.

The computational complexity of Simba is Θ(TNm)
where T is the number of iterations, N is the number
of features andm is the size of the sample S. Note that
when iterating over all training instances, i.e. when
T = m, the complexity is Θ

(

Nm2
)

which is better
than G-flip by a factor of N .

3.3. Comparison to Relief

Relief (Kira & Rendell, 1992) is a feature selection al-
gorithm (see algorithm 3), which was shown to be very
efficient for estimating features quality. The algorithm
holds a weight vector over all features and updates this
vector according to the sample points presented. Kira
& Rendell (1992) proved that under some assumptions,
the expected weight is large for relevant features and
small for irrelevant ones. They also explain how to
choose the relevance threshold τ in a way that en-
sures the probability that a given irrelevant feature
will be chosen is small. Relief was extended to deal
with multi-class problems, noise and missing data by
Kononenko (1994).

Algorithm 3 RELIEF (Kira & Rendell, 1992)

1. initiate the weights vector to zero: w = 0

2. for t = 1 . . . T ,

(a) pick randomly an instance x from S

(b) for i = 1 . . . N ,

i. wi = wi + (xi − nearmiss(x)i)
2
−

(xi − nearhit(x)i)
2

3. the chosen feature set is {i|wi > τ} where τ is a
threshold

Note that the update rule in a single step of Relief is
similar to the one performed by Simba. Indeed, em-
pirical evidence shows that Relief does increase the
margin (see section 5). However, there is a major
difference: Relief does not re-evaluate the distances
according to the weight vector w and thus it is infe-
rior to Simba. In particular, Relief has no mechanism
for eliminating redundant features. Simba may also
choose correlated features, but only if this contributes
to the overall performance. In terms of computational
complexity, Relief and Simba are equivalent.

4. Theoretical Analysis

In this section we use feature selection and large mar-
gin principals to prove finite sample generalization
bound for 1-Nearest Neighbor. (Cover & Hart, 1967),
showed that asymptotically the generalization error of
1-NN can exceed by at most a factor of 2 the gener-
alization error of the Bayes optimal classification rule.
However, on finite samples nearest neighbor can over-
fit and exhibit poor performance. Indeed 1-NN will
give zero training error, on almost any sample.

The training error is thus too rough to provide in-
formation on the generalization performance of 1-NN.
We therefore need a more detailed measure in order
to provide meaningful generalization bounds and this
is where margins become useful. It turns out that in
a sense, 1-NN is a maximum margin algorithm. In-
deed once our proper definition of margin is used, i.e.
sample-margin, it is easy to verify that 1-NN generates
the classification rule with the largest possible margin.

The combination of a large margin and a small number
of features provides enough evidence to obtain a use-
ful bound on the generalization error. The bound we
provide here is data-dependent (Shawe-Taylor et al.,
1998; Bartlett, 1998). Therefore, the quality of the
bound depends on our specific sample. It holds simul-
taneously for any possible method to select a set of



features. If an algorithm selects a small set of features
with large margin, the bound guarantees it generalizes
well. This is the motivation for Simba and G-flip.

We use the following notation:

Definition 3 Let D be a distribution over X × {±1}
and h : X −→ {±1} a classification function. We
denote by erD (h) the generalization error of h with
respect to D:

erD (h) = Pr
x,y∼D

[h(x) 6= y]

For a sample S = {(xk, yk)}
m
k=1 ∈ (X × {±1})

m
and a

constant γ > 0 we define the γ-sensitive training error
to be

êrγS (h) =
1

m

∣

∣

∣

{

(k : h(xk) 6= yk) or

(xk has sample-margin < γ)
}
∣

∣

∣

Our main result is the following theorem3:

Theorem 1 Let D be a distribution over RN × {±1}
which is supported on a ball of radius R in RN . Let
δ > 0 and let S be a sample of size m such that S ∼
Dm. With probability 1− δ over the random choice of
S, for any set of features F and any γ ∈ (0, 1]

erD (h) ≤ êrγS (h)+ (4)
√

2
m

(

d ln
(

34em
d

)

log2 (578m) + ln
(

8
γδ

)

+ (|F |+ 1) lnN
)

Where h is the nearest neighbor classification rule
when distance is measured only on the features in F

and d = (64R/γ)
|F |
.

The size of the feature space, N , appears only logarith-
mically in the bound. Hence, it has a minor effect on
the generalization error of 1-NN. On the other hand,
the number of selected features, F , appears in the ex-
ponent. This is another realization of the “curse of
dimensionality” (Bellman, 1961). See appendix A for
the proof of theorem 1.

5. Empirical Assessment

We first demonstrate the behavior of Simba on a small
synthetic problem. Then we test it on a task of pixel
(feature) selection for discriminating between male
and female face images. For the G-flip algorithm, we
report the results obtained on some of the datasets of
the NIPS-2003 feature selection challenge (Guyon &
Gunn, 2003).

3Note that the theorem holds when sample-margin is
replaced by hypothesis-margin since the later lower bounds
the former.
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Figure 1. The results of applying Simba (solid) and Relief
(dotted) on the xor synthetic problem. Top: The mar-
gin value, e(w), at each iteration. The dashed line is the
margin of the correct weight vector. Bottom: the angle
between the weight vector and the correct feature vector
at each iteration (in Radians).
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Figure 2. The weights Simba and Relief assign to the 10
features when applying on the xor problem. (a) and (b) are
the weights obtained by Simba after 100 and 500 iterations
respectively. (c) and (d) are the corresponding weights
obtained by Relief. The correct weights are “1” for the
first 3 features and “0” for all the others.

5.1. The Xor Problem

To demonstrate the quality of the margin based eval-
uation function and the ability of Simba algorithm to
deal with dependent features we use a synthetic prob-
lem. The problem consisted of 1000 sample points
with 10 real valued features. The target concept is
a xor function over the first 3 features. Hence, the
first 3 features are relevant while the other features
are irrelevant. Notice that this task is a special case
of parity function learning and is considered hard for
many feature selection algorithms (Guyon & Elisseeff,
2003). Thus for example, any algorithm which does
not consider functional dependencies between features
fails on this task. Figures 1 and 2 present the results
we obtained on this problem.

A few phenomena are apparent in these results. The
value of the margin evaluation function is highly cor-
related with the angle between the weight vector and
the correct feature vector (see figures 1 and 3). This
correlation demonstrates that the margins character-
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Figure 3. The scatter plot shows the angle to the correct
feature vector as function of the value of the margin eval-
uation function. The values were calculated for the xor
problem using Simba during iterations 150 to 1000. Notice
the linear relation between the two quantities.

ize correctly the quality of the weight vector. This
is quite remarkable since our margin evaluation func-
tion can be measured empirically on the training data
whereas the angle to the correct feature vector is un-
known during learning.

As suggested in section 3.3 Relief does increase the
margin as well. However, Simba outperforms Relief
significantly, as shown in figure 2.

5.2. Face Images

We applied the algorithms to the AR face database
(Martinez & Benavente, 1998) which is a collection
of digital images of males and females with various
facial expressions, illumination conditions, and occlu-
sions. We selected 1456 images and converted them to
gray-scale images of 85× 60 pixels, which are taken as
our initial 5100 features. Examples of the images are
shown in figure 4. The task we tested is classifying the
male vs. the female faces.

In order to improve the statistical significance of the
results, the dataset was partitioned independently 20
times into training data of 1000 images and test data of
456 images. For each such partitioning (split) Simba,
Relief and Infogain4 were applied to select optimal fea-
tures and the 1-NN algorithm was used to classify the
test data points. We used 10 random starting points
for Simba (i.e. random permutations of the train data)
and selected the result of the single run which reached
the highest value of the evaluation function. The av-
erage accuracy versus the number of features chosen,
is presented in figure 5.

Simba significantly outperformed Relief and Info-
gain, especially in the small number of features
regime. When less than 1000 features were used Simba
achieved better generalization accuracy than both Re-
lief and Infogain in more than 90% of the partitions

4Infogain ranks features according to the mutual infor-
mation between each feature and the labels. G-flip was not
applied due to computational constraints.

Figure 4. Excerpts from the face images dataset.
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Figure 5. Results for AR faces dataset. The accuracy
achieved on the AR faces dataset when using the features
chosen by the different algorithms. The results were aver-
aged over the 20 splits of the dataset. In order to validate
the statistical significance we present the results on all the
partitions in figure 6.

(figure 6). Moreover, the 1000 features that Simba
selected enabled 1-NN to achieve accuracy of 92.8%
which is better than the accuracy obtained with the
whole feature set (91.5%). A closer look on the fea-
tures selected by Simba and Relief (figure 7) reveals the
difference between the two algorithms. Relief focused
on the hair-line, especially around the neck, and on
other contour areas in a left-right symmetric fashion.
This choice is suboptimal as those features are highly
correlated to each other and therefore a smaller subset
is sufficient. Simba on the other hand selected features
in other informative facial locations but mostly on one
side (left) of the face, as the other side is clearly highly
correlated and does not contribute new information to
this task. Moreover, this dataset is biased in the sense
that more faces are illuminated from the right. Many
of them are saturated and thus Simba preferred the
left side over the less informative right side.
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Figure 6. Accuracy of Simba vs. Infogain (circles) and
Relief (stars) for each of the 20 partitions of the AR faces
dataset. Note that any point above the diagonal means
that Simba outperforms the alternative algorithm in the
corresponding partition of the data.
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Figure 7. The features selected (in black) by Simba and
Relief for the face recognition task. (a), (b) and (c) shows
100, 500 and 1000 features selected by Simba. (d), (e) and
(f) shows 100, 500 and 1000 features selected by Relief.

5.3. The NIPS-03 Feature Selection Challenge

We applied G-flip as part of our experiments in the
NIPS-03 feature selection challenge (Guyon & Gunn,
2003). It was applied on two datasets (ARCENE and
MADELON) with both 1-NN and SVM-RBF classi-
fiers. The obtained results were among the best sub-
mitted to the challenge. SVM-RBF gave better re-
sults than 1-NN, but the differences were minor. In
the ARCENE data, the task was to distinguish be-
tween cancer and normal tissues gene-expression pat-
terns. Each instance was presented by 10,000 fea-
tures and there were 200 training examples. G-flip
selected 76 features (when run after converting the
data by PCA). SVM-RBF achieved balanced error rate
of 12.66% using those features (the best result of the
challenge on this data set was 10.76%). MADELON
was a synthetic dataset. Each instance was repre-
sented by 500 features and there were 2600 training
examples. G-flip selected only 18 features. SVM-
RBF achieved 7.61% balanced error rate using these
features (the best result on this dataset was 6.22%).
A main advantage of our approach is its simplic-
ity. For more information see the challenge results at
http://www.nipsfsc.ecs.soton.ac.uk/results.

6. Summary and Further Research

Directions

A margin-based criterion for measuring the quality of
a set of features has been presented. Using this cri-
terion we derived algorithms that perform feature se-
lection by searching for the set that maximizes it. We
have also showed that the well known Relief algorithm
(Kira & Rendell, 1992) approximates a gradient ascent
over this measure. We suggested two new methods for
maximizing the margin based-measure, G-flip which
does a naive local search, and Simba which performs a
gradient ascent. These are just representatives of the
variety of optimization techniques (search methods)

which can be used. We have showed that Simba out-
performs Relief on a face classification task and that
it handles better correlated features. One of the main
advantages of the margin based criterion is the high
correlation that it exhibits with the features quality.
This was demonstrated in figures 1 and 3.

Our main theoretical result is a new rigorous bound on
the finite sample generalization error of the 1-Nearest
Neighbor algorithm. This bound depends on the mar-
gin obtained following the feature selection.

Several research directions can be further investigated.
One of them is to utilize a better optimization al-
gorithm for maximizing our margin-based evaluation
function. The evaluation function can be altered as
well. It is possible to apply non-linear functions of the
margin and achieve different tradeoffs between large
margin and training error and thus better stability. It
is also possible to apply our margin based criterion and
algorithms in order to learn distance measures.

Another interesting direction is to link the feature se-
lection algorithms to the LVQ (Kohonen, 1995) algo-
rithm. As was shown in (Crammer et al., 2002), LVQ
can be viewed as a maximization of the very same
margin term. But unlike the feature selection algo-
rithms presented here, LVQ does so by changing pro-
totypes location and not the subset of the features.
This way LVQ produces a simple but robust hypoth-
esis. Thus, LVQ and our feature selection algorithms
maximize the same margin criterion by controlling dif-
ferent (dual) parameters of the problem. In that sense
the two algorithms are dual. One can combine the two
by optimizing the set of features and prototypes loca-
tion together. This may yield a winning combination.
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A. Complementary Proofs

We begin by proving a simple lemma which shows that
the class of nearest neighbor classifiers is a subset of
the class of 1-Lipschitz functions. Let nnSF (·) be a
function such that the sign of nnSF (x) is the label that
the nearest neighbor rule assigns to x, while the mag-
nitude is the sample-margin, i.e. the distance between
x and the decision boundary.

Lemma 1 Let F be a set of features and let S be a
labeled sample. Then the for any x1, x2 ∈ R

N :

∣

∣nn
S
F (x1)− nn

S
F (x2)

∣

∣ ≤ ‖F (x1)− F (x2)‖

where F (x) is the projection of x on the features in F .

The proof of this lemma is straightforward and is omit-
ted due to space limitations. The main tool for proving
theorem 1 is the following:

Theorem 2 (Bartlett, 1998) Let H be a class of real
valued functions. Let S be a sample of sizem generated
i.i.d. from a distribution D over X × {±1} then with
probability 1 − δ over the choices of S, every h ∈ H
and every γ ∈ (0, 1] let d = fatH (γ/32):

erD (h) ≤ êrγS (h)+
√

2
m

(

d ln
(

34em
d

)

log2 (578m) + ln
(

8
γδ

))

We now turn to prove theorem 1:

Proof (of theorem 1): Let F be a set of features such
that |F | = n and let γ > 0. In order to use theorem 2
we need to compute the fat-shattering dimension of
the class of nearest neighbor classification rules which
use the set of features F . As we saw in lemma 1 this
class is a subset of the class of 1-Lipschitz functions on
these features. Hence we can bound the fat-shattering
dimension of the class of NN rules by the dimension of
Lipschitz functions.

Since D is supported in a ball of radius R and ‖x‖ ≥
‖F (x)‖, we need to calculate the fat-shattering dimen-
sion of Lipschitz functions acting on points in Rn with
norm bounded by R. The fatγ-dimension of the 1-NN
functions on the features F is thus bounded by the
largest γ packing of a ball in Rn with radius R, which

in turn is bounded by (2R/γ)
|F |
.

Therefore, for a fixed set of features F we can apply
to theorem 2 and use the bound on the fat-shattering
dimension just calculated. Let δF > 0 and we have
according to theorem 2 with probability 1 − δF over
sample S of size m that for any γ ∈ (0, 1]

erD (nearest-neighbor) ≤ êrγS (nearest-neighbor)+
√

2
m

(

d ln
(

34em
d

)

log2 (578m) + ln
(

8
γδF

))

(5)

for d = (64R/γ)
|F |
. By choosing δF = δ/

(

N
(

N
|F |

)

)

we

have that
∑

F⊆[1...N ] δF = δ and so we can apply the

union bound to (5) and obtain the stated result.


