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Abstract
Context-Dependent Deep-Neural-Network
HMMs, or CD-DNN-HMMs, combine the
classic artificial-neural-network HMMs with
traditional context-dependent acoustic mod-
eling and deep-belief-network pre-training.
CD-DNN-HMMs greatly outperform conven-
tional CD-GMM (Gaussian mixture model)
HMMs: The word error rate is reduced by up
to one third on the difficult benchmarking
task of speaker-independent single-pass
transcription of telephone conversations.

1. Introduction

Context-dependent deep-neural-network HMMs (CD-
DNN-HMMs) are a recently proposed acoustic-model-
ing technique for HMM-based speech recognition [1, 2]
that combines three techniques: the hybrid approach
of modeling HMM state emission densities through
scaled likelihoods from an MLP [3]; traditional acous-
tic co-articulation modeling of speech through context-
dependent phoneme models (crossword triphones with
tied states); and deep networks, leveraging Hinton’s
deep-belief-network (DBN) pre-training procedure.

The power of this model was first shown through a 16%
relative recognition error reduction over conventional
CD-GMM-HMMs on a business search task [1, 2]. This
work describes our subsequent efforts [4] on scaling it
up in terms of training-data size (from 24 hours to
309), model complexity (from 761 output classes to
9304), depth (up to 9 hidden layers), and task (from
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voice queries to speech-to-text transcription). The
model achieves a one-third word-error reduction on the
publicly available benchmark of phone-call transcrip-
tion (Switchboard 2000 NIST Hub5/RT03S-FSH).

2. The Context-Dependent Deep
Neural Network HMM

In HMM-based large-vocabulary speech recognition,
speech is modeled by hidden Markov models (HMMs),
where each word’s HMM is decomposed into phoneme
HMMs. These are commonly three-state left-to-right
HMMs, where each state’s emission probability is a
mixture of Gaussians (GMM). Co-articulation is mod-
eled by context-dependent (CD) phonemes, such as
triphones. Due to data scarcity, triphone states are
commonly tied with similar other states.

A limitation of GMMs is their difficulty to use high-
dimensional features, such as multiple consecutive
frames of short-term spectral features. To address this,
it was proposed in the early 90’s to replace GMMs
with artificial neural networks (ANNs). The ANNs are
trained to classify observation vectors into HMM state
labels [3], and state posteriors are converted to scaled
likelihoods for use as HMM state emissions. However,
these early attempts were limited to shallow models
(1–2 hidden layers) and monophone states as ANN
outputs (even when CD phones were modeled) [5, 6].

The CD-DNN-HMM extends these hybrid ANN-
HMMs two-fold: First, we model tied triphone states
directly. It was long assumed that thousands of tri-
phone states were too many to be accurately modeled
by an MLP, but [1] has shown that it works very well.

Secondly, we use a deep MLP with with many hid-
den layers. Many layers of simple non-linearities can
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Table 1. Standard CD-GMM-HMM vs. CD-DNN-HMM for single-pass speaker-independent recognition on five speech-to-
text test sets (word-error rates in %), and for comparison our group’s best-ever CD-GMM-HMM result for three sets.

acoustic model & training recognition mode RT03S Hub5’00 voice tele-
FSH SW SWB mails conf

CD-GMM 40-mix, SWB 309h single-pass SI 27.4 37.6 23.6 30.8 33.9
CD-DNN 7 layers x 2048, SWB 309h (this work) single-pass SI 18.5 27.5 16.1 22.9 24.4

(rel. change CD-GMM → CD-DNN) (-33%) (-27%) (-32%) (-26%) (-28%)

CD-GMM 72-mix, Fisher 2000h multi-pass adaptive 18.6 25.2 17.1 - -

model complicated non-linearities and are more effi-
cient in representing structures since lower-layer fea-
ture detectors can be reused by the higher-layer feature
detectors. Also, each layer is constrained by the adja-
cent layers and so it is less likely to cause over-fitting
(although it is more likely to cause under-fitting).

The key enablers to the training of these were the deep
belief network (DBN) pre-training algorithm proposed
by Hinton [7], as well as the advent of affordable, mas-
sively parallel computing devices (GPGPUs). Algo-
rithm 1 summarizes the training procedure [4]. First,
a conventional CD-GMM-HMMs is trained. Secondly,
the DNN, after initialization as a DBN, is trained as a
frame classifier, where the class labels are state labels
assigned to each input frame through forced alignment
using the CD-GMM-HMM. Midway, the alignment is
updated once using the DNN model.

Algorithm 1 CD-DNN-HMM Training Procedure
Train conventional CD-GMM-HMM system.
Get senone-level forced-alignment with that model.
Convert senone-level alignment into class labels.
Pretrain a DNN using DBN-pretraining [7].
Fine-tune DNN using backpropagation [8].
Convert the CD-GMM-HMM to CD-DNN-HMM by re-
placing GMMs with DNN classes.
Get senone-level forced-alignment with that model.
Convert senone-level alignment into class labels.
Further fine-tune DNN using backpropagation.

3. Experimental Results

We evaluate the effectiveness of CD-DNN-HMMs on
speech-to-text transcription of telephone conversa-
tions, a considerably difficult task. We use the pub-
licly available 309-hour ‘SWBD-I’ training set and as-
sociated benchmark sets, as well as two in-house sets.
Recognition is single-pass without speaker adaptation.

Table 1 shows that compared to our discriminatively
trained CD-GMM-HMM baseline, the word-error rate
(WER) on the ‘RT03S-FSH’ benchmark drops from
27.4% to 18.5%—a rather significant one-third reduc-
tion. Much of the gain carries over to less well-matched
sets (voicemail, teleconferences). The 309h CD-DNN-
HMM system also reaches our best multi-pass system

(18.6%, last row), which uses 6 times as much acoustic
training data and speaker adaptation.

Further experiments show that the deep network is in-
deed critical—a shallow 1-hidden-layer network using
the same number of parameters as the 7-hidden-layer
one leads to five percentage points worse word-error
rate. We also find that as an alternative to DBN pre-
training, it is possible to discriminatively pre-train the
model in a supervised layer-growing fashion.

4. Conclusion

By using CD-DNN-HMMs, a one-third word-error re-
duction has been achieved on a difficult benchmark
task, compared to a discriminatively trained conven-
tional CD-GMM-HMM [4]. Recent improvements on
smaller tasks [1, 2] do carry over to larger corpora and
speech-to-text transcription. The remarkable accuracy
gains are due to three factors: direct modeling of tied
triphone states through the DNN; effective exploita-
tion of neighbor frames by the DNN; and the efficient
and effective modeling ability of deeper networks.
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