
Agnostic System Identification
for Model-Based Reinforcement Learning

Stéphane Ross STEPHANEROSS@CMU.EDU

Robotics Institute, Carnegie Mellon University, PA USA

J. Andrew Bagnell DBAGNELL@RI.CMU.EDU

Robotics Institute, Carnegie Mellon University, PA USA

Abstract

A fundamental problem in control is to learn a
model of a system from observations that is use-
ful for controller synthesis. To provide good per-
formance guarantees, existing methods must as-
sume that the real system is in the class of models
considered during learning. We present an iter-
ative method with strong guarantees even in the
agnostic case where the system is not in the class.
In particular, we show that any no-regret online
learning algorithm can be used to obtain a near-
optimal policy, provided some model achieves
low training error and access to a good explo-
ration distribution. Our approach applies to both
discrete and continuous domains. We demon-
strate its efficacy and scalability on a challenging
helicopter domain from the literature.

1. Introduction
Model-based reinforcement learning (MBRL) and much of
control rely on system identification: building a model of a
system from observations that is useful for controller syn-
thesis. While often treated as a typical statistical learn-
ing problem, system identification presents different fun-
damental challenges as the executed controller and data
generating process are inextricably intertwined. Naively
attempting to estimate a controlled system can lead to a
model that makes small error on a training set, but exhibits
poor controller performance. This problem arises as the
policy resulting from controller synthesis is often very dif-
ferent from the “exploration” policy used to collect data.
While we might expect the model to make good predictions
at states frequented by the exploration policy, the learned

Appearing in Proceedings of the 29 th International Conference
on Machine Learning, Edinburgh, Scotland, UK, 2012. Copyright
2012 by the author(s)/owner(s).

Figure 1. Example train-test mismatch in a helicopter domain.
Train: model is fit based on samples near the desired trajectory,
e.g. from watching an expert. Test: learned policy ends up in new
regions where model is bad, leading to poor control performance.

policy usually induces a different state distribution, where
the model may poorly capture system behavior (Fig. 1).

This problem is fully appreciated in the system identifica-
tion literature and has been attacked by considering “open
loop” identification procedures and “persistent excitation”
(Ljung, 1999; Abbeel & Ng, 2005) that attempt to suffi-
ciently “cover” the state-action space. Unfortunately, such
methods rely on the strong assumption that the true system
lies in the class of models considered: e.g., for continuous
systems, they may require the true system to be modeled
in a class of linear models. With this assumption, they en-
sure that eventually the correct model is learned– e.g., by
learning about every discrete state-action pair or all modes
of the linear system– to provide guarantees.

In this work, we provide algorithms for system identifica-
tion and controller synthesis (i.e. MBRL) that have strong
performance guarantees with a weaker agnostic assumption
that the system identification achieves statistically good
prediction. We adopt a reduction-based analysis (Beygelz-
imer et al., 2005) that relates the learned policy’s perfor-
mance to prediction error during training. We begin by
providing agnostic bounds for a simple generic “batch” al-
gorithm that can represent many learning methods used in
practice (e.g., building a model from open loop controls,

Agnostic System Identification for Model-Based Reinforcement Learning

watching an expert, or running a base policy we want to
improve upon). Due to the mismatch in train/test distri-
butions, uniform exploration is often the best option with
this approach. Unfortunately, this makes the sample com-
plexity and performance bounds scale with the size of the
Markov Decision Process (MDP) (i.e. state/action space).
Next, we propose a simple iterative approach, closely re-
lated to online learning, with stronger guarantees that do
not scale with the size of the MDP when given a good ex-
ploration distribution. The approach is very simple to im-
plement and iterates between 1) collecting new data about
the system by executing a good policy under the current
model, as well as by sampling from a given exploration
distribution, and 2) updating the model with that new data.

This approach is inspired by a recent reduction of imitation
learning to no-regret online learning (Ross et al., 2011) that
addresses mismatch between train/test distributions. Our
results can be interpreted as a reduction of MBRL to no-
regret online learning and optimal control, and show that
any no-regret algorithm can be used in such a way to learn
a policy with strong agnostic guarantees. This enables
MBRL methods to match the strongest existing agnostic
guarantees of model-free RL methods (Kakade & Lang-
ford, 2002; Bagnell et al., 2003).

We first introduce notation and related work. Then we
present the batch method and our online learning approach
with their agnostic guarantees (proofs are deferred to the
supplementary material). Finally we demonstrate the ef-
ficacy of our approach on a challenging domain from the
literature: learning to perform aerobatic maneuvers with a
simulated helicopter (Abbeel & Ng, 2005).

2. Background and Notation
We assume the real system behaves according to some un-
known MDP, represented by a set of states S and actions A
(both potentially infinite and continuous), a transition func-
tion T , where Tsa denotes the next state distribution if we
do action a in state s, and the initial state distribution µ at
time 1. We assume the cost function C : S × A → R
is known and seek to minimize the expected sum of dis-
counted costs over an infinite horizon with discount γ.

For any policy π, let πs be the action distribution performed
by π in state s; Dt

ω,π the state-action distribution at time t
if we started in state distribution ω at time 1 and followed
π; Dω,π = (1 − γ)

∑∞
t=1 γ

t−1Dt
ω,π the state-action dis-

tribution over the infinite horizon if we follow π, starting
in ω at time 1; Vπ(s) = Ea∼πs,s′∼Tsa [C(s, a) + γVπ(s′)]
the value function of π (the expected sum of discounted
costs of following π starting in state s); Qπ(s, a) =
C(s, a) + γEs′∼Tsa [Vπ(s′)] the action-value function of π
(the expected sum of discounted costs of following π af-

ter starting in s and performing action a); and Jω(π) =
Es∼ω[Vπ(s)] = 1

1−γE(s,a)∼Dω,π [C(s, a)] the expected
sum of discounted costs of following π starting in ω.

Our goal is to obtain a policy π with small regret, i.e.
for any policy π′, Jµ(π) − Jµ(π′) is small. This is
achieved indirectly by learning a model T̂ of the system and
solving for a (near-)optimal policy (under T̂); e.g., using
dynamic programming (Puterman, 1994) or approximate
methods (Szepesvári, 2005; Williams, 1992). For continu-
ous systems, an important special case is linear models with
quadratic cost functions, and potentially additive Gaus-
sian noise, known as Linear Quadratic Regulators (LQR)1

which can be solved exactly and efficiently. Non-linear sys-
tems with non-quadratic cost functions can also be solved
approximately (local optima) using efficient iterative lin-
earization techniques such as iLQR(Li & Todorov, 2004).

Related Work: In contrast with “textbook” system iden-
tification methods, in practice control engineers often pro-
ceed iteratively to build good models for controller synthe-
sis. A first batch of data is collected to fit a model and
obtain a controller, which is then tested in the real system.
If performance is unsatisfactory, data collection is repeated
with different sampling distributions to improve the model
where needed, until control performance is satisfactory. By
doing so, engineers can use feedback of the policies found
during training to decide how to collect data and improve
performance. Such methods are commonly used in prac-
tice and have demonstrated good performance in the work
of Atkeson & Schaal (1997); Abbeel & Ng (2005). In both
works, the authors proceed by fitting a first model from
state transitions observed during expert demonstrations of
the task, and at following iterations, using the optimal pol-
icy under the current model to collect more data and fit a
new model with all data seen so far. Abbeel & Ng (2005)
show this approach has good guarantees in non-agnostic
settings (for finite MDPs or LQRs), in that it must find a
policy that performs as well as the expert providing the ini-
tial demonstrations. Our method can be seen as making
algorithmic this engineering practice, extending and gener-
alizing the previous methods of Atkeson & Schaal (1997);
Abbeel & Ng (2005), and suggesting slight modifications
that provide good guarantees even in agnostic settings.

Similarly, the Dataset Aggregation (DAgger) algorithm of
Ross et al. (2011) uses a similar data aggregation proce-
dure over iterations to obtain policies that mimic an ex-
pert well in imitation learning. The authors show that such

1LQR is defined by 4 matrices A,B,Q,R s.t. xt+1 = Axt +
But + ξt, for xt and ut the state and action at time t, and
ξt ∼ N(0,Σ) is (optional) Gaussian white noise, and the cost
C(x, u) = x>Qx+ u>Ru (Q � 0, R � 0). The optimal policy
is linear (u = Kx) and the value function is quadratic (x>V x).
LQR can be solved by dynamic programming on V and K.

Agnostic System Identification for Model-Based Reinforcement Learning

a procedure can be interpreted as an online learning al-
gorithm (Hazan et al., 2006; Kakade & Shalev-Shwartz,
2008), more specifically, Follow-the-(Regularized)-Leader
(Hazan et al., 2006), and that using any no-regret online al-
gorithm ensures good performance. Our approach can be
seen as an extension of DAgger to MBRL settings.

Our approach leverages the way agnostic model-free RL al-
gorithms perform exploration. Methods such as Conserva-
tive Policy Iteration (CPI) (Kakade & Langford, 2002) and
Policy-Search by Dynamic Programming (PSDP) (Bagnell
et al., 2003) learn a policy directly by updating policy pa-
rameters iteratively. For exploration, they assume access
to a state exploration distribution ν that they can restart
the system from and can guarantee finding a policy per-
forming nearly as well as any policies inducing a state dis-
tribution (over a whole trajectory) close to ν. Similarly,
our approach uses a state-action exploration distribution
to sample transitions and allows us to guarantee small re-
gret against any policy with a state-action distribution close
to this exploration distribution. If the exploration distri-
bution is close to that of a near-optimal policy, then our
approach guarantees near-optimal performance, provided a
good model of data exists. This allows our model-based
method to match the strongest agnostic guarantees of ex-
isting model-free methods. Good exploration distributions
can often be obtained in practice; e.g., from human expert
demonstrations, domain knowledge, or from a desired tra-
jectory we would like the system to follow. Additionally, if
we have a base policy we want to improve, it can be used
to generate the exploration distribution – with potentially
additional random exploration in the actions.

3. A Simple Batch Algorithm
We now describe a simple algorithm, refered to as Batch,
that can be used to analyze many common approaches from
the literature, e.g., learning from a generative model2, open
loop excitation or by watching an expert (Ljung, 1999).

Let T denote the class of transition models considered, and
ν a state-action exploration distribution we can sample the
system from. Batch first executes in the real system m
state-action pairs sampled i.i.d. from ν to obtain m sam-
pled transitions. Then it finds the best model T̂ ∈ T of ob-
served transitions, and solves (potentially approximately)
the optimal control (OC) problem with T̂ and known cost
function C to return a policy π̂ for test execution.

3.1. Analysis

Our reduction analysis seeks to answer the following ques-
tion: if Batch learns a model T̂ with small error on train-

2With a generative model, we can set the system to any state,
perform any action to obtain a sample transition.

ing data, and solves the OC problem well, what guarantees
does it provide on control performance of π̂? Our results
illustrate the drawbacks of a purely batch method due to the
mismatch in train-test distribution.

We measure the quality of the OC problem’s solution as fol-
lows. For any policy π′, let επ

′

oc = Es∼µ[V̂ π̂(s) − V̂ π′(s)]
denote how much better π′ is compared to π̂ on model T̂
(V̂ π̂ and V̂ π

′
are the value functions of π̂ and π′ under

learned model T̂ respectively). If π̂ is an ε-optimal pol-
icy on T̂ within some class of policies Π, then επ

′

oc ≤ ε
for all π′ ∈ Π. A natural measure of model error that
arises from our analysis is in terms of L1 distance between
the predicted and true next state’s distributions. That is,
we define εL1

prd = E(s,a)∼ν [||Tsa − T̂sa||1] the predictive
error of T̂ , measured in L1 distance, under the training
distribution ν. However, the L1 distance cannot be eval-
uated or optimized from sampled transitions during train-
ing (we observe samples from Tsa but not the distribution).
Therefore we also provide our bounds in terms of other
losses we can minimize from samples. This directly re-
lates control performance to the model’s training loss. A
convenient loss is the KL divergence between Tsa and T̂sa:
εKL

prd = E(s,a)∼ν,s′∼Tsa [log(Tsa(s′))− log(T̂sa(s′))]. Mini-
mizing KL corresponds to maximizing the log likelihood
of the sampled transitions. This is convenient for com-
mon model classes, such as linear models (as in LQR),
where it amounts to linear regression. For particular cases
where T is a set of deterministic models and the real system
has finitely many states, the predictive error can be mea-
sured via a classification loss at predicting the next state:
εcls

prd = E(s,a)∼ν,s′∼Tsa [`(T̂ , s, a, s′)], for ` the 0-1 loss of
whether T̂ predicts s′ for (s, a), or any upper bound on
the 0-1 loss, e.g., the multi-class hinge loss if T is a set of
SVMs. In this case, model fitting is a supervised classifi-
cation problem and the guarantee is directly related to the
training classification loss. These are related as follows:

Lemma 3.1. εL1
prd ≤

√
2εKL

prd and εL1
prd ≤ 2εcls

prd. The latter
holds with equality if ` is the 0-1 loss.

In general, we can use any loss minimizable from samples
that upper bounds εL1

prd for models in the class. Our bounds
are also related to the mismatch between the exploration
distribution ν and distribution induced by executing an-
other policy π starting in µ, denoted cπν = sups,a

Dµ,π(s,a)
ν(s,a) .

We assume the costs C(s, a) ∈ [Cmin, Cmax] ∀(s, a). Let
Crng = Cmax − Cmin and H = γCrng

(1−γ)2 . H is a scaling fac-
tor that relates model error to error in total cost predictions.

Theorem 3.1. The policy π̂ is s.t. for any policy π′:

Jµ(π̂) ≤ Jµ(π′) + επ
′

oc +
cπ̂ν + cπ

′

ν

2
HεL1

prd

This also holds as a function of εKL
prd or εcls

prd using Lem. 3.1.

Agnostic System Identification for Model-Based Reinforcement Learning

This bound indicates that if Batch solves the OC problem
well and T̂ has small enough error under the training dis-
tribution ν, then it must find a good policy. Importantly,
this bound is tight: i.e. we can construct examples where
it holds with equality (see supplementary material). More
interestingly is what happens as we collect more data. If
the fitting procedure is consistent (i.e. picks a model with
minimal loss in the class asymptotically), then we can re-
late this guarantee to the capacity of the model class to
achieve low error under the training distribution ν. We de-
note the modeling error, measured in L1 distance, as εL1

mdl =
infT ′∈T E(s,a)∼ν [||Tsa − T ′sa||1]. Similarly, define εKL

mdl =
infT ′∈T E(s,a)∼ν,s′∼Tsa [log(Tsa(s′)) − log(T ′sa(s′))] and
εcls

mdl = infT ′∈T E(s,a)∼ν,s′∼Tsa [`(T ′, s, a, s′)]. These are
all 0 in realizable settings, but generally non-zero in agnos-
tic settings. After sampling m transitions, the generaliza-
tion error εL1

gen(m, δ) bounds with high probability 1− δ the
quantity εL1

prd − εL1
mdl. Similarly, εKL

gen(m, δ) and εcls
gen(m, δ)

denote the generalization error for the KL and classifica-
tion loss respectively. εcls

gen(m, δ) can be related to the VC
dimension (or multi-class equivalent) in finite MDPs.

Corollary 3.1. After observing m transitions, with proba-
bility at least 1− δ, for any policy π′:

Jµ(π̂) ≤ Jµ(π′) + επ
′

oc +
cπ̂ν + cπ

′

ν

2
H[εL1

mdl + εL1
gen(m, δ)].

This also holds as a function of εKL
mdl + εKL

gen(m, δ) (or
εcls

mdl + εcls
gen(m, δ)) using Lem. 3.1. In addition, if the fitting

procedure is consistent in terms ofL1 distance (or KL, clas-
sification loss), then εL1

gen(m, δ) → 0 (or εKL
gen(m, δ) → 0,

εcls
gen(m, δ)→ 0) as m→∞ for any δ > 0.

The generalization error typically scales with the com-
plexity of the class T and goes to 0 at a rate of O(1√

m
)

(Õ(1
m) in ideal conditions). Given enough samples, the

dominating factor limiting performance becomes the mod-

eling error: i.e. the term cπ̂ν+cπ
′
ν

2 HεL1
mdl (or equivalently

cπ̂ν+cπ
′
ν

2 H
√

2εKL
mdl and (cπ̂ν + cπ

′

ν)Hεcls
mdl) quantifies how per-

formance degrades for agnostic settings.

Drawback of Batch: The two factors cπ̂ν and cπ
′

ν are qual-
itatively different. cπ

′

ν measures how well ν explores state-
actions visited by the policy π′ we compare to. This factor
is inevitable: we cannot hope to compete against policies
that spend most of their time where we rarely explore. cπ̂ν
measures the mismatch in train-test distribution. Its pres-
ence is the major drawback of Batch. As π̂ cannot be
known in advance, we can only bound cπ̂ν by considering
all policies we could learn: supπ∈Π c

π
ν . This worst case is

likely to be realized in practice: if ν rarely explores some
state-action regions, the model could be bad for these and
significantly underestimate their cost. The learned policy
is thus encouraged to visit these low-cost regions where

few data were collected. To minimize supπ∈Π c
π
ν , the best

ν for Batch is often a uniform distribution, when possi-
ble. This introduces a dependency on the number of states
and actions (or state-action space volume) (i.e. cπ̂ν + cπ

′

ν is
O(|S||A|)) multiplying the modeling error. Sampling from
a uniform distribution often requires access to a generative
model. If we only have access to a reset model3 and a base
policy π0 inducing ν when executed in the system, then cπ̂ν
could be arbitrarily large (e.g., if π̂ goes to 0 probability
states under π0), and π̂ arbitrarily worse than π0.

In the next section, we show that iterative learning meth-
ods can leverage feedback of the learned policies to ob-
tain bounds that do not depend on cπ̂ν . This leads to better
guarantees when we have a good exploration distribution ν
(e.g., that of a near-optimal policy), or when we can only
collect data via a reset model. This also leads to better per-
formance in practice as shown in the experiments.

4. No-Regret Methods for Agnostic MBRL
Our extension of DAgger to the MBRL setting proceeds
as follows. Starting from an initial model T̂ 1 ∈ T , solve
(approximately) the OC problem with T̂ 1 to obtain pol-
icy π1. At each iteration n, collect data about the sys-
tem by sampling state-action pairs from distribution ρn =
1
2ν + 1

2Dµ,πn : i.e. w.p. 1
2 , sample a transition occurring

from an exploratory state-action pair drawn from ν and add
it to dataset D, otherwise, sample a state transition occur-
ring from running the current policy πn starting in µ, stop-
ping the trajectory w.p. 1 − γ at each step and adding the
last transition to D. The dataset D contains all transitions
observed so far over all iterations. Once data is collected,
find the best model T̂n+1 ∈ T that minimizes an appropri-
ate loss (e.g. regularized negative log likelihood) onD, and
solve (approximately) the OC problem with T̂n+1 to ob-
tain the next policy πn+1. This is iterated for N iterations.
At test time, we could either find and use the policy with
lowest expected total cost in the sequence π1:N , or use the
uniform “mixture” policy4 over π1:N . We guarantee good
performance for both. The last policy πN often performs
equally well, it has been trained with most data. Our ex-
perimental results confirm this intuition. In theory, πN has
good guarantees when the distributions Dµ,πi converge to
a small region in the space of distributions as i → ∞, but
we do not guarantee this always occurs.

Implementation with Off-the-Shelf Online Learner:
DAgger as described can be interpreted as using a Follow-
The-(Regularized)-Leader (FTRL) online algorithm to pick
the sequence of models: at each iteration n we pick the

3To sample transitions with a reset model, we can only simu-
late the system forward in time, or reset to a random initial state.

4At start of any trajectory, the mixture policy picks uniformly
randomly a policy in π1:N , and uses it for the whole trajectory.

Agnostic System Identification for Model-Based Reinforcement Learning

best (regularized) model T̂n in hindsight under all samples
seen so far. In general, DAgger can also be implemented
using any no-regret online algorithm (see Algorithm 1) to
provide good guarantees. This is done as follows. When
minimizing the negative log likelihood, the loss function of
the online learning problem at iteration i is: LKL

i (T̂) =
E(s,a)∼ρi,s′∼Tsa [− log(T̂sa(s′))]. This can be estimated
from sampled state transitions at iteration i, and evaluated
for any model T̂ . The online algorithm is applied on the se-
quence of loss LKL

1:N to obtain a sequence of models T̂ 1:N

over the iterations. As before, each model T̂ i is solved to
obtain the next policy πi. By doing so, the online algo-
rithm effectively runs over mini-batches of data collected
at each iteration to update the model, and each mini-batch
comes from a different distribution that changes as we up-
date the policy. Similarly, in a finite MDP with a determin-
istic model class T , we can minimize the 0-1 loss instead
(or any upper bound such as hinge loss) where the loss at
iteration i is: Lcls

i (T̂) = E(s,a)∼ρi,s′∼Tsa [`(T̂ , s, a, s′)], for
` the particular classification loss. This corresponds to an
online classification problem. For many model classes, the
negative log likelihood and convex upper bounds on the 0-
1 loss (such as hinge loss) lead to convex online learning
problems, for which no-regret algorithms exist (e.g., gra-
dient descent, FTRL). As shown below, if the sequence of
models is no-regret, then performance can be related to the
minimum KL divergence (or classification loss) achievable
with model class T under the overall training distribution
ρ = 1

N

∑N
i=1 ρi (i.e. a quantity akin to εKL

mdl or εcls
mdl for

Batch).

Algorithm 1 DAgger algorithm for Agnostic MBRL.
Input: exploration distribution ν, number of iterations
N , number of samples per iteration m, cost function
C, online learning procedure ONLINELEARNER, opti-
mal control procedure OCSOLVER.

Get initial guess of model: T̂ 1 ← ONLINELEARNER().
π1 ← OCSOLVER(T̂ 1, C).
for n = 2 to N do

for k = 1 to m do
With prob. 1

2 sample (s, a) ∼ Dµ,πn−1 using πn−1,
otherwise sample (s, a) ∼ ν. Obtain s′ ∼ Tsa
Add (s, a, s′) to Dn−1.

end for
Update model: T̂n ← ONLINELEARNER(Dn−1).
πn ← OCSOLVER(T̂n, C).

end for
Return the sequence of policies π1:N .

4.1. Analysis

Similar to our analysis of Batch, we seek to answer the
following: if there exists a low error model of training data,

and we solve each OC problem well, what guarantees does
DAgger provide on control performance? Our results show
that by sampling data from the learned policies, DAgger
provides guarantees that have no train-test mismatch factor,
leading to improved performance.

For any policy π′, define επ
′

oc = 1
N

∑N
i=1 Es∼µ[V̂i(s) −

V̂ π
′

i (s)], where V̂i and V̂ π
′

i are respectively the value func-
tion of πi and π′ under model T̂ i. This measures how well
we solved each OC problem on average over the iterations.
For instance, if at each iteration i we found an εi-optimal
policy within some class of policies Π on learned model T̂ i,
then επ

′

oc ≤ 1
N

∑N
i=1 εi for all π′ ∈ Π. As in Batch, the av-

erage predictive error of the models T̂ 1:N can be measured
in terms of the L1 distance between the predicted and true
next state distribution: εL1

prd = 1
N

∑N
i=1 E(s,a)∼ρi [||T̂ isa −

Tsa||1]. However, as was discussed, the L1 distance is not
observed from samples which makes it hard to minimize.
Instead we can define other measures which upper bounds
this L1 distance and can be minimized from samples, such
as the KL divergence or classification loss: i.e. εKL

prd =
1
N

∑N
i=1 E(s,a)∼ρi,s′∼Tsa [log(Tsa(s))− log(T̂ isa(s′))] and

εcls
prd = 1

N

∑N
i=1 E(s,a)∼ρi,s′∼Tsa [`(T̂ i, s, a, s′)]. Now,

given the sequence of policies π1:N , let π̂ =
argminπ∈π1:N

Jµ(π) be the best policy in the sequence and
π the uniform mixture policy on the sequence.

Lemma 4.1. The policies π1:N are s.t. for any policy π′:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc + cπ
′

ν Hε
L1
prd

This also holds as a function of εKL
prd or εcls

prd using Lem. 3.1.

We note that εKL
prd = 1

N

∑N
i=1 L

KL
i (T̂ i) − LKLi (T) and

εcls
prd = 1

N

∑N
i=1 L

cls
i (T̂ i). Using a no-regret algorithm on

the sequence of losses LKL1:N implies 1
N

∑N
i=1 L

KL
i (T̂ i) ≤

infT ′∈T 1
N

∑N
i=1 L

KL
i (T ′) + εKL

rgt , for εKL
rgt the average re-

gret of the algorithm after N iterations, s.t. εKL
rgt → 0 as

N → ∞. This relates εKL
prd to the modeling error of the

class T : εKL
mdl = infT ′∈T E(s,a)∼ρ,s′∼Tsa [log(Tsa(s)) −

log(T ′sa(s′))], i.e. εKL
prd ≤ εKL

mdl +ε
KL
rgt , for εKL

rgt → 0. Similarly
define εcls

mdl = infT ′∈T E(s,a)∼ρ,s′∼Tsa [`(T ′, s, a, s′)] and
by using a no-regret algorithm on Lcls1:N , εcls

prd ≤ εcls
mdl + εcls

rgt

for εcls
rgt → 0. In some cases, even if the L1 distance cannot

be estimated from samples, statistical estimators can still
be no-regret with high probability on the sequence of loss
LL1
i (T ′) = E(s,a)∼ρi [||Tsa − T ′sa||1]. This is the case in fi-

nite MDPs if we use the empirical estimator of T based on
data seen so far (see supplementary material). If we define
εL1

mdl = infT ′∈T E(s,a)∼ρ[||Tsa − T ′sa||1], this implies that
εL1

prd ≤ εL1
mdl + εL1

rgt, for εL1
rgt → 0. Our main result follows:

Theorem 4.1. The policies π1:N are s.t. for any policy π′:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc + cπ
′

ν H[εL1
mdl + εL1

rgt]

Agnostic System Identification for Model-Based Reinforcement Learning

This also holds as a function of εKL
mdl + εKL

rgt (or εcls
mdl + εcls

rgt)
using Lem. 3.1. If the fitting procedure is no-regret w.r.t the
sequence of losses LL1

1:N (or LKL1:N , Lcls1:N), then εL1
rgt → 0 (or

εKL
rgt → 0,εcls

rgt → 0) as N →∞.

Additionally, the performance of πN can be related to π if
the distributions Dµ,πi converge to a small region:

Lemma 4.2. If there exists a distribution D∗ and some
ε∗cnv ≥ 0 s.t. ∀i, ||Dµ,πi − D∗||1 ≤ ε∗cnv + εicnv for some
sequence {εicnv}∞i=1 that is o(1), then πN is s.t.:

Jµ(πN) ≤ Jµ(π) +
Crng

2(1− γ)
[2ε∗cnv + εNcnv +

1
N

N∑
i=1

εicnv]

Thus: lim supN→∞ Jµ(πN)− Jµ(π) ≤ Crng

1−γ ε
∗
cnv

Thm. 4.1 illustrates how we can reduce the original MBRL
problem to a no-regret online learning problem on a par-
ticular sequence of loss functions. In general, no-regret al-
gorithms have average regret of O(1√

N
) (Õ(1

N) in ideal
cases) such that the regret term goes to 0 at a similar
rate to the generalization error term for Batch in Cor. 3.1.
Here, given enough iterations, the term cπ

′

ν Hε
L1
mdl deter-

mines how performance degrades in the agnostic setting (or

cπ
′

ν H
√

2εKL
mdl or 2cπ

′

ν Hε
cls
mdl if we use a no-regret algorithm

on the sequence of KL or classification loss respectively).
Unlike for Batch, there is no dependence on cπ̂ν , only on
cπ
′

ν . Thus, if a low error model exists under training distri-
bution ρ, no-regret methods are guaranteed to learn policies
that performs well compared to any policy π′ for which cπ

′

ν

is small. Hence, ν is ideally Dµ,π of a near-optimal policy
π (i.e. explore where good policies go).

Finite Sample Analysis: A remaining issue is that the cur-
rent guarantees apply if we can evaluate the expected loss
(LL1
i , LKL

i or Lcls
i) exactly. This requires infinite samples

at each iteration. If we run the no-regret algorithm on esti-
mates of these loss functions, i.e. loss on m sampled tran-
sitions, we can still obtain good guarantees using martin-
gale inequalities as in online-to-batch (Cesa-Bianchi et al.,
2004) techniques. The extra generalization error term is

typically O(
√

log(1/δ)
Nm) with high probability 1− δ. While

our focus is not on providing such finite sample bounds, we
illustrate how these can be derived for two scenarios in the
supplementary material. For instance, in finite MDPs with
|S| states and |A| actions, if T̂ i is the empirical estimator
of T based on samples collected in the first i− 1 iterations,

then choosing m = 1 and N in Õ(
C2

rng|S|
2|A| log(1/δ)

ε2(1−γ)4) guar-
antees that w.p. 1− δ, for any policy π′:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc +O(cπ
′

ν ε)

Here, εmdl does not appear as it is 0 (realizable case). Given
a good state-action distribution ν, the sample complexity to

get a near-optimal policy is Õ(
C2

rng|S|
2|A| log(1/δ)

ε2(1−γ)4). This im-
proves upon other state-of-the-art MBRL algorithms, such

as Rmax, Õ(
C3

rng|S|
2|A| log(1/δ)

ε3(1−γ)6) (Strehl et al., 2009) and a

recent modification of Rmax, Õ(
C2

rng|S||A| log(1/δ)

ε2(1−γ)6) (Szita
& Szepesvári, 2010) (when |S| < 1

(1−γ)2). Here, the de-
pendency on |S|2|A| is due to the complexity of the class
(|S|2|A| parameters). With simpler classes, it can have no
dependency on the size of the MDP. In the supplementary
material, we analyze a scenario where T is a set of kernel
SVM (deterministic models) with RKHS norm bounded by

K. Choosing m = 1 and N in O(
C2

rng(K
2+log(1/δ))

ε2(1−γ)4) guar-
antees that w.p. 1− δ, for any policy π′:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc + 2cπ
′

ν Hε̂
cls
mdl +O(cπ

′

ν ε),

for ε̂cls
mdl the multi-class hinge loss on the training set after

N iterations of the best SVM in hindsight. Thus, if we
have a good exploration distribution and there exists a good
model in T for predicting observed data, we obtain a near-
optimal policy with sample complexity that depends only
on the complexity of T , not the size of the MDP.

5. Discussion
We emphasize that we provide reduction-style guarantees.
DAgger may sometimes fail to find good policies, e.g.,
when no model in the class achieves low error on the train-
ing data. However, DAgger guarantees that one of the fol-
lowing occur: either (1) we find good policies or (2) no
models with low error on the aggregate dataset exist. If
the latter occurs, we need a better model class. In contrast,
Batch can find models with low training error, but still fail
at obtaining a policy with good control performance, due
to train/test mismatch. This occurs even in scenarios where
DAgger finds good policies, as shown in the experiments.

DAgger needs to solve many OC problems. This can be
computationally expensive, e.g., with non-linear or high-
dimensional models. Many approximate methods can be
used, e.g., policy gradient (Williams, 1992), fitted value it-
eration (Szepesvári, 2005) or iLQR (Li & Todorov, 2004).
As the models often change only slightly from one itera-
tion to the next, we can often run only a few iterations of
dynamic programming/policy gradient from the last value
function/policy to obtain a good policy for the current
model. As long as we get good solutions on average, επ

′

oc
remains small and does not hinder performance.

DAgger generalizes the approach of Atkeson & Schaal
(1997) and Abbeel & Ng (2005) so that we can use any no-
regret algorithm to update the model, as well as any explo-
ration distribution. A key difference is that DAgger keeps
an even balance between exploration data and data from
running the learned policies. This is crucial to avoid set-

Agnostic System Identification for Model-Based Reinforcement Learning

tling on suboptimal performance in agnostic settings as the
exploration data could be ignored if it occupies only a small
fraction of the dataset, in favor of models with lower error
on the data from the learned policies. With this modifica-
tion, our main contribution is showing that such methods
have good guarantees even in agnostic settings.

6. Experiments on Helicopter Domain
We demonstrate the efficacy of DAgger on a challenging
problem: learning to perform aerobatic maneuvers with a
simulated helicopter, using the simulator of Abbeel & Ng
(2005), which has a continuous 21-dimensional state and
4-dimensional control space. We consider learning to 1)
hover and 2) perform a “nose-in funnel” maneuver. We
compare DAgger to Batch with several choices for ν: 1) νt:
adding small white Gaussian noise5 to each state and action
along the desired trajectory, 2) νe: run an expert controller,
and 3) νen: run the expert controller with additional white
Gaussian noise6 in the controls of the expert. The expert
controller is obtained by linearizing the true model about
the desired trajectory and solving the LQR (iLQR for the
nose-in funnel). We also compare against Abbeel’s algo-
rithm, where the expert is only used at the first iteration.

Hover: All approaches begin with an initial model
∆xt+1 = A∆xt + B∆ut, for ∆xt the difference between
the current and hover state at time t, ∆ut the delta con-
trols at time t, A is identity and B adds the delta controls
to the actual controls in ∆xt. We seek to learn offset ma-
trices A′, B′ that minimizes ||∆xt+1 − [(A + A′)∆xt +
(B + B′)∆ut]||2 on observed data7. We attempt to learn
to hover in the presence of noise8 and delay of 0 and 1. A
delay of 1 introduces high-order dynamics that cannot be
modeled with the current state. All methods sample 100
transitions per iteration and run for: 50 iterations when de-
lay is 0; 100 iterations when delay is 1. Figure 2 shows
the test performance of each method after each iteration.
In both cases, for any choice of ν, DAgger outperforms
Batch significantly and converges to a good policy faster.
DAgger is more robust to the choice of ν, as it always ob-
tains good performance given enough iterations, whereas
Batch obtains good performance with only one choice of

5Covariance of 0.0025I for states and 0.0001I for actions.
6Covariance of 0.0001I .
7We also use a Frobenius norm regularizer on A′ and B′:

minA′,B′
1
n

Pn
i=1 ||∆x

′
i− [(A+A′)∆xi + (B+B′)∆ui]||2 +

λ√
n

(||A′||2F + ||B′||2F), for λ = 10−3, n the number of samples

and (∆xi,∆ui,∆x
′
i) the ith transition in the dataset. During

training we stop a trajectory if it becomes too far from the hover
state, i.e. if ||[∆x; ∆u]||2 > 5 as this represents an event that
would have to be recovered from. During testing, we run the tra-
jectory until completion (400 timesteps of 0.05s, 20s total).

8White Gaussian noise with covariance I on the forces and
torques applied to the helicopter at each step.

ν in each case. Also, DAgger eventually learns a policy
that outperforms the expert policy (L). As the expert pol-
icy is inevitably visiting states far from the hover state due
to the large noise and delay (unknown to the expert), the
linearized model is not as good at those states, leading to
slightly suboptimal performance. Thus DAgger is learning
a better linear model for the states visited by the learned
policy which leads to better performance. Abbeel’s algo-
rithm improves the initial policy but reaches a plateau. This
is due to lack of exploration (expert demonstrations) after
the first iteration. While our objective is to show that DAg-
ger outperforms other model-based approaches, we also
compared against a model-free policy gradient method sim-
ilar to CPI9. However, 100 samples per iteration were insuf-
ficient to get good gradient estimates and lead to only small
improvement. Even with 500 samples per iteration, it could
only reach an avg. total cost ∼15000 after 100 iterations.

Nose-In Funnel: This maneuver consists in rotating at
a fixed speed and distance around an axis normal to the
ground with the helicopter’s nose pointing towards the axis
of rotation (desired trajectory in Fig. 1). We attempt to
learn to perform 4 complete rotations of radius 5 in the
presence of noise10 but no delay. We start each approach
with a linearized model about the hover state and learn a
time-varying linear model11. All methods collect 500 sam-
ples per iteration over 100 iterations. Figure 2 (bottom)
shows the test performance after each iteration. With the
initial model (0 data), the controller fails to produce the
maneuver and performance is quite poor. Again, with any
choice of ν, DAgger outperforms Batch, and unlike Batch,
it performs well with all choices of ν. A video comparing
qualitatively the learned maneuver with DAgger and Batch
is available on YouTube (Ross, 2012). Abbeel’s method
improves performance slightly but again suffers from lack
of expert demonstrations after the first iteration.

7. Conclusion
We presented a no-regret online learning approach to
MBRL that has strong performance, both in theory and
practice, even in agnostic settings. It is simple to imple-
ment, formalizes and makes algorithmic the engineering
practice of iterating between controller synthesis and sys-
tem identification, and can be applied to any control prob-
lem where approximately solving the OC problem is feasi-
ble. Additionally, its sample complexity scales with model

9Same as CPI, except gradient descent is done directly on de-
terministic linear controller. We solve a linear system to estimate
the gradient from sample cost with perturbed parameters.

10Zero-mean spherical Gaussian with standard deviation 0.1 on
the forces and torques applied to the helicopter at each step.

11For each time step t, we learn offset matrices A′t, B′t such
that ∆xt+1 = (A+A′t)∆xt + (B +B′t)∆ut + x∗t+1 − x∗t , for
x∗t the desired state at time t and A,B the given hover model.

Agnostic System Identification for Model-Based Reinforcement Learning

0 1000 2000 3000 4000 5000
10

1

10
2

10
3

10
4

10
5

10
6

Number of Sampled Transitions

A
ve

ra
ge

 T
ot

al
 C

os
t

D
t

D
e

D
en

B
t

B
e

B
en A L

0 2000 4000 6000 8000 10000
10

1

10
2

10
3

10
4

10
5

10
6

Number of Sampled Transitions

A
ve

ra
ge

 T
ot

al
 C

os
t

D
t

D
e

D
en

B
t

B
e

B
en A L

0 1 2 3 4 5

x 10
4

10
1

10
2

10
3

10
4

10
5

10
6

Number of Sampled Transitions

A
ve

ra
ge

 T
ot

al
 C

os
t

D
t

D
e

D
en

B
t

B
e

B
en A L

Figure 2. Average total cost on test trajectories as a function of
data collected so far, averaged over 20 repetitions of the experi-
ments, each starting with a different random seed (all approaches
use the same 20 seeds) From top to bottom: hover with no delay,
hover with delay of 1, nose-in funnel. Dt, De and Den denotes
DAgger using exploration distribution νt, νe and νen respectively,
similarlyBt,Be andBen for the Batch algorithm,A for Abbeel’s
algorithm, and L for the linearized model’s optimal controller.

class complexity, not the size of the MDP. To our knowl-
edge, this is the first practical MBRL algorithm with agnos-
tic guarantees. The only other agnostic MBRL approach
we are aware of is a recent agnostic extension of Rmax

(Szita & Szepesvári, 2011) that is largely theoretical: it re-
quires unknown quantities to run the algorithm (e.g., dis-
tance between the real system and the model class) and its
sample complexity is exponential in the class complexity.

Acknowledgements
This work is supported by the ONR MURI grant N00014-
09-1-1052, Reasoning in Reduced Information Spaces.

References
Abbeel, P. and Ng, A. Y. Exploration and apprenticeship learning

in reinforcement learning. In ICML, 2005.
Atkeson, C. G. and Schaal, S. Robot learning from demonstration.

In ICML, 1997.
Bagnell, J. A., Ng, A. Y., Kakade, S., and Schneider, J. Policy

search by dynamic programming. In NIPS, 2003.
Beygelzimer, A., Dani, V., Hayes, T., Langford, J., and Zadrozny,

B. Error limiting reductions between classification tasks. In
ICML, 2005.

Cesa-Bianchi, N., Conconi, A., and Gentile, C. On the generaliza-
tion ability of on-line learning algorithms. IEEE Transactions
on Information Theory, 2004.

Hazan, E., Kalai, A., Kale, S., and Agarwal, A. Logarithmic
regret algorithms for online convex optimization. In COLT,
2006.

Kakade, S. and Langford, J. Approximately optimal approximate
reinforcement learning. In ICML, 2002.

Kakade, S. and Shalev-Shwartz, S. Mind the duality gap: Log-
arithmic regret algorithms for online optimization. In NIPS,
2008.

Li, W. and Todorov, E. Iterative linear quadratic regulator design
for nonlinear biological movement systems. In ICINCO, 2004.

Ljung, L. System Identification: Theory for the User. Prentice
Hall, 1999.

Puterman, M. L. Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley, 1994.

Ross, S. Helicopter learning nose-in funnel., 2012. URL http:
//www.youtube.com/user/icml12rl.

Ross, S., Gordon, G., and Bagnell, J. A. A reduction of imitation
learning and structured prediction to no-regret online learning.
In AISTATS, 2011.

Strehl, A. L., Li, L., and Littman, M. L. Reinforcement learning
in finite MDPs: PAC analysis. JMLR, 2009.

Szepesvári, C. Finite time bounds for sampling based fitted value
iteration. In ICML, 2005.

Szita, I. and Szepesvári, C. Model-based reinforcement learning
with nearly tight exploration complexity bounds. In ICML,
2010.

Szita, I. and Szepesvári, C. Agnostic kwik learning and efficient
approximate reinforcement learning. In COLT, 2011.

Williams, R. J. Simple statistical gradient-following algorithms
for connectionist reinforcement learning. Machine Learning,
1992.

http://www.youtube.com/user/icml12rl
http://www.youtube.com/user/icml12rl

