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Abstract
Latent feature models are attractive for image
modeling, since images generally contain mul-
tiple objects. However, many latent feature
models ignore that objects can appear at dif-
ferent locations or require pre-segmentation of
images. While the transformed Indian buffet
process (tIBP) provides a method for modeling
transformation-invariant features in unsegmented
binary images, its current form is inappropriate
for real images because of its computational cost
and modeling assumptions. We combine the tIBP
with likelihoods appropriate for real images and
develop an efficient inference, using the cross-
correlation between images and features, that is
theoretically and empirically faster than existing
inference techniques. Our method discovers rea-
sonable components and achieve effective image
reconstruction in natural images.

1. Introduction
Latent feature models assume data are generated by combin-
ing latent features shared across the dataset and aim to learn
this latent structure in an unsupervised manner. Such mod-
els typically assume all properties of a feature are common
to all data points—i.e., each feature appears in exactly the
same way across all observations. This is often a reasonable
assumption. For example, microarray data are designed so
each cell consistently corresponds to a specific condition.

This does not hold for images. Consider a collection of im-
ages of a rolling ball. If a model must create new features to
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explain the ball’s every position, it will devote less attention
to other aspects of the image and will be unable to generalize
across the ball’s path. Instead, we would like some proper-
ties of a feature, e.g., shape, to be shared across data points
but properties, e.g., location, to be observation-specific.

Models that generalize across images to discover
transformation-invariant features have many applications.
Image tracking, for instance, discovers mislaid bags or ille-
gally stopped cars. Image reconstruction restores partially
corrupted images. Movie compression recognizes recurring
image patches and caches them across frames.

We argue that latent feature models of images should:

• Discover features needed to model data and add addi-
tional features to model new data.

• Generalize across transformations so features can
have different locations, scales, and orientations.

• Handle properties of real images such as occlusion.

A nonparametric model that comes close to our goals is
the noisy-OR transformed Indian buffet process (NO-tIBP,
Austerweil & Griffiths, 2010); however, its likelihood model
is inappropriate for real images. Existing unsupervised mod-
els that handle realistic likelihoods (Jojic & Frey, 2001;
Titsias & Williams, 2006) are parametric and cannot dis-
cover new features. In Section 2, we further describe these
and other models that meet some, but not all, of our criteria.

In Section 3, we propose models that fulfill these proper-
ties by combining realistic likelihoods with nonparametric
frameworks. In Section 4, we introduce novel inference
algorithms that dramatically improve inference for trans-
formed IBPs in larger datasets (Section 5). In Section 6, we
show that our models can discover features and model data
better than existing models. We discuss relationships with
other nonparametric models and extensions in Section 7.

† indicates equal contributions.
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Figure 1. Generative process of the linear Gaussian IBP (IBP), the
linear Gaussian tIBP (LG-tIBP) and the masked tIBP (M-tIBP).
All models share features ak across the dataset, and observation-
specific indicators znk determine which features contribute to a
data point xn. In the tIBP models, transformations rnk change
where features appear in the observation. In the IBP and LG-tIBP,
features are combined additively. In the M-tIBP, only one feature
contributes to each pixel of a final image. Together, a global
ordering ω over features and a local binary mask sn,k determine
which feature is responsible for the appearance of a given pixel.

2. Background
In this section, we review the Indian buffet process and how
its extension, the transformed IBP, models simple images.
We then describe likelihood models for images. These mod-
els are a prelude to the models we introduce in Section 3.

2.1. The Indian Buffet Process

The Indian buffet process (IBP, Griffiths & Ghahramani,
2005) is a distribution over binary matrices with exchange-
able rows and infinitely many columns. This can define
a nonparametric latent feature model with an unbounded
number of features. This often matches our intuitions. We
do not know how many latent features we expect to find
in our data; neither do we expect to see all possible latent
features in a given dataset.

To use the IBP to model data, we must select a likelihood
model that determines the form of features corresponding
to columns of Z and how the subset of features selected
by a row of Z combine to generate a data point.1 Many
likelihoods have been proposed for the IBP, several of which
are appropriate for modeling images.

2.2. The Transformed IBP

Most IBP-based latent feature models assume a feature is
identical in every data point in which it appears. This pre-
cludes image modeling, where (for example) a car moves

1We follow the convention that zn is the nth row of a matrix
Z, and znk is the kth element of the vector zn.

from location to location or where a person may be in either
the foreground or background. Naı̈ve models would learn
different features for each location a car appears in; a more
appropriate model would learn that each observation is in
fact a transformation of a common feature.

The transformed IBP (tIBP, Austerweil & Griffiths, 2010)
extends the IBP to accommodate data with varying locations.
In the tIBP, each column of an IBP-distributed matrix Z is
(as before) associated with a feature. In addition, each non-
zero element of Z is associated with a transformation rnk.
Transforming the features and combining them according
to a likelihood model produces observations. In the original
tIBP paper, features were generated and combined using
noisy-OR (Wood et al., 2006); we refer to this model as the
noisy-OR tIBP (NO-tIBP), which allows the same feature
to appear in different locations, scales, and orientations.

2.3. Likelihoods for Latent Feature Image Models

In addition to the noisy-OR, another likelihood that has
been used with the IBP is a linear Gaussian model, which
assumes images are generated via a linear superposition of
features (Griffiths & Ghahramani, 2005). Each IBP row se-
lects a subset of features and generates an observation by ad-
ditively superimposing these features and adding Gaussian
noise. This is demonstrated in Figure 1(a). This model can
be extended by adding weights to the non-zero elements of
the IBP-distributed matrix (Knowles & Ghahramani, 2007)
and incorporating a spiky noise model (Zhou et al., 2011)
appropriate for corrupted images.

If we want to model images where features can occlude
each other, linear Gaussian models are inappropriate. In
the vision community, images are often represented via
overlapping layers (Wang & Adelson, 1994), including in
generative probabilistic models (Jojic & Frey, 2001; Titsias
& Williams, 2006). In these “sprite” models, features are
Gaussian-distributed, and an ordering is defined over a set
of features. In each image, every active feature has a trans-
formation (as in the tIBP) and a binary mask for each pixel.
Given the feature order, the image is generated by taking
the value, at each pixel, of the uppermost unmasked feature.

This model is appealing. It is an intuitive occlusion model;
features have a consistent ordering; and only the topmost
feature is visible. However, this likelihood model has only
been used for parametric feature sets and on data where the
number of features is known a priori.

3. Modeling Real-valued Images
While the NO-tIBP likelihood model is incompatible with
real images, it provides a foundation for nonparametric
models with transformed features. In this section, we use
the tIBP to build models that combine nonparametric feature
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models with more useful and realistic likelihood functions
for real images.

We begin by providing a general representation for the trans-
formed IBP with an arbitrary likelihood.

1. Sample a binary matrix Z ∼ IBP(α), determining the
features (columns) present in observations (rows).

2. For k ∈ N, sample a feature φk ∼ p(φ).
3. For each image n ∈ {1, . . . , N}

• For k ∈ N, sample a transformation rnk ∼ p(r).
• Sample an image xn ∼ p(x|Φ, zn, rn).

The distribution over transformations p(r), the feature likeli-
hood p(φ), and the image likelihood p(x|Φ, zn, rn) can be
defined in various ways. In the remainder of this section, we
will use this generic framework to define concrete models
with a parameterization of transformations and two different
likelihood models.

Transformations Following Austerweil & Griffiths
(2010), we consider three categories of transformation:
translation, rotation and scaling. We parameterize a transfor-
mation r : RD → RD using a vector (rx, ry, rr, rs). The
parameters (rx, ry) parameterize translations, and the trans-
formed feature r(ak) is obtained by shifting each pixel in
ak by (rx, ry). Rotations are parameterized by rr ∈ [0, 2π),
and scaling is parameterized by rs ∈ R+. In practice, we
restrict the possible rotations and scaling factors to a finite
set, and assume a uniform prior on transformations.

Linear Gaussian transformed IBP Our first attempt to
define a likelihood applicable to real data is based on the lin-
ear Gaussian likelihood for the IBP described in Section 2.3.
Each feature φk is represented using a real-valued vector
ak ∼ N (0, σ2

aI). In each image, the transformed features
are combined using superposition,

xn ∼N (
∑∞
k=1znkrnk(ak), σ

2
xI). (1)

We refer to the resulting model as the linear Gaussian
transformed IBP (LG-tIBP).

Masked transformed IBP While the LG-tIBP model is
appropriate for real-valued data, it cannot handle feature
occlusion. To address this problem, we propose a masked
transformed IBP (M-tIBP), based on the sprite model (Sec-
tion 2.3). In this model, each feature φk is represented by a
Gaussian feature ak and a shape vector πk. Let ω be a per-
mutation of N that imposes an ordering on the features. We
can interpret feature i being “behind” feature k if ωi < ωk.
Each time a feature appears in an image, we sample a mask
sn,k from the Bernoulli probabilities in the corresponding
shape vector πk. These masks “occlude” lower layers so
that at each pixel; only the uppermost unmasked feature
contributes to the final image.

The generative process can be described as follows. For
each image n and feature k, define an auxiliary variable
Mn,k, the visibility indicator,

Md
n,k =


1 if argmaxj

[
ωjzn,j

(
s
r−1
n,j(d)

n,j

)]
= k

and s
r−1
n,k(d)

n,k > 0

0 otherwise.

(2)

The visibility indicator Md
n,k, is 1 when feature k is the

uppermost unmasked feature at pixel d in image n. The
image and feature likelihoods for the M-tIBP are

ak ∼N (0, σ2
aI)

πdk ∼Beta(β, β)
ω ∼Uniform()

φk :=(ak,πk, ωk)

sdn,k ∼Bernoulli(πdk)

xn ∼N (
∑∞
k=1znk · [rnk(ak) ◦Mn,k] , σ

2
xI),

(3)

where the operator ◦ is the Hadamard product on matrices.

Figure 1 shows how the IBP-distributed matrix Z and other
transformations variables combine features to form images
for the IBP, LG-tIBP, and M-tIBP.

4. Inference
We perform inference of both LG-tIBP and M-tIBP us-
ing MCMC. At each iteration, we sample the Gaussian-
distributed features A, the IBP-distributed binary matrix Z,
the transformations R, the hyperparameters α, σx and σa,
and, for M-tIBP, the binary masks S and ordering ω.

4.1. Sampling Indicators, Transformations, and Masks

In all models, the binary indicator matrix Z, the matrix
of transformations R, and (where appropriate) the feature
masks S are all closely coupled. Austerweil & Griffiths
(2010) sampled each znk of Z by explicitly marginalizing
over rnk, and then sampling rnk. However, explicitly com-
puting the conditional distribution for all transformations
for each feature cannot scale to even moderate-sized images
(as discussed in Section 5). Instead, we sample znk, rnk
and sn,k jointly via a Metropolis-Hastings step.

The efficacy of a Metropolis-Hastings sampler depends
on the quality of the proposal distribution. We design
a data-driven proposal distribution (Tu & Zhu, 2002)
q(znk, rnk, snk) = qz(znk)qr(rnk)qs(snk) based on an es-
tablished pattern matching technique that assigns high prob-
ability to plausible states.

Feature Indicator Proposal Distribution LetK+ be the
highest feature index represented in the data, excluding the
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current data point. Our proposal distribution for znk, k ≤
K+ is

q(znk → z∗nk) =

{
1 if z∗nk 6= znk
0 otherwise.

(4)

Our proposal distribution for previously unseen features
follows Griffiths & Ghahramani (2005): sample K∗ new
features according to Poisson(α/N ), whereN is the number
of observations.

Transformation Proposal Distribution To obtain a pro-
posal distribution for translations rnk that matches our
intuitions about the true posterior, we look at the cross-
correlation between the feature ak and the residual x̃n,k
obtained by removing all but that feature from the image xn.
Cross-correlation (Duda & Hart, 1973) is a standard tool in
classical image analysis and pattern-matching. The cross-
correlation u ? v between two real-valued images u and v
is a measure of the similarity between u and a translated
version of v, i.e., (u ? v)(t) :=

∑T
τ=1 u(τ)v(t+ τ).

Since our proposal distribution for r∗nk must be strictly posi-
tive, we use the exponentiated function

q(r|ak, x̃n,k) ∝ exp {(x̃n,k ? ak)(r)} , (5)

for our proposal distribution,2 and define the residual x̃n,k

x̃n,k =
∑
j:ωj<ωk

Mn,j ◦ xn (6)

for M-tIBP, and

x̃n,k = xn −
∑
j 6=k znjrnj(ak) (7)

for LG-tIBP.

In Figure 2, we show the proposal distribution for r∗nk for
a feature and three data points. The proposal distribution
peaks in the locations that best match the pattern of pix-
els in the feature. If no locations match the feature, the
proposal distribution is relatively entropic. Thus, the cross-
correlation proposal distribution will cause us to consider
good candidates for rnk.

To incorporate scaling and rotation in addition to transla-
tion, we must increase the space over which we define our
Metropolis-Hastings proposal. For a small transformation
space (e.g., multiples of π2 rotation and half / double scaling)
it remains practical to extend the proposal distribution to
include all possible scaling and rotation combinations. We
separately obtain cross-correlations of these transformed
features with the residual image, and concatenate the result-
ing vectors to obtain a distribution over all possible trans-
formations. For new features, rnk is set to be the identity
transformation.

2Of course, any R → R+ function would be a fair choice;
however we found exponentiating works in practice.
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Figure 2. We use cross-correlation as our proposal distribution
for the per-image, per-feature translation r. Here, we propose a
translation rnk of a feature ak that best explains the residual x̃n,k.
Note that rnk need not lie within the boundaries of the image, so
the borders for ak and x̃n,k indicate the range of possible rnk.

Mask Proposal Distribution In the M-tIBP, we must also
propose a binary mask sn,k. We use, as a proposal distribu-
tion, the conditional distribution

qs(sn,k) =
∏D
d=1p(s

d
nk = v|s−(n,k)) (8)

p(sdn,k = 1|s−(n,k)) =
∑
m 6=n s

d
m,k + β∑

m 6=n zmk + 2β
. (9)

Unseen Features For previously unseen features, we sam-
ple a new feature ak ∼ N (0, σ2

a). Our proposal distribution
for the corresponding mask is obtained by normalizing ak
and sampling each pixel of the proposed mask s∗n,k accord-
ing to a series of Bernoulli distributions parameterized by
the normalized entries of ak.

4.2. Resampling Transformation and Masks

In addition to sampling znk, rnk and sn,k jointly, we also
resample rnk (and, for M-tIBP, sn,k) for values of n and
k for which znk = 1. We jointly resample rnk using a
Metropolis-Hastings step with proposal distribution qr(rnk)
(or qr(rnk)qs(snk)). For the M-tIBP, we also Gibbs sample
the binary masks using the conditional distribution

p(sdn,k|sd−(n,k),xn, z, rn,A)

∝ p(xn|sdn,k, zn, rn,A) · p(sdn,k|sd−(n,k)), (10)

where p(sdn,k|sd−(n,k)) is given in Eqn. (9).

4.3. Sampling the Feature Order

We assume the feature order ω is sampled from a uniform
distribution over permutations. We sample the feature or-
der using a Metropolis-Hastings step where we uniformly
choose two consecutive features and propose an order swap.

4.4. Sampling Features and Hyperparameters

Conjugacy eases the sampling of ak. For the M-tIBP, we
sample the dth pixel of the kth feature as

akd|Z,R,S,X ∼ N
(
F
σ2
x

∑N
n=1M

d
n,kxn,rnk(d), F

)
, (11)
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where F = (σ−2a + σ−2x
∑N
n=1M

d
n,k)

−1.

The hyperparameters α, σx and σa can be Gibbs sampled
via closed form equations (Doshi-Velez, 2009).

4.5. Modeling Color Images

The derivation above assumes that each pixel is a single
real number. However, natural images are typically have
color information, represented as a three-dimensional vector
for each pixel. In our model, all colors contribute to the
image likelihoods. Similarly, the proposal distribution is an
element-wise sum over all possible channels,

q(r|ak, x̃n,k) ∝ exp
{∑

c(x̃
c
n,k ? ack)(r)

}
, (12)

where x̃cn,k and ack are c-channel contribution of x̃n,k and
ak, respectively.

In the M-tIBP case, for feature k in image n, we assume all
channels share a common mask sn,k.

5. Computational Complexity
The main motivation behind the algorithm proposed in Sec-
tion 4 is to allow the transformed IBP to be applied to large
data. Austerweil & Griffiths (2010) calculate the likelihood
of the data for every possible transformation. Replacing
this naive approach with the sampler presented above can
achieve a speed-up of at least O(Dmin(SR,K/ logD)),
where R is the number of rotations considered, S is the
number of scales considered, D is the number of pixels, and
K is the number of non-zero elements in zn.

Evaluating the LG-tIBP and M-tIBP likelihoods for a single
image requires O(DK) computations. Since the number of
possible translations3 is O(D), calculating the likelihood
for all possible translations in O(SRD2K), yielding a total
per-iteration complexity of O(ND2K2) for the inference
method used by Austerweil & Griffiths (2010). If we were
to also sum over values of sn,k, this would scale as O(2D).

By contrast, calculating the cross-correlation between a
feature and an image residual can be done using the fast
Fourier transform in O(D logD), so the proposal dis-
tribution described in Section 4.1 can be calculated in
O(SRD logD). The likelihood need only be evaluated
twice in the Metropolis-Hastings step, so our sampler scales
as O(NSRDKmax(K, logD)).

6. Experimental Evaluation
We evaluate the LG-tIBP and M-tIBP models4 on both sim-
ulated and real-world data against the linear Gaussian IBP

3Since features can be centered outside the image, the total
number of translations is in fact greater than the number of pixels.

4http://www.cs.umd.edu/˜ynhu/code/mtibp

(a) True features (b) True data

(c) IBP features (d) IBP reconstruction

(e) NO-tIBP features (f) NO-tIBP reconstruction

(g) LG-tIBP features (h) LG-tIBP reconstruction

(i) M-tIBP features (j) M-tIBP reconstruction

Figure 3. Comparing LG-tIBP and M-tIBP with NO-tIBP and IBP
on synthetic data (image size 9× 9) with translation only.

(IBP), the noisy-OR transformed IBP (NO-tIBP) and the
sprite model (SPRITE, Jojic & Frey, 2001). Experiments on
simulated data show that both LG-tIBP and M-tIBP recover
the underlying features and locations more effectively than
IBP. All data sets were scaled to have zero mean and unit
variance for linear Gaussian models.

Simulated Data To qualitatively assess the ability of LG-
tIBP and M-tIBP to find translated features, we generated
data using four colorful features: “O”, “>”, “t”, and “×”.
Each synthetic dataset contains 100 images generated by
selecting features independently with probability 0.5 and
sampling a transformation uniformly. Since the noisy-OR
likelihood cannot process color images, data are binarized
for NO-tIBP. Although the other models can cope with
Gaussian noise, NO-tIBP cannot, so no noise was added.
Each experiment ran 100 iterations; we present features and
reconstructions from the final iteration.

Figure 3 compares the performance of the four models on
a dataset constructed by translating four features. NO-
tIBP achieves good results. While the IBP struggles to find
common structure, both LG-tIBP and M-tIBP generalize
across locations and discover features qualitatively similar
to NO-tIBP’s. Where features overlap, M-tIBP obtains the
correct reconstruction; LG-tIBP does not.

Figure 4 shows the training set likelihood at each iteration,
plotted against accumulated CPU time, obtained using both
the proposed Metropolis Hastings inference and Gibbs sam-
pling in the LG-tIBP model on two datasets: 9 × 9 and
15 × 15 pixel images respectively. Each marker indicates
a single iteration; each plot shows 100 iterations. Time
was measured on a machine with 6-Core 2.8-GHz CPU and
16GB memory. The speed-up predicted in Section 5 is real-

http://www.cs.umd.edu/~ynhu/code/mtibp
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Figure 4. A run-time and likelihood comparison of using a
Metropolis Hastings sampling of R and Z vs. Gibbs Sampling
of R and Z. MH9 and Gibbs9 used a synthetic dataset with 9 by 9
pixel images, while MH15 and Gibbs15 used 15 by 15 pixels.

(a) True features (b) True data

(c) LG-tIBP features (d) LG-tIBP reconstruction

(e) M-tIBP features (f) M-tIBP reconstruction

Figure 5. Evaluation of LG-tIBP and M-tIBP on synthetic data
(image size 15× 15) with translation, rotation and scaling.

ized in practice; while convergense requires slightly more
iterations, it requires far less total CPU time.

In addition, we trained LG-tIBP and M-tIBP on a dataset
where features have been scaled, rotated, and translated.
This was not implemented by Austerweil & Griffiths (2010),
presumably due to the computational cost. Figure 5 shows
that our two models successfully detected the underlying
features. The ordering learned by M-tIBP matches the true
order, except in the case of the green “O” and the blue “×”,
which did not often overlap.

Real-world data To show that the performance on sim-
ulated data in Section 6 carries over to real images, we
evaluated LG-tIBP and M-tIBP on four image datasets, cho-
sen to reflect various levels of complexity from simple video
games with static/dynamic background to real-world scenes.

1. DNK: 171 screen shots from the 1981 video game “Donkey
Kong”.5

2. SMB: 200 screen shots from the 1985 video game “Super
Mario Brothers”.6

3. TFC: 186 frames from an intersection traffic video.7

5
http://www.youtube.com/watch?v=EhFV5-qbbIw

6
http://www.youtube.com/watch?v=xkD7L2QFwR0

7Raw AVSS PV Easy data available at http://www.eecs.qmul.ac.uk/
˜andrea/avss2007_d.html

IBP SPRITE LG-tIBP M-tIBP
DNK 0.098 0.093 0.064 0.079
SMB 0.144 0.202 0.078 0.045
TFC 0.131 0.070 0.083 0.084
WLK 0.154 0.059 0.081 0.067

Table 1. Test set per-pixel per-channel RMSE (lower is better) on
four datasets. The number of features for SPRITE is set to be the
true number of features of each dataset. LG-tIBP and M-tIBP
outperforms IBP on all datasets. M-tIBP works better than LG-
tIBP on SMB and WLK, equally well with LG-tIBP on TFC,
worse on DNK. M-tIBP performs equally well with SPRITE on
three datasets, and outperforms SPRITE on SMB.

4. WLK: 226 frames from a video of people walking in a Lisbon
shopping center.8

All images were resized to 101×101 pixels. We trained and
tested the models using the full three-channel RGB data.

For each dataset, we trained LG-tIBP, M-tIBP, IBP and
SPRITE9 on a randomly selected 80% of the images with
the remaining 20% held out for testing. Since the NO-tIBP
is only appropriate for binary data, we could not compare
with this method. We used the features extracted from the
training set to estimate Z and R on test data, and evaluated
the reconstructions using test set RMSE. Table 1 shows that
LG-tIBP and M-tIBP achieve better performance than IBP
across all datasets; M-tIBP performs equally well as SPRITE
on three datasets, and much better on the SMB dataset.
M-tIBP performs better than LG-tIBP on SMB and WLK
datasets, but worse than LG-tIBP on DNK. This is because
DNK has limited occlusions and a black background, and so
can be adequately represented using the simpler LG-tIBP.

Figure 6 shows reconstructions and features obtained us-
ing the IBP, SPRITE, LG-tIBP, and M-tIBP. The IBP only
matches the image background. In contrast, both LG-tIBP
and M-tIBP identify shapes that appear in different loca-
tions. For example, in the first column of Figure 6, LG-tIBP
identifies Donkey Kong (cyan) and a fireball (yellow), in
addition to the background (green). Interestingly, LG-tIBP
mis-identifies a pie10 as a fireball but missed the actual
fireball. Our M-tIBP model detected the pie (red) and the
fireball (blue), while Donkey Kong (cyan) and background

8Raw WalkByShop1cor data available at http://groups.inf.ed.ac.
uk/vision/CAVIAR/CAVIARDATA1/

9The publicly available implementation of SPRITE could not
detect any features in our datasets. To enable the fairest comparison
possible, we compare against a finite version of M-tIBP with a
fixed K (based on the “true” K based on inspecting the dataset,
as in previous works using SPRITE) and an a “always on” Z. We
believe that this is equivalent to the SPRITE model, although the
inference implementation has tweaks and tricks that restrict the
kinds of features that can be learned.

10“Pies” is the common name used for these sprites by Don-
key Kong players; the designers’ intent was to depict troughs of
cement.

http://www.youtube.com/watch?v=EhFV5-qbbIw
http://www.youtube.com/watch?v=xkD7L2QFwR0
http://www.eecs.qmul.ac.uk/~andrea/avss2007_d.html
http://www.eecs.qmul.ac.uk/~andrea/avss2007_d.html
http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
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Figure 6. Reconstructions of test data by the IBP and LG-tIBP. First row: True image. Second, third, fourth and sixth rows: reconstructed
image by IBP, SPRITE, LG-tIBP, and M-tIBP, respectively. Fifth and seventh rows: features detected by LG-tIBP and M-tIBP, respectively,
superimposed on the true image. Each color is a feature; colors are consistent between columns. Each pair of adjacent columns are two
images from the DNK, SMB, TFC and WLK datasets, respectively.

(yellow) are also clearly identified. Though M-tIBP has
slightly larger RMSE than LG-tIBP on this dataset, the
features seems more intuitive.

In the Super Mario dataset, while LG-tIBP extracted the
bush and brick clearly, M-tIBP managed to extract the text
“100”, denoting points earned by the player (green). SPRITE
performs poorly, possibly due to the large, sparsely observed
feature set. M-tIBP identified the blue sky as two parts: one
is the red feature and the other is the green feature. Because
bricks often appear in the center of the screen, the model
learns to “occlude” that location with a patch of sky.

While LG-tIBP and M-tIBP can learn features and transfor-
mations, M-tIBP is, on the whole, more accurate and the
reconstructions are clearer. SPRITE can generally recon-
struct data as well as M-tIBP, but the extracted features are
less clear. One possible reason is that SPRITE assumes all

features are present in each image. Moreover, in practice
it is difficult to know a priori the number of features in a
dataset. These two factors mean SPRITE is unlikely to scale
to heterogeneous datasets such as SMB.

7. Discussion and Future Work
We have presented two nonparametric latent feature models
for real-valued images, and presented a novel and efficient
inference scheme. In this section, we discuss further ap-
plications of this inference paradigm, and discuss possible
extensions to our models.

Exploitation of Pattern Matching Algorithms This in-
ference scheme uses scoring functions from classical im-
age analysis as the proposal distribution in a Metropolis-
Hastings algorithm and combines the robustness and compu-
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tational appeal of a well-established pattern recognition tool
with the flexibility of probabilistic models. This approach,
or similar methods based on other classical pattern recog-
nition techniques (Tu & Zhu, 2002; Tu et al., 2005), can
be applied across a range of Bayesian models to improve
inference in large state spaces.

An alternative to modeling images as real-valued vectors is
to use image codewords (Li Fei-Fei & Perona, 2005). Other
techniques have used transformed Bayesian nonparametric
models to build high-performing vision systems using fixed
codewords (Sudderth et al., 2005); a combination of these
models would allow for a joint model to infer transforma-
tions, codewords, and feature cooccurrence patterns.

Rotation and scaling are implemented by extending the
space for our cross-correlation-based proposal distribution.
One avenue for future work is to investigate how existing
non-statistical models for pattern recognition can sample a
broder class of transformations using Metropolis-Hastings.

Additional Modeling Directions Features can appear
more than once in an image, contrary to the assumptions
of the tIBP. One avenue for future work is to extend the
model to allow multiple instances of a feature in a given
image. The infinite gamma-Poisson process (Titsias, 2007)
is a distribution over infinite non-negative integer valued
matrices. It has been used for image modeling, but that
application required presegmentation of images. This work
would allow extension to non-segmented images.

As in the original tIBP paper, we assumed that transfor-
mations associated with each (data point, feature) pair are
sampled i.i.d. from some distribution f(r) over possible
transformations. One possible avenue for future research
is to allow correlations (e.g., over time) between transfor-
mations in different images, leading to an image tracking
model, which also leads to more efficient inference, by re-
stricting the range in which an feature can appear in the tth

to a neighborhood of the feature’s location in the (t− 1)th

image. This idea was used to speed up inference in the
SPRITE implementation of Titsias & Williams (2006). In-
corporating spatial information into the mask distribution
would also lead to more coherent feature appearances and
counteract some of the “spotty” features observed for M-
tIBP.

In addition, a more informative prior on the features ak
could be used to encode domain-specific knowledge—for
example, for data comparable to the Walker video, one
might make use of vertically oriented ellipses to find human-
shaped features.
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