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Abstract

Advances in sensing technologies and the
growth of the internet have resulted in an ex-
plosion in the size of modern datasets, while
storage and processing power continue to lag
behind. This motivates the need for algo-
rithms that are efficient, both in terms of
the number of measurements needed and run-
ning time. To combat the challenges associ-
ated with large datasets, we propose a gen-
eral framework for active hierarchical clus-
tering that repeatedly runs an off-the-shelf
clustering algorithm on small subsets of the
data and comes with guarantees on perfor-
mance, measurement complexity and run-
time complexity. We instantiate this frame-
work with a simple spectral clustering al-
gorithm and provide concrete results on its
performance, showing that, under some as-
sumptions, this algorithm recovers all clus-
ters of size Ω(log n) using O(n log2 n) sim-
ilarities and runs in O(n log3 n) time for a
dataset of n objects. Through extensive ex-
perimentation we also demonstrate that this
framework is practically alluring.

1. Introduction

Clustering is a ubiquitous task in exploratory data
analysis, data mining, and several application do-
mains. In clustering, we assign each object to one or
more groups so that objects in the same group are very
similar while objects in different groups are dissimilar.
In a hierarchical clustering, the groups have multiple
resolutions, so that a large cluster may be recursively
divided into smaller sub-clusters. There exist many
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effective algorithms for clustering, but as modern data
sets get larger, the fact that these algorithms require
every pairwise similarity between objects poses a se-
rious measurement and/or computational burden and
limits the practicality of these algorithms. It is there-
fore practically appealing to develop clustering algo-
rithms that are effective on large scale problems from
both a measurement and a computational perspective.

To achieve both measurement and computational im-
provements, we focus on reducing the number of sim-
ilarity measurements required for clustering. This
approach results in immediate reduction in measure-
ment overhead in applications where similarities are
observed directly, but it can also provide dramatic
computational gains in applications where similarities
between objects are computed via some kernel evalu-
ated on observed object features. The case of internet
topology inference is an example of the former, where
covariance in the packet delays observed at nodes re-
flects the similarity between them. Obtaining these
similarities requires injecting probe packets into the
network and places a significant burden on network
infrastructure. Phylogenetic inference and other bio-
logical sequence analyses are examples of the latter,
where computationally intensive edit distances are of-
ten used. In both cases our algorithms are dramati-
cally faster than many popular algorithms.

In this paper, we propose a novel framework for speed-
ing up hierarchical clustering algorithms through ac-

tivization–creating active versions of the algorithms
where only a small number of informative similarities
are measured. Our framework allows the user to spec-
ify various levels of activeness and we provide theo-
retical analysis that quantifies the resulting trade-off
between measurement overhead and computation time
on one hand, and statistical accuracy on the other.

As a detailed example, we apply our framework to
spectral clustering. Spectral clustering is a very pop-
ular clustering technique that relies on the structure
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of the eigenvectors of the Laplacian of the similarity
matrix. These algorithms have received considerable
attention in recent years because of their empirical suc-
cess, but they suffer from the fact that they require
all n(n− 1)/2 similarities between the n objects to be
clustered and must compute a spectral decomposition,
which on large datasets can be computationally pro-
hibitive. Our active algorithm avoids this limitation by
subsampling few objects in each round and only com-
puting eigenvectors of very small sub-matrices. By
appealing to previous statistical guarantees (Balakr-
ishnan et al., 2011), we can show that this algorithm
has desirable theoretical properties, both in terms of
statistical and computational performance.

2. Related Work

There is a large body of work on hierarchical and par-
titional clustering algorithms, many coming with var-
ious theoretical guarantees, but only few algorithms
attempt to minimize the number of pairwise similari-
ties used (Eriksson et al., 2011; Balcan & Gupta, 2010;
Shamir & Tishby, 2011). Along this line, the work of
Eriksson et. al. (2011) and Shamir and Tishby (2011)
is closest in flavor to ours.

Eriksson et. al. (2011) develop an active algorithm
for hierarchical clustering and analyze the correctness
and measurement complexity of this algorithm under
noise model where a small fraction of the similarities
are inconsistent with the hierarchy. They show that
for a constant fraction of inconsistent similarities, their
algorithm can recover hierarchical clusters up to size
Ω(log n) using O(n log2 n) similarities. Our analysis
for ActiveSpectral yields similar results in terms
of noise tolerance, measurement complexity, and res-
olution, but in the context of i.i.d. subgaussian noise
rather than inconsistencies. Our algorithm is also com-
putationally more efficient.

Another approach to minimizing the number of simi-
larities used is via perturbation theory, which suggests
that randomly sampling the entries of a similarity ma-
trix preserves many of its important properties, such
as its spectral norm (Achlioptas & McSherry, 2001).
With this result, the Davis-Kahan theorem suggests
that spectral clustering algorithms, which look at the
eigenvectors of the Laplacian associated with the sim-
ilarity matrix, can succeed in recovering the clusters.
This intuition is formalized by Shamir and Tishby
(2011) who analyze a binary spectral algorithm that
randomly samples b entries from the similarity matrix.
Their results imply that as long as b = Ω(n log3/2 n)
their algorithm will find flat k-way clusters of size Ω(n)
with high probability. Our work, translated to the
flat clustering setting improves this guarantee; Theo-

rem 2 implies that O(n log n) similarities are needed
to recover the clustering. Furthermore, we can give
guarantees on the size of smallest cluster Ω(log n) that
can be recovered in a hierarchy by selectively sampling
similarities at each level.

Recently (Voevodski et al., 2012) proposed an active
algorithm for flat k-way clustering that selects O(k)
landmarks and partitions the objects using distances
to these landmarks. Theoretically, the authors guaran-
tee approximate-recovery of clusters of size Ω(n) using
O(nk) pairwise distances. This idea of selecting land-
marks bears strong resemblence to the first phase of
our active clustering algorithm and also has connec-
tions to the Landmark MDS algorithm of de Silva and
Tenenbaum (2002). These approaches are tied to spe-
cific algorithms, while our framework is much more
general. Moreover, we guarantee exact cluster recov-
ery (under mild assumptions) rather than approximate
recovery, which translates into guarantees on hierarchi-
cal clustering.

A related direction is the body of work on efficient
streaming and online algorithms for approximating the
k-means and k-medians objectives (See for example
(Charikar et al., 2003; Shindler et al., 2011)). As
with (Voevodski et al., 2012), the guarantees for these
algorithms do not immediately translate into an ex-
act recovery guarantee, making it challenging to trans-
form these approaches into hierarchical clustering al-
gorithms. Moreover, the success of spectral clustering
in practice suggests that an efficient spectral algorithm
would also be very appealing. While there have been
advances in this direction, the majority of these re-
quire the entire similarity matrix or graph to be known
a priori (Frieze et al., 2004). Apart from (Shamir &
Tishby, 2011), we know of no other spectral algorithm
that optimizes the number of similarities needed.

3. Main Results

Before proceeding with our main results, we first clar-
ify some notation and introduce a hierarchical cluster-
ing model that we will analyze. We refer to A as any
flat clustering algorithm, which takes as parameters a
dataset and a natural number k, indicating the num-
ber of clusters to produce. Throughout the paper, k
will denote the number of clusters at any split, and
we will assume that k is known and fixed across the
hierarchy. We let n be the number of objects in a
datasets and define s to be a parameter to our algo-
rithms, influencing the number of measurements used
by our algorithm, where smaller s implies fewer mea-
surements. The parameter s reflects a tradeoff be-
tween the measurement overhead and the statistical
accuracy of our algorithms; increasing s increases the
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Algorithm 1 ActiveCluster(A, s, {xi}ni=1, k)

if n ≤ s then return {xi}ni=1

Draw S ⊆ {xi}ni=1 of size s uniformly at random.
C �

1, . . . C
�
k ← A(S, k).

Set C1 ← C �
1, . . . Ck ← C �

k.
for xi ∈ {xi}ni=1 \ S do

∀j ∈ [k], αj ← 1
|C�

j |
�

xl∈C�
j
K(xi, xl).

Cargmaxj∈[k]αj ← Cargmaxj∈[k]αj ∪ {xi}.
end for

output {Cj , ActiveCluster(A, s, Cj , k)}kj=1

robustness of our method, albeit at the cost of requir-
ing more measurements. Finally, our algorithms em-
ploy an abstract, possibly noisy similarity function K,
which can model both cases where similarities are mea-
sured directly and where they are computed via some
kernel function based on observed object features.

Definition 1 A hierarchical clustering C on ob-

jects {xi}ni=1 is a collection of clusters such that C0 �
{xi}ni=1 ∈ C and for each Ci, Cj ∈ C either Ci ⊂
Cj , Cj ⊂ Ci or Ci ∩ Cj = ∅. For any cluster C, if

∃C �
with C � ⊂ C, then there exists a set {Ci}ki=1 of

disjoint clusters such that
�k

i=1 Ci = C.

Every hierarchical clustering C has a parameter η

that quantifies how balanced the clusters are at any
split. Formally, η ≥ maxsplits{C1,...,Ck}

maxi |Ci|
mini |Ci| , where

each split is a non-terminal cluster, partitioned into
{Ci}ki=1. η upper bounds the ratio between the largest
and smallest clusters sizes across all splits in C. This
type of balancedness parameter has been used in pre-
vious analyses of clustering algorithms (Eriksson et al.,
2011; Balakrishnan et al., 2011), and it is common to
assume that the clustering is not too unbalanced. For
clarity of presentation, we will state our results assum-
ing η = O(1), although our proofs contain a precise
dependence between the level of activeness s and η.

3.1. An Active Clustering Framework

Our primary contribution is the introduction of a novel
framework for hierarchical clustering that is efficient
both in terms of the number of similarities used and
the algorithmic running time. To recover any single
split of the hierarchy, we run a flat clustering algorithm
A on a small subset of the data to compute a seed
clustering of the dataset. Using this initial clustering,
we place each remaining object into the seed cluster
for which it is most similar on average. This results
in a flat clustering of the entire dataset, using only
similarities to the objects in the small subset.

By recursively applying this procedure to each clus-
ter, we obtain a hierarchical clustering, using a small
fraction of the similarities. In this recursive phase, we

Figure 1. Sampling pattern of ActiveCluster.

do not observe any measurements between clusters at
the previous split, i.e. to partition Cj , we only ob-
serve similarities between objects in Cj . This results
in an active algorithm that focuses its measurements
to resolve the higher-resolution cluster structure.

Pseudocode for ActiveCluster is shown in Algo-
rithm 1. As a demonstration, in Figure 1, we show
the sampling pattern of ActiveCluster on the first,
and second splits of a hierarchy (top row), in addition
to the patterns at the end of the computation (bot-
tom right). Only the similarities shown in white are
needed. As is readily noticeable, the algorithm uses
very few similarities yet can recover this hierarchy.

We are now ready to state our main theoretical contri-
bution which characterizes ActiveCluster in terms
of probability of success in recovering the true hierar-
chy (denoted C�), measurement and runtime complex-
ity. In order to make these guarantees we will need to
place some mild restrictions on the similarity function
K, which ensure that the similarities agree with the
hierarchy (up to some random noise):

K1 For each xi ∈ Cj ∈ C� and j� �= j:

min
xk∈Cj

[K(xi, xk)]− max
xk∈Cj�

[K(xi, xk)] ≥ γ > 0

where expectations are taken with respect to the
possible noise on K.

K2 For each object xi ∈ Cj , a set of Mj objects of
size mj drawn uniformly from cluster Cj satisfies:



 min
xk∈Cj

E[K(xi, xk)]−
�

xk∈Mj

K(xi, xk)

mj
> �





≤ 2 exp{−2mj�
2

σ2
}
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Where σ2 ≥ 0 parameterizes the noise on the sim-
ilarity function K. Similarly, a set Mj� of size mj�

drawn uniformly from cluster Cj� with j� �= j sat-
isfies:



�

xk∈Mj�

K(xi, xk)

mj�
− max

xk∈Cj�
E[K(xi, xk)] > �





≤ 2 exp{−2mj��
2

σ2
}

K1 states that the similarity from an object xi to its
cluster should, in expectation, be larger than the the
similarity from that object to any other cluster. This
is related to the Tight-Clustering condition used in
(Eriksson et al., 2011) and less stringent than earlier
results which assume that within- and between-cluster
similarities are constant and bounded in expectation
(Rohe et al., 2010). Moreover, an assumption of this
form seems necessary to ensure that even in expec-
tation one could identify the clustering. Lastly, K2
enforces that within- and between-cluster similarities
concentrate away from each other. This condition is
satisfied, for example, if similarities are constant in ex-
pectation, perturbed with any subgaussian noise. We
emphasize that K2 subsumes many of the assumptions
of previous clustering analyses (for example (Balakr-
ishnan et al., 2011; Rohe et al., 2010)).

Theorem 1 Let {xi}ni=1 be a dataset with true hier-

archical clustering C�
, let K be a similarity function

satisfing assumptions K1 and K2 and consider any flat

clustering algorithm A with the following property:

A1 For any dataset {yi}mi=1 with clustering C��
where

K satisfies K1 and K2, A({yi}mi=1, k) returns the

first split of C��
into k clusters with probability

≥ 1− o( k
c1em

) for some constant c1 > 0.

Then ActiveCluster(A, s, {xi}ni=1, k):

R1 recovers all clusters of size at least s with proba-

bility 1−o(n2e−cs), for some constant c = c(η, γ).
This probability of success is 1− o(1) as long as:

s ≥ max






1

c1
log n

4(1 + η)2 log n

24
1 + η

γ2
log(4Cηkn)






= Ω(log(nk)) (1)

R2 uses O(ns log n) similarity measurements.

R3 runs in time O(nAs + ns log n) where A on a

datasets of size s runs in time O(As).

At a high level, the theorem says that the clustering
guarantee for a flat, non-active algorithm, A, can be

translated into a hierarchical clustering guarantee for
an active version of A, and that this active algorithm
enjoys significantly reduced measurement and runtime
complexity. The only property needed by A is that it
recovers a flat clustering with very high probability.
While the probability of success seems strangely high,
we will show that for a fairly intuitive model, a simple
spectral clustering algorithm enjoys this kind of guar-
antee. Verifying that the model satisfies the conditions
K1 and K2, immediately results in a guarantee for the
active version of this spectral algorithm.

Before delving into the proof of the theorem, some re-
marks are in order. First, by plugging in the lower
bound for s into the upper bound on the measure-
ment complexity, we see that ActiveCluster needs
O(n log(nk) log n) similarities, which is considerably
less than the O(n2) similarities required by a non-
active algorithm. Second, at the lower bound for
s, we see that unless A runs in exponential time,
ActiveCluster runs in Õ(n), which is significantly
faster than any clustering algorithm that observes all
of the similarities and must take Ω(n2) time.

We now turn to the proof of R1. Due to space limita-
tions, we defer many details and technical lemmas to
the appendix. The proofs for R2 and R3 are straight-
forward, involving counting arguments on trees, and
are also available in the appendix.

Proof for R1: We study the sampling, clustering
and averaging phases of ActiveCluster in turn. In
the sampling phase, we demonstrate that choosing s

objects at random does not result in a highly unbal-
anced subset. Using bernoulli concentration inequali-
ties and a union bound we show that the balance fac-
tor across all splits is at most 2η + 1 with probability
≥ 1− o(ne−cη,γs), which goes to 1 under Equation 1.

For the clustering phase, Lemma 3 (in the appendix)
shows that the total number of calls to A is at most
n

k−1 and each time we call A we have a probability of

success ≥ 1−o( k
ec1s ) by assumption A1. It is now easy

to see that the probability of A failing at any split is
o(n exp{−s}), which is o(1) under Equation 1.

In the averaging phase, we need to show that for each
split of the hierarchy and object xi, the sample aver-
age within cluster similarity is larger than the sample
average between cluster similarity. Under assumption
K1 and K2, we know that these quantities concentrate
away from each other. Via a union bound across all
objects and all levels of the hierarchy, we can conclude
that the probability of making a mistake in any averag-

ing procedure is O(nk log n exp{ −γ2s
4(1+η)}) which again

goes to zero as long as s satisfies Equation 1.
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Algorithm 2 SpectralCluster(W )

Compute Laplacian L = D −W , Dii =
�n

j=1 Wij

v2 ← smallest non-constant eigenvector of L.
C1 ← {i : v2(i) ≥ 0}, C2 ← {j : v2(j) < 0}

output {C1, C2}.

3.2. Active Spectral Clustering

To make the guarantees in Theorem 1 more concrete,
we show how to translate this into real guarantees for
a specific subroutine algorithm A. In this section, we
turn a simple spectral algorithm (See pseudocode in
Algorithm 2) into an active clustering algorithm, us-
ing the analysis from (Balakrishnan et al., 2011). The
algorithm operates on hierarchically structured sim-
ilarity matrices refered to as the noisy Hierarchi-

cal Block Matrices (again from (Balakrishnan et al.,
2011)). These are defined as follows:

Definition 2 A similarity matrix W is a noisy hier-

archical block matrix (noisy HBM) if W � A + R

where A is ideal and R is a perturbation matrix:

• An ideal similarity matrix is characterized

by ranges of off-block diagonal similarity values

[αξ,βξ] for each cluster Cξ such that if x ∈ Cξ◦L
and y ∈ Cξ◦R, where Cξ◦L and Cξ◦R are two

sub-clusters of Cξ at the next level in a binary

hierarchy, then αξ ≤ Ax,y ≤ βξ. Additionally,

min{αξ◦R,αξ◦L} ≥ βξ.

• A symmetric (n × n) matrix R is a perturba-

tion matrix with parameter σ if (a) (Rij) =
0, (b) the entries of R are subgaussian, that is

(exp(tRij)) ≤ exp
�

σ2t2

2

�
and (c) for each row

i, Ri1, . . . Rin are independent.

To apply Theorem 1, we need to verify that the
assumption K1 and K2 are met and Spectral-

Cluster succeeds with exponentially high probabil-
ity. Checking that these conditions hold as long as
σ = O(1) results in the following guarantees for Ac-

tiveSpectral, the active version of SpectralClus-

ter. Proof of this theorem is deferred to the appendix.

Theorem 2 Let W be a noisy HBM with σ = O(1)
and η = O(1). Then, ActiveSpectral succeeds

in recovering all clusters of size s with probability

1 − o(1) as long as Equation 1 holds. Moreover,

ActiveSpectral uses O(ns log n) measurements and

runs in O(ns2 log s+ ns log n) time.

The results of this theorem quantify one extreme of the
tradeoff between statistical robustness and measure-
ment complexity for hierarchical spectral algorithms.
In particular, it states that ActiveSpectral can tol-
erate a constant amount of noise while using only
O(n log2 n) measurements. At the other end of this

spectrum is the result of Balakrishnan et. al. (2011),
showing that using O(n2) measurements, one can tol-
erate noise that grows fairly rapidly with n. Varying
s allows for interpolation between these two extremes.

3.3. Active k-means clustering

It is also possible to activize the popular k-means al-
gorithm in our framework, but we cannot prove sta-
tistical performance guarantees since it is unknown
whether k-means satisfies assumption A1. Activizing
k-means helps illuminate the differences between ob-
serving similarities directly and computing similarities
from directly observed object features. Convention-
ally, k-means fits into the latter framework. Here,
the active version does not enjoy a reduced measure-
ment complexity, because all of the objects must be
observed, but it can reduce the number of similarity
computations from nkT to skT + (n− s)kT , since the
iterative subroutine runs on only s objects for T itera-
tions. In cases where the similarity function is expen-
sive to compute, such as edit distance, this can lead to
gains in running time.

A less traditional way to use k-means is to represent
each object as a n-dimensional vector of its similar-
ity to each other object. Here, we can apply k-means
to a n × n similarity matrix, much like we can ap-
ply SpectralCluster and this algorithm can be ac-
tivized using our framework. While we cannot develop
theoretical guarantees for this algorithm, which we call
ActiveKMeans, our experiments demonstrate that
it performs very well in practice.

3.4. Some Practical Considerations

Our algorithm as stated has some shortcomings that
enable theoretical analysis but that are undesirable
for practical applications. Specifically, the fact that
k is known and constant across splits in the hierarchy,
and the balancedness condition are both assumptions
that are likely to be violated in any real-world setting.
We therefore develop a variant of ActiveSpectral,
called HeurSpec, with several heuristics.

First, we employ the popular eigengap heuristic, in
which the number of clusters k is chosen so that the
gap in eigenvalues λk+1 − λk of the Laplacian is large.
Secondly, we propose discarding all subsampled ob-
jects with low degree (when restricted to the sample) in
the hopes of removing underrepresented clusters from
the sample. In the averaging phase, if an object is not
highly similar to any cluster represented in the sam-
ple, we create a new cluster for this object. We expect
that in tandem, these two heuristics will help us re-
cover small clusters. By comparing the performance
of HeurSpec to that of ActiveSpectral, we indi-
rectly evaluate these heuristics.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Simulation experiments. Top row: Noise thresholds for SpectralCluster, K-Means, ActiveSpectral, and
ActiveKMeans with s = log(n) for active algorithms. Bottom row from left to right: probability of success as a function
of s for n = 256,σ = 0.75, outlier fractions on noisy HBM, probing complexity, and runtime complexity.

4. Simulations

In this section we present experiments that verify our
theoretical results. By Theorem 2, we expect Ac-

tiveSpectral to be robust to a constant amount of
noise σ, meaning that it will recover all sufficiently
large splits with high probability. In comparison, Bal-
akrishnan et. al. (2011), show that SpectralClus-

ter can tolerate noise growing with n. We constrast
these guarantees by plotting the probability of success-
ful recovery of the first split in a noisy HBM as a func-
tion of σ for different n in Figure 2. 2(a) demonstrates
that indeed the noise tolerance of SpectralClus-

ter grows with n while 2(c) demonstrates that Ac-

tiveSpectral enjoys constant noise tolerance. Fig-
ures 2(b) and 2(d) suggest that similar guarantees may
hold for k-means and ActiveKMeans.

Our theory also predicts that increasing the active-
ness parameter improves the statistical performance
of ActiveSpectral. To demonstrate this, we plot
the probability of successful recovery of the first split
of a noisy HBM of size n = 256 as a function of s for
fixed noise variance. We compare three algorithms,
ActiveSpectral, ActiveKMeans, and Algorithm
1 from (Shamir & Tishby, 2011), which subsamples en-
tries of the similarity matrix. In theory, ActiveSpec-

tral requires Ω(n log n) total measurements to re-
cover a single split, whereas (Shamir & Tishby, 2011)
show that their algorithm requires Ω(n log3/2 n). Fig-
ure 2(e) demonstrates that this improvement is also
noticeable in practice. ActiveKMeans seems to en-
joy an even more favorable dependence on s.

The simulations in Figures 2(a)-(e) only examine the
ability of our algorithms to recover the first split of a

hierarchy, while our theory predicts that all sufficiently
large clusters can be reliably recovered. One way to
measure this is the outlier fraction metric between
the clustering returned by an algorithm and the true
hierarchy (Eriksson et al., 2011). For any triplet of ob-
jects xi, xj , xk we say that the two clusterings agree on
this triplet if they both group the same pair of objects
deeper in the hierarchy relative to the third object and
disagree otherwise. The outlier fraction is simply the
fraction of triplets for which the two clusterings agree.

In Figure 2(f), we plot the outlier fraction for six
algorithms as a function of σ on the noisy HBM.
The algorithms are: Hierarchical Spectral (SC), Sin-
gle Linkage (SL), HeurSpec (HSC), ActiveSpec-

tral (ASC), Hierarchical k-Means (KM), and Ac-

tiveKMeans (AKM). These experiments demon-
strate that the non-active algorithms (except single
linkage) are much more robust to noise than the cor-
responding active ones, as predicted by our theory, but
also that the heuristics described in Section 3.4 have
dramatic impact on performance.

Lastly, we verify the measurement and run time com-
plexity guarantees for our active algorithms in com-
parison to the non-active versions. In Figure 2(g)
and 2(h), we plot the number of measurements and
running time as a function of n on a log-log plot for
each algorithm. The three non-active algorithms have
steeper slopes than the active ones, suggesting that
they are polynomially more expensive in both cases.

5. Real World Experiments

To demonstrate the practical performance of the Ac-

tiveCluster framework, we apply our algorithms to
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Algorithm HKM HRC Probes Time (s)

SNP
HeurSpec 0.022 475 0.38 1350
ActiveSpec 0.019 19.1 0.13 450

ActiveKMeans 0.018 12.5 0.12 420
k-means 0.0028 18.7 1 160
Spectral 0.0075 130 1 5660

Phylo
HeurSpec 0.020 371 0.29 2500
ActiveSpec 0.012 22.9 0.071 600

ActiveKMeans 0.012 25 0.071 555
k-means 0.0017 22.9 1 967
Spectral 0.0022 23.5 1 997

NIPS
HeurSpec 0.0088 65.7 0.19 140
ActiveSpec 0.010 1.5 0.094 79.4

ActiveKMeans 0.011 1.37 0.12 29
k-means 0.0017 1.66 1 723
Spectral 0.0033 6.30 1 26200

RTW
HeurSpec 0.0079 18.1 0.41 419
ActiveSpec 0.0084 0.64 0.13 151

ActiveKMeans 0.0073 0.485 0.22 70.9

Table 1. Real World Experiments

Algorithm SNP Phylo

HeurSpec 0.596 0.878
ActiveSpec 0.374 0.971

ActiveKMeans 0.383 0.94

Table 2. Outlier Fractions on Real Datasets

three real-world datasets and one additional synthetic
dataset. The datasets are: The set of articles from
NIPS volumes 0 through 12 from (Roweis, 2002), a
subset of NPIC500 co-occurence data from the Read-
the-Web project (Mitchell, 2009) which we call RTW,
a SNP dataset from the HGDP (Pemberton et al.,
2008), and a synthetic phylogeny dataset produced us-
ing phyclust (Chen, 2010). We refer the reader to the
appendix for additional details on these datasets.

In the phylogeny and SNP datasets, we have access to
a reference tree that can be used in our evaluation. In
these cases we can report the outlier fraction, as we did
in simulation. However, the other datasets lack such
ground truth and without it, evaluating the perfor-
mance of each algorithm is non-trivial. Indeed, there
is no well-established metric for this sort of evaluation.

For this reason, we employ two distinct metrics to eval-
uate the quality of hierarchical clusterings. They are
a hierarchical K-means objective (HKM) (Kauchak &
Dasgupta, 2003) and an analogous hierarchical ratio-
cut (HRC) objective, both of which are natural gen-
eralizations of the k-means and ratio cut objectives
respectively, averaging across clusters, and removing
small clusters as they bias the objectives. Formally,

0.60.811.2

A MCMC Approach to Hierarchical Mixture Modelling

Learning Mixture Hierarchies

The Infinite Gaussian Mixture Model

Very Fast EM−Based Mixture Model Clustering ...

Time Series Prediction using Mixtures of Experts

Adaptively Growing Hierarchical Mixtures of Experts

Constructive Algorithms for Hierarchical Mixtures of Experts

Real−Time ... Using Analog VLSI Circuits

VLSI Implementation of ... Using an Analog Neural Computer

An Analog VLSI Neural Network for ...

A Simple and Fast Neural Network Approach to Stereovision

A Neural Model of Visual Contour Integration

Plasticity of ... in Real and Artificial Neural Systems of Vision

Figure 3. The ActiveKMeans hierarchy restricted to a
subset of NIPS articles.

let C be the hierarchical clustering and let C̄ be all of
the clusters in C that are larger than log n. For each
C ∈ C̄ let xC be the cluster center. Then:

HKM(C) =
1

|C̄|
�

C∈C̄

1

|C|
�

xj∈C

xT
j xC

||xj ||||xC ||
(2)

HRC(C) =
1

|C̄|
�

C∈C̄

�

Ck⊆C

K(Ck, C \ Ck)

2|Ck|
(3)

In Table 1 and 2, we record experimental results across
the datasets for our algorithms. On the read-the-web
dataset, we were unable to run the non-active algo-
rithms. On the SNP and phylogeny datasets, we in-
clude computing similarities via edit distance in the
running time of each algorithm, noting that comput-
ing all pairs takes 6500 and 15000 seconds respec-
tively. The immediate observation is that these algo-
rithms are extremly fast; on the SNP and phylogeny
datasets where computing similarities is the bottle-
neck, activization leads to significant performance im-
provements. Moreover, the algorithms perform well
by our metrics; they find clusterings that score well
according to HKM and HRC, or that have reasonable
agreement with the reference clustering1.

We are also interested in more qualitatively under-
standing the performance of these algorithms. For
the NIPS data, we manually collected a small sub-
set of articles and visualized the hierarchy produced
by ActiveKMeans restricted to these objects. The
hierarchy in Figure 3 is what one would expect on the
subset, attesting to the performanceActiveKMeans.
On the other hand, this same kind of evaluation on the
RTW data demonstrates that active algorithms do not
perform well on this dataset, while the non-active al-
gorithms do. We suspect this is caused by the RTW
dataset consisting of many small clusters that do not
get sampled by the ActiveCluster framework.

1 The SNP dataset is a k-way hierarchy and our algo-
rithms (apart from HeurSpec) recover binary hierarchies
that cannot have high agreement with the reference.
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Figure 4. Heatmaps of permuted matrices for SNP (left)
and Phylo (right). Algorithms are HeurSpec, Ac-

tiveSpectral, and ActiveKMeans from top to bottom.

For the SNP and phylogeny datasets, the permuted
heatmaps are clear enough to be used in qualitative
evaluations. These heatmaps are shown in Figure 4,
and they suggest that all three active algorithms per-
form very well on these datasets. Heatmaps for the
remaining datasets are less clear, but for completeness
we include them in the appendix.

6. Discussion

Our results in this paper, showing that a family of
active hierarchical clustering algorithms have strong
performance guarantees, raise several interesting ques-
tions. We showed that ActiveSpectral enjoys rea-
sonable statistical performance, but can other algo-
rithms be activized while retaining statistical proper-
ties? Second, are there principled ways to circumvent
a balancedness condition, even when objects are sub-
sampled? Finally, is there a theoretically justified ap-
proach for estimating the number of clusters, k?

Another direction relates not toward clustering, but
toward the recently popular matrix completion prob-
lem. On hierarchically structured matrices, our results
imply that an active algorithm can recover high-rank
(rank n/ log n) matrices using O(n log2 n) similarities,
an improvement over non-active approaches. Active
algorithms may therefore yield impressive guarantees
for matrix completion and related problems, and we
hope to explore this direction in the future.
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