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Abstract
Algorithms for learning distributions over
weight-vectors, such as AROW (Crammer
et al., 2009) were recently shown empirically to
achieve state-of-the-art performance at various
problems, with strong theoretical guaranties. Ex-
tending these algorithms to matrix models pose
challenges since the number of free parameters
in the covariance of the distribution scales as n4

with the dimension n of the matrix, and n tends
to be large in real applications. We describe,
analyze and experiment with two new algorithms
for learning distribution of matrix models. Our
first algorithm maintains a diagonal covariance
over the parameters and can handle large covari-
ance matrices. The second algorithm factors the
covariance to capture inter-features correlation
while keeping the number of parameters linear
in the size of the original matrix. We analyze
both algorithms in the mistake bound model and
show a superior precision performance of our
approach over other algorithms in two tasks:
retrieving similar images, and ranking similar
documents. The factored algorithm is shown to
attain faster convergence rate.

1. Introduction
Many machine learning tasks involve models in the form
of a matrix. As an important example, consider the prob-
lem of linear metric learning where the dissimilarity be-
tween a pair of samples is measured using the Mahalanobis
distance, parametrized by a positive semi-definite matrix.
A second important example is the matrix model obtained
when learning multiple linear classifiers regularized jointly,
like in the case of object recognition with many classes.
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Many algorithms were developed for learning these two
tasks, including online algorithms developed recently in
the context of classification and ranking costs (Davis et al.,
2007; Jain et al., 2008; Chechik et al., 2009).

While such linear matrix models are common for metric
and multiclass learning, the broader class of ”vector” lin-
ear model are a popular choice in many domains since
they provide a good balance between simplicity, scalabil-
ity and performance. Methods to generate linear classi-
fiers from data have flourished in the past decade, includ-
ing SVMImportantly, when learning linear models, it was
recently shown that modeling the second order information
about the set of models (Crammer et al. (2009) and the ref-
erences therein), or using this information during training
(Duchi et al., 2010) improves the convergence rate of the
learning algorithms as well as the performance of the re-
sulting classifiers. These very effective methods were de-
veloped primarily for handling vector models, and were not
designed to handle matrix models.

At first sight, problems that involve learning matrices could
be handled directly using methods developed for learn-
ing vectors, including the second order methods described
above. In practice however, matrix models often pose a
challenge to scalability, since both their memory and their
runtime complexity scale quadratically with the data di-
mensionality n. Modeling second order interactions be-
tween features may therefore require n4 parameters, limit-
ing these methods to relatively low dimensional data.

In this paper we study second-order methods for learning
matrix models and test them in the context of similarity
learning. We describe AROMA (Adaptive Regularization
Of MAtrix models) an online algorithm that learns a distri-
bution of matrix models. Since maintaining a full covari-
ance matrix over the parameters would not be feasible for
large dimensions, we describe models that capture part of
the covariance structure. We first describe a simple model
with a diagonal covariance matrix. While this model scales
well to large matrices, it fails to model correlations between
features which could be crucial in some applications. We
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further describe a factored model which is still linear in
the number of parameters (quadratic in the dimension), yet
captures some of the correlations between features.

In the context of metric and similarity learning, AROMA
can be used to learn a distribution over metrics, instead
of a single metric. We evaluate AROMA in two tasks of
retrieving images and documents by evaluating similarity
between objects. We find that the two AROMA variants
outperform competing methods by a large gap. Addition-
ally, the more involved variant convergence faster than all
other methods evaluated. As far as we know, this makes it
the state-of-the-art method for the extensively studied task
of linear similarity learning.

Notation: In this work we often consider the bilinear
form q>Wp where q ∈ Rm, p ∈ Rn and W ∈ Rm×n.
Given such a matrix W , we denote by vec (W ) ∈ Rmn the
vector generated by “stacking” the columns of the matrix
W . Using this operator we can write the bilinear form as
an inner product q>Wp = vec (W ) · vec

(
pq>

)
. We de-

note by x� z the element-wise product of two vectors (or
matrices) and by sum(A) the sum of the elements of the
matrix or vector A. We denote by |x|0 to be the number of
non-zero elements of the vector x, known as `0 norm.

Given two square matrices Λ ∈ Rm×m and Ω ∈ Rn×n we
denote their Kronecker product by Λ⊗ Ω. This is a matrix
of size mn × mn that is composed of blocks, where the
(i, j)th block is Λi,jΩ. Finally, (Sx) refers to the equation
x in a longer version of this manuscript provided online1.

2. Problem Setting
We focus on the problem of learning a linear similarity
measure between pairs of objects q ∈ Rm, p ∈ Rn,
in the form of SW (q,p) = q>Wp. This similarity
measure is related to metric learning models of the form
(q − p)>W (q − p) for square matrices W , and becomes
equivalent to it when all vectors p and q have a constant
W -norm. Interestingly, the similarity measure SW (q,p)
does not have to be symmetric, and may even be defined for
objects from with different dimensions m 6= n (non-square
W ). In general, it allows to learn a measure of relatedness
between objects from different domains, like images and
sounds or images and text (as in Grangier & Bengio, 2008).
Importantly, when the vectors representing both query and
object are sparse and contain only few elements, |q|0 = kq,
|p|0 = kp computing the similarity score takes only kqkp
operations instead of mn for dense vectors.

We address a weak-supervision setup where training is
based on relative similarity. Here, we are allowed to sam-

1webee.technion.ac.il/people/koby/
publications/aroma_icml12long.pdf

ple triplets of objects, each triplet containing a ”query ob-
ject” q ∈ Rm and two candidate objects p+, p− ∈ Rn,
where it is known that the object p+ is more related (or
similar) to the query q than the other object p−.

Importantly, the relative similarity learning setup does not
assume that there exists an absolute numerical level of sim-
ilarity between an object and a query, or that the learner has
access to it. Training therefore assumes a weaker type of
supervision, making it easier to collect labeled data either
from human raters, or by collecting indirect data about as-
sociation of object pairs. For example, two web pages can
be ranked by their similarity to a third web page by the
number of users visiting them within the same session.

Formally, our goal is to learn a bi-linear similarity scor-
ing function SW (q,p) = q>Wp parametrized by W ∈
Rm×n such that the total ordering induced by the similar-
ity function over objects p would be consistent with the
partial ordering information given about p− and a query
q. A similar model was recently studied in different con-
texts (McFee & Lanckriet, 2012; Kulis et al., 2011; Weston
et al., 2011).

We formalize training as a constrained optimization prob-
lem and require that this relation between the induced rank-
ing and the partial information of ordering holds with a
safety margin,

SW (q,p+) ≥ SW (q,p−) + 1 . (1)

More specifically, we develop an online algorithm that al-
lows to rank objects by their similarity to a ”query object”
q. Like online prediction algorithms, online retrieval algo-
rithms work in rounds. On round i, the algorithm receives a
triplet composed of a query qi ∈ Rm and two possible out-
comes p+

i ,p
−
i ∈ Rn. The algorithm than outputs a single

bit indicating which outcome is better for the given query.
It then receives the correct answer and updates its model.

To learn a scoring function that obeys (1), we define a hinge
loss over the triplet (q,p+,p−)

`W (q,p+,p−) = max
(
0, 1− q>W (p+ − p−)

)
.(2)

In what follows, we describe two online algorithms to min-
imize this loss while modeling the distribution of matrix
models W . We first review previous work on learning such
distributions for vector models.

3. Adaptive Regularization of Weights
We first describe the AROW algorithm that was designed
for binary classification of vector inputs x ∈ Rd and intro-
duced by Crammer et al. (2009).

The key idea of AROW (Dredze et al., 2008, and its prede-
cessors), is that instead of maintaing a single vectorw dur-
ing learning, AROW maintains a distribution over possible

webee.technion.ac.il/people/koby/publications/ aroma_icml12long.pdf
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models. Specifically, AROW maintains a Gaussian distri-
bution over vectors denoted by N (w,Σ), where w ∈ Rd

and Σ ∈ Rd×d. The mean w encodes the knowledge of
the algorithm about the weight features (linear model), and
is used to make predictions. The covariance Σ captures
the notion of confidence in the weights, and is used during
training to set an effective learning rate for features with
different statistics. AROW was motivated by tasks in natu-
ral language processing, where many features are very rare
and a few features are frequent.

AROW is an online algorithm that works in rounds. On the
i-th round, the algorithm receives an input xi ∈ Rd and
employs its current model to make a prediction ŷi ∈ {±1}.
It then receives the true label yi ∈ {±1} and suffers a loss
`(yi, ŷi). Finally, the algorithm updates its prediction rule
using the pair (xi, yi) and proceeds to the next round.

AROW updates its current model parameters w and Σ by
minimizing the following objective function

LAROW = DKL (N (w,Σ) ‖N (wt−1,Σt−1)) (3)

+
1

2r

(
max{0, 1− yix>i w}

)2

+
1

2r
x>i Σxi ,

where DKL is the Kullback-Leibler divergence. This objec-
tive aims to find a model that classifies the sample (xi, yi)
correctly, while keeping the distribution from changing
abruptly at a single iteration.

The minimum of the objective in Eq. (3) was shown
by Crammer et al. (2009) to be obtained by the update rule:

wi = wi−1 +
max

(
0, 1− yix>i wi−1

)
x>i Σi−1xi + r

Σi−1yixi, (4)

Σi = Σi−1 −
Σi−1xix

>
i Σi−1

r + x>i Σi−1xi
.

AROW was shown to attain state-of-the-art performance on
many problems (Crammer et al., 2009; Duchi et al., 2010)
and its performance is analyzed both for full covariance
matrices (Crammer et al., 2009) and diagonal covariance
matrices (Orabona & Crammer, 2010). In the next section,
and in this entire paper, we lift AROW to matrices, while
maintaining both memory and speed efficiency.

4. Modeling Uncertainty over Matrices
As with online classification learning, online retrieval algo-
rithms work in rounds. At round i the algorithm receives a
triplet composed of a query qi ∈ Rm and two possible out-
comes p+

i ,p
−
i ∈ Rn. The algorithm than outputs a single

bit indicating which outcome is better for the given query.
It then receives the correct answer and updates its model.
For simplicity, we assume that the first outcome is always
preferable, namely, given qi the algorithm should rank p+

i

over p−i . We now consider the problem of modeling un-
certainty over matrices, in the context of online-learning
similarity measures that obeys (1), and describe algorithms
to minimize the loss in (2).

A naive approach to model uncertainty over matrices would
be to to use the linearity of the ranking function SW (q,p)
in W , and write S as an inner product between two vectors
q>Wp = vec (W ) ·vec

(
pq>

)
. Here, learning over matri-

ces of dimension m× n is viewed simply as learning over
vectors of dimension 1 ×mn. After transforming the ma-
trix model into a vector, then the original AROW algorithm
for vectors can be applied.

Unfortunately, this approach requires to maintain the mean
parameters as a vector of of sizemn and the full covariance
matrix of size (mn) × (mn). Even for moderate dimen-
sion values of m and n, the size of a full covariance ma-
trix m2n2 cannot be stored in memory. For instance, with
m = n = 103, the dimension of the vectorized model is
mn = 106 and the full covariance matrix requires 1012 pa-
rameters. Designing second order algorithms for matrices
thus requires to model the covariance in a more compact
way. We now discuss and develop two such compact repre-
sentations and learning algorithms: a diagonal covariance,
and a factorized covariance.

4.1. Diagonal Covariance

Our first algorithm restricts the covariance matrices to be
diagonal, using only mn non-zero elements (the size of the
similarity measure W ). Denote by σ ∈ Rmn the diagonal
elements of the covariance matrix. The update (4) becomes

wi = wi−1 +
max

(
0, 1− yix>i wi−1

)
sum(x>i � σi−1 � xi) + r

yiσi−1 � xi

and the covariance is,

σi = σi−1 −
σi−1 � xi � xi � σi−1

r + sum(x>i � σi−1 � xi)
.

We denote by Σ ∈ Rm×n the covariance matrix that main-
tains one element per feature, and thus is diagonal-like, al-
though it is rectangular in shape. We identify xi = qip

>
i ,

pi = p+
i −p−i and yi = 1, to get the update in the notation

used for matrix-similarity measures,

Wi = Wi−1 + αiΣi−1 �
(
qip
>
i

)
where αi =

max
(
0, 1− q>i Wi−1pi

)
sum(qip>i � Σi−1 � qip>i ) + r

(5)

and Σi = Σi−1 −
Σi−1 � qip

>
i � qip

>
i � Σi−1

sum(qip>i � Σi−1 � qip>i ) + r
.

(6)
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Algorithm 1: diagonal-AROMA

Input parameters A scalar r

Initialize W0 = 0 ∈ Rm×n , Σ0 = 1 ∈ Rm×n

For i = 1, . . . , N

• Sample a query qi ∈ Rm and two images p+
i ,p

−
i ∈ Rn,

such that p+
i should be ranked above p−i

• Define pi = p+
i − p−i

• If 1 > q>i Wi−1pi then update:
– Update Wi = Wi−1 + αiΣi−1 �

(
qip

>
i

)
where

αi =
max(0,1−q>i Wi−1pi)

sum(qip
>
i �Σi−1�qip

>
i )+r

(5)

– Update Σi = Σi−1 − Σi−1�qip
>
i �qip

>
i Σi−1

sum(qip
>
i �Σi−1�qip

>
i )+r

(6)

Output: A weight matrix WN and its confidence ΣN

Figure 1. The d-AROMA algorithm for similarity measures.

We call the algorithm d(iagonal)-AROMA for diagonal-
Adaptive Regularization Of MAtrix models, and it is sum-
marized in Fig. 1. The memory required for d-AROMA is
Θ(mn) - the space needed to store bothW and Σ. The time
complexity is Θ(mn) as all operations involve component-
wise operations between W and Σ; and p and q.

Before proceeding to describe the next algorithm we state a
mistake bound for d-AROMA. LetM be the set of rounds
for which the algorithm made a prediction mistake and let
U be the set of example indices for which the algorithm
made an update, yet no mistake occurred. Then,

Theorem 1 Let V be any similarity matrix. Assume the
algorithm is executed on any sequence then the total no. of
mistakes it performs is bounded by,

|M| ≤
∑

i∈M∪U
max

{
0, 1− q>i V pi

}
− |U|

+

√√√√‖V ‖2Fro +
1

r

m,n∑
k=1,l=1

V 2
k,l

∑
iM∪U

q2
i,kp

2
i,l

×

√√√√r

m,n∑
k=1,l=1

log

(∑
iM∪U q

2
i,kp

2
i,l

r
+ 1

)
+ 2|U| .

The proof is omitted due to lack of space and is similar in
spirit to the analysis in section 4.3 of Orabona & Cram-
mer (2010). As in their, analysis we expect the bound to
be small if either the combination of the kth feature of
the query qi,k and of the lth feature of the output differ-
ence pi,l is rare (that is

∑
i∈M∪U q

2
i,kp

2
i,l is small), or that

this combination is not useful for prediction, that is, V 2
k,l

is small. When most feature combinations fall under one

of these two cases, we expect the second term in the first
square-root term to be small and most of the values of the
log function to be close to zero. Unlike the vector-variant
of this analysis, here it is not required that the input features
are sparse. Instead, we only require that for some inputs the
query is sparse and for other inputs the difference between
the objects is sparse, but not necessarily both.

4.2. Factored Covariance

Our second approach to model the distribution of similar-
ity matrices is based on factorizing the covariance matrix
in a way that captures separately correlations in the ”in-
put” (right side of the similarity matrix) and in the “output”
(left side). To describe our second algorithm, we use the
definition of a matrix-variate normal distribution (Gupta
& Nagar, 1999).

Definition 1 A random matrix X ∈ Rm×n is said to
have a matrix variate normal distribution with mean ma-
trix W ∈ Rm×n and covariance matrix Ω ⊗ Λ where
Λ ∈ Rm×m and Ω ∈ Rn×n are both symmetric and PSD,
if vec (X) ∼ N (vec (W ) ,Ω⊗ Λ) . Matrix variate normal
distributions are denoted by N (W,Ω⊗ Λ).

Gupta & Nagar (1999) show (Thm. 2.2.1) that the proba-
bility density of a matrix variate normal distribution is,

p(X|W,Ω,Λ) = (2π)
− 1

2mn
det (Λ)

− 1
2n det (Ω)

− 1
2m

× exp
{
− 1

2
Tr
(

Λ−1 (X −W ) Ω−1 (X −W )
>
)}

. (7)

We derive our algorithm by revisiting the objective of
AROW (3) and compute the three terms of that objective
for our model. For the first term, we use (7) and obtain
that the KL divergence between two matrix-variate normal
distributions is (up to additive constants),

DKL (N (W,Ω⊗ Λ) ‖N (Wi−1,Ωi−1 ⊗ Λi−1)) (8)

=
1

2
n log

(
det Λi−1

det Λ

)
+

1

2
m log

(
det Ωi−1

det Ω

)
+

1

2
Tr
(
Λ−1
i−1Λ

)
Tr
(
Ω−1

i−1Ω
)

+
1

2
Tr
(

Λ−1
i−1 (W −Wi−1) Ω−1

i−1 (W −Wi−1)
>
)
.

For the second term of (3), we use q>Wp = vec (W ) ·
vec
(
pq>

)
as discussed above, to compute(

max
{

0, 1− q>Wp
})2

. (9)

Finally, the third term is,

vec
(
pq>

)>
(Λ⊗ Ω)vec

(
pq>

)
= vec

(
pq>

)>
vec
(
Ωpq>Λ

)
=
(
p>Ωp

) (
q>Λq

)
, (10)
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where we used the identities vec (AXC) =(
C> ⊗A

)
vec (X) and vec

(
A>
)> vec (C) = Tr (AC).

Combining (8), (9) and (10) we get the optimization
problem describing the update of the algorithm,

1

2
n log

(
det Λi−1

det Λ

)
+

1

2
m log

(
det Ωi−1

det Ω

)
(11)

+
1

2
Tr
(

Λ−1
i−1 (W −Wi−1) Ω−1

i−1 (W −Wi−1)
>
)

+
1

2r

(
max

{
0, 1− q>Wp

})2

+
1

2
Tr
(
Λ−1
i−1Λ

)
Tr
(
Ω−1

i−1Ω
)

+
1

2r

(
p>Ωp

) (
q>Λq

)
.

The detailed derivation of the update steps is given in a long
version 1. It yields our second algorithm, named f(actored)-
AROMA, which is summarized in Fig. 2. Using Woodbury
identity it follows that both Ωi (13) and Λi (14) are PSD.

It is worth comparing the update for Ω (13) in Fig. 2 (S5)
with the update of AROW for Σ (4). Both updates share the
same formal structure, but use different constants. AROW
uses the parameter r in the denominator of (4), while f-
AROMA uses mr/q>i Λi−1qi. Assuming ‖qi‖2 ≤ m we
get that mr

q>i Λi−1qi
≥ r. Furthermore, the lower the value

of q>i Λi−1qi is, the larger is the value of the effective pa-
rameter mr/q>i Λi−1qi, which in turn reduces the effect
of the update. In the extreme case if q>i Λi−1qi = 0 then
Ωi = Ωi−1. Intuitively, the algorithm should decrease the
total variance as more examples are observed. Yet, if the
variance is already low due to low variance related to the
query q>i Λi−1qi then there is no need to reduce the vari-
ance related to the output Ω, and vice versa. Following the
symmetry between Ω and Λ, these observations also hold
for the update of Λ (14) (S6).

f-AROMA uses a total memory of mn+m2 + n2 to store
the mean matrix W and the covariance matrices Ω,Λ. The
time complexity is also mn + m2 + n2 since it involves
addition to all elements of these matrices. Note that if
m ≈ n both d-AROMA and f-AROMA have about the
same asymptotic complexity, where the later requires stor-
age and manipulation of one more matrix. When the di-
mensions m and n differ significantly, m � n or n � m,
the complexity of f-AROMA larger than that of d-AROMA
because f-AROMA scales quadratically both withm and n,
while d-AROMA scales linearly with either parameters.

We conclude this section with a mistake bound similar
to Theorem 1. Our analysis applies to the algorithm of
Fig. 2 with two minor changes. First, it assumes a mistake
driven version of the algorithm, namely, that the algorithm
makes an update only when a mistake occurs. The condi-
tion for an update is therefore 0 > q>i Wi−1pi instead of
1 > q>i Wi−1pi. Second, from (12) (S4) we get that the

Algorithm 2: Factored-AROMA

Input parameters: A scalar r

Initialize: W0 = 0 ∈ Rm×n,Ω0 = I ∈ Rn,Λ0 = I ∈ Rm

For i = 1, . . . , N

• Sample a query qi ∈ Rm and two images p+
i ,p

−
i ∈ Rn,

such that similarity(qi,p
+
i ) > similarity(qi,p

−
i )

• Define pi = p+
i − p−i

• If 1 > q>i Wi−1pi then update:

Wi=Wi−1+
max {0, 1−qiWi−1pi}
r+q>i Λi−1qip>i Ωi−1pi

Λi−1qip
>
i Ωi−1 (12)

Ωi=Ωi−1−
q>i Λi−1qi

mr+
(
q>i Λi−1qi

)(
p>i Ωi−1pi

)Ωi−1pip
>
i Ωi−1 (13)

Λi=Λi−1−
p>i Ωi−1pi

nr +
(
p>i Ωi−1pi

) (
q>i Λi−1qi

)Λi−1qiq
>
i Λi−1 (14)

Output: A weight matrix WN and its confidence ΣN

Figure 2. The f-AROMA algorithm for similarity measures.

update of the factored-AROMA can be written as,

Λ−1
i−1WiΩ

−1
i−1 = Λ−1

i−1Wi−1Ω−1
i−1

+
max {0, 1− qiWi−1pi}

r +
(
q>i Λi−1qi

) (
p>i Ωi−1pi

)qip
>
i ,

the analysis is for a version that uses the new matrices Λi

and Ωi, that is,

Λ−1
i WiΩ

−1
i = Λ−1

i−1Wi−1Ω−1
i−1

+
max {0, 1− qiWi−1pi}

r +
(
q>i Λi−1qi

) (
p>i Ωi−1pi

)qip
>
i .

We are now ready to state the main theorem of this section.

Theorem 2 Let V be any similarity matrix. Assume the
algorithm is executed on any sequence of queries and ob-
jects, then the total number of mistakes that the algorithm
performs is bounded by

|M| ≤
∑
i∈M

max
{

0, 1− q>i V pi

}
+ 2
√

Tr
(
V Ω−1

N V >Λ−1
N

)
×
√
rmin{m log det

(
Ω−1

N

)
, n log det

(
Λ−1
N

)
} .

To understand the theorem, the matrices Ω−1
N and Λ−1

N can
be thought of as the second order moments of the objects
pi and the queries qi respectively. From (13) (S5) and
(14) (S6) we observe that these matrices are the sum of
the identity matrix and a weighted sum of outer products
of the objects and queries. The first term of the bound
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Tr
(
V Ω−1

N V >Λ−1
N

)
is small if either the rows of V are

aligned with eigenvectors of Ω−1
N associated with small

values or the columns of V are aligned with eigenvectors
of Λ−1

N , but not necessarily both. This property, (see Sec.
3.1 of Cesa-Bianchi et al., 2005) holds for the input space
of AROW, and also for a second order perceptron. For f-
AROMA, this property holds for any one of the subspaces,
queries or objects.

Next, the second term of the bound is small if either matri-
ces Ω−1

N and Λ−1
N are skewed. This is because the log det

function is concave. A similar property holds also for The-
orem 1 where we required that features from either spaces
would be sparse or non-informative. That is, a property is
required to hold only for one of the spaces (queries or ob-
jects) but not both.

The proof of the theorem relies on the following
lemma, which extends Lemma 4 used in the analysis of
AROW (Crammer et al., 2009)

Lemma 3 The following two bounds hold for the updates
in (13) (S5) and (14) (S6),

∑
i (qiΛiqi)

(
p>i Ωipi

)
≤

mr log det
(
Ω−1

N

)
and

∑
i (qiΛiqi)

(
p>i Ωipi

)
≤

nr log det
(
Λ−1
N

)
Proof: We prove the first inequality. The second in-
equality can be proved similarly. Using (14) (S6) we get,
q>i Λiqi ≤ q>i Λi−1qi = mr

q>i Λi−1qi

mr . Multiplying with(
p>i Ωipi

)
and summing over i we get,∑

i

(qiΛiqi)
(
p>i Ωipi

)
≤mr

∑
i

qiΛi−1qi

mr

(
p>i Ωipi

)
=mr

∑
i

(
1−

det Ω−1
i−1

det Ω−1
i

)
≤−mr

∑
i

log

(
det Ω−1

i−1

det Ω−1
i

)
=mr log det Ω−1

N ,

where the first equality follows from Lemma D.1 of
Cesa-Bianchi et al. (2005).

Proof sketch: (of Theorem 2) We build on previous ap-
proach (Orabona & Crammer, 2010) and have the follow-
ing inequality, which generalizes Corollary 2 of Orabona
& Crammer (2010) for matrices.

|M| ≤
∑
i∈M

max
{

0, 1− q>i V pi

}
+ 2
√

Tr
(
V Ω−1

N V >Λ−1
N

)
×
√∑

i∈M
q>i Wi−1pi +

∑
i∈M

(qiΛiqi)
(
p>i Ωipi

)
.

The first sum in the second square-root term is non-
positive, as for i ∈ M we have q>i Wi−1pi ≤ 0. We
use Lemma 3 to bound the second square-root term with,

√
rmin{m log det

(
Ω−1

N

)
, n log det

(
Λ−1
N

)
} , which

concludes the proof.

5. Empirical Evaluation
We evaluated diagonal and factored AROMA on two data
sets. First, we learned a semantic similarity between pairs
of images in the Caltech-256 dataset (Griffin et al., 2007).
Second, we learned a similarity measure between pairs of
text documents using the 20-newsgroups data collected by
Lang (1995). In both tasks we used standard 5-fold cross
validation and report the precision on the test set.

5.1. Image similarity in the Caltech256 dataset

We first tested AROMA in an image similarity task using
the Caltech256 dataset. This dataset consists of 30, 607
images that were obtained from Google image search and
from PicSearch.com. Images were assigned to 257 cat-
egories and evaluated by humans in order to ensure image
quality and relevance. To allow a direct comparisons with
the previous literature, we only used here 50 classes.

We represent each image using a sparse code based on a
bag of patch descriptors. Specifically, features are extracted
by dividing each image into overlapping square patches,
and describing each patch with edge and color histograms.
For edge histograms, we used uniform Local Binary Pat-
terns (uLBPs) (Ojala et al., 2002), which estimate a texture
histogram of a patch by considering differences in inten-
sity at circular neighborhoods centered on each pixel. We
used uniform LBP8,2 patterns, which means that a circle
of radius 2 is considered centered on each block, and bins
corresponding to non uniform sequences are merged. LBP
patterns were then concatenated with color histograms.

To form a sparse code, patch descriptors were mapped
into codewords using a dictionary that was trained over a
large set of images using k-means. Then, patch representa-
tions were collected to represent an image as a sparse code.
Each local descriptor was represented as a discrete index,
called visterm, and the image was represented as a bag-of-
visterms vector, in which components pi are related to the
presence or absence of visterm i in p. The assignment of
the weight pi of visterm i in image p was according to tf-
idf weights. This approach has been found successful (for
a related task) by Grangier & Bengio (2008) and Chechik
et al. (2009). We used a 1000-sized codebook, with a me-
dian of 27 non-zero values per image and a maximum of
129.

We compared the performance of AROMA with five other
approaches. (1) HIER: Hierarchical semantic indexing,
an approach that cleverly uses the known hierarchy among

PicSearch.com
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Figure 3. Experiments on image similarity using Caltech256. Left: Precision as a function of top k images. AROMA was run for 200K
iterations, r = 0.01. Middle: Precision at the 10 top images traced during training. Right: Sensitivity of AROMA to the regularizer r.
Average precision at 10, 200K iterations.

class labels (Deng et al., 2011). (2) OASIS: An online sim-
ilarity model based on a ranking cost across triplets, simi-
lar to the setup studied here (Chechik et al., 2009). It can
be used to estimate the added benefit of using the covari-
ance of the distribution in addition to the mean as AROMA
does. (3) ITML/LEGO An online approach that succeeds
to maintain a proper metric during learning in an efficient
way (Davis et al., 2007) (4) LMNN: Large Margin Near-
est neighbor, one of the early large margin metric learn-
ing methods (Weinberger et al., 2005). (5) Euclidean dis-
tance: equivalent to using the identity matrix W = I .

The left panel of Fig. 3 compares the precision obtained
with d-AROMA and f-AROMA with all other competing
methods. Diagonal and factorized AROMA perform very
similarly, with a slightly higher performance for factored
AROMA. Both methods are significantly better than all
other methods at the head of the top ranked images. At
the top ranked image, AROMA improves precision by 50%
over the second best approach (OASIS, from 22% to 33%).

The middle panel of Fig. 3 traces the precision over the test
set during training showing that convergence is achieved
after 200K ∼ 500K iterations. In the beginning d-
AROMA was slightly better than f-AROMA, but later f-
AROMA converged faster. The right panel of Fig. 3
demonstrates that AROMA is largely robust to the choice
of the regularizer r, with less than 5% change in precision
across three orders of magnitude of r.

5.2. Document similarity, the 20 Newsgroups dataset

In a second set of experiments we studied the problem of
learning a similarity measure between pairs of text docu-
ments. This task has numerous applications, such as find-
ing content on the web that is related to a given text docu-
ment. In this dataset, documents are divided to 20 classes,
with about 1, 000 documents in each class. Two documents
were considered similar iff they share the same class labels.

We used the 20 newsgroups data set (Lang, 1995) and re-
moved stop words but did not apply stemming. We se-

lected 1, 000 terms that conveyed high information about
the identity of the class (over the training set) using the
infogain criterion (Yang & Pedersen, 1997). The selected
features were normalized using tf-idf, and then represented
each document as a bag of words.

The 20 newsgroups website proposes a split of the data into
a train and test sets. We repeated splitting 5 times based on
sizes of the proposed splits (a train-to-test ratio of 65% /
35%). We evaluated the learned similarity measures using
a ranking criterion. We view every document in the test
set q as a query, and rank the remaining test documents p
by their similarity scores q>Wp. We then computed the
precision (fraction of positives) at the top r ranked docu-
ments. We further computed the mean average precision
(mAP), a widely used measure in the information retrieval
community, which averages over different values of r.

With this dataset. we only compared with OASIS and
ITML, the methods that achieved higher precision on the
Caltech256 data. HIER requires to use a known hierarchy
of classes which is not available for the 20NG dataset.

The left panel of Fig. 4 shows the precision at the top
ranked similar document. Clearly both AROMA methods
outperform ITML and OASIS by large. The middle panel
of Fig. 4 traces precision as it progresses through the learn-
ing iterations. f-AROMA achieves higher precision than
diagonal AROMA during most of the learning iterations,
and in fact converges faster. d-AROMA reaches the same
level after 500K iterations. Interestingly, AROMA learns
much faster than OASIS: it takes OASIS ten times more
steps to get to the same precision (this effect is also true
for the mean average precision). This precision gain is pre-
served across a large regime of r values, as shown in the
right panel of Fig. 4.

6. Summary
We presented two algorithms that learn distribution over
matrices. Both outperform state-of-the-art methods in two
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Figure 4. 20 Newsgroups. Left: Precision at top k of AROMA compared to OASIS and ITML (default parameters). AROMA results
were obtained with r = 1 and 500K iterations. OASIS results were obtained with c = 0.1 and 500K iterations, and were robust to the
choice of c. Middle: Precision of the 10 top images as a function of training iterations with r = 0.01 and a total of 500K iterations.
Right: Sensitivity or AROMA to the regularizer r. Average precision over the top 10 images, 100K iterations.

tasks, and model the covariance of the matrix distribution
using a linear number of parameters. Diagonal-AROMA
is likely to be superior when the variance of individual fea-
tures is large relative to feature dependencies, and factored-
AROMA is expected to be superior when the data has
strong correlations across features, as with the Caltech256
data. Factored-AROMA also converged faster.
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