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Abstract

Structured prediction is the cornerstone of
several machine learning applications. Un-
fortunately, in structured prediction settings
with expressive inter-variable interactions,
exact inference-based learning algorithms,
e.g. Structural SVM, are often intractable.
We present a new way, Decomposed Learning
(DecL), which performs efficient learning by
restricting the inference step to a limited part
of the structured spaces. We provide charac-
terizations based on the structure, target pa-
rameters, and gold labels, under which DecL
is equivalent to exact learning. We then show
that in real world settings, where our theo-
retical assumptions may not completely hold,
DecL-based algorithms are significantly more
efficient and as accurate as exact learning.

1. Introduction

Structured output spaces occur in many machine
learning applications which aim to label certain sets of
interdependent variables where the dependencies be-
tween variables dictate what assignments are possible.
Several techniques have been proposed for learning
in structured prediction (Collins, 2002; Tsochantaridis
et al., 2004; Taskar et al., 2004). Typical discrimina-
tive structural learning algorithms (e.g. Collins (2002);
Tsochantaridis et al. (2004)) perform a global MAP in-
ference over the entire (hence ‘global’) output space
as an intermediate step. We refer to such learning
techniques as global learning (GL). Global inference,
and hence GL, can be slow for models with high-order,
expressive relations between the output variables.

GL algorithms perform exact MAP inference as a
black box which may be an overkill for several prob-
lems, making learning slow. To alleviate this, we pro-
pose a novel algorithm which restricts the MAP in-
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ference to a smaller part of the output space by us-
ing additional information about a) the actual gold
labels, b) the constraints on the output space, and c)
the underlying parameters, which we want to learn.
Consequently, our algorithm is much more efficient
than GL. We call our approach Decomposed Learning
(DecL) as we decompose the inference into smaller in-
ference procedures over more tractable output spaces.
We prove that in some settings, DecL is guaranteed
to be equivalent to GL. We present experiments in
real-world settings (where our theoretical assumptions
may not hold) and show that DecL, with small-sized
and problem-specific decompositions, perform as well
as GL, while being significantly faster.

Several existing works perform approximate inference
during supervised structured learning to the same end.
Such approaches can broadly be divided into those
that relax the expressive interactions between out-
put variables (Roth & Yih, 2005; Punyakanok et al.,
2005; Sutton & Mccallum, 2009) during learning and
those that relax the integrality constraints on assign-
ments (Kulesza & Pereira, 2008; Finley & Joachims,
2008; Martins et al., 2009; Meshi et al., 2010). Some
of the MCMC-based contrastive techniques (Hinton,
2002; Wick et al., 2011) are conceptually similar to
DecL in that they use approximate gradient steps for
learning. Our work is also related in spirit to Meshi
et al. (2010) who consider a Linear Programming re-
laxation of the entire inference and perform parameter
updates after small message-passing inference steps.
However, unlike these techniques, we don’t replace ex-
act inference by approximate inference; instead, we
perform exact inference on a smaller output space.
The closest works to DecL are Pseudolikelihood-based
techniques (Besag, 1974; Sontag et al., 2010) to learn-
ing; however, while Pseudolikelihood is consistent
asymptotically, DecL aims to achieve equivalence to
GL with a finite amount of data.

The outline of this paper is as follows. Sec. 2 intro-
duces the problem and notation and Sec. 3 assays two
extreme styles of structured prediction. We introduce
our approach in Sec. 4 and provide theoretical results
in Sec. 5. We finally present empirical results in Sec. 6.



2. Problem Setting

Consider a structured prediction setting where a d-
dimensional input x is drawn from a space X and
the output variable y is, w.l.o.g., a vector of binary
labels {y1, . . . , yn} drawn from Y ∈ {0, 1}n. The
space Y may be specified by a set of declarative con-
straints which can be viewed as a form of specifying
some domain knowledge over y.

Inference: The labels in y are correlated and so it
is advantageous to predict them simultaneously. As is
typical, we express the prediction over all variables in
y using a scoring function f(x,y; w) = w · φ(x,y) as

arg max
y∈Y

f(x,y; w) = arg max
y∈Y

w · φ(x,y), (1)

where φ(x,y) ∈ Rd are feature expressed over both x
and y, and w ∈ Rd are weight parameters. We refer
to the arg max inference above as MAP inference1.

Structural Learning and evaluation: The focus of
this work is on learning the weight parameter, w, from
a given collection of labeled training instances D =
(x1,y1), . . . , (xm,ym). As is standard, the quality of
a learned hypothesis is measured using a loss function
∆ : {0, 1}n × {0, 1}n → R≥0, satisfying ∆(y,y) =
0, ∀y ∈ {0, 1}n.

We focus on two popular classes of scoring functions
f(x,y; w):

• Singleton with constraints: f(x,y; w) is a
sum of linear classifiers, fi(x), for individual yi:
f(x,y; w) =

∑n
i=1 yifi(x) =

∑n
i=1 yiwi · x. The

variables contained in y interact solely via mutual
constraints. The region of allowed outputs, Y, is
specified by these constraints. This model has
been used in numerous applications, especially in
Natural Language Processing (NLP) where some-
times the constraints are inherent to the prob-
lem e.g. tree constraints in dependency pars-
ing (Koo et al., 2010) and sometimes they are
added declaratively (Roth & Yih, 2005; Clarke &
Lapata, 2006; Barzilay & Lapata, 2006; Roth &
Yih, 2007; Clarke & Lapata, 2008; Choi & Cardie,
2009; Ganchev et al., 2010). Exact MAP in-
ference with expressive constraints is often for-
mulated using expensive Integer Linear Program-
ming (ILP) techniques.

• Pairwise Markov Networks: For a Pairwise
Markov Network (PMN), f is defined over a
graph with n nodes and a set of edges given
by E. In particular, f is a sum of individual

1While MAP is used to refer to probabilistic inference,
we abuse the terminology here to convey similar import.

and pairwise potential functions, φ, correspond-
ing to nodes and edges of the graph: f(x,y; w) =∑n

i=1 φi(yi,x; w) +
∑

i,k∈E φi,k(yi, yk,x; w). f is
linear in w. While PMNs are typical to proba-
bilistic graphical model settings (e.g. HMM and
CRF (Lafferty et al., 2001)), in this paper, we con-
sider PMNs in a max-margin setting a la Taskar
et al. (2004). PMNs are used extensively in many
structured prediction applications in computer vi-
sion (Boykov et al., 1998), computational biol-
ogy (Meshi et al., 2010), NLP, and information
extraction (Lafferty et al., 2001; Sarawagi & Co-
hen, 2004). We also consider the case when higher
order declarative constraints are added on top of
a PMN scoring function (Roth & Yih, 2005).

3. Structured Prediction: Learning

This section discusses two styles of learning the pa-
rameter w from the training data D: global learning
and local learning, with their shortcomings.

Global Learning Given the inference procedure in
(1) and training data D, a popular discriminative
learning approach (Tsochantaridis et al., 2004; Taskar
et al., 2004) is to minimize an SVM-style convex upper
bound on the loss2 over the training data:

l(w) =

m∑
j=1

max
y∈Y

(
f(xj,y;w)− f(xj,yj;w) + ∆(yj,y)

)
(2)

The inference step in (2), involving max, is performed
globally over all the labels of y and hence we call
this style, Global Learning (GL). GL tends to be slow
which hinders applications with a large output space
or a large number of training examples.

Local Learning For faster learning, several approx-
imations to GL have been used which ignore certain
structural interactions so that the rest of the structure
is easier to learn. We call this general paradigm of
learning by relaxing to a more local or easy-to-learn
structure, Local Learning (LL). For instance, when
highly expressive constraints are used over the struc-
ture, then dropping such constraints makes the struc-
ture more “local” and faster to learn: for singleton
functions (Punyakanok et al., 2005; Barzilay & Lap-
ata, 2006), ignoring constraints reduces the problem
to learning n independent binary classifiers wi; in case
of sequential or tree-structured problems, the task re-
duces to learning with dynamic programming infer-
ence (Koo et al., 2010; Roth & Yih, 2005). In case
of multi-label classification, ignoring interactions be-
tween labels reduces the problem to learning a binary

2Throughout this paper, we omit the usual l2 regular-
ization term for the sake of brevity.
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Figure 1. Figure highlighting the differences between typi-
cal GL and DecL. The diagrams on left and right illustrate
the general scheme for GL and DecL, respectively. We
show how DecL restricts learning-time inference by adding
more information. During testing, we use exact inference.

classifier for each label. In most LL scenarios, the
ignored constraints, if any, are injected back during
inference. Refer to Punyakanok et al. (2005) for a
detailed analysis and comparison of GL and LL for
singleton scoring functions with constraints.

LL schemes are much faster than GL; in general, how-
ever, LL fails to take advantage of the structure of Y
which is where Decomposed Learning comes in.

4. Decomposed Learning (DecL)

For a training instance (xj,yj) ∈ D, let nbr(yj) ⊆ Y
be a subset of the output space defining a “neighbor-
hood” around yj, which is referred to as the ground
truth or the gold output. The key idea behind decom-
posed learning (DecL) is to learn w by discriminating
the supervised label yj from only all y′ ∈ nbr(yj) in-
stead of all y′ ∈ Y. nbr(yj) can use additional infor-
mation about the structure (Y) and parameters which
we intend to learn (w∗) such that it captures the struc-
ture of Y while being much smaller. Fig. 1 shows the
general schema for both GL and DecL, showing the
similarities and the differences.

Let N = {nbr(yj)|j = 1, . . . ,m} be the collection of
neighborhoods for all training instances. To pursue
the general idea behind our approach, we use a max-
margin formulation (Taskar et al., 2004) for learning
over given data D = {(xj,yj)}mj=1. Specifically we
minimize a loss function DecL(w;D,N) given by

m∑
j=1

max
y∈nbr(yj)

(
f(xj,y;w)−f(xj,yj;w)+∆(y,yj)

)
. (3)

The idea of looking at a smaller output space is natu-
ral; the key question is how do we create these neigh-
borhoods so that the resulting learning algorithm is
correct or at least gives a good approximation to GL.
To motivate our technique for doing so, we use a
simple example of multi-class classification with la-

bels 1, . . . , r. This problem can be expressed as a
structured prediction problem over r binary variables
y1, . . . , yr such that an instance with label q is repre-
sented as a binary vector y[q] obeying the constraint∑

i y[q]i = 1 and with y[q]i = 1. For a training in-
stance (x,y[q]), GL aims to learn a scoring function
which gives a score less than y[q] to all other pos-
sible outputs y[i], ∀i 6= q. Since the outputs are
constrained such that any two outputs y[q] and y[i]
differ on just the bits yq and yi, this is achieved by
merely comparing assignments to pairs of bits yq and
yi, ∀i 6= q. This is exactly what techniques like multi-
class SVM (Crammer & Singer, 2002) and constrained
classification (Har-Peled et al., 2003) do3. Overall,
while multi-class classification is indeed a simple case
as the space Y contains just n outputs, we generalize
the idea of creating neighborhoods over a large number
of variables via smaller and more local comparisons.

We generate nbr(yj), by fixing a subset of the output
variables to their gold labels in yj, while allowing the
rest of them to vary, and repeating the same for differ-
ent subsets of output variables. We formalize this idea
through what we define as decompositions (hence,
decomposed learning.) We give theoretically desirable
properties of these neighborhoods in Sec. 5.

Definition 1. Given a set of n binary output vari-
ables indexed by {1, . . . , n}, a decomposition S is
a set containing distinct and non-inclusive (possibly
overlapping) index sets which are subsets of {1, . . . , n}:
S = {s1, . . . , sl| ∀i, si ⊆ {1, . . . , n};∀i, k, si 6⊂ sk}.

Before explaining learning with decompositions, we
give some notation. Given two output instances
y,y′ ∈ Y, let s(y,y′) be the set indexing the differ-
ences between y and y′ i.e. s(y,y′) = {i : yi 6= y′i}.
Given a set s ⊆ {1, . . . , n}, denote −s = {1, . . . , n}\ s.
Let ys ∈ {0, 1}|s| denote an assignment to the vari-

ables indexed by set s. Let (ys,y
j
−s) be the output

formed by replacing variables in yj indexed by s by
corresponding variables in ys.

We associate one decomposition Sj with each training
instance (xj,yj) and do inference during learning as
follows. Given a gold output variable yj pick a set s ∈
Sj , fix variables in yj

−s and look at all assignments to

ys such that (ys,y
j
−s) is feasible (i.e. ∈ Y); select the

highest scoring assignment over all feasible selections
of ys and over all s ∈ Sj and return the structure.
Given a decomposition Sj for yj, let the corresponding
neighborhood be nbr(yj,Sj) given by nbr(yj,Sj) =

3Interestingly, the one-vs-all technique ignores the given
constraint (one-vs-all is a kind of LL technique) and may
not be able to obtain linear separation even if the labels
are pairwise linearly separable (Har-Peled et al., 2003).



Algorithm 1 Subgradient-descent Alg. for DecL

1: Given: training data: D = (xj,yj)mj=1; step sizes ηt
decompositions: S = (S1, . . . ,Sm).

2: w← 0
3: for t = 0 to T do
4: for j = 1 to m do
5: y′ ← arg max

s∈Sj ,ys∈{0,1}|s|:(ys,y
j
−s)∈Y

(f(xj, (ys,y
j
−s);w) + ∆(ys,y

j
−s))

6: w← w + ηt
(
φ(xj ,yj)− φ(xj ,y′)

)
7: end for
8: end for

{y ∈ Y|∃s ∈ Sj , s(yj,y) ⊆ s}. Using the above style
of inference results in minimizing the following convex
function for learning

DecL(w;D) =

m∑
j=1

max
s∈Sj ,ys∈{0,1}|s|:(ys,y

j
−s)∈Y(

f(xj, (ys,y
j
−s);w) − f(xj,yj;w) + ∆(ys,y

j
−s)
)
.(4)

To minimize Eq. 4, we use a subgradient descent
scheme shown in Alg. 14.

Let DecL-k be the special case where all subsets of
{1, . . . , n} of size k (k ≥ 1) are considered in the
decomposition. For multi-class classification, DecL-2
with ∆ as the Hamming loss is the same as multi-
class SVM (Crammer & Singer, 2002) and Alg. 1 with
DecL-2 and ∆ = 0 (perceptron loss) yields constrained
classification (Har-Peled et al., 2003) thus closing our
loop on multi-class classification. Note that, in Step
5 of Alg. 1, going over all sets in Sj to find arg max
can be slow if the number of sets inside each decom-
position is large (e.g. in DecL-k for large k.) To get
around this, we compute max over a few sets selected
uniformly at random from the decomposition. One can
also use more complicated convex optimization tech-
niques which require evaluating the max over just one
set at a time (Gaudioso et al., 2006).

In practice, decompositions can be guided by domain
knowledge — highly coupled output variables should
be put in the same set while somewhat unrelated vari-
ables should be kept separate. The complexity of
learning is small if the sizes of the sets considered in
the decomposition are small. Sec. 5 provides theoret-
ical results on decompositions for certain cases.

5. Theoretical Analysis

Our theoretical anaylsis carries a different flavor than
standard generalization bounds. We present theoreti-
cal results to show some conditions under which DecL

4Instead of subgradient-descent, DecL can also be used
in a cutting-plane method (Tsochantaridis et al., 2004).

is equivalent to GL. We start with the trivial observa-
tion that when each neighborhood is equal to Y, then
DecL is the same as GL. Due to the lack of space, we
have moved all the proofs to the supplement.

We assume that the data is separable. Our interest
is in all parameters w∗ which satisfy the following
margin-separation condition ∀(xj,yj) ∈ D:

f(xj,yj; w∗) ≥ f(xj,y; w∗) + ∆(yj,y), ∀y ∈ Y (5)

the set of which can be written (omitting regulariza-
tion and using (2)) as W ∗ = {w|l(w) = 0} ⊆ Rd.
Let W dec = {w|DecL(w;D,N) = 0} ⊆ Rd be the set
of weights obtained by DecL5 (we leave the neighbor-
hoods selected for DecL implicit here.) Throughout
this section, we assume that there exists at least one
separating weight vector in W ∗.

Assumption 1: W ∗ is non-empty.

We use the following property to express our results.

Exactness: DecL is said to be exact if W dec = W ∗

for the given data D.

Our goal is to find small neighborhoods for
DecL for which exactness holds. Note that the
Pseudolikelihood-based approaches (Besag, 1974; Dil-
lon & Lebanon, 2010; Sontag et al., 2010) to structured
prediction are asymptotically consistent; that is, they
are equivalent to GL only in the limit of infinite data.
In practice, one uses a finite amount of data to obtain
a weight vector by minimizing a convex regularizer on
w (e.g. min ‖w‖p for p ≥ 1) while requiring separation
(Cond. (5).) In this case, exactness, i.e. W dec = W ∗,
implies that DecL and GL minimize the same regular-
ization function over two equal sets — if the regularizer
is strictly convex, they will output the same weight.
Thus exactness is clearly a stronger and more useful
property than asymptotic consistency. Our goal is to
determine families of decompositions that will result
in the exactness of DecL.

To analyze exactness of DecL, we use the following
property to characterize the loss function ∆.

Subadditivity: ∆(y,y′) is subadditive if
∀y,y′,y1,y2 ∈ Y, with s(y,y1) ∪ s(y,y2) = s(y,y′),
we have ∆(y,y′) ≤ ∆(y,y1) + ∆(y,y2).

Several common loss functions like Perceptron loss i.e.
no margin requirement, Hamming loss, and zero-one
loss are subadditive. We now make the following sim-
ple observations.

Observation 1 (Closed and Convex). W ∗ is an

5W ∗ (and W dec) is clearly not a singleton set as l(w∗) =
0⇒ l(λw∗) = 0 ∀λ ≥ 1.



intersection of closed half spaces — one for each sepa-
ration constraint given by (5). Thus W ∗ is closed and
convex. Similarly, W dec is closed and convex.

Observation 2 (Outer bound). For all decomposi-
tions, the set of separating weights for DecL give an
outer-bound on the set of separating weights for GL,
i.e. W ∗ ⊆ W dec as DecL seeks to separate the gold
output from only a subset of the output space.

Due to observation 2, to show that DecL is exact for
some decompositions, we need only show that for any
w′ /∈ W ∗, we also have w′ /∈ W dec — since both W ∗

and W dec are closed and convex, we need to show this
only for w′ immediately outside the boundary of W ∗

(see the proof in the supplement.) To this end, we
define B(w, ε) = {w′| ‖w′ −w‖ ≤ ε} as a closed ball
of radius ε centered around w.

Theorem 1. DecL is exact if ∀w ∈ W ∗,∃ε > 0,
such that ∀w′ ∈ B(w, ε), ∀(xj,yj) ∈ D the fol-
lowing condition holds for nbr(yj): if ∃y ∈ Y with
f(xj,y; w′) + ∆(yj,y) > f(xj,yj; w′) then ∃y′ ∈
nbr(yj) with f(xj,y′; w′) + ∆(yj,y′) > f(xj,yj; w′).

This theorem essentially requires that a w′ which does
not globally separate examples in D, also does not sep-
arate the decomposed learning examples. We note that
this theorem is very general and applies to any struc-
tured prediction problem (and any ∆.) We use this
theorem to prove exactness for certain decompositions
based on some easy to determine characterizations of
a) the structure (Y), b) the correct parameters (W ∗),
and c) the data D. The following corollary is an
immediate consequence of Theorem 1. Roughly, this
corollary requires that the difference between the score
of the gold output and that of any other output is
bounded by the sum of score differences between the
gold output and that of outputs in the neighborhood.

Corollary 1. DecL is exact if ∆ is subadditive and
∀w ∈W ∗,∃ε > 0 such that ∀w′ ∈ B(w, ε), ∀(xj,yj) ∈
D, ∀y ∈ Y, s(y,yj) can be partitioned into sets

s1, . . . , sl such that ∀k ∈ {1, . . . , l}, (ysk ,y
j
−sk) ∈

nbr(yj,Sj) and

f(xj,y; w′)− f(xj,yj; w′) ≤∑l
k=1

(
f(xj, (ysk ,y

j
−sk)); w′)− f(xj,yj; w′)

)
.(6)

Using these general results, we now examine two dif-
ferent classes of scoring functions mentioned in Sec. 2.

5.1. Exactness of DecL for Singleton Scoring
Functions with Constraints

In this section, we present exactness results for
DecL with singleton scoring function f(x,y; w) =

∑n
i=1 yifi(x) =

∑n
i=1 yiwi · x where the space Y is

specified by constraints. For instance, Y can be spec-
ified by a collection of l logical constraints: Y = {y ∈
{0, 1}n | Ck(y) = 1, k = 1, . . . , l} where Ck is a logi-
cal function (e.g. OR) over binary variables in y. Y
can also be specified by linear constraints over y as
Y = {y ∈ {0, 1}n|Ay ≤ b}.

In several practical applications, the constraint struc-
ture has some symmetry to it and we can invoke Cor. 1
to provide exactness guarantees for decompositions
with set sizes independent of the number of variables.
The following corollaries apply to two such cases with
set sizes only dependent on the number of constraints.

Corollary 2. If Y is specified by k OR constraints,
then Decl-(k + 1) is exact for subadditive ∆.

Corollary 3. If Y is specified by k (k ≥ 1) linear
constraints: Ay ≤ b (or ‘≥’, ‘=’), where A is a binary
matrix such that any two variables in y participate in
at most one constraint, Decl-3k is exact for subadditive
∆.

As a consequence of Cor. 2, if the space Y is speci-
fied by k horn clauses (Srikumar & Roth, 2011), then
DecL-(k+ 1) is exact regardless of the number of vari-
ables in each clause.

We also note that the results in this section are based
on worst-case analyses. In practice, much smaller-
sized decompositions work well in most cases.

5.2. Exactness for Pairwise Markov Networks

While in the last section, we presented exactness re-
sults solely based on constraints, in this section, we
present decompositions for binary PMNs using some
knowledge about the true parameters W ∗.

Recall that, for PMNs, f(x,y; w) =∑n
i=1 φi(yi,x; w) +

∑
i,k∈E φi,k(yi, yk,x; w) where E

is the set of edges for the underlying graph. Inference
over such functions is NP hard in general.

A pairwise potential function, φi,k is called submodular
if (φi,k(1, 1) + φi,k(0, 0)) − (φi,k(1, 0) + φi,k(0, 1)) > 0
i.e. it prefers similar labels; it is called supermodular
if (φi,k(1, 1) + φi,k(0, 0))− (φi,k(1, 0) + φi,k(0, 1)) < 0.

Assumption 2: Assume that ∀(i, k) ∈ E,∀xj ∈
D,∀w∗ ∈ W ∗, φik(·, ·,xj; w∗) is either submodular or
supermodular; also, we know if any given φik is sub-
modular or supermodular.

Such knowledge about pairwise potential functions is
often available in practice, especially for submodular
potentials. For instance, in several computer vision
tasks, neighboring pixels are more likely to carry the
same label (Besag, 1986; Boykov et al., 1998); in infor-



mation extraction tasks, consecutive words are likely
to belong to the same field. We can also approximately
determine this information by computing mutual in-
formation over labeled data. With Assumption 2, we
present a decomposition, which leads to exactness.

For each instance (x,yj = {yj1, . . . , yjn}), define
Ej = {(u, v) ∈ E|(φuv is submodular and yju =
yjv) or (φuv is supermodular and yju 6= yjv)} i.e. Ej

removes those edges from E where the labels on
nodes “disagree” with the corresponding pairwise po-
tentials. With (xj,yj), we associate a decomposition
Spair(yj) = {c1, . . . , cl} where c1, . . . , cl are indices of
the maximal connected components in Ej .

Theorem 2. For PMNs where Assumption 2 is sat-
isfied, DecL with Spair is exact with subadditive ∆.

As a simple illustration, consider a sequential HMM
where it is known that the same-state transition prob-
abilities are higher than those for different states
i.e. all φik are submodular. Then for yj =
1110011, the corresponding decomposition is Spair =
{{1, 2, 3}, {4, 5}, {6, 7}} as it contains the maximal
connected components with the same label.

Notably, graph cuts can be used for efficient learning
over binary PMNs with submodular potentials (Szum-
mer et al., 2008). We note that with submodular
potentials, we can augment decomposed inference in
DecL with graph cuts in a similar fashion to make it
even more efficient.

Finally, DecL can be used when certain additional
global constraints are added to PMNs (Roth & Yih,
2005). The exactness guarantees hold for Spair(yj) if
∀y ∈ Y, ∀s ∈ Spair(yj), (ys,y

j
−s) ∈ Y. Exact global

inference can replace DecL inference for those training
examples where this condition does not hold. In prac-
tice, we find (see Sec. 6.3) that Spair works very well
for non-binary PMNs in the presence of constraints,
where some of our assumptions do not hold.

6. Experiments

This section presents experimental results on non-ideal
real world settings showing that DecL is effective and
robust. We show results on synthetic data as well as
two real-world tasks of multi-label classification and
information extraction. We perform exact inference
using ILP, wherever needed. We show that DecL per-
forms favorably relative to GL on these tasks while
greatly reducing the training time. We use appropri-
ate LL approaches as competing baselines. In settings
with constraints, we consider another baseline, LL+C,
that uses constraints — which were ignored during
learning — for inference during testing.
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Figure 2. Synthetic data: Avg. Hamming loss for different
learning algorithms. LL: local learning; LL+C: local learn-
ing with constraints during inference; GL: global learning;
DecL-1,2,3: our approach. Note that LL and LL+C are
really close. LL+C fails to obtain low error even with a
large amount of training data, while Decomposed Learn-
ing algorithms achieve a continuously diminishing error.

Table 1. Synthetic Data: Avg. training times in seconds
for different learning algorithms for training size=320.

LL DecL-1 DecL-2 DecL-3 GL
1.7 12.33 29.8 44.25 1181.47

6.1. Experiments on Synthetic Data

We first analyze DecL with simple decompositions —
DecL-1,2,3 — with singleton scoring functions in a
controlled synthetic setting by measuring the perfor-
mance and efficiency. We generate data with 10 binary
output variables, which are constrained by randomly
generated linear constraints. We ensure that the re-
sulting Y contains at least 50 outputs. The features
x are sampled randomly from a 20-dimensional space.
We randomly generate singleton scoring functions and
determine gold labelings for each instance as per Eq. 1
(thus we know that the data is separable.)

For learning, we use SVM-Struct (Tsochantaridis
et al., 2004) to implement our algorithms. Our
LL baseline ignores the constraints during learning
thereby reducing it to learning 10 independent binary
classifiers. We test on 200 instances and tune C, the
regularization penalty parameter, on 100 validation in-
stances; we average over 10 random trials. Fig. 2 plots
the loss for each algorithm against the size of the train-
ing data and Tab. 1 shows the training time on 320
examples. Note that the training time for DecL could
be much lower with preprocessing of data.

We observe that although LL and LL+C exhibit rel-
atively low error even with a small amount of data,
they fail to converge to a near-perfect classifier like
GL, with a large amount of data. On the other hand,



Table 2. Multi-label classification: Avg. F1 and training
times for the Reuters data. We report total time spent
on inference during learning. The differences in avg. F1
between DecL-2,3 and GL are not statistically significant.

LL DecL-1 DecL-2 DecL-3 GL
Avg. F1 (in % points)
79.80 54.22 81.46 82.56 81.81
Time (x 1000 seconds)
8.08 5.09 22.86 68.10 126.78

DecL-2, 3 exhibit performance close to global learning
while taking much less time to train.

6.2. Multi Label Document Classification

We test various algorithms on a multi-label document
classification task over the Reuters dataset (Lewis
et al., 2004). We use one section of the data with
6,000 instances and reduce it to the 30 most frequent
labels. We keep 3600 instances for training, 1200 for
testing, and 1200 for validation.

We model the scoring function as a PMN over a com-
plete graph over all the labels to capture interactions
between all pairs of labels. We compare DecL-1,2,3
with GL and a local learning (LL) approach which
drops the pairwise components reducing the prob-
lem to 30 independent binary classifiers. We again
use SVM-Struct for learning the parameters for GL
and DecL. We measure the performance using a per-
instance F1 measure given by F1 = 2c

t+p , where t is the
number of gold labels for this instance, p is the num-
ber of predicted labels, and c is the number of correct
predictions; we report averages over all test instances.
Tab. 2 presents results with 10-fold cross validation6.
DecL-2,3 perform as well as GL and much better than
LL. Notably, DecL-2 is 6 times faster than GL. As in
the synthetic data experiments, DecL-1, a.k.a. Pseu-
domax (Sontag et al., 2010), performs badly.

6.3. Information Extraction: Sequence
Tagging with Submodular Potentials

We test the efficacy of our approach on two informa-
tion extraction tasks inspired by our analysis of PMNs
in Sec. 5.2. Our task is to identify the functional
fields (e.g. ‘author’, ‘title’, ‘facilties’, ‘roommates’)
from citations (McCallum et al., 2000) and advertise-
ments (Grenager et al., 2005) datasets. We model this
setting as an HMM (a special case of PMN) with dif-
ferent functional fields as hidden states and words as
emissions. We add certain global constraints borrowed
from Chang et al. (2007) to the HMM, which necessi-
tate ILP-based inference.

6We observe similar results for averaged per-label F1.

Table 3. Performance comparison showing average accu-
racy (Acc) of HMM, LL+C, GL, and DecL. CRR07 refers
to the state-of-the-art supervised results reported on these
datasets by Chang et al. (2007). We also show average
training time (Time) taken for GL and DecL in hours. Size
indicates the number of documents.

Size HMM LL+C CRR07 GL DecL
Acc Acc Acc Acc Time Acc Time

Citations dataset
20 66.74 77.00 81.1 79.60 7.97 79.26 1.05
300 91.21 91.52 92.5 94.55 40.59 94.77 10.69
Ads dataset
20 67.78 71.57 71.9 69.05 22.76 69.18 11.57
100 76.52 78.97 80.4 80.0 75.46 80.3 37.55

For the given tasks, words corresponding to a field,
e.g. ‘title’, occur in long contiguous blocks; thus we
assume that the correct HMM transition matrix has a
high same-state transition probability which is a gen-
eralization of the submodular potentials we assumed
in Sec. 5.2 and hence a natural testing ground for our
theory. We use the decomposition Spair presented in
Sec. 5.2 to perform DecL; intuitively, these decompo-
sitions enable DecL to capture the “diagonal-heavy”
nature of the HMM transition matrix while allowing
it to learn the transitions between different fields.

We perform discriminative learning using averaged
structured perceptron (Collins, 2002). We use HMM
without constraints as an LL baseline. We obtain an
LL+C baseline by adding constraints during test.

Table 3 presents the results for the two domains. LL-
based approaches perform very well for small data
sizes because with a less expressive model, they need
less data to generalize. However, with large amounts
of training data, GL and DecL easily outperform
HMM and LL+C. DecL does slightly, although not
significantly, better than GL while being 2-8 times
faster. Our results compare favorably with the state-
of-the-art supervised results reported on these datasets
by Chang et al. (2007) (CRR07.) Overall, we gather
that by utilizing very simple knowledge of the task at
hand (submodular potentials), we can perform near-
global learning while being very efficient.

7. Conclusion

We presented Decomposed Learning (DecL) — a
technique for efficient structural learning. DecL learns
efficiently by performing inference over a small part
of the output space. We provided theoretical results,
which use characterizations of the structure, target
parameters, and ground truth labels to decompose the
output space such that the resulting DecL is efficient
and equivalent to exact learning. While the common
approximation practice in structural learning tasks



is to use approximate MAP inference without guar-
antees, our approach may provide a way to achieve
significant improvements in these cases and can be
augmented with existing approximation techniques
like LP-relaxation. Indeed, our experimental results
indicate that our algorithms are robust and perform
very well on real world data.
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