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Abstract
In this paper, we propose the distributed tree ker-
nels (DTK) as a novel method to reduce time and
space complexity of tree kernels. Using a lin-
ear complexity algorithm to compute vectors for
trees, we embed feature spaces of tree fragments
in low-dimensional spaces where the kernel com-
putation is directly done with dot product. We
show that DTKs are faster, correlate with tree
kernels, and obtain a statistically similar perfor-
mance in two natural language processing tasks.

1. Introduction
Trees are fundamental data structures used to represent
very different objects such as proteins, HTML documents,
or interpretations of natural language utterances. Thus,
many areas – for example, biology (Vert, 2002; Hashimoto
et al., 2008), computer security (Düssel et al., 2008),
and natural language processing (Collins & Duffy, 2001;
Gildea & Jurafsky, 2002; Pradhan et al., 2005; MacCartney
et al., 2006) – fostered extensive research in methods for
learning classifiers that leverage on these data structures.

Tree kernels (TK), firstly introduced in (Collins & Duffy,
2001) as specific convolution kernels (Haussler, 1999), are
widely used to fully exploit tree structured data when learn-
ing classifiers. Different tree kernels modeling different
feature spaces have been proposed (see (Shin et al., 2011)
for a survey), but a primary research focus is the reduc-
tion of their execution time. Kernel machines compute
many times TK functions during learning and classifica-
tion. The original tree kernel algorithm (Collins & Duffy,
2001), that relies on dynamic programming techniques, has
a quadratic time and space complexity with respect to the
size of input trees. Execution time and space occupation
are still affordable for parse trees of natural language sen-
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tences that hardly go beyond the hundreds of nodes (Rieck
et al., 2010). But these tree kernels hardly scale to large
training and application sets.

As worst-case complexity of TKs is hard to improve, the
biggest effort has been devoted in controlling the average
execution time of TK algorithms. Three directions have
been mainly explored. The first direction is the exploita-
tion of some specific characteristics of trees. For example,
it is possible to demonstrate that the execution time of the
original algorithm becomes linear in average for parse trees
of natural language sentences (Moschitti, 2006). Yet, the
tree kernel has still to be computed over the full underlying
feature space and the space occupation is still quadratic.
The second explored direction is the reduction of the un-
derlying feature space of tree fragments to control the ex-
ecution time by approximating the kernel function. The
feature selection is done in the learning phase. Then, for
the classification, either the selection is directly encoded
in the kernel computation by selecting subtrees headed by
specific node labels (Rieck et al., 2010) or the smaller se-
lected space is made explicit (Pighin & Moschitti, 2010).
In these cases, the beneficial effect is only during the clas-
sification and learning is overloaded with feature selection.
The third direction exploits dynamic programming on the
whole training and application sets of instances (Shin et al.,
2011). Kernel functions are reformulated to be computed
using partial kernel computations done for other pairs of
trees. As any dynamic programming technique, this ap-
proach is transferring time complexity in space complexity.

In this paper, we propose the distributed tree kernels (DTK)
(introduced in (Zanzotto & Dell’Arciprete, 2011)) as a
novel method to reduce time and space complexity of tree
kernels. The idea is to embed feature spaces of tree frag-
ments in low-dimensional spaces, where the computation
is approximated but its worst-case complexity is linear with
respect to the dimension of the space. As a direct embed-
ding is impractical, we propose a recursive algorithm with
linear complexity to compute reduced vectors for trees in
the low-dimensional space. We formally show that the dot
product among reduced vectors approximates the original
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tree kernel when a vector composition function with spe-
cific ideal properties is used. We then propose two approx-
imations of the ideal vector composition function and we
study their properties. Finally, we empirically investigate
the execution time of DTKs and how well these new ker-
nels approximate original tree kernels. We show that DTKs
are faster, correlate with tree kernels, and obtain a statisti-
cally similar performance in two natural language process-
ing tasks.

The rest of the paper is organized as follows. Section 2
introduces the notation, the basic idea, and the expected
properties for DTKs. Section 3 introduces the DTKs and
proves their properties. Section 4 compares the complex-
ity of DTKs with other tree kernels. Section 5 empirically
investigates these new kernel algorithms. Finally, section 6
draws some conclusions.

2. Challenges for Distributed Tree Kernels
2.1. Notation and Basic Idea

Tree kernels (TK) (Collins & Duffy, 2001) have been pro-
posed as efficient methods to implicitly compute dot prod-
ucts in feature spaces Rm of tree fragments. A direct com-
putation in these high-dimensional spaces is impractical.
Given two trees, T1 and T2 in T, tree kernels TK(T1, T2)
perform weighted counts of the common subtrees τ . By
construction, these counts are the dot products of the vec-
tors representing the trees, ~T1 and ~T2 in Rm, i.e.:

TK(T1, T2) = ~T1 · ~T2 (1)

Vectors ~T encode trees T as forests of active tree fragments
F(T ). Each dimension ~τi of Rm corresponds to a tree frag-
ment τi. The trivial weighting scheme assigns ωi = 1 to
dimension ~τi if tree fragment τi is a subtree of the original
tree T and ωi = 0 otherwise. Different weighting schemes
are possible and used. Function I, that maps trees in T to
vectors in Rm, is:

~T = I(T ) =
m∑
i=1

ωiI(τi) =

m∑
i=1

ωi~τi (2)

where I maps tree fragments into related vectors of the
standard orthogonal basis of Rm, i.e., ~τi = I(τi).

To reduce computational complexity of tree kernels, we
want to explore the possibility of embedding vectors ~T ∈
Rm into smaller vectors

;

T ∈ Rd, with d � m, to allow
for an approximated but faster and explicit computation of
these kernel functions. The direct embedding f : Rm →
Rd is, in principle, possible with techniques like singular
value decomposition or random indexing (Sahlgren, 2005),
but it is again impractical due to the huge dimension of Rm.

Then, our basic idea is to look for a function F̂ : T → Rd

that directly maps trees T into small vectors
;

T . We call
these latter distributed trees (DT) in line with Distributed
Representations (Hinton et al., 1986). The computation of
similarity over distributed trees is the distributed tree ker-
nel (DTK):

DTK(T1, T2) ,
;

T1 ·
;

T2 = F̂ (T1) · F̂ (T2) (3)

As the two distributed trees are in the low dimensional
space Rd, the dot product computation, having constant
complexity, is extremely efficient. Computation of func-
tion F̂ is more expensive than the actual DTK, but it is
done once for each tree and outside of the learning algo-
rithms. We also propose a recursive algorithm with linear
complexity to perform this computation.

2.2. Distributed Trees, Distributed Tree Fragments,
and Expected Properties

Distributed tree kernels are faster than tree kernels. We
here examine the properties required of F̂ so that DTKs
are also approximated computations of TKs, i.e.:

DTK(T1, T2) ≈ TK(T1, T2) (4)

To derive these properties and describe function F̂ , we
show the relations between the traditional function I : T→
Rm that maps trees into forests of tree fragments, in the tree
fragments feature space, I : T → Rm that maps tree frag-
ments into the standard orthogonal basis of Rm, the linear
embedding function f : Rm → Rd that maps ~T into a

smaller vector
;

T = f(~T ), and our newly defined function
F̂ .

Equation 2 presents vectors ~T with respect to the standard
orthonormal basis E = {~e1 . . . ~em} = {~τ1 . . . ~τm} of Rm.
Then, according to this reading, we can rewrite the dis-

tributed tree
;

T ∈ Rd as:
;

T = f(~T ) = f(
∑
i

ωi~τi) =
∑
i

ωif(~τi) =
∑
i

ωi
;
τ i

where each
;
τ i represents tree fragment τi in the new space.

The linear function f works as a sort of approximated ba-
sis transformation, mapping vectors ~τ of the standard ba-
sis E into approximated vectors

;
τ that should represent

them. As
;
τi represents a single tree fragment τi, we call

it a distributed tree fragment (DTF). The set of vectors
Ẽ = {;τ 1 . . .

;
τ m} should be the approximated orthonor-

mal basis of Rm embedded in Rd . Then, these two prop-
erties should hold:

Property 1 (Nearly Unit Vectors) A distributed tree frag-
ment

;
τ representing a tree fragment τ is a nearly unit vec-

tor: 1− ε < ||;τ || < 1 + ε
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Property 2 (Nearly Orthogonal Vectors) Given two differ-
ent tree fragments τ1 and τ2, their distributed vectors are
nearly orthogonal: if τ1 6= τ2, then |;τ1 ·

;
τ2| < ε

As vectors
;
τ ∈ Ẽ represent the basic tree fragments τ , the

idea is that
;
τ can be obtained directly from tree fragment

τ by means of a function f̂(τ) = f(I(τ)) that composes
f and I . Using this function to obtain distributed tree frag-

ments
;
τ , distributed trees

;

T can be obtained as follows:
;

T = F̂ (T ) =
∑

τi∈F(T )

ωif̂(τi) (5)

This latter equation is presented with respect to the active
tree fragments forest F(T ) of T , neglecting vectors where
ωi = 0. It is easy to show that, if properties 1 and 2 hold for
function f̂ , distributed tree kernels approximate tree ker-
nels (see Equation 4).

3. Computing Distributed Tree Fragments
and Distributed Trees

Johnson-Lindenstrauss Lemma (JLL) (Johnson & Linden-
strauss, 1984) guarantees that the embedding function f :
Rm → Rd exists. It also points out the relation between the
desired approximation ε of Property 2 (Nearly Orthogonal
Vectors) and the required dimension d of the target space,
for a certain value of dimension m. This relation affects
how well DTKs approximate TKs (Equation 4).

Knowing that f exists, we are presented with the following
issues:

• building a function f̂ that directly computes the dis-
tributed tree fragment

;
τ i from tree fragment τi (Sec.

3.2);

• showing that distributed trees
;

T = F̂ (T ) can be com-
puted efficiently (Sec. 3.1).

Once the above issues are solved, we need to empirically
show that Equation (4) is satisfied and that computing
DTKs is more efficient than computing TKs. These latter
points are discussed in the experimental section.

3.1. Computing Distributed Tree Fragments from
Trees

This section introduces function f̂ for distributed tree frag-
ments and shows that, using an ideal vector composition
function �, the proposed function f̂(τi) satisfies properties
1 and 2.

3.1.1. REPRESENTING TREES AS VECTORS

The basic blocks needed to represent trees are their nodes.
We then start from a set N ⊂ Rd of nearly orthonormal

A
HH��

B

W1

C
ZZ��

D

W2

E

W3

Figure 1. A sample tree

vectors representing nodes. Each node n is mapped to a
vector

;
n ∈ N . To ensure that these basic vectors are sta-

tistically nearly orthonormal, their elements (
;
n)i are ran-

domly drawn from a normal distribution N(0, 1) and they
are normalized so that ||;n || = 1 (cf. the demonstration
of Johnson-Lindenstrauss Lemma in (Dasgupta & Gupta,
1999)). Actual node vectors depend on the node labels, so
that

;
n1 =

;
n2 if L(n1) = L(n2), where L(·) is the node

label.

Tree structure can be univocally represented in a ‘flat’ for-
mat using a parenthetical notation. For example, the tree in
Fig. 1 is represented by the sequence (A (B W1)(C (D
W2)(E W3))). This notation corresponds to a depth-first
visit of the tree, augmented with parentheses so that the tree
structure is determined as well.

Replacing the nodes with their corresponding vectors and
introducing a vector composition function � : Rd × Rd →
Rd, the above formulation can be seen as a mathematical
expression that defines a representative vector for a whole
tree. The example tree would then be represented by vector
;
τ = (

;

A � (
;

B �
;

W1) � (
;

C � (
;

D �
;

W2) � (
;

E �
;

W3))).

Then, we formally define function f̂(τ), as follows:

Definition 1 Let τ be a tree andN the set of nearly orthog-
onal vectors for node labels. We recursively define f̂(τ) as:

• f̂(n) = ;
n if n is a terminal node, where

;
n ∈ N

• f̂(τ) = (
;
n � f̂(τc1 . . . τck)) if n is the root of τ and

τci are its children subtrees

• f̂(τ1 . . . τk) = (f̂(τ1) � f̂(τ2 . . . τk)) if τ1 . . . τk is a
sequence of trees

3.1.2. THE IDEAL VECTOR COMPOSITION FUNCTION

We here introduce the ideal properties of the vector com-
position function �, such that function f̂(τi) has the two
desired properties.

The definition of the ideal composition function follows:

Definition 2 The ideal composition function is � : Rd ×
Rd → Rd such that, given

;
a ,

;

b ,
;
c ,

;

d ∈ N , a scalar s
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and a vector
;

t obtained composing an arbitrary number of
vectors inN by applying �, the following properties hold:

2.1 Non-commutativity with a very high degree k1

2.2 Non-associativity:
;
a � (

;

b �;
c ) 6= (

;
a �

;

b ) �;
c

2.3 Bilinearity:

I) (
;
a +

;

b ) �;
c =

;
a �;

c +
;

b �;
c

II)
;
c � (;a +

;

b ) =
;
c �;

a +
;
c �

;

b

III) (s
;
a ) �

;

b =
;
a � (s

;

b ) = s(
;
a �

;

b )

Approximation Properties

2.4 ||;a �
;

b || = ||;a || · ||
;

b ||

2.5 |;a ·
;

t | < ε if
;

t 6= ;
a

2.6 |;a �
;

b ·;c �
;

d | < ε if |;a ·;c | < ε or |
;

b ·
;

d | < ε

The ideal function � cannot exist. Property 2.5 can be only
statistically valid and never formally as it opens to an infi-
nite set of nearly orthogonal vectors. But, this function can
be approximated (see Sec. 5.1).

3.1.3. PROPERTIES OF DISTRIBUTED TREE FRAGMENTS

Having defined the ideal basic composition function �, we
can now focus on the two properties needed to have DTFs
as a nearly orthonormal basis of Rm embedded in Rd, i.e.,
Property 1 and Property 2.

For property 1 (Nearly Unit Vectors), we need the follow-
ing lemma:

Lemma 1 Given tree τ , vector f̂(τ) has norm equal to 1.

This lemma can be easily proven using property 2.4 and
knowing that vectors in N are versors.

For property 2 (Nearly Orthogonal Vectors), we first need
to observe that, due to properties 2.1 and 2.2, a tree τ gener-
ates a unique sequence of application of function � in f̂(τ)
representing its structure. We can now address the follow-
ing lemma:

Lemma 2 Given two different trees τa and τb, the corre-
sponding DTFs are nearly orthogonal: |f̂(τa) · f̂(τb)| < ε.

Proof The proof is done by induction on the structure of
τa and τb.

Basic step
1We assume the degree of commutativity k as the lowest num-

ber such that � is non-commutative, i.e.,
;
a �

;

b 6=
;

b �;
a , and for

any j < k,
;
a � c1 � . . . � cj �

;

b 6=
;

b � c1 � . . . � cj �
;
a

Let τa be the single node a. Two cases are possible: τb is
the single node b 6= a. Then, by the properties of vectors in

N , |f̂(τa) · f̂(τb)| = |
;
a ·

;

b | < ε; Otherwise, by Property
2.5, |f̂(τa) · f̂(τb)| = |

;
a · f̂(τb)| < ε.

Induction step

Case 1 Let τa be a tree with root production a→ a1 . . . ak
and τb be a tree with root production b → b1 . . . bh.
The expected property becomes |f̂(τa) · f̂(τb)| = |(

;
a �

f̂(τa1 . . . τak)) · (
;

b � f̂(τb1 . . . τbh))| < ε. We have two

cases: If a 6= b, |;a ·
;

b | < ε. Then, |f̂(τa) · f̂(τb)| < ε by
Property 2.6. Else if a = b, then τa1 . . . τak 6= τb1 . . . τbh
as τa 6= τb. Then, as |f̂(τa1 . . . τak) · f̂(τb1 . . . τbh)| < ε is
true by inductive hypothesis, |f̂(τa) · f̂(τb)| < ε by Prop-
erty 2.6.

Case 2 Let τa be a tree with root production a→ a1 . . . ak
and τb = τb1 . . . τbh be a sequence of trees. The expected
property becomes |f̂(τa) · f̂(τb)| = |(

;
a � f̂(τa1 . . . τak)) ·

(f̂(τb1)� f̂(τb2 . . . τbh))| < ε. Since |;a · f̂(τb1)| < ε is true
by inductive hypothesis, |f̂(τa) · f̂(τb)| < ε by Property
2.6.

Case 3 Let τa = τa1 . . . τak and τb = τb1 . . . τbh be
two sequences of trees. The expected property becomes
|f̂(τa) · f̂(τb)| = |(f̂(τa1) � f̂(τa2 . . . τak)) · (f̂(τb1) �
f̂(τb2 . . . τbh))| < ε. We have two cases: If τa1 6=
τb1 , |f̂(τa) · f̂(τb)| < ε by inductive hypothesis. Then,
|f̂(τa) · f̂(τb)| < ε by Property 2.6. Else, if τa1 = τb1 ,
then τa2 . . . τak 6= τb2 . . . τbh as τa 6= τb. Then, as
|f̂(τa2 . . . τak) · f̂(τb2 . . . τbh)| < ε is true by inductive hy-
pothesis, |f̂(τa) · f̂(τb)| < ε by Property 2.6.

3.2. Recursive Algorithm for Distributed Trees

This section discusses how to efficiently compute DTs. We
focus on the space of tree fragments implicitly defined in
(Collins & Duffy, 2001). This feature space refers to sub-
trees as any subgraph which includes more than one node,
with the restriction that entire (not partial) rule productions
must be included. We want to show that the related dis-
tributed trees can be recursively computed using a dynamic
programming algorithm without enumerating the subtrees.
We first define the recursive function and then we show that
it exactly computes DTs.

3.2.1. RECURSIVE FUNCTION

The structural recursive formulation for the computation of

distributed trees
;

T is the following:

;

T =
∑

n∈N(T )

s(n) (6)
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where N(T ) is the node set of tree T and s(n) represents
the sum of distributed vectors for the subtrees of T rooted
in node n. Function s(n) is recursively defined as follows:

• s(n) = ~0 if n is a terminal node.

• s(n) = ;
n � (;c1 +

√
λs(c1)) � . . . � (

;
cm +

√
λs(cm))

if n is a node with children c1 . . . cm.

As for the classic TK, the decay factor λ decreases the
weight of large tree fragments in the final kernel value.
With dynamic programming, the time complexity of this
function is linear O(|N(T )|) and the space complexity is d
(where d is the size of the vectors in Rd).

3.2.2. THE RECURSIVE FUNCTION COMPUTES
DISTRIBUTED TREES

The overall theorem we need is the following.

Theorem 3 Given the ideal vector composition function
�, the equivalence between equation (5) and equation (6)
holds, i.e.:

;

T =
∑

n∈N(T )

s(n) =
∑

τi∈F(T )

ωif̂(τi)

According to (Collins & Duffy, 2001), the contribution of
tree fragment τ to the TK is λ|τ |−1, where |τ | is the number
of nodes in τ . Thus, we consider ωi =

√
λ|τi|−1. We

demonstrate Theorem 3 by showing that s(n) computes the
weighted sum of vectors for the subtrees rooted in n (see
Theorem 5).

Definition 3 Let n be a node of tree T . We define R(n) =
{τ |τ is a subtree of T rooted in n}

We need to introduce a simple lemma, whose proof is triv-
ial.

Lemma 4 Let τ be a tree with root node n. Let c1, . . . , cm
be the children of n. Then R(n) is the set of all trees τ ′ =
(n, τ1, ..., τm) such that τi ∈ R(ci) ∪ {ci}.

Now we can show that function s(n) computes exactly the
weighted sum of the distributed tree fragments for all the
subtrees rooted in n.

Theorem 5 Let n be a node of tree T . Then s(n) =∑
τ∈R(n)

√
λ|τ |−1f̂(τ).

Proof The theorem is proved by structural induction.

Basis. Let n be a terminal node. Then we have R (n) = ∅.
Thus, by its definition, s(n) = ~0 =

∑
τ∈R(n)

√
λ|τ |−1f̂(τ).

Step. Let n be a node with children c1, . . . , cm. The
inductive hypothesis is then s(ci) =

∑
τ∈R(ci)

√
λ|τ |−1f̂(τ).

Applying the inductive hypothesis, the definition of s(n)
and the property 2.3, we have

s(n) =
;
n �

(
;
c1 +

√
λs(c1)

)
� . . . �

(
;
cm +

√
λs(cm)

)
=

;
n �

;
c1 +

∑
τ1∈R(c1)

√
λ|τ1|f̂(τ1)

 � . . . �;
cm +

∑
τm∈R(cm)

√
λ|τm|f̂(τm)


=

;
n �

∑
τ1∈T1

√
λ|τ1|f̂(τ1) � . . . �

∑
τm∈Tm

√
λ|τm|f̂(τm)

=
∑

(n,τ1,...,τm)∈{n}×T1×...×Tm

√
λ|τ1|+...+|τm|

;
n � f̂(τ1) �

. . . � f̂(τm)

where Ti is the setR(ci)∪{ci}. Thus, by means of Lemma
4 and the definition of f̂ , we can conclude that s(n) =∑
τ∈R(n)

√
λ|τ |−1f̂(τ).

4. Comparative Analysis of Computational
Complexity

DTKs have an attractive constant computational complex-
ity. We here compare their complexity with respect to the
traditional tree kernels (TK) (Collins & Duffy, 2001), the
fast tree kernels (FTK) (Moschitti, 2006), the fast tree ker-
nels plus feature selection (FTK+FS) (Pighin & Moschitti,
2010), and the approximate tree kernels (ATK) (Rieck
et al., 2010). We discussed basic features of these kernels
in the introduction.

Table 4 reports time and space complexity of the kernels
in learning and in classification. DTK is clearly competi-
tive with respect to other methods, since both complexities
are constant, according to the size d of the reduced feature
space. In these two phases, kernels are applied many times
by the learning algorithms. Then, a constant complexity is
extremely important. Clearly, there is a trade-off between
the chosen d and the average size of trees n. A comparison
among execution times is done applying these algorithms
to actual trees (see Section 5.3).

5. Empirical Analysis and Experimental
Evaluation

In this section we propose two approximations of the ideal
composition function �, we investigate on their appropri-
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Learning Classification
Time Space Time Space

TK O(n2) O(n2) O(n2) O(n2)
FTK A(n) O(n2) A(n) O(n2)
FTK+FS A(n) O(n2) k k
ATK O(n

2

qω
) O(n2) O(n

2

qω
) O(n2)

DTK d d d d

Table 1. Computational time and space complexities for several
tree kernel techniques: n is the tree dimension, qω is a speed-up
factor, k is the size of the selected feature set, d is the dimension
of space Rd, O(·) is the worst-case complexity, and A(·) is the
average case complexity.

ateness with respect to the ideal properties, we evaluate
whether these concrete basic composition functions yield
to effective DTKs, and, finally, we evaluate the computa-
tion efficiency by comparing average computational exe-
cution times of TKs and DTKs. For the following experi-
ments, we focus on a reduced space Rd with d = 8192.

5.1. Approximating Ideal Basic Composition Function

5.1.1. CONCRETE COMPOSITION FUNCTIONS

We consider two possible approximations for the ideal
composition function �: the shuffled γ-product � and shuf-
fled circular convolution �. These functions are defined as
follows:

;
a �

;

b = γ · p1(
;
a )⊗ p2(

;

b )

;
a �

;

b = p1(
;
a )� p2(

;

b )

where: ⊗ is the element-wise product between vectors and
� is the circular convolution (as for distributed representa-
tions in (Plate, 1995)) between vectors; p1 and p2 are two
different permutations of the vector elements; and γ is a
normalization scalar parameter, computed as the average
norm of the element-wise product of two vectors.

5.1.2. EMPIRICAL EVALUATIONS OF PROPERTIES

Properties 2.1, 2.2, and 2.3 hold by construction. The two
permutation functions, p1 and p2, guarantee Prop. 2.1, for
a high degree k, and Prop. 2.2. Property 2.3 is inherited
from element-wise product ⊗ and circular convolution �.

Properties 2.4, 2.5 and 2.6 can only be approximated. Thus,
we performed tests to evaluate the appropriateness of the
two considered functions.

Property 2.4 approximately holds for � since approximate
norm preservation already holds for circular convolution,
whereas � uses factor γ to preserve norm. We empiri-
cally evaluated this property. Figure 2(a) shows the average
norm for the composition of an increasing number of basic
vectors (i.e. vectors with unitary norm) with the two basic
composition functions. Function � behaves much better

than �.

Properties 2.5 and 2.6 were tested by measuring similari-
ties between some combinations of vectors. The first ex-
periment compared a single vector

;
a to a combination

;

t
of several other vectors, as in property 2.5. Both functions
resulted in average similarities below 1%, independently
of the number of vectors in

;

t , satisfying property 2.5. To
test property 2.6 we compared two compositions of vectors
;
a �

;

t and
;

b �
;

t , where all the vectors are in common
except for the first one. The average similarity fluctuates
around 0, with � performing better than �; this is mostly
notable observing that the variance grows with the number
of vectors in

;

t as shown in Fig. 2(b). A similar test was
performed, with all the vectors in common except for the
last one, yielding to similar results.
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Figure 2. Statistical properties for vectors on 100 samples (d =
8192).

In light of these results, � seems to be a better choice
than �, although it should be noted that, for vectors of di-
mension d, � is computed in O(d) time, while � takes
O(d log d) time.

5.2. Evaluating Distributed Tree Kernels: Direct and
Task-based Comparison

In this section, we evaluate whether DTKs with the two
concrete composition functions, DTK� and DTK�, ap-
proximate the original TK (as in Equation 4).We perform
two sets of experiments: (1) a direct comparison where we
directly investigate the correlation between DTK and TK
values; and, (2) a task based comparison where we com-
pare the performance of DTK against that of TK on two
natural language processing tasks, i.e., question classifica-
tion (QC) and textual entailment recognition (RTE).

5.2.1. EXPERIMENTAL SET-UP

For the experiments, we used standard datasets for the two
NLP tasks of QC and RTE.
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QC RTE
λ DTK� DTK� DTK� DTK�

0.2 0.993 0.994 0.997 0.998
0.4 0.980 0.989 0.990 0.961
0.6 0.908 0.880 0.890 0.350
0.8 0.644 0.377 0.469 0.039
1.0 0.316 0.107 0.169 0.000

Table 2. Spearman’s correlation between DTK values and TK val-
ues. Test trees were taken from the QC corpus in table (a) and the
RTE corpus in table (b).

For QC, we used a standard question classification train-
ing and test set2, where the test set are the 500 TREC 2001
test questions. To measure the task performance, we used a
question multi-classifier by combining n binary SVMs ac-
cording to the ONE-vs-ALL scheme, where the final output
class is the one associated with the most probable predic-
tion.

For RTE we considered the corpora ranging from the first
challenge to the fifth (Dagan et al., 2006), except for the
fourth, which has no training set. These sets are re-
ferred to as RTE1-5. The dev/test distribution for RTE1-
3, and RTE5 is respectively 567/800, 800/800, 800/800,
and 600/600 T-H pairs. We used these sets for the tra-
ditional task of pair-based entailment recognition, where
a pair of text-hypothesis p = (t, h) is assigned a pos-
itive or negative entailment class. For our comparative
analysis, we use the syntax-based approach described in
(Moschitti & Zanzotto, 2007) with two kernel function
schemes: (1) PKS(p1, p2) = KS(t1, t2) + KS(h1, h2);
and, (2) PKS+Lex(p1, p2) = Lex(t1, h1)Lex(t2, h2) +
KS(t1, t2) +KS(h1, h2). Lex is a standard similarity fea-
ture between the text and the hypothesis andKS is realized
with TK, DTK�, and DTK�. In the plots, the different
PKS kernels are referred to as TK, DTK�, and DTK�

whereas the different PKS+Lex kernels are referred to as
TK + Lex, DTK� + Lex, and DTK� + Lex.

5.2.2. CORRELATION BETWEEN TK AND DTK

As a first measure of the ability of DTK to emulate the
classic TK, we considered the Spearman’s correlation of
their values computed on the parse trees for the sentences
contained in QC and RTE corpora. Table 2 reports results
and shows that DTK does not approximate adequately TK
for λ = 1. This highlights the difficulty of DTKs to cor-
rectly handle pairs of large active forests, i.e., trees with
many subtrees with weights around 1. The correlation
improves dramatically when parameter λ is reduced. We
can conclude that DTKs efficiently approximate TK for the

2The QC set is available at http://l2r.cs.uiuc.edu/
˜cogcomp/Data/QA/QC/

λ ≤ 0.6. These values are relevant for the applications as
we will also see in the next section.

5.2.3. TASK-BASED COMPARISON
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Figure 3. Performance on Question Classification task (DTK�

and DTK� rely on vectors of d = 8192).
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Figure 4. Performance on Recognizing Textual Entailment task
(DTK� and DTK� rely on vectors of d = 8192). Each point is
the average of accuracy on the 4 data sets.

We performed both QC and RTE experiments for different
values of parameter λ. Results are shown in Fig. 3 and 4
for QC and RTE tasks respectively.

For QC, DTK leads to worse performances with respect to
TK, but the gap is narrower for small values of λ ≤ 0.4
(withDTK� better thanDTK�). These λ values produce
better performance for the task. For RTE, for λ ≤ 0.4,
DTK� and DTK� is similar to TK. Differences are
not statistically significant except for for λ = 0.4 where
DTK� behaves better than TK (with p < 0.1). Statis-
tical significance is computed using the two-sample Stu-
dent t-test. DTK� + Lex and DTK� + Lex are statisti-

http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/
http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/
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cally similar to TK + Lex for any value of λ. DTKs are a
good approximation of TKs for λ ≤ 0.4, that are the values
where TKs have the best performances in the tasks.

5.3. Average computation time
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Figure 5. Computation time of FTK and DTK (with d = 8192)
for tree pairs with an increasing total number of nodes, on a 1.6
GHz CPU.
We measured the average computation time of FTK (Mos-
chitti, 2006) and DTK (with vector size 8192) on trees from
the Question Classification corpus. Figure 5 shows the rela-
tion between the computation time and the size of the trees,
computed as the total number of nodes in the two trees. As
expected, DTK has constant computation time, since it is
independent of the size of the trees. On the other hand,
computation time for FTK, while being lower for smaller
trees, grows very quickly with the tree size. The larger are
the trees considered, the higher is the computational advan-
tage offered by using DTK instead of FTK.

6. Conclusion
In this paper we proposed the distributed tree kernels
(DTKs) as an approach to reduce computational com-
plexity of tree kernels. Having an ideal function for
vector composition, we have formally shown that high-
dimensional spaces of tree fragments can be embedded in
low-dimensional spaces where tree kernels can be directly
computed with dot products. We have empirically shown
that we can approximate the ideal function for vector com-
position. The resulting DTKs correlate with original tree
kernels, obtain similar results in two natural language pro-
cessing tasks, and, finally, are faster.
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