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Abstract

In recent years, some spectral feature selec-
tion methods are proposed to choose those
features with high power of preserving sam-
ple similarity. However, when there exist
lots of irrelevant or noisy features in data,
the similarity matrix constructed from all
the un-weighted features may be not reli-
able, which then misleads existing spectral
feature selection methods to select ’wrong’
features. To solve this problem, we pro-
pose that feature importance should be eval-
uated according to their impacts on similar-
ity matrix, which means features with high
impacts on similarity matrix should be cho-
sen as important ones. Since graph Lapla-
cian(Luxburg, 2007) is defined on the simi-
larity matrix, then the impact of each feature
on similarity matrix can be reflected on the
change of graph Laplacian, especially on its
eigen-system. Based on this point of view,
we propose an Eigenvalue Sensitive Crite-
ria (EVSC) for feature selection, which aims
at seeking those features with high impact
on graph Laplacian’s eigenvalues. Empirical
analysis demonstrates our proposed method
outperforms some traditional spectral feature
selection methods.

1. Introduction

In recent years, many researchers attempt to employ
the spectrum of graph to design new feature selec-
tion methods, termed spectral feature selection(Zhao,
2007). According to different character of them, ex-
isting methods can be divided into two types. The
first type performs feature selection based on certain
evaluation criteria, which is the function of the eigen-
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system of graph Laplacian(Zhao, 2007). The typi-
cal ones include Laplacian score(He, 2005), trace ra-
tio(Nie, 2008), and SPEC(Zhao, 2007). For the second
type, the feature selection problem will be transformed
into the regression problem. Both MRSF(Zhao, 2010)
and MCFS(Cai, 2010) belong to this type. It is clear
that they all depend on the eigen-system of graph
Laplacian, which is defined on similarity matrix. In
other words, the performance of them is determined by
the similarity matrix. However, when there exist lots
of irrelevant or noisy features in data, the accuracy of
similarity matrix can’t be guaranteed any more, which
negatively affects the effectiveness of existing spectral
feature selection methods. To solve this problem, we
evaluate the significance of each feature based on its
influence on the eigen-system of graph Laplacian.

Here, we would like to demonstrate the impacts of
different features on the normalized graph Laplacian
Lrw(Luxburg, 2007) with Iris dataset(He, 2005) us-
ing only two features: sepal length(F1) and petal
length(F3), whose data distribution in the original
input space with F1 and F3 is plotted in Figure
1(a). Then three normalized graph Laplacian are con-
structed using feature subset {F1,F3}, {F3} and {F1}
respectively. Then with each graph Laplacian, the
three eigenvectors with respect to the three smallest
eigenvalues are selected and plotted in Figure 1(b),
1(c) and 1(d). It is clear that Figure 1(c) is simi-
lar with Figure 1(b), but Figure 1(d) is evidently dif-
ferent from Figure 1(b). This phenomena means the
eigen-system of Lrw doesn’t change by the elimination
of F1, but changes dramatically by the elimination of
F3, which indicates F3 is more important than F1.

The above example illustrates the impacts of different
features on graph Laplacian are greatly different. Mo-
tivated by this viewpoint, we propose that feature im-
portance should be evaluated according to its impact
on graph Laplacian. Since graph Laplacian is highly
related with its eigenvalues, we choose to perform the
impact analysis of each feature on the eigenvalues of
graph Laplacian. Firstly, we introduce the weighted
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Figure 1. (a) presents the 2-D visualization of Iris dataset.
(b) ,(c) and (d) present the 3-D visualization of eigenvec-
tors according to the graph Laplacian constructed by fea-
ture subset {F1,F3}, {F3} and {F1}, respectively.

similarity matrix into graph Laplacian, in which the t-
th feature is assigned a weight wt. Then, based on the
weighted graph Laplacian, we can derive the derivative
of the r-th eigenvalue of graph Laplacian(for example
λ(w)r) with respect to the t-th feature weight, that is
∂λ(w)r

∂wt
. After obtaining ∂λ(w)r

∂wt
, we can approximate

the change of λ(w)r in response to the change of wt

from 1 to 0 while keeping all the other feature weights
as 1, namely the corresponding differential ∆λ(1, t)r.
∆λ(1, t)r represents the impact to the r-th eigenvalue
of graph Laplacian when eliminating the t-th feature
from data, which is the core idea of our method.

In this work, we propose an eigenvalue sensitive fea-
ture selection algorithm, which aims at selecting those
features with high impacts on graph Laplacian. Ex-
tensive experiment results over five real-world datasets
demonstrate the superiority of our method compared
with traditional spectral feature selection methods.

2. Eigenvalue Sensitive Feature
Selection

2.1. Spectral Feature Selection with
Un-Weighted Similarity Measure

In this paper, we use X to denote a data set
of n instances, and X = (x1, x2, ..., xn) =
(fT

1 , fT
2 , ..., fT

K)T∈RK×n, where both xs
t and fts de-

note the t-th feature of instance xs. There are sev-

eral kinds of general similarity measures such as Dot-
product, Square Euclidean and RBF functions, due to
the limit of space, we only use RBF function as the

similarity measure in this paper: Sij = e−
‖xi−xj‖2

2δ2 .
In fact, our method can be easily extended to other
similarity measures.

We start from Laplacian score(He, 2005), which can
be considered as the function of the eigen-system of
Lsym = D− 1

2 SD− 1
2 (Zhao, 2007), where D = diag(S1)

and 1 = (1, ..., 1)T . The Laplacian score of the t-th
feature can be also computed as(Zhao, 2007):

Lt =
∑n

r=2αtr
2λr∑n

r=2αtr
2

where qr and λr (1≤r≤n) are the eigenvector and
eigenvalue of Lsym, and αtr = cosθtr where θtr is the
angle between feature vector ft and eigenvector qr.
The above equation shows that Laplacian score is de-
pendent on the similarity matrix S, but S is computed
with all features in the same importance. But as we
know, the importance of features are different, that is
why we perform feature selection. So it is nature to
introduce the weighted similarity measure.

2.2. Extension to Weighted Similarity Measure

Based on the above discussion, it is clear that the
eigen-system of graph Laplacian must be established
on the weighted similarity measure. When we ob-
tain the weight vector w = (w1, w2, ..., wK)T , the
weighted RBF function can be defined as: S(w)ij =

e−
‖w·(xi−xj)‖2

2δ2 . Based on the appropriate weighted
similarity matrix, the corresponding eigen-system can
correctly reflect the structure of sample distribution,
which can guarantee the success of spectral feature se-
lection methods. However, the choice of appropriate
feature weight vector is still difficult. Hence, we can
take the opposite perspective and focus on the analysis
of the impact on the eigen-system of graph Laplacian
by the change of each feature weight wt, specifically
the change of wt from 1 to 0. In other words, we want
to evaluate the importance of each feature by its im-
pact on the eigen-system of graph Laplacian when it is
eliminated from data. Motivated by this point of view,
we propose the Eigenvalue Sensitive Criterion(EVSC),
which will be discussed in detail in the next section.

2.3. Eigenvalue Sensitive Criterion(EVSC)

In this section, we will derive the criteria which eval-
uates the impact on eigen-system of graph Lapla-
cian in terms of each feature. Let’s start from nor-
malized graph Laplacian(Belkin, 2001), L(w)rw =
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D(w)−1L(w), which is obtained by solving the follow-
ing generalized eigen-problem(Belkin, 2001):

L(w)q(w)r = λ(w)rD(w)q(w)r (1)

where D(w)=diag(S(w)1) and L(w)=D(w)-S(w) de-
note the weighted degree matrix and the weighted
graph Laplacian, respectively. q(w)r and λ(w)r de-
note the r-th eigenvector and the r-th eigenvalue of
L(w)rw respectively.

Firstly, we present the following Proposition 1 for cal-
culating the derivative of λ(w)r with respect to the t-th
feature weight wt, that is ∂λ(w)r

∂wt
.

Proposition 1. In equation (1), the calculation of
∂λ(w)r

∂wt
is formulated as:

∂λ(w)r

∂wt
= q(w)r

T (
∂L(w)
∂wt

− λ(w)r
∂D(w)
∂wt

)q(w)r (2)

Proof. For writing convenience, here we use L, D, qr

and λr to denote L(w), D(w), q(w)r and λ(w)r, respec-
tively. By differentiating both sides of Lqr = λrDqr

with respect to wt, we can derive the following equa-
tion:

∂L

∂wt
qr +L

∂qr

∂wt
=
∂λr

∂wt
Dqr +λr

∂D

∂wt
qr +λrD

∂qr

∂wt
(3)

Left multiply both sides of (3) by qT
r :

qT
r
∂L

∂wt
qr + qT

r L
∂qr

∂wt

=
∂λr

∂wt
qT
r Dqr + λrq

T
r
∂D

∂wt
qr + λrq

T
r D
∂qr

∂wt
(4)

Since both L and D are symmetric, we have

qT
r L
∂qr

∂wt
= λrq

T
r D
∂qr

∂wt
(5)

Thus, by (4) and (5), we can derive:

qT
r
∂L

∂wt
qr =

∂λr

∂wt
qT
r Dqr + λrq

T
r
∂D

∂wt
qr (6)

that is,
∂λr

∂wt
=

qT
r ( ∂L

∂wt
− λr

∂D
∂wt

)qr

qT
r Dqr

(7)

Since qT
r Dqr = 1, then the equation (7) can also be

expressed as:

∂λr

∂wt
= qT

r (
∂L

∂wt
− λr

∂D

∂wt
)qr (8)

Secondly, since the formula (2) involves ∂L(w)
∂wt

and
∂D(w)

∂wt
, it is necessary to derive the formulation of

them. For writing convenience, we will use the fol-
lowing two notations(Ning, 2010): uij and vij . uij is
a column vector with only two nonzero element: the
i-th and j-th element equal to 1 and -1 respectively; vij

is a column vector with i-th and j-th elements equal
to 1 and other elements equal to 0. For the limit of
space, the proposition 2 only involves the RBF func-
tion. S(w)ij , D(w)ij and L(w)ij are the i-th row and
j-th column element of S(w), D(w) and L(w), respec-
tively.

Proposition 2. Assuming S(w)ij = e−
‖w·(xi−xj)‖2

2δ2 ,
the calculation of ∂D(w)

∂wt
and ∂L(w)

∂wt
can be formulated

as:
∂D(w)
∂wt

=
n−1∑

i=1

n∑

j=i+1

g(i,j,t)diag(vij) (9)

and
∂L(w)
∂wt

=
n−1∑

i=1

n∑

j=i+1

g(i,j,t)uiju
T
ij (10)

respectively.
where g(i,j,t)=−wt

(xi
t−xj

t)
2

δ2 S(w)ij.

Proof. ∀ i and j, S(w)ij = e−
∑n

t=1
w2

t (xi
t−x

j
t
)2

2δ2 , then

∂S(w)ij

∂wt
= −wt

(xi
t − xj

t )
2

δ2
S(w)ij (11)

Since D(w)= diag(S(w)1), if i=j, D(w)ii =∑n
h=1S(w)ih, then

∂D(w)ii

∂wt
=

n∑

h=1

∂S(w)ih

∂wt
= −

n∑

h=1

wt
(xi

t − xh
t )2

δ2
S(w)ih

otherwise, D(w)ij = 0, then

∂D(w)ij

∂wt
= 0

Since L(w)=D(w)-S(w), then

∂L(w)ij

∂wt
=
∂D(w)ij

∂wt
− ∂S(w)ij

∂wt

By using uij and vij , ∂D(w)
∂wt

and ∂L(w)
∂wt

can be finally
expressed as:

∂D(w)
∂wt

=
n−1∑

i=1

n∑

j=i+1

∂S(w)ij

∂wt
diag(vij)
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and
∂L(w)
∂wt

=
n−1∑

i=1

n∑

j=i+1

∂S(w)ij

∂wt
uiju

T
ij

, respectively.

Thirdly, based on (9) and (10), the calculation of
∂λ(w)r

∂wt
can be expressed as:

∂λ(w)r

∂wt
=

n−1∑

i=1

n∑

j=i+1

g(i,j,t){(q(w)ri − q(w)rj)2}

−
n−1∑

i=1

n∑

j=i+1

g(i,j,t){λ(w)r(q(w)2ri + q(w)2rj)} (12)

where g(i,j,t) is defined in Proposition 2, and q(w)ri

and q(w)rj denotes the i-th element and the j-th el-
ement of the r-th eigenvector q(w)r, respectively. As
can be seen in (12), the ∂λ(w)r

∂wt
is actually the function

of w which represents all feature weights(including wt).

Finally, according to different feature weight vector
w(including wt), we can derive the derivative of λ(w)r

with respect to wt from (12), that is, ∂λ(w)r

∂wt
. Loosely

speaking, this derivative can be thought of as how
much the r-th eigenvalue is changing in response to the
change of the t-th feature weight. In general, it is hard
to obtain the accurate feature weight vector w. Thus
the calculation of (12) is also intractable. However,
we can consider the differential dλ(w)r of λ(w)r at wt,
where wk(k %=t and 1≤k≤n) is constant and wt∈[0, 1],
which is formally expressed as:

dλ(w)r = (
∂λ(w)r

∂wt
)dwt (13)

Specifically, when w=1=(1, ..., 1)T , and dwt=1-0=1,
that is, the t-th feature is eliminated from data, the
corresponding change of the r-th eigenvalue (denoted
∆λ(1, t)r) can be approximated as follows:

∆λ(1, t)r≈(
∂λ(w)r

∂wt
|w=1) (14)

The equation (14) just reveals the change of the r-th
eigenvalue with respect to the elimination of the t-th
feature, which is the core idea of this paper. There-
fore, we can employ the equation (14) to evaluate the
importance of the t-th feature for the r-th eigenvalue
of Lrw. To reflect the influence of the t-th feature on
all n eigenvalues of Lrw, the eigenvalue sensitive crite-
rion(EVSC) can be defined as:

EV SC(t) =
n∑

r=1

|∆λ(1, t)r| (15)

3. Algorithm for Eigenvalue Sensitive
Feature Selection(ESFS)

For saving the space of paper, here we only give the
eigenvalue sensitive feature selection algorithm based
on the RBF function, described in Algorithm 1.

The time complexity of ESFS can be analyzed as fol-
lows: (a) In step 1 and 2, we need O(n2K) operations
to build S, D and L; (b) In step 3, we need O(n3) oper-
ations to get the eigenvalues and eigenvectors of graph
Laplacian by Lanczos algorithm; (c) In step 4, we need
O(n2K) operations to calculate the EVSC score for all
features; (d) In step 5, the top m features can be found
within O(KlogK). Thus, the overall time complexity of
ESFS is MAX(n3, n2K,KlogK).

Algorithm 1 Eigenvalue Sensitive Feature Selection
Input: data set X, feature number m
Output: feature subset Fm

1. Construct the similarity matrix S with RBF func-
tion
2. Build L and D based on S
3. Calculate the eigen-system (λr, qr), 1≤r≤n, from
Lqr = λrDqr

for t = 1 to K do
4. Calculate the EVSC of the t-th feature accord-
ing to (15).

end for
5. Rank the features decreasingly according to the
value of EVSC and select the leading m features,
that is Fm = {FK1 , ..., FKm}
6. return Fm

4. Empirical Analysis

In this section, we will empirically analyze the per-
formance of our proposed algorithm EVSC compared
with Laplacian Score and SPEC.

4.1. Dataset decription

Five data sets1 are used for experiments, which are
briefly described in table 1.

Table 1: Statistics of the five data sets
Data Set Instance Feature Class

PIX10P(PIX) 100 10000 10
ORL10P(ORL) 100 10304 10

GLA-BRA(GLA) 180 4915 4
CLL-SUB(CLL) 111 11340 3
TOX-171(TOX) 171 5748 4

1http://featureselection.asu.edu/datasets.php
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4.2. Evaluation criterions

For investigating the performance of our methods, sev-
eral tests are performed on the following two evalua-
tion metrics:

Clustering Accuracy(ACC) The accuracy of
clustering(He, 2005) is defined as comparing the pre-
defined label( c(s) ) and the obtained label( km(s) )
by k-means clustering of each sample s:

ACC =
∑n

h=1δ(c(h), km(h))
n

where δ(c(s), km(s)) = 1 only if c(s)=km(s), otherwise
0. Since the starting points of k-means algorithm are
randomly chosen each time, here we apply the k-means
algorithm to the same data set with the same feature
subset 10 times and record the best result.

Jaccard Score(JAS) As (Zhao, 2010), the Jaccard
Score is used to evaluate the ability of selected fea-
ture subset in preserving sample structure, which is
computed by:

JAC =
1
n

n∑

h=1

NB(h,m, SF )∩NB(h,m, S)
NB(h,m, SF )∪NB(h,m, S)

where SF is the similarity matrix on the selected fea-
tures while S is the original similarity matrix, and
NB(s,m, S) donates the m nearest neighbors of s-th
sample according to S. The similarity matrix is com-
puted by using inner product. A high Jaccard Score
indicates that sample similarity are well preserved.

4.3. Experiment setup

In the experiments, two representative spectral feature
selection algorithms are chosen as base lines: Lapla-
cian Score(He, 2005)2 and SPEC(Zhao, 2007)3. For
experimental convenience, we only choose RBF func-
tion as similarity measure, whose parameter is deter-
mined by cross-validation. For each data set, we apply
Laplacian Score, SPEC and EVSC to calculate the cor-
responding feature score. For EVSC, all features are
ranked decreasingly, while all features are ranked in-
creasingly for the two others. After such preparation,
we calculate the corresponding Clustering Accuracy
and Jaccard Score of each data set with the leading
100, 200, ...,1900 features.

4.4. Analysis of the result

Clustering Accuracy Figure 2(a-e) show the
curves of Clustering Accuracy versus the number of

2http://www.zjucadcg.cn/dengcai/Data/code
3http://featureselection.asu.edu/software.php

selected features on five different data sets based on
Laplacian Score, SPEC and EVSC. Figure 2(g) shows
the average Clustering Accuracy over all five data sets
versus each feature number. As we can see, our pro-
posed EVSC algorithm outperforms Laplacian Score
and SPEC on each data set. Especially on ORL10P
and PIX10P, the clustering error can be nearly zero by
using around 1300 features.

Table 2 reports the detailed average accuracy over
all chosen feature number on each data set based on
Laplacian Score, SPEC and EVSC. The last row of
it records the average clustering performance over all
five data sets and all chosen feature numbers for each
method. Compared with Laplacian Score, our method
achieves 15.5%, 13.5%, 13.01%, 40% and 17.5% rela-
tive improvements on CLL, GLA, ORL10P, PIX10P
and TOX respectively, while 15.1%, 30.67%, 25.67%,
12.6% and 17.5% relative improvements compared
with SPEC.

Jaccard Score Figure 3(a-e) show the curves of Jac-
card Score versus the number of selected features on
each data set based on Laplacian Score, SPEC and
EVSC. Figure 3(f) show the trend of the average Jac-
card Score over all five data sets versus feature number,
which largely justifies the superiority of our method
on average. All figures show that the ability of our se-
lected features in preserving sample similarity is better
than Laplacian Score and SPEC. Especially on CLL,
PIX10P and TOX, the Jaccard Score is nearly 0.8 by
using only 100 features.

Table 3 shows the average Jaccard Score over all cho-
sen feature numbers of each data set based on Lapla-
cian Score, SPEC and EVSC. As we can see, the score
differences between EVSC with Laplacian Score and
SPEC are at least 0.2098 for CLL, 0.4512 for CLA,
0.0928 for ORL10P, 0.5396 for PIX10P and 0.3216 for
TOX. The last row of table 3 reveals that the aver-
age Jaccard Score over all feature numbers and all five
data sets is increased with at least 0.37988 by EVSC.

Best feature number For each data set, we calcu-
late the EVSC of each feature, and rank the features
decreasingly according to the values of EVSC. Fig-
ure 4(a-c) describe the trend of EVSC score, Jaccard
Score, Clustering Accuracy versus the leading features
selected by EVSC according to dataset CLA, CLL and
TOX, respectively. The vertical line of each figure de-
notes the turning point of the EVSC trend. It is clear
that we are likely to achieve nearly best results for
Jaccard Score and Clustering Accuracy at the turn-
ing point of EVSC, which suggests that our method
can help to determine the best feature number of each
dataset.
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Difference between ’good’ and ’bad’ fea-
tures For EVSC, Laplacian Score and SPEC, they
may rank the features according to the scores, then the
leading m features are considered as ’good’ features
while the last m features are taken as ’bad’ features.
To compare the performance of good and bad features
selected by the three methods, we can plot the curves
of Clustering Accuracy and Jaccard Score versus the
best m or worst m features. Due to the space limit, we
only use GLA dataset as the example. The green curve
of Figure 5(a-c) denotes the Clustering Accuracy when
we use the last 100,200,...,1900 features(’bad’ features)
selected by each related scores, while the curves of
other colors correspond to the top 100,200,...,1900 fea-
tures(’good’ features). The Figure 5(d-f) show the Jac-
card Score curves of ’good’ and ’bad’ features selected
by three different methods. From these figures, we can
conclude that EVSC can achieve the largest and most
stable performance difference between the ’good’ and
’bad’ features on GLA.

Table 4 and 5 describe the average Clustering Accu-
racy and Jaccard Score over all chosen ’bad’ feature
subsets of each dataset respectively. By comparing ta-
ble 2 with table 4, we can find that the average cluster-
ing performance differences between ’good’ and ’bad’
features on datasets are: 0.0636 for Laplacian score,
0.0728 for SPEC, and 0.159 for EVSC. By comparing
table 3 with table 5, we can observe that the average
Jaccard Score difference between ’good’ and ’bad’ fea-
tures for EVSC is more than 2.3 times larger than that
of Laplacian Score and SPEC.

Stability Figure 5(a-f) also show the stability of
EVSC compared with Laplacian Score and SPEC. For
Clustering Accuracy and Jaccard Score, the trend of
EVSC is almost rising, while the curves of Laplacian
Score and SPEC fluctuate greatly. For ACC with
SPEC and JAS with Laplacian Score, ’bad’ features
are even better than ’good’ features in some data sets.

5. Conclusion

In this paper, we propose a new spectral feature selec-
tion method called EVSC, which performs the impact
analysis of each feature on the eigenvalues of graph
Laplacian. In comparison with two methods, Lapla-
cian Score and SPEC, EVSC demonstrates excellent
performance and high stability. Besides, our method
can be useful to determine the best feature number.
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Figure 2. Clustering performance vs. the number of selected features based on Laplacian Score, SPEC and EVSC.
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Figure 3. Jaccard Score vs. the number of selected features based on Laplacian Score, SPEC and EVSC.
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Table 2: Average Clustering Accuracy
Laplacianscore SPEC EV SC

PIX 0.6216 0.7726 0.8705
ORL 0.7163 0.6105 0.8095
GLA 0.4669 0.4056 0.53
CLL 0.5262 0.5281 0.6078
TOX 0.3712 0.3712 0.4364
Ave 0.54044 0.5376 0.65084

Table 3: Average Jaccard Score
Laplacianscore SPEC EV SC

PIX 0.0908 0.2873 0.8269
ORL 0.7329 0.5638 0.8257
GLA 0.249 0.1337 0.7002
CLL 0.5053 0.7598 0.9696
TOX 0.6165 0.6353 0.9569
Ave 0.4389 0.47598 0.85586

Table4: Average ACC on ’bad’ features
Laplacianscore SPEC EV SC

PIX 0.6742 0.6053 0.6563
ORL 0.5195 0.5268 0.5311
GLA 0.4269 0.436 0.3929
CLL 0.3751 0.3722 0.5301
TOX 0.3881 0.3838 0.3488
Ave 0.47676 0.46482 0.49184

Table 5: Average JAS on ’bad’ features
Laplacianscore SPEC EV SC

PIX 0.014 0.0364 0.0014
ORL 0.1073 0.0016 0.086
GLA 0.4343 0.114 0.048
CLL 0.6521 0.3261 0.1038
TOX 0.0891 0.0645 0.0016
Ave 0.2568 0.1085 0.0482
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Figure 4. The trend of the feature scores of the leading 2000 features selected by EVSC.
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(d) JAS with Laplacian score
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Figure 5. Performance difference between ’good’ and ’bad’ features on CLA-BRA-180.


