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Abstract
The majority of value function approximation
based reinforcement learning algorithms avail-
able today, focus on approximating the state (V)
or state-action (Q) value function and efficient
action selection comes as an afterthought. On
the other hand, real-world problems tend to have
large action spaces, where evaluating every pos-
sible action becomes impractical. This mismatch
presents a major obstacle in successfully apply-
ing reinforcement learning to real-world prob-
lems. In this paper we present a unified view
of V and Q functions and arrive at a new space-
efficient representation, where action selection
can be done exponentially faster, without the use
of a model. We then describe how to calculate
this new value function efficiently via approx-
imate linear programming and provide experi-
mental results that demonstrate the effectiveness
of the proposed approach.

1. Introduction and motivation
One of the most basic decisions researchers are presented
with in value function approximation for Markov decision
processes is whether to use the state (V) or state-action (Q)
value function. Model based approaches commonly use the
V function, while model free approaches universally use
the Q function. While there has been extensive research on
the properties of these two types of value functions, there
seems to be an assumption that these two approaches are
fundamentally different and the only ones that are useful.
In this paper we challenge both of these assumptions.

The first part of this paper demonstrates that V and Q func-
tions are just the two extremes of a large family of value
functions and shows how to approximate any value func-
tion in this family, using exact or approximate linear pro-

Appearing in Proceedings of the 28 th International Conference
on Machine Learning, Bellevue, WA, USA, 2011. Copyright 2011
by the author(s)/owner(s).

gramming. The second part investigates the properties of
a particular instantiation of this family termed the H-value
function. The H function is a new space-efficient represen-
tation, where action selection can be done exponentially
faster than in V or Q functions, without the use of a model.
Finally we provide experimental results that demonstrate
the effectiveness of the proposed approach.

2. Background
A Markov Decision Process (MDP) is a 6-tuple
(S,A, P,R, γ,D), where S is the state space of the pro-
cess, A is the action space, P is a Markovian transition
model

(
P (s′|s, a) denotes the probability of a transition to

state s′ when taking action a in state s
)
,R is a reward func-

tion
(
R(s, a) is the expected reward for taking action a in

state s
)
, γ ∈ (0, 1) is a discount factor for future rewards,

and D is the initial state distribution. A deterministic pol-
icy π for an MDP is a mapping π : S 7→ A from states to
actions; π(s) denotes the action choice in state s.

The value V π(s) of a state s under a policy π is defined as
the expected, total, discounted reward when the process be-
gins in state s and all decisions are made according to pol-
icy π. The goal of the decision maker is to find an optimal
policy π∗ for choosing actions, which yields the optimal
value function V ∗(s), defined recursively via the Bellman
optimality equation:

V ∗(s) = max
a

R(s, a) + γ
∑
s′

P (s′|s, a)V ∗(s′)

The valueQπ(s, a) of a state-action pair (s, a) under a pol-
icy π is defined as the expected, total, discounted reward
when the process begins in state s, action a is taken at the
first step, and all decisions thereafter are made according
to policy π. Once again our goal is to find an optimal pol-
icy π∗ for choosing actions, which yields the optimal value
function Q∗(s, a):

Q∗(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a)max
a′

Q∗(s′, a′)
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2.1. Solving MDPs exactly via linear programming

One of the popular ways to solve for the optimal value func-
tion V ∗ is via linear programming. We can model find-
ing the optimal value function as a minimization problem,
where every state s ∈ S is a variable and the objective is
to minimize the sum of the states’ values under the con-
straints that the value of each state must be greater than or
equal to the reward for taking any action at that state, plus
the discounted value of the expected next states.

minimize
∑
s

V ∗(s)

subject to :

(∀s, a)V ∗(s) ≥ R(s, a) + γ
∑
s′

P (s′|s, a)V ∗(s′)

Extracting the policy is fairly easy (at least conceptually),
by looking at the dual variables and picking the action that
corresponds to the non-zero variable for the state in ques-
tion, or equivalently picking the action that corresponds to
the constraint that has no slack in the current state.

2.2. Approximate linear programming (ALP)

In many real world applications the number of states is too
large (or even infinite if the state space is continuous), ren-
dering exact representation intractable. In those cases we
approximate the value function via a linear combination
of (possibly non-linear) basis functions or features. The
variables in the approximate linear program are now the
weights assigned to each basis function and the value of
each state is computed as φ(s)Tw, where φ(s) is the fea-
ture vector for that state, while w is the weight vector. The
linear program becomes:

minimize
∑
s

φT (s)w

subject to :

(∀s, a) φT (s)w ≥ R(s, a) + γ
∑
s′

P (s′|s, a)φT (s′)w.

Using features dramatically reduces the number of vari-
ables in our program, however it does not reduce the num-
ber of constraints. Since the number of constraints is larger
than the number of variables in the exact linear program,
we have to find a way to reduce the number of constraints
as well. Making certain assumptions over our sampling
distribution (De Farias & Van Roy, 2004), or if we incor-
porate regularization (Petrik et al., 2010), we can sample
constraints and bound the probability that we will violate a
non-sampled constraint, or bound the performance degra-
dation that will occur as a result of missing constraints.

Unfortunately this approximate formulation does not allow
for easy extraction of a policy from the dual. Not only is

the number of dual variables large (the same as the number
of samples) but it does not offer a straightforward way to
generalize to unseen states.

2.3. Reinforcement learning

In reinforcement learning, a learner interacts with a
stochastic process modeled as an MDP and typically ob-
serves the state and immediate reward at every step; how-
ever the transition model P and the reward function R are
not accessible. The goal is to learn an optimal policy using
the experience collected through interaction with the pro-
cess. At each step of interaction, the learner observes the
current state s, chooses an action a, and observes the result-
ing next state s′ and the reward received r, essentially sam-
pling the transition model and the reward function of the
process. Thus experience comes in the form of (s, a, r, s′)
samples.

3. Value functions
The choice of whether to use V or Q functions depends
both on the problem and on the method of approximating
the value function. In approximate linear programming,
researchers universally use the V function.

In a number of disciplines the value of a state is an inter-
esting quantity in itself, making the V function a natural
choice. On the other hand, in the kinds of problems ad-
dressed herein (such as controlling a dynamic system in
realtime), the value function is only useful as long as it can
provide information about how to act, for which traditional
V functions are often not sufficient absent a model. One
workaround is to try to learn a model of the environment
as well and use that model to predict the effects of actions,
computing the best action with the help of the V function.
Of course this has the added burden of approximating and
repeatedly evaluating a model along with the value func-
tion. The second problem with V functions is that even
with a model, when the number of actions available is too
large, the computational cost of evaluating each one and
picking the max can be prohibitive. This, once again, is a
big problem especially in realtime and/or embedded appli-
cations.

Q functions solve the first problem, at the expense of in-
creased representation complexity. Since the Q function is
defined over states and actions, the dimension of the ap-
proximator increases, which can increase sample complex-
ity. Additionally, while the space complexity to store the
(exact) V function is |S|, the Q function requires |S||A|
space. Finally Q functions don’t provide a solution to the
second problem. One still must search over all actions ex-
haustively to pick the best one at each decision step.
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3.1. A unified view of value functions

We can view V and Q functions as the two extremes of
value function representation. A V function represents the
value of the action that maximizes the total expected dis-
counted reward for any given state. In contrast the Q func-
tion represents the value of any action for every state. Al-
though these two extremes have been studied extensively,
to our knowledge, no work has investigated the use of
schemes that represent more information than a V function
but less than a Q function.

Consider a value function that partitions the action space
into sets and represents only the max value for each set at
each state. In the case of the V function there is only one
set containing all the actions. In contrast, in the Q function
representation there is one set per action. Varying the num-
ber of sets and the number of actions per set specifies an
entire family of value functions.

The following observation will be useful: While each ac-
tion should belong to at least one set, there is no require-
ment for each action to appear in only one set. This
suggests redundant representation schemes, where all (or
some) actions appear in multiple sets; i.e., the sets should
be jointly exhaustive but not necessarily disjoint.

3.2. Generalizing the Bellman optimality equation

For a value function X with action sets ui ⊆ A we can
generalize the Bellman optimality equation as follows:

∀u ∈ {u1, . . . , un},
X∗u(s) = max

a∈u
R(s, a) + γ

∑
s′

P (s′|s, a)max
u

X∗u(s
′)

In the case of the V function the innermost max is unneces-
sary since there is only one set, while for the Q function the
outermost max in not necessary since there is only one ac-
tion per set. Note that if the sets ui are not disjoint we may
need to examine only a subset of the action sets to evaluate
the innermost max operator.

3.3. Solving for the generalized Bellman equation via
linear programming

The following linear program solves for the generalized
Bellman equation:

minimize
∑
u

∑
s

X∗u(s)

subject to :

∀u ∈ U,∀(s, a) ∈ (S, u),

X∗u(s) ≥ R(s, a) + γ
∑
s′

P (s′|s, a)V ∗(s′)

∀(u, s) ∈ (U, S), V ∗(s) ≥ X∗u(s)

Here U is the set of action sets u, with the property that
u1 ∪ u2 ∪ · · · ∪ un = A.

Note that this is not the only way to solve for the general-
ized Bellman equation. The first alternative is to solve for
V ∗ first, and use it as a constant in the original problem.
In that case, for n action sets, the original LP decomposes
into n independent LPs (one for each u ∈ U ) of the form:

minimize
∑
s

X∗u(s)

subject to :

∀(s, a) ∈ (S,Au)

X∗u(s) ≥ R(s, a) + γ
∑
s′

P (s′|s, a)V ∗(s′)

For the exact case these LPs are trivial to solve. Everything
on the right hand side of the inequalities is already known
(and thus constant), while there are no constraints between
the values of the variables. In the solution, one constraint
per set will hold with equality (the one with the largest right
hand side), thus we don’t even need an LP solver to find the
X∗ values.

If a subset of the action sets completely covers the action
space, we can solve the original problem for this subset, as
in section 3.2, extract V ∗, and then solve the trivial LPs as
above.

3.3.1. THE APPROXIMATE CASE

The ALP formulation is very similar to the exact formu-
lation. The only difference is that the X variables will
be replaced by a set of basis functions times their respec-
tive weights φTu (s)w and we’ll have one V variable per
state/sample. Again, once we know V (s) we can use it
to solve a number of independent and much simpler pro-
grams, where everything on the right hand side of the in-
equalities is already known (and thus constant). However,
assuming we have more samples than features, not all con-
straints are going to hold with equality, so this time we do
need to treat the problem as an LP.

4. The H-value function
The remainder of the paper focuses on a particular instan-
tiation of the value function family presented above, with
2 log2 |A| sets and |A|/2 actions per set.

Without loss of generality assume that we have |A| =
2d actions, each one corresponding to a vertex of an d-
dimensional hypercube1 (hence the name H function). Ev-

1If the number of actions is not a power of 2 we can simply
assign some action(s) to multiple vertices of the hypercube.
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ery dimension i of the hypercube partitions all the vertices
into two sets: the ones that have coordinate i equal to zero
and the ones that have coordinate i equal to one, called
i0 and i1 respectively. Consider a value function that is
composed of the 2d sets formed by the pairs over each
dimension of the hypercube. This representation requires
2|S| log2 |A| space to store in the exact case, and permits
finding the maximizing action in log2 |A| = d comparisons
if the maximizing action is unique.

Comparing the value of i0 and i1 for a given state reveals
in which half of the hypercube the optimal action lies, es-
sentially fixing one of the d coordinates. By performing
this comparison over all pairs corresponding to the same
dimension of the hypercube, we can narrow the set to a sin-
gle vertex, corresponding to a single action. Figure 1 shows
a graphical example for the trivial case of 3 dimensions.

a010
a011

a110
a111

a000
a001

a100
a101 ∩ a000

a001

a010
a011

a100

a110

a101

a111

∩ a000

a010

a100

a110

a001

a011

a101

a111

=
a000

a010

a100

a110

a001

a011 a111

a101

Figure 1. Example of finding the maximizing action over a 3-
dimensional hypercube. Actions in red represent the actions in
the set with the highest value.

For the H function the Bellman optimality equation can be
expressed as follows, for x ∈ {0, 1}:

H∗ix(s) =

max
a∈Aix

R(s, a) + γ
∑
s′

P (s′|s, a)max{H∗i0(s′), H∗i1(s′)}

Even though the number of vertices per facetAix grows lin-
early with the number of actions, the number of facets and
thus the amount of information we need to store, grows log-
arithmically with the number of vertices/actions. In mul-
tidimensional action spaces, where the number of actions
grows exponentially with the number of dimensions, the
amount of information we need to store grows linearly with
the number dimensions.

Using the H function speeds-up policy lookup immensely
when compared to the V or Q functions, however it does
not make the planning step any faster. If one wants to find
the exact value functionH∗, one has to consider every pos-
sible action. Of course as with the V function one should be
able to find a reasonable approximation by sampling only a
subset of the actions.

4.1. LP formulation

The H function can be formulated as a set of d linear pro-
grams that can be solved independently. Each LP will have

the following form:

minimize
∑
s

H∗i0(s) +
∑
s

H∗i1(s)

subject to :

∀(s, a) ∈ (S,Ai0)

H∗i0(s) ≥ R(s, a) + γ
∑
s′

P (s′|s, a)V ∗(s′)

∀(s, a) ∈ (S,Ai1)

H∗i1(s) ≥ R(s, a) + γ
∑
s′

P (s′|s, a)V ∗(s′)

∀(s ∈ S) V ∗(s) ≥ H∗i0(s)
∀(s ∈ S) V ∗(s) ≥ H∗i1(s)

where Ai0 and Ai1 are the sets of actions having their i-
th coordinate 0 or 1 respectively and similarly for H∗i0 and
H∗i1.

For the approximate case the only difference is that the H
variables will be replaced by a set of weights, applied to
a set of basis functions; there will be one V variable per
state/sample.

As was explained in section 3.3, once we have V (s) we can
break each of the linear programs above in two trivial LPs,
one for x = 0, and another for x = 1:

minimize
∑
s

H∗ix(s)

subject to :

∀(s, a) ∈ (S,Aix),

H∗ix(s) ≥ R(s, a) + γ
∑
s′

P (s′|s, a)V ∗(s′)

4.2. Avoiding degenerate solutions

The exposition above made the assumption that there exists
exactly one maximizing action for every state. If we relax
that assumption, we can arrive at solutions where for some
states the H function is not enough to determine a maxi-
mizing action uniquely. We can use a simple trick to avoid
this degeneracy with probability 1. We will add a random
constant ε ∈ (0, εmax), to every reward R(s, a). It is easy
to see that in the modified program, the probability of hav-
ing two actions have the same value tends to 0 with high
probability.

4.3. Parallel evaluation

Notice that once the H function is known, determining
which side of the hypercube has the action with the highest
value, when at state s, can be evaluated for all dimensions
in parallel. Even in a single agent environment, almost lin-
ear evaluation speedup is possible by spreading the compu-
tation over different processors. Perhaps even more impor-
tantly, if different (groups of) dimensions of the hypercube
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correspond to different agents in the world, they can make
decisions and act without the need for communication, as
long as they all have access to the global state s.

4.4. Embedding continuous spaces on a hypercube

There are two cases that can result in a large number of ac-
tions. The first is when we have many action variables. If
these action variables are binary, then mapping one action
variable per dimension of the hypercube is an obvious solu-
tion. The second case is when we have a continuous action
space that has been finely discretized, yielding a large num-
ber of actions. In this case mapping actions to dimensions
of the hypercube may not be straightforward.

Consider a domain that requires controlling a motor us-
ing 8-bit PWM 2 (all zeros corresponding to 0% duty cy-
cle and all ones corresponding to 100% duty cycle). The
most obvious solution would be to map one dimension per
bit of the PWM register. Notice, however, what happens
when switching from action 01111111 to action 10000000
(49.8% to 50.2% duty cycle). All of the action variables
must change at the same time. If due to approximation er-
rors, or insufficient sampling, the most significant bit fails
to change we can end up with an action that is very far
from the optimal. On the other hand, in continuous spaces
we usually assume that actions that are nearby have similar
values. A way to remedy this problem is to switch to using
Gray codes (Gray, 1953). In Gray codes, all unit incre-
ments in magnitude correspond to exactly one bit changes
in representation, leading to much greater robustness to sin-
gle or even multiple bit errors. In our experiments Gray
codes performed significantly better than the naive map-
ping.

Two general design principles can help mapping action sets
to faces of the hypercube. First, if it is possible to iden-
tify subsets of actions with differences in value that will
be larger than anticipated function approximation errors, it
is useful to map them to opposing faces of the hypercube.
Second, if errors are unavoidable, then it can be useful to
arrange the actions such that small numbers of edge traver-
sals in the hypercube correspond to small changes in the
action selected, thereby mitigating the effects of errors.

4.5. Enhanced Error Robustness

Gray codes are a natural way to increase robustness to er-
rors, but their use assumes prior knowledge of an action
space in which small changes in action do not correspond
to big changes in value. If this prior knowledge is not
available, or if its not enough to achieve the desired per-
formance, additional measures may be needed to ensure
robustness. In these cases, we can use redundant bits, sim-

2Pulse Width Modulation.

ilar to error-correcting codes (Clark & Cain, 1981), to de-
tect and correct errors. In telecommunication and informa-
tion theory, this is called forward error correction (FEC)
or channel coding. For our hypercube representation this
amounts to adding redundant dimensions and having mul-
tiple neighboring vertices correspond to the same action.
Error correcting codes have already been exploited in su-
pervised learning (Allwein et al., 2001).

5. Related Work
Extensive literature exists in the mathematical program-
ming and operations research communities dealing with
problems having many and/or continuous control variables.
Unfortunately most results are not very well suited for re-
inforcement learning. Most assume availability of a model
and/or do not directly address the action selection task,
leaving it as a time consuming, non-linear optimization
problem that has to be solved repeatedly during policy ex-
ecution. Thus our survey will be focused on approaches
that align with the assumptions commonly made by the re-
inforcement learning community.

There are two main components in every approach to learn-
ing and acting in continuous and/or multidimensional ac-
tion spaces. The first is the choice of what to represent
while the second is how to choose actions.

The first and most commonly encountered category of
methods for dealing with large action spaces uses a
combined state-action approximator for the representation
part (Santamarı́a et al., 1998), thus generalizing over both
states and actions. Since approaches in this category es-
sentially try to learn and represent the same thing, they
only differ in the way they query this value function to
perform the maximization step. This can involve sam-
pling the value function in a uniform grid over the ac-
tion space at the current state and picking the maximum,
Monte Carlo search (Lazaric et al., 2008), Gibbs sam-
pling (Kimura, 2007), stochastic gradient ascent and other
optimization techniques. One should notice however that
these approaches don’t have any significant difference from
approaches in other communities where the maximization
step is recognized as a non-linear maximization and is tack-
led with standard mathematical packages.

The second category deals predominantly with continuous
(rather than multidimensional) control variables. The ac-
tion space is discretized and a small number of different,
discrete approximators are used for representing the value
function (Millán et al., 2002). However, when acting, in-
stead of picking the discrete action that has the highest
value, the actions are somehow “mixed” depending on their
relative values or “activations”.

Policy gradient methods (Peters & Schaal, 2006) circum-
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vent the need for value functions by representing policies
directly. One of their main advantages is that the approxi-
mate policy representation can often output continuous ac-
tions directly. To tune their policy representation, these
methods use some form of gradient descent, updating the
policy parameters directly. While they have proven effec-
tive at improving an already reasonably good policy, they
are rarely used for learning a good policy from scratch, due
to their sensitivity to local optima.

Another approach to dealing with large action spaces is fac-
tored value functions (Guestrin et al., 2002). The value
function is assumed to be decomposable to a set of local
value functions, with few interactions between different ac-
tion variables. Action selection complexity is exponential
to the induced width of the dependence graph.

The approach of Pazis and Lagoudakis (2011) transforms
an MDP with a large number of actions, to an equivalent
MDP with binary actions, where action complexity is cast
to state complexity. The resulting tree shaped value func-
tion can easily by modeled as a collection of log |A| − 1
value functions with set sizes being powers of two, ranging
from the Q function up to but not including the V function.
Specifically the last level is the Q function with |A| sets, the
one above it is the value function that represents the max
over each pair of actions in Q, (|A|/2 sets) and so on. The
time complexity for action selection is the same as for the
H-function, however the space complexity is 2|S|(|A| − 1)
in the exact case (roughly twice that of storing the Q func-
tion).

6. Experimental Results
In this section we use the H-value function to solve for the
continuous action versions of three popular domains. In ad-
dition to the naive ALP formulation (H-ALP), we combine
our approach with regularized approximate linear program-
ming (Petrik et al., 2010) (H-RALP).

Regularized ALP (RALP) combines ALP with regulariza-
tion of the weight vector of the solution. For L1 norm, this
corresponds to adding O(k) constraints to the LP, where k
is the number of weights in the linear value function ap-
proximation. The effect of L1 regularization in RALP is
similar to that of L1 regularization in Lasso (Tibshirani,
1996) in that it produces sparse solutions and resistance to
overfitting. In the case of ALP, overfitting has a slightly
different interpretation than in regression. Overfitting is
the result of an interaction between an expressive basis and
constraint sampling. Without regularization, this combina-
tion can result in unbounded solutions, or bounded solu-
tions where missing constraints allow the LP solver to find
solutions with extremely low values at certain states.

For H-ALP we solve one linear program calculating the

value of the first dimension, calculate an approximate V
from that, and then solve two trivial LPs for each of the re-
maining dimensions. For H-RALP we first solve for the V-
value function and then solve the resulting two LPs for each
dimension using the same regularization parameter. While
in both cases we may have been able to get better approxi-
mation by solving a new LP for each dimension separately,
we chose to prioritize computational efficiency.

We also compare to the performance of RALP with
the V-value function and the approach of Pazis and
Lagoudakis (2011) with LSPI (P&L-2011). Since RALP
is used as the first step in H-RALP, any error in the approx-
imation of V is carried over to H. Thus when comparing the
graphs for H-RALP and RALP, the difference can be seen
as the price we pay in approximation performance, for the
exponential increase in execution performance and the fact
that we no longer need a model.

Cross validation was used to find a good value for the
regularization parameter ψ for RALP and H-RALP. We
should also note that all our samples come in the form of
(s, a, r, s′) samples; we only have one constraint per sam-
pled state, which amounts to sampling the right hand side
of the Bellman equation3.

6.1. Inverted Pendulum

The inverted pendulum problem (Wang et al., 1996) re-
quires balancing a pendulum of unknown length and mass
at the upright position by applying forces to the cart to
which it is attached. The 2-dimensional continuous state
space includes the vertical angle θ and the angular veloc-
ity θ̇ of the pendulum. The action space of the process is
the range of forces in [−50N, 50N ], which in our case is
approximated to a resolution of 28 equally spaced actions
(256 discrete actions). Most researchers in reinforcement
learning choose to approach this domain as an avoidance
task, with zero reward as long as the pendulum is above
the horizontal configuration and a negative reward when
the controller fails. Instead we chose to approach the prob-
lem as a more difficult regulation task, where we are not
only interested in keeping the pendulum upright, but we
want to do so while minimizing the amount of force we are
using. Thus a reward of 1 − (u/50)2, was given as long
as |θ| ≤ π/2, and a reward of 0 as soon as |θ| > π/2,
which also signals the termination of the episode. The dis-
count factor of the process was set to 0.98 and the control
interval to 100ms. To simplify the task of finding good fea-
tures we standardized the state space and used PCA, keep-
ing only the first principal component4. For H-ALP our

3All the domains tested in this paper are noiseless, thus there
is only one possible next state for every state-action combination.

4Note that θ and θ̇ are highly correlated with only a small part
(around the diagonal θ = aθ̇) of the state space having any sam-
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Figure 2. Total accumulated reward vs. training episodes: (a) inverted pendulum, (b) double integrator, (c) bicycle balancing. Graphs
show averages and 95% confidence intervals over 100 independent runs.

features were a grid of 50 equally spaced Gaussian radial
basis functions (RBFs) in [−1.5, 1.5] with σ = 10 plus
a constant feature. For RALP and H-RALP our features
were a grid of 200 RBFs in [−1.5, 1.5] with σ = 1 plus a
constant feature, and the regularization parameter was set
to ψ = 100. For P&L-2011 our features were a grid of
5×6 RBFs over the joint state-action space plus a constant
feature.

Figure 2 (a) shows the total accumulated reward as a func-
tion of the number of training episodes. Training samples
were collected in advance from “random episodes”, that is,
starting the pendulum in a randomly perturbed state close to
the equilibrium state (0, 0) and following a purely random
policy. Each episode was allowed to run for a maximum
of 3,000 steps corresponding to 5 minutes of continuous
balancing in real-time.

The figure demonstrates that all controllers perform well
and regularization offers a significant performance advan-
tage. Significantly, the penalty in performance for the ex-
ponential reduction in action selection cost (RALP to H-
RALP) is minimal.

6.2. Double Integrator

The double integrator problem requires the control of a
car moving on a one-dimensional flat terrain. The 2-
dimensional continuous state space (p, v) includes the cur-
rent position p and velocity v. The goal is to bring the car
to the equilibrium state (0, 0) by controlling the accelera-
tion a ∈ [−1, 1], under the constraints |p| ≤ 1 and |v| ≤ 1.
The cost function p2+a2 penalizes positions differing from
the home position (p = 0), as well as large acceleration
(action) values. The linear dynamics of the system are:
ṗ = v and v̇ = a. For H-ALP our features were a grid
of 10× 10 RBFs in [−1.0, 1.0] with σ = 1 plus a constant
feature. For RALP and H-RALP our features were a grid of

ples at all. Using a regular grid over the original state space would
result in unbounded or ill-conditioned programs for the unregular-
ized ALP.

20×20 RBFs in [−1.0, 1.0] with σ = 1 plus a constant fea-
ture and the regularization parameter was set to ψ = 101.5.
For P&L-2011 we used a polynomial set of basis functions
(1, p, v, a, p2a, v2a, a2, pv, pa, va, a2p, a2v).

Training samples were collected in advance from “random
episodes” with a maximum length of 200 steps. 100 con-
trollers were trained in each case and tested starting at state
(1, 0) (maximum allowed p, zero v) for a maximum of 200
steps. The discount factor of the process was set to 0.98
and the control interval to 100ms.

Figure 2 (b) shows the total accumulated reward as a func-
tion of the number of training episodes. Once again the
penalty for not using the model is very modest.

6.3. Bicycle Balancing

The bicycle balancing problem (Ernst et al., 2005), has four
state variables (angle θ and angular velocity θ̇ of the han-
dlebar as well as angle ω and angular velocity ω̇ of the bicy-
cle relative to the ground). The action space is 2D and con-
sists of the torque applied to the handlebar τ ∈ [−2,+2]
and the displacement of the rider d ∈ [−0.02,+0.02]. The
goal is to prevent the bicycle from falling.

Again we approached the problem as a regulation task, re-
warding the controller for keeping the bicycle as close to
the upright position as possible. A reward of 1 − |ω| ×
(π/15), was given, as long as |ω| ≤ π/15, and a reward of
0, as soon as |ω| > π/15, which also signals the termina-
tion of the episode. The discount factor of the process was
set to 0.98, the control interval was set to 10ms and train-
ing trajectories were truncated after 20 steps. To simplify
the task of finding good features we standardized the state
space and used PCA, keeping only the first principal com-
ponent. For H-ALP our features were a grid of 50 RBFs
in [−2.5, 2.5] with σ = 10 plus a constant feature. For H-
RALP our features were a grid of 200 RBFs in [−2.5, 2.5]
with σ = 1 plus a constant feature, and the regularization
parameter was set to ψ = 0.1. For P&L-2011 our features
were a grid of 3 × 3 × 3 RBFs over the joint state-action
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space plus a constant feature.

Using 8 resolution bits for each action variable we have
216 (65,536) discrete actions, which brings us well beyond
the reach of exhaustive enumeration (thus we were unable
to obtain results using RALP with the V-value function).
With the approach presented in this paper we can reach a
decision in just 16 comparisons. Figure 2 (c) shows the
total accumulated reward as a function of the number of
training episodes. Each episode was allowed to run for a
maximum of 30,000 steps, corresponding to 5 minutes of
continuous balancing in real-time. In this case regulariza-
tion didn’t seem to offer an advantage, however with both
H-ALP and H-RALP we achieve very good performance.
H-function based controllers were almost always able to
balance the bicycle for the entire time with as little as 50
training episodes. For our choice of discount factor P&L-
2011 with LSPI did not perform competitively. For a lower
discount factor (0.9), P&L performs on par with H-ALP.

7. Conclusion and future work
In this paper we have presented a unified view over V and
Q functions and arrived at a new space-efficient represen-
tation, where action selection can be done exponentially
faster, without the use of a model. We have described how
to calculate this new value function efficiently via approxi-
mate linear programming and experimentally demonstrated
the effectiveness of the proposed approach.

As mentioned in section 4.5 we can use redundant bits to
improve our performance even in the presence of errors.
Error correcting codes is a subject that has been extensively
studied in the field of telecommunications systems as well
as in the context of supervised learning. Capitalizing on
that knowledge is an exciting direction for future research.

This paper assumes that learning the value function of an
MDP is a solved problem. While for small numbers of state
variables this is arguably true, the performance of current
algorithms quickly degrades as the number of state vari-
ables grows. The number of state variables that our learn-
ing algorithm can handle, quickly becomes the limiting fac-
tor on the size of the problems we can negotiate. Often-
times the problem isn’t so much the algorithm that we are
using, but our choice of features. As the dimensionality of
the state space grows, picking features by hand is no longer
an option. Although we have already used RALP in our ex-
periments, investigating the particulars of feature selection
for the H function is a natural next step.

Finally we should point out that while we have used batch-
mode learning in our experiments, our scheme could also
be used in an online setting. An interesting future research
direction is investigating how we can exploit the properties
of the H function to guide exploration.
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