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Abstract

Existing algorithms for joint clustering and
feature selection can be categorized as ei-
ther global or local approaches. Global meth-
ods select a single cluster-independent sub-
set of features, whereas local methods select
cluster-specific subsets of features. In this pa-
per, we present a unified probabilistic model
that can perform both global and local fea-
ture selection for clustering. Our approach is
based on a hierarchical beta-Bernoulli prior
combined with a Dirichlet process mixture
model. We obtain global or local feature se-
lection by adjusting the variance of the beta
prior. We provide a variational inference al-
gorithm for our model. In addition to simul-
taneously learning the clusters and features,
this Bayesian formulation allows us to learn
both the number of clusters and the number
of features to retain. Experiments on syn-
thetic and real data show that our unified
model can find global and local features and
cluster data as well as competing methods of
each type.

1. Introduction

Clustering is the process of grouping objects together
based on some notion of similarity. Similarity is typi-
cally defined by a metric or probabilistic model, which
are a function of the features or attributes describ-
ing the data samples. In many cases, particularly in
applications involving high dimensions, not all of the
features are needed: some are irrelevant and some are
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redundant. Irrelevant features are noisy features that
do not reveal cluster structures. Redundant features
are features that do not add cluster information to an
existing set of selected features. The goal of feature
selection is to remove both irrelevant and redundant
features in order to improve the performance, decrease
the complexity and improve the interpretability of a
learning algorithm.

One can reduce the dimensionality by either feature
transformation, where the original features are trans-
formed into a lower dimensional space, or by fea-
ture/variable selection, where one selects a subset of
the original set of features. Feature selection is desired
for applications where one wishes to know which of the
original features are important. Feature selection also
helps in avoiding having to collect or calculate features
that are not needed in the future.

Unsupervised feature selection algorithms can be cat-
egorized as filter, wrapper, and embedded methods.
Filter methods utilize some intrinsic properties of the
data to decide which features should be kept, with-
out running the learning (i.e., clustering) algorithm
that will ultimately be applied. For example, the filter
method in Talavera (1999) selects features based on
feature dependence; Manoranjan et al. (2002) chooses
features based on the entropy of distances between
data points; and He et al. (2006) picks features based
on the Laplacian score. Wrapper methods, on the
other hand, wrap feature search around the learning
algorithms that will ultimately be applied, and uti-
lize the learned results to select the features. Ex-
amples of wrapper methods are: Devaney & Ram
(1997) applied both sequential forward and backward
selection to search over the features, hierarchically
clustered the data using COBWEB, and evaluated
these feature subsets using the category utility metric;
Vaithyanathan & Dom (1999) proposed a probabilistic
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objective function based on a mixture of multinomials,
a Bayesian approach to estimate the parameters, and
distributional clustering to search candidate feature
subsets; Dy & Brodley (2004) studied the issues in-
volved in developing wrapper methods and examined
maximum likelihood and scatter separability criteria
for selecting features, mixture of Gaussians for cluster-
ing, and sequential forward search; Kim et al. (2002)
applied an evolutionary local selection algorithm to
search over the features and numbers of clusters on two
clustering algorithms: K-means and Gaussian mixture
clustering (with diagonal covariances); and, C. Maugis
& Martin-Magniette (2009) select relevant features us-
ing backward stepwise selection for Gaussian mixture
models and an integrated likelihood criterion approx-
imated by the Bayesian information criterion to guide
the search for features and to determine the number
of clusters.

Wrapper approaches often lead to better performance
compared to a filter approach for a particular learn-
ing algorithm. However, wrapper methods are more
computationally expensive since one needs to run the
learning algorithm for every candidate feature sub-
set. Embedded methods lie somewhere between filter
and wrapper approaches. They incorporate feature
selection and clustering in one objective function for-
mulation or algorithm. The approach in Law et al.
(2002) is an embedded method. They added feature
saliency, a measure of feature relevance, as a miss-
ing variable to a probabilistic objective function. To
add feature saliency, they assumed that the features
are conditionally independent. They then derived an
expectation-maximization (EM) algorithm (Dempster
et al., 1977) to estimate the feature saliency for a mix-
ture of Gaussians. They are able to find the features
and clusters simultaneously through a single EM run.
Constantinopoulos et al. (2006); Chang et al. (2005)
adopt the feature saliency model of Law et al. (2002);
however, they provide a Bayesian formulation. Con-
stantinopoulos et al. (2006) uses variational inference
and Chang et al. (2005) applies expectation propaga-
tion to learn the model. The approach we introduce
in this paper is an embedded method.

Another way to group feature selection algorithms for
unlabeled data is based on whether or not the method
selects global or local features. Global methods se-
lect a single set of features, whereas local methods
select subsets of features, one subset for each clus-
ter (where features in different clusters can vary).
All the approaches mentioned in the previous para-
graph are global methods. Local methods include co-
clustering or bi-clustering algorithms (Hartigan, 1972)
and subspace clustering algorithms (Fu & Banerjee,

2009). These methods try to maximize the coherence
exhibited by a subset of instances on a subset of fea-
tures. In microarray analysis, one may want to find
the genes that respond similarly to the environment
conditions; in text clustering, one may wish to consider
the co-occurence of words and documents. Typical ap-
proaches to co-clustering alternate clustering the rows
and the columns to find the co-clusters (Banerjee et al.,
2004; Cho et al., 2004; Yang et al., 2002). Recently,
Shafiei & Milios (2006) and Sohn & Xing (2009) intro-
duce Dirichlet process mixtures for co-clustering and
Fu & Banerjee (2009) provides a Bayesian formulation
for discovering subspace clusters that allow overlap.

In this paper, we provide a unified probabilistic model
that can be set to perform global or local feature se-
lection by adjusting the variance of a beta variate in a
beta-Bernoulli hierarchical prior on the features. We
use this beta-Bernoulli prior in the context of a Dirich-
let process mixture for clustering. We provide a varia-
tional inference method for our probabilistic Bayesian
formulation. Such a model allows us to simultane-
ously learn the clusters and important features. Ad-
ditional benefits of our model are: (1) as a Bayesian
formulation, we can automatically learn the number
of clusters and the number of features to keep; (2) our
model is not limited by the conditional feature inde-
pendence assumption (we allow dependencies between
features), contrary to existing global embedded feature
selection probabilistic formulations (Law et al., 2002;
Constantinopoulos et al., 2006; Chang et al., 2005);
and (3) the features in each cluster in our local feature
selection model need not be disjoint, which might be
desirable in some applications. Experiments on syn-
thetic and real data show that our unified model can
find global and local features and cluster data as well
as competing methods of each type.

2. Review of Dirichlet Process Mixtures

Let xn ∈ RD represent a data point. Consider a col-
lection of N xn data points, X = [x1,x2, . . . ,xN ]T ,
where (·)T is the transpose of a matrix. Clustering can
be modeled by a finite mixture model (McLachlan &
Basford, 1988). This model assumes that data are gen-
erated from a mixture of component density functions,
where each component density, p(xn|θk) represents a
cluster

p(xn) =

K∑
k=1

πkp(xn|θk), (1)

where p(xn|θk) denotes a density function for cluster
k with parameters θk, K is the number of clusters,
and πk is the mixing proportion or prior probability of
component k, subject to the constraints: πk ≥ 0 and
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k=1 πk = 1.

Instead of fixing K, we use a Dirichlet process mix-
ture (DPM) framework to infer the number of clusters.
The DPM can be obtained from a stick-breaking con-
struction as follows (Sethuraman, 1994). First draw
an independent collection of beta random variables,
vk ∼ Beta(1, α), for k = 1, 2, . . . ,∞, and form new

variables πk = vk
∏k−1
j=1 (1 − vj). Define a cluster in-

dicator variable, zn, which is drawn from a discrete
distribution parameterized by π, zn = Discrete(π):

p(zn) =

∞∏
k=1

π
{zn=k}
k (2)

If the cluster indicator zn for the data point xn is equal
to k, then the data point is modeled as generated by
a distribution parameterized by a parameter θk. In
our experiments, we use a Gaussian cluster compo-
nent model for real-valued features and a multinomial
component model for text data. Finally, the parame-
ters for each cluster component are drawn from a con-
jugate prior distribution with parameters η. Figure 1
provides a graphical model representation of the DPM.

Z V α

X θ η

∞N

Figure 1. Graphical model of the stick-breaking construc-
tion for a Dirichlet process mixture.

3. Unified Global and Local
Unsupervised Feature Selection

In the global case, our goal is to select the relevant fea-
tures which reveals interesting cluster structure. We
use a Dirichlet process mixture to learn the cluster
structure as described in Section 2. We enable feature
selection by adding a latent vector variable y ∈ RD
whose elements, yd, are either one or zero, indicat-
ing whether feature d is selected or not. The selected
features are then the features utilized to form the mix-
ture model. The unselected or noisy features are as-
sumed to be generated from a single cluster distribu-
tion. We assume an isotropic Gaussian noise model
for the Gaussian component case and a flat multino-
mial noise model for the multinomial case, similar to
that in Law et al. (2002) and Vaithyanathan & Dom
(1999).

In the local case, our goal is to select the relevant fea-
tures describing each cluster component. We now use
a latent feature indicator matrix Y ∈ RK×D whose el-
ements, ykd, are either one or zero indicating whether
feature d is selected to model cluster component k or
not. Features that are not selected in any cluster com-
ponent are assumed to come from a Gaussian or multi-
nomial noise distribution accordingly.

In our unified global and local feature selection model,
we utilize the latent feature indicator matrix Y ∈
RK×D. Since ykd is either one or zero, we assume that
it is generated from a Bernoulli distribution with pa-
rameter λd capturing the probability of selecting fea-
ture d in cluster k. In turn, λd is generated from a
beta prior with parameters m and ρ, where m is the
mean of a beta distribution and ρ is the variance. m
controls the average percentage of features that will be
selected in each cluster. One can allow mk to be differ-
ent for each cluster k. Here, for the sake of simplicity,
we use the same m for all clusters in our experiments.
We further generate m from a beta distribution with
hyperparameters γ and β. We enable global or local
feature selection by adjusting the variance ρ param-
eter. For the global case, we set γ and β so that m
will be distributed from a U-shaped beta distribution
as shown in Figure 2a to push m to either zero or one.
When ρ is low, the beta distribution will have a shape
either as shown in Figure 2b (when m ≈ 1) or in Fig-
ure 2c (when m ≈ 0). Because the variance of λd is
low, feature d will be either selected or not together in
all clusters. For the local case, the shape of the beta
distribution in m is not critical. The key thing is to set
ρ high, leading to a beta distribution for λd to have a
broad distribution as shown in Figure 2d, allowing λd
to be somewhere between zero and one. This allows
local feature selection, enabling zkd to select features
in each cluster.
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Figure 2. How to enable global or local feature selection
through the parameters of the beta distribution. (a) Global
case: U-shaped beta for m. (b-c) Global case: beta distri-
bution for λd with the variance ρ set to a low value and
m ≈ 1 (b) and m ≈ 0 (c). (d) Local case: example beta
distribution for λd with variance ρ set to a high value.
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The cluster component densities p(xn|θk) are then
based only on the features whose ykd = 1. We sum-
marize the generative process as follows:

1. Generate m from a beta distribution, m ∼
Beta(γ, β).

2. λd is the probability of a feature to be selected. It
is generated from a beta distribution with mean
m and variance ρ. Setting ρ small leads to global
feature selection and ρ large enables local feature
selection.

3. ykd is a feature indicator variable, identifying
whether feature d is selected in cluster k. ykd ∼
Bernoulli(λd).

4. Generate independent variables {vk ∼
Beta(1, α)}, and form stick-breaking variables

{πk} where πk = vk
∏k−1
j=1 (1− vj).

5. Generate the cluster indicator variable, zn, from
a discrete distribution parameterized by π.

6. Generate θk, the parameters for cluster k, from
the respective conjugate prior for our component
density model (normal-inverse Wishart for the
Gaussian and Dirichlet for the multinomial case),
where η is the hyperparameter for this prior.

7. Let xn,k = (xnd : ykd = 1) denote the nth data
sample based only on the features that are se-
lected for cluster k (i.e., ykd = 1). Generate
the samples, xn,k from a component density (e.g.,
Gaussian or multinomial) with parameters θk as-
sociated for cluster k.

8. Generate θnoise, the parameter for the noise dis-
tribution (isotropic Gaussian or flat multinomial)
from its respective conjugate prior with parame-
ters ηnoise. Generate the unselected features from
the noise distribution with parameter θnoise.

The graphical model for our unified unsupervised
global and local feature selection model is shown in
Figure 3. The joint probability distribution is:

p(X, θk, θnoise, zn, π, ykd, λd,m)

= p(X|θk, θnoise, zn, ykd)p(θk)p(θnoise)

p(zn|π)p(π|α)p(ykd|λd)p(λd|m, ρ)p(m)

=

N∏
n=1

p(xn|θk, zn, ykd = 1)

K∏
k=1

p(θk)p(θnoise)

N∏
n=1

p(zn|π)p(π)

K∏
k=1

D∏
d=1

p(ykd|λd)

D∏
d=1

p(λd|m, ρ)p(m)

N∏
n=1

p(xn|θnoise, ykd = 0)

γ m β

ρ λ d
D

y
kd θ k

η

v

α

∞
η
noise

θnoise zn
N

Xn

k

Figure 3. Graphical model for our unified global and local
unsupervised feature selection.

4. Variational Inference

It is computationally intractable to evaluate the
marginal likelihood, p(D) =

∫
p(D,φ)dφ, where

φ = {φi} represents the set of all parameters
and latent variables. Variational methods allow
us to approximate the marginal likelihood by max-
imizing a lower bound, L(Q), on the true log
marginal likelihood (Wainwright & Jordan, 2006).

ln p(D) = ln
∫
p(D,φ)dφ = ln

∫
Q(φ)p(D,φ)Q(φ) dφ ≥∫

Q(φ) ln p(D,φ)
Q(φ) dφ = L(Q(φ)), using Jensen’s inequal-

ity. The difference between the log marginal p(D) and
the lower bound L(Q) is the Kullback-Leibler diver-
gence between the approximating distribution Q(φ)
and the true posterior p(φ|D). The idea is to choose a
Q(φ) distribution that is simple enough that the lower
bound can be tractably evaluated and flexible enough
to get a tight bound. Here, we assume a distribu-
tion for Q(φ) that factorizes over all the parameters:
Q(φ) =

∏
iQi(φi). The Qi(φi) that minimizes the KL

divergence over all factorial distributions is

Qi(φi) =
exp 〈lnP (D,φ)〉l 6=i∫

exp 〈lnP (D,φ)〉l 6=i dφj
(3)

where 〈·〉l 6=i is the expectation of φi with respect to
other variables. We also apply the variational inference
result for Dirichlet process mixture from Blei & Jordan
(2006). The components of the approximate posterior
Qi(·) are given as follows:

Q(vk) ∼ Beta(vk|γk,1, γk,2) (4)

Q(zn) ∼ Discrete(zn|ψ) (5)

Q(ykd) ∼ Bernoulli(pykd
) (6)

Q(λd) ∼ Beta(αd, βd) (7)

Q(m) ∼ Beta(αm, βm) (8)
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where 〈·〉 is an expectation operator with respect to
the approximation Q(·).

We obtain the following update equations:

1. For vk, we have the update equation from Blei &
Jordan (2006):

γk,1 = 1 +
∑
n

〈ψn,k〉 (9)

γk,2 = α+
∑
n

K∑
j=K+1

〈ψn,j〉 (10)

2. The update equation for ψn,k is the same as in
the stick-breaking construction for DPM:

ψn,k ∝ 〈πk〉P (Xn|〈θk〉) (11)

That is, every possible output is evaluated from
Eq. (11) and the weight is normalized to sum to
one.

3. For pykd
,

L(pykd
)

= pykd
ln[P (X|〈θk〉, 〈z〉, ykd = 1)]

+(1− pykd
) ln[P (X|〈θnoise〉, 〈z〉, ykd = 0)]

+pykd
ln〈λd〉+ (1− pykd

) ln(1− 〈λd〉)
−(pykd

ln pykd
+ (1− pykd

) ln(1− pykd
))

+constant

The partial derivative of L(pykd
) with respect to

pykd
is:

∂L(pykd
)

∂pykd

= ln[p(X|〈θk〉, 〈z〉, ykd = 1)]

− ln[p(X|〈θnoise〉, 〈z〉, ykd = 0)]

+ lnλd − ln(1− λd)
−[ln pykd

− ln(1− pykd
)] (12)

Let

Pe = exp {ln[p(X|〈θk〉, 〈z〉, ykd = 1)]

− ln[p(X|〈θnoise〉, 〈z〉, ykd = 0)]

+ lnλd − ln(1− λd)} (13)

Then:

pykd
=

Pe
1 + Pe

(14)

is the update equation for pykd
.

4. For λd, since we are using a conjugate prior, we
obtain a closed-form update:

αd =
∑
d

〈pykd
〉+ αm (15)

βd =
∑
d

(1− 〈pykd
〉) + βm (16)

5. For m, we want to find the expectation
of the following function based on Q(m),

ln p(D,φ) = ln Γ(m−m
2−ρ
ρ ) − ln Γm2−m3−mρ

ρ −
ln Γm−2m2+m3−ρ+mρ

ρ +
∑ m2−m3−mρ−ρ

ρ ln〈λd〉 +∑ m−2m2+m3−2ρ+mρ
ρ ln(1 − 〈λd〉) + constant.

Since the optimal m that maximizes ln p(D,φ)
cannot be found in closed form, we obtain the so-
lution by gradient ascent subject to the constraint
m ∈ (0.5−

√
0.25− ρ, 0.5 +

√
0.25− ρ).

We provide two common observation probability mod-
els for modeling cluster components in mixture models:
the Gaussian component and the multinomial com-
ponent model. The Gaussian model is widely used
for real-valued data where samples are assumed to be
variations of some prototype. A multinomial model is
appropriate for discrete data, such as text.

Gaussian Component. Assuming p(xn,k|θk)
comes from a Gaussian distribution, our parameter
vector θk comprises the mean µk and covariance Σk
of our Gaussian distribution in cluster k. We apply
a normal-inverse Wishart distribution, the conjugate
prior to a Gaussian distribution as our prior p(θk|η).
The hyperparameter η is a vector composed of the
mean m0, covariance S0, inverse scale matrix Ψ0, and
parameter p0. Applying a variational approximation,
we have Q(θk) for each cluster k as:

Ψ
d/2
k

(2π)d/2|Σk|1/2
exp(−1

2
(µk −mk)TΨkΣ−1k (µk −mk))

|Sk|pk/2|Σk|−(pk+d+1)/2 exp(− 1
2 trace(SkΣ−1k ))

2pkd/2πd(d−1)/4
∏d
j=1 Γ((pk + 1− j)/2)

where mk, Sk, Ψk and pk are the parameters of the
posterior normal-inverse Wishart distribution for clus-
ter k.

The update equations are:

mk =
nkx̄k + Ψ0m0

nk + Ψ0
(17)

Ψk = Ψ0 + nk (18)

pk = p0 + nk (19)

Sk = S0 +
∑
xi∈k

(xi − x̄k)(xi − x̄k)T

+
nkΨ0

nk + Ψ0
(x̄k −m0)(x̄k −m0)T , (20)

where x̄k is the sample mean of x in cluster k in the
selected features and nk are the number of samples
in cluster k. The parameters µk and Σk are updated
by their expected values under the variational distri-
bution. The Gaussian noise parameters are updated
similarly.
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Multinomial Component. If p(xn,k|θk) comes
from a multinomial distribution, our parameter θk
is from a multinomial distribution with dimension q,
where q is the number of selected features for that
cluster. The prior η is the conjugate Dirichlet dis-
tribution with the same dimension and the Dirichlet
distribution is set to uniform with parameter 1. Since
p(xn,k|θk) = Mult(pk) and p(θk|η) = Dirichlet(η),
the update equation is: pk = η +

∑
nk, where nk is

the number of samples in cluster k. The multinomial
noise parameters are updated similarly.

5. Experiments

In this section, we investigate whether or not our pro-
posed algorithm can simultaneously find reasonable
clusters and features, both global and local. We test
our algorithm on synthetic and real data.

In our experiments we set the hyperparameters as fol-
lows: γ and β for the beta distribution is set to 1,
α for stick-breaking construction for the Dirichlet pro-
cess mixture is set to 5. When we want to achieve local
feature selection, we set ρ = 0.2 and we set ρ = 0.01 to
achieve global feature selection. We normalize all our
data such that each dimension is zero-centered and the
variance is one.

5.1. Synthetic Data

We first test our algorithm on synthetic data. We gen-
erated two synthetic data sets: one to test local feature
selection and the other for global feature selection. In
both cases we generated data with 300 samples and 30
features, with each cluster having 100 samples. Each
of the three clusters have low variance (here we set
the variance for each feature to one). We assumed an
isotropic Gaussian noise distribution for the noisy fea-
tures and set the variance for each feature to some high
value (in particular we set the variance of each feature
to ten). For the local case (Synthetic Data 1), the first
ten features are used to generate cluster one, the last
fifteen features are used to generate the second cluster,
and the third cluster is generated using features five to
25. Note that we intentionally allowed feature overlap.
For the global case (Synthetic Data 2), the first fifteen
features are used to generate the three clusters. Fig-
ure 4 displays the data matrix with the value for each
feature in sample n coded in grayscale (lowest value in
black and highest value in white).

Figure 4 shows tile plots, which are plots showing the
learned partitioning of the features and clusters dis-
covered by our algorithm. Tiles with the same color
indicate which features and which samples belong to

Figure 4. The top left figure is the data matrix for Syn-
thetic Data 1 (local case) and the top right is Synthetic
Data 2 (global case). The bottom left figure is the latent
labeling obtained by our algorithm for local feature selec-
tion and the bottom right figure is the label obtained for
global feature selection. We can see that all three clusters
and the corresponding features are identified in both cases.

the same cluster. Black indicates unselected features.
Notice from the figures on the left and right that we
are able to learn the latent partitioning (tile) struc-
tures of Synthetic Data 1 and 2 correctly and perform
local and global feature selection respectively.

In general, local feature selection is more flexible and
can learn global features if the data has that structure.
In real applications, data often will not have exactly a
global feature subset structure. But one may be inter-
ested in solving the global feature selection problem
for reasons of interpretability or simplicity. A local
model will not prefer a solution where all the clus-
ters have the same q features over one with q features
in each cluster where the features in different clusters
may vary even when the model fit for the global one
is only slightly worse. Our model allows us to impose
this constraint to provide us with a global solution if
that is what the user/application requires. Moreover,
our model allows us to control the amount of sharing
as well.

5.2. Real World Data

In this section, we test our algorithm on a set of real
benchmark data. We use the chart, face, webKB,
digits, mini-newsgroups, Reuters and glass data sets
from the UCI Machine Learning Repository (Blake &
Merz, 1998), a high-resolution computed tomography
(HRCT) data (Dy & Brodley, 2004) and a yeast gene
data (Cherry et al., 1997) in our experiments. Chart
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Table 1. NMI results on real data.
HFS(G) Law DPM HFS(L) Cc

Chart 0.615 ( 8) 0.581 (4) 0.331 (7) 0.681 (7) 0.712 (6)
Hrct 0.482 (11) 0.363 (6) 0.207 (12) 0.482 (11) 0.479 (8)
Faces 0.627 (16) 0.454 (4) 0.481 (12) 0.569 (12) 0.547 (4)

WebKB 0.183 ( 7) 0.158 (1) 0.118 (9) 0.258 (6) 0.214 (4)
Digits 0.258 (13) 0.254 (6) 0.176 (5) 0.354 (11) 0.364 (10)

miniNG 0.361 (21) 0.159 (1) 0.129 (14) 0.582 (24) 0.546 (20)
Yeast 0.584 ( 6) 0.475 (2) 0.236 (3) 0.650 (2) 0.576 (2)

Reuters 0.276 ( 9) 0.153 (6) 0.042 (17) 0.389 (13) 0.407 (5)
Glass 0.730 ( 7) 0.572 (4) 0.413 (9) 0.731 (8) 0.783 (6)

has 600 samples with 60 features and six classes. Hrct
is a high-resolution computed tomography lung data
with eight disease classes, 1545 instances and 183 fea-
tures. This has a highly-skewed class distribution with
the largest class comprising 604 samples and the small-
est class containing only 30 samples. The Face data set
consists of 640 face images from twenty people. Each
person has 32 images with an image resolution of 32
by 30. WebKB is a webpage text data from four uni-
versities. We pre-processed the data by removing rare
words, stop words, and retaining only the words with
large variances. Digits has 11000 handwritten digit
images, and each image is represented by its 16 by 16
gray level pixel intensities resulting in 256 dimensions.
Each digit has 1100 instances. Newgroups is a text
data from online news groups. The original data has
20,000 instances in 20 classes. After removing classes
with small populations, we have 1300 documents with
800 words in 13 classes. We call this as our “miniNG”
data. We applied stemming and removed low vari-
ance words. Yeast is a two-class yeast gene data set
with 103 values of gene expression and 917 observa-
tions. Each observation is a binary indicator. Reuters
is a collection of documents that appeared on Reuters
newswire in 1987. The data after pre-processing has
8963 documents and 635 words in 7 classes. The class
with the largest population has 2423 instances and the
class with the lowest population has 338 instances. We
applied stemming and removed low variance words.
Glass data has nine attributes, six classes, and 214
samples.

We compare our approach to no feature selection, us-
ing a simple Dirichlet process mixture of Gaussians
(DPM-GMM). Moreover, we compare our global hier-
archical feature selection (HFS(G)) approach with the
method in Law et al. (2002), and our local hierarchical
feature selection (HFS(L)) to co-clustering (Cho et al.,
2004). We compare with Law et al. (2002) because it
is a global feature selection method that is also based
on a mixture model with Gaussians as cluster compo-

nents. However, unlike our model, they assume con-
ditional independence between the features; we model
the covariance between the features. Local feature se-
lection is widely applied in co-clustering applications.
There are several variants of co-clustering algorithms
based on the distance metric used. Here, we com-
pare with a co-clustering algorithm that is based on
the squared Euclidean distance of every column or row
vector to its column or row cluster mean vector. Both
Euclidean distance and Gaussian probability models
work on similar types of data.

We evaluate the performance of our clustering re-
sults based on the normalized mutual information
(NMI) (Strehl & Ghosh, 2002) between our clus-
tering results and the clusters based on the known
“true” class labels. We normalize the mutual informa-
tion, MI(X,Y ), to fall in the range [0, 1] by defining
NMI(X,Y ) = MI(X,Y )/

√
H(x)H(Y ), where H(x)

and H(Y ) denote entropy of X and Y . The higher
the value of NMI, the better the consistency of the
clustering result with respect to the labeled classes.
Note that we did not utilize the labels in learning our
clusters; we only use them for evaluation.

Table 1 presents the NMI results and the effective
number of clusters in parenthesis, (k). The results
show that our global hierarchical feature selection
(HFS(G)) is better than Law et al. (2002) and with-
out feature selection (DPM). Similarly, our local hier-
archical feature selection approach (HFS(L)) is gener-
ally better than co-clustering (Cc). Cc is not easy to
beat because it uses additional information (the num-
ber of clusters is assumed known and we use the num-
ber equal to the number of classes). Our HFS approach
automatically learns this number of clusters from data.

6. Conclusions

In this paper, we have introduced a unified probabilis-
tic formulation for both global and local unsupervised
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feature selection. We achieve feature selection by uti-
lizing a beta-Bernoulli hierarchical prior. We enable
global feature selection by setting the variance low and
local feature selection by setting the variance to a high
value. We use this global/local feature selection prior
in the context of a Dirichlet process mixture model to
simultaneously learn both features and clusters. We
developed a variational inference algorithm for approx-
imate posterior inference under this formulation. Re-
sults on synthetic and real data show that our model
can both discover clusters and features both globally
and locally.
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