
A Spectral Algorithm for Latent Tree Graphical Models

Ankur P. Parikh APPARIKH@CS.CMU.EDU
Le Song LESONG@CS.CMU.EDU
Eric P. Xing EPXING@CS.CMU.EDU

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract
Latent variable models are powerful tools for
probabilistic modeling, and have been success-
fully applied to various domains, such as speech
analysis and bioinformatics. However, parame-
ter learning algorithms for latent variable models
have predominantly relied on local search heuris-
tics such as expectation maximization (EM). We
propose a fast, local-minimum-free spectral al-
gorithm for learning latent variable models with
arbitrary tree topologies, and show that the joint
distribution of the observed variables can be re-
constructed from the marginals of triples of ob-
served variables irrespective of the maximum de-
gree of the tree. We demonstrate the performance
of our spectral algorithm on synthetic and real
datasets; for large training sizes, our algorithm
performs comparable to or better than EM while
being orders of magnitude faster.

1 Introduction
Latent variable models usually refer to probabilistic graph-
ical models that relate a set of observed variables to an ad-
ditional set of unobserved or hidden variables. Introducing
latent variables can greatly improve the flexibility of prob-
abilistic modeling, allowing it to address a diverse range of
problems with hidden factors such as in document analy-
sis (Blei et al., 2002), social network modeling (Hoff et al.,
2002), speech recognition (Rabiner & Juang, 1986) and
bioinformatics (Clark, 1990). Latent variables can also lead
to significant savings in model parametrization. By defin-
ing a joint model over observed and latent variables, the
marginal distribution of the observed variables is obtained
by integrating out the latent ones. This allows complex dis-
tributions over observed variables (e.g., clique models) to
be expressed in terms of more tractable joint models (e.g.,
tree models) over the augmented variable space.

Although latent variable models are very flexible and can

Appearing in Proceedings of the 28 th International Conference
on Machine Learning, Bellevue, WA, USA, 2011. Copyright 2011
by the author(s)/owner(s).

be represented in a compact way, learning the model pa-
rameters has predominantly relied on likelihood maximiza-
tion and local search heuristics such as expectation maxi-
mization (EM) (Dempster et al., 1977). Besides the prob-
lem of local minima, EM can require many iterations to
reach a prescribed training precision, and high dimensional
problems can dramatically slow down EM.

While EM tries to recover the full set of parameters in la-
tent variable models, in many applications it is the infer-
ence task that is most interesting. For instance, in speech
classification, we are interested in estimating the likelihood
of a test sequence under different models; in quantitative
finance, we are interested in predicting the price of one
stock given the prices of other stocks; or in biological anal-
ysis, we are interested in forecasting the expression of one
gene given perturbations to other genes. In all these exam-
ples, the inference task involves estimating either the joint
or conditional distribution of a set of observed variables.
Ideally, we want to avoid explicitly recovering the param-
eters related to latent variables (which leads to non-convex
problems), and proceed directly to the interested quantities.

Recently, Hsu et al. (2009) proposed a spectral algorithm
for learning hidden Markov models (HMM) which directly
estimates the joint distribution of the observed variables
without recovering the HMM model parameters. The major
computation of the algorithms involves a singular value de-
composition (SVD) of small marginal probability matrices
involving pairs of observed variables. Compared to EM,
this spectral algorithm does not have the problem of local
optima, and one can formally study its statistical proper-
ties. However, this spectral algorithm is specific to HMMs,
and it is not clear whether their techniques can be extend to
latent variable models with other topologies.

Mossel & Roch (2006) also proposed a spectral algorithm
for latent variable models which applies to arbitrary tree
topologies, but they made very restrictive assumptions: all
variables (observed and latent) have exactly the same num-
ber of states, and all conditional probability tables (CPT)
are invertible. Under these conditions, they derived a spec-
tral algorithm that can explicitly recovers all CPTs from
marginals of triples of observed variables. In many appli-
cations, however, latent variables can represent factors sim-

A Spectral Algorithm for Latent Tree Graphical Models

pler than the noisy observations, and the number of hidden
states can be smaller than that of the observed states. In
these cases, the CPTs are no longer invertible, which ren-
ders this spectral algorithm no longer applicable.

In this paper, we propose a novel spectral algorithm for la-
tent variable models with arbitrary tree topologies where
the number of hidden states is smaller than or equal to that
of the observed states. Instead of first explicitly learning
the model parameters and then performing inference, we
directly compute the joint distribution of the observed vari-
ables without explicitly recovering the model parameters.

We first express the joint distribution of the observed vari-
ables using 3rd order tensors, and then show that the com-
ponents in this tensor representation can be reconstructed
from the marginals of triples of observed variables. Given
a finite number of samples, our spectral algorithm estimates
the desired joint distributions by performing singular value
decompositions on a collection of small marginal proba-
bility matrices, and hence is very efficient. In addition to
estimating the joint distribution, our method can also re-
cover the marginal of any set of observed variables. We
conducted experiments on both synthetic and real world
data, and demonstrated the competitive performance of our
algorithm to EM. For large training sizes, our algorithm
performs comparably or better than EM while being orders
of magnitude faster.

2 Tensor Algebra
We first give a brief introduction to tensor algebra (for more
details, see Kolda & Bader (2009)). A tensor is a multidi-
mensional array, and its order is the number of dimensions,
also known as modes. In this paper, vectors (tensors of
order one) are denoted by boldface lowercase letters, e.g.,
a. Matrices (tensors of order two) are denoted by boldface
capital letters, e.g., A. Higher-order tensors (order three or
higher) are denoted by boldface caligraphic letters, e.g., T .
Scalars are denoted by lowercase letters, e.g., a.

Subarrays of a tensor are formed when a subset of the in-
dices is fixed. Particularly, a fiber is defined by fixing ev-
ery index but one. Fibers are the higher-order analogue of
matrix rows and columns. A colon is used to indicate all
elements of a mode. Thus, the jth column of a matrix A
is A(:, j), and the ith row of A is A(i, :). Analogously,
the mode-n fiber of a N th order tensor T is then denoted
as T (i1, i2, . . . , in−1, :, in+1, . . . , iN). Fibers can be used
to construct higher order tensors from lower order ones.
For instance, a third order tensor A which is diagonal in
mode-2 and 3 can be constructed from a matrix B by set-
ting T (:, i, i) = B(:, i).

Tensors can be multiplied together. For matrices and vec-
tors, we will use standard notation for their multiplica-
tions, e.g., Ba and AB. For tensors of higher order, we

are particularly interested in multiplying a tensor by matri-
ces and vectors. The n-mode matrix product is the multi-
plication of a tensor with a matrix in mode n of the ten-
sor. Let T ∈ RI1×I2×...×IN be an N th order tensor and
A ∈ RJ×In be a matrix. Then

T ′ = T ×n A ∈ RI1×...In−1×J×In+1×...×IN , (1)
where the entries T ′(i1, . . . , in−1, j, in+1, . . . , iN) are de-
fined as

∑In
in=1 T (i1, . . . , in, . . . , iN)A(j, in). We will

further introduce two useful properties of n-mode matrix
product. First, for distinct modes in a series of multiplica-
tions, the order of the multiplication can be exchanged

T ×n A×m B = T ×m B ×n A (m 6= n). (2)
Second, the matrices can be combined first, if the modes in
a series of multiplications are the same

T ×n A×n B = T ×n (BA). (3)
We note that n-mode matrix product does not change the
order of a tensor, but the size of the tensor may change.

Multiplication of a tensor with a vector in mode n of
the tensor is called n-mode vector product. Let T ∈
RI1×I2×...×IN and a ∈ RIn . Then

T ′ = T ×̄n b ∈ RI1×...In−1In+1×...×IN (4)
where the entries T ′(i1, . . . , in−1, in+1, . . . , iN) is defined
as
∑In
in=1 T (i1, i2, . . . , in, . . . , iN)a(in). We note that n-

mode vector product actually reduces the order of the ten-
sor, i.e., T ′ is order N − 1 if T is order N . Using n-mode
vector product, we can turn a diagonal operation on vector-
matrix product into tensor multiplications, i.e.,

diag(a>B) = T ×̄1 a, where T (:, i, i) = B(:, i). (5)

3 Latent Tree Graphical Models (LTMs)
In this paper, we will focus on discrete latent variable mod-
els where the conditional independence structures are spec-
ified by a tree. Furthermore, we follow the convention that
uppercase letters denote random variables (e.g., Xi) and
lowercase letters their instantiations (e.g., xi). A latent tree
model defines a joint probability distribution over a set of
O observed variables O = {X1, . . . , XO} and a set of H
hidden variables H = {XO+1, . . . , XO+H}. For simplic-
ity, we assume that all observed variables have SO states
and all hidden variables have SH states, and SO ≥ SH .
The complete set of variables is denoted by X = O ∪H .

The joint distribution of X in a latent tree model is fully
characterized by a set of conditional probability tables
(CPTs). More specifically, we can select an arbitrary (ob-
served or latent) node in the tree as the root, and sort the
nodes in the tree in topological order. Then the set of CPTs
between nodes and their parents P[Xi|Xπi] are sufficient to
characterize the joint distribution (the root node Xr has no
parent, i.e., P[Xr|Xπr

] = P[Xr]),

P[x1, . . . , xO+H] =
∏O+H

i=1
P[xi|xπi]. (6)

Compared to tree models which are defined solely on ob-

A Spectral Algorithm for Latent Tree Graphical Models

Xj1Xj1

XiXi

Xj4Xj4

Xj2Xj2

Xj3Xj3

Cyclic OrderCyclic Order

Rj2=Lj1Rj2=Lj1

Rj1=Lj4Rj1=Lj4
Rj3=Lj2Rj3=Lj2

Lj3=Rj4Lj3=Rj4

Mj1Mj1

Mj3Mj3

Mj2Mj2

Mj4Mj4

Mi = T i ¹£1(Mj1Mj2Mj3Mj41i)Mi = T i ¹£1(Mj1Mj2Mj3Mj41i)

X¼i
X¼i

X½i
X½i

X¸i
X¸i

Âi = fXj1;Xj2;Xj3;Xj4gÂi = fXj1;Xj2;Xj3;Xj4g

J¸i
J¸i

Jj4Jj4

Xi¤ = Xj2Xi¤ = Xj2

Figure 1. Notation for latent tree models. After rooting the tree
and sorting the nodes in topological order, we denote the parent
of a node Xi as Xπi , and the set of children of Xi as χi. We
order the sibling of Xi in a clockwise cyclic order, such that the
left (next) sibling of Xi is denoted as Xλi , and the right (previ-
ous) sibling as Xρi . We denote the subtree induced by Xi and its
descendants as Ti, and an observed variable in Ti as Xi∗ . We
note that there may be multiple observed variables in Ti, and we
will use Xi∗ to refer to either of them. Similarly, we will also use
Xλ∗i and Xρ∗i to denote observed variables at subtrees rooted at
Xλi and Xρi respectively. Last, we use shaded nodes to denote
observed variables, and un-shaded ones for hidden variables.

served variables (e.g., models obtained from Chow & Liu
(1968) algorithm), latent tree models encompass a much
larger classes of models, allowing more flexibility in mod-
eling observed variables. This is evident if we compute the
marginal distribution of the observed variables by summing
out the latent ones,

P[x1, . . . , xO] =
∑
xO+1

. . .
∑
xO+H

∏O+H

i=1
P[xi|xπi

]. (7)

This expression leads to complicated conditional indepen-
dence structures between observed variables depending on
the tree topology. In other words, latent tree models allow
complex distributions over observed variables (e.g., clique
models) to be expressed in terms of more tractable joint
models over the augmented variable space. This is a signif-
icant saving in model parametrization. We also note that for
latent tree models, observed variables can be internal nodes
as well as leaf nodes, allowing diverse structures, such as
cliques connected by trees, for observed variables. Other
notation related to the topological ordering of the nodes in
a latent tree model are illustrated in Figure 1.

4 Tensor Representation for LTMs
The computation of the marginal distribution of the ob-
served variables in (7) can be expressed in terms of ten-
sor multiplications. Basically, the information contained
in each tensor will correspond to the information in a con-
ditional probability table (CPT) of the model and the ten-
sor multiplications implement the summations. However,

there are multiple ways of rewriting (7) using tensor nota-
tion, and not all of them provide intuition or easy derivation
to a spectral algorithm. In this section, we will derive a
specific representation of latent tree models which requires
only tensors up to 3rd order and provides us a basis for
deriving a spectral algorithm. For simplicity, we assume
that all internal nodes of the tree correspond to latent vari-
ables and leaf nodes correspond to observed variables. The
general case where observed variables can appear as both
internal and leaf nodes can be found in the supplementary.

Root. We associate the root node Xr with the marginal
probability vector r = P[Xr] of Xr. Here we use P[Xr]
to denote a vector where its kth dimension is defined
as P[Xr = k] and k ranges over all possible assign-
ments of Xr. Similarly, we use P[Xi, Xj], P[Xi|Xj], and
P[Xi, Xj , Xk] to denote the joint probability matrix, con-
ditional probability matrix and joint probability tensor re-
spectively, and we denote P[Xi, xj , Xk] as a slice (or a
fiber) of the tensor when the middle variable is fixed to xj .

Internal nodes. We associate each internal node Xi with
a 3rd order tensor T i related to the conditional probability
matrix between Xi and its parent Xπi

. This tensor is di-
agonal in its 2nd and 3rd mode, and hence its nonzero en-
tries can be accessed by two indices k and l. Furthermore,
T i(k, l, l) = P[Xi = k|Xπi

= l]. The reason for defining
this tensor is to implement the marginalization operation
over variable Xi using tensor vector multiplications, and
return the result as a diagonal matrix. Let v = P[xj |Xi]
be a likelihood vector. Then the mode-1 vector product,
T i ×̄1 v, results in a diagonal matrix with nonzero en-
tries Mi(l, l) =

∑
k P[xj |Xi = k]P[Xi = k|Xπi

= l] (or
P[xj |Xπi

= l]).

Leaf nodes. We associate each leaf node xi, which is al-
ways observed, with a diagonal matrix Mi related to the
likelihood of xi, i.e., Mi(l, l) = P[xi|Xπi

= l]. Further-
more, we let this Mi be the messages passed from the leaf
nodes to their parents. We can show that the marginal prob-
ability of the leaf nodes (equation (7)) can be computed re-
cursively using a message passing algorithm (Pearl, 1988):
each node in the tree sends a message to its parent accord-
ing to the reverse topological order of the nodes, and the
final messages are aggregated in the root to yield the de-
sired quantity.

Message updates. The outgoing message from an internal
nodeXi to its parent can be computed as (also see Figure 1)

Mi = T i ×̄1 (Mj1Mj2 . . .MjJ 1i) (8)
where each Mj (a diagonal matrix) is an incoming mes-
sage from a child, and j1, j2, . . . , jJ ∈ χi range over all
children of Xi (J = |χi|). The 1i is a vector of all ones
with suitable size, and it is used to reduce the incoming
messages (all are diagonal matrices) to a single vector. The
computation in (8) essentially implements the message up-

A Spectral Algorithm for Latent Tree Graphical Models

date we often see in ordinary message passing algorithm
(Pearl, 1988),

mi(xπi
) =

∑
xi

P[xi|xπi
]mj1(xi) . . .mjJ (xi), (9)

where mj(xi) represents incoming messages to Xi. The
Mj1Mj2 . . .MjJ 1i corresponds to aggregating all in-
coming messages mj1(xi) . . .mjJ (xi), and the T i ×̄1 ∗
corresponds to the summation

∑
xi
P[xi|xπi

] ∗. The char-
acteristic feature of our update in (8) is that we use 3rd
tensors to ensure that given incoming messages as diago-
nal matrices, the outgoing message is also a diagonal ma-
trix, such that message aggregation can be carried on recur-
sively.

Marginal probability. At root node, all incoming mes-
sages are combined to yield the final joint probability,

P[x1, . . . , xO] = r> (Mj1Mj2 . . .MjJ 1r) , (10)
where r>∗ operation basically marginalizes out the root
variables, i.e.,

∑
xr

P[xr]∗. Note that in both (8)
and (10), we require that the message multiplications
Mj1Mj2 . . .MjJ are ordered according to the cyclic or-
der of the siblings illustrated in Figure 1.

5 Spectral Algorithm for LTMs
The drawback of the representations in (8) and (10) is that
they require the exact knowledge of the parameters (CPTs)
associated with latent variables, but none of them are avail-
able in training. If we are not interested in recovering these
model parameters but only in the marginal probability of
the observed variables (i.e., inference), we may not need
to recover the transition tensors T , the messages M and
the root marginal r exactly. Our key observation from (8)
and (10) is that as long as we can recover them up to some
invertible transformations, we will still be able to compute
the marginal probability correctly.

For example, we can introduce a pair of matrices, R and L
(RL−1 = I), between Mj1 and Mj2 in (10), i.e.,

P[x1, . . . , xO] = r>
(
Mj1RL−1Mj2 . . .MjJ 1r

)
,

without changing the final marginal probability. This is
interesting because the transformed representation (Mj1R
and L−1Mj2) provides us an additional degree of freedom
for algorithm design: we want to choose R and L from the
large class of invertible matrices, such that the transformed
representation can be recovered from observed quantities
without the need for accessing the latent variables.

We will show that such R and L can be constructed from
singular vectors U of the joint probability matrices of cer-
tain pairs of observed variables. Given a finite number of
samples, this leads us to a very efficient algorithm for esti-
mating the joint probability P[x1, . . . , xO]: the main com-
putation only involves a sequence of singular value decom-
positions of empirical pairwise joint probability matrices.
Furthermore, our algorithm’s sample complexity will de-

pend on the singular values of the pairwise joint probabil-
ity matrices. The dependence of our method on the spectral
properties of the model give the name “spectral algorithm”.

5.1 Transformed Tensor Representation
More specifically, we transform each message Mj by two
invertible matrices Lj and Rj , one from its left and one
from the right (see Figure 1 for illustration). Then the mes-
sage update in (8) can be re-written as

Mi = T i ×̄1 (11)
(Lj1L

−1
j1

Mj1Rj1L
−1
j2

Mj2Rj2 . . .L
−1
jJ

MjJRjJR
−1
jJ

1i).

We further require that Rj1 = Lj2 , Rj2 = Lj3 etc.
such that the transformations cancel out with each
other, e.g., Rj1L

−1
j2

= I . Since the message multi-
plications Mj1Mj2 . . .MjJ are ordered according to the
cyclic order of the siblings, this is equivalent to requiring
that Rj of Xj be equal to matrix Lρj of its right sibling
Xρj , i.e., Rj = Lρj ; similarly, we require Lj = Rλj .

The same can be done with T i. If we propagate message
Mi one step further to its parentXπi and the outgoing mes-
sage at Xπi

can be written as
Mπi = T πi ×̄1 (. . .L−1i Mi Ri . . .1πi) (12)

We now show that we can re-define the tensors T and
messages M by grouping them with these transformations
such that the message recursion still works in this trans-
formed representation.

From (11) and (12), we observe that the components in
the tensor representation (T , M and 1) have been “sand-
wiched” by the invertible transformations (R and L).
Therefore we can define a set of new quanties

T̃ i = T i ×1 L
>
j1 ×2 L

−1
i ×3 R

>
i (13)

M̃j = L−1j Mj Rj (14)
1̃i = R−1jJ 1i (15)

where T̃ i in (13) is obtained by absorbing the leading
transformation (Lj1) from (11), and the other two parent-
level transformations from (12). Then the message update
can be expressed in these new quantities as

M̃i = T̃ i ×̄1

(
M̃j1 . . .M̃jJ 1̃i

)
(16)

Similarly, we can transform the probability vector r at root
node by Lj1 , which leads to r̃> = r>Lj1 and the final
joint probability is

P[x1, . . . , xO] = r̃>
(
M̃j1 . . .M̃jJ 1̃r

)
. (17)

Next we show that R and L can be chosen smartly such
that all quantities in the transformed representation can be
recovered from observed quantities.

5.2 Observable Representation
We now show that the transformed representation of la-
tent tree models can be reconstructed from observed quan-
tities. Each component requires at most 3 observed vari-
ables for the reconstruction, so the trees have to be tri-

A Spectral Algorithm for Latent Tree Graphical Models

connected, i.e., each node has at least 3 neighbors. Our
strategy is to relate latent quantities to observed quantities
using the sum rule of probability; then based on these re-
lations, we solve for the latent quantities. For notation,
let Oij be a conditional probability matrix: Oij(k, l) =
P[Xi = k|Xj = l]. Recall that Xλi

and Xρi are the
left/right siblings of Xi respectively, and Xi∗ is an ob-
served leaf in the subtree rooted at Xi (see Figure 1).

Transition tensor in (13). If we choose Lj1 = O>j∗1 iUj∗1
,

Li = O>i∗πi
Ui∗ and Ri = Oρ∗i πi

Uρ∗i
, then the tensor

in (13) becomes
T̃ i = T i×1

(U>j∗1Oj∗1 i
)×2 (O>i∗πi

Ui∗)
−1 ×3 (U>ρ∗i Oρ∗i πi

), (18)

where Uj∗ is a matrix specific to Oj∗i such that O>j∗iUj

is invertible. One choice for Uj∗ that meets this require-
ment is to perform a “thin” singular value decompositions
(SVDs) of the pair marginal P[Xλ∗j

, Xj∗], and then take the
first SH right principal singular vectors to form Uj∗ . In the
rest of the paper, we use this SVD approach to obtain Uj∗ .

Let ai be a marginal probability vector with en-
tries ai(k) = P[Xi = k], then P[Xλ∗i

, Xi∗] =

Oλ∗i πi
diag(aπi

)O>i∗πi
by summing out Xπi

. Next, we
multiply tensor T̃ i in its mode-2 by P[Xλ∗i

, Xi∗]Ui∗ , re-
sulting in

T̃ i ×2 (P[Xλ∗i
, Xi∗]Ui∗) (19)

= T̃ i ×2 Oλ∗i πi
diag(aπi

)O>i∗πi
Ui∗

= P[Xj∗1
, Xλ∗i

, Xρ∗i
]×1 U

>
j∗1
×3 U

>
ρ∗i
, (20)

where in (20) we cancel out the O>i∗πi
Ui∗ in mode-2 of

T̃ i in (18), and use the fact that the tensor multiplication
effectively marginalizes out variable Xi and Xπi .

Based on (19) and (20), we can recover the hidden T̃ i as
T̃ i = P[Xj∗1

, Xλ∗i
, Xρ∗i

]×1 U
>
j∗1

×2 (P[Xλ∗i
, Xi∗]Ui∗)

† ×3 U
>
ρ∗i
, (21)

where we multiple the pseudo-inverse of P[Xλ∗i
, Xi∗]Ui∗

to the mode-2 of the tensor to recover T̃ i from (19). We
also note that sinceXj1 is a child ofXi, we can set i∗ = j∗1 .

Message in (14). We only need to derive the case for leaf
nodes, and the messages from internal nodes will be auto-
matically taken care of by the message recursion. Choose
Li = O>iπi

Ui and Ri = O>ρ∗i πi
Uρ∗i

respectively, then

M̃i = (O>iπi
Ui)
−1MiO

>
ρ∗i πi

Uρ∗i
. (22)

Next we relate M̃i to the marginal probability of triples of
observed variables in the following way

Oλ∗i πi diag(aπi)O
>
iπi

UiM̃i

= P[Xλ∗i
, Xi]UiM̃i (23)

= Oλ∗i πi
diag(aπi

)MiO
>
ρ∗i πi

Uρ∗i

= P[Xλ∗i
, xi, Xρ∗i

]Uρ∗i
. (24)

where we use the fact that Mi is a diagonal matrix

with nonzero entries coming from the likelihood vector
P[xi|Xπi

]. Note that P[Xλ∗i
, xi, Xρ∗i

] is a slice of the joint
probability tensor where the middle variable Xi is fixed at
xi. Based on (23) and (24), we can recover M̃i as

M̃i = (P[Xλ∗i
, Xi]Ui)

† P[Xλ∗i
, xi, Xρ∗i

]Uρ∗i
, (25)

where the tensor slice P[Xλ∗i
, xi, Xρ∗i

] behaves as a matrix.

One in (15) and root marginal in (17). We let RjJ =
O>ρ∗jJ i

Uρ∗jJ
(the parent of XjJ is Xi), then the transformed

1̃ becomes (O>ρ∗jJ i
Uρ∗jJ

)−11i. Next we multiply it by

P[Xj∗J
, Xρ∗jJ

] = Oj∗J i
diag(ai)(O

>
ρ∗jJ

iUρ∗jJ
), resulting in

Oj∗J i
diag(ai)(O

>
ρ∗jJ

iUρ∗jJ
)(O>ρ∗jJ i

Uρ∗jJ
)−11i

= P[Xj∗J
, Xρ∗jJ

]Uρ∗jJ
1̃i = P[Xj∗J

] (26)

Based on (26), we can recover 1̃i as
1̃i = (P[Xj∗J

, Xρ∗jJ
]Uρ∗jJ

)† P[Xj∗J
]. (27)

Similarly, we can also recover the transformed r̃ as
r̃> = r>Lj∗1 = r>O>j∗1 rUj∗1

= P[Xj∗1
]>Uj∗1

, (28)
where here Xj1 refers to a child of Xr.

We note that our derivation of the observable representa-
tion requires a variable to have at least two different sib-
lings. This basically requires that each internal node have
at least 3 children. However, with slight modifications, our
reasoning in this section also applies to the cases where an
internal node Xi has only 2 children. In this case, we only
need to conceptually “adopt” a child from the sibling Xλi

of Xi, and order this “adopted” child with the other 2 chil-
dren of Xi in cyclic order.

5.3 Spectral Algorithm
We now present a spectral algorithm for latent tree mod-
els based on the observable representation in the previous
section. We assume that the topologies of the trees are
given. Then, given N i.i.d. samples of the observed vari-
ables {x1, . . . , xO} from a latent tree model (latent vari-
ables are not observed at either training or test time), our al-
gorithm first selects a root and then sorts the other nodes in
topological order. Then we estimate the empirical marginal
distributions of up to triples of variables needed to recover
the observable representations in (21), (25), (27) and (28).

Next for each Uj∗ required in (21), (25), (27) and (28),
we perform a “thin” singular value decompositions (SVDs)
of the empirical pair marginal P̂[Xλ∗j

, Xj∗], and taking the
first SH right principal singular vectors to form an estimate
Ûj∗ . Since Xj∗ is an arbitrary observed variable in the
subtree induced by Xj and its descendants, there can be
multiple choices for Xj∗ . In practice, we choose Xj∗ such
that the SthH largest singular value of P[Xλ∗j

, Xj∗] is large
(justified by Theorem 1). Finally, we compute the Uj for
each observed variable Xj only once at initialization, and
store it for later use. We summarize the algorithm in Algo-
rithm 1.

A Spectral Algorithm for Latent Tree Graphical Models

Algorithm 1 Spectral Algorithm for Latent Tree Models
In: Tree topology and N i.i.d. samples {xs1, . . . , xsO}Ns=1

Out: Estimated marginal P̂[x1, . . . , xO]
1: Select a root node and sort other nodes in topological order.
2: For each T̃ i, 1̃i in an internal node Xi, each M̃i in a leaf

node, and r in the root node, estimate the following empirical
marginals from training samples:

Triple Pair Singleton
T̃ i P̂[Xj∗1 , Xλ∗i , Xρ∗i] P̂[Xλ∗i , Xi∗] -
1̃i - P̂[Xj∗

J
, Xρ∗jJ

] P̂[Xj∗
J

]

M̃i P̂[Xλ∗i , xi, Xρ∗i] P̂[Xλ∗i , Xi] -
r̃ - - P̂[Xj∗1]

(j1, jJ ∈ χi for internal nodes and j1 ∈ χr for the root.)
3: For each leaf node Xi, perform a “thin” singular value de-

composition of P̂[Xλ∗i , Xi] = V ΣU>; let Ûi = U(:, 1 :

SH) be the the first SH principal right singular vectors.
4: Estimate each T̃ i, 1̃i in internal nodes, each M̃i in leaf

nodes, and r̃ via
T̂ i = P̂[Xj∗1 , Xλ∗i , Xρ∗i]×1 Û

>
j∗1

×2 (P̂[Xλ∗i , Xi∗]Ûi∗)
† ×3 Û

>
ρ∗i

(29)

1̂i = (P̂[Xj∗
J
, Xρ∗jJ

]Ûρ∗jJ
)† P̂[Xj∗

J
] (30)

M̂i = (P̂[Xλ∗i , Xi]Ûi)
† P̂[Xλ∗i , xi, Xρ∗i]Ûρ∗i

(31)
r̂> = P̂[Xj∗1]>Ûj∗1

(32)
5: In reverse topological order, internal nodes send messages

M̂i = T̂ i ×̄1

(
M̂j1 . . .M̂jJ 1̂i

)
, (33)

and at root node, all incoming messages are combined
P̂[x1, . . . , xO] = r̂>

(
M̂j1 . . .M̂jJ 1̂r

)
(34)

5.4 Sample Complexity
We analyze the sample complexity of Algorithm 1 and find
that it depends on the tree topology and the spectral proper-
ties of the true model. See the supplementary for a proof 1.

Theorem 1 For any ε > 0, 0 < δ < 1, let

N ≥ O
(

(dmaxSH)2`+1

αβε2

)
log
|O|
δ

where σSH
(∗) returns the SthH largest singular value and
α = mini6=j,i,j∈O σSH

(P[Xi, Xj])
4

β = mini∈O σSH
(Oiπi)

2

Then
∑
x1,...,xO

∣∣∣P̂[x1, . . . , xO]− P[x1, . . . , xO]
∣∣∣ ≤ ε with

probability 1− δ.

This result implies that the estimation problem gets harder
as the maximum degree dmax of the hidden nodes, the num-
ber SH of the hidden states, and the length ` of the chain of
hidden variables increase. Furthermore, the sample com-
plexity depends exponentially in `, which suggests that we
should choose the root of the tree to make ` small. How-
ever, we believe that such adverse dependence on ` is due
to the artifact of our analysis.

1can be found at http://www.sailing.cs.cmu.edu

A special case of latent tree models is hidden Markov mod-
els (HMMs). Recently, Hsu et al. (2009) derived a spec-
tral algorithm specific to HMMs. Their reasoning relies
heavily on a single connected chain of hidden variables
and each hidden variable has an observed variable attached.
Although this excludes many interesting tree topologies,
they obtained a tighter sample complexity bound which is
O(SH`

2

αβε2) (polynomial in `). This also suggests that our
analysis can be further improved.

6 Discussion
There can be other representations of latent tree models.
However, we are not aware of other representations for the
marginal computation in (7) which lead to an efficient es-
timation procedure that requires only marginals of triples
of observed variables. For instance, we can represent each
hidden node Xi by a (J + 1)th order transition tensor T i

(J = |χi|) where T i is diagonal in the first J modes
(T i(k, . . . , k, l) = P[Xi = k|Xπi

]). The root node can
be represented as a J th order diagonal tensor R (J = |χr|,
and R(k, . . . , k) = P[Xr = k]). If we represent message
from leaf node xi as vectors mi = P[xi|Xπi

], then the
message update can be written as

mi = T i ×̄1 mj1 . . . ×̄J mjJ . (35)
and the final marginal probability is computed as

P[x1, . . . , xO] = R ×̄1 mj1 . . . ×̄J mjJ . (36)
Although this representation is more elegant, it does not
suggest a simple spectral algorithm. We conjecture that in
order to recover an observable representation for R, we
will need the marginal of J observed variables, which will
be impractical for large J .

Another representation is to use elementwise vector prod-
ucts. Let Ti = P[Xi|Xπi

] be the transition matrix at inter-
nal node Xi, and represent message from leaf node xi as
vectors mi = P[xi|Xπi], then message update becomes

mi = Ti (mj1 ◦ . . . ◦mjJ) , (37)
and the final marginal probability is computed as

P[x1, . . . , xO] = r> (mj1 ◦ . . . ◦mjJ) . (38)
However, in this form, it is not clear how one can derive a
observable representation and a spectral algorithm.

7 Experiments
We evaluate our spectral algorithm using 3 sets of exper-
iments. Overall, our spectral algorithm is orders of mag-
nitude faster than EM (main competitor) while being more
accurate at sufficiently large sample sizes.

7.1 Comparisons with EM and Chow-Liu Tree
We first generate synthetic data from latent tree models
with four different topologies (broad4, broad9, deep4 and
deep5 shown in Figure 2). These tree topologies are de-
signed so that the tree either grows broader (broad4 to
broad9), or grows deeper (deep4 to deep5). We set SO = 6,

A Spectral Algorithm for Latent Tree Graphical Models

0.2 1 10 100 750

0.05

0.1

0.5

Training Sample Size (x10
3
)

E
rr

o
r

Spectral

EM+

CL

EM−

0.2 1 10 100 750
0.05

0.1

0.5

Training Sample Size (x10
3
)

E
rr

o
r

Spectral

EM+

CL
EM−

0.2 1 10 100 750

0.05

0.1

0.5

Training Sample Size (x10
3
)

E
rr

o
r

Spectral

EM+

CL

EM−

0.2 1 10 100 750

0.05

0.1

0.5

Training Sample Size (x10
3
)

E
rr

o
r

Spectral

EM+

CL

EM−

0.2 1 10 100 750

1

10

100

1000

10000

Training Sample Size (x10
3
)

R
u
n
ti
m

e
 (

s
)

CLSpectral

EM−

EM+

0.2 1 10 100 750

1

10

100

1000

10000

Training Sample Size (x10
3
)

R
u
n
ti
m

e
 (

s
)

CLSpectral

EM−

EM+

0.2 1 10 100 750

1

10

100

1000

10000

Training Sample Size (x10
3
)

R
u
n
ti
m

e
 (

s
)

CLSpectral

EM−

EM+

0.2 1 10 100 750

1

10

100

1000

10000

Training Sample Size (x10
3
)

R
u
n
ti
m

e
 (

s
)

CLSpectral

EM−

EM+

(a) broad4 (b) broad9 (c) deep4 (d) deep5

Figure 2. Comparison of our spectral algorithm (Spectral) to EM algorithm with high precision (EM+) and low precision (EM-), and
Chow-Liu tree learning (CL) for 4 different tree topologies shown in the first row. Both errors and runtimes are plotted in log scale.

and SH = 2, i.e., SO > SH . In this case, the Mossel &
Roch (2006) algorithm no longer applies, and therefore we
compare with EM and inference on the Chow-Liu tree.

For an experiment on a given tree type with N training
points, we randomly generate 10 sets of model parame-
ters and sample N training points and 1000 test points for
each parameter set. For EM, we learn the CPTs (with 5
restarts) based on the training points and the true latent
tree topology, and then perform inference on test points
using message passing. We experiment with a low pre-
cision EM (0.01, denoted as EM-) and a high precision
EM (0.0005, denoted as EM+) to give a better perspec-
tive on the time versus accuracy tradeoff as compared to
our approach. For the Chow-Liu tree, we first learn the
topology of a fully observable tree model using the Chow-
Liu algorithm and the true pairwise marginals; then we
learn the CPTs in the Chow-Liu tree using training points
and perform inference on test points using message pass-
ing. We measure the performance of joint estimation using
ε = |P̂[x1,...,xO]−P[x1,...,xO]|

P[x1,...,xO] , and we vary the training sam-
ple size N from 200 to 750,000, and report both the run-
time for training and the test error for inference in Figure 2.
(Test runtimes are about the same for all methods).

Figure 2(a)(b)(c)(d), show that our spectral algorithm can
be orders of magnitude faster than EM for large sample
sizes and that Chow-Liu tree learning is fastest (we do not
count the time for tree topology learning), since it only
needs to estimate a collection of CPTs for pairs of ran-
dom variables. In terms of estimation errors, EM+ and
EM- perform the best for small training sizes. However,

when the sample sizes go beyond 5,000, the performance
of EM- levels off and our spectral algorithm overtakes EM-.
This is because EM- learns the models with a low precision
(0.01), and as we increase sample size beyond certain point,
this fixed precision simply dominates the estimation error.
Similarly, we also see that for large sample sizes our algo-
rithm overtakes EM+ on 2 of the 4 experiments (deep4 and
deep5) and performs equally on broad4 (EM+ does better
on broad9). Furthermore, our spectral algorithm is signifi-
cantly better than the Chow-Liu tree learning over the range
of sample sizes. This is expected since both our spectral
algorithm and EM use the correct tree topology while the
fully observable tree learned by Chow-Liu has introduced
large bias into the model.

Finally, our method’s performance does degrade as the
topologies become more complex. However, the perfor-
mance does not seem to degrade exponentially with the
length of the chain of hidden variables, which suggests that
our sample complexity analysis can be further improved.

7.2 Comparison with Mossel and Roch Algorithm
We now make a separate comparison with the spectral al-
gorithm by (Mossel & Roch, 2006), since it only applies
to case where the number of observed states SO is the
same as the number of hidden states SH . We use the same
experimental settings as in the previous section, but set
SO = SH = 2. Although this method is theoretically in-
teresting, it can perform poorly in practice.

The results are shown in Figure 3(a)-(d) (the runtime of
both methods are similar, and thus not reported). Our spec-

A Spectral Algorithm for Latent Tree Graphical Models

0.20.5 1 2 5 10 20 50100

0.05

0.1

0.5

Training Sample Size (x10
3
)

E
rr

o
r

Spectral

MR

0.2 0.5 1 2 5 10 20 50 100

0.5

1

Training Sample Size (x10
3
)

E
rr

o
r

Spectral

MR

0.20.5 1 2 5 10 20 50100

0.05

0.1

0.5

1

Training Sample Size (x10
3
)

E
rr

o
r

Spectral

MR

0.20.5 1 2 5 10 20 50100
0.05

0.1

0.5

1

Training Sample Size (x10
3
)

E
rr

o
r

Spectral

MR

5 10 20 30 50

0.35

0.4

number of query variables

E
rr

o
r

Spectral
EM+

EM−

CL

(a) broad4 (b) broad9 (c) deep4 (d) deep5 (e) Stock data

Figure 3. (a)-(d) Comparison of our spectral algorithm (Spectral) with the Mossel and Roch algorithm (MR) for 4 different latent tree
topologies. The errors are plotted in log scale. (e) Comparison of our spectral algorithm (Spectral, blue line) with EMs (EM+ and EM-,
red lines) and Chow-Liu based algorithm (CL, green line) on stock dataset.

tral algorithm significantly outperforms the MR algorithm
on all trees for practically all sample sizes. This is because
our method does not explicitly recover the CPTs, and is
thus more robust. We also note that our approach is more
general: it can allow for the observation state space to be
larger than the hidden state space, which may be preferable
in many applications where the observation space can be
large (e.g., quantization of a continuous variable), but the
hidden factors are simple and have lower dimensions.

7.3 Stock Trend Prediction
Finally, we evaluate our algorithm on a stock trend predic-
tion problem. Our goal is to predict whether a stockXi will
go up or down on a particular day given the trends of a set
E of other stocks. We acquired closing prices of 59 stocks
from 1984 to 2011, which provides us 6800 samples.2 We
randomly partition these samples to 6300 training points
and 500 test points. Since we are only predicting whether
a stock goes up or down, the data are binarized. From the
training data, we learn the latent tree topology using an al-
gorithm by Choi et al. (2010), and a fully observable Chow-
Liu tree (Chow & Liu, 1968). A visualization of the learned
tree topologies are in the supplementary.

We compare our spectral algorithm to EM+ and EM- us-
ing the latent tree, and with inference over the Chow-Liu
tree. For the prediction task, we need to estimate the con-
ditional, i.e., P[Xi|xj1 , . . . , xj|E |] and j1, . . . , j|E | ∈ E .
This can be achieved by estimating P[xi, xj1 , . . . , xj|E |]
for each instantiation xi. Then we make prediction by
x̂i = argmaxxi

P[xi, xj1 , . . . , xj|E |]. We measure the pre-
diction error using ε = |x̂i− x?i | where x?i is the true label.

We experiment with a varying number of query sizes. For
each query size Q, we randomly pick Q stocks and predict
the value of one stock conditioned on the other Q− 1, (and
repeat for 50 trials). Over the entire range of query sizes,
the advantage of latent tree approaches (Spectral, EM+/-) is
clear over the Chow-Liu tree. Thus, the latent factors help
better model the stock data in this case. Due to the small
training sample size, the distinction between our method
and EM is less clear.

2www.finance.yahoo.com

8 Conclusion
We have proposed a local-minimum-free spectral algo-
rithm for latent tree models which only uses information
from marginals of triples of observed variables irrespec-
tive of the maximum degree of the graph. Our algorithm
is computationally efficient even for large sample sizes,
and shows good performance in both synthetic and real
datasets. There are many future directions: one can ker-
nelize the method like Song et al. (2010) did for HMMs, or
design spectral algorithms for loopy latent variable models.

Acknowledgements
APP is thankful for a NSF Graduate Fellowship and LS is sup-
ported by a Ray and Stephanie Lane Fellowship. This paper is
also supported by NIH 1R01GM093156, NIH 1RC2HL101487,
NSF IIS-0713379, NSF DBI-0546594, and an Alfred P. Sloan
Fellowship to EPX.

References
Blei, D., Ng, A., and Jordan, M. Latent dirichlet allocation. In

NIPS, 2002.
Choi, Myung J., Tan, Vicent Y., Anandkumar, Animashree, and

Willsky, Alan S. Learning latent tree graphical models. In
arXiv:1009.2722v1, 2010.

Chow, C. and Liu, C. Approximating discrete probability distri-
butions with dependence trees. IEEE Transactions on Informa-
tion Theory, 14(3):462–467, 1968.

Clark, A. Inference of haplotypes from pcr-amplified samples of
diploid populations. Molecular Biology and Evolution, 7(2):
111–122, 1990.

Dempster, A., Laird, N., and Rubin, D. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal
Statistical Society B, 39(1):1–22, 1977.

Hoff, Peter D., Raftery, Adrian E., and Handcock, Mark S. Latent
space approaches to social network analysis. JASA, 97(460):
1090–1098, 2002.

Hsu, D., Kakade, S., and Zhang, T. A spectral algorithm for learn-
ing hidden markov models. In COLT, 2009.

Kolda, Tamara. and Bader, Brett. Tensor decompositions and ap-
plications. SIAM Review, 51(3):455–500, 2009.

Mossel, E. and Roch, S. Learning nonsingular phylogenies and
hidden markov models. AOAP, 16(2):583–614, 2006.

Pearl, J. Probabilistic reasoning in intelligent systems: networks
of plausible inference. Morgan Kaufmann, 1988.

Rabiner, L. R. and Juang, B. H. An introduction to hidden Markov
models. IEEE ASSP Magazine, 3(1):4–16, January 1986.

Song, L., Boots, B., Siddiqi, S., Gordon, G., and Smola, A.
Hilbert space embeddings of hidden markov models. In ICML,
2010.

