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Abstract

We study the general class of estimators
for graphical model structure based on
optimizing !1-regularized approximate log-
likelihood, where the approximate likeli-
hood uses tractable variational approxima-
tions of the partition function. We provide a
message-passing algorithm that directly com-
putes the !1 regularized approximate MLE.
Further, in the case of certain reweighted en-
tropy approximations to the partition func-
tion, we show that surprisingly the !1 reg-
ularized approximate MLE estimator has a
closed-form, so that we would no longer need
to run through many iterations of approxi-
mate inference and message-passing. Lastly,
we analyze this general class of estimators for
graph structure recovery, or its sparsistency,
and show that it is indeed sparsistent under
certain conditions.

1. Introduction

A Markov random field (MRF) over a p-dimensional
discrete random vector X = (X1, X2, . . . , Xp) is spec-
ified by an undirected graph G = (V,E), with ver-
tex set V = {1, 2, . . . , p} – one for each variable –
and edge set E ⊂ V × V . The structure of this
graph encodes conditional independence assumptions
among subsets of the variables. In structure learn-
ing, the task is to estimate this underlying graph
from n independent and identically distributed sam-
ples {x(1), x(2), . . . , x(n)}.

Recent results on the discrete graphical model struc-
ture learning problem have built on a natural connec-
tion between such structure learning and parameter
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estimation: indeed, learning the graph structure is
equivalent to learning the parameters of a fully sat-
urated graphical model under the assumption of a
sparse set of parameters, where parameters underlying
non-edges are equal to zero. Such parameter estima-
tion in turn hinges crucially on graphical model infer-
ence: since it involves solving optimization problems
that require computing quantities such as the partition
function, or the marginals.

Thus, structure learning when reduced to sparse pa-
rameter estimation hinges on two components: spar-
sity recovering regularization methods, and methods
for approximate inference in graphical models. While
methods that have been proposed in this class of ap-
proaches use state of the art sparsity recovery meth-
ods (!1-regularization and the like), their approxi-
mate inference components are far from the state
of the art. For instance, Ravikumar et al. (2010)
use node-wise logistic regressions to estimate node-
neighborhoods, which can be thought of as employ-
ing a pseudo-likelihood approximation (with asym-
metric edge parameters) of the partition function in
the log-likelihood. Lee et al. (2007) compute approx-
imate estimates of the gradient using Belief Propaga-
tion (Pearl, 1988), which can be thought of as using
a Bethe entropy approximation of the partition func-
tion. The state of the art in approximate inference on
the other hand involves convex variational approxima-
tions of the entropy of the graphical model, and dual
decompositions involving tractable subcomponents of
the graphical model.

We thus have a gap: between state of the art in in-
ference and the use of inference in state of the art in
structure learning methods. Towards this, we study a
general class of estimators for graphical model struc-
ture that use tractable approximations of the parti-
tion function and !1-regularization. The resulting op-
timization problem can be solved naturally using com-
posite gradient descent, since the gradients of the log-
likelihood take the form of marginals which can be
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approximated using the approximate inference proce-
dure corresponding to the partition function approx-
imation. However this involves performing graphi-
cal model inference for each of the gradient steps,
which could be expensive. To address this, we pro-
vide a message-passing algorithm that directly com-
putes the solution that optimizes the !1 regularized
approximate log-likelihood. Further, in the case of cer-
tain reweighted entropy approximations to the parti-
tion function such as the tree-reweighted approxima-
tion, we show that surprisingly the !1 regularized ap-
proximate MLE estimator has a closed-form, so that
we would no longer need to run through many itera-
tions of approximate inference and message-passing.
Lastly, we analyze this general class of estimators
for graph structure recovery, or its sparsistency. For
such estimators, one might imagine that even though
the approximate inference is tight with respect to the
partition function or the marginals, the correspond-
ing approximate MLE need not even be consistent;
see (Wainwright, 2006) for instance for the case of a
weakly regularized approximate MLE. However, note
that this is also the case with high-dimensional sparse
parameter estimation where typical MLE estimators
are not consistent, unless one carefully chooses the
magnitude of !1 regularization (Candes & Tao, 2007;
Tropp, 2006). Indeed, even for our general class of
!1 regularized approximate log-likelihood estimators,
we show that under certain conditions on the egde
weights, the methods do succeed in recovering the
graph structure. Indeed, the development in this paper
raises the research agenda of tuning approximate in-
ference procedures to structure learning by developing
partition function approximations that would impose
the weakest conditions on the parameters.

2. Review, Setup and Notation

2.1. Markov Random Fields

Let X = (X1, . . . , Xp) be a random vector, each variable
Xi taking values in a discrete set X of cardinality m. Let
G = (V,E) denote a graph with p nodes, corresponding to
the p variables {X1, . . . , Xp}. A pairwise Markov random
field over X = (X1, . . . , Xp) is then specified by nodewise
and pairwise functions θs : X !→ R for all s ∈ V , and
θst : X ×X !→ R for all (s, t) ∈ E, as

P(x) ∝ exp
{∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt).
}

(1)

In this paper, we largely focus on the case where the vari-
ables are binary with X = {−1,+1}, where we can rewrite
(1) to the Ising model form (Ising, 1925)

P(x) ∝ exp

{∑

s∈V

θsxs +
∑

(s,t)∈E

θstxsxt

}
, (2)

for some set of parameters {θs} and {θst}. It will be use-
ful to rewrite (2) as the member of an exponential fam-
ily, P(x) = exp (〈 θ, φ 〉 − A(θ)) , where φ(x) = {φs(x) =
xs; φst(x) ≡ xsxt} are the set of Ising potentials, and θ =
{θs; θst} are the corresponding set of parameters; and A :
Θ !→ R is the log of the normalization constant, also called
the log-partition function, A(θ) = log

∑
x∈Xp exp(〈 θ, φ 〉).

2.2. Variational Approximations

A complication for discrete undirected graphical mod-
els is that typical inference tasks, even calculation of
the log-partition function A(θ), is computationally in-
tractable. Here, we briefly review variational approxi-
mations to the partition function, following the devel-
opment in Wainwright & Jordan (2008). By properties
of exponential families, the moments µ(θ) = Eθ(φ) =
∇A(θ). Denote the conjugate of the log-partition func-
tion by A∗(µ) = supθ∈Θ〈 θ, µ 〉 − A(θ). It can be
shown that A∗(µ) is the negative entropy of the graph-
ical model distribution with parameter θ = (∇A)−1(µ).
Consider the set of all possible mean parameters, M =
{µ : ∃ distribution p s.t.Ep(φ) = µ} , which is also called
the marginal polytope of the graphical model. Then, by
convex duality, we can write,

A(θ) = sup
µ∈M

〈 θ, µ 〉 − A∗(µ). (3)

(3) thus provides a variational formulation of the log-
partition function A(θ). Following the development in
Wainwright & Jordan (2008), it is easier to describe ap-
proximations to this log-partition function using so called
overcomplete representations.

Since X is discrete, any potential function θc can be pa-
rameterized as linear combinations of {0, 1}-valued indi-
cator functions. For each s ∈ V and j ∈ {1, . . . , m},
we can define node-wise indicators, [xs = j] = 1 if
xs = j and equal to 0 otherwise. With this notation,
any set of potential functions can then be written as
θs(xs) =

∑
j∈[m] θs;j [xs = j] for s ∈ V and θst(xs, xt) =∑

j,k∈[m] θst;jk [xs, xt = j, k] for (s, t) ∈ E. Thus, (1)

can be rewritten as, P(x) ∝ exp

{
∑

s∈V ;j∈[m] θs;j [xs =

j]+
∑

(s,t)∈E;j,k∈[m] θst;jk[xs = j, xt = k]

}
, for a set of pa-

rameters θ := {θs;j , θst;jk : s, t ∈ V ; (s, t) ∈ E; j, k ∈ [m]}.

Given these sufficient statistics, the mean parameters
{µs;j} and {µst;jk} are just the node and pairwise
marginals. Wainwright & Jordan (2008) then describe
variational approximations of the log-partition function
A(θ), as involving approximating the two intractable com-
ponents in its variational formulation (3) (a) the marginal
polytope M, and (b) the graphical model entropy A∗(µ).

Any variational approximation to the log-partition func-
tion (3) can then be written as,

B(θ) = sup
µ∈L

〈 θ, µ 〉 −B∗(µ), (4)

where L is a tractable bound on the marginal polytope M,
and B∗(µ) is a tractable approximation to the graphical
model entropy A∗(µ). A popular bound LG of the
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marginal polytope is given by

LG =
{
µ
∣∣∣
∑

j

µs;j = 1,
∑

k

µst;jk = µs;j ;

s, t ∈ V ; j, k ∈ [m]
}
. (5)

Popular approximations to the negative en-
tropy use weighted sums of node and edge-
entropies. Let Hs :=

∑
xs∈X µs(xs) logµs(xs) and

Hst(µst) :=
∑

(xs,xt)∈X×X µst(xs, xt) logµst(xs, xt)
denote the node-based and edge-based negative en-
tropies, respectively, and Ist(µst) := Hst(µst) −
Hs(µs)−Ht(µt).

The Bethe approximation (Yedidia et al., 2001) to
the entropy A∗(µ) is given by B∗

bethe(µ) =∑
s Hs(µs) −

∑
st Ist(µst). The tree-reweighted en-

tropy (Wainwright et al., 2003) in turn is given by

B∗
trw(µ) =

∑

s

Hs(µs)−
∑

st

ρstIst(µst), (6)

where ρst are edge-weights that lie in a so-called
spanning tree polytope. Heskes (2006); Weiss et al.
(2007) also discuss general convex entropic forms,
the simplest of which are the weighted forms
B∗

α(µ) =
∑

s∈V αsHs(µs) +
∑

(s,t)∈E αstHst(µst), for
some weights {αs,αst ≥ 0}.

The approximation given by Bbethe(θ) =
supµ∈LG

〈 θ, µ 〉 − B∗
bethe(µ), underlies belief prop-

agation, while Btrw(θ) = supµ∈LG
〈 θ, µ 〉 − B∗

trw(µ)
yields the tree-reweighted approximation to the
log-partition function.

3. Graphical Model Selection

Suppose that we are given a collection D :=
{x(1), . . . , x(n)} of n samples, where each p-
dimensional vector x(i) ∈ {1, . . . ,m}p is drawn i.i.d.
from a distribution Pθ∗ of the form (2), for parameters
θ∗ and graph G = (V,E∗) over the p variables. The
goal of graphical model selection is to infer the edge
set E∗ of the graphical model defining the probability
distribution that generates the samples. Note that the
true edge set E∗ can also be expressed as a function
of the parameters as

E∗ = {(s, t) ∈ V × V : θ∗st (= 0}. (7)

Given the data, D := {x(1), . . . , x(n)}, the !1 regular-
ized MLE can then be written as the solution of the
optimization problem,

θ̂ ∈ argmin
θ

−〈 θ, φ̂ 〉+A(θ) + λ‖θ‖1,E , (8)

where φ̂ = 1
n

∑n
i=1 φ(x

(i)) is the average of the suffi-
cient statistics, and where ‖ ·‖1,E is the !1 norm of just
the edge-parameters, so that ‖θ‖1,E =

∑
s$=t |θst|.

The caveat with solving (8) is the intractable com-
putation of the log-partition function A(θ). We thus
consider the following class of M -estimators:

θ̂ ∈ argmin
θ

−〈 θ, φ̂ 〉+B(θ) + λ‖θ‖1,E, (9)

where B(θ) is a variational approximation to the log-
partition function of the form (3) outlined in the previ-

ous section. Given the solution θ̂, we can then estimate
the graph structure as Ê = {(s, t) : θ̂st (= 0}.

4. Optimization Methods

We now consider the task of solving the optimization
problem in (9).

4.1. Gradient based methods

Let us first go back to the exact !1-regularized MLE
problem (8), and consider an approximate technique
to solve this intractable optimization problem. In par-
ticular, as Lee et al. (2007) suggest we could solve
(8) using approximate estimates of the gradient, com-
puted using Belief Propagation. One could then per-
form the following approximate composite gradient de-
scent (Nesterov, 2004):

Algorithm 1 Solving (8) Using Approximate
Marginals
for t = 1, 2, . . . do

θt+1 = S(E)
ληt

(
θt − ηt(−φ̂+ µapprox(θt))

)
.

end for
where µapprox(θt) are approximate estimates of
marginals.

Here S(E)
r denotes the soft-thresholding function ap-

plied to the edge elements, so that for α ∈ E,

[S(E)
r (w)]α = sign(wα)max{|wα| − λ, 0}. Such com-

posite gradient descent has been shown to have at
least sublinear convergence provided the step-sizes
are chosen appropriately (Nesterov, 2004). Indeed,
one way to view these iterates given objective f(θ)
is as minimizing a composite quadratic approxima-
tion: minθ ∇f(θt).(θ − θt) + 1/ηt‖θ − θt‖22 + λ‖θ‖1,E .
Vanilla gradient descent on the other hand solves
minθ ∇f(θt).(θ − θt) + 1/ηt‖θ − θt‖22.

Proposition 1. Suppose that in Algorithm 1 the ap-
proximate marginals µapprox(θ) satisfy µapprox(θ) =
∇B(θ), for some approximation B(θ) to the log-
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partition function A(θ), so that they are pseudo-
moments under the approximation B(θ). Then the
fixed point of Algorithm 1 if any is a local minimum
of the optimization problem in (9) with B(θ) as the
log-partition function approximation.

Thus, estimating the marginals using belief prop-
agation as in Lee et al. (2007) corresponds to a
Bethe entropy approximation to the partition function
Bbethe(θ).

4.2. Message Passing Updates

In the sequel, we derive a message-passing algorithm
for solving the estimator in (9). It will again be use-
ful to consider the overcomplete representation as out-
lined in Section 2.2. We overload notation and con-
tinue to use φ̂ and θ for the sufficient statistics and
parameters. We thus solve the !1 regularized opti-
mization problem

θ̂ ∈ argmin
θ

−〈 θ, φ̂ 〉+B(θ) + λ‖θ‖1,E. (10)

Note that even though the overcomplete representa-
tion is not identifiable, the added !1-regularization
makes the solution unique provided the smooth com-
ponent is strictly convex. Indeed, for the binary Ising
model case, we have the equivalence:

Proposition 2. Suppose that θ̃ is the unique solu-
tion of the approximate MLE (9) for the Ising model
with regularization penalty 4λ. Then the overcomplete
estimator in (10) with regularization penalty λ has a
unique solution θ̂ given by

θ̂st(xs, xt) = θ̃stxsxt.

Now, by duality, this overcomplete approximate MLE
(10) can be rewritten as

inf
θ

sup
Z∈C

−〈 θ, φ̂ 〉+B(θ) + 〈 θ, Z 〉,

where C := {Z ⊆ Θ : ‖Z‖∞ ≤ λ, ZN = 0},
where we use ZN to denote the coordinates of Z
corresponding to node potentials. By strong dual-
ity (Boyd & Vandenberghe, 2004), this in turn can be
rewritten as

sup
Z∈C

inf
θ
−〈 θ, φ̂− Z 〉+B(θ) = − inf

µ∈W
B∗(µ), (11)

where W := {µ : µ ∈ LG; µN = φN ; ‖µE − φE‖∞ ≤
λ}, where LG is the approximation to the marginal
polytope M underlying the variational approximation
B(θ), as outlined in Section 2.2.

We note that this optimization problem is very sim-
ilar to the typical variational optimization problems

for approximation of the partition function, where a
linear term and the entropy are optimized with µ con-
strained to the outer polytope L. These latter opti-
mization problems are typically solved using graph-
structured message-passing algorithms, and here, we
derive a message passing algorithm that solves the
above objective instead, so that it would obtain the
!1-regularized approximate MLE in one shot in con-
trast to the iterative message passing in the previous
section.

Towards this, we use an iterative projection
method (Censor & Zenios, 1988), that iteratively
projects the primal variables onto individual con-
straints, while maintaining dual feasibility.

Now, note that the dual in (11) of the !1 regularized
approximate MLE has the following form:

inf
µ

B∗(µ)

s.t. 〈 ai, µ 〉 = bi, i = 1, . . . ,m.

lj ≤ 〈 cj , µ 〉 ≤ uj, j = 1, . . . , r,

which has a mix of linear equality and some interval
constraints.

In the Supplementary Material, we outline a row-
action algorithm for this class of optimization prob-
lems that use iterative projections (with corrections
to maintain dual-feasibility) onto these interval con-
straints (Censor & Zenios, 1988). We briefly outline
this algorithm below for completeness, but the reader
could skip to the next section, where we describe these
updates for convex entropic approximations of the par-
tition function.

It will be useful to define the following notation: Given
a convex function f , an iterate, x, and a linear con-
straint h ≡ 〈x, a 〉 = b, suppose we project x onto
the hyperplane defining the equality constraint, under
the Bregman divergence induced by f . This can be
rewritten quite simply as computing y such that:

∇f(y) = ∇f(x)− θa,

〈 y, a 〉 = b.

We are interested in the value of θ above; let us denote
this by ΠD(f ;x, h). We can now detail the row-action
algorithm:

Let Φ denote the (m + r) × p matrix with rows as
{aj}mj=1 stacked above {cj}rj=1.

Initialization: (µ0, z0) such that ∇B∗(µ0) = −ΦT z0.

Iterative Step: Given µt and zt, and the current con-
straint hj corresponding to the j-th row of Φ, calculate
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the next primal and dual iterates µt+1 and zt+1 as

∇B∗(µt+1) = ∇B∗(µt) + dtΦj ,

zt+1 = zt − dtej,

where if the constraint hj ≡ 〈 aj , µ 〉 = bj is a lin-
ear equality, then dt = ΠD(B∗;µt, hj); and if the
constraint hj ≡ lj ≤ 〈 cj , µ 〉 ≤ uj is an interval
constraint, then denoting h−

j ≡ 〈 cj , µ 〉 = lj and

h+
j ≡ 〈 cj , µ 〉 = uj , then dt = median(ut, At, Bt),

where At = ΠD(B∗;µt, h−
j ) and Bt = ΠD(B∗;µt, h+

j ).

4.2.1. Weighted Entropic Approximation

Recall from Section 2.2 the general weighted free-
energy approximation consisting of a weighted sum of
negative entropies

B∗
α(µ) =

∑

s∈V

αsHs(µs) +
∑

(s,t)∈E

αstHst(µst), (12)

where Hs :=
∑

xs∈X µs(xs) logµs(xs) and
Hst(µst) :=

∑
(xs,xt)∈X×X µst(xs, xt) logµst(xs, xt)

denote the node-based and edge-based negative
entropies respectively. Now, consider the variational
approximation given by,

Bα(θ) = sup
µ∈LG

〈 θ, µ 〉 −B∗
α(µ),

where LG is the marginal polytope outer bound in (5).
The optimization problem in (11) then becomes:

inf
µ

{∑

s

αs

∑

xs

µs(xs) log µs(xs)

+
∑

st

αst

∑

xs,xt

µst(xs, xt) log µst(xs, xt)
}

s.t. µs(xs) = φ̂s(xs), µst(xs, xt) ≥ 0,
∑

xt

µst(xs, xt) = φ̂s(xs).

φ̂st(xs, xt)− λ ≤ µst(xs, xt) ≤ φ̂st(xs, xt) + λ.

Thus, we have a set of equality marginalization con-
straints, and some box constraints. We can then apply
the algorithm template above in the previous section
to get the set of iterative updates in Algorithm 2.

4.3. Closed Form Updates

The stationary condition characterizing the solution of (9)
is given by

−φ̂+ µ̂(θ̂) + λẐ(θ̂) = 0, (14)

where µ̂ = ∇B(θ̂), and Ẑ is a subgradient vector, with

ẐN = 0, and ẐE ∈ ∂‖θ̂E‖1, so that

Algorithm 2 Weighted Entropic Message Passing
Initialization:

µs(xs) = φ̂(xs), (13a)

µ(0)
st (xs, xt) = φ̂(xs, xt), (13b)

Zst(xs, xt) = −αst(log φ̂(xs, xt) + 1). (13c)

repeat
for each edge (s, t) ∈ E do

µ(t+1)
st (xs, xt) = µ(t)

st (xs, xt)
( φ̂s(xs)
∑

xt
µ(t)
st (xs, xt)

)
,

µ(t+1)
st (xs, xt) = µ(t+1)

st (xs, xt)
( φ̂t(xt)
∑

xs
µ(t+1)
st (xs, xt)

)
.

∆+ = αst log
(φ̂st(xs, xt) + λ)

µ(t+1)
st (xs, xt)

,

∆− = αst log
(φ̂st(xs, xt)− λ)

µ(t+1)
st (xs, xt)

.

Cst(xs, xt) = median(Zst(xs, xt),∆+,∆−).

Zst(xs, xt) = Zst(xs, xt)− Cst(xs, xt),

µ(t+1)
st (xs, xt) = µ(t+1)

st (xs, xt) exp(Cst(xs, xt)/αst).

end for
until convergence

(a) if θ̂st;jk /= 0, then Ẑst;jk = sign(θ̂st;jk),

(b) if θ̂st;jk = 0, then |Ẑst;jk| ≤ 1,

(c) Ẑs;j = 0. That is, µ̂s;j = φ̂s;j.

Now suppose we use the tree-reweighted entropy ap-
proximation (6) as the variational approximation to
the log-partition function. An interesting property sat-
isfied by the pseudo-moments µ̂ of this approximation
is a reparameterization condition (Wainwright et al.,

2003), so that tuple (θ̂, µ̂) is a valid primal dual pair
iff they satisfy

θ̂s;j = log µ̂s;j + Csj + Cs (15)

θ̂st;jk = ρst log
µ̂st;jk

µ̂s;j · µ̂t;k
− Csj − Ctk, (16)

for some constants {Cs, Csj}, and further that µ̂ lies
in the pseudomarginal polytope LG (5), so that

∑

k

µ̂st;jk = µ̂s;j , µ̂st;jk ≥ 0. (17)

Now consider the three cases of of the sign of any edge
parameter θ̂st;jk:
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(a) θ̂st;jk > 0: Then from (14), we get µ̂st;jk =

φ̂st;jk − λ, and substituting this in (16), we get

φ̂st;jk > φ̂sj exp(Csj)φ̂tk exp(Ctk) + λ.

(b) Similarly, if θ̂st;jk < 0, then µ̂st;jk =

φ̂st;jk + λ, which entails that: φ̂st;jk <

φ̂sj exp(Csj)φ̂tk exp(Ctk)− λ.

(c) Finally, if θ̂st;jk = 0, then |φ̂st;jk −

φ̂sj exp(Csj)φ̂tkexp(Ctk)| < λ, and where

µ̂st;jk = φ̂sj exp(Csj)φ̂tk exp(Ctk).

4.3.1. Explicit Construction

Given any constants {Cs, Csj}, suppose we write out

a tuple (µ̂, θ̂, Ẑ) as follows:

(a) If φ̂st;jk > φ̂sj exp(Csj)φ̂tk exp(Ctk) + λ, then

µ̂st;jk = φ̂st;jk − λ, Ẑst;jk = 1;

(b) If φ̂st;jk < φ̂sj exp(Csj)φ̂tk exp(Ctk) − λ, then

µ̂st;jk = φ̂st;jk + λ, Ẑst;jk = −1;

(c) Otherwise, µ̂st;jk = φ̂sj exp(Csj)φ̂tk exp(Ctk),

and Ẑst;jk = φ̂st;jk − φ̂sj exp(Csj)φ̂tk exp(Ctk).

(d) Set θ̂ from (15),(16).

Note that the tuple (θ̂, µ̂) satisfies the stationary con-
dition (14) by construction. The subgradient condition

Ẑ ∈ ∂‖θ̂‖1 also holds by construction. Thus, this is a

valid tuple and θ̂ is the solution of (14) provided the
resulting µ̂ ∈ L. The goal then is to derive constants
{Cs, Csj} so that the µ̂ constructed as above lies in
the polytope LG.

While this is difficult to do in general, we show that
when the variables are binary, the appropriate con-
stants {Cs, Cs;j} can be written out explicitly.

Proposition 3. When the variables are binary, the
solution θ̂ of (9) can be computed in closed form.
Specifically, setting {Cs = 0, Csj = 0} in the construc-

tion above yields solution θ̂, with pseudomarginal µ̂.

The proof consists of showing that with the constants
set to zero, the pseudomarginal µ̂ resulting from the
construction satisfies µ̂ ∈ L; and is provided in detail
in the Supplementary Material.

As noted in Proposition 2, even though we have an
overcomplete parameterization, the resulting solution
has the Ising form, and in particular is equivalent
to solving a corresponding !1-regularized approximate
MLE in (9) for the Ising model. Further, the solution

θ̂ is available in closed-form, which thus leads to this
very simple estimator for the structure of graph:

Ê = {(s, t) : ∃j, k; |φ̂st;jk − φ̂s;j · φ̂t;k| > λ}. (18)

Similar algorithms based on correlations have been
proposed elsewhere, see Montanari & Pereira (2009)
for instance for the case of a homogeneous Ising model,
where the edge parameters are all equal. Here, we ob-
tain the very interesting connection between the spe-
cific correlation based edge-detection algorithm above
and the tree-reweighted entropy based approximate
MLE. This thus opens up new avenues for analyzing
such methods, see for instance our sparsistency analy-
sis in Section 5.

Discussion. Note that the closed form estimator in
(18) requires time scaling asO(p2), whereas other state
of the art methods such as (Ravikumar et al., 2010)
require time that could scale as O(p5). As we will
see in the experiments section in spite of this, their
graph structure recovery performance is nonetheless
comparable.

5. Sparsistency

In this section, we show that any structure learning
estimator obtained as a solution of (9) given any par-
tition function approximation B(θ) is sparsistent un-
der certain conditions. While the analysis builds on
standard tools such as the dual-witness technique from
(Wainwright, 2009), here we face multiple subtleties:
the objective function in (9) does not arise from the
likelihood of the data, which has the consequence that
the gradient of the objective need not be small at
the true parameter. Moreover, the number of non-
zero elements here equal the number of edges which
scale at least linearly with the number of nodes; so
that we needed additional tools such as Brouwers fixed
point theorem (Ortega & Rheinboldt, 2000). Lastly,
the sparsistency theorem holds not just for one, but
a whole family of estimators obtained as solutions of
(9).

Let us first study the stationary condition character-
izing the solution of (9):

−φ̂+ µ̂+ λẐ = 0. (19)

We will now introduce some notation to simplify this
condition. Let µ∗ = ∇A(θ∗) be the true marginals
and let µ̄ = ∇B(θ∗) be the “true” variational pseudo-

marginals. Denote W1 = φ̂ − µ∗ and W2 = µ∗ − µ̄,
and further that W = W1 +W2. Then, the stationary
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condition can be rewritten as,

µ̂− µ̄−W + λZ = 0. (20)

We define the second-order Taylor’s expansion remain-
der of ∇B around θ∗ as,

R(∆; θ∗) = ∇B(θ∗ +∆)−∇B(θ∗)−∇2B(θ∗)∆.

Denoting ∆̂ = θ̂− θ∗, and noting that µ̂ = ∇B(θ̂) and
µ̄ = ∇B(θ∗) we can rewrite (20) as

∇2B(θ∗)∆̂+R(∆̂)−W + λZ = 0. (21)

We can now state our assumptions. We will assume
that the difference between the true marginals µ∗ =
∇A(θ∗) and the “true” variational pseudomarginals
µ̄ = ∇B(θ∗) is bounded so that

Assumption 1. κB := ‖∇B(θ∗)−∇A(θ∗)‖∞ < 1.

Thus, ‖W2‖∞ = κB is controlled.

We will also assume a mild regularity condition on the
remainder:

Assumption 2. For all sparse and bounded ∆ where
‖∆‖∞ ≤ λ, and ∆Sc = 0, the second-order remainder
is bounded by,

‖R(∆; θ∗)‖∞ ≤ κR‖∆‖2∞, (22)

for some κR > 0.

We note that such conditions have been considered in
other analyses of !1-regularized non-linear objectives.
For instance, in the case where the objective is the
log-likelihood of a Gaussian distribution with true co-
variance matrix Σ∗, Ravikumar et al. (2008) showed
that the second-order remainder is bounded as in the
assumption for κR = 3d/2 |||Σ∗|||3∞. Note that since
both θ∗ and ∆ have support restricted to S, and κR

only depends on the support size and is independent
of the ambient dimension.

Lastly, let Q = ∇2B(θ∗) denote the Hessian of B(θ)
at the true parameters θ∗. Let S denote the support
of the the true parameters θ∗ and let Sc denote its
complement. Thus, S = V ∪ {(s, t) : θ∗st (= 0}, and
Sc = {(s, t) : θ∗st = 0}. Let QAB denote the submatrix
of Q with rows indexed by A and columns indexed by
B. We then assume the following incoherence assump-
tion:

Assumption 3. |||Q−1
SSQScS |||∞ ≤ 1−α, for some con-

stant α > 0.

Theorem 1. Consider a graphical model distribution
with parameters θ∗ satisfying assumptions 1,2,3. Sup-
pose we solve (9) by setting the regularization param-

eter λ as λ ≥ 4
α (

√
log p
n + κB), and where the sample

size n scales as n ≥
(
α2/(32κ2

QκR)− κB

)2
log p. Then

with probability greater than 1−exp(−c log p) for some
constant c > 0, we have:

(a) the estimate θ̂ from (9) satisfies the elementwise
!∞ bound: ‖θ̂ − θ∗‖ ≤ min{1/(2κQκR), 4κQλ},

(b) it specifies an edgeset E(θ̂) that has no false

inclusions (i.e. E(θ̂) ⊆ E(θ∗)), and more-
over includes all edges (s, t) such that, |θ∗st| >
min{1/(2κQκR), 4κQλ}.

The detailed proof is provided in the Supplementary
Material.

6. Experiments

We now briefly illustrate our results on 25 node Ising
models (2). Further details on our experimental set-
tings, as well as more exhaustive simulations are pro-
vided in the appendix. Figure 1 (a) compares our
message-passing updates (Algorithm 2) to gradient de-
scent for tree-reweighted entropic approximation, on
Ising models with four-nearest neighbor lattice graph-
structure. Here, we plot the !2 deviation of the pseu-
domarginals to the optimum against iterations: it
can be seen that our message-passing updates (Algo-
rithm 2) converge very fast. Figure 1(b) plots the con-
vergence of our message-passing updates for a more
general weighted entropic approximation. Figure 1
shows the edge-recovery rate of the TRW-approx es-
timator that we have available in closed form. It
has comparable performance to the state of the art
method (Ravikumar et al., 2010) that uses nodewise
!1 regularized logistic regressions, which is impressive
considering that our estimator in this case has a sim-
ple closed-form solution. In Figure 1(d) we follow
(Wainwright, 2006). We compare two parameter es-
timators: our TRW-approx estimator, and an oracle
estimator that knows the true graph structure and
estimates the parameters using the tree-reweighted
entropy approximation to the log-partition function
(called pseudo-moment matching in Wainwright et al.
(2003)). We then plot the !2 error in moment esti-
mates after perturbing this parameter estimate. This
is a surrogate metric for gauging the use of the esti-
mated model for prediction; we see that our estimator
is very close to the oracle estimator.

Summary. We investigate a whole class of estimators

that recover graphical model structure by minimizing &1-

regularized surrogate log-likelihoods based on variational
approximations to the partition function. As we note in

the introduction, many state of the art methods fall into
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Figure 1. The four panels illustrate the following four experiments:
(a) Convergence Rate: Gradient Descent (Alg. 1) vs Our Mesg. Passing updates (Alg. 2) for tree-reweighted entropic
approx.
(b) Our Mesg. Passing updates (Alg. 2) for weighted Entropic approximation with αs = αst = 1.
(c) Structure Recovery: TRW-approx estimator (in closed form, Alg. 3) vs Nodewise logistic regressions of
(Ravikumar et al., 2010).
(d) Prediction (Error in moments after perturbing parameter estimate): TRW-approx estimator vs Oracle parameter
estimator that knows the true graph structure.

this category. For this general setting, we provide (a) a

general message passing algorithm for directly solving the
resulting &1 regularized optimization problems (in contrast

to iterative calls to a separate approximate inference pro-

cedure), and (b) sparsistency results for this entire class of
estimators. Our study also revealed that in special cases,

the resulting estimator is available in closed form.
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