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Abstract

We consider multiarmed bandit problems
where the expected reward is unimodal over
partially ordered arms. In particular, the
arms may belong to a continuous interval or
correspond to vertices in a graph, where the
graph structure represents similarity in re-
wards. The unimodality assumption has an
important advantage: we can determine if a
given arm is optimal by sampling the possible
directions around it. This property allows us
to quickly and efficiently find the optimal arm
and detect abrupt changes in the reward dis-
tributions. For the case of bandits on graphs,
we incur a regret proportional to the maxi-
mal degree and the diameter of the graph,
instead of the total number of vertices.

1. Introduction

Unimodal reward functions occur naturally in various
decision problems, e.g., single-peak preferences eco-
nomics and voting theory (Mas-Collel et al., 1995).
We consider the unimodality property in an uncer-
tain setting: that of the stochastic multiarmed ban-
dit. This setting is composed of stochastic sources—
or arms—with unknown reward distributions, but uni-
modal expected value with respect to some partial or-
der. Our goal is to use this property to quickly find
an arm with the highest expected value. We do this in
both the one-dimensional setting—with a continuum
of arms—and the graphical setting—where each arm
corresponds to a vertex in a graph. Such graphical de-
cision problems are central to the study of social and
communication networks.

Our first contribution is an algorithm whose regret is
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proportional to the maximum degree of the graph and
its diameter, whereas the number of arms can be ex-
ponential in the diameter. In the one-dimensional set-
ting, although existing methods already achieve the
optimal expected regret, we present an algorithm that
does so more efficiently thanks to the unimodality as-
sumption, and also prove a new probably approxi-
mately correct (PAC) regret bound.

An additional consequence of unimodality is the abil-
ity to efficiently detect abrupt changes in the arms’
reward distributions. Our second contribution is a
method that simultaneously detects change-points and
minimizes the regret. This method occasionally sam-
ples one arm in each direction around the optimal arm
so as to balance the regret due to choosing suboptimal
arms and the regret due to delays in detecting changes.

This paper is organized as follows. In Section 2, we
situate our work with respect to related works. We
present our model with motivating examples and as-
sumptions in Section 3. In Section 4, we present an in-
termediate result in the one-dimensional setting, i.e.,
a sampling scheme that finds an approximately opti-
mal arm with high probability. Sections 5 and 6 con-
tain our main results on graphical bandits and change-
points. Section 5 considers a bandit problem where the
arms have a graphical structure and the expected re-
ward is an unimodal function on the graph. We define
in Section 6 the notion of change-points in the reward
distributions and present an algorithm that simultane-
ously minimizes regret and detects changes. We con-
clude by discussing open problems in Section 7.

2. Related Works

Multiarmed bandit problems are central to machine
learning and adaptive control due to numerous ap-
plications. With a finite set of arms, efficient index-
based solutions exist, whether the rewards are stochas-
tic or adversarial (Auer et al., 2002a;b). The case of
a continuum of arms is also of great interest due to
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applications, such as the design of auction mecha-
nisms (Blum et al., 2003) and routing (Bansal et al.,
2003). The one-dimensional case was first studied
in (Agrawal, 1995) with a Hölder condition. Under
similar conditions, Kleinberg (2004) presents an algo-
rithm based on discretization that achieves a regret
of O(T 2/3), which is optimal up to a logarithmic fac-
tor. A regret of the order of O(

√
T log T ) is shown

under additional assumptions in (Auer et al., 2007).
The common assumption in bandit problems with an
infinite number of arms is a dependence between the
rewards of nearby arms. This notion of dependence
also helps in the case of bandits with finitely many
arms, e.g., (Pandey et al., 2007).

Our model in Section 4 is a special case of the model
of (Kleinberg, 2004), with the additional assumption
that the expected reward is unimodal over an inter-
val [0, 1] of arms. This is similar to the assumptions
of (Cope, 2009), with the notable difference that we
do not require the expected reward function to be
three-times differentiable. Cope (2009) shows that for
a multidimensional unimodal expected reward func-
tion, the Kiefer-Wolfowitz stochastic approximation
algorithm achieves a regret of the order of O(

√
T ). It

is however well-known that Kiefer-Wolfowitz type al-
gorithms require suitable differentiability assumptions
and that finite-time convergence results are generally
unavailable for these algorithms (Agrawal, 1995). Cor-
respondingly, the regret guarantees of (Cope, 2009)
are asymptotic and without explicit constants. In Sec-
tion 4, we give a new method that achieves a regret of
the order of O(

√
T log T ) in finite time under the uni-

modality assumption—this regret bound is also tight
up to a logarithmic factor. In contrast to (Cope, 2009),
this method does not require convexity or differen-
tiability. This method is based on one-dimensional
line search combined with appropriate sampling and
is therefore particularly efficient. Our algorithm it-
eratively eliminates subsets of arms; this approach
is reminiscent of algorithms such as the successive
elimination algorithm for the classical bandit problem
(Even-Dar et al., 2002).

Bandit problems on tree graphs are special cases of
more general bandit problems in topological spaces
(Kleinberg et al., 2008; Bubeck et al., 2008). In this
paper, we motivate and specifically study bandit prob-
lems with a graphical structure. Our algorithm gives
some insight on the dependence of the regret on the
characteristics of a graph. A related problem is on-
line learning on graphs where the rewards form a
nonstochastic (adversarial) and fully observed indi-
vidual sequence (Cesa-Bianchi et al., 2009a;b). In
our work, the rewards are stochastic and only par-

tially observed. Our unimodality assumption for
bandits on graphs is similar to labeled graphs with
bitonic paths in the graph theory literature (cf.
(Müller-Hannemann & Weihe, 2001; Spinrad, 2003)).
However, our expected rewards—corresponding to the
labels—are unknown and observed through stochastic
samples.

Bandit problems with abrupt changes—at unknown
time instants—in the reward distributions is a gener-
alization of two classical models. The stochastic bandit
corresponds to case without changes, whereas the ad-
versarial bandit corresponds to the case of changes at
every time instant. This generalization gives the non-
stationary bandit problem of (Hartland et al., 2006;
Garivier & Moulines, 2008; Yu & Mannor, 2009). We
adopt a similar notion of change-points in Section 6,
but do not require additional assumptions such as side
observations (Yu & Mannor, 2009) or knowledge of
the frequency of changes (Garivier & Moulines, 2008).
Our solution approach is also completely different, re-
lying on sparse and efficient sampling.

3. Unimodality: Examples and
Assumptions

First, let us motivate the assumption of unimodal ex-
pected rewards with a bandit problem where the set
of arms is the interval [0, 1] of the real line. Consider a
sequential pricing problem with the goal of maximiz-
ing the total revenue from the sale of a sequence of
identical items. We may think of the arms as the pos-
sible prices for the item. At each time instant t, the
agent chooses a price xt from an interval [0, 1]. The
reward of the arm x ∈ [0, 1] at time t is a random
variable rt(x) = x wt,x. For a fixed x, the sequence
w1,x, w2,x, . . . is a sequence of i.i.d. Bernoulli random
variables. Each Bernoulli random variable wt,x corre-
sponds to whether an item is sold at time t. Hence, for
a fixed x, the sequence r1(x), r2(x), . . . is also an i.i.d.
random sequence. The expected reward of a fixed arm
x at every time t is

r̄(x) ! E[x wt,x] = xPr(wt,x = 1), x ∈ [0, 1],

which is independent of t. The function r̄ is the ex-
pected reward function over the set of arms [0, 1].

For a fixed time t, we do not know the probability
Pr(wt,x = 1) of sale of the item (i.e., success) for each
price x. However, we assume that this success proba-
bility is a monotone decreasing function of the price.
Hence, if we have two arms x and y such that x ≤ y,
then Pr(wt,y = 1) ≤ Pr(wt,x = 1). This leads to the
following unimodality property on the expected reward
function r̄, which is the main assumption in Section 4.
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Figure 1. Cases to avoid: sharp peak and flat plateau.

Assumption 3.1 (Unimodality). The expected re-
ward function r̄ is unimodal, i.e., there exists an op-
timal arm x∗ ∈ [0, 1] such that r̄ is monotonically in-
creasing in the interval [0, x∗], and monotonically de-
creasing in the interval [x∗, 1].

The function r̄ in the preceding example also satisfies
the following sufficient condition for unimodality.

Remark 1 (Sufficient condition). Suppose that the
function f is differentiable and monotone decreasing
over [0, 1], f(0) > 0, and that xf ′(x) is strictly de-
creasing. Then the function g(x) = xf(x) is unimodal.

We also need the following assumption to avoid ex-
pected reward functions such as the one depicted in
Figure 1. First, we need an upper bound on the rate
of increase of r̄ to avoid sharp peaks that induce high
regret even when we choose arms very close to the best
arm. Second, we need a lower bound on the rate of in-
crease of r̄ to avoid intervals where there is too little
separation between expected rewards.

Assumption 3.2 (Strong max). Let ϕ ≈ 1.618 de-
note the golden ratio. Assume that the function r̄
is unimodal with the maximum at x∗. There ex-
ist Lipschitz constants CH > CL > 0 such that
|r̄(x)− r̄(y)| ≤ CH |x− y| for all pairs x, y ∈ [0, 1],
and such that |r̄(x)− r̄(y)| ≤ CL |x− y| for x, y ∈
[x∗ − CL, x∗ + CL] and |r̄(x)− r̄(y)| ≥ CL/ϕ3 |x− y|
for x, y ∈ [0, x∗ − CL] or x, y ∈ [x∗ + CL, 1].

3.1. Unimodality in Graphical Bandits

In addition to having an unimodal structure, the ex-
pected reward of the arms may have other interesting
structures, such as those arising in the context of net-
works, e.g., social networks and communication net-
works. One natural structure is obtained by associat-
ing the arms of the bandit to vertices in a graph and
capturing the partial order relation with edges in the
graph.

Figure 2 illustrates a concrete but simplified exam-
ple, where each vertex of a tree graph corresponds a
vector (x, y) of two features: a price x and a quality
parameter y for a service offered by a firm. For ev-
ery fixed quality, the offerings can be ordered by price;

Figure 2. Graphical bandit with two features: quality (D,
C, B, A) and price (1, 2, 3, 4).

moreover, for a given base price, the offerings can be
ordered by quality. The expected profit function is
unimodal along every path. At each time instant, the
firm’s task is to make an offer (x, y) to a customer, with
the ultimate goal of maximizing its long-term average
profit.

Another example arises in online ad auctions (cf.
(Varian, 2009)). From an advertiser’s perspective, a
partial order can be induced by nesting keyphrases,
e.g., “laptop”⊂“buy laptop”⊂“buy laptop in the US.”
Each arm is a vector with two components: a search
keyphrase and a corresponding bid. Due to the large
number of possible bid vectors, suppose that the ad-
vertiser may only choose from a small subset of arms.
Every time a user searches one of the keyphrases, the
advertiser’s ad is displayed along with ads from other
advertisers. To the advertiser, the expected revenue of
each arm is unknown due to the presence of competi-
tors and unknown user behavior.

In these examples, it is natural to assume that there
exists an optimal vertex v∗ with maximal expected
reward r̄(v∗). Moreover, the farther a vertex vi is from
v∗, the lower is its expected reward. This gives rise to
an unimodal structure in the expected reward, which
is made precise in the following assumption.

Assumption 3.3 (Unimodality on graphs). Let G be
an undirected tree over the set of vertices V. The ex-
pected reward function r̄ : V → [0, 1] is unimodal along
every path (v1, . . . , vj) of G, i.e., there exists a vertex
vM in every path (v1, . . . , vj) such that

r̄(v1) < r̄(v2) < . . . < r̄(vM )

and r̄(vM ) > . . . > r̄(vj−1) > r̄(vj).

Remark 2. Observe that the expected reward r̄(vi)
corresponds to a label for vertex vi. A graph with
a unimodal reward function is therefore partially or-
dered according to the labels, but this partial order
relation is a priori unknown.

Since there are finitely many arms in the graphical
bandit, we replace the strong maximum assumption by
the following assumption on the separation in expect
reward of neighboring vertices.
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Assumption 3.4 (Separation of expected rewards).
There exists a positive constant DL ∈ (0, 1] such that
DL ≤ |r̄(vi)− r̄(vi+1)|, for every pair of neighboring
vertices vi and vi+1.

3.2. The Notion of Regret

Suppose that an algorithm generates a (random) se-
quence of actions x1, x2, . . ., the corresponding total
expected reward is

∑T
t=1 r̄(xt). The regret of this al-

gorithm is LT !
∑T

t=1

(
r̄(x∗)−E[r̄(xt)]

)
. This notion

of expected regret is similar to that of (Lai & Robbins,
1985; Auer et al., 2002a), and we use it in Sections 4
and 5.

When the sequence of reward distributions contains
change-points, we do not have a fixed expected reward
function r̄ for all time instants. In that case, we use
the following notion of regret:

LC
T !

(
T∑

t=1

max
x∈[0,1]

r̄t(x)

)

−

(
T∑

t=1

E[r̄t(xt)]

)

,

where r̄t denotes the expected reward function at time
t. The baseline of comparison for the regret LC

T is
the sum of optimal expected rewards, which differs
entirely from the baseline used in the adversarial ban-
dit problem (cf. (Auer et al., 2002b)). We call this the
non-stationary regret and use it in Section 6.

4. Unimodal Bandit in One Dimension

In this section, we present some intermediate re-
sults in the simple one-dimensional unimodal ban-
dit problem without abrupt changes in reward dis-
tribution. Various solutions with optimal per-
formance guarantees already exist (Agrawal, 1995;
Kleinberg, 2004; Auer et al., 2007; Kleinberg et al.,
2008; Bubeck et al., 2008; Cope, 2009). However, we
present a new efficient algorithm that hinges on the
unimodality of the expected reward function; as a re-
sult, it only keeps four indices at any given time.

First, we present a simple algorithm for the stochastic
multiarmed bandit problem with a probably approx-
imately correct (PAC) guarantee. The Sampling Al-
gorithm works on a finite set of arms {1, . . . ,m}. It
takes two parameters ε and δ as input and samples
the arms sequentially—in the order arm 1, arm 2, . . . ,
arm m, arm 1, . . . , and stops after (4m/ε2) log(2m/δ)
samples.

Theorem 4.1 (Theorem 1 of (Even-Dar et al., 2002)).
With probability 1−δ, the Sampling Algorithm outputs
an arm i∗ that is ε-optimal, i.e., which has average
reward r̄(i∗) ≥ maxi=1,...,m r̄(i) − ε. We say that this
algorithm is (ε, δ)-PAC.

Algorithm 1 Sampling Algorithm
1: Input: A set of m arms, ε > 0, and δ > 0.
2: Sample all arms 1, . . . ,m sequentially, until each

arm has been sampled (4/ε2) log(2m/δ) times.
3: Let the sample-average reward of arm i be denoted

by r̂(i). Output the arm argmaxi=1,...,m r̂(i).

xL xM xN xH

Figure 3. The four sampled arms and their expected re-
wards during one iteration. The interval [xN

, x
H ] is elimi-

nated with high probability at the end of this iteration. If
|xH − x

L| = 1, then the distances between the points are:
|xM − x

L| = |xH − x
N | = ϕ

−2 and |xN − x
M | = ϕ

−3.

4.1. The LSE Algorithm

Our proposed LSE Algorithm (Algorithm 2) works as
follows. At every iteration of the main loop, it nar-
rows down the sampling interval [xL, xH ] in which the
true optimal arm x∗ lies with high probability. During
each iteration, the LSE Algorithm runs the Sampling
Algorithm over four arms xL, xM , xN , xH . These four
arms are chosen as in Kiefer’s golden section search
algorithm (Kiefer, 1953). Three of these arms are kept
from one iteration to the next; the fourth arm is new.
At the end of each iteration, the algorithm narrows
down the sampling interval by a constant factor 1/ϕ,
where ϕ is the golden ratio. Figure 3 illustrates the
four arms and their true expected rewards during one
iteration. Over time, the goal is to eliminate inter-
vals that do not contain the optimal arm with high
probability, such as [xN , xH ] in Figure 3, at the end
of each iteration, and hence narrow down to smaller
and smaller sampling intervals that contain the opti-
mal arm x∗ with high probability.

Remark 3 (Notation). Although the arms
xL, xM , xN , xH change from one iteration to an-
other, for simplicity of notation, we shall sometimes
omit the subscript n. Hence, we write xL instead of
xL
n when the n-th iteration is implicitly understood.

Remark 4. Observe that, from one iteration of the LSE
Algorithm to the next, three of the four arms do not
change. Hence, we can reuse samples from previous
iterations to improve efficiency.

We first show that the expected regret of the LSE Al-
gorithm is of the order of O(

√
T log T ) and then give

a PAC bound on the regret.
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Algorithm 2 Line Search Elimination Algorithm
1: Input: Sequences εn and δn for n = 1, 2, . . ..
2: (Initialization.) Set [xL, xH ] = [0, 1]. Set xM

such that (xH−xM )/(xM−xL) = ϕ (cf. Figure 3),
where ϕ is the golden ratio. Set xN in [xM , xH ]
such that (xN − xL)/(xH − xN ) = ϕ.

3: for iterations n = 1, 2, . . . do
4: (Find (εn, δn)-PAC arm.) Run the Sampling Al-

gorithm on the arms {xL, xM , xN , xH} with pa-
rameters εn and δn. Let x∗

n denote the output.
5: (Interval elimination.)
6: if x∗

n = xN or x∗
n = xH then

7: Eliminate the interval [xL, xM ]. Update the
points xL := xM and xM := xN , and xN =
(xL + ϕxH)/(1 + ϕ).

8: else
9: Eliminate [xN , xH ]. Update the points xH :=

xN , xN := xM , and xM = (ϕxL+xH)/(1+ϕ).
10: end if
11: end for

Lemma 4.2. Suppose that Assumptions 3.1 and 3.2
hold, and that 1/ϕn > CL. Then, for the n-th iteration
of the LSE Algorithm, we have: Pr

(
x∗ )∈ [xL

n , x
H
n ]

)
≤∑n

i=1 δi.

The proofs of all the results appear in (Yu & Mannor,
2011).

Theorem 4.3 (Expected regret of LSE). Let T be
known and let ϕ = (1+

√
5)/2 denote the golden ratio.

Suppose that we employ the LSE Algorithm with δn =
8/T and εn = CL/ϕn+3 for a total of N intervals n =
1, . . . , N . Suppose that the assumptions of Lemma 4.2
hold. Then the regret of the LSE Algorithm is at most

LT ≤ Z(CH/C2
L)
√

1 + C2
LT log T + 2 log2ϕ(1 + C2

LT ),

where Z = 32ϕ7/(ϕ− 1) ≤ 1504.

Remark 5. This upper bound is tight up to a logarith-
mic factor; it is independent of the number of arms
and the difference between the best and second-best
distributions, but depends on the Lipschitz constants.

Remark 6. For this and the subsequent results, we as-
sume that the time horizon T is known. This assump-
tion can be easily removed by employing the doubling
trick (Cesa-Bianchi & Lugosi, 2006). This trick con-
sists of starting with an arbitrary horizon, then, at the
end of that horizon, we reset and restart our algorithm
with a new horizon twice as long.

Theorem 4.4 (PAC-arm). Suppose that the assump-
tions of Theorem 4.3 hold. Let T be fixed. The LSE

Algorithm with parameters

εn =
CLε

CHϕ3
, δn =

16ϕ6C2
H

C2
Lε

2T
δ log(8/δ), for all n,

outputs an ε-optimal arm with probability 1 − δ after
T steps.

4.2. The LSE Algorithm for m Arms

When there is a finite number m of arms in a (totally-
ordered) chain graph, a regret of O(logm log T ) can be
achieved with the following version of the LSE Algo-
rithm, as opposed to O(m log T ) for a bandit algorithm
that ignores unimodality.

Definition 4.1 (Finite LSE Algorithm). The LSE Al-
gorithm can be applied to a Finite number m of arms
as follows. To each arm vi of (v1, . . . , vm), we assign
the interval [(i− 1)/m, i/m) ⊂ [0, 1], for i = 1, . . . ,m.
Then, we replace every reference in the LSE Algorithm
to an arm x in the interval [(i−1)/m, i/m) by the arm
vi. The algorithm terminates and outputs xL when
xH − xL < 1/m.

Proposition 4.5 (Finite unimodal bandit). Suppose
that there are m arms in a chain graph and that As-
sumptions 3.3 and 3.4 hold. Let T be fixed and known.
Suppose that we follow the Finite LSE Algorithm with
parameters εn = DL and δn = 8/T for all n. Then,
the expected regret is at most

L̂T (m) ≤
16

D2
L

(
1

1− 1/ϕ
+

4 log2ϕ m

T

)

log T + 8 logϕ m.

5. Unimodal Bandits on Graphs

In this section, we consider bandits on graphs with
unimodal rewards, as set out in Section 3.1. The ob-
jective is to exploit both the graphical structure and
the unimodality assumption in order to find the best
arm. By combining the Finite LSE Algorithm with a
greedy search method, we obtain the GLSE Algorithm
(Algorithm 3). Although the performance of the LSE
Algorithm has explicit guarantees, the performance of
the graphical algorithm, however, depends critically on
characteristics of the graph that affect the number of
iterations of the main loop.

Let d denote the maximal degree among vertices of
the graph G, and $ the diameter of the graph (i.e., the
longest shortest path between two vertices). Our main
result in this section asserts that the GLSE Algorithm
incurs a regret of the order of O(d$ log(dT ) + $ log $).
Observe that a naive application of a standard bandit
algorithm would yield a regret of O(m log T ) which is
potentially much larger since m = O(d") in the worst
case.
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Algorithm 3 Graphical LSE (GLSE) Algorithm

1: Input: a tree G, positive integers τ , and sequences
εn and δn for n = 1, 2, . . ..

2: (Initialization.) Pick a vertex x∗ as the root.
3: repeat
4: Run the Sampling Algorithm on the root x∗ and

all its neighbors until each vertex has been sam-
pled τ times. Let y denote the output.

5: if y )= x∗ then
6: Remove the root x∗ and take the sub-tree

rooted in y as the new tree G.
7: Find the longest path P through y in G.
8: Follow the Finite LSE Algorithm on the path

P with parameters εn and δn. Let z denote
the output.

9: Remove from G the vertices of P except z.
10: Set the new root: x∗ := z.
11: end if
12: until y = x∗

13: Return x∗.

Theorem 5.1 (Unimodal graphical bandit). Suppose
that Assumptions 3.3 and 3.4 hold. The GLSE Al-
gorithm with parameters εn = DL, δn = 8/T , and
τ = (4/D2

L) log(2(d+ 1)T ) incurs a regret

LT ≤
2d$

D2
L

log
(
2(d+ 1)T

)
+

8$

(1− 1/ϕ)D2
L

log T

+
32$ log T

D2
LT

log2ϕ m+ 4$ logϕ m.

5.1. Experiment

We compared the performance of the GLSE Algorithm
on a a star-shaped graph—as in Figure 2—with 50
branches, each of which contains 500 vertices. The
reward distributions for all vertices are normal, with
variance 1 and expected value in the interval [0, 1]. A
vertex v∗ is chosen uniformly at random and assigned
the highest expected reward r̄(v∗). The expected re-
ward of other vertices decreases in constant steps as
we move away from v∗.

Figure 4 shows the empirical average regret of the
GLSE and UCB1 Algorithms, which ignores the uni-
modal structure of rewards. The two sets of four plots
correspond to four typical runs of the experiment,
which illustrates the variance in actual performance.
Observe that in contrast to the GLSE Algorithm, the
UCB1 algorithm incurs high regret initially because
every arm is sampled separately. The regret of the
GLSE Algorithm exhibits a small jump when it begins
line search on a new maximal path of a sub-tree.

Figure 4. Convergence of the expected reward of the GLSE
and UCB1 Algorithms.

6. Unimodality and Change-points

Bandit problems with unknown change-points are no-
toriously hard. Even when the number of changes is
fixed and known a priori, the worst-case regret LC

T is
at least of the order of Ω(

√
T ) (Garivier & Moulines,

2008). Using the unimodality assumption, we show
an efficient method of detecting change-points that
does not require prior knowledge of the frequency of
changes, and that incurs a regret that matches this
lower bound up to a logarithmic factor. Although this
method can be employed in the bandits on graphs set-
ting of Section 6, we present the method in the one-
dimensional setting of Section 4 for simplicity. The
extension to graphs is technical and therefore omitted.

First, we define the notion of abrupt changes in the re-
ward distributions. We assume that there is a sequence
of change-points ν1, ν2, . . . such that between consec-
utive change-points νi and νi+1, the rewards of the
arms are i.i.d. random variables. Similarly to adver-
sarial learning problems (cf. (Cesa-Bianchi & Lugosi,
2006)), both the change-points ν1, ν2, . . . and the re-
ward distributions are unknown. We are interested in
the case where the change-point occur with low fre-
quency. Our objective is to detect changes while ex-
cluding infinitesimal changes.

Assumption 6.1. Let ν denote a change-point. Let
r̄ν−1 and r̄ν+1 denote the expected reward functions
before and after ν. Let x∗(ν− 1) and x∗(ν+1) denote
optimal arms for r̄ν−1 and r̄ν+1. We assume that there
exists a constant β > 0 such that |x∗(ν − 1)− x∗(ν +
1)| > β for every change-point ν.

Remark 7. By Assumptions 3.2 and 6.1, if we do not
detect a change-point ν where |x∗(ν−1)−x∗(ν+1)| ≤
β, then we incur a regret of at most CHβ per time step,
where β can be chosen appropriately small.
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Algorithm 4 Adaptive LSE Algorithm
1: Input: θ, τ , φ, sequences εn and δn for n =

1, 2, . . ..
2: (Initialization.) Same as the LSE Algorithm.
3: for iterations n = 1, 2, . . . do
4: Insert lines 4–10 of the LSE Algorithm.
5: (Change Detection.) Every θ time steps, run

the Sampling Algorithm on the four arms {xL−
φ, xL, xH , xH + φ} until each has been sampled
τ times. Let y denote the output.

6: if y = xL − φ or y = xH + φ then
7: Reset algorithm: [xL, xH ] := [0, 1] and n := 1.
8: end if
9: end for

A general approach for detecting change-points is to
compare the empirical average rewards over successive
windows. As in the previous section, we consider a
unimodal setting where the expected reward function
between successive change-points is unimodal. In this
setting, a simpler approach is to detect when the cur-
rent best arm is superseded by an arm to its left or
its right. We take the second approach in this paper.
Figure 5 suggests how a change-point may be detected
by sampling arms to the left and right of the current
optimal arm.

xL − φ x∗ xH + φ
(a) Expected reward
function before ν.

xL − φ x∗ xH + φ
(b) Expected reward
function after ν.

Figure 5. Typical expected reward function before and af-
ter change-point ν.

The following Adaptive LSE Algorithm is obtained by
inserting a change-detection phase to the LSE Algo-
rithm.

Theorem 6.1. Suppose that Assumptions 3.1, 3.2,
and 6.1 hold. Further, suppose that there are k change-
points up to time T . For T ≥ 2/β, φ = β/2, θ =

√
T ,

and τ = 16 log(8T )/(C2
Lβ

2), the non-stationary regret
of the Adaptive LSE Algorithm is at most

LC
T ≤

64

C2
Lβ

2
(
√
T + 1) log(8T ) + 1

+ 1504
CH

C2
L

k
√
1 + C2

LT log T + 2k log2ϕ(1 + C2
LT ).

This upper bound is of the order of O(k
√
T log T ). It

matches the lower bound for the non-stationary bandit
up to a logarithmic factor (cf. (Garivier & Moulines,
2008)). In contrast to (Garivier & Moulines, 2008),
our solution does not require prior knowledge of the
number of change-points k, but instead requires the
unimodality assumption.

6.1. Experiment

We conduct an experiment on an interval of arms [0, 1].
Between consecutive change-points, the reward distri-
bution of each arm is a normal distribution with unit
variance and expected value shown in Figure 6(a). The
superposition of Figures 6(b) and 6(a) shows that from
one iteration to the next, the sampling interval of the
Adaptive LSE scales down toward the arm with opti-
mal expected reward and resets after a change-point.
Observe that a reset occurs at time 2 × 103 because
the optimal arm has been erroneously eliminated.

7. Discussion

The unimodal expected reward property allows effi-
cient solutions to bandit problems with a large num-
ber of partially ordered arms—e.g., continuous inter-
vals and graphs, which are central to the study of
voting theory, repeated auctions, and social networks.
An open problem remains to extend our techniques to
high-dimensional spaces.
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