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Abstract

Nonparametric latent feature models offer a
flexible way to discover the latent features
underlying the data, without having to a pri-
ori specify their number. The Indian Buf-
fet Process (IBP) is a popular example of
such a model. Inference in IBP based mod-
els, however, remains a challenge. Sampling
techniques such as MCMC can be computa-
tionally expensive and can take a long time to
converge to the stationary distribution. Vari-
ational techniques, although faster than sam-
pling, can be difficult to design, and can still
remain slow on large data. In many prob-
lems, however, we only seek a maximum a
posteriori (MAP) estimate of the latent fea-
ture assignment matrix. For such cases, we
show that techniques such as beam search
can give fast, approximate MAP estimates
in the IBP based models. If samples from
the posterior are desired, these MAP esti-
mates can also serve as sensible initializers
for MCMC based algorithms. Experimental
results on a variety of datasets suggest that
our algorithms can be a computationally vi-
able alternative to Gibbs sampling, the parti-
cle filter, and variational inference based ap-
proaches for the IBP, and also perform better
than other heuristics such as greedy search.

1. Introduction

Automatically discovering the latent feature repre-
sentation of data is an important problem in var-
ious data analysis tasks. The latent feature as-
signments for a given set of observations can be
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expressed by a (potentially sparse) binary matrix.
Such representations achieve two-fold benefits: (1)
understanding hidden or causal structures underly-
ing the data (Wood et al., 2006; Meeds et al., 2006;
Rai & Daumé III, 2008) by giving it a parsimonious
representation, and (2) using these latent representa-
tions in prediction settings (e.g., (Rai & Daumé III,
2008)). Often in such settings, the number of la-
tent features is not known a priori. Nonparametric
Bayesian methods (Orbanz & Teh, 2010) offer an ele-
gant solution to this issue by defining a model having
an unbounded complexity and allowing the data to
figure out the right complexity by itself.

The Indian Buffet Process (IBP) (Ghahramani et al.,
2007) is one such nonparametric prior distribution
over infinite, sparse binary matrices. The IBP al-
lows discovering the set of latent features possessed
by each observation, without having to specify the
number of latent features K in advance. Unfortu-
nately, the combinatorially complex nature of the IBP
(search over all possible binary feature assignment
matrices) poses significant challenges during inference
in the IBP based models. MCMC based approaches
such as Gibbs sampling (Ghahramani et al., 2007) are
traditionally used in these models, which tend to be
computationally expensive and may take long to con-
verge. Another alternative is to use variational meth-
ods (Doshi-Velez et al., 2009b). Although faster than
the sampling based methods, these can be difficult to
design and implement, and can potentially run into
local optima issues.

Sampling based methods such as MCMC produce sam-
ples from the posterior distribution. However, in many
applications we only require the maximum a posteri-
ori (MAP) sample, discarding all other samples. This
naturally leads to the following question: If all we care
about is a single MAP assignment, why not find one
directly? Furthermore, note that although sampling
and variational methods aim to explore the full pos-
terior over the latent feature matrix, they may not be
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well-suited for searching a posterior mode: Sampling
may take too long to mix and get close to the maxima;
variational methods may not be able to find the true
maxima due to their inherent local maxima problem.
In this paper, we propose search algorithms such as A∗

and beam search (Russell & Norvig, 2003) for finding
approximate MAP estimate of the latent feature as-
signment matrix. Our approach can be a viable and
more efficient alternative to sampling or variational
approaches if only the MAP estimate is required. If
samples from the true posterior are desired then the
search based MAP estimate can serve as a sensible
initializer for MCMC, resulting in faster convergence.

2. Infinite Latent Feature Model

Given an N × D matrix X of N observations having
D dimensions each, the latent feature model represents
X as ZA+E. Here Z is an N×K binary matrix (with
K " D) denoting which latent features are present in
each observation, A is a K × D matrix consisting of
feature scores, and E consists of observation specific
noise. A crucial issue in these models is the choice
of K, the number of latent features. The Indian Buf-
fet Process (IBP) (Ghahramani et al., 2007) defines a
prior distribution on the binary matrix Z such that it
can have a potentially unbounded (i.e., infinite) num-
ber of columns, and offers a principled way to select
K automatically from the data.

The IBP has a nice culinary analogy of N customers
coming to an Indian buffet and making selections from
an infinite array of dishes. In this analogy, customers
represent observations (rows of X and Z) and dishes
represent latent features (columns of Z). Customer 1
selects Poisson(α) dishes to begin with, where α is
an IBP hyperparameter. Thereafter, each incoming
customer n selects an existing dish k with a prob-
ability mk/n, where mk denotes how many previ-
ous customers chose that particular dish. The cus-
tomer n then goes on further to additionally select
Poisson(α/n) new dishes. This process generates a
binary matrix Z with rows representing customers and
columns representing dishes. The IBP further has the
exchangeability property that the order in which the
customers enter the buffet does not affect the distri-
bution of Z. The IBP defines the following probabil-
ity distribution over the left-ordered-form of Z (invari-
ant to latent feature ordering; see (Ghahramani et al.,
2007) for details):

P ([Z]) =
αK

∏2N−1
h=1 Kh!

e(−αHN )
K∏

k=1

(N −mk)!(mk − 1)!

N !

where HN is the N th harmonic number, Kh is the

function IBPSearch
input: a scoring function g, beam size b, data X1:N

output: IBP matrix Z

1: initialize max-queue: Q ← [〈〉]
2: while Q is not empty do
3: remove the best scoring candidate Z from Q
4: if |Z| = N then return Z
5: for all possible assignments ZN0 for the next

(say N0-th) customer (i.e., each of the 2K pos-
sibilities from existing dishes, and for each pos-
sibility 0 and max{1, 'α/N0( − 1} new dishes)
do

6: let Z0 = [Z;ZN0 ]
7: compute the score s = g(Z0, X)
8: update queue: Q ← Enqueue(Q, Z0, s)
9: end for

10: if b < ∞ and |Q| > b then
11: Shrink queue: Q ← Q1:b

12: (drop lowest-scoring elements)
13: end if
14: end while

Figure 1. The generic IBP search algorithm (takes the scor-
ing function as input).

number of columns in Z with binary representation
h, and mk =

∑
i Zik. K is the number of non-zero

columns in Z.

In this paper, we consider models of the
form X = ZA + E (e.g., the linear-Gaussian
model (Ghahramani et al., 2007)) where A can be in-
tegrated out and thus P (X|Z) =

∫
P (X|Z,A)P (A)dA

can be represented in closed form, or can be approxi-
mated efficiently. Here, we do not describe computing
A but, given Z, it is easy to compute in these models.

3. Search based MAP Estimate for IBP

Our beam-search algorithm (Figure 1) for the IBP
takes as input the set of observations, a scoring func-
tion g, and a maximum beam size b. The algorithm
maintains a max-queue of candidate latent feature as-
signment matrices. Each of these matrices on the
queue is associated with a score on the basis of how
likely it is to maximize the posterior probability of the
complete Z given X. This essentially means how likely
it is to being the eventual MAP estimate once we have
seen all the observations. The maximum beam size
specifies the maximum number of candidates allowed
on the queue at any time. At each iteration, the high-
est scoring candidate Z is removed from the queue, and
is expanded with the set of all possible feature assign-
ments for the next (say N0-th) observation. For the
possible expansions, we consider 2K possibilities for
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assigning the existing dishes and, for each such pos-
sibility, 0 and max{1, 'α/N0( − 1} new dishes (note:
'α/N0( − 1 is the mode of the number of new dishes
chosen by the N0-th customer in the IBP culinary
analogy). Our algorithm therefore explores matrices

Z of sizes up to N ×
∑N

n=1 max{1, 'α/N0( − 1}, but
this is a reasonable approximation since the number of
latent features is typically much smaller than N or D.
Scores are computed for each of the new candidates
and these candidates are placed in the queue. If the
beam size is not infinite then we also drop the low-
est scoring elements so as to maintain the maximum
queue size. We stop at the point when the number of
rows in the matrix removed from the queue equals the
total number of observations.

Scoring of the candidate latent feature assignment ma-
trices constitutes an important aspect of our search
algorithms. Recall that finding the MAP estimate re-
quires finding Z that maximizes the posterior prob-
ability of Z given X, P (Z|X), which is proportional
to the joint probability P (Z,X). However, since our
algorithm processes one observation at a time (in an
online fashion), at any point having seen N0 observa-
tions, we can only have an upper bound on the joint
probability of all N observations. Since the joint prob-
ability P (Z,X) can be again factored as P (Z)P (X|Z),
an upper bound on P (Z,X) can thus be obtained by
independently upper-bounding the prior probability:

P (Z) =
K∏

k=1

α
K Γ(mk + α

K )Γ(N −mk − 1)

Γ(N + 1 + α
K )

where mk =
∑

i Zik, and the likelihood P (X|Z), both
given the first N0 observations. In fact, as we shall
show (Section 4), it is possible to even explicitly up-
per bound the prior term. Unfortunately, the same
is not true for the likelihood term (as it also involves
the future observations and their latent feature assign-
ments), and we therefore propose several heuristics for
upper bounding the likelihood term (Section 5). The
sum (assuming probabilities are expressed on log scale)
of these two terms is the scoring function.

The search algorithm is guaranteed to find the optimal
MAP feature assignment matrix if the beam size is in-
finite and the scoring function g is admissible. Being
admissible means that it should over-estimate the pos-
terior probability of best possible feature assignment Z
that agrees with Z0 on the first N0 observations. De-
noting the condition as Z|N0 = Z0 as the restriction
of Z to the first N0 elements, admissibility can be
written formally as:

g(Z0, X) ≥ max
Z:Z|N0=Z0

P (Z,X)

Although the admissible scoring functions provably
lead to optimal MAP estimates, the NP-hardness of
the MAP problem implies that these can be inefficient
(in terms of enqueue/dequeue operations on the queue;
a large gap between these two numbers would mean
that it takes too long to search for the optimal candi-
date). For efficiency reasons, it is often useful to have
scoring functions that occasionally under-estimate the
true posterior probability, and are therefore inadmis-
sible. In fact, as described in Section 5, our proposed
scoring functions are not guaranteed to be admissi-
ble in general, but they lead to efficient approximate
MAP estimates for the Z matrix (see the experimental
section for evidence supporting this).

Our search algorithm is akin to the A∗

search (Russell & Norvig, 2003) where we opti-
mize a path-cost-so-far function plus a cost-to-goal
function. In our case, we rank a candidate feature
assignment matrix by computing its score that is a
summation of the joint probability P (X,Z) up to first
N0 observations (similar to the path-cost-so-far), and
an upper bound on the joint probability corresponding
to the remaining observations (similar to the cost-
to-goal). Since the joint probability can be factored
into the prior and the likelihood terms, we next show
in Section 4 and Section 5 how each of these can
be upper bounded. In keeping with the culinary
metaphor of IBP, in the rest of the exposition, we will
occasionally refer to observations as customers, and
features as dishes.

4. Upper Bounding the Prior

Given the customer-dish assignment Z0 for the first
N0 customers, it is possible to explicitly compute the
dish assignments for the remaining customers that
maximizes the probability P (Z). For this maximiza-
tion, we need to consider two cases for the remaining
customers: (a) maximization w.r.t. the already se-
lected dishes, and (b) maximization w.r.t. the new
dishes.

Upper bounding w.r.t. already selected dishes:
Given an N0×K matrix Z0 for the first N0 customers,
if one were to maximize the IBP prior P (Z), then the
(N0 +1)th customer would choose an already selected
dish k only if it was chosen previously by more than
half the customers (i.e., the majority). Let us de-
note this event by a random variable xk = I(mk>N0/2),
where I is the indicator function and mk is the number
of previous customers who chose the kth dish. Now, to
maximize P (Z), all subsequent customers would also
make the same choice as the (N0+1)th customer (since
the customers making that choice will continue to re-
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main in the majority). To derive the probability of this
event happening, we appeal to the exchangeability of
the IBP and can assume that the (N0+1)th customer
comes at the end after the remaining (N − N0 − 1)
customers (who either all select or all skip the dish
k). Therefore the probability that the (N0 +1)th cus-
tomer selects dish k is pk = (mk + (N −N0 − 1))/N ,
and the probability that this dish is skipped 1 − pk.
Since all the (N − N0) customers make the identi-
cal choice in selecting/skipping this dish, the random
variable xk ∈ {0, 1} and pk take on the same values
for each customer. This leads to a score w.r.t. dish k:

sk = [pxk

k (1− pk)
(1−xk)](N−N0)

which is a product of (N −N0) binomials. The total
score for the maximization w.r.t. the existing dishes is
given by the product (or the log sum if using log prob-
abilities) of individual scores for each of the existing
dishes.

Upper bounding w.r.t. the new dishes: In
the IBP culinary metaphor, the nth customer selects
Poisson(α/n) number of new dishes so the prior would
be maximized if customer n selects a number of dishes
equal to the mode of this number which is ,α/n-. The
score contribution of this part for P (Z) is given by:

∏

n=N0+1:N

(α/n)#α/n$! exp(−α/n)

,α/n-!

The part of the above product involving the exp terms
just requires computing a harmonic mean of (N −N0)
numbers. For the terms involving ,α/n-, we only need
to care about those for which ,α/n- > 0. This com-
putation is inexpensive since α is usually small and
therefore ,α/n- quickly goes to zero .

5. Upper Bounding the Likelihood

Unlike the prior term, an explicit maximization is not
possible for the likelihood because the future observa-
tions would not have been assigned any latent features
yet, precluding the associated likelihood computation.
We propose here several heuristics for approximating
the likelihood of future observations.

5.1. A Trivial Function

Given the matrix Z0 having N0 many rows, a possi-
ble trivial upper bound on P (X|Z) can be obtained
by only considering the likelihood over the first N0

observations. This function is given by:

gTrivial(X | Z0) = P (X1:N0 | Z0)

For discrete likelihood distributions (e.g., multinomial
likelihood), the true likelihood of each future obser-
vation is upper bounded by 1. Therefore the above
function would be a trivial upper bound on P (X|Z),
since it assigns a probability one to the likelihood term
of each future observation. With an infinite beam size,
this admissible function is guaranteed to find the opti-
mal MAP estimate. Note that this would however not
be true for continuous likelihood distributions, e.g.,
Gaussian likelihood which is actually a density (not
a probability) upper bounded by (2πσ2

X)−1/2. Unless
the data variance σX is such that (2πσ2

X)−1/2 ≤ 1,
admissibility is not guaranteed in such cases, and the
search would not be guaranteed to find the global op-
timal solution. Moreover, as discussed earlier in Sec-
tion 3, even though the trivial function is admissible
in certain cases and may find the optimal solution,
the bound tends to be quite loose which can make the
search inefficient (see empirical evidence in the exper-
iments section).

5.2. An Inadmissible Function

Another possibility is to use a function which is signif-
icantly tighter (i.e., better approximation to the true
likelihood), but not admissible in any of the cases.
Therefore the search is no longer guaranteed to find the
global optimal solution. However, since it is tighter,
it is much more efficient to run, and can find approx-
imate solutions much more quickly. This inadmissible
function is given by:

gInad(X | Z0) = P (X | [Z0;ZN0+1:N ])

where ZN0+1:N is a matrix of size (N − N0) × (K +
N − N0) such that each future customer n ∈ [N0 +
1, . . . , N ] gets assigned a single, its own new dish.
Here [Z0;ZN0+1:N ] denotes row-wise concatenation
with appropriate padding of Z0 and ZN0+1:N with ze-
ros. This is an inadmissible heuristic since it is always
preferable to instead assign the same set of dishes to
two customers if both are identical, a fact which this
function does not take into account.

5.3. A Clustering Based Function

Even though the trivial function discussed above is ad-
missible in certain cases (i.e., discrete likelihood distri-
butions), the upper bound is very loose since it does
not take into account the feature assignments of any
of the future observations, and the search would there-
fore be inefficient. The inadmissible function, on the
other hand, assigns a single new dish to each future
customer which may not mirror the likelihood of fu-
ture observations that closely. Our next proposal aims
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to find a middle ground by trying to account for the
probable dish selection by the remaining customers.

One way to incorporate the dish assignment of future
customers in the likelihood term is to first do a coarse
level of feature assignment. Given the set of obser-
vations X = [X1, . . . , XN ], we first run a clustering
algorithm with a small number of clusters. Having ob-
tained a clustered representation of the data, we pick
one representative point from each cluster and run the
IBP search algorithm (using the trivial scoring func-
tion described above) on these cluster representative
observations. This gives us a coarse feature assign-
ment for the representative points. We then run the
IBP search on the full data and, while computing the
likelihood (heuristic) of a future observation n, we use
the same set of latent features for this observation as
assigned to the representative data point of the cluster
it belongs to.

A number of other alternatives for likelihood maxi-
mization, though not evaluated here, can be tried as
well. For example, for computing the upper bound on
the likelihood of a future observation, we can assign it
the same set of latent features as its nearest neighbor
observation from among the observations seen thus far.
Alternatively, one can do an OR of the latent features
of the K-nearest neighbors of the future observation,
and use the resulting bit vector as the set of feature
assignments for this observation.

6. Experiments

We report experimental results on a variety of datasets
(both synthetic and real), and compare the search
based approaches against a number of baselines. Our
results are on two type of tasks: (1) latent factor anal-
ysis (Rai & Daumé III, 2008), and (2) factor regres-
sion (West, 2003; Rai & Daumé III, 2008) which uses
the factors for making predictions in classification or
regression settings (we experiment with classification
setting). For the factor analysis task, we report the
joint log probability scores and the time taken, and
for the factor regression task, we report the predictive
accuracies on a held-out test data.

6.1. Baselines and experimental setup

The baselines we compare against are uncollapsed
Gibbs sampling (Ghahramani et al., 2007), infinite
variational inference (Doshi-Velez et al., 2009b), and
particle filtering (Wood & Griffiths, 2007) for the IBP.
In addition, we also briefly discuss a comparison with
a greedy search based approach (Section 6.7). The
variational inference was given 5 random restarts to

avoid the issue of local optima (the reported time is
the average time taken for a single run). The par-
ticle filter was run with a varying number of par-
ticles (500-5000) and the reported results are the
best achieved with minimum possible number of par-
ticles. We would like to note here that we also
compared with the semi-collapsed Gibbs sampler for
IBP (Doshi-Velez & Ghahramani, 2009) but the re-
sults and the running times were very similar to the
uncollapsed Gibbs so we included only the uncollapsed
version in our experiments. The uncollapsed version
has the same time complexity as the semi-collapsed
version (linear in the number of observations). Al-
though the uncollapsed version is sometimes known to
mix slowly, we did not observe this in our experiments.
For our search based approaches, we used small beam
sizes (10-20) which seemed to be enough for our ex-
periments.

6.2. Block-images dataset

In our first experiment, we applied our search
based approach to the block-image dataset with
known ground truth, generated in a manner akin
to (Ghahramani et al., 2007) using a linear-Gaussian
model of the data: X = ZA + E. The feature
score matrix A has a zero mean Gaussian prior: A ∼
Nor(0,σ2

A), and the noise as well is Gaussian: E ∼
Nor(0,σ2

X). Our dataset consists of twenty 4 × 4 syn-
thetic block-images generated by combining four dif-
ferent 4 × 4 latent images. The latent feature assign-
ment matrix Z is 20 × 4. More importantly, we note
that Z was not generated from an IBP prior. Each
generated image had Gaussian noise with σX = 0.1
added to it. We then ran our search based approaches
and various baseline approaches on this data. The
trivial, cluster-based, and the inadmissible approaches
finish reasonably fast, taking a time of 1.02 seconds,
0.86 seconds, and 0.45 seconds respectively, suggesting
that the inadmissible search is the fastest among all
(the number of enqueued/dequeued elements, though
not reported to conserve space, were also the smallest
for this method). In comparison, Gibbs sampling took
3.30 seconds, particle filter 0.98 seconds, and the infi-
nite variational inference (Doshi-Velez et al., 2009b)
took 3.73 seconds to finish (truncation level was set to
12). All approaches recovered the ground truth latent
features on this data.

6.3. E-Coli data

The E-Coli dataset is a gene-expression dataset with
known gene-pathway loadings which is a sparse 50 ×
8 binary matrix (K = 8) (Rai & Daumé III, 2008).
This is a semi-real dataset; the gene-factor connectiv-
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Table 1. Results on the E-coli data
K Time (sec) logP(X,Z)

Gibbs Sampling 6 49.8 -4681
Particle Filter 7 17.8 -5369

Infinite Variational 3 12.1 -6875
Trivial 8 72.5 -5887

Cluster Based 8 15.5 -5759
Inadmissible 8 10.3 -5865

ity network (binary Z matrix) is taken from a real
dataset and the observations are simulated using this
network using a linear-Gaussian model. We generated
50 observations with 100 dimensions each. The num-
ber of latent features, time taken, and log-joint prob-
abilities reported by our search based approaches and
the other baselines are given in Table 1. As we see,
our search based approaches successfully recover the
correct number of latent features (8) in the data, and
are reasonably faster (with the inadmissible approach
being the fastest) than the other baselines. The vari-
ational inference, although comparable to search in
terms of speed, severely underestimates the number
of latent features, possibly due to getting trapped in
a local optima. In our experiment, we set the beam
size to 10 in all the search based approaches. The IBP
parameter α was set to 3 and the hyperparameters
(the noise variance σX and latent feature variance σA)
were set based on the data variance, for all the algo-
rithms, akin to the way in (Doshi-Velez et al., 2009b;
Doshi-Velez & Ghahramani, 2009).

6.4. Scalability

Next, we demonstrate the scalability of the search
based algorithms with the number of observations.
We report experiments on one synthetic and one real-
world dataset. The synthetic dataset was generated
using the IBP Prior with α = 1 and linear Gaussian
model of the data with noise variance σX = 0.1. The
generated dataset consists of 1000 data points, each
with 100 dimensions, and the number of latent features
K is 4. We varied the number of observations from
200 to 1000 with increments of 200. For the real-world
dataset, we take the 50 × 100 E-coli data and vary the
number of observations from 10 to 50. The timings
and log-joint probabilities for the synthetic and E-coli
datasets are shown in Figure 2. As the figures show,
the search based approaches are the fastest on both
the datasets (except for the trivial heuristic on E-Coli
data). On the synthetic data, all the search approaches
actually recover the ground truth (the log-joint prob-
abilities of all search based approaches therefore look
the same). Also, although the timings are roughly the
same for all search based approaches, the inadmissi-
ble search did the fewest number of enqueue/dequeue
operations, and was therefore the fastest. Among the

Table 2. Latent factor based classification results
Sonar Scene

Acc K Acc K
Gibbs 70.9 (±4.8) 6 77.6 (±0.9) 6

Particle Filter 52.4 (±4.2) 6 77.8 (±1.3) 10
Infinite Variational 68.5 (±5.6) 10 74.3 (±2.1) 9

Trivial 72.4 (±3.9) 7 76.2 (±1.7) 7
Cluster Based 71.5 (±3.6) 7 77.8 (±2.1) 6
Inadmissible 67.1 (±4.9) 5 76.9 (±3.2) 6

other baselines, the variational inference is the fastest
one but it fails to recover good solutions most of the
time (as measured by the log-joint probability, and also
the number of latent features discovered). The particle
filter, although scaled well on small data regimes (E-
Coli data), scaled poorly for large datasets, as can be
seen by its (lack of) scalability on the synthetic data.

6.5. Factor Regression

Next, we apply the various methods on real-world bi-
nary classification datasets to extract latent factors
and use them to train a classification model (akin
to (West, 2003; Rai & Daumé III, 2008)). We use
two real-world datasets for the classification tasks:
the aspect-angle dependent sonar signals dataset and
the scene classification dataset from the UCI Machine
Learning Repository. The sonar signal dataset con-
sists of 208 examples having 60 features each. The
scene classification dataset is actually a multi-label
dataset with 2407 examples having 294 features each;
we chose the 7th label as a prediction task. Since the
feature assignment matrix is binary and the latent fac-
tors we care about are real-valued, we applied all the
algorithms on the transposed D×N data matrix. The
matrix Z is D×K in this case, and we treat the K×N
real-valued, feature score matrix A as the factor matrix
(N examples with K real-valued features each) used to
train the classification model. For the search based al-
gorithms, we compute A by drawing a sample from its
posterior given Z. After the feature extraction stage,
we split the data into two equal parts (training and
test), train an SVM classifier (with linear kernel) and
then apply the learned classifier on the test data. We
experiment with 200 random splits of training and test
data and report the average and standard deviation of
the accuracies achieved by various methods. As the
results in Table 2 show, the search based approaches
achieve prediction performance that, in most cases, is
competitive (or better) than Gibbs sampling. At the
same time, search finished much faster than sampling
in the latent factor analysis step of the task.

6.6. (Approximate) MAP as an initializer

The search based approach yields a MAP estimate. In
many cases, however, we care about the full posterior.
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Figure 2. Scalability results of various algorithms for E-Coli and Synthetic datasets

In such cases, the approximate MAP estimate found
by our search based algorithms can serve as a sensible
initializer to the sampling based approaches. As an
illustration, we ran an uncollapsed Gibbs sampler by
using random initialization and the search based MAP
initialization, and monitored the joint likelihood over
time. As we see in Fig 3, the MAP initialized Gibbs
sampler localizes itself in the high probability region
quite early on, as compared to randomly initialized
sampler which takes much longer to attain similar val-
ues of the joint likelihood. The extra overhead of doing
the search to get the MAP estimate is much smaller
than the overall time taken by the Gibbs sampler.

Figure 3. Log-likelihood scores for random vs search based
MAP initialized Gibbs Sampler

6.7. Comparison with Greedy Search

We also compared our beam search based approach
with a greedy search heuristic which works by select-
ing, for the (N0+1)th observation, the feature assign-
ment ZN0+1 that maximizes the posterior probability
up to this observation, i.e., P ([Z0;ZN0+1] | X1:N0+1).
Note that this heuristic is similar to the one proposed
in (Wang & Dunson, 2011) for the Dirichlet Process
Mixture Model. Also, the greedy search approach is
akin to beam search with the trivial heuristic, but
without the explicit prior term maximization as we do
in Section 4 (it only considers the prior P ([Z0;ZN0+1])

up to the N0 + 1 observations) and a beam size of 1.
Due to space limit, we do not report the full experi-
mental results here but we found that, on the block-
images dataset (Section 6.2), greedy search ran much
slower than our inadmissible approach, ran almost as
fast as the trivial heuristic, but inferred a much larger
value of K than the ground truth (and lower log-
likelihood scores). Moreover, the greedy search that
only considers the posterior probability up to the cur-
rent observation (ignoring the future observations) is
not expected to do well if the number of observations
is very large.

7. Related Work

In this section, we review previous work on inference
in IBP based models, some of which were used as base-
lines in our experiments. One of the first attempts to
scale inference in IBP based models to large datasets
was the particle filter (Wood & Griffiths, 2007) for
IBP. Particle filters are somewhat similar in spirit
to our approach since a particle filter can be consid-
ered as doing a stochastic beam search. The particle
filter can process one observation at a time. How-
ever, the particle filter samples each row of Z from
the prior and the näıve sequential importance resam-
pling scheme does not perform very well on datasets
having a large number of observations (which is per-
haps the reason behind the poor performance of par-
ticle filter in our experiments). Besides, particle fil-
ters are known to suffer from the sample impoverish-
ment problem and need to make multiple passes over
the data to deal with this issue. Among the sampling
based approaches, (Doshi-Velez & Ghahramani, 2009)
proposed a fast collapsed Gibbs sampler to address
the slow mixing issue of the uncollapsed Gibbs sam-
pler. Other sampling based approaches include the
Metropolis split-merge proposals (Meeds et al., 2006),
and slice sampling (Teh et al., 2007). Parallelization
of the sampling based inference for the IBP has also
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been attempted (Doshi-Velez et al., 2009a).

Deterministic variational inference can be an efficient
alternative to sampling in IBP based models. One such
approach was proposed in (Doshi-Velez et al., 2009b)
who proposed a variational inference algorithm for
IBP which is based on the truncated stick-breaking
approximation. Our search based approach for in-
ference is also deterministic and is similar in spirit
to (Daumé III, 2007) who applied beam search algo-
rithms for finding MAP estimates in Dirichlet Process
mixture models. However, we note that the combina-
torial problem posed by the IBP is even more challeng-
ing than the DP since the former looks at the space
of O(2NK) possible feature assignments as opposed to
the latter where this space is O(KN ) possible cluster-
ings of the data.

8. Discussion and Conclusion

In this paper, we have presented a general, search-
based framework for MAP estimates in the nonpara-
metric latent feature models. There are several aspects
of the proposed algorithm that can be improved even
further. Note that when a candidate is removed from
the queue and expanded with the possible feature as-
signments for the next observation, we need to consider
all 2K possible candidates, compute their scores, and
place them on the queue. This can be expensive for
cases where K is expected to be large. An alternative
to this would be to modify the proposed beam search
by expanding along the columns of the Z matrix for a
given row, considering one dish at a time (this would
amount to a search-within-search procedure). Such a
modification is expected to make search even faster.
Besides, the heuristics used for likelihood maximiza-
tion are critical to getting tighter bounds for the pos-
terior and it would be interesting to consider other pos-
sible heuristics that result in even tighter even bounds.
Another possibility is to estimate the hyperparameters
(IBP hyperparameter α and the variance hyperparam-
eters σX and σA which are currently set of a fixed
value); for examples, as is done in (Wang & Dunson,
2011). Finally, although in the paper we showed the
conjugate case as an example (where we do not care
about A), conjugacy is not necessary for our approach
to be applicable. If the A matrix can’t be integrated
out due to the non-conjugate prior, we can explicitly
represent it at each step of the search algorithm by also
computing the MAP assignment for A, given Z (for ex-
ample, by running a few steps of some gradient based
optimizer), or by running a few Metropolis-Hastings
steps for A, given Z.
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