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Abstract

In this paper, we introduce pilco, a practi-
cal, data-efficient model-based policy search
method. Pilco reduces model bias, one of
the key problems of model-based reinforce-
ment learning, in a principled way. By learn-
ing a probabilistic dynamics model and ex-
plicitly incorporating model uncertainty into
long-term planning, pilco can cope with
very little data and facilitates learning from
scratch in only a few trials. Policy evaluation
is performed in closed form using state-of-
the-art approximate inference. Furthermore,
policy gradients are computed analytically
for policy improvement. We report unprece-
dented learning efficiency on challenging and
high-dimensional control tasks.

1. Introduction and Related Work

To date, reinforcement learning (RL) often suffers from
being data inefficient, i.e., RL requires too many tri-
als to learn a particular task. For example, learning
one of the simplest RL tasks, the mountain-car, often
requires tens if not hundreds or thousands of trials—
independent of whether policy iteration, value itera-
tion, or policy search methods are used. Hence, RL
methods are often largely inapplicable to mechanical
systems that quickly wear out, e.g., low-cost robots.

Increasing data efficiency requires either having infor-
mative prior knowledge or extracting more information
from available data. In this paper, we do not assume
that any expert knowledge is available (e.g., in terms
of demonstrations or differential equations for the dy-
namics). Instead, we elicit a general policy-search
framework for data-efficient learning from scratch.
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Generally, model-based methods, i.e., methods that
learn a dynamics model of the environment, are more
promising to efficiently extract valuable information
from available data than model-free methods such as
Q-learning or TD-learning. One reason why model-
based methods are not widely used in learning from
scratch is that they suffer from model bias, i.e., they in-
herently assume that the learned dynamics model suffi-
ciently accurately resembles the real environment, see,
e.g., (Schneider, 1997; Schaal, 1997; Atkeson & Santa-
maŕıa, 1997). Model bias is especially an issue when
only a few samples and no informative prior knowledge
about the task to be learned are available.

Fig. 1 illustrates how model bias affects learning.
Given a small data set of observed deterministic tran-
sitions (left), multiple transition functions plausibly
could have generated the data (center). Choosing a
single one causes severe consequences: When long-
term predictions (or sampling trajectories from this
model) leave the training data, the predictions of the
function approximator are essentially arbitrary, but
they are claimed with full confidence! By contrast, a
probabilistic function approximator places a posterior
distribution over the transition function (right) and
expresses the level of uncertainty about the model.

Hence, for learning from scratch, we first require a
probabilistic dynamics model to express model uncer-
tainty. We employ non-parametric probabilistic Gaus-
sian processes (GPs) for this purpose. Second, model
uncertainty must be incorporated into planning and
policy evaluation. Deterministic approximate infer-
ence techniques for policy evaluation allows us to apply
policy search based on analytic policy gradients. An
explicit value function model is not required. Based
on these ideas, we propose a model-based policy search
method, which we call pilco (probabilistic inference
for learning control). Pilco achieves unprecedented
data efficiency in continuous state-action domains and
is directly applicable to physical systems, e.g., robots.



PILCO: A Model-Based and Data-Efficient Approach to Policy Search

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

0

2

(x
i
, u

i
)

f(
x

i, 
u

i)

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

0

2

(x
i
, u

i
)

f(
x

i, 
u

i)

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

0

2

(x
i
, u

i
)

f(
x

i, 
u

i)

Figure 1. Small data set of observed transitions (left), multiple plausible deterministic function approximators (center),
probabilistic function approximator (right). The probabilistic approximator models uncertainty about the latent function.

A common approach in designing adaptive controllers,
which takes uncertainty of the model parameters
into account, is to add an extra term in the cost
function of a minimum-variance controller (Fabri &
Kadirkamanathan, 1998). Here, the uncertainty of the
model parameters is penalized to improve the model-
parameter estimation. Abbeel et al. (2006) proposed
further other successful heuristics to deal with inaccu-
rate models. Based on good-guess parametric dynam-
ics models, locally optimal controllers, and temporal
bias terms to account for model discrepancies, very im-
pressive results were obtained. Schneider (1997) and
Bagnell & Schneider (2001) proposed to account for
model bias by explicitly modeling and averaging over
model uncertainty. Pilco builds upon the success-
ful approach by Schneider (1997), where model un-
certainty is treated as temporally uncorrelated noise.
However, pilco neither requires sampling methods for
planning, nor is it restricted to a finite number of plau-
sible models.

Algorithms with GP dynamics models in RL were
presented by Rasmussen & Kuss (2004), Ko et al.
(2007), and Deisenroth et al. (2009). Shortcomings
of these approaches are that the dynamics models are
either learned by motor babbling, which is data ineffi-
cient, or value function models have to be maintained,
which does not scale well to high dimensions. The
approaches by Engel et al. (2003) and Wilson et al.
(2010) are based GP value function models and, thus,
suffer from the same problems. As an indirect pol-
icy search method, pilco does not require an explicit
value function model.

An extension of pilco to deal with planning and con-
trol under consideration of task-space constraints in a
robotic manipulation task is presented in (Deisenroth
et al., 2011).

Throughout this paper, we consider dynamic systems

xt = f(xt−1,ut−1) (1)

with continuous-valued states x ∈ RD and controls
u ∈ RF and unknown transition dynamics f . The

objective is to find a deterministic policy/controller π :
x 7→ π(x) = u that minimizes the expected return

Jπ(θ) =
∑T

t=0
Ext [c(xt)] , x0 ∼ N (µ0,Σ0) , (2)

of following π for T steps, where c(xt) is the cost (neg-
ative reward) of being in state x at time t. We assume
that π is a function parametrized by θ and that c en-
codes some information about a target state xtarget.

2. Model-based Indirect Policy Search

In the following, we detail the key components of the
pilco policy-search framework: the dynamics model,
analytic approximate policy evaluation, and gradient-
based policy improvement.

2.1. Dynamics Model Learning

Pilco’s probabilistic dynamics model is implemented
as a GP, where we use tuples (xt−1,ut−1) ∈ RD+F

as training inputs and differences ∆t = xt − xt−1 +
ε ∈ RD, ε ∼ N (0,Σε), Σε = diag([σε1 , . . . , σεD ]), as
training targets. The GP yields one-step predictions

p(xt|xt−1,ut−1) = N
(
xt |µt,Σt

)
, (3)

µt = xt−1 + Ef [∆t] , (4)

Σt = varf [∆t] . (5)

Throughout this paper, we consider a prior mean func-
tion m ≡ 0 and the squared exponential (SE) kernel
k with automatic relevance determination. The SE
covariance function is defined as

k(x̃, x̃′) = α2 exp
(
− 1

2 (x̃− x̃′)>Λ−1(x̃− x̃′)
)

(6)

with x̃ := [x>u>]>. Here, we define α2 as the variance
of the latent function f and Λ := diag([`21, . . . , `

2
D]),

which depends on the characteristic length-scales `i.
Given n training inputs X̃ = [x̃1, . . . , x̃n] and corre-
sponding training targets y = [∆1, . . . ,∆n]>, the pos-
terior GP hyper-parameters (length-scales `i, signal
variance α2, noise variances Σε) are learned by evi-
dence maximization (Rasmussen & Williams, 2006).
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The posterior predictive distribution p(∆∗|x̃∗) for an
arbitrary, but known, test input x̃∗ is Gaussian with
mean and variance

mf (x̃∗) = Ef [∆∗] = k>∗ (K + σ2
εI)−1y = k>∗ β , (7)

σ2
f (∆∗) = varf [∆∗] = k∗∗ − k>∗ (K + σ2

εI)−1k∗ , (8)

respectively, where k∗ := k(X̃, x̃∗), k∗∗ := k(x̃∗, x̃∗),
β := (K + σ2

εI)−1y, and K being the Gram matrix
with entries Kij = k(x̃i, x̃j).

For multivariate targets, we train conditionally inde-
pendent GPs for each target dimension, i.e., the GPs
are independent for deterministically given test inputs.
For uncertain inputs, the target dimensions covary.

2.2. Policy Evaluation

Minimizing and evaluating Jπ in Eq. (2) requires long-
term predictions of the state evolution. To obtain the
state distributions p(x1), . . . , p(xT ), we cascade one-
step predictions, see Eqs. (3)–(5). Doing this properly
requires mapping uncertain test inputs through the
GP dynamics model. In the following, we assume that
these test inputs are Gaussian distributed and extend
the results from Quiñonero-Candela et al. (2003) to the
multivariate case and the incorporation of controls.

For predicting xt from p(xt−1), we require a joint
distribution p(xt−1,ut−1). As the control ut−1 =
π(xt−1, θ) is a function of the state, we compute the
desired joint as follows: First, we compute the mean
µu and the covariance Σu of the predictive control dis-
tribution p(ut−1) by integrating out the state. Subse-
quently, the cross-covariance cov[xt−1,ut−1] is com-
puted. Finally, we approximate the joint state-control
distribution p(x̃t−1) = p(xt−1,ut−1) by a Gaussian
with the correct mean and covariance. These compu-
tations depend on the parametrization of the policy π.
For many interesting controller parametrizations, the
required computations can be performed analytically,
although often neither p(ut−1) nor p(xt−1,ut−1) are
exactly Gaussian (Deisenroth, 2010).

From now on, we assume a joint Gaussian distribution
p(x̃t−1) = N

(
x̃t−1 | µ̃t−1, Σ̃t−1

)
at time t − 1. When

predicting the distribution

p(∆t) =

∫
p(f(x̃t−1)|x̃t−1)p(x̃t−1) dx̃t−1 , (9)

we integrate out the random variable x̃t−1. Note that
the transition probability p(f(x̃t−1)|x̃t−1) is obtained
from the posterior GP distribution. Computing the
exact predictive distribution in Eq. (9) is analytically
intractable. Therefore, we approximate p(∆t) by a
Gaussian using exact moment matching, see Fig. 2.
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Figure 2. GP prediction at an uncertain input. The input
distribution p(xt−1,ut−1) is assumed Gaussian (lower right
panel). When propagating it through the GP model (up-
per right panel), we obtain the shaded distribution p(∆t),
upper left panel. We approximate p(∆t) by a Gaussian
with the exact mean and variance (upper left panel).

For the time being, assume the mean µ∆ and the co-
variance Σ∆ of the predictive distribution p(∆t) are
known. Then, a Gaussian approximation to the de-
sired distribution p(xt) is given as N

(
xt |µt,Σt

)
with

µt = µt−1 + µ∆ (10)

Σt = Σt−1 + Σ∆ + cov[xt−1,∆t] + cov[∆t,xt−1] (11)

cov[xt−1,∆t] = cov[xt−1,ut−1]Σ−1
u cov[ut−1,∆t] (12)

where the computation of the cross-covariances in
Eq. (12) depends on the policy parametrization, but
can often be computed analytically. The computation
of the cross-covariance cov[xt−1,∆t] in Eq. (11) is de-
tailed by Deisenroth (2010).

In the following, we compute the mean µ∆ and the
variance Σ∆ of the predictive distribution, see Eq. (9).

2.2.1. Mean Prediction

Following the law of iterated expectations, for target
dimensions a = 1, . . . , D, we obtain

µa∆ = Ex̃t−1
[Ef [f(x̃t−1)|x̃t−1]] = Ex̃t−1

[mf (x̃t−1)]

=

∫
mf (x̃t−1)N

(
x̃t−1 | µ̃t−1, Σ̃t−1

)
dx̃t−1 (13)

= β>a qa (14)

with βa = (Ka + σ2
εa)−1ya and qa = [qa1 , . . . , qan ]>.

With mf given in Eq. (7), the entries of qa ∈ Rn are

qai =

∫
ka(x̃i, x̃t−1)N

(
x̃t−1 | µ̃t−1, Σ̃t−1

)
dx̃t−1

=
α2

a√
|Σ̃t−1Λ−1

a +I|
exp

(
− 1

2ν
>
i (Σ̃t−1 + Λa)−1νi

)
, (15)

νi := (x̃i − µ̃t−1) . (16)

Here, νi in Eq. (16) is the difference between the train-
ing input x̃i and the mean of the “test” input distri-
bution p(xt−1,ut−1).
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2.2.2. Covariance Matrix of the Prediction

To compute the predictive covariance matrix Σ∆ ∈
RD×D we distinguish between diagonal elements and
off-diagonal elements: Using the law of iterated vari-
ances, we obtain for target dimensions a, b = 1, . . . , D

σ2
aa=Ex̃t−1

[
varf [∆a|x̃t−1]

]
+Ef,x̃t−1 [∆2

a]−(µa∆)2 (17)

σ2
ab=Ef,x̃t−1 [∆a∆b]−µa∆µb∆ , a 6= b , (18)

respectively, where µa∆ is known from Eq. (14). The
off-diagonal terms do not contain the additional term
Ex̃t−1

[covf [∆a,∆b|x̃t−1]] because of the conditional
independence assumption of the GP models: Differ-
ent target dimensions do not covary for given x̃t−1.

First we compute the terms that are common to both
the diagonal and off-diagonal entries: With the Gaus-
sian approximation N

(
x̃t−1 | µ̃t−1, Σ̃t−1

)
of p(x̃t−1)

and the law of iterated expectations, we obtain

Ef,x̃t−1
[∆a∆b] = Ex̃t−1

[
Ef [∆a|x̃t−1]Ef [∆b|x̃t−1]

]
(7)
=

∫
ma
f (x̃t−1)mb

f (x̃t−1)p(x̃t−1) dx̃t−1 (19)

due to the conditional independence of ∆a and ∆b

given x̃t−1. Using now the definition of the mean func-
tion mf in Eq. (7), we obtain

Ef,x̃t−1
[∆a∆b] = β>a Qβb , (20)

Q :=

∫
ka(X̃, x̃t−1) kb(X̃, x̃t−1)>p(x̃t−1) dx̃t−1 . (21)

Using standard results from Gaussian multiplications
and integration, we obtain the entriesQij of Q ∈ Rn×n

Qij=
ka(x̃i,µ̃t−1)kb(x̃j ,µ̃t−1)√

|R|
exp

(
1
2z>ijR

−1Σ̃t−1zij
)

(22)

where we defined R := Σ̃t−1(Λ−1
a + Λ−1

b ) + I and zij :
= Λ−1

a νi+Λ−1
b νj with νi taken from Eq. (16). Hence,

the off-diagonal entries of Σ∆ are fully determined by
Eqs. (14)–(16), (18), and (20)–(22).

From Eq. (17), we see that the diagonal entries of Σ∆

contain an additional term

Ex̃t−1

[
varf [∆a|x̃t−1]

]
=α2

a−tr
(
(Ka+σ2

εaI)−1Q
)

(23)

with Q given in Eq. (22). This term is the expected
variance of the latent function (see Eq. (8)) under the
distribution of x̃t−1.

With the Gaussian approximation N
(
∆t |µ∆,Σ∆

)
of p(∆t), we obtain a Gaussian approximation
N
(
xt |µt,Σt

)
of p(xt) through Eqs. (10)–(12).

To evaluate the expected return Jπ in Eq. (2), it re-
mains to compute the expected values

Ext [c(xt)] =

∫
c(xt)N

(
xt |µt,Σt

)
dxt , (24)

t = 0, . . . , T , of the cost c with respect to the predic-
tive state distributions. We assume that the cost c is
chosen so that Eq. (24) can be solved analytically, e.g.,
polynomials. In this paper, we use

c(x) = 1− exp(−‖x− xtarget‖2/σ2
c ) ∈ [0, 1] , (25)

which is a squared exponential subtracted from unity.
In Eq. (25), xtarget is the target state and σ2

c controls
the width of c. This unimodal cost can be considered
a smooth approximation of a 0-1 cost of a target area.

2.3. Analytic Gradients for Policy Improvement

Both µt and Σt are functionally dependent on the
mean µu and the covariance Σu of the control sig-
nal (and θ) through µ̃t−1 and Σ̃t−1, respectively, see
Eqs. (15), (16), and (22), for instance. Hence, we can
analytically compute the gradients of the expected re-
turn Jπ with respect to the policy parameters θ, which
we sketch in the following. We obtain the deriva-
tive dJπ/ dθ by repeated application of the chain-rule:
First, we swap the order of differentiating and sum-
ming in Eq. (2), and with Et := Ext

[c(xt)], we obtain

dEt
dθ

=
dEt

dp(xt)

dp(xt)

dθ
:=

∂Et
∂µt

dµt
dθ

+
∂Et
∂Σt

dΣt

dθ
, (26)

where we used the shorthand notation dEt/ dp(xt) :=
{∂Et/∂µt, ∂Et/∂Σt} for taking the derivative of Et with
respect to both the mean and covariance of xt. Second,
from Sec. 2.2, we know that the predicted mean µt and
the covariance Σt are functionally dependent on the
moments of p(xt−1) and the controller parameters θ
through ut−1. By applying the chain-rule to Eq. (26),
we thus obtain

dp(xt)

dθ
=

∂p(xt)

∂p(xt−1)

dp(xt−1)

dθ
+
∂p(xt)

∂θ
, (27)

∂p(xt)

∂p(xt−1)
=

{
∂µt

∂p(xt−1)
,

∂Σt

∂p(xt−1)

}
. (28)

From here onward, we focus on dµt/ dθ, see Eq. (26),
but computing dΣt/ dθ in Eq. (26) is similar. We get

dµt
dθ

=
∂µt
∂µt−1

dµt−1

dθ
+

∂µt
∂Σt−1

dΣt−1

dθ
+
∂µt
∂θ

. (29)

Since dp(xt−1)/dθ in Eq. (27) is known from time step
t − 1 and ∂µt/∂p(xt−1) is computed by applying the
chain-rule to Eqs. (14)–(16), we conclude with

∂µt
∂θ

=
∂µ∆

∂p(ut−1)

∂p(ut−1)

∂θ
=
∂µ∆

∂µu

∂µu
∂θ

+
∂µ∆

∂Σu

∂Σu

∂θ
.

(30)

The partial derivatives of ∂µu/∂θ and ∂Σu/∂θ, see
Eq. (30), depend on the policy parametrization θ. The
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Algorithm 1 pilco

1: init: Sample controller parameters θ ∼ N (0, I).
Apply random control signals and record data.

2: repeat
3: Learn probabilistic (GP) dynamics model, see

Sec. 2.1, using all data.
4: Model-based policy search, see Sec. 2.2–2.3.
5: repeat
6: Approximate inference for policy evaluation,

see Sec. 2.2: get Jπ(θ), Eqs. (10)–(12), (24).
7: Gradient-based policy improvement, see

Sec. 2.3: get dJπ(θ)/dθ, Eqs. (26)–(30).
8: Update parameters θ (e.g., CG or L-BFGS).
9: until convergence; return θ∗

10: Set π∗ ← π(θ∗).
11: Apply π∗ to system (single trial/episode) and

record data.
12: until task learned

individual partial derivatives in Eqs. (26)–(30) can
be computed analytically by repeated application of
the chain-rule to Eqs. (10)–(12), (14)–(16), (20)–(23),
and (26)–(30). We omit further lengthy details and
refer to (Deisenroth, 2010) for more information.

Analytic derivatives allow for standard gradient-based
non-convex optimization methods, e.g., CG or L-
BFGS, which return optimized policy parameters θ∗.
Analytic gradient computation of Jπ is much more ef-
ficient than estimating policy gradients through sam-
pling: For the latter, the variance in the gradient
estimate grows quickly with the number of parame-
ters (Peters & Schaal, 2006).

3. Experimental Results

In this section, we report pilco’s success in efficiently
learning challenging control tasks, including both stan-
dard benchmark problems and high-dimensional con-
trol problems. In all cases, pilco learns completely
from scratch by following the steps detailed in Alg. 1.
The results discussed in the following are typical,
i.e., they do neither represent best nor worst cases.
Videos and further information will be made avail-
able at http://mlg.eng.cam.ac.uk/carl/pilco and
at http://cs.uw.edu/homes/marc/pilco.

3.1. Cart-Pole Swing-up

Pilco was applied to learning to control a real cart-
pole system, see Fig. 3. The system consists of a cart
with mass 0.7 kg running on a track and a freely swing-
ing pendulum with mass 0.325 kg attached to the cart.
The state of the system is the position of the cart, the

velocity of the cart, the angle of the pendulum, and the
angular velocity. A horizontal force u ∈ [−10, 10] N
could be applied to the cart. The objective was to
learn a controller to swing the pendulum up and to
balance it in the inverted position in the middle of
the track. A linear controller is not capable of do-
ing this (Raiko & Tornio, 2009). The learned state-
feedback controller was a nonlinear RBF network, i.e.,

π(x, θ) =
∑n

i=1
wiφi(x) , (31)

φi(x) = exp(− 1
2 (x− µi)>Λ−1(x− µi)) (32)

with n = 50 squared exponential basis functions cen-
tered at µi. In our experiment, θ = {wi,Λ, µi} ∈ R305.

Pilco successfully learned a sufficiently good dy-
namics model and a good controller for this stan-
dard benchmark problem fully automatically in only
a handful of trials and a total experience of 17.5 s.
Snapshots of a 20 s test trajectory are shown in Fig. 3.

3.2. Cart-Double-Pendulum Swing-up

In the following, we show the results for pilco learning
a dynamics model and a controller for the cart-double-
pendulum swing-up. The cart-double pendulum sys-
tem consists of a cart (mass 0.5 kg) running on a track
and a freely swinging two-link pendulum (each link
of mass 0.5 kg) attached to it. The state of the sys-
tem is the position x1 and the velocity ẋ1 of the cart
and the angles θ2, θ3 and the angular velocities of both
attached pendulums. The control signals |u| ≤ 20 N
were horizontal forces to the cart. Initially, the sys-
tem was expected to be in a state x0 at location x,
where both pendulums hung down. The objective was
to learn a policy π∗ to swing the double pendulum
up to the inverted position and to balance it with the
cart being at the expected start location x. A linear
controller is not capable of solving the this problem.

A standard control approach to solving the cart-double
pendulum task is to design two separate controllers,
one for the swing up and one linear controller for the
balancing task, see for instance (Zhong & Röck, 2001),
requiring prior knowledge about the task’s solution.
Unlike this engineered solution, pilco fully automat-
ically learned a dynamics model and a single nonlin-
ear RBF controller, see Eq. (31), with n = 200 and
θ ∈ R1816 to jointly solve the swing-up and balanc-
ing. For this, Pilco required about 20–30 trials cor-
responding to an interaction time of about 60 s–90 s.

3.3. Unicycle Riding

We applied pilco to riding a 5-DoF unicycle in a re-
alistic simulation of the one shown in Fig. 4(a). The

http://mlg.eng.cam.ac.uk/carl/pilco
http://cs.uw.edu/homes/marc/pilco
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1 2 3 4 5 6

Figure 3. Real cart-pole system. Snapshots of a controlled trajectory of 20 s length after having learned the task. To solve
the swing-up plus balancing, pilco required only 17.5 s of interaction with the physical system.
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Figure 4. Robotic unicycle system and simulation results.
The state space is R12, the control space R2.

unicycle is 0.76 m high and consists of a 1 kg wheel, a
23.5 kg frame, and a 10 kg flywheel mounted perpen-
dicularly to the frame. Two torques could be applied
to the unicycle: The first torque |uw| ≤ 10 Nm was ap-
plied directly on the wheel and mimics a human rider
using pedals. The torque produced longitudinal and
tilt accelerations. Lateral stability of the wheel could
be maintained by steering the wheel toward the falling
direction of the unicycle and by applying a torque
|ut| ≤ 50 Nm to the flywheel. The dynamics of the
robotic unicycle can be described by 12 coupled first-
order ODEs, see (Forster, 2009).

The goal was to ride the unicycle, i.e., to prevent it
from falling. To solve the balancing task, we used a
linear controller π(x, θ) = Ax + b with θ = {A,b} ∈
R28. The covariance Σ0 of the initial state was 0.252I
allowing each angle to be off by about 30◦ (twice the
standard deviation).

Pilco differs from conventional controllers in that it
learns a single controller for all control dimensions
jointly. Thus, pilco takes the correlation of all control
and state dimensions into account during planning and
control. Learning separate controllers for each control
variable is often unsuccessful (Naveh et al., 1999).

Pilco required about 20 trials (experience of about
30 s) to learn a dynamics model and a controller that
keeps the unicycle upright. The interaction time

Table 1. Pilco’s data efficiency scales to high dimensions.
cart-pole cart-double-pole unicycle

state space R4 R6 R12

# trials ≤ 10 20–30 ≈ 20
experience ≈ 20 s ≈ 60 s–90 s ≈ 20 s–30 s
parameter space R305 R1816 R28

is fairly short since a trial was aborted when the
turntable hit the ground, which happened quickly
during the five random trials used for initialization.
Fig. 4(b) shows empirical results after 1,000 test runs
with the learned policy: Differently-colored bars show
the distance of the flywheel from a fully upright po-
sition. Depending on the initial configuration of the
angles, the unicycle had a transient phase of about
a second. After 1.2 s, either the unicycle had fallen
or the learned controller had managed to balance it
very closely to the desired upright position. The suc-
cess rate was approximately 93%; bringing the uni-
cycle upright from extreme initial configurations was
sometimes impossible due to the torque constraints.

3.4. Data Efficiency

Tab. 1 summarizes the results presented in this pa-
per: For each task, the dimensionality of the state and
parameter spaces is listed together with the required
number of trials and the corresponding total interac-
tion time. The table shows that pilco can efficiently
find good policies even in high dimensions. The gener-
ality of this statement depends on both the complexity
of the dynamics model and the controller to be learned.

In the following, we compare pilco’s data efficiency
(required interaction time) to other RL methods that
learn previously discussed tasks from scratch, i.e.,
without informative prior knowledge. This excludes
methods relying on known dynamics models or expert
demonstrations.

Fig. 5 shows the interaction time with the cart-pole
system required by pilco and algorithms in the lit-
erature that solved this task from scratch (Kimura
& Kobayashi, 1999), (Doya, 2000), (Coulom, 2002),
(Wawrzynski & Pacut, 2004), (Riedmiller, 2005),
(Raiko & Tornio, 2009), (van Hasselt, 2010). Dy-
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Figure 5. Data efficiency for learning the cart-pole task
in the absence of expert knowledge. The horizontal axis
chronologically orders the references according to their
publication date. The vertical axis shows the required in-
teraction time with the cart-pole system on a log-scale.

namics models were only learned by Doya (2000)
and Raiko & Tornio (2009), using RBF networks and
multi-layered perceptrons, respectively. Note that
both the NFQ algorithm by Riedmiller (2005) and the
(C)ACLA algorithms by van Hasselt (2010) were ap-
plied to balancing the pole without swing up. In all
cases without state-space discretization, cost functions
similar to ours were used. Fig. 5 demonstrates pilco’s
data efficiency since pilco outperforms any other al-
gorithm by at least one order of magnitude.

We cannot present comparisons for the cart-double
pendulum swing up or unicycle riding: To the best
of our knowledge, fully autonomous learning has not
yet succeeded in learning these tasks from scratch.

4. Discussion and Conclusion

Trial-and-error learning leads to some limitations in
the discovered policy: Pilco is not an optimal control
method; it merely finds a solution for the task. There
are no guarantees of global optimality: Since the opti-
mization problem for learning the policy parameters is
not convex, the discovered solution is invariably only
locally optimal. It is also conditional on the experience
the learning system was exposed to. In particular, the
learned dynamics models are only confident in areas
of the state space previously observed.

Pilco exploits analytic gradients of an approximation
to the expected return Jπ for indirect policy search.
Obtaining nonzero gradients depends on two factors:
the state distributions p(x1), . . . , p(xT ) along a pre-
dicted trajectory and the width σc of the immediate
cost in Eq. (25). If the cost is very peaked, say, a 0-1
cost with 0 being exactly in the target and 1 otherwise,
and the dynamics model is poor, i.e., the distributions
p(x1), . . . , p(xT ) nowhere cover the target region (im-
plicitly defined through σc), pilco obtains gradients
with value zero and gets stuck in a local optimum.

Although pilco is relatively robust against the choice
of the width σc of the cost in Eq. (25), there is no
guarantee that pilco always learns with a 0-1 cost.
However, we have evidence that pilco can learn with
this cost, e.g., pilco could solve the cart-pole task
with a cost width σc to 10−6 m. Hence, pilco’s un-
precedented data efficiency cannot solely be attributed
to any kind of reward shaping.

One of pilco’s key benefits is the reduction of model
bias by explicitly incorporating model uncertainty into
planning and control. Pilco, however, does not take
temporal correlation into account. Instead, model un-
certainty is treated similarly to uncorrelated noise.
This can result in an under-estimation of model un-
certainty (Schneider, 1997). On the other hand, the
moment-matching approximation used for approxi-
mate inference is typically a conservative approxima-
tion. Simulation results suggest that the predictive
distributions p(x1), . . . , p(xT ) used for policy evalua-
tion are usually not overconfident.

The probabilistic dynamics model was crucial to
pilco’s learning success: We also applied the pilco-
framework with a deterministic dynamics model to a
simulated cart-pole swing-up. For a fair comparison,
we used the posterior mean function of a GP, i.e., only
the model uncertainty was discarded. Learning from
scratch with this deterministic model was unsuccessful
because of the missing representation of model uncer-
tainty: Since the initial training set for the dynamics
model did not contain states close to the target state,
the predictive model was overconfident during plan-
ning (see Fig. 1, center). When predictions left the
regions close to the training set, the model’s extrapo-
lation eventually fell back to the uninformative prior
mean function (with zero variance) yielding essentially
useless predictions.

We introduced pilco, a practical model-based policy
search method using analytic gradients for policy im-
provement. Pilco advances state-of-the-art RL meth-
ods in terms of learning speed by at least an order of
magnitude. Key to pilco’s success is a principled way
of reducing model bias in model learning, long-term
planning, and policy learning. Pilco does not rely
on expert knowledge, such as demonstrations or task-
specific prior knowledge. Nevertheless, pilco allows
for unprecedented data-efficient learning from scratch
in continuous state and control domains. Demo code
will be made publicly available at http://mloss.org.

The results in this paper suggest using probabilistic
dynamics models for planning and policy learning to
account for model uncertainties in the small-sample
case—even if the underlying system is deterministic.

http://mloss.org
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