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Abstract

We propose a method for learning similarity-
preserving hash functions that map high-
dimensional data onto binary codes. The
formulation is based on structured predic-
tion with latent variables and a hinge-like
loss function. It is efficient to train for large
datasets, scales well to large code lengths,
and outperforms state-of-the-art methods.

1. Introduction

Approximate nearest neighbor (ANN) search in large
datasets is used widely. In computer vision, for exam-
ple, it has been used for content-based retrieval (Jégou
et al., 2008), object recognition (Lowe, 2004), and hu-
man pose estimation (Shakhnarovich et al., 2003).

A common approach, particularly well suited to high-
dimensional data, is to use similarity-preserving hash
functions, where similar inputs are mapped to nearby
binary codes. One can preserve Euclidean distances,
e.g., with Locality-Sensitive Hashing (LSH) (Indyk &
Motwani, 1998), or one might want to preserve the
similarity of discrete class labels, or real-valued pa-
rameters associated with training exemplars.

Compact binary codes are particularly useful for ANN.
If the nearest neighbors of a point are within a small
hypercube in the Hamming space, then ANN search
can be performed in sublinear time, treating binary
codes as hash keys. Even for an exhaustive, linear
scan through the database, binary codes enable very
fast search. Compact binary codes also allow one to
store large databases in memory.

We formulate the learning of compact binary codes
in terms of structured prediction with latent variables
using a new class of loss functions designed for hash-
ing. The task is to find a hash function that maps
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high-dimensional inputs, x ∈ Rp, onto binary codes,
h ∈ H ≡ {0, 1}q, which preserves some notion of
similarity. The canonical approach assumes centered
(mean-subtracted) inputs, linear projection, and bi-
nary quantization. Such hash functions, parameter-
ized by W ∈Rq×p, are given by

b(x;w) = thr(Wx), (1)

where w ≡ vec(W ), and the ith bit of the vector
thr(Wx) is 1 iff the ith element of (Wx) is positive. In
other words, the ith row of W determines the ith bit
of the hash function in terms of a hyperplane in the
input space; 0 is assigned to points on one side of the
hyperplane, and 1 to points on the other side.1

Random projections are used in LSH (Indyk & Mot-
wani, 1998; Charikar, 2002) and related methods (Ra-
ginsky & Lazebnik, 2009). They are dataset indepen-
dent, make no prior assumption about the data dis-
tribution, and come with theoretical guarantees that
specific metrics (e.g., cosine similarity) are increasingly
well preserved in Hamming space as the code length
increases. But they require large code lengths for good
retrieval accuracy, and they are not applicable to gen-
eral similarity measures, like human ratings.

Recent work has focused on learning compact
codes. Two early approaches showed how one might
preserve semantically meaningful data abstractions
(Shakhnarovich et al., 2003; Salakhutdinov & Hinton,
2009). Multilayer neural networks worked well for
document retrieval (Salakhutdinov & Hinton, 2009)
and for large image corpora (Torralba et al., 2008).
However, these methods typically require large train-
ing sets, long learning times, relatively slow indexing,
and they exhibit poorer performance than more recent
methods (Kulis & Darrell, 2009).

Continuous relaxations have been used to avoid opti-
mization with discontinuous mappings to binary codes.
Spectral Hashing (SH) aims to preserve Euclidean dis-
tance with an eigenvector formulation (Weiss et al.,

1One can add an offset from the origin, but we find the
gain is marginal. Nonlinear projections are also possible,
but in this paper we concentrate on linear projections.
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2008). The resulting projection directions can be in-
terpreted in terms of the principal directions of the
data. Empirically, SH works well for relatively small
codes, but often underperforms LSH for longer code
lengths. Wang et al. (2010) extended SH to incor-
porate discrete supervision where sets of similar and
dissimilar training points are available. Like Wang et
al., Lin et al. (2010) propose an algorithm that learns
binay hash functions, one bit at a time, based on some
similarity labels. In contrast, our method is not se-
quential; it optimizes all the code bits simultanously.

Binary reconstructive embedding (BRE) (Kulis & Dar-
rell, 2009) uses a loss function that penalizes the dif-
ference between Euclidean distance in the input space
and the Hamming distance between binary codes:

`bre(mij , dij) =

(
1

q
mij −

1

2
dij

)2

. (2)

Here, dij is the Euclidean distance between two in-
puts of unit length, and mij is the Hamming distance
between their corresponding q-bit binary codes. The
hash function is found by minimizing empirical loss,
i.e., the sum of the pairwise loss, `bre, over training
pairs. Experiments on several datasets demonstrated
improved precision of BRE over SH, and LSH. One
limitation of BRE is the high storage cost required for
training, making large datasets impractical.

In this paper we provide a new formulation for learn-
ing binary hash functions, based on structural SVMs
with latent variables (Yu & Joachims, 2009) and an
effective online learning algorithm. We also introduce
a type of loss function specifically designed for hash-
ing, taking Hamming distance and binary quantization
into account. The resulting approach is shown to sig-
nificantly outperform state-of-the-art methods.

2. Formulation

Our goal is to learn a binary hash function that pre-
serves similarity between pairs of training exemplars.
Let D comprise N centered, p-dimensional training
points {xi}Ni=1, and let S be the set of pairs for which
similarity labels exist. The binary similarity labels are
given by {sij}(i,j)∈S , where xi and xj are similar when
sij = 1, and dissimilar when sij = 0. To preserve a
specific metric (e.g., Euclidean distance) one can use
binary similarity labels obtained by thresholding pair-
wise distances. Alternatively, one can use weakly su-
pervised data for which each training point is associ-
ated with a set of neighbors (similar exemplars), and
non-neighbors (dissimilar exemplars). This is useful
for preserving similarity based on semantic content for
example.

We assume mappings from Rp to H given by (1). The
quality of a mapping is determined by a loss func-
tion L : H × H × {0, 1} → R that assigns a cost to
a pair of binary codes and a similarity label. For bi-
nary codes h,g ∈ H, and a label s ∈ {0, 1}, the loss
function L(h,g, s) measures how compatible h and g
are with s. For example, when s = 1, the loss assigns
a small cost if h and g are nearby codes, and large
cost otherwise. Ultimately, to learn w, we minimize
(regularized) empirical loss over training pairs:

L(w) =
∑

(i,j)∈S

L( b(xi;w), b(xj ;w), sij) . (3)

The loss function we advocate is specific to learn-
ing binary hash functions, and bears some similar-
ity to the hinge loss used in SVMs. It includes a
hyper-parameter ρ, which is a threshold in the Ham-
ming space that differentiates neighbors from non-
neighbors. This is important for learning hash keys,
since we will want similar training points to map to
binary codes that differ by no more that ρ bits. Non-
neighbors should map to codes no closer than ρ bits.

Let ‖h−g‖H denote the Hamming distance between
codes h,g ∈ H. Our hinge-like loss function, denoted
`ρ , depends on ‖h−g‖H and not on the individual
codes, i.e., L(h,g, s) = `ρ(‖h−g‖H , s):

`ρ(m, s) =

{
max(m−ρ+1, 0) for s=1

λmax(ρ−m+1, 0) for s=0
(4)

where m ≡ ‖h−g‖H , and λ is a loss hyper-parameter
that controls the ratio of the slopes of the penalties
incurred for similar (or dissimilar) points when they
are too far apart (or too close). Linear penalties are
useful as they are robust to outliers (e.g., in contrast to
the quadratic penalty in `bre). Further, note that when
similar points are sufficiently close, or dissimilar points
are distant, our loss does not impose any penalty.

3. Bound on Empirical Loss

The empirical loss in (3) is discontinuous and typically
non-convex, making optimization difficult. As a conse-
quence, rather than directly minimizing empirical loss,
we instead formulate, and minimize, a piecewise linear,
upper bound on empirical loss. Our bound is inspired
by a bound used, for similar reasons, in structural
SVMs with latent variables (Yu & Joachims, 2009).

We first re-express the hash function in (1) as a form
of structured prediction:

b(x;w) = argmax
h∈H

[
hTWx

]
(5)

= argmax
h∈H

wTψ(x,h) , (6)
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where ψ(x,h) ≡ vec(hxT). Here, wTψ(x,h) acts as
a scoring function that determines the relevance of
input-code pairs, based on a weighted sum of features
in the joint feature vector ψ(x,h). Other forms of
ψ(., .) are possible, leading to other hash functions.

To motivate our upper bound on empirical loss, we be-
gin with a short review of the bound commonly used
for structural SVMs (Taskar et al., 2003; Tsochan-
taridis et al., 2004).

3.1. Structural SVM

In structural SVMs (SSVM), given input-output train-
ing pairs {(xi,y∗i )}Ni=1, one aims to learn a mapping
from inputs to outputs in terms of a parameterized
scoring function f(x,y;w):

ŷ = argmax
y

f(x,y;w) . (7)

Given a loss function on the output domain, L(·, ·), the
SSVM with margin-rescaling introduces a margin vio-
lation (slack) variable for each training pair, and min-
imizes sum of slack variables. For a pair (x, y∗), slack
is defined as maxy [L(y,y∗)+f(x,y;w)]−f(x,y∗;w).
Importantly, the slack variables provide an upper
bound on loss for the predictor ŷ ; i.e.,

L(ŷ,y∗)

≤ max
y

[L(y,y∗)+f(x,y;w)]− f(x, ŷ;w) (8)

≤ max
y

[L(y,y∗)+f(x,y;w)]− f(x,y∗;w) . (9)

To see the inequality in (8), note that, if the first term
on the RHS of (8) is maximized by y = ŷ, then the f
terms cancel, and (8) becomes an equality. Otherwise,
the optimal value of the max term must be larger than
when y = ŷ, which causes the inequality. The second
inequality (9) follows straightforwardly from the defi-
nition of ŷ in (7); i.e., f(x, ŷ;w) ≥ f(x,y;w) for all
y. The bound in (9) is piecewise linear, convex in w,
and easier to optimize than the empirical loss.

3.2. Convex-concave bound for hashing

The difference between learning hash functions and the
SSVM is that the binary codes for our training data
are not known a priori. But note that the tighter
bound in (8) uses y∗ only in the loss term, which
is useful for hash function learning, because suitable
loss functions for hashing, such as (4), do not require
ground-truth labels. The bound (8) is piecewise linear,
convex-concave (a sum of convex and concave terms),
and is the basis for SSVMs with latent variables (Yu &
Joachims, 2009). Below we formulate a similar bound
for learning binary hash functions.

Our upper bound on the loss function L, given a pair
of inputs, xi and xj , a supervisory label sij , and the
parameters of the hash function w, has the form

L( b(xi;w), b(xj ;w), sij)

≤ max
gi,gj∈H

[
L(gi,gj , sij) + gT

i Wxi + gT
jWxj

]
− max

hi∈H

[
hT
iWxi

]
− max

hj∈H

[
hT
jWxj

]
. (10)

The proof for (10) is similar to that for (8) above. It
follows from (5) that the second and third terms on
the RHS of (10) are maximized by hi = b(xi;w) and
hj = b(xj ;w). If the first term were maximized by
gi = b(xi;w) and gj = b(xj ;w), then the inequality
in (10) becomes an equality. For all other values of
gi and gj that maximize the first term, the RHS can
only increase, hence the inequality. The bound holds
for `ρ, `bre, and any similar loss function, with binary
labels sij or real-valued labels dij .

We formulate the optimization for the weights w of the
hashing function, in terms of minimization of the fol-
lowing convex-concave upper bound on empirical loss:∑

(i,j)∈S

(
max

gi,gj∈H

[
L(gi,gj , sij) + gT

i Wxi + gT
jWxj

]
− max

hi∈H

[
hT
iWxi

]
− max

hj∈H

[
hT
jWxj

])
. (11)

4. Optimization

Minimizing (11) to find w entails the maximization
of three terms for each pair (i, j) ∈ S. The second
and third terms are trivially maximized directly by
the hash function (5). Maximizing the first term is,
however, not trivial. It is similar to the loss-adjusted
inference in the SSVMs. The next section describes
an efficient algorithm for finding the exact solution of
loss-adjusted inference for hash function learning.

4.1. Binary hashing loss-adjusted inference

We solve loss-adjusted inference for general loss func-
tions of the form L(h,g, s) = `(‖h − g‖H , s). This
applies to both `bre and `ρ. The loss-adjusted infer-
ence is to find the pair of binary codes given by(
b̃(xi;xj ,w), b̃(xj ;xi,w)

)
=

argmax
gi,gj∈H

[
`(‖gi−gj‖H , sij) + gT

i Wxi + gT
jWxj

]
. (12)

Before solving (12) in general, first consider the spe-
cific case for which we restrict the Hamming distance
between gi and gj to be m, i.e., ‖gi− gj‖H = m. For
q-bit codes, m is an integer between 0 and q. When
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‖gi − gj‖H = m, the loss in (12) depends on m but
not the specific bit sequences gi and gj . Thus, instead
of (12), we can now solve

`(m, sij) + max
gi,gj∈H

[
gT
i Wxi + gT

jWxj
]

(13)

s.t. ‖gi − gj‖H = m .

The key to finding the two codes that solve (13) is to
decide which of the m bits in the two codes should be
different.

Let v[k] denote the kth element of a vector v. We can

compute the joint contribution of the kth bits of gi and
gj to [gT

i Wxi+gT
jWxj ] by

ζk(gi[k],gj[k]) = gi[k](Wxi)[k] + gj[k](Wxj)[k] ,

and these contributions can be computed for the four
possible states of the kth bits independently. To this
end,

∆k = max
(
ζk(1, 0), ζk(0, 1)

)
−max

(
ζk(0, 0), ζk(1, 1)

)
represents how much is gained by setting the bits gi[k]
and gj[k] to be different rather than the same. Because
gi and gj differ only in m bits, the solution to (13) is
obtained by setting the m bits with m largest ∆k’s to
be different. All other bits in the two codes should be
the same. When gi[k] and gj[k] must be different, they
are found by comparing ζk(1, 0) and ζk(0, 1). Other-
wise, they are determined by the larger of ζk(0, 0) and
ζk(1, 1). Now solve (13) for all m; noting that we only
compute ∆k for each bit, 1≤k≤q, once.

To solve (12) it suffices to find the m that provides the
largest value for the objective function in (13). We
first sort the ∆k’s once, and for different values of m,
we compare the sum of the first m largest ∆k’s plus
`(m, sij), and choose the m that achieves the highest
score. Afterwards, we determine the values of the bits
according to their contributions as described above.

Given the values of Wxi and Wxj , this loss-adjusted
inference algorithm takes time O(q log q). Other than
sorting the ∆k’s, all other steps are linear in q which
makes the inference efficient and scalable to large code
lengths. The computation of Wxi can be done once
per point, although it is used with many pairs.

4.2. Perceptron-like learning

In Sec. 3.2, we formulated a convex-concave bound
(11) on empirical loss. In Sec. 4.1 we described how
the value of the bound could be computed at a given
W . Now consider optimizing the objective i.e., low-
ering the bound. A standard technique for mini-
mizing such objectives is called the concave-convex

procedure (Yuille & Rangarajan, 2003). Applying
this method to our problem, we should iteratively
impute the missing data (the binary codes b(xi;w))
and optimize for the convex term (the loss-adjusted
terms in (11)). However, our preliminary experiments
showed that this procedure is slow and not so effective
for learning hash functions.

Alternatively, following the structured perceptron
(Collins, 2002) and recent work of McAllester et al.
(2010) we considered a stochastic gradient-based ap-
proach, based on an iterative, perceptron-like, learn-
ing rule. At iteration t, let the current weight vector
be wt, and let the new training pair be (xt,x

′
t) with

supervisory signal st. We update the parameters ac-
cording to the following learning rule:

wt+1 = wt + η
[
ψ(xt, b(xt;w

t)) + ψ(x′t, b(x
′
t;w

t))

−ψ(xt, b̃(xt;x
′
t,w

t))− ψ(x′t, b̃(x
′
t;xt,w

t))
]

(14)

where η is the learning rate, ψ(x,h) = vec(hxT), and

b̃(xt;x
′
t,wt) and b̃(x′t;xt,wt) are provided by the loss-

adjusted inference above. This learning rule has been
effective in our experiments.

One interpretation of this update rule is that it fol-
lows the noisy gradient descent direction of our convex-
concave objective. To see this more clearly, we rewrite
the objective (11) as∑
(ij)∈S

[
Lij+wTψ(xi, b̃(xi;xj ,w))+wTψ(xj , b̃(xj ;xi,w))

−wTψ(xi, b(xi;w))−wTψ(xj , b(xj ;w))
]
. (15)

The loss-adjusted inference (12) yields b̃(xi;xj ,w) and

b̃(xj ;xi,w). Evaluating the loss function for these two
binary codes gives Lij (which no longer depends on w).
Taking the negative gradient of the objective (15) with
respect to w, we get the exact learning rule of (14).
However, note that this objective is piecewise linear,
due to the max operations, and thus not differentiable
at isolated points. While the theoretical properties of
this update rule should be explored further (e.g., see
(McAllester et al., 2010)), we empirically verified that
the update rule lowers the upper bound, and converges
to a local minima. For example, Fig. 1 plots the em-
pirical loss and the bound, computed over 105 training
pairs, as a function of the iteration number.

5. Implementation details

We initialize W using LSH; i.e., the entries of W are
sampled (IID) from a normal densityN (0, 1), and each
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Figure 1. The upper bound in (11) and the empirical loss
as functions of the iteration number.

row is then normalized to have unit length. The learn-
ing rule in (14) is used with several minor modifica-
tions: 1) In loss-adjusted inference (12), the loss is
multiplied by a constant ε to balance the loss and the
scoring function. This scaling does not affect our in-
equalities. 2) We constrain the rows of W to have unit
length, and they are renormalized after each gradient
update. 3) We use mini-batches to compute the gra-
dient, and a momentum term based on the gradient of
the previous step is added (with a ratio of 0.9).

For each experiment, we select 10% of the training
set as a validation set. We choose ε, and loss hyper-
parameters ρ, and λ by validation on a few candidate
choices. We allow ρ to increase linearly with the code
length. Each epoch includes a random sample of 105

point pairs, independent of the mini-batch size or the
number of training points. For validation we do 100
epochs, and for training we use 2000 epochs. For small
datasets smaller number of epochs was used.

6. Experiments

We compare our approach, minimal loss hashing –
MLH, with several state-of-the-art methods. Results
for binary reconstructive embedding – BRE (Kulis &
Darrell, 2009), spectral hashing – SH (Weiss et al.,
2008), shift-invariant kernel hashing – SIKH (Ragin-
sky & Lazebnik, 2009), and multilayer neural nets with
semantic fine-tuning – NNCA (Torralba et al., 2008),
were obtained with implementations generously pro-
vide by their respective authors. For locality-sensitive
hashing – LSH (Charikar, 2002) we used our own im-
plementation. We show results of SIKH for experi-
ments with larger datasets and longer code lengths,
because it was not competitive otherwise.

Each dataset comprises a training set, a test set, and a
set of ground-truth neighbors. For evaluation, we com-
pute precision and recall for points retrieved within a
Hamming distance R of codes associated with the test
queries. Precision as a function of R is H/T , where

T is the total number of points retrieved in Hamming
ball with radius R, H is the number of true neighbors
among them. Recall as a function of R is H/G where
G is the total number of ground-truth neighbors.

6.1. Six datasets

We first mirror the experiments of Kulis and Darrell
(2009) with five datasets2: Photo-tourism, a corpus
of image patches represented as 128D SIFT features
(Snavely et al., 2006); LabelMe and Peekaboom, collec-
tions of images represented as 512D Gist descriptors
(Torralba et al., 2008); MNIST, 784D greyscale images
of handwritten digits3; and Nursery, 8D features4. We
also use a synthetic dataset comprising uniformly sam-
pled points from a 10D hypercube (Weiss et al., 2008).
Like Kulis and Darrel we used 1000 random points
for training, and 3000 points (where possible) for test-
ing; all methods used identical training and test sets.
The neighbors of each data-point are defined with a
dataset-specific threshold. On each training set we
find the Euclidean distance at which each point has,
on average, 50 neighbors. This defines ground-truth
neighbors and non-neighbors for training, and for com-
puting precision and recall statistics during testing.

For preprocessing, each dataset is mean-centered. For
all but the 10D Uniform data, we then normalize
each datum to have unit length. Because some meth-
ods (BRE, SH, SIKH) improve with dimensionality re-
duction prior to training and testing, we apply PCA
to each dataset (except 10D Uniform and 8D Nurs-
ery) and retain a 40D subspace. MLH often performs
slightly better on the full datasets, but we report re-
sults for the 40D subspace, to be consistent with the
other methods.

For all methods with local minima or stochastic opti-
mization (i.e., all but SH) we optimize 10 independent
models, at each of several code lengths. Fig. 2 plots
precision (averaged over 10 models, with st. dev. bars),
for points retrieved within a Hamming radius R = 3
using difference code lengths. These results are similar
to those in (Kulis & Darrell, 2009), where BRE yields
higher precision than SH and LSH for different binary
code lengths. The plots also show that MLH consis-
tently yields higher precision than BRE. This behavior
persists for a wide range of retrieval radii (see Fig. 3).

For many retrieval tasks with large datasets, precision
is more important than recall. Nevertheless, for other

2Kulis and Darrel treated Caltech-101 differently from
the other 5 datasets, with a specific kernel, so experiments
were not conducted on that dataset.

3http://yann.lecun.com/exdb/mnist/
4http://archive.ics.uci.edu/ml/datasets/Nursery
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Figure 2. Precision of points retrieved using Hamming ra-
dius 3 bits, as a function of code length. (view in color)

tasks such as recognition, high recall may be desired
if one wants to find the majority of similar points to
each query. To assess both recall and precision, Fig. 4
plots precision-recall curves (averaged over 10 models,
with st. dev. bars) for two of the datasets (MNIST
and LabelMe), and for binary codes of length 30 and
45. These plots are obtained by varying the retrieval
radius R, from 0 to q. In almost all cases, the per-
formance of MLH is clearly superior. MLH has high
recall at all levels of precision. While space does allow
us to plot the corresponding curves for the other four
datasets, the behavior is similar to that in Fig. 4.

6.2. Euclidean 22K LabelMe

We also tested a larger LabelMe dataset compiled by
Torralba et al., (2008), which we call 22K LabelMe. It
has 20,019 training images and 2000 test images, each
with a 512D Gist descriptor. With 22K LabelMe we
can examine how different methods scale to both larger
datasets and longer binary codes. Data pre-processing
was identical to that above (i.e., mean centering, nor-
malization, 40D PCA). Neighbors were defined by the
threshold in the Euclidean Gist space such that each
training point has, on average, 100 neighbors.
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Figure 3. LabelMe – Precision for ANN retrieval within
Hamming radii 1 (left) and 5 (right). (view in color)

LabelMe – 30 bits LabelMe – 45 bits

MNIST – 30 bits MNIST – 45 bits

Figure 4. Precision-Recall curves for different methods, for
different code lengths. Moving down the curves involves
increasing Hamming distances for retrieval. (view in color)

Fig. 5 shows precision-recall curves as a function of
code length, from 16 to 256 bits. As above, it is clear
that MLH outperforms all other methods for short and
long code lengths. SH does not scale well to large code
lengths. We could not run the BRE implementation
on the full dataset due to its memory needs and run
time. Instead we trained it with 1000 to 5000 points
and observed that the results do not change dramat-
ically. The results shown here are with 3000 training
points, afterwhich the database was populated with all
20019 training points. At 256 bits LSH approaches the
performance of BRE, and actually outperforms SH and
SIKH. The dashed curves (MLH.5) in Fig. 5 are MLH
precision-recall results but at half the code length (e.g.,
the dashed curve on the 64-bit plot is for 32-bit MLH).
Note that MLH often outperforms other methods even
with half the code length.

Finally, since the MLH framework admits general loss
functions of the form L(‖h−g‖H , s), it is also inter-
esting to consider the results of our learning frame-
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Figure 5. Precision-recall curves for different code lengths,
using the Euclidean 22K LabelMe dataset. (view in color)

work with the BRE loss (2). The BRE2 curves in
Fig. 5 show this approach to be on par with BRE.
While our optimization technique is more efficient that
the coordinate-descent algorithm of Kulis and Dar-
rel (2009), the difference in performance between MLH
and BRE is due mainly to the loss function, `ρ in (4).

6.3. Semantic 22K LabelMe

22K LabelMe also comes with a pairwise affinity ma-
trix that is based on segmentations and object la-
bels provided by humans. Hence the affinity matrix
provides similarity scores based on semantic content.
While Gist remains the input for our model, we used
this affinity matrix to define a new set of neighbors
for each training point. Hash functions learned us-
ing these semantic labels should be more useful for
content-based retrieval than hash functions trained us-
ing Euclidean distance in Gist space. Multilayer neu-
ral nets trained by Torralba et al. (2008) (NNCA) are
considered the superior method for semantic 22K La-
belMe. Their model is fine-tuned using semantic la-
bels and nonlinear neighborhood component analysis
of (Salakhutdinov & Hinton, 2007).

We trained MLH, using varying code lengths, on 512D
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Figure 6. (top) Percentage of 50 ground-truth neighbors as
a function of number of images retrieved (0 ≤ M ≤ 1000)
for MLH with 64, 256 bits, and for NNCA with 256 bits.
(bottom) Percentage of 50 neighbors retrieved as a function
of code length for M=50 and M=500. (view in color)

Gist descriptors with semantic labels. Fig. 6 shows the
performance of MLH and NNCA, along with a nearest
neighbor baseline that used cosine similarity (slightly
better than Euclidean distance) in Gist space – NN.
Note that NN is the bound on the performance of LSH
and BRE as they mimic Euclidean distance. MLH and
NNCA exhibit similar performance for 32-bit codes,
but for longer codes MLH is superior. NNCA is not
significantly better than Gist-based NN, but MLH
with 128 and 256 bits is better than NN, especially
for larger M (number of images retrieved). Finally,
Fig. 7 shows some interesting qualitative results on
the Semantic 22K LabelMe model.

7. Conclusion

In this paper, based on the latent structural SVM
framework, we formulated an approach to learning
similarity-preserving binary codes under a general
class of loss functions. We introduced a new loss func-
tion suitable for training using Euclidean distance or
using sets of similar/dissimilar points. Our learning
algorithm is online, efficient, and scales well to large
code lengths. Empirical results on different datasets
suggest that MLH outperforms existing methods.
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