
ABC-EP: Expectation Propagation for Likelihood-free Bayesian

Computation

Simon Barthelmé simon.barthelme@bccn-berlin.de

Modelling of Cognitive Processes, Bernstein Center for Computational Neuroscience and TU Berlin. Franklinstr.
28/29, 10961 Berlin, Germany.

Nicolas Chopin nicolas.chopin@ensae.fr

ENSAE-CREST, 3, Avenue Pierre Larousse, 92240 Malako�, France

Abstract

Many statistical models of interest to the
natural and social sciences have no tractable
likelihood function. Until recently, Bayesian
inference for such models was thought in-
feasible. Pritchard et al. (1999) intro-
duced an algorithm known as ABC, for Ap-
proximate Bayesian Computation, that en-
ables Bayesian computation in such mod-
els. Despite steady progress since this �rst
breakthrough, such as the adaptation of
MCMC and Sequential Monte Carlo tech-
niques to likelihood-free inference, state-of-
the art methods remain hard to use and re-
quire enormous computation times. Among
other issues, one faces the di�cult task of
�nding appropriate summary statistics for
the model, and tuning the algorithm can
be time-consuming when little prior infor-
mation is available. We show that Expecta-
tion Propagation, a widely successful approx-
imate inference technique, can be adapted to
the likelihood-free context. The resulting al-
gorithm does not require summary statistics,
is an order of magnitude faster than existing
techniques, and remains usable when prior
information is vague.

1. Introduction

Nearly all methods in Bayesian analysis and statistical
machine learning presuppose that the likelihood func-
tion can be e�ciently calculated. However, for a wide
range of models this is simply not the case: although

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

given a set of parameters θ the model can be simulated
to yield some output y, one cannot easily compute the
probability p(y|θ) of observing a particular output for
a particular set of parameters, most often because this
would involve an intractable integral over latent vari-
ables. Examples can be found across a wide range
of �elds, from biology (Beaumont, 2010) to economics
(Gouriéroux et al., 1993), and the underlying model
does not need to be complex - indeed, some of the
simplest queuing models are intractable in that way
(Blum & François, 2010).

We may still want to perform Bayesian inference on
such a model: this involves being able to compute
some expectations over the posterior, and, often, being
able to compute the evidence (marginal likelihood) for
the model. The rejection ABC algorithm of Pritchard
et al. (1999) provides a way to do so by producing
samples from an approximation to the posterior dis-
tribution. Rejection ABC is simple to state and un-
derstand and forms the basis for all likelihood-free in-
ference methods.

We have data y?, a model for the data pl(y
?|θ), a prior

over the parameters p0(θ), and we would like to obtain
samples from the posterior distribution:

p(θ|y?) ∝ p0(θ)pl(y?|θ)

If we assume that the likelihood can be sampled from,
then the following procedure produces exact samples
from the posterior.

1. Draw θ from the prior.

2. Draw a dataset y from the model conditional on
θ, y ∼ p(y|θ).

3. If y = y? then keep θ, otherwise reject.

Expectation Propagation for Likelihood-Free Inference

Evidently as a practical algorithm the scheme has two
major �aws: it only works for discrete y, and as the
dimension of y increases the acceptance rate drops ex-
ponentially. Rejection ABC remedies these problems
by introducing a vector of summary statistics s (y),
and accepting samples if the summary statistics of the
simulated dataset are within a distance ε from the sum-
mary statistics of the true dataset. This produces sam-
ples from an approximation of the posterior given by

ps,ε (θ|y?) ∝
ˆ
Y
p0 (θ) pl(y|θ)kε (||s(y)− s(y?)||)dy

(1)

where kε is a window of width ε, de�ning the ac-
ceptance region. It is important to stress that, un-
less s is su�cient (as in example 1 below), the ap-
proximation error does not vanish as ε → 0, i.e.
p(θ|s(y?)) 6= p(θ|y?). In that respect, the ABC pos-
terior su�ers from two levels of approximation: a non-
parametric error governed by the bandwidth ε, and
a bias introduced by the summary statistics s. The
more we include in s (y), the smaller the bias induced
by the dimensionality reduction should be. On the
other hand, as the dimensionality of s(y) increases,
the lower the acceptance rate will be. We would then
have to increase ε, which leads to an approximation of
lower quality.

We describe below an adaptation of Expectation Prop-
agation (Minka, 2001), which we call the ABC-EP al-
gorithm. ABC-EP simpli�es considerably likelihood
free inference in three ways: it does not require sum-
mary statistics, enables inference even when prior con-
straints are vague, and reduces computation time dra-
matically.

2. Related work

Although the simplicity of the ABC-rejection algo-
rithm is appealing, the very low acceptance rate
one encounters in practice limits its use. Marjo-
ram et al. (2003) therefore suggested adapting the
Metropolis-Hastings algorithm, yielding a method we
will call MCMC-ABC. MCMC-ABC targets the joint
distribution p (θ,y) truncated such that ||s (y) −
s (y?) || < ε. This is done by generating candidate
(θt+1,yt+1) where yt+1 ∼ pl(y|θt), and accepting only
if ||s (yt+1)− s (y?) || < ε. This algorithm requires the
simulation of a full dataset at each iteration.

Del Moral et al. (2008) adapt sequential Monte Carlo
techniques (Del Moral et al., 2006) to likelihood-free
problems (ABC-SMC). In ABC-SMC a population of
particles is updated over time to approximate a se-
quence of ABC posteriors ps,ε1 () , . . . , ps,εk (), with

ε1 > . . . > εk. Since for ε large the ABC posterior
tends to the prior, the intuition is that decreasing ε
gradually lets one approach the target density rela-
tively smoothly.

Another line of work views likelihood-free inference as
a density estimation problem, in which we can sample
from the joint density p(θ,y) and we want to estimate
the density of θ conditional on y? (Blum, 2010). Sev-
eral �correction� algorithms have been proposed, in-
cluding Beaumont et al. (2002) and Blum & François
(2010). Finally, other methods focus on selecting ap-
propriate summary statistics (Nunes & Balding, 2010).
A fairly extensive review of existing techniques can be
found in Beaumont (2010).

3. The ABC-EP algorithm

3.1. Expectation Propagation

Expectation Propagation (introduced in Minka, 2001
and closely related to the Expectation Consistent in-
ference of Opper & Winther, 2005) is one of the most
successful algorithms for variational inference. It aims
at �nding a tractable density q (θ) ∈ Q that is close
to a target density p(θ) in the sense of minimising the

Kullback-Leibler KL(p||q) =
´
p (θ) log p(θ)

q(θ)dθ. - Here

we use multivariate Gaussian distributions as approx-
imating distributions, but other families can be used.
Most generally one takes the approximating family Q
to be an exponential family parameterised by :

qλ(θ) = exp
(
λtt (θ)− φ (λ)

)
Then λopt = argmin

λ
KL (p||qλ) is such that E (t (θ))

under qλopt
is equal to E (t (θ)) under p (Seeger, 2005)

- the objective of EP can be then understood equiv-
alently as computing a set of moments of p. If q is a
multivariate Gaussian, then qλopt

will have the same
mean and covariance as p.

Although λopt cannot be directly computed in most
cases, Expectation Propagation attempts to approach
it by exploiting the structure of the posterior to con-
struct a sequence of simpler problems.

EP assumes that the distribution of interest decom-
poses into a product of densities:

p (θ) = Z−1
∏

gi (θ)

This is naturally the case when p(θ) is a posterior dis-
tribution for independent data, in which case:

Expectation Propagation for Likelihood-Free Inference

θ

y

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

●

●
● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

● ●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●

● ●

●

● ●

●

●

●
● ●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

● ●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●●
●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

● ●●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●
●●

●
●

●

●

●

●

● ●

●

●

●

●
●

●
●

●●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●●

●
●

●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

● ●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●●

●

●

● ●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

● ●

●

●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

y*

y* −
ε
2

y* +
ε
2

a.

θ
P

ro
b.

 d
en

si
ty

−2 −1 0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

b.

Figure 1. The ABC approximation, and the ABC rejection algorithm. Let y|θ ∼ N (θ, 1) and θ ∼ N (0, 1). Then sampling
�rst from p(θ) and then from p(y|θ) will produce samples from p(y; θ), the contour of which are shown in (a) along with
some samples. Suppose we observe y? = 2 and wish to sample from p(θ|y?). The ABC-rejection algorithm accepts all
samples from p(y; θ) that lie in the region de�ned by y ∈ [y? − ε

2
; y? + ε

2
]. We highlight the accepted samples for ε = 1.

b. A histogram of the accepted samples of θ, compared to the exact posterior (solid line) and the prior (dotted line).
The mean of the approximation lies between that of the exact posterior and that of the prior, and so does its variance.
The approximation is equivalent to knowing only that y is between 1 and 3, instead of knowing its exact value, which by
necessity makes the posterior distribution more vague.

p(θ) ∝ p0 (θ)
m∏
i=1

gi (θ) (2)

Here p0(θ) is the prior distribution, and the gi's are the
likelihoods of each of the m datapoints. Expectation
Propagation uses an approximating distribution with
a similar structure:

q(θ) ∝ p0(θ)
∏

fi(θ) (3)

In Expectation Propagation the fi's are known as
the �sites�. Each site is a (not necessarily nor-
malised) member of the exponential family : fi (θ) ∝
exp

(
λt
it (θ)

)
, so that:

∏
i

fi(θ) = exp
(∑

λt
it (θ)

)
= exp

(
λtt (θ)

)
(4)

The λi's are the site parameters of the approximation,
and λ =

∑
λi represents the global parameters. The

algorithm will update the sites one-by-one, improving
the approximation over time.

This is achieved by creating hybrid distributions,
which interpolate between the current approximation
and the true density. The hybrid is obtained by swap-
ping one site of the approximation with the current
site of the true density:

hi (θ; q, p) = gi (θ)
∏
j 6=i

fj (θ) = gi(θ)q−i (θ) (5)

The moments of the hybrid are computed, and Q, r
are updated such that the moments of q match the
moments of the hybrid. The site parameters for site
i are then updated accordingly. The algorithm loops
over sites until convergence. We summarise it as al-
gorithm 1. A more complete description of EP in the
exponential family framework can be found in Seeger
(2005).

Expectation Propagation for Likelihood-Free Inference

Algorithm 1 Generic EP for exponential families.

Input: a target density p (θ) = p0 (θ)
∏n
i=1 gi (θ).

Initialise λ0 to the exponential parameters of the prior
p0, and local site parameters λ1 . . .λn = 0. Set global
approximation parameter λ to λ =

∑n
i=0 λi = λ0.

Pick a site i ∈ 1 . . . n and loop until convergence:

1. Create hybrid distribution gi(θ)q−i (θ) by setting
qi (θ) ∝ exp

(
λt−it (θ)

)
with λ−i = λ− λi.

2. Compute moments ηh of hybrid distribution,
transform to exponential parameters λh.

3. Update site i by setting λi = λh−λ−i, then reset
global parameter λ to λ = λh.

Return moment parameters η = η (λ).

3.2. Adapting EP for likelihood-free inference

Assuming that the data vector may be decomposed as
y = (y1, . . . , yn), an arguably far better target for an
likelihood-free inference method would be:

pε (θ|y?) ∝
ˆ
p0 (θ) pl(y|θ)

n∏
i=1

kε (yi − y?i) dy (6)

which is the ABC posterior without the approxima-
tion due to summary statistics, and therefore has the
advantage of being exact in the ε→ 0 limit. We have
seen that this target is not realistic for current ABC al-
gorithms, except in a few special cases (see section 5).
However, if the likelihood factorise over datapoints, it
becomes a potential target for Expectation Propaga-
tion.

In essence, EP requires that one computes the mo-
ments of a pseudo-posterior distribution made up of a
Gaussian prior and the likelihood for one datapoint.
The central idea of ABC-EP is that this can be done
e�ciently in the ABC context because the likelihood
for one datapoint is approximable by:

ˆ y?i +ε/2

y?i−ε/2
p(yi|θ)dyi

so that the hybrid distribution in equation 5 becomes:

h (θ) ∝
ˆ y?i +ε/2

y?i−ε/2
p(yi|θ)q−i (θ) dyi (7)

In practice the relevant quantities are estimated by
simulating θ values from q−i, then yi values from

p(yi|θ) and rejecting points too far from y∗i . The for-
mulas are summarised as Algorithm 2 and Figure 1
provides an illustration. The reason this is e�cient is
that, since we are only integrating one datapoint at a
time, the rejection rate is likely to be tolerably small
even for small windows.

Therefore the simplest version of the ABC-EP algo-
rithm is as follows: choose a window size ε, then run
the standard Expectation Propagation algorithm (al-
gorithm 1), computing the relevant moments of the
hybrid distribution using the method described in al-
gorithm 2.

In order for ABC-EP to be e�ective in practice, we
need to limit the number of times the model is sim-
ulated. On the other hand, if too few samples are
used in the computation of the moments, then EP will
become unstable and never converge to a good ap-
proximation. Our solution is to sample values of θ
using a Quasi-Monte Carlo strategy (namely a Halton
sequence, Lemieux, 2009)) to reduce the variance of
moment computations. QMC integration has (worst
case) O

(
log(N)d/N

)
convergence, with N the num-

ber of samples and d the dimensionality. For the low
dimensional problems we are interested in, this is su-
perior to the O

(
N−1/2

)
convergence of Monte Carlo

techniques.

Algorithm 2 Computing the moments of the hybrid
distribution in the likelihood-free setting, basic algo-
rithm.
Inputs: a �cavity� distribution q−i(θ) with parameter
λ−i. The true datapoint y

∗
i . A window size ε.

1. Compute a Quasi-Monte Carlo sequence θ1 . . .θk

with marginal distribution q−i (θ). Each sample
θm in the sequence is obtained via the transfor-
mation θm = Utz

m
+ m, where z1 . . . zn is the

Halton sequence, U is the Cholesky factor of the
covariance of qi and m is its mean.

2. Sample pseudo-datapoints y1i . . . y
k
i using by sim-

ulating the model for datapoint i, conditional on
parameter values θ1 . . .θk. Reject all samples for
which ||y∗i −yki || > ε. This yields a set of accepted
pairs

{(
θ1acc, y

1
acc

)
, . . . , (θaacc, y

a
acc)

}
of size a.

3. Compute the normalising constant zh = ε−1a/k,
and moments µh = 1

a

∑
θjacc and Σh =

1
a

∑
θjacc

(
θjacc

)t − µhµt
h.

Return zh, µh, Σh.

Expectation Propagation for Likelihood-Free Inference

4. Toy example: regression under

Gaussian errors

We demonstrate some features of the algorithm in
the case of regression under Gaussian noise, which of
course no one in their right mind would use approx-
imate methods for, but is quite useful as a way to
illustrate the comparative properties of ABC-EP and
of likelihood-free MCMC samplers.

The model is the classical linear-Gaussian model, with
m = 4 parameters and n = 100 datapoints.

y = Xw + n

n ∼ N
(
0, σ2I

)
We take the model parameters to be the regression
weights θ = w, the prior to be θ ∼ N (0, I). We chose
random uniform values over [0,1] for Xij , and the true
values for θ were picked from a N (0, 1) distribution.
The exact posterior distribution is another Gaussian:

θ|y? ∼ N
(
σ−2H−1Xty?;H−1

)
(8)

H = σ−2XtX + I

We ran ABC-EP for two complete passes over the data,
computing the moment of the hybrid distributions us-
ing algorithm 2 setting a goal of a minimum of k sam-
ples from the truncated distribution. We vary k to
vary precision (10 values logarithmically distributed
between 102 and 104.5). ε was set to σ.

It is di�cult to set up a fair comparison to other
likelihood-free MCMC algorithms, chie�y because tun-
ing these algorithms is notoriously di�cult and time-
consuming (Marin et al., 2011). E�ectively, one must
choose summary statistics, a proposal distribution, an
acceptance parameter and a starting point. The latter
point is especially signi�cant: a bad starting point will
lead one to choose an extremely high value for ε, which
will render the MCMC run e�ectively useless.

We therefore gave MCMC-ABC an unrealistic advan-
tage: minimal su�cient statistics, optimal scaling and
optimal starting point. The su�cient statistics were
the maximum likelihood estimate for data y for the

true model: s (y) =
(
XtX

)−1
Xty. We used the opti-

mal scaling for the exact posterior, with a Gaussian
proposal distribution with variance (2.38)

2
H−1/m

(Roberts & Rosenthal, 2001). We initialised the chain
at the posterior mode H−1Xty?. For the ABC poste-
rior to have a variance comparable to that of the EP
posterior it was necessary to set ε = σ/5. We ran the

algorithm for a variable number of iterations (10 val-
ues logarithmically distributed between 104.5 and 106).
Because of the high autocorrelation in the chains, we
trimmed the values to keep only one iteration in 100.
We next discarded the �rst 100 values as burn-in, and
estimated the posterior mean from the mean of the
samples. Results are plotted on Figure 2.

5. Example: stochastic predator-prey

model

The most prominent advantage of ABC-EP is to be
free of summary statistics, targeting directly the trun-
cated posterior of equation 6. In certain special cases,
such as the predator-prey model studied here, there are
MCMC algorithms that target this posterior as well.
We show that ABC-EP remains attractive because it
is considerably faster than its MCMC counterparts.

The stochastic predator-prey model (Gillespie, 1977;
Boys et al., 2008; Toni et al., 2009) is a nondetermin-
istic version of the classical Lotka-Volterra model of
predator-prey dynamics. It is an example of a wider
class of models for discrete, interacting populations
that is heavily used in chemistry. The model describes
the evolution of two discrete populations xA (t) and
xB (t), in the case when the B's eat the A's. Three
type of events can occur: a prey is born (xA is in-
creased by one), a predator dies (xB is reduced by 1),
or a predator eats a prey (xA is decreased by 1, xB
is increased by one). The instantaneous probability of
these events is given by the following rate equations:

1. Predators die with rate r1xA (t)

2. Preys are born with rate r2xB (t)

3. A prey is consumed by a predator with rate
r3xA(t)xB(t)

We observe the two populations at time t1...tn,
and we wish to infer the vector of log-rates θ =
(log r1, log r2, log r3).

Two MCMC samplers are available. When relatively
few datapoints have been observed (n small), one can
follow the strategy of Toni et al. (2009) and use regular
ABC algorithms. A more sophisticated approach can
be found in Holenstein (2009). Although presented
within the Particle MCMC framework (Andrieu et al.,
2010), it can be seen to target an ABC posterior dis-
tribution. The ABC posterior is interpreted as the
posterior of a state-space model, and a particle �lter
is used to evaluate the likelihood within a Metropolis-
Hastings sampler.

Expectation Propagation for Likelihood-Free Inference

a.
Lo

g
er

ro
r

on
 p

os
te

rio
r

m
ea

n

10−3

10−2.5

10−2

10−1.5

Low noise

●

●

●

●

●

●

●
●
●●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●●
●●

●

●
●

●
●

●●

●

●
●

●●

●

●

●

●●
●

●

●●

●

●
●

●

●●

●

●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●●

●
●

●

●
●

●●

●

●●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●

●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●●

●●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●
●
●
●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

E
P

M
C

M
C

10−2

10−1.5

10−1

10−0.5

High noise

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●
●
●●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●
●

●●●●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●
●

●

●
●

●
●

●
●●

●

●

●

●

●

●●●
●

●
●

●

●

●
●
●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●
●●●●

●●

●

●
●

●

●●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●
●
●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●●
●
●
●

●
●

●

●

●

●●

●
●

●
●

●

●
●
●

●

●
●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

b.

CPU time (secs)

Lo
g

er
ro

r
on

 p
os

te
rio

r
st

d.
 d

ev

10−3

10−2.5

10−2

Low noise

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●
●

●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●●

●

●

●
●
●
●
●●

●
●

●

●

●

●

●

●●

●●

●

●

●
●●

●●

●

●

●
●●

●
●
●● ●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●
●

●●

●

●

●

●●
●

●●

●
●●●
●
●

●
●

●

●

●●

●●●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●●
●
●

●
●

●

●●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
● ●

●●
●

●●●
●

●

●
●

●

●

●

●

●

●
●
●

●

●●

●

●
●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●●●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●

●

●●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●
●

●

●

●

●

●

●

100.6 100.8 101 101.2 101.4 101.6 101.8 102

10−2

10−1.5

10−1

High noise

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●
●

●●

●
●
●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●

●

●

●

●●

●●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●●
●

●●

●

●

●
●●
●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●
●●
●

●
●
●
●●

●

●
●

●

●

●

●

●
●

●
●●

●●●

●

●

●●●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●
●

●

●
●

●
●
●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●
●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●

●●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●

●
●

100.6 100.8 101 101.2 101.4 101.6 101.8 102

Figure 2. Performance against computational e�ort for ABC-EP and MCMC-ABC in a toy linear regression example.
Both algorithms were implemented in MATLAB and ran on the same machine (Lenovo X201). Running time was
measured using the �tic/toc� functions. a. Error in estimation of posterior mean (de�ned as the Euclidean distance of
the approximate posterior mean computed by the algorithm, to the exact posterior mean given by equation 8). Each
datapoint represents one run of the algorithm: ABC-EP appears in red, and MCMC-ABC in blue. The continuous curves
are local smoothers obtained using the R function loess. b. Error in estimation of marginal posterior standard deviations
of the parameters (de�ned similarly as the Euclidean distance of the approximate posterior standard deviations to the
exact values8).

The Markov property of the underlying model can be
used to speed up ABC-EP considerably, by targeting
the following approximate posterior:

pε (θ) = p0 (θ)

n∏
t=1

ˆ
pl(yt|y∗t−1,θ)kε (yt − y?t) dyt.

This approximate posterior is exact in the ε→ 0 limit,
and decomposes into a product over sites.

Since each of the sites only depends on p(yt|y?t−1,θ),
each ABC-EP update only requires simulating the
model between two successive sampling times, which
can be done relatively cheaply.

To compare the various methods, we simulated the
model for 1 ≤ t ≤ 50 with true rates r1 = 0.4, r2 =
0.01, r3 = 0.3, to obtain the data plotted in Figure
3. We set a prior with mean (0,−5, 0) and unit vari-
ance. We ran ABC-EP with a target sample size of
4000 and an value of 3. On a standard desktop ma-
chine this takes 150 seconds. We ran the Particle
MCMC algorithm with 1000 particles, 1.7 × 105 it-
erations and the same value for ε, so that the target

posterior is identical. The simulation takes two days,
and, even when keeping only one particle in 10, the
resulting chain showed considerable auto-correlation
(CODA estimates an e�ective sample size of around
350 samples). MCMC-ABC performs even worse - ob-
taining a decent acceptance rate requires taking ε very
large, and the resulting posterior distribution is twice
as spread as that obtained using Particle MCMC (re-
sults not shown). The posterior marginals obtained
using MCMC and ABC-EP are shown on Figure 4 -
EP-ABC yields essentially identical results in a frac-
tion of the time.

6. Discussion

In the examples we have studied, ABC-EP provides
accurate results in a fraction of the time required
by other methods, and frees the user from having to
choose summary statistics for the dataset. This conve-
nience comes at a cost: ABC-EP requires for the like-
lihood to factorise, and for the target posterior distri-
bution to be relatively well-behaved. This is of course
more di�cult to check for models with intractable like-

Expectation Propagation for Likelihood-Free Inference

lihood functions. In practice some care has to be taken
in choosing an appropriate parameterisation (avoiding
heavy posterior tails for example), and making sure
that parameters are not redundant (which could lead
to a multimodal posterior). A potential strategy for
troublesome posteriors is to treat a subset of the pa-
rameters as hyperparameters, running ABC-EP con-
ditional on each value of the hyperparameters in a
grid. Another way is to make use of the corrections
described in Paquet et al. (2009). Future work will
address this issue.

While the current focus of research in Expectation
Propagation is on issues of large scale inference (with
large number of parameters and/or sites, e.g. Qi et al.,
2010 or Seeger et al., 2007), likelihood-free inference is
only realistic when the number of parameters is small.
The e�ciency of our method hangs nearly entirely on
how fast and reliably the computation of the moments
can be carried out. The simple rejection method used
here may be worth replacing with something more so-
phisticated when simulating the model is relatively
slow: an entire array of potential improvements is
available. These range from changing the kernel (here
uniform), to using non-parametric regression to model
the conditional distribution of yi on θ, then integrating
analytically.

On a theoretical level, work is needed to understand
the properties of EP, and how these are a�ected in
ABC-EP by the Monte Carlo error incurred in com-
puting the updates. Although EP works almost un-
reasonably well on certain problems (e.g. Gaussian
Process classi�cation, Nickisch & Rasmussen, 2008),
nearly recovering the exact mean of the target density,
it still lacks strong theoretical support. Some progress
has recently been made in this direction, with asymp-
totic consistency results in special cases (Titterington,
forthcoming), but much remains to be done.

Acknowledgements

The authors would like to thank the reviewers for o�er-
ing valuable comments on the manuscript. This work
has bene�ted from funding from the Bernstein Center
for Computational Neuroscience to Simon Barthelmé.
Nicolas Chopin acknowledges support from the ANR
grant ANR-008-BLAN-0218 �BigMC� of the French
Ministry of Research.

References

Andrieu, C., Doucet, A., and Holenstein, R. Particle
Markov chain Monte Carlo methods. J. R. Statist.
Soc. B, 72(3):269�342, 2010. doi: 10.1111/j.1467-

9868.2009.00736.x.

Beaumont, M.A., Zhang, W., and Balding, D.J. Ap-
proximate Bayesian computation in population ge-
netics. Genetics, 162(4):2025, 2002.

Beaumont, Mark A. Approximate Bayesian Compu-
tation in Evolution and Ecology. Annual Review of
Ecology, Evolution, and Systematics, 41(1):379�406,
2010. doi: 10.1146/annurev-ecolsys-102209-144621.

Blum, M. G. B. Approximate Bayesian Computation:
A Nonparametric Perspective. J. Am. Statist. As-
soc., 105(491):1178�1187, 2010.

Blum, Michael and François, Olivier. Non-linear re-
gression models for Approximate Bayesian Compu-
tation. Statist. Comput., 20(1):63�73, January 2010.
ISSN 0960-3174. doi: 10.1007/s11222-009-9116-0.

Boys, R.J., Wilkinson, D.J., and Kirkwood, T.B.L.
Bayesian inference for a discretely observed stochas-
tic kinetic model. Statist. Comput., 18(2):125�135,
2008. ISSN 0960-3174. doi: 10.1007/s11222-007-
9043-x.

Del Moral, P., Doucet, A., and Jasra, A. Sequential
Monte Carlo samplers. Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology), 68
(3):411�436, 2006.

Del Moral, P., Doucet, A., and Jasra, A. An Adaptive
Sequential Monte Carlo Method for Approximate
Bayesian Computation. Technical report, 2008.

Gillespie, Daniel T. Exact stochastic simulation of
coupled chemical reactions. The Journal of Phys-
ical Chemistry, 81(25):2340�2361, December 1977.
doi: 10.1021/j100540a008.

Gouriéroux, C., Monfort, A., and Renault, E. Indirect
Inference. Journal of Applied Econometrics, 8:S85�
S118, 1993. ISSN 08837252. doi: 10.2307/2285076.

Holenstein, R. Particle Markov Chain Monte Carlo.
PhD thesis, University of British Columbia, 2009.

Lemieux, Christiane. Monte Carlo and Quasi-
Monte Carlo Sampling (Springer Series in Statis-
tics). Springer, 1 edition, February 2009. ISBN
0387781641.

Marin, Jean-Michel, Pudlo, Pierre, Robert, Chris-
tian P., and Ryder, Robin. Approximate Bayesian
Computational methods. 2011.

Marjoram, Paul, Molitor, John, Plagnol, Vincent, and
Tavaré, Simon. Markov Chain Monte Carlo with-
out Likelihoods. 100(26):15324�15328, 2003. ISSN
00278424. doi: 10.2307/3149004.

Expectation Propagation for Likelihood-Free Inference

Minka, T.P. Expectation Propagation for approximate
Bayesian inference. PRoceedings of Uncertainty in
Arti�cial Intelligence, 17:362�369, 2001.

Nickisch, H. and Rasmussen, C.E. Approximations for
Binary Gaussian Process Classi�cation. J. Machine
Learning Research, 9(10):2035�2078, October 2008.

Nunes, Matthew A. and Balding, David J. On op-
timal selection of summary statistics for approxi-
mate Bayesian computation. Statistical applications
in genetics and molecular biology, 9(1), 2010. ISSN
1544-6115. doi: 10.2202/1544-6115.1576.

Opper, Manfred and Winther, Ole. Expectation Con-
sistent Approximate Inference. J. Machine Learning
Research, 6:2177�2204, December 2005. ISSN 1532-
4435.

Paquet, Ulrich, Winther, Ole, and Opper, Manfred.
Perturbation Corrections in Approximate Inference:
Mixture Modelling Applications. J. Machine Learn-
ing Research, 10:1263�1304, June 2009.

Pritchard, J.K., Seielstad, M.T., Perez-Lezaun, A.,
and Feldman, M.W. Population growth of human Y
chromosomes: a study of Y chromosome microsatel-
lites. Molecular Biology and Evolution, 16(12):1791,
1999. ISSN 0737-4038.

Qi, Alan, Abdel-Gawad, Ahmed, and Minka, Thomas.
Sparse-posterior Gaussian Processes for general like-
lihoods. In Grünwald, P. and Spirtes, P. (eds.), Pro-
ceedings of the 26th Conference on Uncertainty in
Arti�cial Intelligence. AUAI Press, 2010.

Roberts, Gareth O. and Rosenthal, Je�rey S. Opti-
mal Scaling for Various Metropolis-Hastings Algo-
rithms. Statist. Science, 16(4):351�367, 2001. ISSN
08834237. doi: 10.2307/3182776.

Seeger, M. Expectation Propagation for Exponential
Families. Technical report, Univ. California Berke-
ley, 2005.

Seeger, Matthias, Gerwinn, Sebastian, and Bethge,
Matthias. Bayesian Inference for Sparse General-
ized Linear Models. In ECML '07: Proceedings of
the 18th European conference on Machine Learning,
pp. 298�309. Springer-Verlag, 2007. ISBN 978-3-
540-74957-8. doi: 10.1007/978-3-540-74958-5_29.

Toni, Tina, Welch, David, Strelkowa, Natalja, Ipsen,
Andreas, and Stumpf, Michael P. H. Approxi-
mate Bayesian computation scheme for parameter
inference and model selection in dynamical sys-
tems. Journal of The Royal Society Interface, 6
(31):187�202, February 2009. ISSN 1742-5689. doi:
10.1098/rsif.2008.0172.

Time

P
op

ul
at

io
n

20

40

60

80

100

●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●
●

●
● ●

●
●

●

●

●

●
●

●

●
●

●

●

● ●
●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

Preys

Predators

10 20 30 40 50

Figure 3. Simulated dataset for the Lotka-Volterra
predator-prey model. We plot the evolution of population
counts across time, as sampled at discrete time points.

de
ns

ity

0

5

10

15

0

100

200

300

400

500

600

0

5

10

15

20

r1

0.30 0.35 0.40 0.45 0.50

r2

0.008 0.009 0.010 0.011 0.012 0.013

r3

0.25 0.30 0.35

Figure 4. Comparison of the posterior distributions for
the rate parameters obtained using EP-ABC and Parti-
cle MCMC. The Particle MCMC samples are represented
as histograms and correspond to an ε value of 3. EP-ABC
was ran 10 times. Due to Monte Carlo variance the results
are not identical every time, and we plot the corresponding
individual densities (dotted lines) as well as that obtained
by averaging the parameters over the 10 runs (thick lines).

