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Abstract

The Dueling Bandits Problem is an online
learning framework in which actions are re-
stricted to noisy comparisons between pairs
of strategies (also called bandits). It mod-
els settings where absolute rewards are dif-
ficult to elicit but pairwise preferences are
readily available. In this paper, we extend
the Dueling Bandits Problem to a relaxed
setting where preference magnitudes can vi-
olate transitivity. We present the first al-
gorithm for this more general Dueling Ban-
dits Problem and provide theoretical guar-
antees in both the online and the PAC set-
tings. We also show that the new algorithm
has stronger guarantees than existing results
even in the original Dueling Bandits Prob-
lem, which we validate empirically.

1. Introduction

Online learning approaches have become increasingly
popular for modeling recommendation systems that
learn from user feedback. Unfortunately, conventional
online learning methods assume that absolute rewards
(e.g. rate A from 1 to 5) are observable and reliable,
which is not the case in search engines and other sys-
tems that have access only to implicit feedback (e.g.
clicks) (Radlinski et al., 2008). However, for search
engines there exist reliable methods for inferring pref-
erence feedback (e.g. is A better than B) from clicks
(Radlinski et al., 2008). This motivates the K-armed
Dueling Bandits Problem (Yue et al., 2009), which for-
malizes the problem of online learning with preference
feedback instead of absolute rewards.

One major limitation of existing algorithms for the
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Dueling Bandits Problem is the assumption that user
preferences satisfy strong transitivity. For example, for
strategies A, B and C, if users prefer A to B by 55%,
and B to C by 60%, then strong transitivity requires
that users prefer A to C at least 60%. Such require-
ments are often violated in practice (see Section 3.1).

In this paper, we extend the K-armed Dueling Ban-
dits Problem to a relaxed setting where stochastic pref-
erences can violate strong transitivity. We present a
new algorithm, called “Beat-the-Mean”, with the-
oretical guarantees that are not only stronger than
previous results for the original setting, but also de-
grade gracefully with the degree of transitivity viola-
tion. We empirically validate our findings and observe
that the new algorithm is indeed more robust, and that
it has orders-of-magnitude lower variability. Finally,
we show that the new algorithm also has PAC-style
guarantees for the Dueling Bandits Problem.

2. Related Work

Conventional multi-armed bandit problems have been
well studied in both the online (Lai & Robbins, 1985;
Auer et al., 2002) and PAC (Mannor & Tsitsiklis, 2004;
Even-Dar et al., 2006; Kalyanakrishnan & Stone, 2010)
settings. These settings differ from ours primarily in
that feedback is measured on an absolute scale.

Methods that learn using noisy pairwise compar-
isons include active learning approaches (Radlinski &
Joachims, 2007) and algorithms for finding the maxi-
mum element (Feige et al., 1994). The latter setting
is similar to our PAC setting, but requires a common
stochastic model for all comparisons. In contrast, our
analysis explicitly accounts for not only that different
pairs of items yield different stochastic preferences, but
also that these preferences might not be internally con-
sistent (i.e. violate strong transitivity).

Yue & Joachims (2009) considered a continuous ver-
sion of the Dueling Bandits Problem, where bandits
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Table 1. Pr(Row > Col)−1/2 as estimated from interleav-
ing experiments with six retrieval functions on ArXiv.org.

A B C D E F
A 0 0.05 0.05 0.04 0.11 011
B -0.05 0 0.05 0.06 0.08 0.10
C -0.05 -0.05 0 0.04 0.01 0.06
D -0.04 -0.04 -0.04 0 0.04 0.00
E -0.11 -0.08 -0.01 -0.04 0 0.01
F -0.11 -0.10 -0.06 -0.00 -0.01 0

are represented as high dimensional points, and deriva-
tives are estimated by comparing two bandits. More
recently, Agarwal et al. (2010) proposed a near-
optimal multi-point algorithm for the conventional
continuous bandit setting, which may be adaptable to
the Dueling Bandits Problem.

Our proposed algorithm is structurally similar to the
Successive Elimination algorithm proposed by Even-
Dar et al. (2006) for the conventional PAC bandit
setting. Our theoretical analysis differs significantly
due to having to deal with pairwise comparisons.

3. The Learning Problem

The K-armed Dueling Bandits Problem (Yue et al.,
2009) is an iterative learning problem on a set of ban-
dits B = {b1, . . . , bK} (also called arms or strategies).
Each iteration comprises a noisy comparison (duel) be-
tween two bandits (possibly the same bandit with it-
self). We assume the comparison outcomes to have
independent and time-stationary distributions.

We write the comparison probabilities as P (b > b′) =
ε(b, b′) + 1/2, where ε(b, b′) ∈ (−1/2, 1/2) represents
the distinguishability between b and b′. We assume
there exists a total ordering such that b � b′ ⇔
ε(b, b′) > 0. We also use the notation εi,j ≡ ε(bi, bj).
Note that ε(b, b′) = −ε(b′, b) and ε(b, b) = 0. For ease
of analysis, we also assume WLOG that the bandits
are indexed in preferential order b1 � b2 � . . . � bK .

Online Setting. In the online setting, algorithms
are evaluated “on the fly” during every iteration. Let
(b(t)

1 , b
(t)
2 ) be the bandits chosen at iteration t. Let T

be the time horizon. We quantify performance using
the following notion of regret,

RT =
1
2

T∑
t=1

(
ε(b1, b

(t)
1 ) + ε(b1, b

(t)
2 )
)

. (1)

In search applications, (1) reflects the fraction of users
who would have preferred b1 over b

(t)
1 and b

(t)
2 .

PAC Setting. In the PAC setting, the goal is to con-
fidently find a near-optimal bandit. More precisely,

an (ε,δ)-PAC algorithm will find a bandit b̂ such that
P (ε(b1, b̂) > ε) ≤ δ. Efficiency is measured via the
sample complexity, i.e. the total number of compar-
isons required. Note that sample complexity penalizes
each comparison equally, whereas the regret (1) of a
comparison depends on the bandits being compared.

3.1. Modeling Assumptions

Previous work (Yue et al., 2009) relied on two proper-
ties, called stochastic triangle inequality and strong
stochastic transitivity. In this paper, we assume a
relaxed version of strong stochastic transitivity that
more accurately characterizes real-world user prefer-
ences. Note that we only require the two properties
below to be defined relative to the best bandit b1.

Relaxed Stochastic Transitivity. For any triplet
of bandits b1 � bj � bk and some γ ≥ 1, we assume
γε1,k ≥ max{ε1,j , εj,k}. This can be viewed as a mono-
tonicity or internal consistency property of user pref-
erences. Strong stochastic transitivity, considered in
(Yue et al., 2009), is the special case where γ = 1.

Stochastic Triangle Inequality. For any triplet of
bandits b1 � bj � bk, we assume ε1,k ≤ ε1,j +εj,k. This
can be viewed as a diminishing returns property.1

To understand why relaxed stochastic transitivity is
important, consider Table 1, which describes prefer-
ences elicited from pairwise interleaving experiments
(Radlinski et al., 2008) using six retrieval functions
in the full-text search engine2 of ArXiv.org. We see
that user preferences obey a total ordering A � B
� . . . � F, and satisfy relaxed stochastic transitiv-
ity for γ = 1.5 (due to A, B, D) as well as stochas-
tic triangle inequality. A good algorithm should have
guarantees that degrade smoothly as γ increases.

4. Algorithm and Analysis

Our algorithm, called Beat-the-Mean, is described
in Algorithm 1. The online and PAC settings require
different input parameters, and those are specified in
Algorithm 2 and Algorithm 3, respectively.

Beat-the-Mean proceeds in a sequence of rounds,
and maintains a working set W` of active bandits dur-
ing each round `. For each active bandit bi ∈ W`, an
empirical estimate P̂i (Line 6) is maintained for how
often bi beats the mean bandit b̄` of W`, where compar-
ing bi with b̄` is functionally identical to comparing bi

1Our results can be extended to the relaxed case where
ε1,k ≤ λ(ε1,j + εj,k) for λ ≥ 1. However, we focus on strong
transitivity since it is far more easily violated in practice.

2http://search.arxiv.org
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Algorithm 1 Beat-the-Mean

1: Input: B = {b1, . . . , bK}, N , T , cδ,γ(·)
2: W1 ← {b1, . . . , bK} //working set of active bandits
3: `← 1 //num rounds
4: ∀b ∈W`, nb ← 0 //num comparisons
5: ∀b ∈W`, wb ← 0 //num wins

6: ∀b ∈W`, P̂b ≡ wb/nb, or 1/2 if nb = 0
7: n∗ ≡ minb∈W` nb

8: c∗ ≡ cδ,γ(n∗), or 1 if n∗ = 0 //confidence radius
9: t← 0 //total number of iterations

10: while |W`| > 1 and t < T and n∗ < N do
11: b← argminb∈W`

nb //break ties randomly

12: select b′ ∈W` at random, compare b vs b′

13: if b wins, wb ← wb + 1
14: nb ← nb + 1
15: t← t + 1
16: if minb′∈W`

P̂b′ + c∗ ≤ maxb∈W` P̂b − c∗ then

17: b′ ← argminb∈W`
P̂b

18: ∀b ∈W`, delete comparisons with b′ from wb, nb

19: W`+1 ←W` \ {b′} //update working set
20: `← ` + 1 //new round
21: end if
22: end while
23: return argmaxb∈W`

P̂b

Algorithm 2 Beat-the-Mean (Online)
1: Input B = {b1, . . . , bK}, γ, T
2: δ ← 1/(2TK)
3: Define cδ,γ(·) using (4)

4: b̂← Beat-the-Mean(B, ∞, T , cδ,γ)

with a bandit sampled uniformly from W` (Line 12).
In each iteration, a bandit with the fewest recorded
comparisons is selected to compare with b̄` (Line 11).

Whenever the empirically worst bandit b′ is separated
from the empirically best one by a sufficient confidence
margin (Line 16), then the round ends, all recorded
comparisons involving b′ are removed (Line 18), and
b′ is removed from W` (Line 19). Afterwards, each
remaining P̂i is again an unbiased estimate of bi versus
the mean bandit b̄`+1 of the new W`+1. The algorithm
terminates when only one active bandit remains, or
when another termination condition is met (Line 10).

Notation and terminology. We call a round all
the contiguous comparisons until a bandit is removed.
We say bi defeats bj if bi and bj have the highest
and lowest empirical means, respectively, and that the
difference is sufficiently large (Line 16). Our algorithm
makes a mistake whenever it removes the best bandit
b1 from any W`. We will use the shorthand

P̂i,j,n ≡ P̂i,n − P̂j,n, (2)

where P̂i,n refers to the empirical estimate of bi ver-
sus the mean bandit b̄` after n comparisons (we of-
ten suppress ` for brevity). We call the empirically

Algorithm 3 Beat-the-Mean (PAC)
1: Input B = {b1, . . . , bK}, γ, ε, δ
2: Define N using (8)
3: Define cδ,γ(·) using (7)

4: b̂← Beat-the-Mean(B, N , ∞, cδ,γ)

best and empirically worst bandits to be the ones
with highest and lowest P̂i,n, respectively. We call the
best and worst bandits in W` to be argminbi∈W`

i and
argmaxbi∈W`

i, respectively. We define the expected
performance of any active bandit bi ∈ W` to be

E[P̂i] =
1

|W`|

( ∑
b′∈W`

P (bi > b′)

)
. (3)

For clarity of presentation, all proofs are contained in
the appendix. We begin by stating two observations.
Observation 1. Let bk be the worst bandit in W`, and
let b1 ∈ W`. Then E[P̂1,k,n] ≥ ε1,k.
Observation 2. Let bk be the worst bandit in W`, and
let b1 ∈ W`. Then ∀bj ∈ W` : E[P̂j,k,n] ≤ 2γ2ε1,k.

Observation 1 implies a margin between the expected
performance of b1 and the worst bandit in W`. This
will be used to bound the comparisons required in each
round. Due to relaxed stochastic transitivity, b1 may
not have the best expected performance.3 Observa-
tion 2 bounds the difference in expected performance
between any bandit and the worst bandit in W`. This
will be used to derive the appropriate confidence in-
tervals so that b1 ∈ W`+1 with sufficient probability.

4.1. Online Setting

We take an “explore then exploit” approach for the
online setting, similar to (Yue et al., 2009). For time
horizon T , relaxed transitivity parameter γ, and ban-
dits B = {b1, . . . , bK}, we use Beat-the-Mean in the
explore phase (see Algorithm 2). Let b̂ denote the ban-
dit returned by Beat-the-Mean. We then enter an
exploit phase by repeatedly choosing (b(t)

1 , b
(t)
2 ) = (b̂, b̂)

until reaching T total comparisons. Comparisons in
the exploit phase incur no regret assuming b̂ = b1.

We use the following confidence interval c(·),

cδ,γ(n) = 3γ2

√
1
n

log
1
δ
, (4)

where δ = 1/(2KT ).4 We do not use the last remain-
ing input N to Beat-the-Mean (i.e., we set N = ∞);
it is used only in the PAC setting.

3For example, the second best bandit may lose slightly
to b1 but be strongly preferred versus the other bandits.

4When γ = 1, we can use a tighter conf. interval (9).
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We will show that Beat-the-Mean correctly returns
the best bandit w.p. at least 1−1/T . Correspondingly,
a suboptimal bandit is returned with probability at
most 1/T , in which case we assume maximal regret
O(T ). We can thus bound the expected regret by

E[RT ] ≤ (1− 1/T )E
[
RBtM

T

]
+ (1/T )O(T )

= O
(
E
[
RBtM

T

]
+ 1
)

(5)

where RBtM
T denotes the regret incurred from running

Beat-the-Mean. Thus the regret bound depends en-
tirely on the regret incurred by Beat-the-Mean.
Theorem 1. For T ≥ K, Beat-the-Mean makes
a mistake with probability at most 1/T , or otherwise
returns the best bandit b1 ∈ B and accumulates online
regret (1) that is bounded with high probability by

O

(
K−1∑
`=1

min
{

γ7

ε`
,
γ5ε`

ε2∗

}
log T

)
= O

(
γ7K

ε∗
log T

)
(6)

where ε` = ε1,k if bk is the worst remaining bandit in
round `, and ε∗ = min{ε1,2, . . . , ε1,K}.
Corollary 1. For T ≥ K, mistake-free executions
of Beat-the-Mean accumulate online regret that is
bounded with high probability by

O

(
K∑

k=2

γ8

ε1,k
log T

)
.

Our algorithm improves on the previously proposed
Interleaved Filter (IF) algorithm (Yue et al., 2009) in
two ways. First, (6) applies when γ > 1,5 whereas
the bound for IF does not. Second, while (6) matches
the expected regret bound for IF when γ = 1, ours
is a high probability bound. Our experiments show
that IF can accumulate large regret even when strong
stochastic transitivity is slightly violated (e.g. γ = 1.5
as in Table 1), and has high variance when γ = 1.
Beat-the-Mean exhibits neither drawback.

4.2. PAC Setting

When running Beat-the-Mean in the PAC setting,
one of two things can happen. In the first case, the
active set W` is reduced to a single bandit b̂, in which
case we will prove that b̂ = b1 with sufficient probabil-
ity. In the second case, the algorithm terminates when
the number of comparisons recorded for each remain-
ing bandit is at least N defined in (8) below, in which

5In practice, γ is typically close to 1, making the some-
what poor dependence on γ less of a concern. This poor
dependence seems primarily due to the bound of Observa-
tion 2 often being quite loose. However, it is unclear if one
can do better in the general worst case.
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Figure 1. Comparing regret of Beat-the-Mean (light)
and Interleaved Filter (dark) when γ = 1. For the top
graph, each εi,j = 0.1 where bi � bj . For the bottom
graph, each εi,j = 1/(1 + exp(µj − µi)) − 0.5, where each
µi ∼ N(0, 1). Error bars indicate one standard deviation.

case we prove that every remaining bandit is within ε
of b1 with sufficient probability. It suffices to focus on
the second case when analyzing sample complexity.

The input parameters are described in Algorithm 3.
We use the following confidence interval c(·),

cδ,γ(n) = 3γ2

√
1
n

log
K3N

δ
, (7)

where N is the smallest positive integer such that

N =
⌈

36γ6

ε2
log

K3N

δ

⌉
. (8)

Note that there are at most K2N total time steps,
since there are at most K rounds with at most KN
comparisons removed after each round.6 We do not use
the last remaining input T to Beat-the-Mean (i.e.,
we set T = ∞); it is used only in the online setting.
Theorem 2. Beat-the-Mean in Algorithm 3 is an
(ε, δ)-PAC algorithm with sample complexity

O (KN) = O
(

Kγ6

ε2
log

KN

δ

)
.

5. Evaluating Online Regret

As mentioned earlier, in the online setting, the theoret-
ical guarantees of Beat-the-Mean offer two advan-
tages over the previously proposed Interleaved Filter

6K2N is a trivial bound on the sample complexity of
Alg. 3. Thm. 2 gives a high probability bound of O(KN).
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Figure 2. Comparing regret of Beat-the-Mean (light)
and Interleaved Filter (dark) when γ > 1. For the top
graph, we fix γ = 1.3 and vary K. For the bottom graph,
we fix K = 500 and vary γ. Error bars indicate one stan-
dard deviation.

(IF) algorithm (Yue et al., 2009) by (A) giving a high
probability exploration bound versus one in expecta-
tion (and thus ensuring low variance), and (B) being
provably robust to relaxations of strong transitivity
(γ > 1). We now evaluate these cases empirically.

IF maintains a candidate bandit, and plays the can-
didate against the remaining bandits until one is con-
fidently superior. Thus, the regret of IF heavily de-
pends on the initial candidate, resulting in increased
variance. When strong transitivity is violated (γ > 1),
one can create scenarios where bi−1 is more likely to
defeat bi than any other bandit. Thus, IF will sift
through O(K) candidates and suffer O(K2) regret in
the worst case. Beat-the-Mean avoids this issue by
playing every bandit against the mean bandit.

We evaluate using simulations, where we construct
stochastic preferences εi,j that are unknown to the
algorithms. Since the guarantees of Beat-the-
Mean and IF differ w.r.t. the number of bandits K,
we fix T = 1010 and vary K. We first evaluate Case
(A), where strong transitivity holds (γ = 1). In this
setting, we will use the following confidence interval,

cδ,γ(n) =
√

(1/n) log(1/δ), (9)

where δ = 1/(2TK). This is tighter than (4), lead-
ing to a more efficient algorithm that still retains the
correctness guarantees when γ = 1.7

7The key observation is that cases (b) and (c) in Lemma
1 do not apply when γ = 1. The confidence interval used
by IF (Yue et al., 2009) is also equivalent to (9).

We evaluate two settings for Case (A), with the re-
sults presented in Figure 1. The first setting (Figure
1 top) defines εi,j = 0.1 for all bi � bj . The second
setting (Figure 1 bottom) defines for each bi a utility
µi ∼ N(0, 1) drawn i.i.d. from a unit normal distribu-
tion. Stochastic preferences are defined using a logistic
model, i.e. εi,j = 1/(1 + exp(µj − µi))− 0.5. For both
settings, we run 100 trials and observe the average re-
gret of both methods to increase linearly with K, but
the regret of IF shows much higher variance, which
matches the theoretical results.

We next evaluate Case (B), where stochastic prefer-
ences only satisfy relaxed transitivity. For any bi � bj ,
we define εi,j = 0.1γ if 1 < i = j− 1, or εi,j = 0.1 oth-
erwise. Figure 2 top shows the results for γ = 1.3. We
observe the similar behavior from Beat-the-Mean as
in Case (A),8 but IF suffers super-linear regret (and is
thus not robust) with significantly higher variance.

For completeness, Figure 2 bottom shows how regret
changes as γ is varied for fixed K = 500. We observe a
phase transition near γ = 1.3 where IF begins to suffer
super-linear regret (w.r.t. K). As γ increases further,
each round in IF also shortens due to each εi−1,i in-
creasing, causing the regret of IF to decrease slightly
(for fixed K). Beat-the-Mean uses confidence inter-
vals (4) that grow as γ increases, causing it to require
more comparisons for each bandit elimination. It is
possible that Beat-the-Mean can still behave cor-
rectly (i.e. be mistake-free) in practice while using
tighter confidence intervals (e.g. (9)).

6. Conclusion

We have presented an algorithm for the Dueling Ban-
dits Problem with high probability exploration bounds
for the online and PAC settings. The performance
guarantees of our algorithm degrade gracefully as
one relaxes the strong stochastic transitivity property,
which is a property often violated in practice. Empiri-
cal evaluations confirm the advantages of our theoret-
ical guarantees over previous results.

Acknowledgements. This work was funded in part
by NSF Award IIS-090546.

A. Extended Analysis

Proof of Observation 1. We can write E[P̂1,k,n] (2) as

E[P̂1,k,n] =
1

|W`|

2ε1,k +
∑

bj∈W`\{b1,bk}

(ε1,j − εk,j)

 .

8The regret is larger than in the analogous setting in
Case (A) due to the use of wider confidence intervals.
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Each bj in the summation above satisfies b1 � bj � bk.
Thus, ε1,j − εk,j = ε1,j + εj,k ≥ ε1,k, due to stochastic
triangle inequality, implying E[P̂1,k,n] ≥ ε1,k.

Proof of Observation 2. We focus on the non-trivial
case where bj 6= bk, b1. Combining (3) and (2) yields

E[P̂j,k,n] =
1

|W`|

2εj,k +
∑

bh∈W`\{bj ,bk}

(εj,h − εk,h)

 .

We know that εj,k ≤ γε1,k from relaxed transitivity.
For each bh in the above summation, either (a) bh �
bj � bk, or (b) bj � bh � bk. In case (a) we have

εj,h − εk,h = εj,h + εh,k ≤ εh,k ≤ γε1,k,

since εj,h ≤ 0. In case (b) we have

εj,h+εh,k ≤ γ(ε1,h+ε1,k) ≤ 2γ max{ε1,h, ε1,k} ≤ 2γ2ε1,k.

This implies that E[P̂j,k,n] ≤ 2γ2ε1,k.

A.1. Online Setting

We assume here that Beat-the-Mean is run accord-
ing to Alg. 2. We define cn ≡ cδ,γ(n) using (4).

Lemma 1. For δ = 1/(2TK), and assuming that b1 ∈
W`, the probability of bi ∈ W` \{b1} defeating b1 at the
end of round ` (i.e., a mistake) is at most 1/(TK2).

Proof. Having bi defeat b1 requires that for some n,
P̂1,n+cn < P̂i,n−cn, and also that b1 is the first bandit
to be defeated in the round. Since at any time, all
remaining bandits have the same confidence interval
size, then P̂1,n must have the lowest empirical mean.
In particular, this requires P̂1,n ≤ P̂k,n, where bk is
the worst bandit in W`. We will show that, for any n,
the probability of making a mistake is at most 2δ2 <
1/(T 2K2). Thus, by the union bound, the probability
of bi mistakenly defeating b1 for any n ≤ T is at most
2Tδ2 < 1/(TK2). We consider three sufficient cases:

(a) E[P̂i,n] ≤ E[P̂1,n]

(b) E[P̂i,n] > E[P̂1,n] and n < 4
ε21,k

log(1/δ)

(c) E[P̂i,n] > E[P̂1,n] and n ≥ 4
ε21,k

log(1/δ)

In case (a) applying Hoeffding’s inequality yields

P (P̂1,n + cn < P̂i,n − cn) ≤ 2δ4 < 2δ2.

In cases (b) and (c), we have bi 6= bk since Observation
1 implies E[P̂1,n] ≥ E[P̂k,n]. In case (b) we have cn >

(3/2)γ2ε1,k, which implies via Hoeffding’s inequality,

P (P̂i,n − cn > P̂1,n + cn)

≤ P (P̂i,n − cn > P̂k,n + cn) (10)

= P (P̂i,k,n −E[P̂i,k,n] > 2cn −E[P̂i,k,n])

≤ P (P̂i,k,n −E[P̂i,k,n] > 2cn − 2γ2ε1,k) (11)

≤ P (P̂i,k,n −E[P̂i,k,n] > (2/3)cn)

≤ exp
(
−2γ4 log(1/δ)

)
≤ δ2 < 2δ2

where (10) follows from ∀j : ε1,j ≥ εk,j , and (11) fol-
lows from Observation 2. In case (c) we know that

P (P̂k,n ≥ P̂1,n) = P (P̂k,1,n −E[P̂k,1,n] ≥ −E[P̂k,1,n])

≤ P (P̂k,1,n −E[P̂k,1,n] ≥ ε1,k) (12)

≤ exp
(
−nε21,k/2

)
= δ2 < 2δ2

Lemma 2. Beat-the-Mean makes a mistake with
probability at most 1/T .

Proof. By Lemma 1, the probability bj ∈ W` \ {b1}
defeats b1 is at most 1/(TK2). There are at most K
active bandits in any round and at most K rounds.
Applying the union bound proves the lemma.

Lemma 3. Let δ = 1/(TK), T ≥ K and assume b1 ∈
W`. If bk is the worst bandit in W`, then the number
of comparisons each b ∈ W` needs to accumulate before
some bandit being removed (and thus ending the round)
is with high probability bounded by

O

(
γ4

ε21,k

log(TK)

)
= O

(
γ4

ε21,k

log T

)
.

Proof. It suffices to bound the comparisons n required
to remove bk. We will show that for any d ≥ 1, there
exists an m depending only on d such that

P

(
n ≥ mγ4

ε21,k

log(TK)

)
≤ min

{
K−d, T−d

}
for all K and T sufficiently large. We will focus on
the sufficient condition of b1 defeating bk: if at any t
we have P̂1,t − ct > P̂k,t + ct, then bk is removed from
W`. It follows that for any t, if n > t, then P̂1,t − ct ≤
P̂k,t + ct, and so P (n > t) ≤ P (P̂1,t − ct ≤ P̂k,t + ct).

Note from Observation 1 that E[P̂1,k,t] ≥ ε1,k. Thus,

P (P̂1,t − ct ≤ P̂k,t + ct)

= P (E[P̂1,k,t]− P̂1,k,t ≥ E[P̂1,k,t]− 2ct)

≤ P (E[P̂1,k,t]− P̂1,k,t ≥ ε1,k − 2ct) (13)
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For any m ≥ 18 and t ≥ d8mγ4 log(2TK)/ε21,ke, we
have ct ≤ γε1,k/4, and so applying Hoeffding’s inequal-
ity for this m and t shows that (13) is bounded by

≤ P (|P̂1,k,t −E[P̂1,k,t]| ≥ ε1,k/2) ≤ 2 exp(−tε21,k/8).

Since t ≥ 8mγ4 log(2TK)/ε21,k by assumption, we have
tε21,k/8 ≥ m log(2TK), and so

2 exp(−tε21,k/8) ≤ 2 exp(−m log(2TK)) = 1/(TK)m,

which is bounded by K−m and T−m. We finally note
that for T ≥ K, O(log(2TK)) = O(log T ).

Lemma 4. Assume b1 ∈ W`′ for `′ ≤ `. Then the
number of comparisons removed at the end of round `
is bounded with high probability by

O
(

min
{

γ4

ε2∗
,
γ6

ε2`

}
log T

)
,

where ε` = ε1,K if bk is the worst bandit in W`, and
ε∗ = min{ε1,2, . . . , ε1,K}.

Proof. Let bk be the worst bandit in W`, and let bj ∈
W` denote the bandit removed at the end of round `.
By Lemma 3, the total number of comparisons that bj

accumulates is bounded with high probability by

O

(
γ4

ε21,k

log T

)
= O

(
γ4

ε2∗
log T

)
. (14)

Some bandits may have accumulated more compar-
isons than (14), since the number of remaining com-
parisons from previous rounds may exceed (14). How-
ever, Lemma 3 implies the number of remaining com-
parisons is at most

O

(
|W`|γ4

ε21,k′
log T

)
,

where ε1,k′ = minbk�bq ε1,q ≥ ε1,k/γ. We can bound
the number of comparisons accumulated at the end of
round ` by O(|W`|D`,γ,T ), where

D`,γ,T ≡ min
{

γ4

ε2∗
,
γ6

ε2`

}
log T, (15)

and ε` = ε1,k. In expectation

1 + (|W`| − 1)/|W`|
|W`|

<
2

|W`|
(16)

fraction of the comparisons will be removed at the end
of round ` (those that involve bj). Applying Hoeff-
ding’s inequality yields the number of removed com-
parisons is with high probability O(D`,γ,T ).

Proof of Theorem 1. Lemma 2 bounds the mistake
probability by 1/T . We focus here on the case where
Beat-the-Mean is mistake-free. We will show that,
at the end of each round `, the regret incurred from the
removed comparisons is bounded with high probability
by O(γε`D`,γ,T ) for D`,γ,T defined in (15). Since this
happens K − 1 times (once per round) and accounts
for the regret of every comparison, then the total ac-
cumulated regret of Beat-the-Mean will be bounded
with high probability by

O

(
K−1∑
`=1

γε`D`,γ,T

)
= O

(
K−1∑
`=1

min
{

γ5ε`

ε2∗
,
γ7

ε`

}
log T

)
.

By Lemma 4, the number of removed comparisons in
round ` is at most O(D`,γ,T ). The incurred regret of a
comparison between any bi and the removed bandit bj

is (ε1,i+ε1,j)/2 ≤ γε`, which follows from relaxed tran-
sitivity. Thus, the regret incurred from all removed
comparisons of round ` is at most O(γε`D`,γ,T ).

Proof of Corollary 1. We know from Theorem 1 that
the regret assigned to the removed bandit in each
round ` is O((γ7/ε`) log T ), where ε` = ε1,k if bk is
the worst bandit in W`. By the pigeonhole principle
bK+1−` � bk, since in round ` there are K + 1 − `
bandits. By relaxed transitivity, we have ε1,K+1−` ≤
γε1,k. The desired result naturally follows.

A.2. PAC Setting

We assume here that Beat-the-Mean is run accord-
ing to Alg. 3. We define cn ≡ cδ,γ(n) using (7).
Lemma 5. Assuming that b1 ∈ W`, the probability of
bi ∈ W` \ {b1} defeating b1 at the end of round ` (i.e.,
a mistake) is at most δ/K3.

Proof. (Sketch). This proof is structurally identical to
Lemma 1, except using a different confidence interval.
We consider three analogous cases:

(a) E[P̂i,n] < E[P̂1,n]

(b) E[P̂i,n] ≥ E[P̂1,n] and n < 4
ε21,k

log(K3N/δ)

(c) E[P̂i,n] ≥ E[P̂1,n] and n ≥ 4
ε21,k

log(K3N/δ)

In case (a) applying Hoeffding’s inequality yields

P (P̂1,n + cn < P̂i,n − cn) ≤ 2(δ/(K3N))4 < δ/(K5N).

In case (b), following (10) and (11), we have

P (P̂i,n − cn > P̂1,n + cn)

≤ P (P̂i,k,n −E[P̂i,k,n] > (2/3)cn)

≤ exp
(
−2γ4 log(1/δ)

)
≤ (δ/(K3N))2 < δ/(K5N).
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In case (c), following (12) and using K ≥ 2, we have

P (P̂1,n ≤ P̂k,n) ≤ 2 exp
(
−nε2i,k/2

)
≤ 2 exp

(
−2 log(K3N/δ)

)
= 2(δ/(K3N))2 < δ/(K5N).

So the probability of each failure case is at most
δ/(K5N). There are at most K2N time steps, so ap-
plying the union bound proves the claim.

Lemma 6. Beat-the-Mean makes a mistake with
probability at most δ/K.

The proof of Lemma 6 is exactly the same as Lemma
2, except leveraging Lemma 5 instead of Lemma 1.

Lemma 7. If a mistake-free execution of Beat-the-
Mean terminates due to n∗ = N in round `, then
P (∃bj ∈ W` : ε1,j > ε) ≤ δ/K.

Proof. Suppose Beat-the-Mean terminates due to
n∗ = N after round ` and t total comparisons. For
any bi ∈ W`, we know via Hoeffding’s inequality that

P (|P̂i,N −E[P̂i,N ]| ≥ cN ) ≤ 2 exp
(
−18γ4 log(K3N/δ)

)
,

which is at most δ/(K4N). There are at most K2N
comparisons, so taking the union bound over all t and
bi yields δ/K. So with probability at least 1 − δ/K,
each P̂i is within cN of its expectation when Beat-
the-Mean terminates. Using (8), this implies

∀bj ∈ W`, E[P̂1]−E[P̂j ] ≤ 2cN ≤ ε/γ.

In particular, for the worst bandit bk in W` we have

ε/γ ≥ E[P̂1]−E[P̂k] ≥ ε1,k, (17)

which follows from Observation 1. Since γε1,k ≥ ε1,j

for any bj ∈ W`, then (17) implies ε ≥ ε1,j .

Proof of Theorem 2. We first analyze correctness. We
consider two sufficient failure cases:

(a) Beat-the-Mean makes a mistake

(b) Beat-the-Mean is mistake-free and there exists
an active bandit bj upon termination where ε1,j > ε

Lemma 6 implies that the probability of (a) is at most
δ/K. If Beat-the-Mean terminates due to n∗ = N ,
then Lemma 7 implies that the probability of (b) is also
at most δ/K. By the union bound the total probability
of (a) or (b) is bounded by 2δ/K ≤ δ, since K ≥ 2.

We now analyze the sample complexity. Let L denote
the round when the termination condition n∗ = N is
satisfied (L = K − 1 if the condition was never satis-
fied). For rounds 1, . . . , L − 1, the maximum number

of unremoved comparisons accumulated by any bandit
is N . Using the same argument from (16), the num-
ber of comparisons removed after each round is then
with high probability O(N). In round L, each of the
K − L + 1 remaining bandits accumulate at most N
comparisons, implying that the total number of com-
parisons made is bounded by

O ((K − L + 1)N + (L− 1)N) = O
(

Kγ6

ε2
log

KN

δ

)
.
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